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Abstract:  

Bats use roosts for protection, sociality and reproduction. Lack of knowledge regarding the specific 

roost preferences of tree-dwelling bats means that roosts are regularly removed from woodland 

during felling and thinning interventions, even when woodlands are managed to promote 

biodiversity. The often-unintentional loss of roosts this way continues to constrain efforts to 

conserve many rare bat species. 

We investigated roost selection by the barbastelle Barbastella barbastellus in fragmented oak 

woodlands in southwest England. Twenty-nine bats were radio tracked to 44 tree roosts between 

2007 and 2015. Twenty-four different characteristics of roosts were measured using a combination 

of ground-based field surveys and airborne light detection and ranging (LiDAR) imagery, and roost 

characteristics were compared with those of random trees to determine selection. 

Bats selected trees in ancient semi-natural broadleaved woodland over other woodland habitat 

types. Standing dead oak (Quercus spp.), while scarce, was positively selected over other tree types 

and supported significantly more suitable roost cavities. Roost selection was most strongly 

influenced by the number of cavities present on a tree and the openness of the canopy around the 

tree. The height of roost cavities and distance to water were also important features that influenced 

selection. Pregnant and lactating bats switched roosts less frequently than post-lactating and 

nulliparous bats and selected cavities higher on trees, most likely to facilitate the development of 

offspring and reduce the risk of predation. 

Old growth woodland is vitally important to barbastelles and so the preservation and restoration of 

these habitats should be a conservation priority. While standing dead trees supported more 

preferred roost cavities than other tree types, our findings indicate that any tree supporting a 

suitable cavity may be used as a roost, irrespective of the size, condition or species, and should be 

retained wherever possible. Promoting the natural succession of younger woodland will help to 

deliver additional sustained benefits in the future. 
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1. Introduction 

The availability of suitable roosts influences the distribution, diversity, social structure and 

reproductive fitness of bats (Kunz and Lumsden, 2003). Roosts provide protection from predation 

and shelter from ambient environmental conditions and are important sites for mating, hibernation 

and rearing young (Kunz and Lumsden, 2003; Lacki et al., 2007; Willis and Brigham, 2007). When 

woodlands are subject to human intervention i.e. to increase economic yield, promote recreational 

use or to improve ecological function after degradation has taken place, these interventions can 

affect the availability and suitability of roosts. By identifying characteristics of tree roosts that are 

most important to bats a more directed and effective approach to woodland management can be 

undertaken that delivers improved conservation outcomes.  

Meta-analyses have identified a number of habitat features that are typically important to tree-

dwelling bats, including tree height and diameter, canopy closure, tree trunk girth and the 

occurrence of standing deadwood (Lacki and Baker, 2003; Kalcounis-Ruppell et al., 2005; Fabianek et 

al., 2015a; Naďo and Kaňuch, 2015). The frequency, type and size of cavities has also been shown to 

influence roost selection (Russo et al., 2004; Lučan et al., 2009). In addition, bat presence within 

woodlands has been linked to the ruggedness (Froidevaux et al., 2016) and openness (Russo et al., 

2004; Cox et al., 2016; Kortmann et al., 2017) of the upper canopy. Favourable microclimatic 

conditions may increase roost suitability (Boyles, 2007) and the phenomenon of social 

thermoregulation driven by roost characteristics indicates that bats do not rely passively on ambient 

temperature while roosting (Willis and Brigham, 2007; Russo et al., 2017a). In certain landscapes, 

topographical characteristics such as elevation, terrain aspect and distance to water have also been 

shown to be important (Cryan et al., 2000; Lacki and Schwierjohann, 2001; Lacki and Baker, 2003). 



The importance of woodland characteristics can vary according to the sex and reproductive state of 

bats. Breeding female Plecotus macrobullaris, for example, predominantly roost in tree cavities at 

lower elevations than non-breeding females, while males select roosts in rock cavities and man-

made structures (Alberdi et al., 2015). Understanding variability in roost selection by other species 

during different reproductive stages requires further work (Jachowski et al., 2016). 

Many tree-dwelling bat species form fission-fusion societies, whereby individuals roost with one 

another interchangeably (Fleischmann and Kerth, 2014), and regular roost switching by bats in these 

societies is well documented (O’Donnell and Sedgeley, 1999; Russo et al., 2005; Trousdale et al., 

2008; Ngamprasertwong et al., 2014). The primary function of roost switching remains unclear 

although reducing parasite load and risk of predation, minimising roost fouling, maintaining social 

cohesion among individuals, and maintaining knowledge of the locations of available roosts have all 

been proposed as drivers (Owen et al., 2001; Russo et al., 2005; Kühnert et al., 2016). Maintaining 

knowledge of existing roosts may be particularly important due to the ephemerality of tree roosts 

(Trousdale et al., 2008; Russo et al., 2005) and the temporal variation in the thermoregulatory 

requirements of bats (Russo et al., 2017a). While frequent roost switching is commonly exhibited by 

some species, these species typically express high inter-annual fidelity to roosting sites, returning to 

the same breeding site each year (Hillen et al., 2010; Silvis et al., 2014). 

The barbastelle (Barbastella barbastellus; Schreber, 1774) is classified as ‘Near Threatened’ by the 

International Union for the Conservation of Nature (Piraccini, 2016), is listed under Annex II and IV of 

the EU Habitats Directive and is a UK Biodiversity Action Plan priority species (JNCC, 2010). 

Throughout Europe, barbastelles have retained a strong preference for roosting in trees and require 

old growth broadleaved forests that provide a high number of suitable roost cavities (Russo et al., 

2004, 2010). Historic declines in populations have been associated with loss of old growth 

broadleaved forest habitat (Russo et al., 2004; Piraccini, 2016). To date, few studies have 

characterised the roosting requirements of the barbastelle. Russo et al. (2004, 2010) and Kortmann 



et al. (2017) documented roost preferences in breeding populations inhabiting extensive beech 

(Fagus sylvatica) and mixed upland forests respectively. Only limited data are available for the 

species within fragmented broadleaved woodlands at lower elevations that are more typical across 

the species’ Europe-wide range. 

We investigated the roosting requirements of female barbastelles in small fragmented broadleaved 

woodlands in south-west England using radio tracking to locate roosts and examine roosting 

behaviour. We recorded roost characteristics using a combination of terrestrial field surveys and 

airborne light detection and ranging (LiDAR) imagery and examined roost selection between early 

spring and late autumn at three spatial scales: (i) woodland structure and management type, (ii) tree 

type, and (iii) cavity type. We tested the hypotheses that bats selected roost characteristics at 

random on all levels by comparing the characteristics of roost features used by bats with those 

available at random. In addition, we examined whether the selection of roost characteristics and the 

frequency of roost switching is influenced by the reproductive state of female bats. 

 

2. Materials and Methods 

2.1. Study area 

Bats were captured and studied between May 2007 and September 2015 in four ancient 

semi-natural broadleaved woodlands in Dartmoor National Park (3°54′49″ W, 50°35′15″ N), south-

west England (Fig. 1). Each woodland roosting site, hereafter referred to as a ‘home wood’, was 

delimited retrospectively using natural features, such as woodland edge and valley ridges, and a 

maximum distance of 250 m from a roost i.e. the maximum distance that we recorded from a roost 

to its nearest woodland edge. 

 



 

Figure 1. Woodland study sites (black polygons) from top to bottom: Houndtor Wood (3°44′50″ W, 50°36′24″ 

N) (71 ha), Yarner Wood (3°43′35″ W, 50°35′41″ N) (150 ha), White Wood (3°51′40″ W, 50°31′56″ N) (241 ha), 

and Dendles Wood (3°56′59″ W, 50°26′13″ N) (50 ha), in Dartmoor National Park (grey polygon). Inset: location 

and boundary of Dartmoor National Park within the UK. Adapted from Ordnance Survey open data base map. 

 

Each of the four home wood areas share similar topographic features, including steep Dartmoor 

intrusion granite slopes and Crackington Formation mudstone valley bottoms covered 

predominantly with pedunculate oak (Quercus robur), sessile oak (Q. petraea) and hybrids of these 

(Q. x rosacea). Climatic conditions within the region are wet and mild with mean summer (May-

September) precipitation between 260-460 mm and mean temperature between 12-15°C. Historic 

and current management has resulted in mosaic woodland habitats surrounded by upland heath and 

agricultural land. For the purpose of this study, habitat types were grouped as (i) ancient semi-



natural broadleaved woodland comprising predominately oak wood but also including ash and wet 

woodland types, (ii) broadleaved plantation ancient woodland (PAWS) comprising predominantly 

beech (Fagus sylvatica) planted in the 1960s but with remnant oak standards, (iii) conifer PAWS 

restocked with Douglas fir (Pseudotsuga menziesii) in the 1960s, and (iv) woodland scrub with mixed 

restocked and regenerating broadleaved species. 

2.2. Capture, marking, tracking and monitoring 

Bats were captured using mist nets (Avinet Inc., Portland, US) and harp traps (Faunatech Austbat, 

Victoria, Australia) placed along woodland rides, and at roost trees during emergence with large 

hand nets (net diameter 47 cm, net depth 78 cm) attached to extendable aluminium poles. 

Apodemus lures (Apodemus field equipment, Mheer, Netherlands) and Sussex Autobat lures 

(University of Sussex, Sussex, UK) broadcasting direct recordings and synthesised barbastelle social 

and echolocation calls, respectively, were used to improve capture success (Hill and Greenaway, 

2005; Scott and Altringham, 2014) in open woodland. Acoustic lures were not used at roost trees. 

After recording biometric data, caught bats were fitted with lightweight radio transmitter tags (Pip3, 

0.45 g; Biotack Ltd., Wareham, UK). Tags were glued between the scapulae using a biodegradable 

adhesive (Salts Healthcare Ltd., Birmingham, UK) after clipping the fur. All transmitters weighed < 5% 

of the body mass of the bat to avoid potential load-related changes in behaviour (O’Mara et al., 

2014). Bats were fitted with 2.9 mm aluminium wing bands (Porzana Ltd., Sussex, UK) to allow 

identification of recaptured individuals. All activities were conducted under Natural England licences 

2015-8106-SCI-SCI-1 and 20082206. 

Bats were tracked daily on foot to roost trees using r-1000 (Communications Specialists Inc., Orange, 

US), SRX 400 (Lotek Engineering Inc., Ontario, Canada) or Sika (Biotrack Ltd., Dorset, UK) radio 

receivers and three-element Yagi antennas (Wildlife Materials Inc., Murphysboro, US). Tree cavities 

were located using a directional antenna and binoculars from the ground, and later confirmed by 

undertaking dusk emergence surveys using Bat Box Duet bat detectors (Batbox Ltd., Sussex, UK), 



Song Meter 2 static detectors (Wildlife Acoustics Inc., Maynard, US) and a bespoke portable CCTV 

video system (Young et al., In press). 

2.3. Ground-based surveys of habitat characteristics 

To investigate whether barbastelles selected roosts with particular characteristics, 16 habitat 

features that were considered to be biologically relevant for tree-roosting bats in the literature 

(Lacki and Baker, 2003; Kalcounis-Ruppell et al., 2005; Fabianek et al., 2015a; Naďo and Kaňuch, 

2015) were measured on the ground or in QGIS (Quantum GIS Development Team 2015, version 

2.8.1 Wien) and compared with those recorded from randomly selected trees at the plot, tree and 

cavity scale (Table 1). Random trees were selected by identifying the nearest potential roost tree to 

randomly selected point locations within home wood areas. Only trees that were equal to or larger 

than the smallest roost tree recorded in this study, determined by diameter at breast height (DBH), 

were selected as random trees. The number of random trees that we recorded data from was equal 

to the number of roost trees identified in this study (n = 44). 

Characteristics measured in QGIS at the plot scale for roost and random trees included elevation, 

distance to water, distance to woodland edge, distance to public footpath and distance to potential 

sources of disturbance such as roads and buildings. Characteristics measured on the ground at the 

plot scale included terrain aspect, terrain slope and tree density. Tree density was measured using a 

point-centre quarter method (Causton, 1988; Russo et al., 2004), whereby the distance from each 

roost or random tree (point-centre) to its four nearest-neighbour trees (one in each quadrant 

around point-centres) was recorded and tree density calculated in hectares as 10000/(mean of the 

distances between point centres and the four nearest-neighbour trees)2. 

Characteristics recorded at the tree scale included tree type, height, DBH, number of cavities 

present, and percent canopy gaps assessed visually from the base of the tree. Tree types were 

categorised as follows: (i) ‘Class 1 Quercus’ live trees (Q. robur or Q. petraea or Q. x rosacea) showing 

less than 80% dead limbs and loss of foliage; (ii) ‘Class 2 Quercus’ dead trees (Q. robur or Q. petraea 



or Q. x rosacea) showing 80% or greater dead limbs and loss of foliage; (iii) ‘other broadleaved 

species’ (all live individuals); and (iv) ‘conifer spp.’ (all live individuals). Q. petraea was the dominant 

oak species within home wood areas. 

To investigate roost cavity selection, random cavities were located along transects within woodlands 

that intersected the areas in which most barbastelle roosts occurred. The identification of cavities as 

potential suitable roost features for bats was determined by eye using binoculars from the ground 

and based retrospectively on the structure of roost cavities used by radio tracked bats. To minimise 

limitations associated with ground-based detection of cavities, cavity surveys were undertaken in 

winter when leaves were absent. In situations where trees supported multiple cavities, one cavity 

was selected at random. Variables measured at the cavity scale included cavity type, height and 

aspect. Cavity types were defined as either (i) bark plates, (ii) splits (including frost cracks, hazard 

beams and tear-outs, as described by Andrews (2013)), or (iii) rot holes.  

2.4. Light detection and ranging imagery 

LiDAR measurements (three-dimensional point cloud data) collected in April 2010 were obtained 

from the UK Environment Agency (open source survey data; 

http://environment.data.gov.uk/ds/survey/). Using QGIS, we created a canopy height model (CHM) 

at 1 m resolution from a digital surface model (DSM) and digital terrain model (DTM). We derived 

several structural variables from the canopy height model including canopy gaps, mean canopy 

height, canopy ruggedness, and standard deviation of canopy height. As we were interested in 

assessing roost selection at both the tree and the plot scale we defined two buffers of 2 m and 16 m 

radius, respectively, around roost and random point-centres and recorded each variable at each of 

these scales. Due to patchiness in the coverage of open-source LiDAR data, comparisons could only 

be made between 29 roost and random plots, respectively. Following Fabianek et al. (2015b), 

canopy gaps were defined as being >2 m², with a tree height that was one-third the height of the 

surrounding mean canopy. Canopy ruggedness, as defined by Froidevaux et al. (2016), was 



calculated in QGIS using a terrain ruggedness index (TRI) algorithm (Wilson et al., 2007). Standard 

deviation of canopy height was used as an additional measure of upper canopy surface variability 

(Froidevaux et al., 2016). 

2.5. Statistical analysis 

2.5.1. Selection of woodland habitat type and tree type 

To examine whether bats favoured roosts in a particular woodland habitat type or in a particular 

tree type, we used chi-square analyses to determine (i) whether use of a habitat type (number of 

roosts in each woodland habitat type divided by total number of roosts located in the study area) 

departed from that expected (area of corresponding woodland habitat type divided by the overall 

size of the study area), and (ii) whether the use of a tree type (number of roosts of each tree type 

divided by the total number of roosts in the study) departed from that expected (number of random 

trees of each tree type divided by the total number of random trees in the study). The Z statistic was 

used to calculate Bonferroni’s confidence intervals (Neu et al., 1974) and to establish whether bats 

positively or negatively selected a woodland habitat type or tree type. For the analysis of habitat 

type selection, only data from Houndtor Wood were used as it was the only home wood area that 

contained all habitat types. To meet the assumptions of chi-square analysis, woodlands were 

grouped as ‘ancient semi-natural broadleaved woodland’ and ‘other woodland’ that included 

broadleaf PAWS, conifer PAWS and woodland scrub habitat types, and tree types were grouped as 

‘live Quercus spp.’, ‘dead Quercus spp.’ and ‘other tree types’. 

2.5.2. Selection of roost features 

To examine whether roost features differed significantly from random features, first we undertook a 

series of univariate analyses on the variables. T-tests were performed for parametric data while 

permutation tests (10,000 randomisations) were performed for non-parametric data. To determine 

which variables contributed most to explaining differences observed in roost and random features, 



we performed a series of generalized linear mixed models (GLMMs) using maximum likelihood 

estimations with binomial distribution and logit link function (lme4 package; R core team). We 

considered trees as our sampling units and included bat and site as random effects to control for 

variation among bats and sites (Bolker et al., 2008). Multicollinearity was assessed prior to model 

building using Spearman’s correlation tests and using a |r|>0.6 coefficient threshold. When 

correlation between variables was found, the variable with the least statistical explanatory power 

was removed to achieve model simplification. To provide meaningful comparisons of effect size, 

data were standardised using mean and standard deviation ((x-µ)/σ). To identify the most 

parsimonious model that also explained the most amount of variance, Akaike’s Information Criterion 

(AIC) adjusted for small sample sizes (AICc) was used. Pseudo R² (1-(residual deviance/null deviance)) 

was also applied for further consideration of model fit. A final set of models with only variables from 

the best fitting models using delta AICc (∆I) ≤ 2 was selected. For increasing precision in the 

calculation of estimates and associated standard errors, we applied a model averaging approach on 

the set of best models (Burnham and Anderson, 2002).  

To examine whether the selection of roost features differed between bats of different reproductive 

states, bats were grouped as either (i) pregnant and lactating or (ii) post-lactating and nulliparous 

(i.e. bats showing no evidence of having bred), and differences between groups were compared 

using t-tests or permutation tests. 

All values of central tendency for normally distributed data are presented as mean ± standard 

deviation (SD), and for non-normally distributed data as median ± inter-quartile range (IQR). 

2.5.3. Roost switching behaviour  

We calculated the frequency of roost switching in individual bats by dividing the number of times a 

bat switched roost by the number of days the bat was tracked. Bats were grouped as either (i) 

pregnant and lactating or (ii) post-lactating and nulliparous, and differences in the rate of switching 



between groups were compared using permutation tests. All statistical analyses were performed in 

R 3.1.3 and RStudio 1.0.143 (RStudio Team, 2015). 

 

3. Results 

In total 29 adult female barbastelles (Table S1) were radio tracked to 44 roost trees between May 

2007 and October 2015. Roost switching behaviour was determined for 27 bats, including pregnant 

(n = 4), lactating (n = 3), post lactating (n = 10) and nulliparous (n = 10) adult females. Bats were 

located within roost trees over consecutive days for between 3 and 18 days (mean 12 days ± 4.4 SD). 

Emergence counts (n = 59) revealed that roosts were occupied by 1–23 bats (mean 10 bats ± 6.5 SD; 

n = 36 roosts). Radio tracked bats expressed high fidelity to home wood areas and only rarely 

roosted in other woodland sites. Two individual bats caught in 2007 and 2008, respectively, were 

recaptured in the same home wood in 2015, providing evidence of inter-annual site fidelity to 

roosting sites. 

3.1. Selection of woodland habitat type 

Bats roosted in four woodland habitat types, including ancient semi-natural broadleaf woodland (n = 

40 roosts), PAWS (broadleaf) (n = 1 roost), PAWS (conifer) (n = 2 roosts), and woodland scrub (n = 1 

roost). Roosts within Houndtor Wood (n = 27) were not evenly distributed across habitat types (χ2
8.7, 

d.f. = 1, p < 0.01) with ancient semi-natural broadleaved woodland positively selected over all other 

woodland types (Fig. 2). 



 

Figure 2. Home wood area within Houndtor Wood in Dartmoor National Park, showing the availability of four 

woodland habitat types (see section 2.1 for habitat type details) and the locations of 27 barbastelle tree 

roosts. 

 

3.2. Selection of tree type 

Roost trees consisted of live (n = 23) and dead (n = 20) Quercus robur, Q. petraea or Q. x rosacea, 

and one live Fagus sylvatica. Random trees consisted of live (n = 26) and dead (n = 4) Q. robur, Q. 

petraea or Q. x rosacea, ‘other broadleaved’ species (n = 9) and conifer species (n = 5). Tree type was 

not selected at random (χ2
76.4, d.f. = 2, p < 0.001) by bats. Dead Quercus trees were positively 

selected, live Quercus trees were used in line with availability, and all other tree types (Fagus 

sylvatica, Betula pendula, Acer pseudoplatanus, Pseudotsuga menziesii and Pinus sylvestris) were 

used less than expected. When we examined the number of cavities present on different tree types 

for the whole dataset that included all roost and random trees (n = 220 trees), we found significant 

differences (χ2
64.5, d.f. = 3, p < 0.001), with dead Quercus trees having significantly more cavities 

(median = 5.1, n = 42) compared to live Quercus trees (median = 1.1, n = 122), other broadleaved 

trees (median = 0.2, n = 33) and coniferous trees (median = 0.3, n = 23) (Dunn post hoc, p < 0.001), 



and live Quercus trees having significantly more cavities compared to other broadleaved (Dunn post 

hoc, p < 0.01) and coniferous trees (Dunn post hoc, p = 0.02) (Fig. 3). 

 

 

Figure 3. Median and inter quartile range for the number of cavities on roost and random trees (n = 220) 

according to tree type. Class 1 Quercus includes live oak trees showing < 80% of dead limbs and loss of foliage; 

Class 2 Quercus includes dead oak trees showing > 80% dead limbs and loss of foliage; other broadleaves 

includes Fagus sylvatica (European beech), Betula pendula (silver birch), and Acer pseudoplatanus (sycamore); 

Coniferous includes live Pseudotsuga menziesii (Douglas fir); and Pinus sylvestris (Scots pine). * p < 0.05 ** p < 

0.01 *** p < 0.001. 

 

3.3. Selection of roost features 

Roost trees had a more open canopy structure at the tree (n = 44, perm, p < 0.001) and at 0.1 

hectare around the tree (n = 29, perm, p < 0.01), were closer to water (n = 44, perm, p < 0.01) and 

had a greater number of cavities (n = 44 perm, p < 0.001) than random trees. No differences were 

found for each of the other variables that we examined (Table 1). 

 



Table 1. Habitat variables recorded from roost and random plots (n = 44, or n = 29 for LiDAR datasets), roost 

and random trees (n = 44) and roost and random cavities (n = 41) used by adult female barbastelles (n = 29) 

radio tracked in Dartmoor National Park, Devon, UK. Values of central tendency for normally distributed 

variables (+) are presented as mean ± standard deviation, and for non-normally distributed variables (-) as 

median ± inter-quartile range. ns = not significant.     

 

    

Prior to fitting models, when we checked for correlations among variables we found that tree height, 

standard deviation of the canopy at 2 m and 0.1 ha, gaps at 2m and canopy ruggedness at 2 m and 

0.1 ha were all correlated with one another, and tree type was correlated to canopy gaps and 

number of cavities. To avoid multicollinearity, tree height at 2 m, standard deviation at 2 m and 0.1 

Scale Habitat feature Roost n Random n Source p value Distribution

Plot Aspect Categorical 44 Categorical 44 Field ns -

Canopy gaps 2 m (%) 33 ± 29 29 33 ± 63 29 LiDAR ns -

Canopy gaps 0.1 ha (%) 63 ± 14 29 41 ± 22 29 LiDAR < 0.01 -

Canopy ruggedness 2 m
† 13820 ± 7561 29 12323 ± 7529 29 LiDAR ns +

Canopy ruggedness 0.1 ha
† 12871 ± 3799 29 12847 ± 5559 29 LiDAR ns +

Distance to footpath (m) 87 ± 133 44 93 ± 93 44 QGIS ns -

Distance to disturbance (m) 149 ± 169 44 140 ± 462 44 QGIS ns -

Distance to water (m) 34 ± 32 44 72 ± 92 44 QGIS < 0.01 -

Distance to woodland edge (m) 52 ± 85 44 64 ± 84 44 QGIS ns -

Elevation (m) 180 ± 39 44 193 ± 38 44 QGIS ns +

Mean canopy height 2 m (m) 5 ± 4 29 7 ± 7 29 LiDAR ns -

Mean canopy height 0.1 ha (m) 5 ± 3 29 7 ± 6 29 LiDAR ns -

SD of canopy height 2 m (m) 4 ± 3 29 3 ± 3 29 LiDAR ns +

SD of canopy height 0.1 ha (m) 5 ± 2 29 5 ± 2 29 LiDAR ns -

Slope (%) 25 ± 25 44 25 ± 25 44 Field ns -

Tree density (ha)
†† 145 ± 189 44 171 ± 293 44 Field ns -

Tree Canopy gaps at tree (%) 63 ± 29 44 30 ± 15 44 Field < 0.001 -

DBH (cm) 57 ± 23 44 22 ± 6 44 Field ns +

Number of cavities 4 ± 5 44 0 ± 0 44 Field < 0.001 -

Tree class Categorical 44 Categorical 44 Field < 0.001 -

Tree height (m) 19 ± 7 44 22 ± 6 44 Field ns +

Cavity Cavity aspect Categorical 41 Categorical 90 Field ns -

Cavity height (m) 7 ± 6 41 6 ± 9 90 Field ns -

Cavity Type Categorical 41 Categorical 90 Field ns -

†
Canopy ruggedness score was calculated using terrain ruggedness index (TRI) (Wilson et al . 2007) 

††
Calculated in hectares as 10000/(mean of the four distances to nearest trees in metres)² (Russo et al . 2004).  



ha, and tree type were removed from models as they were found to be either not significantly 

different in univariate tests or were less significant than other correlated variables.  

When we modelled variables at the plot scale, the model that best explained differences between 

roost and random trees included canopy gap at 2 m, canopy gap 0.1 ha, distance to water and 

elevation. At the tree scale, the best model included canopy gap at the tree, DBH, tree height and 

number of cavities on a tree, and at the cavity scale only cavity height was included (Table 2). 

 

Table 2. List of habitat variables from the best generalized linear mixed effects models (∆I ≤ 2) at the plot, tree 

and cavity scale, including effect size, standard error, z statistic and p value. See Table 1 for units.  

 

 

When we fitted the nine key explanatory variables from the plot scale, tree scale and cavity scale 

models (Table 2) into a single model, three models performed equally well at explaining differences 

between roost and random trees, with each model containing one or more of the following 

variables: canopy gap at tree, canopy gap at 0.1 ha, cavity height, distance to water and number of 

cavities on the tree (Table 3). In the model that included all five variables, canopy gap at the tree and 

the number of cavities on the tree contributed significantly to explaining differences observed 

between roost and random trees, with number of cavities having the largest effect size (Fig. 4). 



 

Table 3. Most parsimonious and best fitting generalized linear mixed effects models (∆i = ≤ 2) used to explain 

differences observed between roost and random trees. Shows the number of estimated parameters (K), 

differences between model second order Akaike’s information criterion for small samples (AICc), the 

difference in AICc score (∆i) compared to the model with the lowest AICc score, Akaike weights (ωi), and 

proportion of residual deviance explained by the model (Pseudo R²). Final models have been averaged. See 

Table 1 for units.  

 

 

Figure 4. Variables included in the best generalized linear mixed effects models (∆i) showing model-averaged 

effect size (dot) and associated 95% confidence intervals (line) for each variable. Canopy gap at tree and 

number of cavities show a significant positive effect, and canopy gap at 0.1 hectare shows a non-significant 



positive trend on roost use. Cavity height and distance to water show a non-significant negative trend on roost 

use. * p < 0.05; ** p < 0.01. See Table 1 for units.  

 

3.4. Effects of reproductive state on selection of roost features 

When we examined roost preferences according to the reproductive state of bats we found that 

pregnant and lactating bats used roost trees significantly further from water (n = 44, perm, p = 0.04) 

with fewer cavities (n = 44, perm, p = 0.03) and in cavities located higher on the tree (n = 41, perm, p 

< 0.001) compared to those used by post-lactating and nulliparous bats (Fig. 5). In addition, post-

lactating and nulliparous bats roosted under defoliating bark more frequently (65% of roosts used) 

than pregnant and lactating bats (44% of roosts used), although the difference between the two 

groups was not significant (χ2
11.3, d.f. = 2, p = 0.9). The majority of roosts used by pregnant and 

lactating bats were roosts of a more solid structure, such as splits and rot holes (56% of roost used). 

We found no difference for any of the other roost variables that we measured. 

 

 

Figure 5. Median and inter quartile range for (a) cavity height (n = 41), (b) distance to water (n = 44), and (c) 

number of cavities (n = 44) as a function of the reproductive state of radio tracked adult female barbastelles (n 

= 29 bats). 



 

3.5. Roost switching 

Most bats (89%) switched roost at least once (median 0.4 ± 0.1 IQR switching frequency per day; 

range 0.3-0.6) during their respective tracked period, and occupied roosts for an average of 3.3 days 

(± 2.5 IQR; range 1-11 days) before moving. Pregnant and lactating bats (n = 7) switched roosts 

significantly less frequently (median 0.3 ± 0.1 IQR roost switches per day) than post-lactating and 

nulliparous bats (median 0.4 ± 0.1 IQR roost switches per day) (perm, p < 0.05). 

 

4. Discussion  

4.1. Selection of woodland habitat type 

Selection of ancient semi-natural broadleaved woodland is common among insectivorous bats 

(Walsh and Harris, 1996; Russ and Montgomery, 2002; Russo et al., 2010), and roosting barbastelles 

significantly selected this habitat over other woodland types. Despite other studies finding a 

preference for roosting in beech forests (Russo et al., 2004), only one roost in this study was located 

in broadleaved plantation ancient woodland stands dominated by beech, despite its considerable 

availability within home wood areas, probably due to limited roosting opportunities as a result of the 

relatively young age of trees and ongoing harvesting within these stands. Indeed, Russo et al. (2010) 

recorded larger numbers of barbastelle roosts in unmanaged beech forests compared to stands that 

were periodically logged. 

Our findings, in agreement with those of Russo et al. (2004), demonstrate that minimal and non-

intervention semi-natural woodland provide considerably higher roosting opportunities for 

barbastelles than other woodland types and so should be a focus for conservation efforts to protect 

the species. Initiatives to restore functioning old growth woodland such as the restoration of 

plantations on ancient woodland sites (Thompson et al., 2003) and rewilding (Monbiot, 2013) should 



be viewed as beneficial, and specific objectives to retain features associated with ancient woodland, 

in particular dead or decaying trees, should be a priority in all woodland types. 

4.2. Selection of tree features 

Bats selected roosts in trees that had a more open canopy structure than random trees, as has been 

observed elsewhere for barbastelles (Russo et al., 2004; Kortmann et al., 2017) and other 

echolocating tree-dwelling bats (Kalcounis-Ruppell et al., 2005; Fabianek et al., 2015b). Much of this 

effect, however, may result from the strong selection by barbastelles of roost cavities in standing 

dead trees that had little or no canopy at all. Indeed, if accessibility is not hindered by branches, 

dense canopy may in fact be beneficial to barbastelles by facilitating earlier emergence times at 

night and hence earlier foraging (Russo et al., 2007), and so the opportunity to select roost trees 

with specific canopy features may be limited by the availability of suitable roost cavities. 

Roosts were more often located in oak trees (98%) than in other broadleaved or conifer species. 

Dead oak trees had significantly more cavities than other tree types, and the number of cavities on a 

tree had the largest effect on roost selection. This strong preference for roosting in dead oak trees 

has also been documented in Germany (Hillen et al., 2010), although roosts in other broadleaved 

tree types are not uncommon. Use of conifer species by barbastelles has been documented only 

rarely, such as in dead spruce trees killed by the spruce bark beetle Ips typographus (Kortmann et al., 

2017). While the presence of a single suitable roost cavity on a tree may be sufficient, we propose 

that for barbastelles the overall value of a tree is likely to be positively correlated with the total 

number of cavities present because (i) more cavities on a tree increases the probability that at least 

one of them is suitable as a roost site at a particular moment in time, (ii) effort associated with 

searching for new roost options is reduced, and (iii) it is less risky to relocate to an alternative roost 

that is close during the day following stochastic events such as degradation of fragile bark plates in 

poor weather. 



Pregnant and lactating female bats were located in trees with significantly fewer cavities compared 

to those used by post-lactating and nulliparous bats, probably because pregnant bats and bats with 

dependent young used solid cavity structures such as rot cavities and splits more frequently than 

post-lactating and nulliparous bats, which use bark plates more frequently (Russo et al., 2004). 

When bark plates develop on dead or decaying trees often many individual plates develop, providing 

numerous roosting opportunities for bats. Due to the low sample size (n = 9) for pregnant and 

lactating bats in this study, we recommend that further work be undertaken to identify with greater 

confidence the influence of reproductive state on roost selection in barbastelles. 

4.3. Cavity selection 

In this study, roost cavities were located lower on trees compared to random cavities. In contrast, in 

Italy Russo et al., (2004) described roost cavities that were higher on trees compared to randomly 

sampled cavities and suggested that bats may select higher cavities that benefit from higher roost 

temperatures as a result of increased exposure to solar radiation. While Russo et al. (2004) radio 

tracked mostly pregnant and lactating females, we studied mostly post-lactating and nulliparous 

bats. Indeed, when we compared groups in this study, we found that pregnant and lactating bats 

typically roosted in cavities that were higher on trees compared to post-lactating and nulliparous 

bats, supporting the hypothesis that females select higher cavities with greater exposure to solar 

radiation during pregnancy and lactation to benefit offspring development both in utero and in situ 

while in the roost (Russo et al., 2004). Indeed, at other times of year, when bats are neither 

pregnant nor have dependant young, it may be advantageous for females to roost in cavities that 

are cooler to facilitate torpor and conservation of energy (Willis and Brigham, 2007). 

4.4. Distance to water 

We found that roost trees were located significantly closer to water than random trees. The 

association with water has been shown elsewhere for barbastelle roosts using habitat suitability 

(Gottwald et al., 2017) and has also been observed in several other temperate forest-dwelling bats 



(Kalcounis-Ruppell et al., 2005; O’Keefe et al., 2009; Culina et al., 2017). Rivers that flowed through 

each study site were prominent features in the landscape and are probably used as flight corridors 

and drinking sites by bats. In contrast, barbastelles roosting in beech woodlands in Italy, which are 

regularly devoid of flowing water in summer, rely on cattle troughs as sources of drinking water 

(Russo et al., 2017b). Post-lactating and nulliparous bats were found in roosts significantly closer to 

water than pregnant and lactating bats, probably because pregnant bats and bats with dependant 

young primarily select roosts based on characteristics that benefit the development and safety of 

offspring rather than distance to water, which was easily accessible and not a limiting factor in each 

of the study areas. 

4.5. Roost switching behaviour 

As has been recorded elsewhere for barbastelles (Russo et al. (2004, 2005) and other tree-dwelling 

bats (Ngamprasertwong et al., 2014; Kühnert et al., 2016), we found that the frequency of roost 

switching during summer is lowest when bats are pregnant and lactating. Risk associated with 

moving non-volant dependant young between roosts is likely to be an important factor during 

lactation (Kühnert et al., 2016) that overrides other potential advantageous associated with roost 

switching, such as minimising roost fouling or parasite loads within roosts. As bats are more 

sedentary during pregnancy and lactation, the use of more solid cavity structures is significant in that 

they provide greater protection against stochastic weather events that can remove ephemeral roost 

types such as bark plates and reduce risk of predation inside the roost itself. Indeed, we recorded a 

tawny owl Strix aluco on infrared video landing on the exit to a maternity roost inside a deep cavity 

in an oak tree when the colony was present there, presumably in an attempt to prey on the bats 

inside. Similar attempts at bark plates could easily result in the fragile plates becoming dislodged and 

exposing adult and young bats. 

The overall rate of switching that we observed among bats radio tracked in this study highlights the 

large number of roosts that are likely to be required to support a colony of barbastelles within a 



woodland. We expect that at least 50 different roost cavities are used each year by the colony at 

Houndtor, which comprises between 20-30 adult female bats. A high annual turnover of new roost 

options is also likely to be important, as most roosts we found were under bark plates that may not 

remain intact over winter and be available for use again in the following summer. 

4.6. The efficacy, application and limitations of LiDAR 

Investigating habitat and roost use by bats in woodland has traditionally been explored through the 

use of terrestrial field measurements only (Lacki and Baker, 2003). Measuring three-dimensional 

vegetation structure such as upper canopy heterogeneity (Jung et al., 2012) at the stand or 

woodland scale is, however, either impossible using traditional survey methods (Davies and Asner, 

2014) or requires substantial resources (Müller and Brandl, 2009). Here, we show that LiDAR-derived 

measures of canopy structure provide an additional level of insight into roost selection that cannot 

be achieved easily through traditional survey methods. The use of bespoke airborne LiDAR datasets 

remains a barrier to some due to cost and lack of expertise needed to process raw data. However, it 

is notable that LiDAR surveying can be achieved at 5-10% of the cost of equivalent large-scale field 

surveying (Müller and Brandl, 2009) and in the UK processed open-source datasets have become 

more readily available in recent years. Several studies have derived informative variables from 

canopy height models that describe important habitat associations of animals (Hinsley et al., 2006; 

Müller and Brandl, 2009; Jung et al., 2012), and similar use of LiDAR datasets can be applied to bats 

to predict suitable roosting areas within woodland. While pairing temporally disparate LiDAR and 

wildlife survey datasets may present problems in some studies due to changes in habitat 

characteristics over time, effects of data lag in relatively slow changing habitats, such as woodland, is 

minimal over periods of up to six years (Vierling et al. 2014), which is longer than the time difference 

between LiDAR and barbastelle roosting datasets used in this study. 

 

 



5. Recommendations for management 

Old growth woodland is vitally important to barbastelles and other tree-roosting bats and the 

preservation and restoration of these habitats should be a conservation priority. Intervention that 

removes maturing and standing dead trees is expected to significantly reduce the carrying capacity 

of a wood for cavity roosting bats and should be avoided wherever possible. In abandoned 

plantation broadleaved woodland, bats will benefit from non-intervention management to allow the 

natural maturation of the woodland and the gradual development of old growth characteristics, in 

particular standing dead wood and a more heterogeneous canopy structure. For plantation 

woodlands in production, when thinning interventions are planned we advise the promotion of 

positive selection (i.e. removing trees that directly compete with neighbour trees that are marked to 

remain) over negative selection (i.e. removing all undesirable trees including badly shaped trees 

such as those that are forked, bent, heavily branched or damaged) (Kerr and Haufe, 2011) to ensure 

that as many roosting opportunities for bats are retained as possible. Standing dead trees do not 

compete for resources and should not affect the health or growth of the economic stock through 

direct competition, although we acknowledge standing dead trees can provide suitable habitat for 

tree pest species that could reduce the timber quality of neighbouring trees. 

While standing dead trees typically provide more roosting opportunities for bats than other tree 

types, our findings demonstrate that roost selection by barbastelle bats occurs principally at the 

cavity level rather than on the characteristics of the tree, and so any tree supporting a suitable cavity 

may potentially be used by bats irrespective of the size, condition or species of the tree. As such, 

when undertaking thinning interventions within woodland it is important to identify the presence of 

potential roost cavities on all tree types prior to felling to ensure that as many of these features as 

possible can be retained. Indeed, we located roost cavities on young trees with small girths that 

would ordinarily be removed during thinning interventions. Tree age can be considered a 

unidirectional habitat filter (Pereira et al., 2004; Burgar et al., 2017) for tree-dwelling bats and so the 



value of young trees should be considered carefully in management plans to encourage the natural 

succession of veteran and standing dead trees and to provide sufficient turnover of suitable cavities 

over time. The use of artificial roosts such as bat boxes may be appropriate in young woodland to 

increase roosting opportunities for bats while waiting for the wood to mature naturally, although 

consideration should be given to the type of box and scale of use to ensure that rare species such as 

barbastelles are not unintentionally disadvantaged.  
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