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Abstract. The detection of multiple curved lane markings on a non-flat road surface

is still a challenging task for vehicular systems. To make an improvement, the depth

information can be used to enhance the robustness of the lane detection systems.

In this paper, the proposed lane detection system is developed from our previous

work where the estimation of the dense vanishing point is further improved using the

disparity information. However, the outliers in the Least Squares Fitting severely

affect the accuracy when estimating the vanishing point. Therefore, in this paper we

use Random Sample Consensus to update the parameters of the road model iteratively

until the percentage of the inliers exceeds our pre-set threshold. This significantly

helps the system to overcome some suddenly changing conditions. Furthermore, we

propose a novel lane position validation approach which computes the energy of each

possible solution and selects all satisfying lane positions for visualisation. The proposed

system is implemented on a heterogeneous system which consists of an Intel Core i7-

4720HQ CPU and an NVIDIA GTX 970M GPU. A processing speed of 143 fps has

been achieved, which is over 38 times faster than our previous work. Moreover, in

order to evaluate the detection precision, we tested 2495 frames including 5361 lanes.

It is shown that the overall successful detection rate is increased from 98.7% to 99.5%.

1. Introduction

Various prototype vehicle road tests have been conducted by Google in the US since

2012, and its subsidiary X is planning to commercialise their autonomous cars as from

2020 [1]. Recently, Volvo has conducted a series of self-driving experiments involving

about 100 cars in China and many companies like Ford and Uber have entered the race

to make driver-less taxis a reality [2]. The techniques like lane detection in Advanced

Driver Assistance Systems (ADAS) are playing an increasingly crucial role in enhancing

driving safety and minimising the possibilities of fatalities.

The state-of-the-art lane detection algorithms can be grouped into two main

categories: feature-based and model-based [3]. The feature-based algorithms extract the

local, meaningful and detectable parts of an image, such as edges, texture and colour,

to segment lanes and road boundaries from the background [4]. On the other hand, the
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model-based algorithms try to represent the lanes with a mathematical equation based

upon some common road geometry assumptions [5]. The most commonly used lane

models include: linear, parabolic, linear-parabolic and spline. The linear model works

well for the lanes with a low curvature, as demonstrated in [2,6]. However, a more flexible

road model is inevitable when the lanes with a higher curvature exist. Therefore, some

algorithms [7–10] use a parabolic model to represent the lanes with a constant curvature.

For some more complex cases, Jung et al. proposed a linear-parabolic combined lane

model, where the nearby lanes are represented as linear models, whereas the far ones

are modelled as parabolas [11]. In addition to the models mentioned above, the spline

model is an alternative way to interpolate the lane pixels into an arbitrary shape [5,12].

However, the more parameters introduced into a flexible model, the higher will be the

computational complexity of the algorithm. Therefore, we turn our focus on some

additional important properties of 3-D imaging techniques instead of being limited to

only 2-D information.

One of the most prevalently used methods is Inverse Perspective Mapping (IPM).

With the assumption that two lanes are parallel to each other in the World Coordinate

System (WCS), IPM is able to map a 3-D scenery into a 2-D bird’s eye view [13].

Furthermore, many researchers [14–18] proposed to use the vanishing point pvp =

[uvp, vvp]
> to model lane markings and road boundaries, where uvp and vvp represent

the vertical and horizontal coordinates of the vanishing point, respectively. However,

their algorithms work well only if the road surface is assumed to be flat or the camera

parameters are known. Therefore, we pay closer attention to the disparity information

which can be provided by either active sensors, e.g., radar and laser, or passive

sensors, e.g., stereo cameras [17]. Since Labayrade et al. proposed the concept of “v-

disparity” [19], disparity information has been widely used to enhance the robustness of

the lane detection systems. Our previous work [17] shows a particular instance where

the disparity information is successfully combined with a lane detection algorithm to

estimate pvp for a non-flat road surface. At the same time, the obstacles contain a

lot of redundant information which can be eliminated by comparing the actual and

fitted disparity values. However, the estimation of pvp suffers from the outliers when

performing the Least Squares Fitting (LSF), and the lanes are sometimes unsuccessfully

detected because the selection of plus-minus peaks is not always effective. Moreover,

achieving real-time performance is still a challenging task in [17] because of the intensive

computational complexity of the algorithm. Therefore, in this paper we present an

improved lane detection system for the problems mentioned above.

The proposed multiple lane detection system is composed of four main components:

disparity map estimation, dense vvp estimation, dense uvp estimation and lane position

validation. The block diagram of the proposed system is illustrated in Figure 1, where

procedures 1 to 5 are processed on a GPU (Graphics Processing Unit) because they

are more efficient for parallel processing but the serially-efficient procedures 6 to 12 are

executed on a CPU (Central Processing Unit).

Firstly, a disparity map is estimated by comparing the difference between a pair of



Measurement Science and Technology 3

Figure 1. The block diagram of the proposed lane detection system.

well-rectified left and right images. The disparity map is mainly used for:

• estimation of dense vvp,

• road surface estimation, and

• elimination of the redundant information.

In this paper, the road surface is not assumed to be flat and the projection of

the road disparities on the v-disparity map is modelled as a parabola. Compared with

some quadratic pattern detectors, Dynamic Programming (DP) is a more efficient way

to extract the path with the highest accumulations from the v-disparity map. The

extracted path is then interpolated into a parabola using the LSF. However, the outliers

in the LSF severely affect the accuracy of the vanishing point estimation. Therefore, we

propose to update the parabola function iteratively using the Random Sample Consensus

(RANSAC) until the percentage of the inliers exceeds our pre-set threshold. This greatly

improves the robustness of the proposed system. Since the bilateral filter performs better

than the median filter in terms of edge preservation and noise elimination, it is utilised

to reduce the unnecessary edges before estimating uvp. vvp and the orientation of each

edge point in the road surface area are then used to estimate uvp, where we employ the

RANSAC to minimise the influence of outliers on the LSF. An arbitrary lane marking

or road boundary can thus be extracted using the vanishing point information. Finally,

we propose a novel lane position validation approach which computes the energy of each

possible solution and selects all satisfying lanes for visualisation.
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The remainder of this paper is structured as follows: section 2 describes the

proposed lane detection system. Section 3 evaluates the experimental results. Section

4 summarises the paper and provides some recommendations for future work.

2. System Description

2.1. Disparity Map Estimation

As compared with many other stereo matching algorithms which aim at automotive

applications, the trade-off between accuracy and speed has been greatly improved in

our previous work [20]. Therefore, we employ the algorithm presented in [20] to acquire

the disparity information for the proposed lane detection system.

2.1.1. Memorisation Due to the insensitivity to the intensity difference, the

Normalised Cross-Correlation (NCC) is utilised as the cost function to measure the

similarity between two blocks, as shown in Eq. 1. Each block chosen from the left image

is matched with a series of blocks on the same epipolar line in the right image. The

block pair with the highest correlation cost is then selected as the best correspondence,

and the shifting distance between them is defined as the disparity d.

c(u, v, d) =
1

nσlσr

x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

(il(x, y)− µl)(ir(x− d, y)− µr) (1)

where c is defined as the correlation cost, and il and ir represent the pixel intensities in

the left and right images, respectively. The centres of the left and right blocks are (u, v)

and (u−d, v), respectively. The side length of the block is 2ρ+1. n = (2ρ+1)2 represents

the number of pixels within each block. µl and µr denote the means of the intensities

within the left and right blocks, respectively. σl and σr represent their corresponding

standard deviations [20]:

σl =

√√√√x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

(il(x, y)− µl)2/n (2)

σr =

√√√√x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

(ir(x− d, y)− µr)2/n (3)

When the left block is selected, the computations of µl and σl are always repeated

because d is only used to select the positions of the right blocks for stereo matching.

Therefore, the four independent parts µl, µr, σl and σr can be pre-calculated and stored

in a static program storage for direct indexing. The integral image algorithm is used to

compute µl and µr efficiently [21], which is illustrated in Figure 2. The algorithm has

two steps: integral image initialisation and value indexing from the initialised reference.
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(a) (b)

Figure 2. Integral image processing. (a) original image. (b) integral image.

In the first step, for a discrete image i whose pixel intensity at (u, v) is i(u, v), its integral

image intensity I(u, v) at the position of (u, v) is defined as:

I(u, v) =
∑

x≤u, y≤v

i(x, y) (4)

Algorithm 1 details the implementation of the integral image initialisation, where I

is calculated serially based on its previous neighbouring results to minimise unnecessary

computations.

Algorithm 1: Integral image initialisation

Input : original image: i

Output: integral image: I

1 I(umin, vmin)← i(umin, vmin);

2 for u← umin + 1 to umax do

3 I(u, vmin)← I(u− 1, vmin) + i(u, vmin);

4 end

5 for v ← vmin + 1 to vmax do

6 I(umin, v)← I(umin, v − 1) + i(umin, v);

7 end

8 for u← umin + 1 to umax do

9 for v ← vmin + 1 to vmax do

10 I(u, v)← I(u, v − 1) + I(u− 1, v)

11 −I(u− 1, v − 1) + i(u, v);

12 end

13 end

After initialising an integral image, the sum s(u, v) of pixel intensities within a

square block whose side length is 2ρ+ 1 and centre is (u, v) can be computed using four

references r1 = I(u+ ρ, v+ ρ), r2 = I(u− ρ− 1, v− ρ− 1), r3 = I(u− ρ− 1, v+ ρ) and
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r4 = I(u+ ρ, v − ρ− 1) as follows:

s(u, v) = r1 + r2 − r3 − r4 (5)

The mean µ(u, v) = s(u, v)/n of the intensities within the selected block is then

stored in a static program storage for the computations of σ and c. To simplify the

computations of σl and σr, we rearrange Eq. 2 and Eq. 3 as shown in Eq. 6 and Eq. 7,

respectively.

σl =

√√√√x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

il
2(x, y)/n− µl2 (6)

σr =

√√√√x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

ir
2(x− d, y)/n− µr2 (7)

where
∑
il
2 and

∑
ir

2 are dot products. Similarly, the computations of
∑

il
2 and∑

ir
2 can be accelerated by initialising two integral images Il2 and Ir2 as references for

indexing. Therefore, the standard deviations σl and σr can also be calculated and stored

in a static program storage for the efficient computation of c as follows:

c(u, v, d) =
1

nσlσr

[
x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

il(x, y)ir(x− d, y)− nµlµr

]
(8)

According to Eq. 8, only
∑
ilir needs to be calculated during the stereo matching.

Hence, with the values of µl, µr, σl and σr able to be indexed directly, Eq. 1 is simplified

as a dot product. The performance improvement achieved by factorising the NCC

equation will be discussed section 3.1.

2.1.2. Search Range Propagation (SRP) In this paper, the disparities are estimated

iteratively row by row from row vmax to row vmin. In the first iteration, the stereo

matching goes for a full search range SR = {sr|sr ∈ [dmin, dmax]}. Then, the search

range for stereo matching at the position of (u, v) is propagated from three estimated

neighbouring disparities `(u− 1, v + 1), `(u, v + 1) and `(u+ 1, v + 1) using Eq. 9 [22],

where τ is the bound of the search range and it is set to 1 in the proposed system. The

estimated left disparity map is illustrated in Figure 3(c). More details on the SRP-based

disparity estimation are given in algorithm 2. The performance of the SRP-based stereo

will be discussed in section 3.1.

SR =
u+1⋃

k=u−1

{sr|sr ∈ [`(k, v + 1)− τ, `(k, v + 1) + τ ]} (9)
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(a) (b)

(c) (d)

Figure 3. Input images and disparity maps. (a) left image. (b) right image. (c) left

disparity map. (d) left disparity map processed with the LRC.

Algorithm 2: SRP-based disparity map estimation

Input : left image, right image;

left mean map, right mean map;

left standard deviation map, right standard deviation map;

Output: disparity map

1 estimate the disparities for row vmax;

2 for v ← vmax − 1 to vmin do

3 for u← umin to umax do

4 propagate the search range from row v + 1 using Eq. 9;

5 estimate the disparity for (u, v);

6 end

7 end

2.1.3. Post-Processing For various disparity map estimation algorithms, the pixels that

are only visible in one disparity map are a major source of the matching errors. Due to

the uniqueness constraint of the correspondence, for an arbitrary pixel (u, v) in the left

disparity map `lf , there exists at most one correspondence in the right disparity map

`rt, namely [20]:

`lf (u, v) = `rt(u− `lf (u, v), v) (10)

A left-right consistency (LRC) check is performed to remove half-occluded areas

from the disparity map. Although the LRC check doubles the computational complexity

by re-projecting the computed disparity values from one image to the other one, most

of the incorrect half-occluded pixels can be eliminated and an outlier can be found [20].

For the estimation of `rt, the memorisation of µl, µr, σl and σr is unnecessary because
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they have already been calculated when estimating `lf . More details on the LRC check

is given in algorithm 3, where trLRC is the threshold and it is set to 3 in this paper. The

corresponding LRC check result is shown in Figure 3(d).

Algorithm 3: LRC check

Input : left disparity map: `lf

right disparity map: `rt

Output: disparity map: `

1 for v ← vmin to vmax do

2 for u← umin to umax do

3 if abs(`lf (u, v)− `rt(u− `lf (u, v), v)) > trLRC then

4 `(u, v)← 0;

5 else

6 `(u, v)← `lf (u, v);

7 end

8 end

9 end

2.2. Dense vvp Estimation

Since Labayrade et al. proposed the concept of “v-disparity” in 2002 [19], disparity

information has been widely used to improve the detection of either obstacles or lanes.

The v-disparity map is created by computing the histogram of each horizontal row of the

disparity map. An example of the v-disparity map is shown in Figure 4(a), which has two

axes: disparity d and row number v. The value mv(d, v) represents the accumulation at

the position of (d, v) in the v-disparity map. In [23], Hu et al. proved that the disparity

projection of a flat road on the v-disparity map is a straight line: d = f(v) = α0 + α1v.

The parameter vector α = [α0, α1]
> can be obtained by using some linear pattern

detectors, such as the Hough Transform (HT) [2,24]. In our previous work [17], we used

a parabola model d = f(v) = β0 + β1v + β2v
2 to represent the disparity projection of a

non-flat road surface on the v-disparity map. In this case, the DP is more efficient than

some quadratic pattern detectors in terms of searching for every possible solution. The

path with the highest accumulations can be extracted by minimising the energy in Eq.

11.

E = Edata + λEsmooth (11)

Eq. 11 is solved iteratively starting from d = dmax and going to d = 0. In the first

iteration, Esmooth = 0 and Edata = −mv(dmax, v). Then, E is computed based upon the

previous iterations:
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E(v)d = −mv(d, v) + min
τv

[E(v − τv)d+1 − λvτv], s.t. τv ∈ [0, 6] (12)

In each iteration, the index position of the minimum is saved into a buffer for the

extraction of the desirable path. The buffer has the same size as the v-disparity map.

The solution Mv = [d,v]> ∈ Rk×2 with the minimal energy is then selected as the

optima, which is plotted in blue as shown in Figure 4. The blue path includes k points.

The two column vectors v = [v0, v1, . . . , vk−1]
> and d = [d0, d1, . . . , dk−1]

> record the

row numbers and the disparity values, respectively. Therefore, the parameter vector

β = [β0, β1, β2]
> can be estimated by solving the least squares problem in Eq. 13. The

parabola: f(v) = β0 + β1v + β2v
2 is plotted in red, as shown in Figure 4(b) and Figure

4(c).

β = arg min
β

k−1∑
j=0

(dj − (β0 + β1vj + β2vj
2))2 (13)

From Figure 4(b), it can be observed that the outliers severely affect the accuracy

of the LSF. To improve vvp estimation, we employ the RANSAC to update the inlier

set I and the parameter vector β iteratively. This procedure is detailed in algorithm 4.

To determine whether a given candidate [dj, vj]
> belongs to I, we need to compute

the corresponding squared residual rj = (dj − f(vj))
2. If rj is smaller than our pre-set

tolerance trv, the candidate is marked as an inlier and I is updated, where trv is set

(a) (b) (c)

Figure 4. DP and β estimation. (a) v-disparity map. (b) target solution obtained

in [17]. (c) target solution obtained in the proposed system. The blue paths are the

optimal solutions obtained using the DP. f(v) = β0 + β1v + β2v
2 is plotted in red.
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Algorithm 4: β estimation with the assistance of the RANSAC.

Input : optimal solution: Mv = [d,v]>

Output: parameter vector: β

1 do

2 randomly select a specified number of candidates [dj, vj]
>;

3 fit a parabola to the selected candidates and get β;

4 determine the numbers of inliers and outliers: nI and nO, respectively;

5 remove the outliers from Mv;

6 while nI/(nI + nO) < εv;

7 interpolate the candidates in the updated Mv into a parabola and get β;

to 4 in this paper. Otherwise, it will be marked as an outlier and removed from Mv.

The iteration works until the percentage of the inliers exceeds our pre-set threshold εv,

where εv is set to 99%. Finally, the candidates in the updated Mv are used to estimate

the parameter vector β = [β0, β1, β2]
>. Compared with the parabola obtained in [17],

the parabola estimation with the assistance of the RANSAC is more reliable and less

affected by the outliers (an example is shown in Figure 4(c)). vvp can be computed as

follows:

vvp(v) = v − β0 + β1v + 2β2v
2

β1 + 2β2v
(14)

2.3. Dense uvp Estimation

2.3.1. Sparse uvp Estimation Before estimating uvp, we first estimate the road surface

area by comparing the difference between the actual and fitted disparity values. A pixel

at (u, v) in the disparity map ` is considered to be in the road surface area if it satisfies

the conditions |`(u, v)− f(v)| ≤ trRSE and f−1(0) ≤ v ≤ vmax, where f−1 is the inverse

function of f(v) = β0 + β1v + β2v
2 and trRSE = 3 is a threshold set to remove the

obstacles and potholes. The estimated road surface area is illustrated in green as shown

in Figure 5(a). This greatly reduces the unnecessary edge information used for dense

uvp estimation. The procedures in the later sections only focus on the road surface area.

Furthermore, the noise introduced in the imaging procedure makes the edge

detectors such as Sobel very sensitive to the blobs [25]. Therefore, we use a bilateral filter

to reduce the noise before detecting edges. Compared with the median filter which was

utilised in [17], the bilateral filter is more capable of preserving edges when smoothing

an image. The expression of a bilateral filter is shown as follows [26]:

ibf (u, v) =

x=u+%∑
x=u−%

y=v+%∑
y=v−%

ωs(x, y)ωr(x, y)i(x, y)

x=u+%∑
x=u−%

y=v+%∑
y=v−%

ωs(x, y)ωr(x, y)

(15)
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Sparse uvp estimation. (a) road surface estimation. (b) bilateral filtering

for Figure 3(a). (c) edge detection result of Figure 3(a). (d) edge detection result of

(b). (e) edge detection result of the median filtering output. (f) edges in the road

surface area. The green area in (a) illustrates the road surface. For the process of the

bilateral filtering, σs and σr are set to 300 and 0.3, respectively. The window sizes of

the bilateral filter and the median filter are 11× 11. The thresholds of the Sobel edge

detection in (c), (d), (e) and (f) are 100. In the following procedures, we only consider

the edge pixels in (f).

where

ωs(x, y) = exp

{
−(x− u)2 + (y − v)2

σ2
s

}
ωr(x, y) = exp

{
−(i(x, y) − i(u, v))2

σ2
r

} (16)

i(x, y) is the intensity of the input image at (x, y) and ibf (u, v) is the intensity of

the filtered image at (u, v). The block size of the filter is (2% + 1) × (2% + 1), and its

centre is (u, v). The coefficients ωs and ωr are based on spatial distance and colour

similarity, respectively. σs and σr are the parameters of ωs and ωr, respectively. In

order to preserve only the edge information required for lane detection, σs and σr are

set to 300 and 0.3, respectively. The output of bilateral filtering is shown in Figure 5(b).

The edge detection results of Figure 5(b) and Figure 3(a) are illustrated in Figure 5(d)

and Figure 5(c), respectively. As for the edge detection result of the median filtering

output, it is depicted in Figure 5(e). Obviously, although the median filter has removed

a lot of redundant edges, the bilateral filter still achieves a better performance in terms

of noise elimination and edge preservation.



Measurement Science and Technology 12

In the following procedures, we only consider the pixels in the road surface area.

The edge map in the road surface area is shown in Figure 5(f). The sparse uvp of each

edge pixel pe = [ue, ve]
> can be estimated using Eq. 17, where ∇(pe) = [gu, gv]

> is the

gradient of pe that can be approximated using a Sobel operator. gu and gv represent

the vertical and horizontal gradients of pe, respectively. usvp(ue, ve) at the position of

(ue, ve) is recorded in a 2-D sparse uvp map. It is to be noted that usvp represents sparse

uvp in this paper.

usvp(ue, ve) = ue +
ve − vvp(ve)
∇(pe)

(17)

Next, we provide some details on the implementation. In the GPU architecture,

a thread is more likely to fetch the memory from the closest addresses that its nearby

threads accessed, which makes the use of cache impossible [27]. Therefore, we utilise

the texture memory which is read-only and cached on-chip to optimise the caching

for 2-D spatial locality during the bilateral filtering. Firstly, a 2-D texture object is

created. Then, the texture object is bound directly to the global memory address of

the left image. The value of a pixel i(x, y) is then fetched from the texture object to

reduce the memory requests from the global memory. Furthermore, as the constant

memory is read-only and beneficial for the data that will not change over the course of

a kernel execution [27], we create two lookup tables on it to store the values of ωs and

ωr. So far, the execution of the bilateral filtering has been highly accelerated, and we

move to the implementation of the edge detection. The address of ibf (u, v) is always

accessed repeatedly when determining whether a neighbour of ibf (u, v) belongs to an

edge or not. Thus, we load a group of data ibf into the shared memory for each thread

block. All threads within the same thread block will access the shared data instead of

fetching them repeatedly from the global memory. In order to avoid the race conditions

among different threads which run logically in parallel instead of executing physically

concurrently, the threads within the same thread block need to be synchronised after

they finish the data loading. Compared with the implementation on a Core-i7 4720HQ

CPU processing with a single thread, our implementation on a GTX 970M GPU speeds

up the execution of sparse usvp estimation by over 74 times.

2.3.2. Dense uvp Accumulation To acquire udvp information, we accumulate the votes

of usvp within a rectangle of width 2w + 1, where w is set to 25 to accumulate as many

votes as possible without compromising the execution speed. It is to be noted here that

udvp represents the dense uvp. More details on the process of udpx accumulation are given

in algorithm 5.

The initial step is to form a 1-D udvp histogram by accumulating the votes from

each edge pixel pe on row vmax−w. In order to ensure energy minimisation rather than

energy maximisation, the parameter m has to be a positive number and it is simply set

to 1 in this paper. Then, the votes of usvp from each edge pixel pe on row v − 1 are

accumulated with the 1-D udvp histogram on row v to form the 1-D udvp histogram on row
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Algorithm 5: Dense uvp accumulation.

Input : 2-D usvp map

Output: 2-D udvp accumulator

1 set all elements in udvp accumulator to 0;

2 for v ← vmax − 2w to vmax do

3 for u← umin to umax do

4 udvp(u
s
vp(u, v), vmax − w)← udvp(u

s
vp(u, v), vmax − w)−m

5 end

6 end

7 for v ← vmax − w − 1 to f−1(0) + w do

8 for u← umin to umax do

9 udvp(u, v)← udvp(u, v + 1);

10 udvp(u
s
vp(u, v − w), v)← udvp(u

s
vp(u, v − w), v)−m;

11 udvp(u
s
vp(u, v + w + 1), v)← udvp(u

s
vp(u, v + w + 1), v) +m;

12 end

13 end

14 for v ← f−1(0) + w − 1 to f−1(0) do

15 for u← umin to umax do

16 udvp(u, v)← udvp(u, v + 1);

17 udvp(u
s
vp(u, v + w + 1), v)← udvp(u

s
vp(u, v + w + 1), v) +m;

18 end

19 end

v − 1. This works until the width of the rectangle is able to reach 2w + 1. Then, the

current rectangle is shifted slightly up to create another 1-D udvp histogram. In order

to improve the computational efficiency, sliding window algorithm is used to create 1-D

udvp histograms. The votes that appear on row v − w above from the current rectangle

are subtracted and those that appear on the bottom row of the previous rectangle are

added. It is to be noted here that more usvp votes correspond to a negatively higher

value in the 2-D udvp accumulator. This ensures the energy minimisation in the DP.

Furthermore, due to that the far field of the road may contain a higher lane

curvature, a thinner rectangle is more desirable for the top rows of the image [17].

Therefore, only the votes on row v + w + 1 are added to update the 1-D udvp histogram

without the subtractions from the current rectangle. The sliding window algorithm

makes the 1-D udvp histogram update more efficiently by simply processing the bottom

row and the top row. The result of dense uvp accumulation is illustrated in Figure 6,

where mu(u, v) represents the votes of uvp = u on row v.

2.3.3. uvp estimation Similarly, udvp accumulator is optimised using the DP to extract

the path with the minimal energy, as shown in Eq. 11. In the first iteration, Esmooth = 0
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(a)

(b)

(c)

Figure 6. Dense uvp accumulation and estimation. (a) dense uvp accumulator.

(b) target solution obtained in [17]. (c) target solution obtained in the proposed

system. The blue paths are the optimal solutions obtained using the DP. g(v) =

γ0 + γ1v + γ2v
2 + γ3v

3 + γ4v
4 is plotted in red.

and Edata = mu(u, vmax). Then, E is computed based on the previous iterations:

E(u)v = mu(u, v) + min
τu

[E(uvp + τu)v+1 + λuτu], s.t. τu ∈ [−5, 5] (18)

The solution Mu = [u,v]> ∈ Rt×2 with the minimal energy is then selected as the

optima, which is plotted in blue, as shown in Figure 6. The blue path includes t points.

The two column vectors u = [u0, u1, . . . , ut−1]
> and v = [v0, v1, . . . , vt−1]

> record the

column and row numbers, respectively. The parameter vector γ = [γ0, γ1, γ2, γ3, γ4]
>

can be estimated by solving the least squares problem in Eq. 19. Here, we use the same

strategy as the estimation of β. I and Mu are updated using the RANSAC until the

percentage of the inliers exceeds our pre-set threshold. Then, γ is obtained by fitting a

quartic polynomial to the candidates in the updated Mu. Algorithm 6 provides more

details on γ estimation.

γ = arg min
γ

t−1∑
j=0

(uj − (γ0 + γ1vj + γ2vj
2 + γ3vj

3 + γ4vj
4))2 (19)

To determine whether a given candidate [uj, vj]
> belongs to I, we need to compute

the corresponding squared residual rj = (uj − g(vj))
2. If rj is smaller than our pre-set

threshold tru, the candidate is marked as an inlier and I is updated, where tru is set

to 16 in this paper. Otherwise, it will be marked as an outlier and removed from Mu.

The iteration works until the percentage of the inliers exceeds our pre-set threshold εu,

where εu is set to 99% in this paper. Finally, γ can be estimated by fitting a quartic

polynomial to the updated Mu. Compared with the target solution obtained in [17], as

shown in Figure 6(b), the target solution obtained in the proposed system is less affected
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Algorithm 6: γ estimation with the assistance of the RANSAC.

Input : optimal solution: Mu = [u,v]>

Output: parameter vector: γ

1 do

2 randomly select a specified number of candidates [uj, vj]
>;

3 fit a quartic polynomial to the selected candidates and get γ;

4 determine the numbers of inliers and outliers: nI and nO, respectively;

5 remove the outliers from Mu;

6 while nI/(nI + nO) < εu;

7 fit a quartic polynomial to the candidates in the updated Mu and get γ;

by the outliers (an example is shown in Figure 6(c)). In our practical implementation,

Eq. 19 is rearranged as shown in Eq. 20 to avoid the data overflow when fitting the

quartic polynomial.

γ = (κ0P
>P )−1(κ0P

>)u (20)

where

P =


1 v0 · · · v0

4

1 v1 · · · v1
4

...
...

. . .
...

1 vt−1 · · · vt−1
4

 (21)

P is a Vandermonde matrix. κ0 is used to avoid the data overflow problem caused

by the higher order polynomials (e.g., when v = 375, v8 ≈ 4× 1020 which is far beyond

the significand range of long double type in C language). After estimating γ, uvp can

be computed as follows:

uvp(v) = γ0 + γ1v + γ2v
2 + γ3v

3 + γ4v
4 (22)

2.4. Lane Position Validation

pvp provides the tangential direction and the curvature information of lanes, which can

help us to validate the lane positions. In [17], the authors formed a likelihood function

V (pe) = ∇(pe) · cos(θpe− θpvp) for each edge point pe and selected the plus-minus peak

pairs for visualisation, where θpe is the angle between the u-axis and the orientation of

the edge point pe, and θpvp is the angle between the u-axis and the radial from an edge

pixel pe to pvp(ve). Although the peak pair selection algorithm presented in [17] has

achieved some impressive experimental results, some inaccurate detections still occurred.

In this paper, we compute the energy of each possible solution and select all satisfying

lane positions for visualisation. Algorithm 7 provides more details on the proposed

approach.
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Algorithm 7: Lane position validation.

Input : pvp and gu
Output: lane position vector: δ

1 create two 2-D maps M0, M1 with the same size as the input image i;

2 set all elements in M0, M1 to 0;

3 create a 1-D histogram H of size (2t+ 1)umax;

4 ∀M0(u, v)←
∑x=+κ1

x=−κ1
∑y=+κ2

y=−κ2 gu(u+ x, v + y)ωg(u+ x, v + y);

5 approximate the horizontal gradient of each point in M0 using the Sobel

operator and save the results in M1;

6 for k ← −tumax to tumax do

7 aggregate M1 from row vmax to row f−1(0) to get the energy E;

8 H(k + tumax)← E;

9 end

10 if H(k) < min{H(k − 1),H(k + 1)} then
11 put k − tumax into δ;

12 end

13 remove the elements which are smaller than the threshold trLPV from δ;

14 remove the nearby candidates from δ;

15 multiple lanes visualisation;

For the dark-light transition of a lane marking, the value of gu is positive and

higher than the ones at the non-edge positions. As for the light-dark transition of a lane

marking, the value of gu is negative but its absolute value is still higher than the ones

at the non-edge positions [17]. Therefore, the task to validate lane positions now only

involves the estimation of the centre position of each pair of dark-light and light-dark

transitions. To reduce gu accumulation from the non-lane edges, we propose a piecewise

weighting ωg as follows:

ωg(ue, ve) =

exp
(
− |θpe−θVp |

σg2
· 1
θs

)
, |θpe − θVp| ≤ π

6

0, otherwise
(23)

where the step θs is set to π/36. The portion |θpe − θpvp |/θs is used to provide a

Gaussian weight so as to decrease the magnitude of noise pixels, where σg is set to 3.5

in this paper. Then, we sum the values of guωg within a shifting box to further reduce

the noise. The box size is (2κ1 + 1) × (2κ2 + 1), where κ1 and κ2 are empirically set

to 1 and 3, respectively. The accumulation output is then saved in a 2-D map M0,

where the horizontal gradient from a dark-light peak to a light-dark peak is negative.

To approximate the horizontal gradients, the Sobel horizontal kernel is convoluted with

M0 and the convolution result is saved in M1. Then, we aggregate the values of M1

for each possible solution from row vmax to row f−1(0) as follows:
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E(v)uv =M1(uv, v) + λgE(v + 1)uv+1 (24)

where

uv =
uvp(v + 1) + vuv+1 − vvp(v + 1)uv+1

v + 1− vvp(v + 1)
(25)

In order to find all possible lane positions, we set t to 0.5. This implies that u starts

from −0.5umax and ends at 1.5umax. In the first iteration, we select a possible position

(uvmax , vmax) and the total energy E is simply set toM1(uvmax , vmax). Then, we use pvp
information to estimate the next position (uvmax−1, vmax− 1) on the selected track. The

energy E is updated using Eq. 24. Here, λg has been used for test purpose and the value

of 1 has been found to provide the good results during our experiments. The aggregation

of M1 works until v reaches f−1(0). For each lane starting from (uvmax , vmax), its total

energy is saved in a 1-D histogram H. Then, we pick out the local minima which are

smaller than our pre-set threshold trLPV . At the same time, if two local minima are

quite close to each other, we ignore the minima with a larger energy. Finally, the lanes

can be visualised by iterating Eq. 25. The lane detection results will be discussed in

section 3.2.

3. Experimental Results

3.1. Stereo Vision Evaluation

The proposed disparity estimation algorithm is evaluated using the KITTI stereo 2012

dataset [28]. Some examples of the experimental results are shown in Figure 7, where

the first column illustrates the input left gray-scale images, the second column shows

the ground truth disparity maps, and the third column depicts our experimental results.

The overall percentage of the error pixels is approximately 6.82% (error threshold: two

pixels).

The proposed disparity estimation algorithm is implemented on an NVIDIA GTX

970M GPU for the real-time purpose. Please kindly refer to our publication [20] for

more implementation details. When ρ is set to 3, the implementation achieves a speed

of 37 fps. After the memorisation, the values of µ and σ can be accessed directly

from a static program storage for stereo matching, which greatly boosts the algorithm

execution. The performance improvement achieved using the memorisation is shown in

Figure 8, where η represents the runtime of the prevalent NCC-based stereo versus the

runtime of NCC-based stereo optimised with memorisation. From Figure 8, it can be

seen that the memorisation speeds up the algorithm execution by about two times.

3.2. Lane Detection Evaluation

Currently, it is impossible to access a satisfying ground truth dataset for the evaluation

of lane detection algorithms because accepted test protocols do not usually exist [29].

Therefore, many publications related to lane detection only focus on the quality of their
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experimental results [17]. For this reason, we compare the performance of the proposed

system with [17] and [18] in terms of both accuracy and speed. Some successful detection

examples are shown in Figure 9.

Table 1. Detection results of the proposed algorithm.

Sequence Lanes Incorrect detection Misdetection

1 860 0 0

2 594 0 0

3 376 0 0

4 156 0 0

5 678 0 0

6 1060 1 2

7 644 0 0

8 993 18 7

Total 5361 19 9

Firstly, we evaluate the accuracy of the proposed algorithm. The lane detection

results of the proposed algorithm and the algorithms described in [17] and [18] are

detailed in Table 1, Table 2 and Table 3, respectively. To evaluate the robustness of

the proposed algorithm, we tested eight sequences selected from the KITTI database

(including two additional sequences): 2495 frames containing 5361 lanes [30] (1637

Figure 7. Experimental results of the KITTI stereo 2012 dataset [28].
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Figure 8. Evaluation of the algorithm execution speed.

lanes more than what were used in [17] and [18]). The image resolution is 1242× 375 in

sequences 1 to 6, 1241× 376 in sequence 7, and 1238× 374 in sequence 8. From Table

Figure 9. Lane detection results. The red lines illustrate the detected lanes.
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Table 2. Detection results of [17].

Sequence Lanes Incorrect detection Misdetection

1 860 0 0

2 594 0 0

3 376 0 0

4 156 0 9

5 678 0 17

6 1060 14 7

Total 3724 14 33

Table 3. Detection results of [18].

Sequence Lanes Incorrect detection Misdetection

1 860 12 0

2 594 44 0

3 376 44 0

4 156 17 0

5 678 107 0

6 1060 180 0

Total 3724 404 0

1, it can be seen that the proposed algorithm presents a better detection ratio, where

99.9% lanes are successfully detected in sequences 1 to 7 (including all the sequences

in Table 2 and Table 3), while the detection ratios of [17] and [18] are only 98.7%

and 89.2%, respectively. The comparison between some failed examples in [17] and the

corresponding results obtained using the proposed algorithm is illustrated in Figure 10.

In Figure 10(a), we can see that the obstacle areas occupy a larger portion than

the road surface area, which severely affects the accuracy of vvp estimation. When we

use both inliers and outliers in the LSF, pvp differs too much from the ground truth.

This further influences the lane position validation and leads to an imprecise detection

and a misdetection. In Figure 10(b), it can be seen that the LSF considering only

inliers increases the precision of vvp estimation significantly. Moving to the second

row, an over-curved lane can be seen in Figure 10(c). When we estimate β and γ

with the assistance of the RANSAC, the improvement can be observed in Figure 10(d),

where a more reasonable lane is detected. In Figure 10(e), the lane near the left road

boundary is misdetected because the low contrast between lane and road surface reduces

its magnitude in the stage of lane position validation. In Figure 10(g), an incorrect

detection occurs because a road marking is more contrastive to the road surface. In

section 2.4, we proposed a more effective piecewise weighting ωg to update gu for the

edge pixels. Then, gu of the non-lane edges reduces significantly, which therefore greatly

helps the system to avoid the incorrect detections of some lane markings. Also, we sum

guωg within a shifting box for each position. This increases the magnitude of the lanes
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Comparison between some failed examples in [17] and the corresponding

results in this paper. The green areas in the first column illustrate the road surface.

The red lines are the detected lanes. The first column illustrates the failed examples

in [17], and the second column shows the corresponding results of the proposed system.

which are lowly contrastive to the road surface. The misdetections in Figure 10(e)

and Figure 10(g) are thus detectable, and the failed detection in Figure 10(g) is also

corrected. The corresponding results are shown in Figure 10(f) and Figure 10(h).

In our experiment, the failed cases consist of misdetections and incorrect detections.

The misdetections are mainly caused by: image over-exposure, partially occluded by

the obstacles, forks on the road. The corresponding examples are illustrated in Figure

11(a), Figure 11(b) and Figure 11(c), respectively. In Figure 11(a), due to the image

over-exposure, the edges pixels on lane 1 are rare, which leads to its misdetection.

In Figure 11(b), we can see that the vehicles partially occlude lane 1 and lane 2. The

occlusion decreases the absolute value of guωg when we try to validate the lane positions,

which makes lane 1 and lane 2 undetectable. In Figure 11(c), lane 2 forks from lane 1,

and thus, has a different curvature information from lane 1, which therefore causes the

misdetection.

For the factors leading to incorrect detections, we group them into three main
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categories: ambiguous disparity projection of a road surface on the v-disparity map;

pvp that does not exist in the image; different roadways, which are presented in Figure

11(d), Figure 11(e) and Figure 11(f), respectively. In Figure 11(d), the obstacles, e.g.,

vehicles and trees, take a big portion in the image. Therefore, when d is around 0, mv is

mainly accumulated by the pixels on the obstacles and sky, which affects the accuracy

of vvp estimation. This further makes the detected lane markings slightly above the

ground truth when the they move to the boundary between the road surface and sky.

In Figure 11(e), pvp does not exist, which affects the detection results. In Figure 11(f),

there are two different roadways: roadway between lane 1 and lane 2; roadway between

lane 2 and lane 3. The second roadway turns right and therefore has a different pvp
from the first roadway, which leads to an imprecise detection of lane 3.

Finally, we discuss the processing speed. The algorithm is implemented on a

heterogeneous system consisting of an Intel Core i7-4720HQ CPU and an NVIDIA

GTX 970M GPU. The GPU has 10 Streaming Multiprocessors with 128 CUDA cores

on each of them. The runtime of the proposed system is around 7 ms (excluding the

runtime of the disparity estimation), which is approximately 38 times faster than our

previous work where 263 ms was achieved. The authors believe that the failed cases

can be reduced in the future by adding a lane tracking algorithm. The demo videos are

available at: http://www.ruirangerfan.com

(a) (b)

(c) (d)

(e) (f)

Figure 11. Examples of the failed detections in this paper.
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4. Conclusion and Future Work

A multiple lane detection system was presented in this paper. The novelties include:

an improved dense vanishing point estimation method, a novel lane position validation

algorithm and a real-time implementation on a heterogeneous system. To evaluate

the performance, 5361 lanes from eight datasets were tested. The experimental results

illustrate that the proposed algorithm works more accurately and robustly than our

previous work. By highly exploiting the GPU architecture and allocating different parts

of the proposed algorithm on different platforms for execution, a high processing speed

of 143 fps was achieved, which is approximately 38 times faster than our previous work.

As discussed in section 3.2, some actual road conditions may result in failed

detections. Therefore, the authors plan to train a deep neural network for dense

vanishing point estimation and lane position validation. Furthermore, the authors also

plan to implement the proposed algorithm on some state-of-the-art embedded systems,

such as Jetson TK2 from NVIDIA.
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