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ABSTRACT 

Inkjet printing of kesterite Cu2ZnSnS4 (CZTS) thin films on glass from molecular ink is 

described. CZTS ink consists of copper acetate, zinc acetate, tin chloride and thiourea dissolved 

in a mixture of ethylene glycol and isopropyl alcohol. The printed precursor films are vacuum 

dried and thermolysed at 200 °C in air to obtain CZTS films. X-ray diffraction and Raman 

spectroscopy of films confirm the formation of kesterite CZTS without any secondary phases. 

The band gap of the films is 1.48 eV as deduced from transmission spectrum using Tauc plot.    

The films are p-type with hole density and mobility of 2.65 × 1019 cm-3 and 0.3 cm2V-1s-1, 

respectively. Measurement of electrical conductivity of films in the temperature range from 77 

to 300 K show that dominant mechanisms of conduction are Mott-Variable Range Hopping, 

Nearest Neighbour Hopping and Thermally Activated Band Conduction in the temperature 

ranges of 77 to 155 K, 180 to 240 K and 250 to 300 K, respectively.  
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1. Introduction  

Inkjet printing (IJP) is a direct-write, non-contact and non-vacuum method for deposition of 

solid thin films [1-6]. In this technique, picolitre drops of a liquid ink are impelled onto a 

substrate to precisely deposit films in pre-defined pattern. The ejected drops fall until they 

come in contact with the substrate. The drops spread because of momentum and surface tension 

and eventually coalesce on the substrate to form a film.  Printed solid film is then formed by 

solvent evaporation. IJP has high material utilization factor and eliminates the need for masks. 

Printed films are likely to be contamination free because of non-contact deposition. Further, 

IJP is amenable to large scale roll-to-roll deposition of films with sequential and patterning 

capabilities. Inkjet materials printing (IJMP) has been successfully used in flexible electronics 

[4,5], organic solar cells [7], electrically conductive contacts [8], ceramics [9], sensors [3,5] 

and photodetectors [3,5]. However, the use of IJMP for inorganic solar cells is very few [10-

13]. There are only recent reports on IJP CZTSSe solar cells [10], In2S3 non-toxic buffer layers 

[11], CZTS films [12] and CIGSSe solar cells [13]. 

Wang et al. [11] studied IJP In2S3 films as non-toxic Cd-free buffer layer for 

chalcopyrite thin film solar cells. Lin et al. [13] developed IJP CIGSSe solar cells with 12.3 % 

conversion efficiency. Further, there are only two reports [10,12] so far on IJP of CZTS films: 

one using molecular solution ink [10] and the other utilizing nanoparticle suspension ink [12]. 

Lin et al. [10] were first to fabricate IJP CZTSSe solar cells having a photoconversion 

efficiency of 6.4 %. CZTS precursor layers were printed on Mo/glass substrates from molecular 

solution ink prepared by dissolving copper (II) chloride, zinc acetate dihydrate, tin (II) chloride 

dihydrate, thiourea and sodium fluoride in dimethyl sulfoxide (DMSO) with overnight stirring. 

The printed precursor layers were preheated at 300 °C in air for 2 min to remove solvent. Later, 

the films were finally annealed in Se vapour at 560 °C for 20 min to obtain CZTSSe films. In 

a different approach, Martini et al. [12] described IJP of CZTS films from nanoparticle ink. 

CZTS nanoparticles of 3-5 nm sizes were continuously synthesized from an aqueous solution 

of tin (IV) chloride, copper acetate monohydrate, zinc acetate dihydrate, 3-mercapto acetic acid 

and sodium sulphide in a microwave reactor. Nanoparticles were washed, centrifuged and 

redispersed in methyl-ethyl-ketone with 10 % (v/v) of 1-dodecan-thiol to form inkjet ink. The 

ink was then used for printing of CZTS with an inkjet material printer (DMP-2831, Fujifilm 

Diamatix). The as-printed films were dried for 1 hr. under vacuum at 190 °C and then at 300 

°C. The ultimate CZTS films were obtained by annealing in sulphur vapours at 540 °C for 3 hr.  
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In this paper we report inkjet printing of CZTS films on glass from a simple molecular 

solution ink. The ink consists of a solution of (Cu+-Zn+2-Sn+2)-thiourea (CZTTU) complex 

dissolved in a blend of ethylene glycol and isopropanol which can be easily prepared in 20 min. 

The printed precursor films were first dried at 70 °C in vacuum followed by heating in air at 

200 °C. Films thus obtained are kesterite CZTS as confirmed by X-ray diffraction and Raman 

spectroscopy. Electrical properties of such films have been also investigated in the wide 

temperature range of 77 to 300 K.      

2. Experimental 

2.1 Formulation of ink 

 Molecular solution ink basically consists of a precursor dissolved in a solvent. 

Chaudhuri et al. [14] showed that precursor of (Cu+-Zn+2-Sn+2)-thiourea (CZTTU) complex 

yields kesterite CZTS on heating. Precursor solution was prepared by dissolving copper (II) 

acetate monohydrate (0.1 M), zinc acetate dihydrate (0.05 M), tin (II) chloride (0.05 M) and 

thiourea (TU, 0.5 M) in methanol and films were prepared by dip-coating. Later, Ghediya et 

al. [15] also reported doctor-blade coating of CZTS films from a solution of CZTTU complex 

in ethylene glycol (EG). Hence, CZTTU complex was chosen as the precursor for CZTS films.  

Next step was to select appropriate solvent suitable for inkjet printing. The solvent had 

to satisfy the following criteria: (i) it should dissolve readily all the precursor chemicals 

mentioned above, (ii) the viscosity should be between 10-12 cPs and (iii) surface tension should 

be between 28 to 33 dynes/cm. As mentioned above, the precursor chemicals dissolved in both 

methanol [14] and EG [15]. Hence, a mixture of EG and isopropanol (IP) was used as the 

solvent. EG-IP mixtures with different proportions were prepared and viscosity and surface 

tension were measured to tune the fluid properties to the desired values. It was found that a 

blend of 40 % by volume of EG with 60 % by volume of IP has viscosity and surface tension 

of 10 cPs and 35 dynes/cm, respectively which was close to the targeted values. Thus, for 

preparing inkjet printing ink, solvent with 40 % EG and 60 % IP was used. 

Inkjet ink was prepared by dissolving copper (II) acetate monohydrate (0.2 M), zinc acetate 

dihydrate (0.1 M), tin (II) chloride (0.1 M) and thiourea (0.8 M) in EG-IP at room temperature 

(~300 K). At first, 50 mL of EG-IP was taken in a beaker and stirred continuously by a magnetic 

stirrer. Copper (II) acetate powder was slowly added to EG. A dark blue suspension was formed 

which turns into dark blue clear solution on adding a few drops of concentrated hydrochloric 

acid. Then zinc acetate powder was slowly put into the solution which gradually changes into 

light green colour. Further addition of tin (II) chloride turns the solution into light yellow. 
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Finally, thiourea (TU) powder was slowly introduced into the solution which first becomes 

curdy and then turns colourless as shown in Fig.1. TU reduces Cu(II) to Cu(I) under acidic 

condition to form colourless [Cu(TU)3]+ complex [16]. TU also forms complexes with Zn++ 

and Sn++ as [Zn(TU)2]++ and [Sn(TU)]++, respectively. Finally, a colourless complex 

[CuZnSn(TU)n]
m+ is formed in the EG-IP solvent which is the desired CZTS molecular solution 

ink. Total time taken for preparing CZTS ink is about 20 min. The ink has been found to be 

very stable for more than a year. Here, EG not only acts as a solvent but also as stabiliser for 

transparent ink. All the chemicals and solvents used in present study are of Analytical Grade 

supplied by Merck Limited, India.  

 

 

Fig.1 Colourless CZTS molecular ink prepared for inkjet material printing  

 

2.2 Printing of films 

The precursor films were printed on glass substrates using an Inkjet Material Printer 

(DMP2800, Fujifilm Dimatix Inc.). The molecular ink was filtered with a 200 nm filter and 

injected into a Dimatix printing cartridge (DMC-11610). Scrupulously cleaned glass substrates 

of sizes 75 mm X 25 mm X 2 and 75 mm X 75 X 2 mm were used for printing. Precursor films 

of 20 mm X 10 mm patches were printed on the substrates. The printing head has piezo-driven 

jetting devices with 16 nozzles at 256 µm spacing, each capable of producing drops of 10 pL. 

The distance between the substrates and printer head was fixed at 1.3 mm. The jetting voltage 

and dots per inch (DPI) was adjusted to 24 V and 1411, respectively. The films were first dried 

at 70 °C in vacuum oven (EQ-DZF-6050, MTI Corp.) under a vacuum of 2 torr for 30 min. 

The solid precursor films were then heated in an oven at 200 °C for 20 min in air for thermolysis 

to shiny brown CZTS films. Hence, inkjet printing of CZTS films consisted of 3 steps: Inkjet 

printing of wet precursor films, vacuum drying of prints to get solid precursor films and finally 
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thermolysing the precursor films to CZTS films by heating at 200 oC in air. In the present study, 

CZTS films were not subjected any further heat treatment or annealing. Thickness of a single 

printed film was around 150 nm. For obtaining higher thickness, CZTS films can be printed 

sequentially one on top of another.  

 

2.3 Characterizations 

The composition and crystalline nature of the films were studied by X-ray 

Diffractometer (Bruker, D2 PHASER). XRD plots were recorded in the 2ϴ range from 10° to 

70° with Ni-filtered CuKα radiation. The transmittance spectra of the films were measured with 

a UV-VIS-NIR Spectrophotometer (Shimadzu, UV-3600) in the wavelength range of 300 to 

2400 nm. Cross-sectional views of films were observed by Scanning Electron Microscope 

(SEM, LEO S-440i) attached to the Energy Dispersive Spectroscopy (EDS). The thickness of 

the films was also estimated from cross-sectional SEM. The vibrational modes of CZTS were 

studied by Raman Spectrometer (Jobin–Yvon, HR800) with an excitation wavelength of 514 

nm. A linearly polarized Ar-ion laser beam with a power of 10 mW was focused into a spot 

size of 1 μm diameter.  

For electrical measurements gap cells (~ 2 mm) were made with graphite paint (Ted 

Pella) as ohmic contacts. The type of conduction in the films was determined by hot probe 

method. The electrical conductivity was measured in the temperature ranges of 77 to 300 K by 

placing the samples in an optical cryostat (Janis VPF-100). The dark current was measured and 

recorded with a Source/Meter Unit (Keithly 2611) with a DAQ card. During measurements, a 

constant voltage of 10 V was applied across the contacts of the samples.  

 

3. Results and discussion 

Inkjet printing is an upcoming technique used to deposit absorber layers for inorganic 

thin film solar cells. It is amenable to large scale roll-to-roll printing and patterning for solar 

cells. This provides a low-cost advantage over conventional fabrication process that involves 

sequential deposition and patterning. Inkjet printing also has very high materials utilization 

compared to spin coating and screen printing. Due to this, organic solar cells and other opto-

electronic devices such as, light emitting diode and dielectric films has been fabricated using 

inkjet printing. However, reports on inkjet printing of CZTS films are very few [10,12]. Only, 

Lin et al. [10] fabricated 6.4 % efficient CZTSSe solar cells based on inkjet-printed absorber 

layer. The authors deposited CZTS films from solution processed inks in dimethyl sulfoxide 



 

Page 6 of 15 
 

(DMSO). In this paper, inkjet printing of CZTS thin films from transparent ink has been 

reported. The films were characterized for structural, optical and electrical measurements.  

3.1 Inkjet-printed films and characterizations 

Fig.2 shows the inkjet-printed CZTS films on glass substrate. Some dots can be found on the 

final films. This may arise during heating. The films are made up of only a single precursor  

 

 

Fig.2 Inkjet-printed CZTS thin films on glass 

 

layer resulting in thickness of 150 nm. Higher thickness can be achieved using layer-by-layer 

deposition. Chaudhuri et al. [14] proved that single precursor layer of CZTS prepared in 

methanol resulted in 90 nm. However, it was found that same precursor in EG gives higher 

thickness.  

X-ray diffractogram (XRD) of a typical inkjet-printed CZTS film is shown in Fig.3. There are 

lines superimposed on background hump because of glass substrate. The XRD lines are 

identified to be of kesterite CZTS (JCPDS File 26-0575) only due to reflections from (112),  

 

 

Fig.3 X-ray diffractogram of inkjet-printed CZTS film on glass 

 

(200) and (312) planes. The lines are also broad suggesting that the films are nanocrystalline. 

The average crystallite size deduced from the Scherrer relation is found to be ~ 10 nm. Similar 
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results were reported by Chaudhuri and Tiwari [14] for the CZTS films prepared from 

methanolic ink.  

Theoretical and experimental results showed that thermodynamic equilibrium single-

phase CZTS is expected to exist only in a narrow region of the pseudo-ternary Cu2S-ZnS-SnS2 

phase diagram. The narrow phase stability makes defects and secondary phase easy to form 

during the deposition processes. A slight deviation from the optimal growth conditions (1-2 %) 

will result in the formation of secondary phases, including, ZnS, Cu2SnS3 (CTS), SnS, SnS2 

and CuS. Hence, to confirm the stoichiometry of CZTS, Energy Dispersive 

Spectroscopy (EDS) was performed. EDS results of printed CZTS films show the presence of 

Cu, Zn, Sn, S as the major elements. The [Cu]/([Zn]+[Sn]) and [Zn]/[Sn] ratios are determined 

to be 0.83 and 1.12, respectively, revealing Cu-poor and Zn-rich stoichiometry [10,12,15]. 

CZTS solar cells with such compositions have yielded the best efficiency. 

There are no extra XRD lines due to any secondary phases, such as, ZnS, Cu2S, Cu2SnS3 

(CTS), etc. have been observed. However, crystal structure of CZTS, CTS and ZnS are 

identical and hence they cannot be detected solely by XRD. Hence, Raman spectroscopy is 

required to confirm the pure phase. Fig.4 shows the Raman shift spectrum of a typical inkjet-

printed CZTS thin film. The spectrum shows the signature peak at 340 cm-1 for kesterite CZTS. 

There are no other secondary lines due to CuS, ZnS, SnS or Cu2SnS3. The peak at 340 cm-1 is 

due to the A1 vibrational mode, arising from the vibrations of sulphur atoms in CZTS lattice 

while rest of the atoms remains stationary [17]. Thus, it is confirmed that inkjet printing from 

molecular solution ink yield pure CZTS films.  

 

 

Fig.4 Raman spectrum of inkjet-printed CZTS thin film indicating kesterite phase 
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The bandgap of printed CZTS film was determined from transmittance spectrum 

measured in the wavelength range of 350 to 2400 nm. Fig.5(a) shows the transmittance 

spectrum of single layer deposited CZTS thin film. It can be seen from the Fig. that the 

transmittance of the film decreases rapidly below 1000 nm due to absorption by CZTS.  

 

 

 

 

 

 

 

 

Fig.5 (a) Transmittance spectrum of inkjet-printed CZTS film showing absorption edge and (b) Tauc 

plot of film indicating direct bandgap of 1.48 eV 

 

The transmittance data was used to calculate the absorption coefficient (α) using Eq. 

(1):  

                α =  
1

d 
 ln

1

T
                  ………(1) 

where,  

d is the thickness and  

T is the transmittance of the film 

 

Band gap of CZTS film is determined from the Tauc relation [18] for direct band gap 

semiconductors: 

    αhν = A(hν − Eg)
1/2

                            ………(2) 

where, 

α is the absorption coefficient  

h is Plank’s constant  

ν is the frequency of radiation   

A is an appropriate constant   

Eg is the band gap (eV) 

 

(a) (b) 
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Fig.5(b) shows the Tauc plot of (αhν)2 Vs. hν for  printed CZTS  film. The band gap of the 

films was deduced by extrapolating linear portion of the plot to zero and found to be 1.48 eV. 

This is in good agreement with the reported [19] value of 1.5 eV. 

The cross-section of a CZTS thin film as viewed by SEM is presented in Fig.6 which 

reveals that the film is smooth and homogeneous. The existence of porosity has not been 

observed. This is similar to the CZTS films made from methanolic solution of CZTTU complex 

[14]. The above results indicate that IJP precursor films yield CZTS film at 200 °C. IJP ink is 

a molecular solution of CZTTU complex in EG-IP. This is considerably lower than 

temperatures reported by Lin et al. [10]. Their IJP films were first pre-heated at 300 °C for 

solvent removal and then heated at 560 °C in Se. Further, synthesis of molecular ink by Lin et 

al. [10] takes quite long time: overnight soaking of the precursor chemicals in DMSO. In the 

present investigation preparation of ink takes only 10 min.  

 

 

Fig.6 Scanning electron micrograph of the cross-section of a CZTS film inkjet-printed on glass 

 

3.2 Electrical properties  

       Printed CZTS film was p-type with electrical conductivity (σ) and thermoelectric power 

(TEP) of 0.5 S/cm and +100 µV/K, respectively. The hole concentration (p) and mobility (µ) 

of the film was 2.65 × 1019 cm-3 and 0.3 cm2V-1s-1, respectively as deduced from TEP and σ. 

This high value of p is probably due to impurities in precursor chemicals and defects. Similar 

values were also observed for CZTS films dip-coated [14] and doctor-bladed [15] from 

molecular inks made from same precursor chemicals. 

        The temperature variation of electrical conductivity (TVEC) of a typical printed CZTS 

film from 77 to 300 K is shown in Fig. 7 as represented by the plot of ln(σ) vs. 1/T. In general, 

the conductivity of film increases with increase in temperature which is characteristic 

behaviour of a typical semiconductor film. At low temperatures below 125 K (until 77 K), 

conductivity of the film almost remain constant with temperature. However at higher 
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temperatures above 200 K, the conductivity of the film increases rapidly. The features of TVEC 

of a sample depend strongly on the mode of conduction dominant in different temperature 

ranges. It has been found [15,20,21] that different types of conduction modes take place in 

CZTS films depending on the temperature range. These include, Efros–Shklovskii variable 

range hopping (ES-VRH), Mott variable range hopping (M-VRH), nearest neighbour hopping 

(NNH), thermionic emission over grain boundary barriers (TE over GBB) and thermally 

activated band conduction (TABC). 

 

 

Fig.7 Temperature variation of electrical conductivity of a inkjet-printed CZTS film from 77 to 300 K 

  

In general, hopping conduction in samples occurs below about 180 K through defect states in 

the band gap. Above about 180 K, polycrystalline CZTS samples show band conduction due 

to TE over GBB or TABC from defect states. Hence, the data of Fig. 7 was fitted with different 

models to identify the modes of conduction prevalent in the printed CZTS film. 

In the temperature region 77 to 155 K, the plot of ln(σ)√T Vs. T0.25 was linear as shown 

in Fig. 8 which implies that conduction is due to M-VRH. The temperature variation of 

conductivity of sample under M-VRH is given by    

























−=

4

1

M

0M
T

T
expσTσ                                              ……. (3) 

where, 

σ0M is the hopping conductivity  
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TM is Mott characteristics temperature 

T is the temperature 

 

The hopping energy calculated from the slope of the Eq. (3) is found to be 5 meV. This value 

is less than 10 meV and To/T >> 1 which confirms M-VRH conduction at lower temperatures 

in these CZTS films. Similar results were reported in [21-24]. Guo et al. [22] have observed 

that sol-gel derived CZTS films show M-VRH conduction in the temperature range of 40 to 

175 K. Conduction by M-VRH from 70 to 170 K was also observed by Anasari et al. [21] for 

CZTS films prepared by ultrasonic assisted chemical vapour deposition. Hamdi et al. [23] 

reported M-VRH conduction from 80 to 160 K in CZTS pellets. Ghediya et al. [24] also noticed 

that conductivity of dip-coated CZTS film in the range 77 to 150 K is because of M-VRH.  

 

Fig. 8 Plot of ln(σ)√T vs. T-0.25 for inkjet-printed CZTS film indicating M-VRH conduction from 77 to 155 

K 

 

In the temperature range of 180 to 240 K, the plot of ln(σ) Vs. 1/T, representing 

conduction by NNH, was found to be linear as shown in Fig. 9. The variation of conductivity 

with temperature of samples by NNH is given by  

 

                                                                                                                 ………….(4) 

Where, 

σ0 is an appropriate constant 

ENNH is the hopping energy 

kb is the Boltzmann constant 

T is the temperature 









−=

Tk

E
expσσ

b

NNH
0
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Hence, the conduction of printed CZTS films is dominated by NNH in the temperature range 

of 180 to 240 K. The hopping energy is deduced to be 17 meV. This in agreement with the 

results of Ansari et al. [21] who also observed NNH conduction in CZTS films in the 

temperature range of 170 to 250 K with hopping energy of about 20 - 30 meV.  

 

 

Fig.9 Plot of ln(σ) vs. 1/T for inkjet-printed CZTS film suggesting NNH conduction  

from 180 to 240 K 

 

Finally, analysis of the conductivity data in the temperature range 250 to 300 K show 

that the plot of  ln(σ) Vs. 1/T is linear as shown in Fig.10. This reveals that conductivity is 

thermally activated given by the equation: 

 

                                                                                                                             ……………(5) 

where, 

σ0 is a constant and  

Ea is activation energy 

kb is the Boltzmann constant 

T is the temperature 
 

Thus, electrical conduction in printed CZTS film is due to thermally activated band conduction 

in the temperature range of 250 to 300 K. The activation energy deduced from slope of the plot 

is 40 meV. This is probably due to thermal release of holes from defect states copper vacancies 

(VCu) situated at 20 meV above valence band and clusters. Furthermore, It can be seen that 

ln(σ) vs. 1/T plot can be fitted with two straight lines: one at higher temperature range (> 200 

K) and the other at lower temperatures range (< 200 K), which indicates the presence of NNH 
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E
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conduction in the lower temperature range. A significant change in activation energy at both 

the temperature also suggests existing of different transport mode at different temperature.  

 

Fig.10 Plot of ln(σ) vs. 1/T for inkjet-printed CZTS film from 250 to 300 K 

 

The temperature variation of conductivity (Fig.7) of inkjet-printed CZTS films can be 

expressed as 

 

                                                                                                                            …………….(6) 

  

The first term of the expression is conduction due to M-VRH prevalent from 77 to 155 K ; 

the second term signifies NNH conduction predominant from 180 to 240 K and third term 

denotes thermally activated band conduction dominant from 250 to 300 K.  

The inkjet-printed CZTS films in the present investigation are basically nanocrystalline. 

The films are p-type with hole concentration of ~ 1019 cm-3. These films will have dominating 

intrinsic defects, such as, copper vacancies, VCu (at 20 meV) and copper on zinc antisites, CuZn 

(120 meV) acting as acceptor levels. High hole concentration in these films implies that density 

of defect states (situated near the valance band) are also high. Hence, conduction of holes by 

hopping through these defects states is highly probable. When a printed CZTS film is at low 

temperatures (< 250 K), the most of the holes are in the acceptor levels.  The thermal energy at 

these temperatures is insufficient to push the holes to the valence band for conduction. But the 

energy is sufficient to allow hopping from one level to another in the acceptor levels.    
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4. Conclusions 

Kesterite CZTS films can be inkjet printed on glass from molecular ink consisting of (Cu+-

Zn+2-Sn+2)-thiourea complex dissolved in ethylene glycol and isopropanol mixture. The 

formation of kesterite CZTS were confirmed by XRD and Raman spectroscopy. No other 

secondary phases were detected. The band gap of inkjet-printed CZTS films is 1.49 eV. The 

films are p-type with conductivity, hole concentration and mobility of 0.5 S/cm, 2.65 × 1019 

cm-3 and 0.3 cm2V-1s-1, respectively. Analysis of temperature dependence electrical 

conductivity of CZTS films reveals hopping conduction and thermally activated band 

conduction at lower and higher temperatures, respectively. 
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