
 Asadi, E. F., & Richards, A. (2018). Scalable distributed model predictive
control for constrained systems. Automatica, 93, 407-414.
https://doi.org/10.1016/j.automatica.2018.03.050,
https://doi.org/10.1016/j.automatica.2018.03.050

Peer reviewed version

License (if available):
Unspecified

Link to published version (if available):
10.1016/j.automatica.2018.03.050
10.1016/j.automatica.2018.03.050

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via ELSEVIER at https://www.sciencedirect.com/science/article/pii/S0005109818301377?via%3Dihub . Please
refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/157816762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.automatica.2018.03.050
https://doi.org/10.1016/j.automatica.2018.03.050
https://doi.org/10.1016/j.automatica.2018.03.050
https://doi.org/10.1016/j.automatica.2018.03.050
https://research-information.bris.ac.uk/en/publications/scalable-distributed-model-predictive-control-for-constrained-systems(dab1e690-4e0e-4157-974d-4ad4e22a64b3).html
https://research-information.bris.ac.uk/en/publications/scalable-distributed-model-predictive-control-for-constrained-systems(dab1e690-4e0e-4157-974d-4ad4e22a64b3).html

ScalableDistributedModelPredictiveControl for

ConstrainedSystems

Fatemeh Asadi, Arthur Richards

Aerospace Engineering Department, Queens Building, University of Bristol, Bristol, UK

Abstract

A distributed model predictive control strategy is proposed for subsystems coupled through their constraints. Self-organized
Time Division Multiple Access is used to coordinate subsystem controllers in a sequence such that no two re-optimize simul-
taneously. This new approach requires no central coordination or pre-organized optimizing sequence. The scheme guarantees
satisfaction of coupled constraints despite dynamic entry and exit of subsystems.

Key words: Distributed Model Predictive Control; Constrained Systems.

1 Introduction

Controlling large-scale systems such as transport net-
works or power distribution grids in a centralized way
is often hard due to the computational scaling and
coordination requirements. Centralized control is also
prone to single points of failure, motivating interest in
distributed control systems. Model Predictive Control
(MPC) is a control technique combining constrained
optimization with feedback control [Maciejowski, 2002,
Grüne and Pannek, 2011], and schemes for Distributed
MPC (DMPC) have been discussed by Scattolini [2009],
Christofides et al. [2013], Negenborn and Maestre [2014]
and many more. This paper focusses on DMPC for
subsystems sharing a limited resource, which couples
the systems through constraints [Keviczky et al., 2006,
Kuwata et al., 2007a, Müller et al., 2012, Bourdais
et al., 2014, Tedesco et al., 2014, Lucia et al., 2015, Li
et al., 2016]. Other forms of coupling, not considered
here, are through the dynamics [Dunbar, 2007, Alessio
et al., 2011, Farina and Scattolini, 2012, Hernandez
and Trodden, 2016] or through the system-wide objec-
tive function [Borrelli and Keviczky, 2006, Dunbar and
Murray, 2006, Wang and Ong, 2010].

This paper adopts a serial DMPC scheme in which only
one subsystem controller may optimize its plan at a time.
With the plans for other subsystems therefore fixed, and
known via communication, system-wide feasibility is this

Email addresses: elham.asadi@bristol.ac.uk (Fatemeh
Asadi), arthur.richards@bristol.ac.uk (Arthur
Richards).

ensured. Previous work on serial schemes has proven its
properties, subject to the assumption of an agreed up-
dating sequence for the subsystems [Richards and How,
2007, Keviczky et al., 2004b,a, Kuwata et al., 2007a,
Trodden and Richards, 2013, Dai et al., 2015]. However,
the determination of that sequence is a centralized pro-
cess. The simple contribution of this paper is the incor-
poration of a distributed slot allocation process, inspired
by multiple access channel (MAC) sharing methods from
communications systems [Rom and Sidi, 2012]. In par-
ticular, Self-organizing Time Division Multiple Access
(STDMA) [Gaugel et al., 2013] is adopted, but instead
of allocating transmission slots for communication, here
it allocates optimization slots for re-planning.

The goal of distributed sequencing (slot allocation) is
the same in spirit with the goal of “Plug & Play (PnP)
Control” which intends to handle the distributed control
problem for systems with a changing numbers of subsys-
tems. In PnP control by adding or removing a subsys-
tem, just local controller of the subsystem under control
and subsystems influenced by it (neighbours) need to be
redesigned [Stoustrup, 2009]. PnP control methods pro-
posed by Riverso et al. [2014] and Zeilinger et al. [2013]
tackle the problem of automatically accommodating the
constant changes in system model due to adding or re-
moving one or multiple subsystems during closed-loop
operation. In both of these works, subsystems are physi-
cally coupled whereas in this paper subsystems are cou-
pled through their constraints. Barreiro-Gomez et al.
[2015] and Lucia et al. [2015] addressed the challenge
of performing network changes because of joining and
leaving subsystems with coupled constraints. The de-

Preprint submitted to Automatica March 13, 2018

centralized MPC scheme presented by Barreiro-Gomez
et al. [2015] can handle only one single coupled con-
straint on control signals.The contract-based DMPC in-
troduced by Lucia et al. [2015] guarantees the constraint
satisfaction in parallel optimization via transmission of
sequences of possible future trajectories. The proposed
method in this paper considers the particular coupling
constraints associated with sharing of limited resources.
Also in contrast to Lucia et al. [2015], our subsystems
communicate exact trajectories but with serial (one-at-
a-time) optimization and they implement a decentral-
ized approach to sequencing.

2 Self-Organized Sequencing

Consider a dynamic set of subsystems P(k) contain-
ing n(k) = |P(k)| members at each time step k. A sub-
set of these subsystems PC(k) ⊆ P(k) are in the co-
operation mode, using serial DMPC to coordinate their
actions such that shared resource limits are respected.
Let nC(k) = |PC(k)| denote the number of cooperating
subsystems. The remainder P(k) \ PC(k) remain in a
restricted safe mode, not consuming any of the shared
resources, and hence not required to communicate. Se-
rial DMPC requires a unique allocation of subsystems to
time steps, such that every step is associated to at most
one subsystem, pk ∈ PC(k)∪ {0}. At every step, the al-
located subsystem pk (if there is one, pk 6= 0) solves its
local optimal control problem and shares the resulting
intentions with the others. This section describes how
the allocation is achieved in a dynamic, self-organized
way, enabling subsystems to move from safe mode to co-
operation mode. Since this problem is analogous to slot
allocation in communications, the algorithm is based on
STDMA, which is a decentralized MAC method.

Define Lf ≥ 1 to be the frame length, i.e. the repeating
period for slot allocation, such that pk = pk+Lf

provided
pk remains in cooperation. Then Algorithm 1 presents
the procedure of self-organized sequencing for an agent
q ∈ P(k) \ PC(k) wishing to enter cooperation mode.
Since the allocation is periodic, entry involves simply
listening for one frame and then choosing an available
slot in the next frame. The possible problem is a “colli-
sion” in which two subsystems attempt to enter at the
same step, each unaware of the presence of the other.
This event is detected by both subsystems and a random
back-off time is employed to avoid deadlock.

Leaving the cooperation is achieved by stopping trans-
mission, indicating to others that the slot is again avail-
able. Thus, unlike the communications case where slot
allocations have finite lifetime, a slot belongs to a sub-
system indefinitely until that subsystem relinquishes it.
The control constraints associated with entry and leav-
ing are described in Section 4.

Assumption 1 (Frame Length) The frame lengthLf

Algorithm 1 Entry into Cooperation Mode

Require: Subsystem ID q, initial time k1
1: Listen for Lf steps to determine {pk1

, . . . , pk1+Lf
}

2: Identify offsets of free slots: Jfree = {j ∈
[0, . . . , Lf] | pk1+j = 0}

3: if no free slot, Jfree = ∅ then
4: Try again: go to Step 1
5: else
6: Choose free slot at random, ĵ ∈ Jfree
7: Wait for slot ĵ in next frame, k = k1 + Lf + ĵ

8: Transmit current plan Y ∗p (k1 + Lf + ĵ)
9: if no other subsystem transmitted then

10: Secured pk1+ĵ+nLf
= q ∀n = 1, 2, . . . as long

as q ∈ PC(k)
11: return Success
12: else
13: Collision: wait for random number of steps
14: Try again: go to Step 1
15: end if
16: end if

is known to all subsystem controllers. This forms part
of the common interface for subsystems: it is central to
the scalability concept that the interface is standard and
known to all agents.

Remark 1 It is not necessary for all subsystem con-
trollers to define a common phasing of the frames, since
the frames are periodic [Rom and Sidi, 2012].

Remark 2 Since no more than Lf subsystems can have
slots, then the frame length Lf represents a limit on the
number of subsystems in cooperation mode: nC(k) ≤ Lf .
The choice of Lf therefore represents an important de-
sign choice, as increasing Lf means more capacity for
entering agents but a longer wait to enter, according to
Algorithm 1. A full study of this trade-off is beyond the
scope of this brief paper and the reader is directed to Asadi
and Richards [2015] for more consideration.

3 Control Problem Definition

Each subsystem p ∈ P(k) has its own dynamics,

xp(k+ 1) = fp(xp(k),up(k)) k ∈ N, ∀p ∈ P (1)

where xp ∈ RNx,p and up ∈ RNu,p are the state vector
and control input vector of subsystem p, respectively.

Remark 3 The dynamics (1) are not subject to any un-
certainty. Ideas such as the tube approach [Trodden and
Richards, 2010] could be applied to handle disturbances,
but these are omitted here for simplicity.

Each subsystem p is subject to local constraints on state
and input

xp(k) ∈ Xp (2)

2

up(k) ∈ Up (3)

and has its own local objective function, in fixed horizon
MPC form

Jp =

N−1∑
t=0

lp(xp(k+t|k),up(k+t|k), k)+Vp(xp(k+N |k), k)

(4)

where N is the number of time steps in the prediction
horizon, lp : RNx,p × RNu,p × R → R0+ represents a
stage cost, Vp is a terminal cost and the double subscript
notation (k + t|k) indicates the prediction of a variable
t steps ahead from time k. The focus of this paper is
constraint satisfaction, and hence the nature of the cost
function will not be specified in more detail. However,
the reader should note that the time variation permits
different costs to be used in different modes, and this
will be exploited later.

Define a set of shared resources L and let y`p ∈ R be the
amount of particular resource ` ∈ L by subsystem p:

y`p(k) = g`p(xp(k),up(k)) (5)

All subsystems share the limited resources L and hence
their outputs are coupled by

n∑
p=1

y`p(k) ≤ 1, ∀` ∈ L. (6)

Note each resource is scaled to have exactly one unit of
resource. Define yp(k) as the combination of all resource
usage outputs.

yp(k) := {y`p(k)}`∈L
This notation is used to enable the set of resources to be
continuous, as will appear in forthcoming examples. In
the case of a simple discrete set of resources, y will simply
be a vector. Typical vector notation will be employed in
the sequel, with y1 = y2 implying y`1 = y`2 ∀` ∈ L and
y1 ≤ y2 implying y`1 ≤ y`2 ∀` ∈ L. Also define Cn as the
set of feasible outputs for n subsystems:

Cn :=

{
(y1, . . . ,yn) |

n∑
p=1

yp ≤ 1

}
. (7)

The slot allocation process in Section 2 ensures that
every time step k is uniquely allocated to one subsys-
tem pk ∈ PC ∪ {0}. A later section will show how this
ensures constraint satisfaction. However, because the al-
location process takes some time, it is necessary to con-
sider the case of subsystems that have entered the prob-
lem but not yet secured a slot, and hence not been able
to coordinate their plans with other agents. For this rea-
son, a safe mode of operation is required for systems en-
tering (and leaving) where subsystems can not use the
shared resource. This mode requires the existence of an
invariant set with resource outputs equal to zero.

Proposition 1 Feasibility of Safe Mode

Cn × 0m ⊆ Cn+m ∀m,n (8)

The proof is trivial: adding zero does not change the
outputs, so if the first n satisfy the upper limit, so must
all n+m.

As is common for MPC, recursive feasibility will depend
on invariant set constraints. Define Fp(Yp) to be an in-
variant set of states for subsystem p satisfying output
set constraints Yp:

∀xp ∈ Fp(Yp) ∃κp(xp) ∈ Up : (9)

fp(xp, κp(xp)) ∈ Fp(Yp) (10)

yp(xp, κp(xp)) ∈ Yp (11)

The choice of these sets Fp is left to the designer. Maxi-
mal invariant sets [?] or simple equilibria conditions can
be employed.

Assumption 2 (Safe Mode Invariance) An invari-
ant set exists satisfying the conditions of safe mode,
Fp({0}) 6= ∅.

Example 1 (Power outlets) For a set of power out-
lets with total output power limited to Pmax, forming just
one shared resource L = {1}, and define a single coor-
dinating output y1p as the proportion of available power
drawn by each connected subsystem:

g1p(xp(k),up(k)) =
Pp(xp(k),up(k))

Pmax

where Pp(xp(k),up(k)) is the power consumed by subsys-
tem p dependent on its dynamic state and input.

Example 2 (Air Traffic) Consider a set of aircraft
flying at the same altitude within an airspace sec-
tor A ⊆ R2. Whilst inside the sector, aircraft are re-
quired to maintain a minimum separation Rmin. (Other
sector controllers, not considered here, provide separa-
tion outside A.) Each point in the airspace is considered
a shared resource, and separation is assured if no more
than one aircraft comes within Rmin

2 of each point. Hence
the resource set L = A and the coordinating output is

g`p =

{
1 ‖`− rp(xp)‖ < Rmin

2 ∧ rp(xp) ∈ A
0 otherwise

where rp(xp) ∈ R2 represents the position of aircraft p.
Safe mode is equivalent to rp(xp) /∈ A. For a fixed-wing
aircraft, circling flight at safe separation from all occupied
air space provides a suitable invariant set F(Y) [Kuwata
et al., 2007b].

3

4 Scalable DMPC

4.1 Overview

The ‘lifecycle’ of a subsystem q over a single interaction
with the control system is as follows:

1. Inactive: q is not part of the system and q /∈ P(k)
2. Safe: q ∈ P(k) \ PC(k) i.e. active but not yet co-

operating. q constrained such that yq(k) = 0. Al-
gorithm 1 followed until slots pk = q are secured.

3. Cooperation: q ∈ PC(k) and communication is used
to maintain system-wide feasibility

4. Leaving : q ∈ PC(k) and communication on-going.
q moves back to safe mode yq(k)→ 0

5. Safe: q ∈ P(k) \PC(k) i.e. active but no longer co-
operating. q constrained such that yq(k) = 0

6. Inactive: q is not part of the system and q /∈ P(k).

Remark 4 Note that there is no need to an “Entering”
mode as counterpart to “Leaving”. This is because all tra-
jectories in safe mode satisfy the requirements of coop-
eration mode, so the transition from safe to cooperation
can happen without waiting, as soon as a slot has been
secured. However, the converse is not true, in that not
all feasible cooperating trajectories are in safe mode, so
a transition stage is required to go from cooperation to
safe. This transition is the “Leaving” mode.

Assumption 3 (Mode change timing) Each sub-
system is equipped with some way to decide when to
enter and leave co-operation.

Remark 5 Mode change timing decisions are not part
of the control protocol itself. For the power example, en-
tering might be triggered by a command, and leaving by
a certain period of zero consumption. For air traffic, en-
tering and leaving would be triggered by location relative
to the boundary of the sector. For the remainder, all sub-
systems are assumed able to enter (move to stage 2) or
leave (move to stage 5) at any time.

4.2 MPC Optimization

Different types of constraints are applied for each sub-
system depending on its mode of operation. Fortunately,
the same formulation of MPC can be used for all of them.
The MPC problem depends on both the initial subsys-

tem state xp and a set of output constraints Ỹp(k) =
Yp(k|k)×Yp(k+ 1|k)× ...×Yp(k+N |k) dependent on
the mode of operation and communications from cooper-
ating subsystems. It optimizes a sequence of future con-
trols Up(k) = (up(k|k),up(k+ 1|k), ...,up(k+N − 1|k))
with the general set of constraints for each subsystem p
is defined as:

Pp(xp(k), Ỹp(k)) : min
Up(k)

Jp (12a)

subject to ∀t ∈ {0, ..., N − 1}:
xp(k|k) = xp(k) (12b)

xp(k + t+ 1|k) = fp(xp(k + t|k),up(k + t|k)) (12c)

yp(k + t|k) = gp(xp(k + t|k),up(k + t|k)) (12d)

xp(k + t|k) ∈ Xp (12e)

up(k + t|k) ∈ Up (12f)

yp(k + t|k) ∈ Yp(k + t|k) (12g)

xp(k +N |k) ∈ Fp(Yp(k +N |k)) (12h)

For convenience we also define output sequences:

Yp(k) = (yp(k|k),yp(k+ 1|k), ...,yp(k+N |k)) (13)

and note that Yp(k) ∈ Ỹ(k) is equivalent to yp(k+t|k) ∈
Yp(k+ t|k) ∀t ∈ {0, . . . , N}. Note that these constraints
include the terminal step output t = N although this is
not explicitly formed in the optimization. The handling
of the terminal output will be explained later in Sec-
tion 4.6. It is these output sequences that will be commu-
nicated between subsystems when in cooperation mode.

4.3 Constraints for Safe Mode

Safe mode requires yp(k) = 0, decoupled from other sub-

systems, so the constraint required is Ỹp(k) = {0}N+1

since

Yp(k) ∈ 0N+1 ⇔ yp(k+t|k) = 0 ∀t ∈ {0, ..., N} (14)

4.4 Constraints for Entering and Cooperation Mode

Define P{−p}(k) as the set of neighbours of the sub-
system p at time instance k, defined as those subsys-
tems who are cooperating with p, P{−p}(k) := PC(k) \
p = {qp,1, . . . , qp,nC(k)−1}. Note that the definition of
neighbours is only used if p ∈ PC(k). Then the con-
straints on the outputs of a subsystem p when in cooper-

ation mode are Ỹp(k) = Cp(Y{−p}(k)) where Y{−p}(k) =
{Yq(k)}q∈P{−p}(k)

is the collection of output sequences

for all neighbours of p, shared via communication, and

Cp(Y{−p}) :=
{
Yp

∣∣∣
(yp(k+t|k),yqp,1(k+t|k), ...,yqp,nC (k)−1(k+t|k))

∈ CnC(k)∀t ∈ {0, . . . , N}
}

(15)

Given the form of the coupling constraints (7), this is
equivalent to

Cp(Y{−p}) :=
{
Yp ∈ RNy(N+1)

∣∣∣ (16)

yp(k+t|k) ≤ 1−
∑

q∈P{−p}

yq(k+t|k)∀t ∈ {0, . . . , N}
}

Also define C̄n to be the set of all combinations of n fea-
sible output sequences:

C̄nC(k) :=
{
{Yp}p∈PC(k) ∈ RnNy(N+1)

∣∣∣
4

(y1(k+t|k), ..., ynC(k)(k+t|k))

∈ CnC(k)∀t ∈ {0, ..., N}
}

(17)

Then by construction

{Yp}p∈PC(k) ∈ C̄nC(k) ⇔
Yq(k) ∈ Cq(Y{−q}(k)) ∀q ∈ PC(k) (18)

4.5 Constraints for Leaving Mode

When leaving cooperation mode, the terminal state
is constrained to satisfy the requirements of safe
mode yp(k + N |k) = 0, such that the subsystem state
transitions to satisfy safe mode, yp(k) → 0. However it
must ensure feasibility with respect to neighbours before
it reaches zero output by considering published plans.
The constraints for leaving mode are therefore given by
an additional restriction on those for cooperation mode:

Lp(Y{−p}) := Cp(Y{−p}) ∩ {RNyN × {0}} (19)

Assumption 4 (Convergence of leaving mode) If
Pp(xp(k), Lp(Y{−p})) is recursively feasible then yp(k)→
0. This relies on suitable construction of the cost terms
in (4) and standard MPC results [Mayne et al., 2000].
Note that the cost is permitted to be time-varying, hence
it is acceptable for a different cost to be used in leaving
mode than in other modes, and this assumption only
affects the cost employed when in leaving mode.

4.6 Communicated Output Sequence

At time step k, the allocated subsystem pk (if there is
one) solves its optimization and communicates its output
sequence (13). Terms (yp(k|k), . . . ,yp(k+N − 1|k)) are
immediately available through constraints (12d). The fi-
nal term is used to convey the maximum resource levels
anticipated to be consumed at any subsequent step un-
der the invariance control law:

yp(k+N |k) := max
t≥N

gp(xp(k+t|k), κp(xp(k+t|k))) (20)

where the max is performed elementwise and ∀t ≥ N :

xp(k + t+ 1|k) = fp(xp(k + t|k), κp(xp(k + t|k)))

By the construction in (10) of the invariant set Fp(Yp)
employed in the terminal constraint (12h), it is known
that yp(k+N |k) ∈ Yp(k+N |k) and hence must be finite.

4.7 Construction of Tail Solution

It is common in constrained MPC for the ‘tail solution’,
a continuation of the control sequence from the preced-
ing time step, to play a role in proof of feasibility [Mayne
et al., 2000]. In serial DMPC, the tail is used explic-
itly by some subsystems if it is not their turn in the se-
quence {pk}. This can be viewed as an extreme form of
contract-based DMPC [Lucia et al., 2015] in which the
contract is reduced to a single sequence of controls. For

the MPC optimal control problem in (12) the tail is con-
structed as follows:

Ûp(U∗p (k − 1)) =

(u∗p(k|k − 1), ...,u∗p(k +N − 2|k − 1),

κp(x∗p(k − 1 +N |k − 1))) (21)

where the superscript ∗ denotes the result from the pre-
ceding time step, either from optimization or from the
preceding tail. This is bounded by the following output
tail sequence

Ŷp(Yp(k − 1)) =

(yp(k|k − 1), ...,yp(k +N − 2|k − 1),

gp(xp(k +N − 1|k − 1), κp(xp(k +N − 1|k − 1)))
(22)

Remark 6 According to the conditions (9), (10) and (11),
the state sequence ends at a control invariant set satisfy-
ing output constraints. This allows subsystems to predict
intentions of their neighbours.

4.8 Scalable DMPC Algorithm

Algorithm 2 presents the proposed scalable DMPC
method in full, drawing on the definitions above. It cov-
ers stages 2-5 of the lifecycle described in Section 4.1:
stages 1 and 6 are omitted as inactive subsystems do
nothing, if they even exist. Algorithm 2 also encodes
the basic ‘rules’ of the distributed control scheme:

• A subsystem is restricted to safe mode yp ∈ {0} unless
it is cooperating with others, sharing its intentions Yp
using its allocated time slots.
· A subsystem may not leave safe mode before it has

secured an allocated slot.
· A subsystem may not cease cooperation and relin-

quish its allocated slot before returning to safe mode.
• A cooperating subsystem is restricted to its tail se-

quence unless the current time step is its allocated
slot.

In the following, ∗ denotes the adopted controls or inputs,
which may be determined either by optimization or use
of the tail according to Algorithm 2 and communicated
between subsystems.

Recursive feasibility is considered in the following sec-
tion. Note however that it is not possible to guaran-
tee feasibility a priori of the optimization for leaving
mode Pq(xq(k), Lq(Y ∗{−q}(k))) since its constraints are

tighter than those for cooperation mode,

Lq(Y ∗{−q}(k)) ⊆ Cq(Y ∗{−q}(k)), (23)

according to (19). Therefore the algorithm checks for
feasibility of leaving mode and reverts to the cooperation
mode problem in case of infeasibility.THis does raise the
prospect of deadlock: there is no guarantee of being able
to leave.

5

Algorithm 2 Updating plan of subsystem q at time k

Require: Slot allocations {pk},
neighbours’ plans Y ∗{−q}(k − 1),

mode of q { safe, entering, cooperation, leaving }
1: Determine state xq(k)
2: if mode of q is ‘safe’ then
3: Solve Pq(xq(k), {0}N+1)
4: if q wants ‘enter’ the ‘cooperation’ then
5: Follow next step of Algorithm 1
6: if Algorithm 1 returned Success then
7: Set mode of q to ‘cooperation’
8: end if
9: end if

10: else
11: if pk−1 6= 0 then
12: Receive neighbour update Y ∗pk−1

(k − 1)
13: end if
14: Update neighbours’ plans Y ∗{−q}(k) using tails:

Y ∗p (k)← Ŷ (Y ∗p (k − 1)) ∀p ∈ P{−q}(k − 1)
15: if pk 6= q then . Slot does not belong q
16: Get own plan from tail U∗q (k) = Û(U∗q (k−1))
17: else . turn of q to optimize
18: if mode of q is ‘entering’ or ‘cooperation’

then
19: Solve Pq(xq(k),Cq(Y ∗{−q}(k)))

20: Transmit Y ∗q (k) to neighbours P{−q}(k)
21: else . Mode of q must be ’leaving’
22: Try to solve Pq(xq(k), Lq(Y ∗{−q}(k)))

23: if feasible then
24: if Y ∗q (k) ∈ {0} thenN+1 and x∗q(k +

N |k) ∈ Fq({0}
25: Set mode of q to ‘safe’

. No transmission: giving up slot
26: else . Keep slot until back to safety
27: Transmit Y ∗q (k) to P{−q}(k)
28: end if
29: else . Leaving opt. was infeasible
30: Solve Pq(xq(k),Cq(Y ∗{−q}(k)))

31: Transmit Y ∗q (k) to P{−q}(k)
32: end if
33: end if
34: end if
35: end if
36: Apply control uq(k) = u∗q(k|k)

5 Feasibility of Scalable DMPC

At the system-wide scale, the progression of the algo-
rithm at each time step can be divided into four signifi-
cant cases:

1. pk = 0 and no subsystem enters
2. pk = 0 and a subsystem uses the opportunity to

enter cooperation
3. pk 6= 0 and subsystem pk re-optimizes and remains

in cooperation

4. pk 6= 0 and subsystem pk re-optimizes and leaves
cooperation

In parallel, any number of subsystems may remain in
safe mode, or enter safe mode from an inactive state, or
leave safe mode to become inactive. Note that if two or
more subsystems attempt to enter at the same empty
slot pk, this is detected as a collision according to Algo-
rithm 1, and none of them can enter. This section con-
siders recursive feasibility and constraint satisfaction of
the whole DMPC scheme. Stability is beyond the scope
of this paper. The proof will be based on recursion, start-
ing with a common standing assumption.

Assumption 5 At time k0, all subsystems have feasible
plans, with {Y ∗p (k0)}p∈PC(k0) ∈ C̄nC(k0) and Y ∗p (k0) ∈
{0}N+1 ∀p ∈ P(k0) \ PC(k0), and control sequences
U∗p (k0) satisfying the constraints of their local optimiza-
tions Pp(xp(k0), ·).

Proposition 2 (System-wide feasibility at k0)
The combination of all subsystems, in safe, entering,
cooperation and leaving modes, satisfy

{Y ∗p }p∈P(k0) ∈ C̄n(k0) (24)

Proof: Note that the constraints on entering mode is
same as cooperation mode and the constraints on leav-
ing mode are tighter than those on cooperation mode ac-
cording to (23). So, subsystems in entering and leaving
modes can be assumed to satisfy constraints on coopera-
tion mode. Then Assumption 5 implies ∀t ∈ {0, ..., N} :

(y∗1(k0+t|k0), ...,y∗nC(k0)
(k0+t|k0)) ∈ CnC(k0) (25)

and y∗p(k0 + t|k0) ∈ {0} ∀p ∈ P(k) \ PC(k) so by the
requirements for safe mode (8) it follows that ∀t ∈
{0, ..., N} : (y∗1(k0+t|k0), ...,y∗n(k0)

(k0+t|k0)) ∈ Cn(k0)

which is equivalent to (24). 2

Proposition 3 (Recursive feasibility in safe mode)
For any subsystem in safe mode p ∈ P(k) \ PC(k),
optimization Pp(xp(k0 + 1), {0}N+1) is feasible.

Proof: Safe mode is standard MPC with invariant
terminal conditions and constant constraints, accord-
ing to (14). The tail solution (21) is feasible ensuring
feasibility of the optimization. 2

Proposition 4 (Case 1: no update or entry) If
pk0

= 0 and PC(k0 + 1) = PC(k0), then

{Y ∗p (k0 + 1)}p∈PC(k0+1) ∈ C̄nC(k0+1) (26)

and

Y ∗p (k0+1) ∈ {0}N+1 ∀p ∈ P(k0+1)\PC(k0+1) (27)

Proof: In this case, all cooperating subsystems adopt
their tail solutions giving Y ∗p (k0 + 1) = Ŷ (Y ∗p (k0)) ∀p ∈

6

PC(k0 + 1) and hence

(y∗1(k0+t|k0 + 1), ...,y∗nC(k0)
(k0+t|k0 + 1)) =

(y∗1(k0+t|k0), ...,y∗nC(k0)
(k0+t|k0)), t = 1..N

(28a)

(y∗1(k0+N + 1|k0 + 1), ...,y∗nC(k0)
(k0+N + 1|k0 + 1)) =

(g1(x∗1(k0+N |k0), κ1(x∗1(k0+N |k0))), ...,

gnC(k0)(x
∗
nC(k0)

(k0+N |k0), κnC(k0)(x
∗
nC(k0)

(k0+N |k0))))

(28b)

and (25) shows each of those combinations to be feasible.
(27) follows from Proposition 3. 2

Proposition 5 (Case 2: subsystem entry) If pk0
=

0 and a new subsystem entersPC(k0+1) = PC(k0)∪{q},
then

{Y ∗p (k0 + 1)}p∈PC(k0+1) ∈ C̄nC(k0+1) (29)

and

Y ∗p (k0+1) ∈ {0}N+1 ∀p ∈ P(k0+1)\PC(k0+1) (30)

Proof: Since the subsystems already in coopera-
tion will adopt their tail solutions, it follows from
Proposition 4 that {Y ∗p (k0 + 1)}p∈PC(k0) ∈ C̄nC(k0)

i.e. that the adopted plans of those subsystems
remain mutually feasible. Furthermore, the trans-
mitted plan of (step 8 of Algorithm 1) must sat-
isfy Y ∗q (k0 + 1) ∈ Cq(Y{−q}(k0 + 1)). Since q can only

be entering from safe mode, Y ∗q (k0) ∈ {0}N+1. So,

the tail solution of q is Ŷ (Y ∗q (k0)) ∈ {0}N+1 which
satisfies Y ∗q (k0 + 1) ∈ Cq(Y{−q}(k0 + 1)). Thus fol-
lowing the same reasoning as Proposition 2 gives
(Y ∗q (k0 + 1), {Y ∗p (k0 + 1)}p∈PC(k0)) ∈ C̄nC(k0)+1 which
is equivalent to (29). (30) for the subsystems remaining
in safe mode follows from Proposition 3. 2

Proposition 6 (Case 3: subsystem update) If
pk0 = q 6= 0 then Pq(xq(k0 + 1),Cq(Y ∗{−q}(k0 + 1))) is

feasible and the result satisfies

{Y ∗p (k0 + 1)}p∈PC(k0+1) ∈ C̄nC(k0+1) (31)

and

Y ∗p (k0+1) ∈ {0}N+1 ∀p ∈ P(k0+1)\PC(k0+1) (32)

Proof: Proposition 4 has shown that the tail solu-
tions satisfy the system-wide constraints C̄nC(k0+1) and

from (18) it follows that Ŷ (Y ∗q (k0)) ∈ Cq(Y ∗{−q}(k0 + 1))

since Y ∗{−q}(k0+1) must also be constructed from the rel-

evant tail solutions. Therefore Ŷ (Y ∗q (k0)) is known a pri-
ori to be a solution to Pq(xq(k0 + 1),Cq(Y ∗{−q}(k0 + 1)))

which is thus proved feasible. Then since Y ∗q (k0 + 1) ∈
Cq(Y ∗{−q}(k0+1)) is directly enforced by constraint (12g)

then the equivalence (18) proves (31). (32) follows from
Proposition 3. 2

Proposition 7 (Case 4: subsystem leaving) If
pk0

= q 6= 0 and subsystem q leaves PC(k0 + 1) =
PC(k0) \ {q}, then

{Y ∗p (k0 + 1)}p∈PC(k0+1) ∈ C̄nC(k0+1) (33)

and

Y ∗p (k0+1) ∈ {0}N+1 ∀p ∈ P(k0+1)\PC(k0+1) (34)

Proof: Definition 7 ensures that any subset of fea-
sible outputs will be also mutually feasible. Hence,
{Y ∗p (k0)}p∈PC(k0)\q ∈ C̄nC(k0)−1. Then from Proposi-
tion 4 it follows that adoption of the tails by all sub-
systems p ∈ PC(k0) \ q gives {Y ∗p (k0 + 1)}p∈PC(k0)\q ∈
C̄nC(k0)−1 which is equivalent to (33). According
to Step 22 of Algorithm 2, subsystem q can only
leave if Y ∗q (k0 + 1) ∈ {0}N+1 and Y ∗p (k0 + 1) ∈
{0}N+1 ∀p ∈ P(k0) \ Pc(k0) follows from Proposition 3
hence (34) is satisfied since P(k0 + 1) \ PC(k0 + 1) =
(P(k0) \ Pc(k0)) ∪ q. 2

Theorem 1 Algorithm 2 ensures

{Y ∗p (k)}p∈P(k) ∈ C̄n(k) (35)

and hence satisfaction of coupling constraints (2) for all
k > k0.

Proof: Propositions 4–7 have shown that condi-
tions (33) and (34) are satisfied by recursion in every
case, and Proposition 2 has shown that these conditions
imply (35). 2

6 Numerical Example

In this section, the proposed scalable DMPC scheme is
applied to the air traffic problem in one airspace sector
denoted by A. Each aircraft has its own objective and
dynamics. The coupling constraint has been expressed
in Example 2 and set {0} has been defined in Example 4.
Constraint satisfaction inside the controlled area is as-
sured providing no two aircraft re-plan at the same time.
The challenge is to handle the dynamic nature of the
controlled area, agreeing a sequence for re-planning with
aircraft constantly entering and leaving; this is done by
self-organized sequencing.
ATM problem has been simulated using Dubins’ car
model with speed and turn curvature as control inputs,
each subject to limits [Balluchi et al., 1996]. All aircraft
have the constant altitude flight and the objective of each
is to minimize the flight time from the initial point to
the destination, although the non-linear optimizer will
admit a wider variety of costs. All aircraft need to fly
through the controlled area in order to reach the des-
tination. For each aircraft, a collision free loitering cir-
cle found at the end of horizon defines its set of invari-
ant states [Schouwenaars et al., 2004]. To provide dif-
ferentiable representation of the avoidance constraints
which is compatible with gradient-based nonlinear op-
timizer, exclusion regions are modeled by the polar set

7

method [Patel and Goulart, 2011].
The program has been executed for 1000sec and 80 air-
craft have been added to the network in random times.
The time horizon and the frame length both are 10
(N = 10, Lf = 10). Figure 1 shows a snapshot of the
controlled area during running the program in which
agent 2 is leaving the cooperation and agents 9, 10 and
11 are still in the safe mode and trying to get a time slot
in the network for entering the cooperation. Figure 2 de-
picts generated trajectories of all aircraft. The relative
distance between all pairs of agents during their flights
in the controlled area is demonstrated in Figure 3. Al-
though the pairwise separations in this figure are hard
to observe in detail, the clear conclusion is that no trace
ever goes below safety distance, verifying that separa-
tion has not lost between any pairs.

1

2

3

4

5

6

7

8

9

10

11

Figure 1. One snapshot from the controlled area

Figure 2. Generated trajectories by scalable DMPC

200 400 600 800 1000

0

50

100

150

Time

R
el

at
iv

e
D

is
ta

nc
e

R
min

Figure 3. Relative distance between agents in the controlled
area

7 Conclusion

In this work a distributed control algorithm has been
presented for a system in which different subsystems join
or leave dynamically. The coupling sources between the
subsystems are output constraints which do not permit
simultaneous re-planning. Serial optimization can solve
this problem but would require a centralized coordina-
tion of the re-planning sequence which is not scalable.
Instead, this work suggests that each subsystem finds its
optimization slots in the network by following an algo-
rithm based on the STDMA communication protocol.
Although there is a certain level of conservativeness in
any method working based on the serial scheme, scalable
DMPC method gives the opportunity to do more with
the limited frame length because subsystems can enter
and leave. However, if subsystems try to enter the net-
work faster than subsystems try to leave, a logged jam
can happen and no further subsystem can enter.
Future work will explore the case of having several co-
operation groups. This is motivated by the air traffic
control problem, where aircraft in each airspace sector
are considered as one cooperation group and aircraft can
travel between different airspace sectors. Also, the possi-
bility of having parallel optimizations for subsystems in
different cooperation groups will be examined. Further-
more, sensitivity to the tuning parameters such as plan-
ning horizon, the frame length and rate of re-planning
will be investigated.

References

Alessio, A., Barcelli, D., and Bemporad, A. (2011). De-
centralized model predictive control of dynamically
coupled linear systems. Journal of Process Control,
21(5):705–714.

Asadi, F. and Richards, A. (2015). Ad hoc distributed
model predictive control of air traffic management. In

8

16th {IFAC}Workshop on Control Applications of Op-
timization CAO, volume 48, pages 68 – 73, Garmisch-
Partenkirchen, Germany.

Balluchi, A., Bicchi, A., Balestrino, A., and Casalino,
G. (1996). Path tracking control for dubin’s cars. In
Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, volume 4, pages
3123–3128. IEEE.

Barreiro-Gomez, J., Obando, G., Ocampo-Martinez, C.,
and Quijano, N. (2015). Making Non-Centralized
a Model Predictive Control Scheme by Using Dis-
tributed Smith Dynamics. IFAC-PapersOnLine,
48(23):501–506.

Borrelli, F. and Keviczky, T. (2006). Distributed lqr
design for dynamically decoupled systems. In Decision
and Control, 2006 45th IEEE Conference on, pages
5639–5644. IEEE.

Bourdais, R., Buisson, J., Dumur, D., Guéguen, H.,
and Moroşan, P. (2014). Distributed mpc under cou-
pled constraints based on dantzig-wolfe decomposi-
tion. In Distributed Model Predictive Control Made
Easy, pages 101–114. Springer.

Christofides, P. D., Scattolini, R., de la Peña, D. M.,
and Liu, J. (2013). Distributed model predictive con-
trol: A tutorial review and future research directions.
Computers & Chemical Engineering, 51:21–41.

Dai, L., Xia, Y., Gao, Y., Kouvaritakis, B., and Cannon,
M. (2015). Cooperative distributed stochastic mpc for
systems with state estimation and coupled probabilis-
tic constraints. Automatica, 61:89–96.

Dunbar, W. B. (2007). Distributed receding horizon con-
trol of dynamically coupled nonlinear systems. Au-
tomatic Control, IEEE Transactions on, 52(7):1249–
1263.

Dunbar, W. B. and Murray, R. M. (2006). Distributed
receding horizon control for multi-vehicle formation
stabilization. Automatica, 42(4):549–558.

Farina, M. and Scattolini, R. (2012). Distributed pre-
dictive control: a non-cooperative algorithm with
neighbor-to-neighbor communication for linear sys-
tems. Automatica, 48(6):1088–1096.

Gaugel, T., Mittag, J., Hartenstein, H., Papanastasiou,
S., and Strom, E. G. (2013). In-depth analysis and
evaluation of self-organizing tdma. In Vehicular Net-
working Conference (VNC), 2013 IEEE, pages 79–86.
IEEE.

Grüne, L. and Pannek, J. (2011). Nonlinear model pre-
dictive control: theory and algorithms. Springer.

Hernandez, B. and Trodden, P. (2016). Distributed
model predictive control using a chain of tubes. arXiv
preprint arXiv:1603.02044.

Keviczky, T., Borrelli, F., and Balas, G. J. (2004a). Hier-
archical design of decentralized receding horizon con-
trollers for decoupled systems. In Decision and Con-
trol, 2004. CDC. 43rd IEEE Conference on, volume 2,
pages 1592–1597. IEEE.

Keviczky, T., Borrelli, F., and Balas, G. J. (2004b). A
study on decentralized receding horizon control for
decoupled systems. In American Control Conference,

2004. Proceedings of the 2004, volume 6, pages 4921–
4926. IEEE.

Keviczky, T., Borrelli, F., and Balas, G. J. (2006).
Decentralized receding horizon control for large
scale dynamically decoupled systems. Automatica,
42(12):2105–2115.

Kuwata, Y., Richards, A., Schouwenaars, T., and How,
J. P. (2007a). Distributed robust receding horizon
control for multivehicle guidance. Control Systems
Technology, IEEE Transactions on, 15(4):627–641.

Kuwata, Y., Richards, A., Schouwenaars, T., and How,
J. P. (2007b). Distributed robust receding horizon
control for multivehicle guidance. Control Systems
Technology, IEEE Transactions on, 15(4):627–641.

Li, H., Shi, Y., and Yan, W. (2016). Distributed receding
horizon control of constrained nonlinear vehicle for-
mations with guaranteed γ-gain stability. Automat-
ica, 68:148–154.

Lucia, S., Kögel, M., and Findeisen, R. (2015). Contract-
based predictive control of distributed systems with
plug and play capabilities. IFAC-PapersOnLine,
48(23):205–211.

Maciejowski, J. M. (2002). Predictive control: with con-
straints. Pearson education.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert,
P. O. (2000). Constrained model predictive control:
Stability and optimality. Automatica, 36(6):789–814.

Müller, M. A., Reble, M., and Allgöwer, F. (2012).
Cooperative control of dynamically decoupled sys-
tems via distributed model predictive control. In-
ternational Journal of Robust and Nonlinear Control,
22(12):1376–1397.

Negenborn, R. R. and Maestre, J. (2014). Distributed
model predictive control: An overview and roadmap of
future research opportunities. Control Systems, IEEE,
34(4):87–97.

Patel, R. B. and Goulart, P. J. (2011). Trajectory gen-
eration for aircraft avoidance maneuvers using online
optimization. Journal of guidance, control, and dy-
namics, 34(1):218–230.

Richards, A. and How, J. P. (2007). Robust distributed
model predictive control. International Journal of
control, 80(9):1517–1531.

Riverso, S., Farina, M., and Ferrari-Trecate, G. (2014).
Plug-and-play model predictive control based on ro-
bust control invariant sets. Automatica, 50(8):2179–
2186.

Rom, R. and Sidi, M. (2012). Multiple access protocols:
performance and analysis. Springer Science & Busi-
ness Media.

Scattolini, R. (2009). Architectures for distributed and
hierarchical model predictive control–a review. Jour-
nal of Process Control, 19(5):723–731.

Schouwenaars, T., How, J., and Feron, E. (2004). Reced-
ing horizon path planning with implicit safety guaran-
tees. In American Control Conference, 2004. Proceed-
ings of the 2004, volume 6, pages 5576–5581. IEEE.

Stoustrup, J. (2009). Plug & Play Control: Control Tech-
nology Towards New Challenges. European Journal

9

of Control, 15(3-4):311–330.
Tedesco, F., Raimondo, D. M., and Casavola, A. (2014).

Collision avoidance command governor for multi-
vehicle unmanned systems. International Journal of
Robust and Nonlinear Control, 24(16):2309–2330.

Trodden, P. and Richards, A. (2010). Distributed
model predictive control of linear systems with persis-
tent disturbances. International Journal of Control,
83(8):1653–1663.

Trodden, P. and Richards, A. (2013). Cooperative dis-
tributed mpc of linear systems with coupled con-
straints. Automatica, 49(2):479–487.

Wang, C. and Ong, C.-J. (2010). Distributed model
predictive control of dynamically decoupled systems
with coupled cost. Automatica, 46(12):2053–2058.

Zeilinger, M., Pu, Y., Riverso, S., Ferrari-Trecate, G.,
and Jones, C. (2013). Plug and play distributed model
predictive control based on distributed invariance and
optimization. 52nd IEEE Conference on Decision and
Control, pages 5770–5776.

10

