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SUMMARY

In this article, a complete modelling, synthesis and analysis methodology of control compensators for descent
and landing (D&L) on small planetary bodies is presented. These missions are scientifically very rewarding,
but technically extremely challenging due to the complex and poorly-known environment around those
bodies, which calls for the ability to manage competing robustness and performance requirements. While
this issue is typically addressed via the redefinition of D&L guidance strategies, here it is tackled through
the augmentation with a simple yet robust control compensator. This compensator is designed using linear
fractional transformation (LFT) modelling to capture the interplay with uncertain gravity fields and the
recently-developed structured H∞ optimisation framework, which has been proved particularly suitable for
industry-oriented applications. The proposed approach is completely generic, but employs the scenario of a
landing on the Martian moon Phobos as an illustrative example. Different compensators are then verified and
compared analytically via the structured singular value µ and through high-fidelity Monte-Carlo simulation.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Renewed scientific interest has been growing in the exploration of small asteroids, in addition to larger
planetary bodies such as Mars, since their weaker gravity field makes them more easily accessible.
However, these missions are very challenging from an engineering point of view, particularly if
the natural dynamics in the vicinity of the target asteroid is exploited (to alleviate tight descent &
landing (D&L) propellant consumption requirements). This is because small planetary bodies are
typically characterised by highly irregular and poorly-known shapes, which render their physical
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2 P. SIMPLÍCIO ET AL.

environment extremely uncertain and variable. Moreover, due to the interplanetary distances involved,
fully autonomous guidance and control algorithms are required to cope with communication delays
and spacecraft subsystem degradation, as demonstrated by the European Rosetta mission [1].

As part of the UK Space Agency National Space Technology Programme, the University of Bristol
and Airbus Defence and Space were awarded the project ”Robust and Nonlinear Guidance and
Control for Landing on Small Bodies”, with the aim to investigate the application of robust control
techniques for the design and optimisation of D&L∗ approaches. Although a generic framework
was pursued, the project focused on the Martian moon Phobos, which is among the candidates for
an interplanetary sample return mission, not only because of the wide scientific interest to solve
unknowns about its formation, but also as technological precursors for future manned and unmanned
missions to the Martian system [2].

A conceptual separation between guidance and control logics was taken for the project. Within it,
previous studies have been dedicated to the assessment [3, 4] and optimisation [5] of different D&L
guidance laws. This paper, on the other hand, is entirely devoted to the design of improved D&L
strategies via robust control compensation, enabling the adoption of simpler guidance schemes.

In fact, significant room for improvement can be achieved at this level since current state-of-
practice in D&L control compensation is conventionally over-simplified or even non-existent, which
is only practical if the target body is well-known or if guidance algorithms do not rely on its natural
dynamics. The application of robust control techniques is nowadays a well-established practice for
spacecraft attitude (rotational) control design [6, 7, 8], but not so much for orbital (translational)
control. This paper aims therefore to address the latter point.

The proposed design approach is further motivated by, and based on, the recently-developed
structured H∞ optimisation paradigm [9, 10], which is particularly well-oriented towards the
industrial state-of-practice. This point has been central during the whole project, since the applicability
of legacy knowledge is fundamental within the Space industry. Throughout the paper, the suitability
of structured H∞ for the D&L problem, as well its main challenges, will be further discussed.

The organisation of this paper is as follows: Sec. 2 introduces the Phobos mission benchmark
under consideration, Sec. 3 describes the development of models that capture the D&L dynamics
and uncertainties, Sec. 4 is then dedicated to the application of the structured H∞ framework
to synthesise robust control compensators and Sec. 5 to a thorough robustness assessment of
these compensators using the structured singular value µ together with high-fidelity Monte-Carlo
simulation. The conclusions are given in Sec. 6.

2. PHOBOS MISSION BENCHMARK

Landing on Phobos is particularly challenging because of its reduced mass (it is 8 orders of magnitude
smaller than Mars) and proximity to the red planet (mean orbital altitude about 6000 km), which
causes the planet’s sphere of influence to end just 3.5 km above Phobos’ surface. Hence, there is no
possibility for Keplerian orbits around Phobos and the third-body perturbation of Mars cannot be
neglected.

∗See Nomenclature at end of article.
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SYNTHESIS AND ANALYSIS OF ROBUST CONTROL COMPENSATORS FOR SPACE D&L 3

Furthermore, due to the irregular shape and mass distribution of Phobos, the gravity of the moon
cannot be accurately accounted for by a spherical field, and requiring to be described using a gravity
harmonics (GH) model. In this case, using spherical coordinates (r, θ, φ) for distance to barycentre,
co-latitude and longitude, R for a reference radius and µg for the gravitational constant, the gravity
potential is given by:

U(r, θ, φ) =
µg

R

n̄∑
n=0

(
R

r

)n+1 n∑
m=0

Cmn (φ)Pmn (cos θ) (1)

where:
Pmn (x) = (1− x2)m/2

dm

dxm
Pn(x)

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

(2)

are the associated Legendre polynomials and:

Cmn (φ) = Cn,m cosmφ+ Sn,m sinmφ (3)

is the expansion of the GH coefficients Cn,m and Sn,m. For Phobos, n̄ = 4 (i.e., 28 coefficients) is
assumed to suffice. However, 19 of these coefficients are highly inaccurately known. In fact, each of
them is affected by a Gaussian dispersion with standard deviation equal to its mean value. For an
elaborate discussion on this topic, the reader is referred to [3].

Given the small eccentricity of Phobos’ orbit around Mars (approximately 0.015), the nonlinear
dynamics of a spacecraft in the vicinity of Mars-Phobos system is typically described as a circular
restricted three-body problem. In this case, its motion can be written in a body-centred body-fixed
(BCBF) frame with origin at the moon’s barycentre as: ṙ(t)

v̇(t)

ν̇(t)

 = f (r(t),v(t), ν(t)) +

03×3

I3×3

01×3

a(t) (4)

where the state vector
[
r(t) v(t) ν(t)

]T
gathers the position and velocity of the spacecraft with

respect to Phobos, as well as the true anomaly of the latter around Mars, and the control vector a(t)

represents any propulsive acceleration generated by the spacecraft in the BCBF frame. The effects of
a complex and uncertain gravity field enter in f (r(t),v(t), ν(t)) through the dynamics of v (where
the dependence on t was dropped for clarity), which are given as:

v̇ = ∇UPho
SC (r) + ∇UMars

SC (r, ν)−∇UMars
Pho (ν)− ωPho × (ωPho × r)− 2ωPho × v (5)

In this equation, the first three terms represent respectively the gravity of Phobos on the spacecraft
(SC), Mars on the spacecraft and Mars on Phobos, computed as a function of the position r of the
spacecraft relative to Phobos and of the latter’s location around Mars (via its true anomaly ν). These
calculations rely on the potential description of Eq. (1) and become particularly complex due to the
frame transformations involved, as detailed in [11]. The remaining terms account for the non-inertial
acceleration caused by the fact that the BCBF frame is rotating with Phobos at rate ωPho.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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4 P. SIMPLÍCIO ET AL.

The generic Space D&L problem is then depicted in Fig. 1 for planar motion but without loss of
generality. It describes a spacecraft approaching a moving (small) body target subject to the influence
of another (large) body. For this problem, it is assumed that the spacecraft has a dedicated attitude
control system that maintains a nadir pointing during D&L (it is a requirement of visual navigation).
Coupling effects are then considered at actuator level by reserving a fraction of the available thruster
authority (10 to 20%) for attitude control.

Y

X

Target

Spacecraft

λ

r

a

rx

ry

rS

rT

vT

vS

Figure 1. Space D&L problem geometry

Based on this figure, the D&L problem lies on the computation of the acceleration input a(t)

between t = t0 and t = tf that must be able to:

• Bring the relative position and velocity from the initial boundary conditions r(t0) = r0 and
v(t0) = v0 to the final conditions r(tf ) = rf and v(tf ) = vf ;
• Cope with the effect of uncertainties and external perturbations.

In this problem, the duration from a given instant of time t until the end of the manoeuvre is known
as time-to-go, tgo(t) = tf − t, the norm of the relative velocity vector ||v(t)|| = ||vS(t)− vT (t)|| is
known as closing speed and the direction from target to spacecraft is known as line-of-sight λ(t). For
further details on the Space D&L problem, the reader is referred to [4, 12]. Also in these references,
the application of closed-loop guidance techniques for the computation of appropriate acceleration
laws is addressed.

The focus of the present work, however, is not specifically on closed-loop guidance, but rather on
the design of improved D&L strategies via robust control compensation, which ultimately will enable
the adoption of (simpler) open-loop guidance schemes. The benchmark architecture is depicted
in Fig. 2.
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Figure 2. Benchmark architecture (- - - - indicates information flow for closed-loop guidance)
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SYNTHESIS AND ANALYSIS OF ROBUST CONTROL COMPENSATORS FOR SPACE D&L 5

In this benchmark, the behaviour of the spacecraft is simulated using three high-fidelity modules,
”spacecraft dynamics & kinematics” (SDK), ”allocation & actuation” and ”sensors & navigation”,
which have been developed by Airbus within the frame of the project based on their Space operational
experience. These modules are part of their industrial testing, simulation & assessment (TSA) facility
and will be employed for system development and verification in case of a future Phobos sample
return mission.

The SDK model describes the relative motion of Eq. (4) and Fig. 1. Then, the ”allocation &
actuation” block introduces thruster realisation errors, which may arise from mounting misalignments
or limited control authority (as mentioned before, spacecraft thrusters are also responsible for keeping
a nadir pointing). It does not account for thruster modulation nor gas dynamics since the natural
frequency of these phenomena is one order of magnitude higher than what is used to appropriately
model the orbital manoeuvres. Finally, the ”sensors & navigation” module implements the algorithms
executed to produce relative position and velocity estimates, r̂(t) and v̂(t).

In addition, for the ”D&L guidance” logic, two paradigms can be defined: [i] open-loop (or
implicit), employed when a reference trajectory {rref(t),vref(t)} and thruster profile aref(t) are
generated before, and remain unchanged during, the descent; or [ii] closed-loop (or explicit), which
refers to the case when the thruster profile is computed in real-time to correct the trajectory based on
onboard measurements (as shown in Fig. 2 by the dashed lines).

Regardless of the type of guidance that precedes it, the architecture may be augmented with a
”control compensator”, which introduces an additional acceleration vector command acmp(t) to
further alleviate trajectory errors. As anticipated above, the design of such a compensator is the
main focus of this paper. For synthesis and analysis purposes, D&L reference trajectories (RTs),
defining the set of design points where the controller must be able to operate, are designed through
the following process:

1. Analysis of a set of unstable manifolds originated at Libration Point Orbits (LPOs) in the
three-body system that intersect Phobos (Fig. 3a);

2. Selection of the manifolds that reach the moon with higher incidence angle and lower closing
speed as initial guesses;

3. Definition of a polynomial acceleration profile to bring the final (touchdown) speed to zero;
4. Optimisation of the initial guesses and acceleration profile via nonlinear programming, with

the objective of minimum fuel consumption, given as ∆V =
∫ tf
t0
||a(τ)||dτ .

(a) Candidate manifolds (b) Optimised trajectories and ∆V value

Figure 3. Reference D&L trajectory design

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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6 P. SIMPLÍCIO ET AL.

To simplify the optimisation runs, a few approximations are considered in the dynamics of the Mars-
Phobos system, hence it may not be possible to track the resulting profiles {rref(t),vref(t),aref(t)}
without any guidance or control feedback loop. For a detailed description on this process, the reader
is referred to [3].

For the remainder of this work, the three trajectories visible in Fig. 3b are considered. All of them
will be employed for closed-loop validation, but only RT1 will be used for control synthesis purposes.

3. SPACE D&L SUBSYTEM MODELLING

This section introduces the D&L subsystem models developed for control design. It starts with the
linearisation of the high-fidelity dynamics of a spacecraft in the vicinity of Mars-Phobos system
(Sec. 3.1), followed by the inclusion of gravitational uncertainties through LFT modelling (Sec. 3.2)
and concluding with the characterisation of the actuator and navigation models considered (Sec. 3.3).

3.1. Orbital perturbation model

For control design purposes, it is convenient to have a linear representation of Eq. (4). This is achieved
via the application of linearised orbital perturbation theory [13]. According to this theory, state and
control variables can be defined at different operating points along a given trajectory as the sum of a
reference (desired) value and small perturbations (deviations):

r(t) = rref(t) + δr(t)

v(t) = vref(t) + δv(t)

ν(t) = νref(t) + δν(t)

a(t) = aref(t) + δa(t)

(6)

The dynamics of these perturbations is then approximated by the 1st order terms of the Taylor series
expansion of f (r(t),v(t), ν(t)) around the reference points:δṙ(t)

δv̇(t)

δν̇(t)

 = Jf (t)

δr(t)

δv(t)

δν(t)

+

03×3

I3×3

01×3

 δa(t) (7)

where the Jacobian matrix is given by:

Jf (t) =
[
∂f

∂r

∂f

∂v

∂f

∂ν

]∣∣∣∣∣∣∣∣∣∣
r = rref(t)

v = vref(t)

ν = νref(t)

(8)

and computed via finite differences due to the complexity of f (r(t),v(t), ν(t)). Performing this
linearisation at different instants of time ti, i = {1, . . . , N} along a reference trajectory allows
to generate a set of linear time-invariant (LTI) SDK models termed GiSDK(s), with the following
state-space description:

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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ẋSDK(s)

δr(s)

δv(s)

 =

 J if

03×3

I3×3

01×3

I6×6 06×1 06×3


[
xSDK(s)

δa(s)

]
(9)

where J if = Jf (ti) and xSDK(s) is the internal state vector. The pole-zero map of GiSDK(s) along RT1
(refer to Fig. 3b) and the magnitude response of its first channel over time are depicted in Fig. 4.

-1 -0.5 0 0.5 1

Re (s
-1

) ×10
-3

-1

-0.5

0

0.5

1

Im
 (

s
-1

)

×10
-3

t
0

t
f

D
e
s
c
e
n
t 
ti
m

e

(a) Pole-zero map (b) Magnitude response of channel δax → δrx

Figure 4. Linear analysis of GiSDK(s) for RT1 with ti ∈ [t0, tf ]

The shown linear analysis confirms the complexity of the evolution of GiSDK(s), with its poles
(Fig. 4a) and magnitude peaks (Fig. 4b) changing smoothly but non-monotonically over time and
with higher characteristic frequencies towards the final descent time, where the gravity pull of Phobos
becomes more intense. It is also confirmed from Fig. 4a that the system is open-loop unstable, since
any deviation from the reference trajectory will cause the spacecraft to be pulled towards either Mars
or Phobos.

3.2. Inclusion of gravitational uncertainties

As introduced in Sec. 2, 19 out of the 28 GH coefficients are highly inaccurately known. This means
that the computation of J if and thus the description of GiSDK(s) in Eq. (9) is subject to a high level of
uncertainty. To capture the effect of this uncertainty, a mathematical representation known as linear
fractional transformation (LFT) is employed.

This type of representation is widely adopted in the robust control framework and thoroughly
discussed in [14, 15]. As a cursory example, assume that a given parameter x has a relative uncertainty
range wx around its nominal value xNOM, then this can be represented as:

x = xNOM (1 + wxδx) , δx ∈ [−1, 1] (10)

Following the conventional LFT notation, the product of a signal w with the uncertain parameter
δx can be generically represented as shown in Fig. 5 and written as:

z = xw = Fu

{[
M11 M12

M21 M22

]
, δx

}
w :=

(
M22 +M21δx (I −M11δx)

−1
M12

)
w (11)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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8 P. SIMPLÍCIO ET AL.

where Fu is the upper LFT operation, the nominal system M22 = xNOM is retrieved for δx = 0 and:

M =

[
M11 M12

M21 M22

]
=

[
0 1

xNOMwx xNOM

]
(12)

0

xNOMwx

1

xNOM

𝛿x

w z

Figure 5. LFT representation of an uncertain parameter

LFTs are particularly attractive due to their extreme modularity and because typical algebraic
operations (e.g., inverse, cascade, parallel and feedback connections) preserve the LFT structure.
Therefore, in an interconnected system, it is common to isolate what is known as an LTI system, i.e.
M22(s), and gather all the ”troublemaking” (uncertain, time-varying or nonlinear) components into
an operator ∆x = diag (δx1

, δx2
, . . . , δxn

) with normalised infinity norm, ||∆x||∞ ≤ 1. This process
is nowadays rather straightforward thanks to MATLAB’s Robust Control Toolbox [16].

To build representative LFT models of GiSDK(s), a three-step procedure has been adopted. These
steps encompass uncertainty selection, plant interpolation and LFT verification and are described in
the following paragraphs. The procedure must be repeated for every time instant of interest. Here, 10
design points i = {1, . . . , 10} : ti ∈ [t0, tf ] have been chosen with approximately uniform intervals
in terms of closing speed ||vref(t)||, as evidenced in Fig. 6. The reason for this choice is twofold: [i]
information is more refined closer to the final descent time, where the dynamics of GiSDK(s) becomes
faster (recalling Fig. 4a), and [ii] the evolution of ||vref(t)|| seems to be determining in the response
of the system (comparing Fig. 6 and 4b).
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Figure 6. Closing speed of RT1 and design points chosen

3.2.1. Uncertainty selection
In order to minimise the size of the resulting LFT model, only the GH coefficients of Eq. (3) with

higher impact on J if are selected and denoted ρGH. For this choice, two distinct criteria are applied:

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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SYNTHESIS AND ANALYSIS OF ROBUST CONTROL COMPENSATORS FOR SPACE D&L 9

[i] impact of each coefficient on the nonlinear simulation of Eq. (4) and [ii] relative weight of each
coefficient on dedicated interpolations (see next step). With the two criteria providing consistent
results, the following set of 9 coefficients is selected:

ρGH =
[
C3,0 C3,1 C3,2 C4,0 C4,1 C4,2 C4,3 S3,3 S4,3

]
(13)

This choice will be further revisited at control analysis stage (Sec. 5.3) based on insights from
closed-loop sensitivity analysis.

3.2.2. Plant interpolation
Once the set of uncertainties is selected, an appropriate number of dispersed samples is generated

and the Jacobian matrix of Eq. (8) is evaluated for each sample. Depending on the dispersion ranges
considered, models with different levels of conservativeness can be obtained. As mentioned in Sec. 2,
each GH coefficient is assumed to have a Gaussian distribution with standard deviation equal to its
mean value. Here, two cases are considered: 2σ and 3σ dispersions, capturing respectively 95.5%
and 99.7% of uncertainty.

For each case, a matrix with polynomial dependence on the uncertain parameters J if (ρGH) is
interpolated. This task is accomplished using the orthogonal least-squares approximation of ONERA’s
APRICOT library [17].

3.2.3. LFT verification
The final step consists in converting the LTI system of Eq. (9) with J if (ρGH) into an LFT. This is

also an embedded capability of the APRICOT library, which adjusts the necessary repetitions of
each coefficient in ρGH to meet a pre-specified approximation error. In the end, two sets of models,
GiSDK,2σ(s) and GiSDK,3σ(s), have been obtained for i = {1, . . . , 10}, together with corresponding
∆i

SDK,2σ(s) and ∆i
SDK,3σ(s) blocks. Each block contains the uncertainties δcn,m(s) and δsn,m(s)

(with n and m indicating the selected coefficients shown in Eq. (13)), normalised to [-1,1] and
repeated as necessary. The sum of these repetitions determines the size of the block and, the larger it
is, the more elaborate the impact of the uncertainties is in the dynamics of the system.

It is therefore reasonable to expect that the uncertainty size changes with the level of
conservativeness and also along the trajectory. This behaviour is depicted in Fig. 7a. As the figure
shows, the size of ∆i

SDK,2σ(s) is never larger than ∆i
SDK,3σ(s) and they both tend to increase

throughout time (i.e., towards Phobos), ranging between a value of 3 (when only part of the 9
uncertainties plays a significant role) to 27 (when all the uncertainties are repeated 3 times).

Finally, the accuracy of the LFTs is verified by comparing frequency response samples obtained
from the LFT and from equivalently dispersed LTI realisations. An example of such a comparison
is shown in Fig. 7b for the singular values of G10

SDK,3σ(s). In this case, the accuracy of the LFT
(uppermost plot) is confirmed by the good matching with LTI responses (bottom plot).

3.3. Actuator and navigation models

As mentioned in Sec. 2, the ”allocation and actuation” block of Fig. 2 is responsible for the
introduction of thruster realisation errors. These errors are time and trajectory dependent, but they
are assumed to be bounded.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Figure 7. Results of LFT verification step

Actuator errors can then be captured following the same lines of Sec. 3.2, i.e., defining a simple
LFT model GA(s):

a(s) =

I3×3 +

 waxδax(s) waodδaod(s) waodδaod(s)

waodδaod(s) wayδay(s) waodδaod(s)

waodδaod(s) waodδaod(s) wazδaz(s)


acmd(s) (14)

and uncertainty block ∆A(s) = diag (δax(s), δay(s), δaz(s), I3×3δaod(s)). Here, δax, δay, δaz are
uncertainties affecting the three axes and δaod represents off-diagonal effects. Note that the relative
ranges of ∆A(s) have been established from Monte-Carlo (MC) nonlinear, time simulations to:

wax = 0.06, way = 0.11, waz = 0.12, waod = 0.14 (15)

and then normalised to [-1,1] with M(s) absorbing these scaling factors.
Since uncertainty ranges are relative, GA(s) is equally applicable to full acceleration commands

acmd(t) and to acceleration command perturbations δacmd(t) = acmd(t)− aref(t), as per Eq. (6).
The ”sensors & navigation” algorithms, on the other hand, introduce two very different effects: a

quantisation and a noise error. The former effect is due to the fact that position and velocity estimates,
r̂(t) and v̂(t), are updated every 60 s, injecting a non-smooth signal into the system. To attenuate it,
these estimates are filtered by a first-order low-pass filter GLPF(s) with 0.05 Hz bandwidth.

The noise error is accounted for by colouring white noise signals nr(t) and nv(t) through
appropriate transfer functions GrNAV(s) and GvNAV(s). These transfer functions have been chosen
such that the frequency content produced by the nonlinear ”sensors & navigation” block is recovered
and correspond to:

GrNAV(s) = 40
0.001(s + 1)

s + 0.001
I3×3, GvNAV(s) =

1

30

0.03(s + 1)

s + 0.03
I3×3 (16)

Similarly to the actuator model, these filters are equally applicable to full and perturbed estimates
since reference values rref(t) and vref(t) are known without error, so r̂(t)− r(t) = δr̂(t)− δr(t) and
v̂(t)− v(t) = δv̂(t)− δv(t).
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4. STRUCTURED ROBUST CONTROL SYNTHESIS

This section is dedicated to the synthesis of robust control compensators using structured H∞
optimisation and building up on the models developed in Sec. 3. An introduction of the structured
H∞ paradigm and its strengths in the face of the Space D&L problem are provided in Sec. 4.1. It is
then applied in Sec. 4.2 to design a set of control compensators with distinct properties.

4.1. The structured H∞ framework

Although classical techniques are still the state-of-practice for Space control design, they offer
limited ability to systematically manage the effects of dynamical perturbations and the specification
of multi-channel requirements. Consequently, this approach relies on extensive tuning followed by a
posteriori verification and validation, which renders the whole process very time and cost consuming,
with solutions often found via brute-force search.

The general objective of robust control synthesis is to find a linear controller K(s) such that all
the desired requirements of a multi-channel LTI plant P (s) are fulfilled, even in the presence of
uncertain dynamics ∆(s), with ||∆(s)||∞ ≤ 1. The controller uses the output vector y and generates
input vector u to stabilise and control the plant, which also contains a set of exogenous inputs w

(reference and disturbance signals) and regulated outputs z (error and performance measurements).
This setup is typically represented as the generalised interconnection of Fig. 8.

P(s)

K(s)

Δ(s)

Wo(s)Wi(s)

M(s)

yu

zΔwΔ

zw

Figure 8. Generalised interconnection in the H∞ framework

In this diagram, an input weightWi(s) is employed to normalise the frequency content of exogenous
signals and an output weight Wo(s) translates the desired requirements in the frequency domain.
Expressing the open-loop dynamics as: z∆(s)

W−1
o (s) z(s)

y(s)

 =

[
P11(s) P12(s)

P21(s) P22(s)

]
︸ ︷︷ ︸

P (s)

 w∆(s)

Wi(s)w(s)

u(s)

 (17)

and closing the interconnection via the lower LFT:

Fl(P,K) := P11 + P12K (I − P22K)
−1
P21 (18)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
Prepared using rncauth.cls DOI: 10.1002/rnc



12 P. SIMPLÍCIO ET AL.

where dependence on s was dropped for clarity, the input-output transfer function M(s) is given by:[
z∆

z

]
=

[
I 0

0 Wo

]
Fl(P,K)

[
I 0

0 Wi

][
w∆

w

]
=

[
M11 M12

M21 M22

]
︸ ︷︷ ︸

M(s)

[
w∆

w

]
(19)

The robust control problem consists then in finding a stabilising controller K∗(s) that minimises
the H∞-norm of M(s):

min ||M(s)||∞ = min sup
ω∈R

σ̄ (M(jω)) (20)

which corresponds mathematically to its maximum singular value σ̄ (M(jω)) and physically to the
worst-case amplification of exogenous energy-bounded signals.

The output weight Wo(s) normalises the system such that, if all the control requirements are
fulfilled:

||M(s)||∞ < 1 (21)

and, under the most basic formulation of the problem known as mixed sensitivity [15], Wo(s) is a
block-diagonal weight that penalises tracking errors, plant signals and control effort.

This standardH∞ synthesis problem is nowadays a well-established practice for Space applications
where robustness and performance trade-offs are key [7, 8, 18, 19], but a few practical limitations
have slowed down its adoption at an industrial scale. These limitations are mainly related to the
inability to constrain H∞ controller dimension and structure by design.

The structured H∞ paradigm has been proposed as an alternative to tackle the aforementioned
limitations in [20]. Its underlying principle is to represent the desired architecture of the controller as
an LFT of low-level tunable elements. Since any interconnection of LFTs preserves its structure, the
system of Fig. 8 can be rearranged by isolating the tunable elements into a block-diagonal K̃(s) and
absorbing the rest of the structure into P̃ (s). The structured H∞ problem consists then in tuning the
low-level elements by minimising the global transfer function of Eq. (20). Moreover, in a similar
fashion, it is possible to rearrange the plant P̃ (s) and weights Wi(s) and Wo(s) so as to map different
combinations of input-output channels and, most notably, individual design requirements. These
combinations are then encapsulated as M(s) = diag [M1(s), . . . , MN (s)] and the synthesis problem
becomes:

min max (||M1(s)||∞, . . . , ||MN (s)||∞) (22)

enabling the direct handling of multiple requirements, as well as design plants. Furthermore, this
algorithm is nowadays able to account for parametric plant uncertainties [10].

Naturally, these advantages come at the expense of a challenging (non-smooth) mathematical
problem and, to solve it, structured H∞ employs local optimisation methods. To mitigate the local
nature of the optimiser, multiple runs are often performed from random starting points. This represents
a key issue within the Space industry due to certification concerns and also a breakdown in the design
learning experience (i.e., the assessment of system behaviour changes due to changes in the posing of
the problem). Hence, the optimiser initialisation and the choice of the parameters that are free to be
tuned may become critical for a successful control design. This will be further discussed in Sec. 4.2.
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The structured H∞ algorithm is part of the hinfstruct and systune routines of MATLAB [9], with
the latter including an easier quantification of H∞ requirements and handling of multiple control
requirements, channels and models. However, despite the apparent ease of use of software, there
are numerous options available to set the tuning requirements and design conditions (sometimes
seemingly fighting each other, as characteristic of multiple minima optimisation). This wide
availability of choice is a risk in the sense that it provides a confidence level that can complicate the
design process by over-constraining the optimisation problem. In this article, this risk is mitigated by
posing the problem as in the standard H∞ framework and focusing on frequency-domain weighting
functions to impose the desired closed-loop properties.

Despite the challenges mentioned above, the effectiveness of structured robust control has been
proven through several simulation design problems, e.g., [21, 22], two Space-flown missions [1, 23]
and recently in piloted flight tests [24]. The main strength of structured H∞ under the scope of these
applications (and, indeed, of Space D&L compensation) is its capability to synthesise controllers that
are valid not only for one, but for a set of operating points (i.e., plants).

Finally, an additional strength of structured H∞ for Space missions lies on its ability to specify
controller structure, which allows [i] control gains to be changed ad hoc if any re-tuning is required
and [ii] industrial legacy knowledge to be kept. An excellent example of the former was demonstrated
in [1], where structured H∞ was employed for the refinement Rosetta’s controller after thruster
authority degradation, which was uploaded to the spacecraft before its final insertion manoeuvre
with the target comet in May 2014. Taking advantage of legacy knowledge is also a very important
point as it enables the transfer of this design approach (with better robust stability and performance
properties) to industry without representing a disruptive change for the design teams.

4.2. Application of structured H∞ to D&L compensation

As introduced in Sec. 2, the objective of the D&L control compensator is to provide an additional
acceleration command acmp(t) to compensate for deviations with respect to a given reference
trajectory. In this article, candidate control compensators are designed through a four-step procedure
that relies on structured H∞ optimisation to exploit the advantages highlighted in Sec. 4.1. This
procedure is described in the following paragraphs.

4.2.1. Control structure
To fulfil the control objective mentioned above, the internal structure chosen for the Space D&L

control compensator (as introduced in Fig. 2) is evidenced in Fig. 9.

GLPF(s)
Ki(s)

03x1

aref

rref

vref

r̂ v̂

𝛿r ̂

𝛿v̂

𝛿rcmd

𝛿rlpf

𝛿vlpf
acmp = 𝛿a

Control compensator

Figure 9. Control compensator architecture
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14 P. SIMPLÍCIO ET AL.

At the core of the compensator, there is an LTI controller Ki(s) that must be designed to track
commanded deviations δrcmd(t) using position and velocity deviation measurements δr̂(t) and δv̂(t)

relative to the RT {rref(t),vref(t)}. These signals are filtered by a first-order low-pass filter GLPF(s),
introduced in Sec. 3.3, to attenuate the quantisation effect injected by the navigation algorithms.

An additional velocity command δvcmd(t) could have been included, but it was found to be
redundant and hence not considered. For this case, the commanded deviation signal is fixed to zero,
δrcmd(t) = 0, but it can also be employed to command small changes of landing site without the
need for redesigning the trajectory.

With such a structure (fed by position and velocity deviations and providing an acceleration
command acmp(t) that is summed to a reference profile aref(t)) the controller can be designed based
on the orbital perturbation model of Sec. 3.1 by realising that the acceleration command is actually a
perturbation, i.e., acmp(t) = δa(t). The closed-loop interconnection is then depicted in Fig. 10.

GLPF(s)
Ki(s) GA(s)

ΔA(s)

GiSDK,*(s)

Δi
SDK,*(s)

GrNAV(s)

GvNAV(s)

𝛿rcmd

𝛿rlpf

𝛿vlpf

nr

nv

𝛿re

𝛿a

acmp 𝛿r
𝛿v

𝛿r ̂

𝛿v̂

Figure 10. Closed-loop model for control synthesis

In addition to the blocks already present in the previous figure, Fig. 10 features the actuator
model GA(s), uncertainty ∆A(s) and navigation noise-shaping filters GrNAV(s) and GvNAV(s), all
of them described in Sec. 3.3, as well as the orbital perturbation models GiSDK,∗(s) and gravitational
uncertainty ∆i

SDK,∗(s) developed in Sec. 3.2. Here, the superscript i = {1, . . . , 10} specifies different
designs point along the RT and ∗ represents 2σ or 3σ, depending on the LFT conservativeness at
each point.

Generically speaking, a different LTI controller Ki(s) can be synthesised and implemented for
each design point i. Nevertheless, hinfstruct offers additional capabilities including multi-plant design
(when a single controller is synthesised so as to fulfil the control requirements at all the design
points simultaneously) and self-scheduled design (similar to multi-plant, but with the controller
parameterised as a function of a scheduling variable). A thorough review of these alternatives is
provided in [21, 22]. The multi-plant controller synthesis approach proved to be very successful for
this D&L problem. Hence, in Fig. 9 and 10 there will be only one controller Ki(s) = K(s) for all
the design points i = {1, . . . , 10}.

4.2.2. Control requirements
In order to ensure a successful control compensation, the controller K(s) must be designed in

such a way that, even under an uncertain gravitational environment and actuator responses, two
driving requirements are fulfilled: [i] tracking, minimising the error δre(s) = δrcmd(s)− δr(s) and
[ii] actuation, minimising the overall control effort δa(s).
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As mentioned before, control requirements are posed by rearranging the design problem into
the generalised framework of Fig. 8. More specifically, comparing the latter figure with Fig. 10,
one can identify as exogenous inputs w(s) = [δrcmd(s); nr(s); nv(s)] and as regulated outputs
z(s) = [δre(s); δa(s)]. In addition, all the uncertain elements are combined into a single uncertainty
block ∆i(s) = diag

(
∆i

SDK,∗(s),∆A(s)
)

and everything else is gathered in the LTI system M i(s),
again for i = {1, . . . , 10}.

Control requirements are then defined through the appropriate choice of frequency-dependent
weights Wi(s) and Wo(s), also contained in M i(s) as shown in Fig. 8. In fact, weight selection is
a key factor for the synthesis. For standard H∞ synthesis, weight complexity much be chosen as
low as possible to limit the controller order, but this does not apply with structured H∞. In addition,
thanks to the multi-plant approach of the latter, it is possible to use different weights for different
design points i. Still, the number of weights shall be the lowest possible in order to reduce the
designer’s work (i.e., fewer parameters to tune) and the risk of over-constraining the optimisation
with conflicting requirements. Hence, for this problem, weights were chosen to be the same for all
the design points (in general, this might not be possible).

The input weight Wi(s) is employed for a differential scaling within the input signal w(s). For
this specific case, with main focus on the effect of gravitational uncertainties, no noise has been
considered for design, therefore Wi(s) = diag (I3×3, 03×3, 03×3). Resilience to noise is achieved by
adjusting these values accordingly. The output weight Wo(s) is applied to z(s) and partitioned as
Wo(s) = diag (WS(s),WA(s)), where WS(s) imposes tracking requirements via δre(s) and WA(s)

actuation requirements through δa(s).
More specifically, as a consequence of Eq. (21), the magnitude response of δre(s) for a unitary

command in δrcmd(s) is bounded by W−1
S (s). This inverse shall then have [i] small low-frequency

gain (10−3) for little steady-state error, [ii] reasonable high-frequency gain (2) for good stability
margins, [iii] a roll-over frequency (10−2 rad/s) which is appropriate for the dynamics of the problem
and [iv] zero off-diagonal terms to minimise cross-coupled interactions. Hence, WS(s) can be defined
as:

WS(s) =

1

2
s + 10−2

s + 10−5
I3×3 (23)

In a similar fashion, the magnitude response of δa(s) for a unitary command in δrcmd(s) is bounded
by W−1

A (s). This inverse shall then have [i] reasonable low-frequency gain (5.5× 10−4) which
establishes the maximum control effort, [ii] small high-frequency gain (10−9) for little reactivity to
noisy signals, [iii] a roll-off frequency (10−3 rad/s) able to accommodate the tracking bandwidth and
again [iv] zero off-diagonal terms to minimise cross-coupled interactions. Therefore:

WA(s) =
s +

10

5.5
10−9 s + 10−3

I3×3 (24)

4.2.3. Control synthesis
Following the multi-plant approach, plants M i(s) are aggregated in a block-diagonal structure and

the hinfstruct routine is called to find a single stabilising controller K(s) that meets the requirements
at every LTI point i = {1, . . . , 10}.
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16 P. SIMPLÍCIO ET AL.

As mentioned in Sec. 4.1, hinfstruct is nowadays able to account for parametric uncertainties
∆i(s) in the optimisation problem. In the same section, it was anticipated that the initialisation and
choice of the control parameters that are free to be tuned are also key factors for the success of the
optimisation. Without a proper initialisation, i.e., using random initial guesses, the optimiser is often
unable to find a solution or ends up converging towards a controller with fast and/or unstable poles,
which is not practical to implement. Hence, assuming a third-order controller and partitioning it as:

[
ẋK(s)

acmp(s)

]
=

[
AK B1K B2K B3K

CK D1K D2K D3K

]
xK(s)

δrcmd(s)

δrlpf(s)

δvlpf(s)

 (25)

initial guesses were chosen as follows:

• AK = −0.01 I3×3 for stable poles with reasonable frequency;
• B1K = −B2K = I3×3 and B3K = 03×3 to lead the optimiser towards the consideration of the

error δrcmd(s)− δrlpf(s);
• CK = D2K = D3K = I3×3, respectively responsible for integrative, proportional and

derivative control actions;
• D1K = 03×3, which should not be needed since control compensation is independent of the

reference trajectory.

This choice results in 72 parameters to be tuned. However, if all of them are left free, the optimiser
tends to find physically inappropriate solutions, featuring very different dynamics on each control
axis or strong cross-coupled interactions between them. This was solved by fixing to zero all the
off-diagonal terms of the sub-matrices in Eq. (25), reducing the number of parameters to 24. As a
consequence, the highly-coupled D&L dynamics will be tackled by a diagonal (but robust) controller.

With this strategy, four controllers have been designed, each of them accounting for a different
set of uncertainties (recall Fig. 10). This selection is summarised in Table I. For better results, and
referring to the latter table, the controller KA(s) has been employed as initial condition for the
synthesis of KA,2σ(s) and KA,3σ(s).

Table I. Specification of the designed controllers

Controller Uncertainties considered
K0(s) None (non-robust controller)
KA(s) ∆A(s) only
KA,2σ(s) ∆A(s) and ∆i

SDK,2σ(s)

KA,3σ(s) ∆A(s) and ∆i
SDK,3σ(s)

4.2.4. Nominal results
Before proceeding to an in-depth robustness analysis of the designed controllers, preliminary

tests are conducted with models in nominal conditions. First, an LTI analysis and comparison of
closed-loop frequency responses using the four controllers of Table I is provided in Fig. 11. For
each case, the figure shows the singular values for the δre(s) and δa(s) transfer functions (uppermost
and bottom plots, respectively), the corresponding H∞ constraints W−1

S (s) and W−1
A (s), and the
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response evolution along RT1 (using different colours, similarly to Fig. 4a). In addition, a distinction
is made between diagonal and off-diagonal terms (continuous and dashed lines), which shall be as
separated as possible to minimise cross-coupled interactions.
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(a) Using controller K0
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(b) Using controller KA
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(c) Using controller KA,2σ

10-5 100 105

-100

-80

-60

-40

-20

0

M
a

g
n

it
u

d
e

 δ
r e

(s
) 

(d
B

) W
S

-1(s)

Diagonal channels

Off-diagonal channels

10-5 100 105

Frequency (rad/s)

-250

-200

-150

-100

M
a

g
n

it
u

d
e

 δ
a

(s
) 

(d
B

)

W
A

-1(s)

Diagonal channels

Off-diagonal channels

t
0

t
f

D
e

s
c
e

n
t 

ti
m

e

(d) Using controller KA,3σ

Figure 11. Multi-channel singular values along RT1 and ti ∈ [t0, tf ] in nominal conditions (∆(s) = 0) against
W−1
S (s) (uppermost plot) and W−1

A (s) (bottom plot)

From this figure, it is clear that, in nominal conditions, the four controllers meet the design
requirements for all the points throughout RT1. It is also visible that margins with respect to W−1

S (s)

and W−1
A (s) become tighter towards the final descent time, especially for off-diagonal channels. In
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18 P. SIMPLÍCIO ET AL.

fact, for the non-robust controller K0 (Fig. 11a), there is not enough separation between diagonal
and off-diagonal terms, which anticipates robustness issues. This separation is then achieved with
the other controllers, which account for cross-couplings introduced by the actuators and/or by
gravitational uncertainties. These controllers (Fig. 11b to 11d) show very similar responses (indeed,
major differences are only visible using robust performance analysis or highly dispersed simulations),
although it is observed that they have sequentially smaller diagonal steady-state errors, at the expense
of larger off-diagonal components.

In addition, to demonstrate the effect of control compensation, a nonlinear simulation of RT1 is
depicted in Fig. 12, showing reference and actual trajectories, rref(t) and r(t), as well as arrows with
magnitude and direction of acceleration reference aref(t), compensation acmp(t), and total signal
(i.e., aref(t) + acmp(t)) at different points.

(a) Without control compensation (b) Using controller K0

Figure 12. Impact of control compensation for RT1 in nominal conditions

On the left-hand side, Fig. 12a, no control compensation is used, i.e., acmp(t) = 0, so RT1 cannot
be followed and the spacecraft crashes on Phobos before reaching the desired target. This potential
failure, i.e., in the absence of any guidance or control feedback loop, had already been identified in
Sec. 2. A successful D&L is then executed when the compensator K0 is introduced, as displayed in
Fig. 12b (the same result is obtained with any of the other controllers since they have similar nominal
performances). Here, the compensator command acmp(t) is clearly visible, with smaller magnitude
than the reference vector, but enough to correct it and track the desired trajectory.

5. ROBUSTNESS ANALYSIS AGAINST UNCERTAINTIES

In this section, the impact of gravitational uncertainties when using different compensators is assessed.
This assessment is carried out first via the structured singular value µ (introduced in Sec. 5.1 and
applied in Sec. 5.2) and then through nonlinear Monte-Carlo simulation (Sec. 5.4). In addition,
closed-loop sensitivity information provided by µ analysis is addressed in Sec. 5.3 as a way to
validate and complement the uncertainty selection choice made in Sec. 3.2.
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5.1. The µ analysis framework

The fundamental approach for analytical system robustness assessment is based on the structured
singular value µ. This operator was introduced in [25] and relies on the LFT representation in the
form of Fig. 8 to determine if a system M(s), partitioned as in Eq. (11), is stable in the presence of
all the normalised LTI uncertainties ||∆(s)||∞ ≤ 1. This is ensured by the existence of the inverse
(I −M11∆)

−1 in Eq. (11), and verified by computing:

µ(M11) =
1

min∆ {σ̄(∆) : ||∆||∞ ≤ 1,det (I −M11∆) = 0}
(26)

with µ(M11) ∈ R+ if a solution exists. The system is then said to have robust stability (RS) if and
only if its nominal component M22 is stable and [14, 15]:

µ(M11(jω)) < 1, ∀ω ∈ R (27)

Moreover, the norm of the smallest set of uncertainties that destabilises the system is given by
||µ (M11) ||−1

∞ . The computation of Eq. (26) is known to be non-deterministic polynomial-time
hard, hence its estimation relies on lower and upper bounds. In practice, they provide an analytical
guarantee of existence of at least one perturbation that equals the lower bound degradation and of
inexistence of any perturbation that exceeds the upper bound degradation. For more accurate bounds,
the size of LFT models shall be kept as small as possible while capturing the most relevant physical
phenomena of the real system and their interplay with the uncertainties [14].

Additional valuable insights can also be extracted using µ analysis [26, 27] including: critical
uncertainty combinations throughout frequency (which allow to identify worst-case configurations
without the need for random sampling methods such as Monte-Carlo) and sensitivities that quantify
the impact of each parameter in the solution of µ. All the necessary algorithms are also included in
MATLAB’s Robust Control Toolbox [16], although there are other alternatives available, e.g. [28].

Furthermore, the structured singular value µ can also be employed for robust performance analysis,
i.e., to check if closed-loop requirements defined as in Eq. (21) remain fulfilled under the effect of
all the allowable uncertainties ||∆(s)||∞ ≤ 1. Without uncertainties, nominal performance (NP) is
assessed by verifying if Eq. (21) holds for ∆(s) = 0 over frequency, which is equivalent to:

σ̄(M22(jω)) < 1, ∀ω ∈ R (28)

Under the presence of uncertainties, the channel z→ w of Fig. 8 is closed through a fictitious
complex uncertainty ∆p(s) and the µ test is now applied to M(s) instead of M11(s), considering
the augmented perturbation diag (∆(s),∆p(s)). Similarly to the stability case, the system with
requirements defined as in Eq. (21) is said to have robust performance (RP) if and only if it has
nominal stability and:

µ(M(jω)) < 1, ∀ω ∈ R (29)

with smaller values of µ(M(jω)) indicating better RP properties.
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5.2. Application of µ analysis to D&L compensation

The analysis framework introduced in the previous section can now be applied to assess and compare
robust stability and performance properties of D&L compensation systems using the multi-plant
controllers synthesised in Sec. 4.2.3 and summarised in Table I. Similarly to the analysis carried out
in Sec. 4.2.4, this is achieved by closing the loop with the different multi-plant controllers at every
LTI point. Also, the uncertainties considered for analysis do not necessarily need to coincide with the
ones accounted for the design of each controller. An overview of all the information provided by µ
analysis is illustrated in Fig. 13 for the LTI point i = 8, which corresponds to a descent time around
6500 s, for three pairs formed by examining KA and KA,3σ with the uncertain LFTs on ∆A and
diag

(
∆A,∆

8
SDK,3σ

)
. On the uppermost subplots, curves related to the RS (—–O ), NP (—–� ) and RP

(—–M ) tests of Eq. (27), (28) and (29), are depicted over frequency. For RS and RP, there is actually a
dashed and a continuous line representing the lower and upper bound for the computation of µ which,
for practical effects, show a very good agreement in this scenario. The bottom subplots then show
the sensitivity of RP results against each element of ∆, which is quantified by ∂ µ(M i(jω)) / ∂ δx

and directly computed by the µ algorithms. A higher sensitivity indicates that the corresponding
uncertainty has a stronger influence in the level of RP obtained.

The first plot, Fig. 13a, shows the closed-loop analysis with KA, designed for ∆A only, against
the effect of ∆A. Since all the curves lie below 1, this implies that NP, RS and RP conditions are
met, which is natural as the uncertainties considered for design and analysis are the same. In nominal
conditions, NP (—–� ) is more demanding at low and very high frequencies, which could also be
anticipated from the proximity of the closed-loop responses in Fig. 11 with the W−1

S and W−1
A

requirements. Stability degradation, i.e., RS (—–O ), is only affected at low frequencies and there is
always a significant margin until instability, i.e., until µ(M i

11) = 1.
Finally, RP (—–M ) envelops, and is driven by, the shapes of NP and RS, which is a clear result

of Eq. (11): in the presence of uncertainties, closed-loop performance is constrained by nominal
performance (i.e., M i

22) and by its interplay with the uncertainty channels (through M i
11, M i

12 and
M i

21). In terms of sensitivities (bottom subplot), it is clear that all the uncertain elements have similar
trends, but the off-diagonal uncertainty δaod is the most decisive.

Figure 13b shows the same analysis but with KA now against the combined effect of actuator and
GH uncertainties, i.e. diag

(
∆A,∆

8
SDK,3σ

)
. As expected, considering a wider range of uncertainties

leads to the same NP, but degraded robustness properties, particularly in terms of RP. As evidenced
by the uppermost result, the RP conditions are no longer met by KA. Also, the elements of ∆8

SDK,3σ

are now included in the sensitivities (bottom) subplot with continuous lines. In fact, the impact of
these elements becomes comparable to that of ∆A, precisely at low frequencies where µ(M8) ≈ 1.

Finally, Fig. 13c shows the results against the same previous set of uncertainties
diag

(
∆A,∆

8
SDK,3σ

)
, but now replacing the controller with KA,3σ, designed for the latter set. This

leads to all the NP, RS and RP conditions being met by a change of closed-loop behaviour at low-
frequency. Nevertheless, the RP sensitivity frequency responses remain roughly the same, which
indicates that this type of insight is not intrinsically dependent on the controller being analysed.

In order to conclude the analysis, RP levels against the complete set of uncertainties have been
computed along RT1 using the control compensators not addressed in Fig. 13. Results with K0 and
KA,2σ are provided in Fig. 14.
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Figure 13. NP, RS, RP results (top subplots) and µ sensitivities (bottom subplots) at i = 8

It is confirmed from Fig. 14a that K0, being a non-robust controller, exhibits RP peaks well above
1, hence it is not suitable for the D&L scenario. This is no longer the case with KA,2σ, in Fig. 14b,
whose RP levels lie in-between those of KA and KA,3σ. For both cases, as anticipated with the
nominal analysis of Fig. 11, performance degradation will become more intense closer to touchdown.
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Figure 14. RP results against ∆A and ∆i
SDK,3σ along RT1 with ti ∈ [t0, tf ]

5.3. Sensitivity analysis

It was mentioned in Sec. 3.2.1 that an open-loop sensitivity analysis was performed to identify the
uncertain GH coefficients with higher impact on the dynamics of the problem. More specifically, this
consisted of repeating the interpolation of the Jacobian matrices J if for each coefficient separately
and counting the number of J if terms where that coefficient accounts for a variation above 10% its
nominal value. This allowed to quantify the impact of each parameter and select the 9 most relevant
for LFT generation.

Here, this quantification method is revisited using the closed-loop sensitivity information provided
by µ analysis in Sec. 5.2 and the fact that this type of insight is not intrinsically dependent on the
controller used to close the loop (when the controllers are designed to achieve similar objectives).

An overview of the results that can be obtained using the aforementioned considerations is depicted
in Fig. 15, for which KA,3σ and 3σ uncertainty dispersions were assumed. It shows, per normalised
SDK uncertainty δx (where x identifies the coefficients selected in Eq. (13)) and as a function of the
design points i = {1, . . . , 10}, the following: [i] in yellow, the sensitivity peak values computed via
µ analysis (e.g., for i = 8, these values correspond to the peaks of the bottom plots of Fig. 13c) and
[ii] in dark blue, the number of J if terms where δx has a relative LFT interpolation weight larger than
10%, normalised so as to have the same scale as the µ sensitivities.

Figure 15 then provides a visual confirmation that the sensitivity insights obtained using two very
different methods (open-loop LFT interpolation and closed-loop µ analysis) are quite consistent for
this scenario. This is particularly true when identifying cases with smaller sensitivities. But most
importantly, the latter figure allows to quantify the relative impact of each GH coefficient on the
dynamics of the problem, as well as its evolution through the descent. For example, it is clear that
δs3,3 and δc4,0 are the most determining in this case, with a growing effect throughout the trajectory,
while others, such as δc3,2 or δc4,1 are more intense at earlier stages of the descent. LFT models
featuring uncertainty sets other than Eq. (13) could also be included in the comparison.

Besides being useful for LFT reduction (as in this article), the determination of the driving
GH coefficients has important practical implications. Most notably, it can be employed to support
key mission choices (such as trajectory selection) or refined investigation aimed at reducing the
uncertainty range of driving coefficients.
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Figure 15. Sensitivity indicators from 3σ LFT interpolation and µ analysis along RT1

5.4. Monte-Carlo verification

The robustness of the four controllers of Table I is now verified using the benchmark introduced in
Sec. 2 for the nonlinear high-fidelity simulation of RT1. Each control compensator is tested against
the same 2000 Monte-Carlo (MC) samples of the 19 GH coefficients in Eq. (3), randomly sampled
with Gaussian distributions. Since the focus of the analysis is on the impact of these coefficients, no
additional perturbations from actuators or navigation are included in the simulations.

In addition, special worst-cases (WCs) are also tested for each compensator. These WCs correspond
to the combination of uncertainties associated with the RP peaks ∆i,WC

SDK,3σ, which is determined via µ
analysis at every LTI point i = {1, . . . , 10}. Since only 9 out of the 19 GH coefficients are captured
by the LFTs employed for µ analysis, every combination ∆i,WC

SDK,3σ is tested with the remaining 10
coefficients simultaneously set to their nominal, +3σ and −3σ values. Discarding all the repeated
combinations, this originates between 18 and 24 WCs per controller.

The outcome of the verification campaigns is depicted in Fig. 16, showing nominal simulations
with a dark continuous line, MC runs with lighter lines and the aforementioned WCs with dashed
lines. For each control compensator, distance and speed errors with respect to the RT, |r(t)− rref(t)|
and |v(t)− vref(t)|, are plotted, together with the magnitude of the acceleration compensation
command |acmp(t)| and total ∆V (t) (i.e., reference plus compensation). For clarity, failure cases
(i.e., spacecraft crashing on or diverging from Phobos) are not included in the plots, but will be
accounted for later on.

From Fig. 16, it can be confirmed that, while all the compensators behave similarly in nominal
conditions, the non-robust controller K0 (Fig. 16a) performs significantly worse than the others under
dispersed conditions, particularly in terms of position and velocity error. Additionally, it is clear
that, although determined using a reduced set of uncertainties, the WCs identified via µ analysis are
generally more challenging than the 2000 MC runs. In fact, these WCs typically have an extremely
low probability of occurrence, but could be analytically foreseen, which demonstrates the added-value
of µ analysis as a complement to MC verification campaigns.
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(a) Using controller K0 (b) Using controller KA

(c) Using controller KA,2σ (d) Using controller KA,3σ

Figure 16. Nonlinear simulation of 2000 MC runs and WCs from µ analysis of RT1

For a detailed comparison, the average and standard deviation of the maximum values encountered
during the four MC campaigns are listed in Table II, with the failure ratios of MC and WC simulations.

Table II. Robustness indicators for RT1 using different controllers

K0 KA KA,2σ KA,3σ

Max. MC values Avg. Std. Avg. Std. Avg. Std. Avg. Std.
|r− rref | (m) 0.503 0.259 0.029 0.013 0.030 0.014 0.038 0.020
|v − vref | (mm/s) 1.234 0.130 1.206 0.008 1.208 0.007 1.212 0.013
|acmp| (mm/s2) 0.411 0.207 0.431 0.208 0.430 0.208 0.429 0.206
∆V (m/s) 8.793 0.630 8.326 0.966 8.326 0.965 8.329 0.955
MC failures (%) 44.15 0.00 0.00 0.10
WC failures (%) 33.33 12.50 0.00 16.67

As anticipated from Fig. 14a, K0 is not suitable for this scenario because of its higher errors,
which are further translated into MC and WC failure ratios of 44.15 and 33.33%. The three robust
controllers then showed satisfactory and equivalent distribution indicators, but distinct failure ratios.
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With KA, no failures were obtained from the MC simulations, but 12.5% of the µ WCs resulted into
failure. The situation improves with KA,2σ, which yields no MC or WC failures.

Finally, results using KA,3σ became inferior, with failure ratios of 0.1 and 16.37%. Although
this last result may seem counter-intuitive, it is actually a fairly common pitfall of robust control
algorithms, in which controller performance may become restricted (in the nonlinear case) for an
over-conservative robustness specification during the (linear) design phase. It is also important to
note that the RP insights from µ analysis only have guaranteed validity for the LTI models adopted,
hence the execution of MC tests is fundamental for controller validation in the real, nonlinear case.

Based on Table II, KA,2σ is selected as the most suitable controller. To assess its applicability to
trajectories other than the one it has been designed for, the same MC uncertainty combinations are
executed using KA,2σ and trajectories RT2 and RT3 (recall Fig. 3b). The same indicators are now
gathered in Table III for these campaigns. Since no detailed µ analysis was performed along RT2 or
RT3, the consideration of WCs is not pursued here.

Table III. Robustness indicators for different trajectories using KA,2σ

RT1 RT2 RT3
Max. MC values Avg. Std. Avg. Std. Avg. Std.
|r− rref | (m) 0.030 0.014 0.026 0.010 0.026 0.011
|v − vref | (mm/s) 1.208 0.007 0.694 0.253 0.661 0.325
|acmp| (mm/s2) 0.430 0.208 0.332 0.160 0.326 0.164
∆V (m/s) 8.326 0.965 8.714 0.831 7.989 0.830
MC failures (%) 0.00 0.00 0.00

The results of Table III show that KA,2σ successfully handles the RT2 and RT3 trajectories with
similar performance to RT1 and also without any failure. Since the controller was designed around
perturbation variables, the effect of trajectory changes is much reduced in comparison with the
considered GH uncertainties. Specific differences among the indicators are mostly related to how
demanding is each reference trajectory. These results indicate that accounting for the uncertainties
encountered along RT1 alone turned out to be enough for the design of a compensator that is equally
able to cope with other trajectories. This conclusion is tightly linked to the previous observation that
having a holistic uncertainty specification is not necessarily sufficient (nor required) to achieve a
successful robust control design.

6. CONCLUSIONS

This article illustrated the manner gravity uncertainty modelling using linear fractional
transformations (LFTs) and structured H∞ control synthesis can be effectively employed to design
simple yet effective compensators for Space D&L. This in turn paves the way for more reliable
planetary landers, as well as guidance approaches with less stringent propellant consumption
requirements.

Emphasis was placed on developing a robust control design that accounts for the aforementioned
uncertainties and on the suitability of the structured H∞ paradigm for the D&L problem. This is
mainly because of its ability to synthesise controllers that are valid for multiple plants, as well as
the possibility to specify the controller structure and take advantage of industrial legacy knowledge.
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Design challenges have also been highlighted, for example on the sensitivity of structured H∞ to the
choice of initial conditions and control parameters tune.

It was also shown that, more than a robustness assessment tool, µ analysis can be directly employed
to support the complete control compensator design process. On the one hand, critical uncertainty
combinations can be used to complement and enhance conventional Monte-Carlo verification
campaigns and, on the other, closed-loop sensitivities that quantify the impact of each uncertain
parameter can be used to support system modelling choices. The practical implications provided by
these insights have the potential to span from compensator design to Space D&L mission design.

APPENDIX A. NOMENCLATURE

BCBF Body-Centred Body-Fixed
SC Spacecraft
D&L Descent & Landing
GH Gravity Harmonics
LFT Linear Fractional Transformation
LPO Libration Point Orbit
LTI Linear Time-Invariant
MC Monte-Carlo
NP Nominal Performance
RP Robust Performance
RS Robust Stability
RT Reference Trajectory
SDK Spacecraft Dynamics & Kinematics
TSA Testing, Simulation & Assessment
WC Worst-Case
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