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Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy‡

(Dated: April 17, 2018)

Patchy particles is the name given to a large class of systems of mesoscopic particles characterized
by a repulsive core and a discrete number of short-range and highly directional interaction sites.
Numerical simulations have contributed significantly to our understanding of the behaviour of patchy
particles, but, although simple in principle, advanced simulation techniques are often required to
sample the low temperatures and long time scales associated with their self-assembly behaviour. In
this work we review the most popular simulation techniques that have been used to study patchy
particles, with a special focus on Monte Carlo methods. We cover many of the tools required to
simulate patchy systems, from interaction potentials to biased moves, cluster moves, and free energy
methods. The review is complemented by an educationally-oriented Monte Carlo computer code
that implements all the techniques described in the text to simulate a well-known tetrahedral patchy
particle model.

I. INTRODUCTION

The expression “patchy particle” has become more and
more inclusive over the course of the years [1]. The most
basic definition, “a colloid with attractive spots decorat-
ing its surface” is now outdated as patchy particles, or
concepts developed in the field of patchy particles, are be-
ing used to model proteins [2–4], viral capsids [5], hard
faceted bodies [6], double-stranded DNA [7] and even
atoms and molecules [8, 9].

On the experimental side, tremendous progress is cur-
rently being made in the realization of such systems [10–
15], and patchy particles have already been adopted by
theorists as an ideal model to study the self-assembly
properties of a variety of soft-matter systems [1, 16–19].
The number of examples of the impressive agreement be-
tween theory and simulations is rapidly increasing [20–
24], establishing patchy particles as one of the most active
and successful ideas in nanotechnology.

Molecular simulations played an important role in the
development of the field, providing early predictions for
many interesting new phenomena [25–30], which sparked
the interest of the experimental community [10, 31–34].
Since the early days, many of the numerical and the-
oretical predictions, such as the shrinking of the gas–
liquid phase separation region [22, 27], the existence
of reentrant gas-liquid phase separations and reentrant
gels [23, 35, 36], or the lack of crystallisation in highly
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flexible patchy systems [37–39], have been observed in
experiment. Even though it is becoming more and more
common to consider patchy particles of increasing com-
plexity [1], the majority of the theoretical breakthroughs
have been obtained with toy models. Such simple models
usually feature hard spherical particles and short-range
patch-patch attractions. Notwithstanding the raise in
popularity of systems composed of or inspired by patchy
models, to the best of our knowledge a comprehensive
resource to help choose and implement the right state-
of-the-art algorithm to tackle the investigation of these
systems is still lacking. This Review aims at filling such
a gap.

In the following we give an overview of the more com-
monly used models and simulation methods that have
been developed or adapted to patchy particles. We
put special emphasis on Monte Carlo (MC) simulations,
but we also mention models and algorithms pertain-
ing to molecular dynamics (MD) simulations. In or-
der to help the interested reader, we have implemented
the most important MC algorithms described below
in an open-source code, freely accessible on the web
(http://dx.doi.org/10.5281/zenodo.1153959) [40]. This
PatchyParticles code (from here on referred to as the
PP code) has been developed with the idea of providing
a simple and clear implementation rather than a fast and
optimised one, and hence should be considered as an ed-
ucational tool that complements the Review rather than
a production-ready code.

mailto:lorenzo.rovigatti@gmail.com
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II. PATCH-PATCH INTERACTION
POTENTIALS

The inter-particle interaction in patchy systems is
anisotropic and short-ranged. This fundamental aspect,
which may or may not be complemented by a non-
spherical shape [6, 7], is at the core of the complex be-
haviour of these systems. Here we review some of the
most common potentials used to simulate toy models of
patchy particles.

In what follows we will consider systems composed of
spherical particles of diameter σ. Generalisations to sys-
tems that are polydisperse in size are straightforward,
although uncommon [35]. By contrast, even though it
is typical to simulate systems composed of identical par-
ticles, sometimes binary mixtures or even variability in
the patch position, size or strength need to be taken into
account [42–44]. Therefore, for the sake of generality we
consider the surface of each particle i to be decorated
with Mi patches. The position of patch α relative to the
centre of mass of particle i, ri, is specified by the vector
rα,i. Let rij = rj − ri be the distance between parti-
cle i and particle j and rij,αβ = rij + rβ,j − rα,i be the
distance between patch α on i and patch β on j. Fur-
thermore, let {rα,i} be the set of vectors identifying all
Mi patches of particle i. It is common to consider patchy
particles that interact through an isotropic repulsive po-
tential, that accounts for the mutually excluded volume,
plus an attractive patch-patch term that depends on the
relative orientations. By using the notation introduced
above, the total interaction energy between particles i
and j can thus be written as

V (ri, rj , {rα,i}, {rβ,j}) = Vex(rij)+Vpatch(rij , {rα,i}, {rβ,j})
(1)

where non-bold symbols indicate the moduli of the re-
spective vectors. The excluded-volume term is, most
of the times, a hard-sphere interaction for MC simula-
tions or a differentiable hard-sphere-like potential (e.g.
Weeks-Chandler-Anderson, inverse power) for MD sim-
ulations. However, sometimes screened electrostatic re-
pulsions, modelled through Yukawa-like interactions, are
also considered [18, 45].

The Vpatch term is a sum of the contributions of all
pair of patches, viz:

Vpatch =

Mi∑
α=1

Mj∑
β=1

Vpp(rij , rα,i, rβ,j). (2)

It is common to employ attractive potentials that are,
or resemble, square-well potentials (discontinuous or con-
tinuous, depending on the chosen simulation technique)
and hence are functions of the patch-patch separation
only, e.g. Vpp = Vpp(rij,αβ). This family of potentials,
usually called sticky-spot or point-patch potentials, have
essentially two parameters: the range of the interaction δ

and its strength, ε. An example of a continuous square-
well-like attraction is [46]

Vpp(rij,αβ) = −εαβ exp

[
−1

2

(
rij,αβ
δαβ

)10
]
. (3)

A simple potential like the one of Eq. (3) contains the
basic physics of patchy interactions: it confers a strong
anisotropy and a well-defined valence to the particles. It
has been used to look at the thermodynamics and dy-
namics of self-assembled disordered phases [18, 46–48].
However, as shown in Figure 1(a), patch-patch radial
potentials have a spherical shape whose size is fixed by
the single parameter δ, which therefore fully controls the
bonding volume (or extent) of the patches. Consequently,
the radial and angular flexibilities of a bonded pair can-
not be tuned independently. As it turns out, these two
quantities contribute differently to the entropy of disor-
dered and ordered phases, going as far as determining
their relative thermodynamic stability [37, 49]. Hence,
in some cases it is important to be able to separately
control the angular and radial flexibilities.

A well-known potential that provides control on the
patch shape is the so-called Kern-Frenkel (KF) interac-
tion [25]. It features two independent geometrical param-
eters, δ and θmax, that set the radial and angular width,
respectively. In the KF model patches can be visualized
as spherical cones (see Figure 1(b)), with the patch-patch
interaction being given by

Vpp(rij , r̂α,i, r̂β,j) = VSW(rij)f(rij , r̂α,i, r̂β,j) (4)

where VSW is an isotropic square-well term of range σ +
δαβ and depth εαβ , the hat symbolˆindicate unit vectors
and f is the orientation-dependent modulation term that
takes the form

f(rij , r̂α,i, r̂β,j) =

 1 if
r̂ij · r̂α,i > cos θmax

αβ

r̂ji · r̂β,j > cos θmax
αβ

0 otherwise.
(5)

During the course of the years, this potential has been
used to investigate the phase behaviour of many types
and blends of patchy and patchy-like systems [25, 26, 37,
43, 45].

We must note that having two independent parameters
that model the extent of a patch-patch interaction arises
naturally when dealing with hydrophobic surfaces, and
indeed the KF model has been used to reproduce quan-
titatively the phase diagram and crystallization process
of a quasi-2D system of hard particles with hydropho-
bic patches [50]. The reason is that two very short-
ranged hydrophobic curved surfaces always have one con-
tact point, which provides some negative energy. Where
this contact happens on the two surfaces does not mat-
ter, and the KF model describes this kind of interaction.
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FIG. 1. A cartoon showing particles decorated with single patches, depicted in light grey. (a) In the sticky-spot model two
patches interact only if their mutual distance (in violet) is smaller than two times the patch radius, δ/2 (in orange). (b) In the
Kern-Frenkel model patches are modelled as spherical cones of angular width 2θmax and length (σ+δ)/2, where σ is the particle
diameter. Any two patches interact if they intersect with each other and if the vector connecting the centres of mass of the two
particles (in violet) pass through both of them. (c) Thanks to the bond-swapping algorithm (see text and Ref. [41]), a free patch
(here attached to the blue particle) can establish a bond with an already bonded patch whose original partner is free to move
away at the end of the process. The attractive contribution due to the additional patch-patch bond present in (ii) is (partially
or totally) counterbalanced by a three-body repulsion. Indeed, the energetic cost of the bond-swapping process, that is, its
activation energy, is controlled by a parameter of the model and can be set to 0 make the reaction temperature-independent.

On the other hand, the point-patch model might seem
more natural when dealing with particles that can expe-
rience a binding interaction depending on the position of
the centre of the patch: one example is if the patches
are realised through a single DNA strand that has some
maximum length that it can reach given its attachment
point. A key difference in between the two models, that
must be taken into account when considering the bind-
ing properties of two particles is the fact that point-like
models do not allow to freely rotate a particle around the
vectors joining two bound particles, while the KF model
does.

In order to exploit the advantages of the KF poten-
tial in MD simulations, continuous versions of the KF
interaction have been developed. These are built by tak-
ing a differentiable isotropic (often square-well-like) func-
tion and by modulating it with functions that, akin to
f(rij , r̂α,i, r̂β,j) in Eq. (5), depend on the scalar product
between the particle-particle distance and the unit vec-
tors that identify each patch. These functions are often
Gaussians or generalised Gaussians, similar to the one of
Eq. (3). These continuous potentials have been used to
look at self-assembled ordered structures in patchy sys-
tems [29, 51–54], but they have been employed also in
modelling patchy polymers [55] and even amino acids in
proteins [2].

We note on passing that some of the behaviour dis-

played by patchy systems is also shared by other models
that, in one way or another, fix the maximum number of
bonds that each particle can form (the so-called valence).
For instance, common potentials developed for water and
silicon employ rigid bodies complemented by charges or
spheres interacting through three-body interactions that
limit the ideal number of favourably interacting neigh-
bours [56–58].

III. THE SINGLE-BOND-PER-PATCH
CONDITION

The single-bond-per-patch condition (SBPPC) is es-
sential to control the valence. The valence, in turn, is
the most important property in determining the phase
behaviour of patchy particles. Most models enforce the
SBPPC through a judicious choice of the model ge-
ometry and parameters. For rather simple, and thus
computationally efficient, models (such as spheres dec-
orated with patches) the SBPPC requires quite small
patches, and hence very small bonding volumes. For
instance, the single geometrical parameter of the point-
patch potential, the patch-patch attraction range, has
to be smaller than 0.119σ (σ being the particle diam-
eter) to enforce the SBPPC. By contrast, the two pa-
rameters of the Kern-Frenkel potential, the range δ and
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the angular width θmax, have to fulfil the inequality
sin(θmax) ≤ (2(1 + δσ))

−1
. Under these constraints, the

largest bonding volumes attainable are of the order of
≈ 10−3σ3. Such small values are problematic from a
technical and a fundamental point of view. Indeed, from
a computational standpoint small bonding volumes make
it very hard to equilibrate at low T . From a modelling
perspective, instead, some very interesting phenomena
(such as the appearance of disordered ground states [37]
or of reentrant gas-liquid phase separations [59]) require
or are accessible with large bonding volumes only. Fur-
thermore, some “soft” building blocks, such as telechelic
star polymers or DNA nanostars, possess an intrinsically
large bonding volume due to their inner flexibility [1].
The question that arises is whether it is possible to take
into account such a high degree of internal flexibility in a
straightforward way by devising models that are nearly
as simple as the ones described above.

The issue regarding the precise value of the bonding
volume can be worked around in Monte Carlo or event-
driven simulations, where non-continuous constraints are
easy to implement, by putting an explicit limit to the
number of bonds per particle [60, 61]. Operatively, this
is done by adding an attractive term to the interaction
between two particles only if both have fewer than the
maximum number of allowed bonds. A drawback of this
approach is that the resulting model can be hardly seen
as realistic and, importantly, is not amenable to be in-
vestigated via MD simulations.

A more sophisticated approach has been introduced
in Ref. [41] and employed to readily generate fully-
bonded disordered configurations to model microgel par-
ticles [62], and to investigate the dynamics of a simple
model of vitrimers at large length- and time-scales [63].
The idea behind the method is to add a short-ranged
three-body repulsive term to triplets of close patches
in order to compensate the additional (negative) en-
ergy contribution due to the formation of extra bonds.
The approach is compatible with continuous potentials,
meaning that it can be used in molecular dynamics sim-
ulations. The model has a parameter, λ, that controls
the energetic penalty that non-bonded patches have to
pay in order to get close to a bonded pair. The model
thus not only enforces the SBPPC but also introduces a
bond-swapping mechanism that facilitates the dynamics
at any T .

A cartoon depicting a bond-swapping process is pre-
sented in Figure 1(c). Taking three patches A, B, and C
as an example, if λ = 1, then the energy of configurations
where A is bonded to both B and C (panel (ii)) or just
to one of them (panels (i) and (iii)) is the same. Un-
der this condition, the process through which the A−B
bond breaks and the A−C bond forms is carried out at
constant energy: temperature plays no role and the sys-
tem can rearrange its bonding pattern even in the limit
T → 0. By contrast, if λ > 1, the bond swapping process
becomes energetically expensive and hence thermally ac-
tivated.

IV. MONTE CARLO MOVES

Rototranslations and particle insertions/deletions,
which are briefly introduced in the paragraphs below,
are the simplest moves that allow to sample the canoni-
cal and grand canonical ensembles, respectively, for any
system. However, self-assembly processes in patchy sys-
tems often occur when the bonding energy ε is sub-
stantially larger than the thermal energy kBT (see e.g.
Refs. [23, 26, 29]). For instance, it is common to simu-
late patchy systems with ε/kBT & 5. Under these condi-
tions, most of the patches are involved in bonds, and the
Metropolis acceptance of unbiased rototranslations that
attempt to break a single bond, exp (−β∆E), plummets
from ≈ 7 × 10−3 down to ≈ 4.5 × 10−5 as the bonding
strength relative to the thermal energy increases from
ε/kBT = 5 to ε/kBT = 10. As a result, the great ma-
jority of the moves will very likely be rejected, thereby
greatly reducing the efficiency of the simulation. This
issue can be overcome, or at least improved upon, by
employing biased Monte Carlo moves [64]. After a brief
introduction of the most basic MC moves, we will dis-
cuss two biased MC moves that are not system-specific
and can greatly enhance the effective exploration of the
phase space.

A. Rototranslations

When dealing with anisotropic particles, a good sam-
pling of the phase space requires a correct handling of
both rotations and translations. In Monte Carlo simu-
lations, the simplest moves that ensure equilibrium are
pure translations and pure rotations or, as done in the
PP code, rototranslations, which are combinations of the
two. For both translations and rotations it is common to
set the maximum (radial or angular) displacement so as
to have an acceptance ratio of about 0.2 – 0.4, with the
optimal value being dependent on the specific system in-
vestigated [64, 65]. Note that, in force of the short-range
nature of the interaction potentials (see Section II), these
maximum displacements will necessarily be small.

A rototranslation is carried out by choosing a random
particle i, random angular and radial displacements and
a random axis of rotation. Particle i is then moved and
rotated according to the values extracted. The differ-
ence in energy due to the move is then used to com-
pute the Boltzmann factor which, in turn, is connected to
the acceptance probability, as per the standard Metropo-
lis Monte Carlo [64]. The only choice that needs to be
made is how to handle the rotational degrees of freedom.
Quaternions and explicit orientation matrices are both
common choices [66, 67]. Note that floating-point arith-
metic tends to disrupt the orthonormality of the data
structures that store the orientational degrees of freedom.
Care has to be taken to ensure that the quality of the or-
thonormality does not degrade too much over the course
of the simulation. The MC move rototranslate function
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of the MC.c file shows how rototranslations are imple-
mented in the PP code, which employs rotation matri-
ces that are re-orthonormalised through a Gram-Schmidt
procedure every time that the energy is printed (see the
MC check energy function).

Compared to MC, rotations are a more delicate mat-
ter in MD simulations. Indeed, when dealing with rigid
bodies one has to consider that particle-particle interac-
tions exert not only central forces but also torques. In
many cases these torques have complicated expressions.
However, there exist guidelines that, depending on the
specific type of interaction, can greatly simplify the de-
riving procedure [68]. The algorithm used to integrate
the equations of motion can be also carried out in differ-
ent fashions, depending on whether quaternions, rotation
matrices or constraint algorithms are employed [66, 69–
72] and on the type of dynamics [73–75]. A drawback of
the most common patchy interactions (see Section II) is
their steepness, which negatively affects numerical stabil-
ity and makes it hard (or even impossible) to use single-
precision floating point arithmetic (which some GPU-
powered packages offer to improve performance [76, 77]).
For the same reason, extra care has to be taken when
choosing the integration time step.

B. Grand Canonical ensemble

In the grand canonical ensemble (GCE) the system
is in equilibrium not only with a thermal bath but also
with a reservoir of particles [64]. Therefore, the three
thermodynamic quantities that are kept fixed are vol-
ume V , temperature T and chemical potential µ. As a
result, the overall number of particles N fluctuates. The
GCE is commonly used in Monte Carlo simulations to in-
vestigate the phase behaviour of disordered systems [78],
and can be readily extended to many-component mix-
tures [79, 80]. In addition, GCE simulations can be com-
bined with more sophisticated techniques, such as suc-
cessive umbrella sampling (see Section V B) or Wang-
Landau sampling [81] to overcome free-energy barriers.

In GC simulations there are two additional trial moves
that attempt to either add or remove a particle. Note
that for the particle addition move, the new particle
must be added in a random position with a randomly
distributed orientation. The two MC acceptance proba-
bilities read

acc(N → N + 1) = min

(
1,

V z

Λ3(N + 1)
e−β∆E

)
(6)

acc(N → N − 1) = min

(
1,

Λ3N

V z
e−β∆E

)
(7)

where Λ is the thermal wavelength, β = 1/kBT , z = eβµ

is the activity and ∆E = Enew − Eold is the energy dif-
ference between the final and initial configurations. The
implementation of the main core of the GCMC algorithm

can be found in the PP code in the MC add remove func-
tion of the MC.c file.

C. Aggregation-Volume-Bias moves

Self assembly processes often require low density and
temperature, specially in patchy systems. The sampling
of the phase space under these conditions can be dramat-
ically improved with the so-called aggregation-volume-
bias (AVB) Monte Carlo moves [82, 83].

The AVB scheme provides two different basic moves.
Detailed balance requires that both types of moves are
used during the course of the simulation. The first one
(hereafter referred to as the AVB-B move) attempts to
form a bond between two previously unbonded parti-
cles, while the second one (the AVB-U move) attempts
to break an existing bond by separating a bonded pair.
Here the notion of two particles being “bonded” or “un-
bonded” should fulfil a criterion that need not be neces-
sarily related to the specific model employed. However,
it is often convenient to use an operative definition for
the bonding between two particles that coincides with a
state of low pair energy. For instance, an optimal cri-
terion for the KF interaction is to regard two particles
as bonded when they share a patch-patch bond. Once
the bonding criterion has been set, the bonding (phase-
space) volume is defined as the number of microscopic
configurations for which two particles are bonded, VAVB.
According to this definition, VAVB depends only on the
bonding criterion and not on the macroscopic thermody-
namic variables (such as T , µ, N , V , etc.). For instance,
the expressions for the bonding volume of a KF αβ bond
in 3D and 2D are:

VAVB =
πσ3

3
(1− cos θmax

αβ )2[(σ + δαβ)3 − σ3] (3D)

VAVB =
(θmax
αβ )2

π
[(σ + δαβ)2 − σ2] (2D).

We then define the “outer” (phase-space) volume VO

as the number of configurations for which two particles
are not bonded. It follows from its definition that VO =
4πV − VAVB, where V is the volume of the simulation
box and 4π comes from the rotational degrees of freedom.
These two volumes will be used in the following to bias
the acceptance of the two moves.

Finally, let Ni be the number of particles that are
bonded to particle i. The recipe for the AVB-B move
is then:

1. Randomly select a particle i.

2. Randomly select a particle j which is neither i nor
one of its bonded neighbours.

3. Move particle j inside the bonding volume of par-
ticle i.
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4. Accept the move with probability

min

(
1,

(N −Ni − 1)VAVB

(Ni + 1)VO
exp(−β∆E)

)
.

Note that the insertion of particle j in the bonding
volume of particle i must be carried out uniformly. In
other words, the probability that, at the end of a trial
move, i and j are in a specific mutual arrangement
must be the same for every microscopic configuration
that fulfils the bonding criterion. The PP code shows
how to perform this operation for KF patches in the
place inside vbonding function of the utils.c file.

In order to perform an AVB-U move one has to

1. Randomly select a particle i.

2. Randomly select a particle j that is bonded with
i. If i has no neighbours (that is, if Ni = 0) then
outright reject the move.

3. Move particle j outside of the bonding volume of i,
so that at the end of this step i and j are no longer
bonded.

4. Accept the move with probability

min

(
1,

NiVO

(N −Ni)VAVB
exp(−β∆E)

)
.

Note that step 3 can be performed by randomly insert-
ing j in the box with a random orientation till i and j
are no longer bonded.

The ratio between the two volumes defined above,
r ≡ VAVB/VO, is what biases the acceptance of the AVB-
B move. Since the particle bonding volume is always
(much) smaller than the overall volume, the bias lowers
the acceptance probability of the move. However, at low
temperature this is rendered unimportant by the very
large value of the Boltzmann factors associated to the
creation of additional bonds. By contrast, 1/r, which is
much larger than 1, biases the acceptance of the AVB-
U move. Therefore, the larger the value of r, the better
AVB will perform compared to a standard MC algorithm.
As a result, the AVB algorithm shines when used in con-
junction with short-ranged potentials (small VAVB) and
low-density systems (large VO). There is an additional
reason why AVB moves perform better at low density:
it dramatically increases the speed with which particles
move around the simulation volume, which is a common
efficiency bottleneck for low-density systems when only
single-particle rototranslations are employed.

We note on passing that there exists a third type of
AVB moves which takes a particle i bonded with particle
j and insert it in the bonding volume of a third parti-
cle [83]. It can greatly enhance the sampling in specific
cases such as chain-forming systems [59].

In order to benchmark the performance of the AVB
scheme we simulate several systems made of N = 500

0 0.1 0.2 0.3 0.4
ρ

10
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10
1

10
2

10
3

τ
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T
 /

 τ
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V
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T = 0.18

T = 0.20

T = 0.25

FIG. 2. The ratio between the autocorrelation time of the
energy of systems simulated without and with AVB moves
as a function of density for different T . Assuming that the
computational cost of the two procedures is the same (see
text), this ratio represents the gain achieved when using AVB.

tetravalent patchy particles at different ρ and T . For
each one we compute the autocorrelation function of the
energy. We then estimate the time τ at which the auto-
correlation function takes the value 1/e and use it as a
proxy for the simulation efficiency. Figure 2 shows the
ratio between the autocorrelation time for systems where
AVB moves were not attempted, τRT, and attempted 50%
of the time, τAVB. As mentioned above, the AVB scheme
performs better at low density. For very small values of
the density (ρ ≤ 0.1), which are nonetheless still rele-
vant to many self-assembly processes [46], AVB enhances
the efficiency of the simulation by more than two orders
of magnitude. By contrast, the dependence on temper-
ature is less dramatic, albeit non-monotonic, and more
system-dependent.

A basic implementation of the AVB algorithm is con-
tained in the avb.c and avb.h files of the PP code. We
note that the PP code runs roughly 20% – 40% slower
when AVB moves are enabled. This is merely an imple-
mentation issue and mostly due to the lack of optimi-
sation that stems from the educational nature of the PP
code. With a properly optimised code the AVB scheme is
only marginally slower than a regular Monte Carlo sim-
ulation.

We conclude this section by mentioning that AVB
moves and GCMC simulations complement each other
very well. Indeed, when simulating low-temperature sys-
tems the most probable GC deletions are those attempted
on monomers. Unfortunately, under normal conditions
it is most likely to attempt to remove a monomer gener-
ated by a previous GC addition rather than a monomer
that spontaneously broke off all of its bonds. As a re-
sult, many GC moves are essentially wasted. However,
when the AVB scheme is applied the rate of monomer
formation/depletion is greatly enhanced by the AVB-U
and AVB-B moves, respectively, and thus the number of
effective GC moves increases.
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D. Virtual Move Monte Carlo

The Virtual Move Monte Carlo (VMMC) is a Monte
Carlo cluster-move algorithm proposed originally by
Whitelam and Geissler [84] and designed to improve re-
laxation times in strongly-interacting, low-density sys-
tems and to better approximate diffusive dynamics in
these systems. As it often happens, the algorithm has
proved to be useful in many other contexts, such as poly-
meric systems [85, 86]. The VMMC cluster move, quite
complicated to implement in its original version, has been
presented in a more simple way by the same authors [87],
and more recently an easier version to program has been
published by Růz̆ic̆ka and Allen [88]. The idea behind the
algorithm is to avoid one of the shortcomings of standard
cluster algorithms, whereby the clusters are built based
upon the system microstate before the move, and any
move that attempts to merge or break clusters has to be
rejected in order to satisfy detailed balance. This means
that cluster moves need to be mixed with standard single-
particle moves, and although they do speed up the diffu-
sion of clusters, the pattern of the interactions is changed
mostly by single-particle moves. In the context of patchy
particles, where patch-patch bonds are the natural crite-
rion to define clusters, cluster moves based only on the
system microstate before the move will never change the
bonding pattern by construction. To overcome this limi-
tation, Whitelam and Geissler have designed the VMMC
cluster move, a “virtual move” that builds a cluster based
upon the move as well as the starting microstate: par-
ticles are recruited into the cluster depending on how
much their energy changes with the move, rather than
how strongly they interact with their neighbours. Essen-
tially, the cluster is chosen on the fly by starting to move
a particle and then recruiting all those neighbouring par-
ticles that would rather move than remain still and pay
an energetic cost.

Here we describe the most recent iteration of the algo-
rithm proposed in Ref. [88], implemented in the function
VMMC dynamics of the VMMC.c file of the PP code.

1. Choose a move (a random displacement for trans-
lations, an axis and an angle for rotations).

2. Choose a seed particle for the move, and add it
to the cluster. The cluster will contain all those
particles that will be moved.

3. Build or update a list L of particle pairs that will
have their pair energy changed if the cluster is
moved. Note that, by construction, one and only
one particle in each pair belongs to the cluster,
since the cluster moves as a single object and hence
the pair interaction energy of particles that belong
to the cluster will not be affected by the move. Also
note that L will contain particle pairs that are af-
fected from the cluster moving both away and to-
wards them.

4. Choose a random pair l = (i, j) in L. Call i the
particle in the pair l that belongs to the cluster
and j the particle that does not. Remove this pair
from the list.

5. Compute (or recover from bookkeeping) u(i, j), the
energy of the pair in the starting microstate.

6. Compute u(i′, j), the energy of the pair after i has
been moved and j has not.

7. Compute u(i, j′), the energy of the pair after j has
been moved and i has not.

8. Extract a random number r ∈ [0, 1]. If
exp{−β(u(i′, j)− u(i, j))} > r, insert j in a list
C of particles that are candidates for recruitment
in the cluster.

9. Extract a new random number q ∈ [0, 1]. If
exp{−β(u(i, j′) − u(i, j))} > q, recruit j into the
cluster and remove it from C.

10. If L is not empty, go to step 3. If L is empty, the
cluster has been built. Please note that the cluster
may contain just the seed particle.

11. If C is not empty, reject the move. This step is nec-
essary to enforce balance [84]. Otherwise, accept
the cluster move.

We point the reader to Ref. [84] and Ref. [88] for a
detailed discussion of how this algorithm is derived. Here
we will just elaborate on some of the less obvious points
of the algorithm. For example, the random choice of
an element in L, rather than processing the pairs as the
algorithm finds them, is needed to ensure super-detailed
balance, i.e., that the algorithm is in principle able to
perform the exact reverse move immediately. Also, the
fact that C needs to be empty for the move to be accepted
is done for the same reason. The quantities in steps 8 and
9 are chosen in such a way to build a cluster move that
will be automatically accepted in step 11 if C is empty.

Although significantly more difficult to implement
than a standard single-particle or cluster move, this al-
gorithm has a number of benefits that make its use very
beneficial in a variety of situations. The fact that it is
the move that dictates the cluster allows for internal re-
laxation of strongly-interacting regions: particles are re-
cruited into the cluster only if not doing so would increase
the energy (on average). Strongly interacting pairs are
not necessarily recruited together: in the extreme case of
u(i, j) very negative, if u(i′, j) is also very negative (the
relative move does not affect the energy) particle j is not
recruited into the cluster (see step 8). This allows, for
example, for relative rotation of clusters or for naturally
arising pivot and crankshaft moves in polymeric systems.

In our experience, we have found that VMMC is a good
algorithm for self-assembling and polymeric systems due
precisely to its ability of finding the natural moves that
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help relaxing the system. On the other hand, the algo-
rithm has a few drawbacks. Firstly, care must be taken
in the choice of the move at point 1 above: a large move
will easily recruit the whole system into the cluster, essen-
tially wasting computer time by building a large cluster
for a move that, even if accepted, is effectively useless.
This would not happen frequently in the low-density sce-
nario for which the algorithm was designed, but never-
theless it should be taken into account. Secondly, the
algorithm is not straightforward to program in an effi-
cient way.

In terms of performances, the original paper [84] high-
lights that the VMMC algorithm is best suited for low-
density, low-temperature systems, where the system is
largely composed of clusters of particles. In particu-
lar, VMMC greatly speeds up the equilibration of inter-
cluster interactions essentially by promoting a much
faster diffusion of clusters than single-particle MC moves.
Importantly, clusters can merge and break while mov-
ing, which is forbidden in standard cluster moves. Since
each virtual move is much more computationally expen-
sive than a standard single-particle move, the benefits of
VMMC are worth the extra effort only when the diffusion
of clusters is the bottleneck of the simulation.

V. FREE-ENERGY METHODS

The level of control and tunability of patchy models
has opened the way to a deeper understanding of the
phase behaviour of complex systems with directional in-
teractions [1, 89–91]. For the disordered phases (liq-
uid and gas), patchy models were developed to study
both theoretically and computationally the process of
self-assembly, with particular emphasis on the polymer-
ization [92] and gel transitions [46]. For ordered (crys-
tal) phases, patchy particles have been shown to be able
to describe the crystallization of open crystalline struc-
tures [20, 93, 94], most notably the diamond crystal for
4-patch models [29, 44, 49]. Self-assembly can have a
deep impact on the phase behaviour of the system, and
patchy particles were the ideal platform where new tran-
sitions and new types of phase diagrams were discovered.
Empty liquids [27], re-entrant and topological phase tran-
sitions [59], amorphous ground states [37], are all exam-
ples where new types of phase behaviour were discovered
in the context of patchy particles.

Most notably these discoveries were made possible
by the use of highly-efficient free-energy methods. We
should note that free-energy methods can be divided into
two broad categories: i) the ones that attempt to re-
cover the free energy of a thermodynamic phase, and ii)
the ones that aim at finding the potential of mean force,
i.e. the projection of the free energy along a reaction
coordinate or order parameter. In the next sections we
will briefly discuss the former and then describe more in
depth one of the latter.

A. Direct evaluation

A phase diagram of a substance shows under which
thermodynamic conditions a phase (or a set of phases) is
in equilibrium. From a simulation standpoint, there exist
several methods to straightforwardly estimate the phase
boundaries between disordered phases (one of which will
be thoroughly discussed in the next section) [95, 96]. By
contrast, the presence of ordered phases greatly compli-
cates the numerical evaluation of the phase behaviour.
Quite remarkably, the main challenge is not posed by
the actual calculation of the relative free energy between
the phases (which, in turn, dictates their relative stabil-
ity), but by the fact that, in general, it is not possible
to know a priori what these phases are in terms of sym-
metry, unit cells, etc. Indeed, while for simple particles
such as hard spheres an educated guess does often suf-
fice, more complicated building blocks such as patchy
or non-spherical particles might require approaches that
go beyond “hand”-based or brute-force procedures. An
efficient way of searching the vast space of possible lat-
tice candidates is provided by the so-called floppy box
method. The basic idea is to simulate a small number
of particles in a box of variable shape in the isothermal-
isobaric ensemble [97], and collect the most stable struc-
tures in the range of temperatures and pressures of inter-
est. This method has been applied to, among others, non-
convex objects [98, 99] and one-patch particles [100]. In
parallel, the idea of leveraging genetic algorithms to effi-
ciently compile a list of candidate structures has surfaced,
and it has been employed in patchy systems to find those
ordered arrangements that are most favourable from an
energetic standpoint [101, 102]. The two methods tend
to perform similarly, and the best choice depends on the
system under investigation [103].

Once the most promising candidate structures have
been singled out, their relative stability is evaluated by
computing the free-energy difference with respect to a
system of known free energy. This is usually done by
employing a combination of Hamiltonian and thermody-
namic integration techniques. Well-known methods that
build upon this idea are the Frenkel-Ladd [104] and Ein-
stein Molecule [105] methods. A more thorough discus-
sion on this topic falls out of the scope of the present
review, and we refer the interested reader to Ref. [106].

B. Potential of mean force

Another approach is to reconstruct the free-energy
landscape by sampling rare fluctuations of one or more
relevant order parameters. The last decade has seen
a flourishing of such methods, as for example Wang-
Landau sampling [95] and Metadynamics [107, 108]. Here
we focus on methods based instead on the Umbrella Sam-
pling technique, which have had the biggest impact on
the literature on Patchy Particles. In this section we
first briefly review the basics of the Umbrella Sampling
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method, and then focus on a variant (Successive Um-
brella Sampling) which has found widespread adoption.

Umbrella Sampling

Umbrella sampling (US) [109, 110] is a method for en-
hancing the sampling of regions of configurational space
which have a small weight (as measured by the Boltz-
mann distribution) under equilibrium conditions. By en-
abling the sampling of rare fluctuations, Umbrella Sam-
pling allows one to reconstruct the free-energy profile
even in regions of low statistical weight, such as on top of
free-energy barriers. This is achieved by modifying the
Markov chain with an external potential term which de-
pends on the relevant order parameter for the transition
of interest. The most immediate advantage of US over its
competitors is that simulations of a system with a biased
potential run in equilibrium, and the bias can be removed
to recover the unbiased (true) probability distribution of
the order parameter.

In Umbrella Sampling, a biasing potential η(x) is
added to the Hamiltonian of the system

H′ = H+ η(x)

where H is the base Hamiltonian (e.g. the patchy po-
tential), and x is the order parameter whose distribution
P(x) we wish to measure. By running a simulation with
the new Hamiltonian H′, and measuring its order pa-
rameter distribution, P ′(x), we can readily recover the
original distribution as

P(x) = P ′(x) exp (βη(x)) (8)

By choosing an appropriate η(x) it is thus possible to
sample the order parameter for arbitrary values of x,
and then recover the original unbiased distribution with
Eq. (8). A standard choice is to use an harmonic poten-
tial, η(x) = k(x− x0)2, that forces the system to sample
regions around x = x0 with fluctuations that depend on
the coefficient k. A typical use of Umbrella Sampling
to estimate the free energy landscape is to perform sev-
eral biased simulations centered around adjacent values
of x0, such that the fluctuations of the order parameter x
of two consecutive simulations have a significant overlap.
The full distribution P(x) is then obtained by combining
the order parameter histograms of different simulations
together. A statistically self-consistent way to do this
is via the Weighted Histogram Analysis method [111].
From knowledge of the distribution function P(x) we can
then obtain the free energy (or potential of mean force)
as

F (x) = −kBT logP(x) (9)

Umbrella Sampling is an equilibrium method that
should give the correct free energy independently of the
choice of the biasing potential. However, in practice, care

has to be taken to ensure appropriate sampling of the
configurational space. When dividing the order parame-
ter domain in several intervals (each centered at a differ-
ent value of x0), ensuring a proper sampling within each
window often requires choosing different potentials for
each window. In the case of harmonic potentials, for ex-
ample, different intervals often require different values of
the elastic constant k depending on the slope of the free
energy around x0. The higher the slope of the free en-
ergy, the higher the value of k one needs to set in order to
sample correctly the configurations around x0. But since
the slope of the free-energy is not known a priori, one
often has to tune the values of k during the course of the
simulation. To minimize this problem, two diametrically
opposite strategies have been adopted.

One possibility is to sample the free energy landscape
in as few intervals as possible. A way to do this is to use
specific forms of the biasing potential based on theoreti-
cal expectations for the barrier. We give here an example
for crystal nucleation processes. A good order parame-
ter for crystallization processes is the size of the largest
crystalline cluster [112, 113], which we denote here as x.
Starting from the metastable liquid phase (x = 0), we
want to use Umbrella Sampling to access rare fluctua-
tions, corresponding to the appearance of a crystalline
nucleus of size x. Classical Nucleation Theory [114] pre-
dicts the free energy barrier for nucleation as

β∆F (x) = −|∆µ|x2/3(x1/3 − 1.5x1/3
c ) (10)

where ∆µ is the chemical potential difference between the
two phases, x is the number of particles in the largest
crystal nucleus, and xc is the critical nucleus size. In
order to explore states on top of the barrier, we modify
the Hamiltonian with a biasing potential that exactly
cancels the barrier

η(x) = −β∆F (x) (11)

This variant, called Classical Nucleation Theory Um-
brella Sampling scheme (CNT-US), has been introduced
in Ref. [114]. The only parameter needed is an estimate of
∆µ. This can be obtained for example with the following
relation ∆µ = Hfusion(1−T/Tm) (where Hfusion is the en-
thalpy of fusion, while Tm is the melting temperature),
or by computing the absolute free energies of the bulk
phases, as described in Section V A. Once a reasonable
approximation of ∆µ is obtained, several independent
simulations at different values of xc are run. When xc is
close to the true critical size, the corresponding simula-
tions will exhibit large fluctuations, as the bias in Eq. 11
is effectively cancelling the nucleation barrier. All other
simulations (which exhibit small fluctuations in x) are
quickly discarded. Instead, the simulation which maxi-
mazes the fluctuations is used to reconstruct the whole
barrier by using Eqs. 8 and 9.

The second approach to free energy calculations is em-
bodied by a technique called Successive Umbrella Sam-
pling (SUS). Here, instead of targeting a uniform sam-
pling of a large portion of the order parameter space, the
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aim is to divide the order parameter space in as many
small intervals as possible.

Successive Umbrella Sampling

In Successive Umbrella Sampling [96] simulations, the
order parameter space is divided in many small intervals
that are sampled consecutively. While the approach is
general, we will present it here for the choice x = N ,
i.e. when the order parameter is simply the number N of
particles in the simulation. This choice is appropriate for
those transitions in which the density ρ = N/V is a good
order parameter. To sample fluctuations in the number
of particles N, each SUS simulation is performed in the
grand-canonical ensemble. In the context of patchy parti-
cles, the method has been used to study liquid-gas transi-
tions, for example in re-entrant fluids [59], mixtures [43],
dipolar interactions [115], and isotropic-nematic phase
boundaries [116].

In SUS, the order parameter N is divided in many
intervals (also called windows) of size k, such that the
number of particles allowed in each interval i is

N ∈ {Ni, Ni+1, · · · , Ni+k−1}

For each interval, a simulation is run where its number
of particles is constrained by reflecting boundary condi-
tions at Ni−1 and Ni+k. In other words, grand-canonical
moves that would bring the number of particles outside
the allowed range are rejected. The size of each interval
k is often set equal to k = 2 to maximize the number of
intervals, and minimizing the overlap between them

{1, 2} , {2, 3} , · · · , {N − 2, N − 1} , {N − 1, N}

During a simulation sampling the interval i, the num-
ber of times N was visited is used to construct the his-
togram Hi(N). If a move is rejected due to reflective
boundary conditions, the histogram is still updated for
the value of N . In the simplest implementation, all win-
dows are simulated independently and without the use of
biasing potentials.

In each interval (assuming without loss of generality
that k = 2) the free energy difference between Ni and
Ni+1 is given by

F (Ni+1)− F (Ni) = −kBT log
Hi(Ni+1)

Hi(Ni)

The total free energy is obtained by combining the dif-
ferent intervals

F (N)− F (0) = −kBT log
P(N)

P(0)

where P(N) is the unnormalised probability distribution

P(N)

P(0)
=

HN (N)

HN (N − 1)

HN−1(N − 1)

HN−1(N − 2)
· · · H1(1)

H1(0)
. (12)
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FIG. 3. The probability distribution of having N particles,
P(N), for a system of KF tetravalent patchy particles with
δ = 0.26 and cos θmax = 0.92 simulated at z = 0.300 and
T = 0.160, below the critical temperature (violet curve). Here
we also show the P(N) reweighted so that the area below the
peaks of the two coexisting phases is equal (green curve). The
inset shows the same data on a log-lin scale to show the tens
of orders of magnitude accessed.

The SUS technique provides some definitive advan-
tages over traditional Umbrella Sampling simulations.
The first one is that, since the windows are very small,
even unbiased simulations are able to sample all the
states within the window, without the use of auxiliary
potentials. If needed, umbrella potentials can still be
used, and it is often possible to extrapolate the potential
in one window from the measured free-energy difference
in the previous window. The second big advantage is
that SUS allows to trivially (and massively) parallelize
the computation of free energies, as the calculation is di-
vided in a large number of independent windows. All
this while retaining the advantage of the traditional Um-
brella Sampling scheme, which is the use of equilibrium
simulations that can run without any prior knowledge of
the free-energy barrier.

An example of the output of a SUS simulation per-
formed with the PP code is shown in Fig. 3. Here the sys-
tem under study is composed of tetravalent patchy parti-
cles interacting through a KF potential with parameters
δ = 0.26 and cos θmax = 0.92, simulated at T = 0.160,
V = 667σ3 and z = 0.3. Since the simulation has been
run at a sub-critical temperature, there exist some val-
ues of z for which the P(N) is double-peaked. In gen-
eral, SUS simulations allow for an accurate sampling over
many orders of magnitude (see inset of Figure 3), which
makes it possible to evaluate the probability distribution
at different z by histogram reweighting techniques [111].
Here we have changed z until the area below the peaks
associated to the gas and liquid phases is equal (see green
curve in Fig. 3), a condition which is commonly associ-
ated to phase coexistence.

In the PP code, the histogram is updated in the do SUS
function of the MC.c file, while the GC moves, and the
logic for the rejection of the moves that attempt to break
out of the window’s boundaries, are implemented in the
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function MC add remove of the same file.

VI. CONCLUSIONS

In this paper we have reviewed some of the most com-
mon models and most useful techniques that have been
used to simulate systems of patchy particles, with a spe-
cial focus on Monte Carlo methods. In contrast with
atomic and molecular systems, when simulating patchy
particles the computationally intensive part is not the
evaluation of the pair interactions or of the forces, since
the potential is usually simple and very short ranged.
On the the other hand, the short-range nature of the
interaction sets the smallest length scale that needs to
be sampled, forcing very small single-particle moves in
Monte Carlo simulations and small values of the time
integration steps in molecular dynamics.

A further challenge resides in the fact that the interest-
ing behaviour in this class of systems is almost inevitably
found at very low temperature, i.e., when a bond between
two particles is of the order of 5-10 times (or more) the
thermal energy. This contributes to make it challeng-
ing to achieve equilibrium without the use of advanced

Monte Carlo techniques such as the ones described here.
Since it is impossible to devise a Monte Carlo move

that will speed up sampling for any system and state
point, we have focussed on techniques that are general
enough to be useful in many use cases and showed how
they perform on a typical and well known patchy parti-
cle system. Since some of the techniques treated are not
straightforward to implement, we also provide an (as sim-
ple as possible) implementation in a tutorial code freely
available online [40]. We believe such educational tool
to be a useful starting point to build up bespoke codes
tailored to study systems that would not be treatable
otherwise.
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