
 Penzenstadler, B., Duboc, L., Venters, C., Betz, S., Seyff, N., Wnuk, C., ...
Becker, C. (2018). Software Engineering for Sustainability: Find the
Leverage Points! IEEE Software.
https://doi.org/10.1109/MS.2018.110154908

Peer reviewed version

Link to published version (if available):
10.1109/MS.2018.110154908

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/157816787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/MS.2018.110154908
https://doi.org/10.1109/MS.2018.110154908
https://research-information.bris.ac.uk/en/publications/software-engineering-for-sustainability(b2425da2-fdf7-4206-88c4-0b3580707ecd).html
https://research-information.bris.ac.uk/en/publications/software-engineering-for-sustainability(b2425da2-fdf7-4206-88c4-0b3580707ecd).html

Software Engineering for Sustainability:
Find the Leverage Points!
Software Engineering helps deliver software systems that can enable humanity to reach new
levels of prosperity. That experience in building complex, interdependent and globally
distributed systems can also be leveraged for sustainability challenges. Humanity faces a number
of global, interdependent, and complex challenges that present a risk to societies, including
climate change, large scale involuntary migration, and poverty [18].
As software professionals, we can contribute to sustainability through the software systems that
we engineer, and it is our social responsibility to do so [21]. But sustainability problems are
complex system problems (see SIDEBAR Sustainability). How can we understand the complex
dynamics that arise in the interaction within multifaceted social, economic, or ecological systems?
One approach to identifying successful sustainability interventions is to consider leverage points –
locations within a system where a small change in one aspect can result in significant system-
wide changes [10].
This article suggests leverage points (LP) can help software engineers to address sustainability
challenges by offering insights on possible transformation mechanisms and/or ways to find
alternatives. While LP will not tell us exactly how to act on sustainability challenges, they provide
an analysis tool to help practitioners to identify elements that can bring about effective change at
different levels, for a (software) system and the wider system it resides in. As sustainability is a
crosscutting (orthogonal) concern, LPs are beneficial as they enable intervention on different
levels.
We use the example of the UK public transportation system [23] to illustrate how leverage points
can contribute to software engineering for sustainability.

SIDEBAR Sustainability

The Oxford English Dictionary [13] defines sustainability as ‘the capacity to endure’. The
Brundtland commission defined sustainable development as ‘meeting the needs of the present
without compromising the ability of future generations to meet their needs’ [3]. However, to
understand the broader sustainability issues, we must ask which system to sustain, for whom,
over which time frame, and at what cost [16]. This involves five interrelated dimensions [2]:

The individual dimension covers individual freedom and agency, human dignity, and
fulfillment. It includes individuals' ability to thrive, exercise their rights, and develop
freely.
The social dimension covers relationships between individuals and groups. It covers
the structures of mutual trust and communication in a social system and the balance
between conflicting interests.
The economic dimension covers financial aspects and business value. It includes
capital growth and liquidity, investment questions, and financial operations.
The technical dimension covers the ability to maintain and evolve artificial systems
(such as software) over time. It refers to maintenance and evolution, resilience, and
the ease of system transitions.
The environmental dimension covers the use and stewardship of natural
resources; ranging from immediate waste production and energy consumption to the
balance of local ecosystems and climate change concerns.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

Running Example: UK Public Transportation
System
Existing transport systems are large contributors to greenhouse gas emissions and poor urban air
quality, which contribute towards health issues and general environmental unsustainability.
Operations researchers have been developing systems to improve transportation for many decades
using linear programming and simulation systems, while new approaches to data science offer a
future vision of a smart transportation system based on IT-supported movement of people and goods
[23]. However, the factors that impede sustainability are complex. Figure 1 shows the UK
transportation system in the context of its surrounding systems, using a stock-and-flow model
annotated with causal feedback loops [14] (see also SIDEBAR System Dynamics).

Fig. 1: Causal Loop Diagram of transportation showing contextual factors for mode switching, such as traveller
perceptions, funding levels, and relative demand.

As in any complex system, this example is embedded within a set of assumptions, i.e. a paradigm.
In this case, it is the shared belief that people need transportation, have some choice over which
mode to use, and government spending and provisioning of bus and road capacity should support
this choice. The system aims to achieve certain goals, while obeying a set of rules. The main goal
of our example system is to transport people, with the rules given by the existing infrastructure.

A system dynamics model captures only a partial view of a system, but helps build a more holistic
understanding by looking at chains of cause-and-effect to identify points through which desired
changes could be reinforced or undesired changes prevented. Within the system dynamics
perspective, a system is viewed as a set of stocks (any quantity that accumulates or depletes
over time), such as the number of private vehicles. The level of a stock can be changed via flows,
where the flows define a rate of change of the given stock. Stabilizing stocks are known as

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

buffers. The intensity of a flow can be influenced through parameters – for example,
governments can set congestion fees or adapt taxes. The larger the stock with respect to the rate
of its flows, the more stable it is (e.g. a large public transport network is more likely to create a
more stable revenue).

The change in stocks due to flows is often non-linear, due to feedback loops, which occur when a
changing level of a stock or a flow creates a circular chain of cause-and-effect that eventually
influences the original stock or flow. For example B1 in the figure, if buses become frequent and
uncrowded, more people are likely to switch from using their car to buses, increasing the demand
for buses, making them more crowded and hence less attractive again. B1 is a balancing
feedback loop, as it counteracts the original change. However, the more people switch from cars
to buses, the greater the revenue generated from bus pricing (R1). If this revenue is used to
increase the fleet and, consequently, the availability of buses, it can encourage even more people
to switch from cars to buses. R1 is a reinforcing feedback loop, because it pushes a change even
further. Reinforcing feedback loops can spiral out of control, but they eventually meet some
bound e.g. when everybody uses buses, the demand cannot increase further (B2). However,
another balancing feedback loop may intervene before that, because as soon as people perceive
less congestion, they tend to switch back to using cars again (B3) [7].

Effects of flows on stocks may not be immediate. For instance, it may take time to gather
information about changes in demand for public transport (delay D1 in figure), and even longer
to adjust the supply of buses (D2) to achieve the goal of increased public transport usage. The
length of the delay affects the stability of the system. The structure of stocks-and-flows also has
a huge effect on the system’s behaviour. For example, if revenue from congestion charges flows
into more investment in more public transport, more people may choose to switch from cars to
public transport, but if it flows to more road building, it may have the opposite effect. Further
concepts such as the economics of supply and demand, time cost, and rebound effects, are not
addressed. See [19,20] for further details.

Creating Leverage through Software

How can software effect change in its wider environment? Meadows [10] proposed a list of
twelve ways of intervening in a system (any type of system), as an invitation to think more
broadly about change (see TABLE Leverage Points). We discuss these leverage points in four
clusters [5] in increasing order of the likely magnitude of their effect: Changing the metabolic
structure, changing the feedback loops, transformational change, and changing the intent of the
system and stakeholders.

TABLE Leverage Points

“Leverage points are places within a complex system (a corporation, an economy, a living body,
a city, an ecosystem) where a small shift in one thing can produce big changes in everything”
[10]. The leverage points are listed in increasing order of effectiveness according to [10]. While
all leverage points can bring about change, the later ones are more likely to create significant
changes to the system behaviour, but may also require more effort to implement. Meadows’
leverage points refer to any kind of change, whether enabled by software or not. In this paper,
we use them as an analysis tool for exploring how software can trigger broader changes in
societal systems. However, they are hard to identify and act on - they are not a “silver bullet”.

LP 12 Constants, parameters, and numbers; tweaking parameters allows change to the
intensity of the flows in systems, but rarely alters the underlying dynamics.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

LP 11 The sizes of buffers and other stabilizing stocks, relative to their flows; stabilize a
system by adjusting the capacity of its buffers and making it more efficient by
optimizing the flow.

LP 10 The structure of material stocks and flows (such as transport networks and
population age structures); physical structure is crucial in a system but often hard to
change, therefore the leverage point is in proper initial design.

LP 9 The lengths of delays, relative to the rate of system change; a system cannot respond
to short-term changes when it has long-term delays.

LP 8 The strength of balancing feedback loops, relative to the impacts they respond to;
balancing feedback loops help systems to self-correct by monitoring and adjusting
according to the system goal.

LP 7 The gain around reinforcing feedback loops; reinforcing feedback loops can be
sources of system instability or mechanisms to amplify desired change, so adjusting
their strength affects how the system responds to change.

LP 6 The structure of information flows; can create a new feedback loop that was not there
before. Altering the structure of information flows enables more agency by users.

LP 5 The rules of the system including incentives, punishments, constraints; social rules
include constitutions, laws, standards, policies, and incentives. Changing the rules of a
system can change the behavior of the society under them.

LP 4 The power to add, change, evolve, or self-organize system structure; in biology,
this is called evolution - in society, we call it empowerment. In systems terms, it is
called self-organization, the strongest form of system resilience.

LP 3 The goals of the system; Changing the goal of a system is a powerful strategy to effect
change, but can be hard to achieve.

LP 2 The mindset or paradigm out of which the system arises; Paradigms are a shared set
of deep beliefs about how the world works. They are hardest to change in a system,
as society will fiercely resist any challenges to their paradigms.

LP 1 The power to transcend paradigms. This final and most effective leverage point is
about being unattached to existing paradigms, there is no certainty in any particular
worldview.

Changing the metabolic structure of the system (LP12, LP11, LP10)

These leverage points fine-tune the way a system operates, without changing its nature. This
includes changing the value of parameters, sizes of buffers, and the material stocks and flows.
Such changes can help stabilize and optimize use of resources. However, such changes have
relatively low leverage because they rarely alter the cause-and-effect loops that shape the
dynamic behavior of a system, and so often fail to initiate broader change, and sometimes end up
entrenching current behaviors [10].

For example, we can view the public transport network of a city as a structure of material stocks
and flows with many parameters, including pricing mechanisms, road capacity, bus frequency,

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

and so on. Some cities use congestion charges, whereby drivers must pay to drive through highly
congested areas (top middle Fig. 1.), with higher fees for larger engines that produce more
emissions. This can encourage commuters to choose public transit rather than pay congestion
charges.

Software is often the critical enabling technology that offers new ways of setting, changing, and
monitoring parameters to adjust the flows within a system in real-time, for example by
monitoring which cars enter the zones with congestion charging, calculating based on peak times,
etc. Often, adjusting parameters is insufficient to bring about lasting change: Simply increasing
the congestion charge within a city will not resolve the congestion problem if commuters believe
that they have no other convenient alternatives (R2 in figure). The feedback loops that cause
people to prefer to drive remain unaltered.

Software systems also offer new ways to analyze and optimize stocks, flows and buffers within
the existing transport network. For example, by continuously monitoring commuter patterns,
software systems can adjust the frequency of buses, to increase the flow, or recommend higher
capacity buses on certain routes, to provide a larger buffer that reduces overcrowding. Long-
term, data analytics can help to optimize the structure of the transport network, by
recommending changes to existing bus routes.

But where we rush to apply software technology in these ways, we risk missing the bigger
picture. For example, by optimizing the flow of traffic through intersections, we may
inadvertently strengthen the existing feedback loop that encourages people to drive more when
they perceive there to be less congestion (R3 in figure). Implementing software solutions to
tweak pricing strategies, we may divert attention from issues such as lack of capacity in public
transit, which act as a much bigger barrier. This way, by applying simplistic solutions to low
leverage changes, we may end up making the sustainability problem worse [11].

Changing the feedback loops (LP9, LP8, LP7)
This cluster of leverage points addresses the power that balancing and reinforcing feedback loops
can have on the stability of systems. It also encompasses the consequences delays can have on
system change.

In transportation, reinforcing feedback loops often push the system further away from
sustainability. For example, over the long term, better roads cause more people to buy and use
cars, which increases the demand for more and better roads (R4 in figure). Such reinforcing loops
are powerful, as they amplify change within a system. Meadows [10] points out “A system with
an unchecked [reinforcing] loop ultimately will destroy itself.” Software can help to improve our
understanding of such reinforcing loops and their consequences. For example, computer
simulations provide an opportunity to explore policies that can break this loop, by testing the
dampening effect of road pricing, or the deliberate reduction of road capacity through
pedestrianized streets. Software also offers new opportunities to weaken such loops, for example
by connecting people more readily to car-pooling and car-sharing services, to slow the growth of
car ownership.

However, not all reinforcing feedback loops are undesirable. A similar loop can accelerate
switching to buses instead of cars. For example, priority bus lanes can improve the perception of
buses as a convenient alternative, and encourage more people to switch to buses, who then
demand even more such improvements (R5 in figure). For cities struggling with traffic congestion
and poor air quality, this loop is beneficial if it leads to fewer motor vehicles. Social media apps
can play a significant role in amplifying such a loop, as they allow people to encourage others to
switch.

Balancing feedback loops regulate and stabilize a system by pushing back against change. As with

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

reinforcing loops, this might be good or bad, depending on the nature of the change. The
balancing loops shown in Figure 1 all tend to work against the goal of getting car users to switch
to buses. They suggest that once enough people switch to buses, the increase in crowding on
buses, and the reduction in traffic congestion, will cause people to perceive driving as more
convenient again, thus slowing or reversing the change. If software solutions to traffic
management ignore such feedback loops, they are unlikely to be successful. But software also
provides the opportunity to reduce the impact of these loops, for example by monitoring demand
and dynamically re-deploying buses to reduce crowding, and identifying opportunities to create
more bus lanes when the traffic congestion eases.

Delays within a system are a common source of oscillations, which occur when a problem builds
up because corrective action arrives too late, and again when a corrective action over-
compensates because it is applied for too long. For example, in Figure 1, delays in securing
funding and procuring new buses (D2 in figure) can undermine a strategy of getting people to
switch, if they cause large swings in the quality of service, so people start to lose faith in it. Well-
designed software systems can greatly reduce these problems by improving access to data, and
shortening response times, but only if the software designers understand the impact of such
delays.

TABLE Summary of the role of software in our example and the impact per leverage point cluster.

Cluster Objective Role of Software Affected element in
traffic example

Changing the
metabolic
structure
(LP12,LP11,LP10)

Optimisation of the
bus fleet to balance
the number of
passengers and buses
needed

Monitor/analyse the transport network and
road traffic, to understand commuter
patterns, the frequency and type of failure
that the buses suffer, and then accordingly:
a) adjust number of buses to increase flow,
b) and calculate size of buffer of spare buses

Buffer: the number of
spare buses allows to
increase flow
(frequency) when
necessary

Changing the
feedback loops
(LP9,LP8,LP7)

Maintain positive
perception with
respect to bus
availability, e.g.
reduce perception of
overcrowding and bus
shortages

Monitors traffic development over time and
identifies commuting patterns to reduce
overcrowding and bus shortage by
a) redeploying buses to particularly busy
routes to reduce overcrowding,
b) designating additional lanes as “bus only”
lanes when traffic congestion increases

Balancing feedback
loop: perception with
respect to bus
availability via
a) increase of total
number of buses,
b) increase in ratio of
bus supply to demand

Transformational
change /
participatory
planning
(LP6,LP5,LP4)

Altering the structure
of information flows
for bus schedules and
actual departure
times to increase
convenience of bus
use and total demand

a) Inform the users on time when they need
to be at the bus stop by providing
information on current location of the buses
and their impending arrival time via apps,
b) instruct maintenance team on preventing
frequent failure types

Information flows:
send up-to-date bus
schedules to app users

Change in the
intent of the
system and
stakeholders
(LP3,LP2,LP1)

Public transport as a
“free” service that is
paid for by the
government (a right to
public mobility, like
public health) to
reduce pollution,
improve health
benefits as well as
personal freedom and
increased
opportunities.

Ensure that transport meets the whole
range of needs by a better support in
choosing transportation modes according to
calendar sync and traffic; a traffic system
that responds to the analysis of data in real
time (& includes renewable energy
forecasting); supporting for elderly
(accessibility); providing info about use of
public transport and show how this
contributes to environmental health.

Goals for commuting:
the whole example is
affected as the
underlying structure
changes

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

Transformational change (LP6, LP5, LP4)
These leverage points encompass transformational changes in systems, namely the structure of
information flows, rules, and self-adaptation. Such changes have high leverage, as they can sweep
away existing feedback loops (or rebound effects), and generate entirely new system behaviors.
Changing the information flows within a system can have a dramatic effect. For example, real-
time information on bus schedules and actual arrival times may increase user satisfaction.
Changing the rules can be equally effective, for example, providing free bus rides for children may
instantly bring a whole new group of users. And self-adaptation empowers learning within a
system, for example, when revenue-raising powers are devolved to cities and towns, so they can
develop solutions tailored to the local situation.

Ride-brokering systems such as Uber provide an example of a software-driven intervention that
hits all three of these leverage points. These systems change the information flows by connecting
people who need transportation with those who can supply it. They change the rules by side-
stepping existing regulations around licensing and safety regulations for taxis, and they provide
a kind of self-adaption, as users can (somewhat) negotiate service-level agreements amongst
themselves. The current uproar in cities across the world in reaction to those services attests
to their high leverage potential. But whether this change is for the better or worse may depend on
who you ask [8]: those whose interests were protected by the old system (taxi owners, people
who value privacy) regard this as negative, while affluent urban users often love it. While such
systems are often held up as models of how software can bring about disruptive innovation, few
people stop to consider the impact on sustainability.

We suggest software engineers can do that in the TABLE Action Points. Maybe ride-hailing
services (along with self-driving cars) are not radical enough as changes [22]. Because they still
emphasize the car as the dominant mode of transport, they lock us into highly energy- and
material-intensive forms of personal transport that are ill-suited to dense urban settings, and do
little to reduce our environmental footprint [17].

TABLE Action Points for applying LP Thinking in Software Engineering
Two basic questions arise during the development of socio-technical systems: “Are we building the right
system?” and “Are we building the system right?”. The first question is often interpreted narrowly within
the context of the business problem the software system is trying to solve. However, can any system not
supporting the sustainability of our society be “the right system”? What should software engineers do to
ensure they are building a system that also contributes to sustainability?
Using stock and flow diagrams and keeping in mind the effectiveness of the different leverage points during
the requirements analysis, collaborate with domain experts to answer the following questions:

What stocks and flows are affected by the system (e.g. energy, natural resources, supply of goods)?
Can software stabilize them (e.g. by optimizing buffers, reducing delays for adjusting quantities,
making the state of the system known, or monitoring and adjusting parameters)?
What circular chains of cause-and-effect exist in the system? How do they reinforce or balance
changes in the stocks and flows? Can your software initiate or disrupt a feedback loop, and if so,
how (e.g. by providing information, counteracting the original change, or detecting when the
system threatens to go off bounds)? Use simulations.
What is the structure of the information flows of the system? Can your software make missing
information available to stakeholders?
Are the goals of the system appropriate (e.g. seek to improve social connectedness, to reduce waste
production or to simplify logistics)? Can these goals be negotiated? Will your software encourage
society to reflect on and potentially change the goals and paradigms of systems? Are the means by
which goals are achieved by the system pertinent? Can your software enable different means to
achieve the goals?
In the cases above, where exactly will your software intervene? What will the likely results of such
intervention be? Has the customer be made aware of it?

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

Finally, decide where to apply your skills and take responsibility for the software you build.

Change in the intent of systems and stakeholders (LP3, LP2, LP1)
The most radical system changes tend to occur when we change our goals, or the mindset
(“paradigm”) that shapes them; or when we learn to transcend paradigms and see the world from
multiple perspectives. Accordingly, these kinds of change have the most leverage, but are often
much harder to bring about.

Our goals are important because they constrain how we think, and set our expectations for
success criteria. For our transport example, the goal of switching people from cars to buses might
be futile; perhaps a better goal is to reduce the need to commute overall. Software could help in
planning walkable communities with regard to city layout, optimal distribution of living and
working areas etc. This needs to be discussed with different stakeholders, and software engineers
can clarify different design options. Instead of optimizing existing operations, focus on longer
terms goals; what would the sustainable city of the future look like, and what kinds of software
are needed to implement them? We need look beyond a client’s initial ideas for what they want,
and to help them to identify their real goals and the kinds of software capability that would help
meet them [2].

Paradigm changes are harder, and are unlikely to be driven by software solutions alone.
However, software can support such a shift. With society on the verge of a massive technology
transition, driven by a push to a zero-carbon economy [15], our paradigms for why we develop
software may need to change along with the how. For example, instead of building software to
automate or optimize existing transportation systems (with unsustainable behaviours driven
by their feedback loops), we should focus on our ethical responsibilities to society, and seek
opportunities to create software that changes how we perceive the transportation system, and
hence how we think about sustainability.

TABLE Evidence for the impact of leverage point analysis

LP analysis has had tremendous impact in many areas, e.g., leveraging feedback loops in
development of urban policy in response to climate change in Australia [24]; leveraging a
mindset change and goal setting (as well as other LPs) with focus on children's health to
improve health care systems in 6 US sites during a 2004-2009 study [25]; and using metabolic
structure LPs in global simulations for increasing food security while lowering environmental
impact [27]. Furthermore, Sterman documents three major case studies [26]:

General
Motors (mid-
1990’s)

GM analyzed the impact of leasing on new car sales, particularly the rise in
availability of high quality off-lease used vehicles. The systems dynamics
analysis revealed two key LPs: a policy change towards longer lease terms
and a new information flow, to collect data on changes in consumer choice.
Other LPs also included changing the incentives for managers within GM to
do full profit and loss accounting of their leasing policies. Applying these LPs
allowed GM to weather the slump in used car prices in 1997 much better
than its competitors, who eventually also adopted GM’s approach.

Ingalls
shipyards
(late 1970s)

In a lawsuit against the US Navy, Ingalls claimed that design changes imposed
by the Navy on a fleet of ships Ingalls was contracted to build would lead
Ingalls to lose $500 million on the contract. A systems analysis identified a
set of feedback loops around the cost of rework and worker retention,

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

showing that these feedback loops were the key LP for managing cost
overruns, and that the problem was not poor project management (as the US
Navy had argued). The analysis allowed Ingalls to make a rapid out of court
settlement, and led to long term improvements in how the US Navy manages
design changes in its contracts.

Du Pont
(mid-1990s)

After a long history of cost-cutting measures, Du Pont found its maintenance
costs had skyrocketed. An LP analysis revealed a major factor was the
resulting steady rise in the stock of latent defects in their equipment. Their
analysis suggested three key leverage points: a change in goals from defect
correction to defect prevention; a weakening of the feedback loop in which
cost-cutting leads to increased breakdowns and a “fire-fighting” mentality;
and a strengthening of the positive feedback loop in which cost savings from
optimized maintenance schedules are re-invested in more planned
maintenance. Applying these leverage points allowed DuPont to save an
estimated $350million per year by the mid 1990s.

Conclusion
Software is deeply ingrained in our society. Software systems provide, by nature, ubiquity, fast
distribution, huge computing power for data analysis and simulation, immediacy of
computational results, and a potentially global effect. As such, software systems can be drivers of
change [6]. However, if we fail to understand them as drivers of change, we may miss much of this
potential. A holistic analysis of the systems in which our software will be deployed provides an
important starting point for understanding the set of leverage points we have access to, and how
to deploy them (see evidence in TABLE Evidence).

Measuring the impact of applying leverage points initially requires a higher level of abstraction
than the metrics typically used in software development. Instead, we can start with a
triangulation as proposed in [28] that selects metrics to assess the efficiency, effectiveness, and
efficacy of a specific intervention. These subsequently have to be refined for software systems.

The important paradigm shift is for software professionals to take more responsibility for the
broader social and environmental impacts of software technology, by thinking about leverage
points and how to make use of them in software design for sustainability [1].

On a societal level, these leverage points challenge us to engage in a (philosophical and practical)
discussion of whether we, as a society, have a goal other than a specific short-term quality of life,
and whether the technology we develop locks us into this short-term thinking, or helps bring
about a sustainable society. Such discussion, also taking into account political forces, is
paramount for influencing the decision-makers shaping our systems. In our examples, software is
the critical enabling technology that allows us to exploit a leverage point. There are many
challenges in doing so, inter alia, understanding LPs, seeing the bigger (complex) picture,
identifying the information flows, and recognizing the extent of feedback loops. However, the
more fundamental the change we seek, the less we can expect software per se to bring it about.

Enabling these leverage points goes beyond software engineering. It is rather about the personal
choice of each of us to commit to make the world a better place facilitated by software. Software
engineers need to be aware of the power of software systems as a transformational force in
society and the significant impact that their designs can have. As software engineers, we may
perceive our responsibilities to be limited to our customers’ immediate concerns, but as experts
in the technologies being used, we have to take on the responsibility for the long-term
consequences of the systems we design [1,21].

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

Take-away: Software is a pervasive driver of change in society. Therefore, software
professionals need to take a systems perspective – and identify leverage points to understand
the role of software for transformational change towards sustainability.

Acknowledgement
Part of this work has been supported by the “Refactoring Energy Systems” grant EP/R007373/1.

References

[1] Becker, C., et al. "Sustainability design and software: the karlskrona manifesto." Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on. Vol. 2. IEEE, 2015.

[2] Becker, C. et al. (2016) Requirements: The Key to Sustainability. IEEE Software, 33 (1). pp. 56-65.
ISSN 0740-7459

[3] United Nations: World Commission on Environment and Development: Our Common Future.
Oxford Univ. Press, 1987

[4] Deek, F., McHugh, J., Eljabiri, O. (2005). Strategic Software Engineering: An Interdisciplinary
Approach, Auerbach Publications

[5] Finidori, H. "A Pattern LAnguage for Systemic Transformation (PLAST) - (re)Generative of
Commons". PurplSoc Workshop, at Danube-University, November 14/15, 2014

[6] Hilty, L., and Aebischer, B. "ICT for sustainability: An emerging research field." ICT Innovations for
Sustainability. Springer International Publishing, 2015. 3-36.

[7] Liu, S., Triantis, K. P., & Sarangi, S. (2010). A framework for evaluating the dynamic impacts of a
congestion pricing policy for a transportation socioeconomic system. Transportation Research
Part A, 44(8), 596-608. doi:10.1016/j.tra.2010.04.001

[8] Martin, C. J. (2016). The sharing economy: A pathway to sustainability or a nightmarish form of
 neoliberal capitalism? Ecological Economics, 121, 149–159.
doi:10.1016/j.ecolecon.2015.11.027

[9] Meadows, D. H., Meadows, D. L., and Randers, J. (1992). Beyond the Limits: Global Collapse or a
Sustainable Future, Earthscan Ltd

[10] Meadows, D. H. (1999) Leverage points - places to intervene in a system. The Sustainability
Institute.

[11] Morozov, Evgeny. To save everything, click here: The folly of technological solutionism.
PublicAffairs, 2014.

[12] Olson, M. M., & Raffanti, M. A. (2006). Leverage points, paradigms, and grounded action:
Intervening in educational systems. World Futures, 62(7), 533-541.].

[13] Oxford English Dictionary. 2012. Oxford Dictionaries
[14] Ogata, K. (2013). System Dynamics, Pearson, 4th edition
[15] Gobal e-Sustainability Initiative: “The Smarter2030 opportunity: ICT Solutions for 21st Century

Challenges”
[16] J. A. Tainter “Social Complexity and Sustainability” Ecological Complexity, vol. 3, no. 2, pp. 91-
103, 2006
[17] Rodrigue, Jean-Paul, Claude Comtois, and Brian Slack. The geography of transport systems.

Routledge, 2013.
[18] World Economic Forum, The Global Risks Report 2016, (11th ed) World Economic Forum,

Cologne
[19] Vayá, Marina González, and Goran Andersson. "Integrating renewable energy forecast uncertainty

in smart-charging approaches for plug-in electric vehicles." PowerTech, 2013 IEEE Grenoble.
IEEE, 2013.

[20] Mokhtarian, Patricia L. "Telecommunications and travel: The case for complementarity." Journal
of Industrial Ecology 6.2 (2002): 43-57.

[21] Spinellis, Diomidis. "The Social Responsibility of Software Development." IEEE Software 34.2
(2017): 4-6.

[22] Berners-Lee, Mike, and Duncan Clark. The Burning Question: We can't burn half the world's oil,
coal and gas. So how do we quit?. Profile Books, 2013.

[23] UK Commission for Integrated Transport. Transport and Climate Change - Advice to Government.
2007. http://www.cambridgeenergy.com/archive/2007-02-08/commission-integ-trans.pdf

[24] Proust, Katrina, et al. "Human health and climate change: leverage points for adaptation in urban
environments." International journal of environmental research and public health 9.6 (2012):
2134-2158.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

[25] Hodges, Sharon, et al. "Strategies for system of care development: Making change in complex
systems." Tampa, FL: Research and Training Center for Children's Mental Health, Department of
Child and Family Studies, Louis de la Parte Florida Mental Health Institute. (2006).
http://rtckids.fmhi.usf.edu/cssi/default.cfm

[26] Sterman, John D. Business dynamics: systems thinking and modeling for a complex world.
McGraw-Hill Education. 2000.

[27] West, Paul C., et al. "Leverage points for improving global food security and the environment."
Science 345.6194 (2014): 325-328.

[28] Checkland, Peter. "Soft systems methodology: a thirty year retrospective." Systems research and
behavioral science 17.S1 (2000): S11-58.

BIRGIT PENZENSTADLER is an Assistant Professor at the California State University
Long Beach. Her research centers around software engineering for sustainability and
resilience. Her interests are requirements engineering and infusing sustainability into
education. She received a doctoral degree and a habilitation degree from the Technical
University of Munich. She is an IEEE member. Contact her at
birgit.penzenstadler@csulb.edu

LETICIA DUBOC is a Lecturer in the State University of Rio de Janeiro’s Department
of Computer Science and an honorary research fellow at the University of Birmingham. Her
research focuses on software system sustainability and scalability, particularly from the
perspective of requirements engineering and early analysis of software qualities. Duboc

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

received a PhD in computer science from University College London. Contact her at
leticia@ime.uerj.br.

COLIN C. VENTERS is a Senior Lecturer in software systems engineering in the School of
Computing and Engineering at the University of Huddersfield. His current research focuses
on sustainable software systems engineering from a software architecture perspective for
pre-system understanding and post-system maintenance and evolution including
architectural recovery, architectural knowledge management and decision making, and
architectural-level software metrics and evaluation. Venters received a PhD in computer
science from the University of Manchester, UK. He is a member of the IEEE and ACM.
Contact him at c.venters@hud.ac.uk.

STEFANIE BETZ is a junior research group leader in the Karlsruhe Institute of
Technology’s Department of Applied Informatics and Formal Description Methods. Her
research centers on sustainable software and systems engineering, particularly from the

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

perspective of requirements engineering and business process management. Betz
received a PhD in applied informatics from the Karlsruhe Institute of Technology. She is a
member of the ACM. Contact her at stefanie.betz@kit.edu.

NORBERT SEYFF is a Professor in the School of Engineering and the Institute of 4D
Technologies at the University of Applied Sciences and Arts Northwestern Switzerland and
a senior research associate in the University of Zurich’s Department of Informatics. His
research focuses on requirements engineering and software modeling, particularly on
empowering and supporting end-user participation in system development. Seyff received
a PhD in computer science from Johannes Kepler University Linz. Contact him at
norbert.seyff@fhnw.ch.

KRZYSZTOF WNUK is an Assistant Professor at the Software Engineering Research
Group (SERL), Blekinge Institute of Technology, Sweden. His research interests include
market-driven software development, requirements engineering, software product
management, decision making in requirements engineering, large-scale software, system
and requirements engineering and management and empirical research methods. He is

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

interested in software business, open innovation, and open source software. He works as
an expert consultant in software engineering for the Swedish software industry. Wnuk
received a PhD in software engineering from Lund University of Technology. Contact him
at krzysztof.wnuk@bth.se.

RUZANNA CHITCHYAN is a Senior Lecturer at the University of Bristol, Department of
Computer Science. Her research centers on requirements engineering and architecture
design for software-intensive socio-technical systems - specifically, applying software
engineering techniques to re-designing energy systems for sustainability. Chitchyan
received a PhD in software engineering from Lancaster University. Contact her at
r.chitchyan@bristol.ac.uk.

STEVE M. EASTERBROOK is a Full Professor in the University of Toronto’s Department
of Computer Science and a member of the School of the Environment and the Centre for
Global Change Science. His research focuses on climate informatics—specifically,
applying computer science and systems analysis to the challenge posed by global climate

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

change. Easterbrook received his PhD in computing from Imperial College London.
Contact him at sme@cs.toronto.edu.

CHRISTOPH BECKER is an Assistant Professor at the University of Toronto, where he
leads the Digital Curation Institute. His research focuses on sustainability in software
engineering and information systems design, digital curation and digital preservation, and
digital libraries. Becker received a PhD in computer science from the Vienna University of
Technology. Contact him at christoph.becker@utoronto.ca.

Tweets (max 115 characters):

Leverage points challenge us to engage in a (philosophical and practical) discussion of
our goals as society
Leverage points help software engineers see the potential of software for supporting
sustainability
Software engineers can identify leverage points to develop software for
transformational change

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.110154908 0740-7459/$26.00 2018 IEEE

