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Software Engineering for Sustainability: 
Find the Leverage Points! 
Software Engineering helps deliver software systems that can enable humanity to reach new 
levels of prosperity. That experience in building complex, interdependent and globally 
distributed systems can also be leveraged for sustainability challenges. Humanity faces a number 
of global, interdependent, and complex challenges that present a risk to societies, including 
climate change, large scale involuntary migration, and poverty [18]. 
As software professionals, we can contribute to sustainability through the software systems that 
we engineer, and it is our social responsibility to do so [21]. But sustainability problems are 
complex system problems (see SIDEBAR Sustainability). How can we understand the complex 
dynamics that arise in the interaction within multifaceted social, economic, or ecological systems? 
One approach to identifying successful sustainability interventions is to consider leverage points – 
locations within a system where a small change in one aspect can result in significant system-
wide changes [10].  
This article suggests leverage points (LP) can help software engineers to address sustainability 
challenges by offering insights on possible transformation mechanisms and/or ways to find 
alternatives. While LP will not tell us exactly how to act on sustainability challenges, they provide 
an analysis tool to help practitioners to identify elements that can bring about effective change at 
different levels, for a (software) system and the wider system it resides in. As sustainability is a 
crosscutting (orthogonal) concern, LPs are beneficial as they enable intervention on different 
levels. 
We use the example of the UK public transportation system [23]  to illustrate how leverage points 
can contribute to software engineering for sustainability. 
 

SIDEBAR  Sustainability 

The Oxford English Dictionary [13] defines sustainability as ‘the capacity to endure’. The 
Brundtland commission defined sustainable development as ‘meeting the needs of the present 
without compromising the ability of future generations to meet their needs’ [3]. However, to 
understand the broader sustainability issues, we must ask which system to sustain, for whom, 
over which time frame, and at what cost [16]. This involves five interrelated dimensions [2]: 
 

The individual dimension covers individual freedom and agency, human dignity, and 
fulfillment. It includes individuals' ability to thrive, exercise their rights, and develop 
freely. 
The social dimension covers relationships between individuals and groups. It covers 
the structures of mutual trust and communication in a social system and the balance 
between conflicting interests. 
The economic dimension covers financial aspects and business value. It includes 
capital growth and liquidity, investment questions, and financial operations. 
The technical dimension covers the ability to maintain and evolve artificial systems 
(such as software) over time. It refers to maintenance and evolution, resilience, and 
the ease of system transitions. 
The environmental dimension covers the use and stewardship of natural 
resources; ranging from immediate waste production and energy consumption to the 
balance of local ecosystems and climate change concerns. 
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Running Example: UK Public Transportation 
System 
Existing transport systems are large contributors to greenhouse gas emissions and poor urban air 
quality, which contribute towards health issues and general environmental unsustainability. 
Operations researchers have been developing systems to improve transportation for many decades 
using linear programming and simulation systems, while new approaches to data science offer a 
future vision of a smart transportation system based on IT-supported movement of people and goods 
[23]. However, the factors that impede sustainability are complex. Figure 1 shows the UK 
transportation system in the context of its surrounding systems, using a stock-and-flow model 
annotated with causal feedback loops [14] (see also SIDEBAR System Dynamics). 
 

 

 
Fig. 1: Causal Loop Diagram of transportation showing contextual factors for mode switching, such as traveller 
perceptions, funding levels, and relative demand. 

 
As in any complex system, this example is embedded within a set of assumptions, i.e. a paradigm. 
In this case, it is the shared belief that people need transportation, have some choice over which 
mode to use, and government spending and provisioning of bus and road capacity should support 
this choice. The system aims to achieve certain goals,  while obeying a set of rules. The main goal 
of our example system is to transport people, with the rules given by the existing infrastructure.  

 
A system dynamics model captures only a partial view of a system, but helps build a more holistic 
understanding by looking at chains of cause-and-effect to identify points through which desired 
changes could be reinforced or undesired changes prevented. Within the system dynamics 
perspective, a system is  viewed  as  a  set  of  stocks  (any  quantity  that accumulates or depletes 
over time), such as the number of private vehicles. The level of a stock can be changed via flows, 
where the flows define a rate of change of the given stock. Stabilizing stocks are known as 
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buffers. The intensity of a flow can be influenced through parameters – for example, 
governments can set congestion fees or adapt taxes. The larger the stock with respect to the rate 
of its flows, the more stable it is (e.g. a large public transport network is more likely to create a 
more stable revenue). 
 
The change in stocks due to flows is often non-linear, due to feedback loops, which occur when a 
changing level of a stock or a flow creates a circular chain of cause-and-effect that eventually 
influences the original stock or flow. For example B1 in the figure, if buses become frequent and 
uncrowded, more people are likely to switch from using their car to buses, increasing the demand 
for buses, making them more crowded and hence less attractive again. B1 is a balancing 
feedback loop, as it counteracts the original change. However, the more people switch from cars 
to buses, the greater the revenue generated from bus pricing (R1). If this revenue is used to 
increase the fleet and, consequently, the availability of buses, it can encourage even more people 
to switch from cars to buses. R1 is a reinforcing feedback loop, because it pushes a change even 
further. Reinforcing feedback loops can spiral out of control, but they eventually meet some 
bound e.g. when everybody uses buses, the demand cannot increase further (B2). However, 
another balancing feedback loop may intervene before that, because as soon as people perceive 
less congestion, they tend to switch back to using cars again (B3) [7]. 
 
Effects of flows on stocks may not be immediate. For instance, it may take time to gather 
information about changes in demand for public transport (delay D1 in figure), and even longer 
to adjust the supply of buses (D2) to achieve the goal of increased public transport usage. The 
length of the delay affects the stability of the system. The structure of stocks-and-flows also has 
a huge effect on the system’s behaviour. For example, if revenue from congestion charges flows 
into more investment in more public transport, more people may choose to switch from cars to 
public transport, but if it flows to more road building, it may have the opposite effect. Further 
concepts such as the economics of supply and demand, time cost, and rebound effects, are not 
addressed. See [19,20] for further details. 
 

Creating Leverage through Software 
 
How can software effect change in its wider environment? Meadows [10] proposed a list of 
twelve ways of intervening in a system (any type of system), as an invitation to think more 
broadly about change (see TABLE Leverage Points). We discuss these leverage points in four 
clusters [5] in increasing order of the likely magnitude of their effect: Changing the metabolic 
structure, changing the feedback loops, transformational change, and changing the intent of the 
system and stakeholders.  
 

TABLE Leverage Points 

“Leverage points are places within a complex system (a corporation, an economy, a living body, 
a city, an ecosystem) where a small shift in one thing can produce big changes in everything” 
[10]. The leverage points are listed in increasing order of effectiveness according to [10]. While 
all leverage points can bring about change, the later ones are more likely to create significant 
changes to the system behaviour, but may also require more effort to implement. Meadows’ 
leverage points refer to any kind of change, whether enabled by software or not. In this paper, 
we use them as an analysis tool for exploring how software can trigger broader changes in 
societal systems. However, they are hard to identify and act on - they are not a “silver bullet”. 

LP 12 Constants, parameters, and numbers; tweaking parameters allows change to the 
intensity of the flows in systems, but rarely alters the underlying dynamics. 
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LP 11 The sizes of buffers and other stabilizing stocks, relative to their flows; stabilize a 
system by adjusting the capacity of its buffers and making it more efficient by 
optimizing the flow. 

LP 10 The structure of material stocks and flows (such as transport networks and 
population age structures); physical structure is crucial in a system but often hard to 
change, therefore the leverage point is in proper initial design. 

LP 9 The lengths of delays, relative to the rate of system change; a system cannot respond 
to short-term changes when it has long-term delays. 

LP 8 The strength of balancing feedback loops, relative to the impacts they respond to; 
balancing feedback loops help systems to self-correct by monitoring and adjusting 
according to the system goal. 

LP 7 The gain around reinforcing feedback loops;  reinforcing  feedback  loops can be 
sources of system instability or mechanisms to amplify desired change, so adjusting 
their strength affects how the system responds to change. 

LP 6 The structure of information flows; can create a new feedback loop that was not there 
before. Altering the structure of information flows enables more agency by users. 

LP 5 The rules of the system including incentives, punishments, constraints; social rules 
include constitutions, laws, standards, policies, and incentives. Changing the rules of a 
system can change the behavior of the society under them. 

LP 4 The power to add,  change,  evolve,  or  self-organize  system  structure;  in  biology, 
this is called evolution - in society, we call it empowerment.  In systems terms, it is 
called self-organization, the strongest form of system resilience. 

LP 3 The goals of the system; Changing the goal of a system is a powerful strategy to effect 
change, but can be hard to achieve.  

LP 2 The mindset or paradigm out of which the system arises; Paradigms are a shared set 
of deep beliefs about how the world works. They are hardest to  change  in  a system, 
as society will fiercely resist any challenges to their paradigms. 

LP 1 The power to transcend paradigms. This final and most effective leverage point is 
about being unattached to existing paradigms, there is no certainty in any particular 
worldview. 

 
 
 
Changing the metabolic structure of the system (LP12, LP11,  LP10) 
 
These leverage points fine-tune the way a system operates, without changing its nature. This 
includes changing the value of parameters, sizes of buffers, and the material stocks and flows. 
Such changes can help stabilize and optimize use of resources. However, such changes have 
relatively low leverage because they rarely alter the cause-and-effect loops that shape the 
dynamic behavior of a system, and so often fail to initiate broader change, and sometimes end up 
entrenching current behaviors [10]. 

 
For example, we can view the public transport network of a city as a structure of material stocks 
and flows with many parameters, including pricing mechanisms, road capacity, bus frequency, 
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and so on. Some cities use congestion charges, whereby drivers must pay to drive through highly 
congested areas (top middle Fig. 1.), with higher fees for larger engines that produce more 
emissions. This can encourage commuters to choose public transit rather than pay congestion 
charges. 
 
Software is often the critical enabling technology that offers new ways of setting, changing, and 
monitoring parameters to adjust the flows within a system in real-time, for example by 
monitoring which cars enter the zones with congestion charging, calculating based on peak times, 
etc. Often, adjusting parameters is insufficient to bring about lasting change: Simply increasing 
the congestion charge within a city will not resolve the congestion problem if commuters believe 
that they have no other convenient alternatives (R2 in figure). The feedback loops that cause 
people to prefer to drive remain unaltered. 
 
Software systems also offer new ways to analyze and optimize  stocks,  flows  and  buffers within 
the existing transport network. For example, by continuously monitoring commuter patterns, 
software systems can adjust the frequency of buses, to increase the flow, or recommend higher 
capacity buses on certain routes, to provide a larger buffer that reduces overcrowding. Long-
term, data analytics can help to optimize the structure of the transport network, by 
recommending changes to existing bus routes. 
 
But where we rush to apply software technology in these ways, we risk missing the bigger 
picture. For example, by optimizing the flow of traffic through intersections, we may 
inadvertently strengthen the existing feedback loop that encourages people to drive more when 
they perceive there to be less congestion (R3 in figure). Implementing software solutions to 
tweak pricing strategies, we may divert attention from issues such as lack of capacity in public 
transit, which act as a much bigger barrier. This way, by applying simplistic solutions to low 
leverage changes, we may end up making the sustainability problem worse [11]. 
 
Changing the feedback loops (LP9, LP8, LP7) 
This cluster of leverage points addresses the power that balancing and reinforcing feedback loops 
can have on the stability of systems. It also encompasses the consequences delays can have on 
system change. 
 
In transportation, reinforcing feedback loops often push the system further away from 
sustainability. For example, over the long term, better roads cause more people to buy and use 
cars, which increases the demand for more and better roads (R4 in figure). Such reinforcing loops 
are  powerful, as they amplify change within a system. Meadows  [10]  points out “A system with 
an unchecked [reinforcing] loop  ultimately will destroy itself.” Software can help to improve our 
understanding of such reinforcing loops and their consequences. For example, computer 
simulations provide an opportunity to explore policies that can break this loop, by testing the 
dampening effect of road pricing, or the deliberate reduction of road capacity through 
pedestrianized streets. Software also offers new opportunities to weaken such loops, for example 
by connecting people more readily to car-pooling and car-sharing services, to slow the growth of 
car ownership.

However, not all reinforcing feedback loops are undesirable. A similar loop can accelerate 
switching to buses instead of cars. For example, priority bus lanes can improve the perception of 
buses as a convenient alternative, and encourage more people to switch to buses, who then 
demand even more such improvements (R5 in figure). For cities struggling with traffic congestion 
and poor air quality, this loop is beneficial if it leads to fewer motor vehicles. Social media apps 
can play a significant role in amplifying such a loop, as they allow people to encourage others to 
switch. 
 
Balancing feedback loops regulate and stabilize a system by pushing back against change. As with 
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reinforcing loops, this might be good or bad, depending on the nature of the change. The 
balancing loops shown in Figure 1 all tend to work against the goal of getting car users to switch 
to buses. They suggest that once enough people switch to buses, the increase in crowding on 
buses, and the reduction in traffic congestion, will cause people to perceive driving as more 
convenient again, thus slowing or reversing the change. If software solutions to traffic 
management ignore such feedback loops, they are unlikely to be successful. But software also 
provides the opportunity to reduce the impact of these loops, for example by monitoring demand 
and dynamically re-deploying buses to reduce crowding, and identifying opportunities to create 
more bus lanes when the traffic congestion eases. 
 
Delays within a system are a common source of oscillations, which occur when a problem builds 
up because corrective action arrives too late, and again when a corrective action over-
compensates because it is applied for too long. For example, in Figure 1, delays  in securing 
funding and procuring new buses (D2 in figure) can undermine a strategy of getting people to 
switch, if they cause large swings in the quality of service, so people start to lose faith in it. Well-
designed software systems can greatly reduce these problems by improving access to data, and 
shortening response times, but only if the software designers understand the impact of such 
delays. 
 
TABLE Summary of the role of software in our example and the impact per leverage point cluster. 

Cluster Objective Role of Software Affected element in 
traffic example 

Changing the 
metabolic 
structure 
(LP12,LP11,LP10) 

Optimisation of the 
bus fleet to balance 
the number of 
passengers and buses 
needed 

Monitor/analyse the transport network and 
road traffic, to understand commuter 
patterns, the frequency and type of failure 
that the buses suffer, and then accordingly: 
a) adjust number of buses to increase flow,  
b) and calculate size of buffer of spare buses  

Buffer: the number of 
spare buses allows to 
increase flow 
(frequency) when 
necessary 

Changing the 
feedback loops 
(LP9,LP8,LP7) 

Maintain positive 
perception with 
respect to bus 
availability, e.g. 
reduce perception of 
overcrowding and bus 
shortages 

Monitors traffic development over time and 
identifies commuting patterns to reduce 
overcrowding and bus shortage by  
a) redeploying buses to particularly busy 
routes to reduce overcrowding, 
b) designating additional lanes as “bus only” 
lanes when traffic congestion increases 

Balancing feedback 
loop: perception with 
respect to bus 
availability via  
a) increase of total 
number of buses, 
b) increase in ratio of 
bus supply to demand 

Transformational 
change / 
participatory 
planning 
(LP6,LP5,LP4) 

Altering the structure 
of information flows 
for bus schedules and 
actual departure 
times to increase 
convenience of bus 
use and total demand 

a) Inform the users on time when they need 
to be at the bus stop by providing 
information on current location of the buses 
and their impending arrival time via apps,  
b) instruct maintenance team on preventing 
frequent failure types 

Information flows: 
send up-to-date bus 
schedules to app users  

Change in the 
intent of the 
system and 
stakeholders  
(LP3,LP2,LP1) 

Public transport as a 
“free” service that is 
paid for by the 
government (a right to 
public mobility, like 
public health) to 
reduce pollution, 
improve health 
benefits as well as 
personal freedom and 
increased 
opportunities. 

Ensure that transport meets the whole 
range of needs by a better  support in 
choosing transportation modes according to 
calendar sync and traffic; a traffic system 
that responds to the analysis of data in real 
time (& includes renewable energy 
forecasting); supporting for elderly 
(accessibility); providing info about use of 
public transport and show how this 
contributes to environmental health. 

Goals for commuting: 
the whole example is 
affected as the 
underlying structure 
changes 
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Transformational change (LP6, LP5, LP4) 
These leverage points encompass transformational changes in systems, namely the structure of 
information flows, rules, and self-adaptation. Such changes have high leverage, as they can sweep 
away existing feedback loops (or rebound effects), and generate entirely new system behaviors. 
Changing the information flows within a system can have a dramatic effect. For example, real-
time information on bus schedules and actual arrival times may increase user satisfaction. 
Changing the rules can be equally effective, for example, providing free bus rides for children may 
instantly bring a whole new group of users. And self-adaptation empowers learning within a 
system, for example, when revenue-raising powers are devolved to cities and towns, so they can 
develop solutions tailored to the local situation. 
 
Ride-brokering systems such as Uber provide an example of a software-driven intervention that 
hits all three of these leverage points. These systems change the information flows by connecting 
people who need transportation with those who can supply it. They change the rules by side-
stepping existing regulations around licensing  and  safety  regulations  for taxis, and they provide 
a kind of self-adaption, as users can (somewhat) negotiate service-level  agreements  amongst  
themselves.  The  current  uproar  in  cities  across  the  world  in reaction to those services attests 
to their high leverage potential. But whether this change is for the better or worse may depend on 
who you ask [8]: those whose interests were protected by the old system (taxi owners, people 
who value privacy) regard this as negative, while affluent urban users often love it. While such 
systems are often held up as models of how software can bring about disruptive innovation, few 
people stop to consider the impact on sustainability.  
 
We suggest software engineers can do that in the TABLE Action Points. Maybe ride-hailing 
services (along with self-driving cars) are not radical enough as changes [22]. Because they still 
emphasize the car as the dominant mode of transport, they lock us into highly energy- and 
material-intensive forms of personal transport that are ill-suited to dense urban settings, and do 
little to reduce our environmental footprint [17]. 
 
 

TABLE Action Points for applying LP Thinking in Software Engineering 
Two basic questions arise during the development of socio-technical systems: “Are we building the right 
system?” and “Are we building the system right?”. The first question is often interpreted narrowly within 
the context of the business problem the software system is trying to solve. However, can any system not 
supporting the sustainability of our society be “the right system”? What should software engineers do to 
ensure they are building a system that also contributes to sustainability? 
Using stock and flow diagrams and keeping in mind the effectiveness of the different leverage points during 
the requirements analysis, collaborate with domain experts to answer the following questions:  

What stocks and flows are affected by the system (e.g. energy, natural resources, supply of goods)? 
Can software stabilize them (e.g. by optimizing buffers, reducing delays for adjusting quantities, 
making the state of the system known, or monitoring and adjusting parameters)? 
What circular chains of cause-and-effect exist in the system? How do they reinforce or balance 
changes in the stocks and flows? Can your software initiate or disrupt a feedback loop, and if so, 
how (e.g. by providing information,  counteracting the original change, or detecting when the 
system threatens to go off bounds)? Use simulations.
What is the structure of the information flows of the system? Can your software make missing 
information available to stakeholders?
Are the goals of the system appropriate (e.g. seek to improve social connectedness,  to reduce waste 
production or to simplify logistics)? Can these goals be negotiated? Will your software encourage 
society to reflect on and potentially change the goals and paradigms of systems? Are the means by 
which goals are achieved by the system pertinent?  Can your software enable different means to 
achieve the goals?
In the cases above, where exactly will your software intervene? What will the likely results of such 
intervention be? Has the customer be made aware of it?
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Finally,  decide where to apply your skills and take responsibility for the software you build. 

 
 
Change in the intent of systems and stakeholders (LP3, LP2, LP1) 
The most radical system changes tend to occur when we change our goals, or the mindset 
(“paradigm”) that shapes them; or when we learn to transcend paradigms and see the world from 
multiple perspectives. Accordingly, these kinds of change have the most leverage, but are often 
much harder to bring about. 
 
Our goals are important because they constrain how we think, and set our expectations for 
success criteria. For our transport example, the goal of switching people from cars to buses might 
be futile; perhaps a better goal is to reduce the need to commute overall. Software could help in 
planning walkable communities with regard to city layout, optimal distribution of living and 
working areas etc. This needs to be discussed with different stakeholders, and software engineers 
can clarify different design options. Instead of optimizing existing operations, focus on longer 
terms goals; what would the sustainable city of the future look like, and what kinds of software 
are needed to implement them? We need look beyond a client’s initial ideas for what they want, 
and to help them to identify their real goals and the kinds of software capability that would help 
meet them [2]. 
 
Paradigm changes are harder, and are unlikely to be driven by software solutions alone. 
However, software can support such a shift. With society on the verge of a massive technology 
transition, driven by a push to a zero-carbon economy [15], our paradigms for why we develop 
software may need to change along with the how.  For example, instead of building software to 
automate or optimize existing transportation systems (with unsustainable behaviours driven 
by their feedback loops), we should focus on our ethical responsibilities to society, and seek 
opportunities to create software that changes how we perceive the transportation system, and 
hence how we think about sustainability.  
 

TABLE Evidence for the impact of leverage point analysis 

LP analysis has had tremendous impact in many areas, e.g., leveraging feedback loops in 
development of urban policy in response to climate change in Australia [24]; leveraging a 
mindset change and goal setting (as well as other LPs) with focus on children's health to 
improve health care systems in 6 US sites during a 2004-2009 study [25]; and using metabolic 
structure LPs in global simulations for increasing food security while lowering environmental 
impact [27]. Furthermore, Sterman documents three major case studies [26]: 

General 
Motors (mid-
1990’s) 

GM analyzed the impact of leasing on new car sales, particularly the rise in 
availability of high quality off-lease used vehicles. The systems dynamics 
analysis revealed two key LPs: a policy change towards longer lease terms 
and a new information flow, to collect data on changes in consumer choice. 
Other LPs also included changing the incentives for managers within GM to 
do full profit and loss accounting of their leasing policies. Applying these LPs 
allowed GM to weather the slump in used car prices in 1997 much better 
than its competitors, who eventually also adopted GM’s approach. 

Ingalls 
shipyards 
(late 1970s) 

In a lawsuit against the US Navy, Ingalls claimed that design changes imposed 
by the Navy on a fleet of ships Ingalls was contracted to build would lead 
Ingalls to lose $500 million on the contract. A systems analysis identified a 
set of feedback loops around the cost of rework and worker retention, 
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showing that these feedback loops were the key LP for managing cost 
overruns, and that the problem was not poor project management (as the US 
Navy had argued). The analysis allowed Ingalls to make a rapid out of court 
settlement, and led to long term improvements in how the US Navy manages 
design changes in its contracts. 

Du Pont  
(mid-1990s) 

After a long history of cost-cutting measures, Du Pont found its maintenance 
costs had skyrocketed. An LP analysis revealed a major factor was the 
resulting steady rise in the stock of latent defects in their equipment. Their 
analysis suggested three key leverage points: a change in goals from defect 
correction to defect prevention; a weakening of the feedback loop in which 
cost-cutting leads to increased breakdowns and a “fire-fighting” mentality; 
and a strengthening of the positive feedback loop in which cost savings from 
optimized maintenance schedules are re-invested in more planned 
maintenance. Applying these leverage points allowed DuPont to save an 
estimated $350million per year by the mid 1990s. 

Conclusion 
Software is deeply ingrained in our society. Software systems provide, by nature, ubiquity, fast 
distribution, huge computing power for data analysis and simulation, immediacy of 
computational results, and a potentially global effect. As such, software systems can be drivers of 
change [6]. However, if we fail to understand them as drivers of change, we may miss much of this 
potential. A holistic analysis of the systems in which our software will be deployed provides an 
important starting point for understanding the set of leverage points we have access to, and how 
to deploy them (see evidence in TABLE Evidence). 

Measuring the impact of applying leverage points initially requires a higher level of abstraction 
than the metrics typically used in software development. Instead, we can start with a 
triangulation as proposed in [28] that selects metrics to assess the efficiency, effectiveness, and 
efficacy of a specific intervention. These subsequently have to be refined for software systems. 

The important paradigm shift is for software professionals to take more responsibility for the 
broader social and environmental impacts of software technology, by thinking about leverage 
points and how to make use of them in software design for sustainability [1]. 
 
On a societal level, these leverage points challenge us to engage in a (philosophical and practical) 
discussion of whether we, as a society, have a goal other than a specific short-term quality of life, 
and whether the technology we develop locks us into this short-term thinking, or helps bring 
about a sustainable society. Such discussion, also taking into account political forces, is 
paramount for influencing the decision-makers shaping our systems. In our examples, software is 
the critical enabling technology that allows us to exploit a leverage point. There are many 
challenges in doing so, inter alia, understanding LPs, seeing the bigger (complex) picture, 
identifying the information flows, and recognizing the extent of feedback loops. However, the 
more fundamental the change we seek, the less we can expect software per se to bring it about.  
 
Enabling these leverage points goes beyond software engineering. It is rather about the personal 
choice of each of us to commit to make the world a better place facilitated by software. Software 
engineers need to be aware of the power of software systems as a transformational force in 
society and the significant impact that their designs can have. As software engineers, we may 
perceive our responsibilities to be limited to our customers’ immediate concerns, but as experts 
in the technologies being used, we have to take on the responsibility for the long-term 
consequences of the systems we design [1,21]. 
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Take-away: Software is a pervasive driver of change in society. Therefore, software 
professionals need to take a systems perspective – and identify leverage points to understand 
the role of software for transformational change towards sustainability. 
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Tweets (max 115 characters):

Leverage points challenge us to engage in a (philosophical and practical) discussion of 
our goals as society 
Leverage points help software engineers see the potential of software for supporting 
sustainability 
Software engineers can identify leverage points to develop software for 
transformational change  
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