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Abstract 1 

It is normal for hosts to be coinfected by parasites. Interactions among coinfecting species 2 

can have profound consequences, including changing parasite transmission dynamics, 3 

altering disease severity, and confounding attempts at parasite control. Despite the 4 

importance of coinfection, there is currently no way to predict how different parasite 5 

species may interact with one another, nor the consequences of those interactions. Here 6 

we demonstrate a method that enables such prediction by identifying two nematode 7 

parasite groups based on taxonomy and characteristics of parasitological niche. From an 8 

understanding of the interactions between the two defined groups in one host system (wild 9 

rabbits), we predict how two different nematode species, from the same defined groups, 10 

will interact in coinfections in a different host system (sheep), and then we test this 11 

experimentally. We show that as predicted, in coinfections, the blood-feeding nematode 12 

Haemonchus contortus suppresses aspects of the sheep immune response, thereby 13 

facilitating the establishment and / or survival of the nematode Trichostrongylus 14 

colubriformis; and that the T. colubriformis-induced immune response negatively affects 15 

H. contortus. This work is the first to use empirical data from one host system to 16 

successfully predict the specific outcome of a different coinfection in a second host 17 

species. The study therefore takes the first step in defining a practical framework for 18 

predicting interspecific parasite interactions in other animal systems. 19 

20 
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Introduction 1 

Coinfecting parasite species can interact with one another potentially altering both within-2 

host infection dynamics [1-3] and between-host transmission (e.g. by increasing or 3 

decreasing parasite reproductive output or by altering host susceptibility) [2, 4-7]. In turn, 4 

changes in infection dynamics within hosts can alter host disease severity and / or duration 5 

[8-10] and may directly or indirectly confound attempts to control parasite infection [3, 11, 6 

12]. In most cases, whether or not particular parasite species interact, and the nature of 7 

such interactions, are unknown. Despite the important consequences of coinfection, the 8 

potential interactions among parasites are, therefore, rarely considered in either clinical 9 

settings or during the design of infection control programmes. One possible solution to this 10 

problem would be to discover and define rules that determine when and how parasites 11 

interact. Such a concept has been explored at a broad-scale for macroparasite-12 

microparasite interactions using a meta-analysis of different infection combinations in mice 13 

[13]. This meta-analysis demonstrated that macroparasite-microparasite coinfection 14 

would normally result in increased numbers of microparasites due to helminth-induced 15 

impairment of the anti-microparasite immune response, but that such effects would be 16 

moderated where resource competition was also present. This was a seminal contribution 17 

to the field of coinfection biology, highlighting the potential to predict coinfection using 18 

easily obtained parasite traits. However, due to the necessarily broad categorisations in 19 

this analysis, and the focus on a single model host system, application of these findings 20 

in a clinical or public health setting is difficult. Two key questions therefore follow logically 21 

from this meta-analysis: i) can predictions also be made at a species-specific scale 22 

appropriate for use in clinical and public heath settings? and ii) can patterns of parasite 23 

interspecific interaction be robustly predicted across different host species?  24 

 25 
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In earlier work we demonstrated, using previously published data, that if parasites were 1 

grouped according to both the immune responses they stimulate and those which affect 2 

them [14], it was possible to predict the result of a coinfection. This approach was limited, 3 

however, by the necessity for detailed immunological data for each of the coinfecting 4 

parasites. Here we develop and extend this approach by using taxonomic and parasite 5 

niche traits (i.e. resource use, site of infection) to assign parasite species to groups, 6 

making the assumption that organisms assigned to these groups will interact with the host 7 

immune system in a similar fashion to one another. Subsequently, we infer what the 8 

immune interaction of each parasite group will be with its host, and hence the likely 9 

immune relationship between the groups, based on a known example of a coinfection 10 

interaction between representative species from those groups. 11 

 12 

In a previous study of the parasite community of wild rabbits (Oryctolagus cuniculus), we 13 

described a range of interspecific interactions, including the interaction between two gut 14 

nematodes; the blood-feeding stomach worm Graphidium strigosum and the intestinal 15 

worm Trichostrongylus retortaeformis, a mucosal-browser [3]. We showed that an 16 

increasing abundance of G. strigosum was associated with increased infection intensity 17 

of T. retortaeformis but, conversely, that the presence of T. retortaeformis was associated 18 

with a reduced intensity of G. strigosum. We further proposed that these effects occurred 19 

because (i) G. strigosum down-regulated anti-worm immune response in the host, and T. 20 

retortaeformis was given an advantage by this suppression, while (ii) T. retortaeformis 21 

induced an immune response which, though reduced in coinfection, acted against G. 22 

strigosum [3]. In sheep, there are parasite species that are taxonomically and functionally 23 

equivalent to the parasite groups found in the rabbit; specifically, the nematode 24 

Haemonchus contortus, which lives in the abomasum (stomach) of the sheep and feeds 25 

on host blood, and Trichostrongylus colubriformis, which lives down-stream in the small 26 
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intestine and feeds on the host mucosa. We predict that these two parasites of sheep will 1 

interact with the same pattern, and by the same process, as the functionally equivalent 2 

parasite species in the rabbit. This is the first empirical attempt to predict the 3 

consequences of a hitherto untested interspecific interaction and to do so using data from 4 

different host and parasite species.  5 

 6 

Not all parasitic nematodes are equal in the immune responses that they stimulate, or that 7 

which affects them [15, 16]. While the immune control of the majority of gut nematodes is 8 

associated with a T-helper cell 2 (Th2) immune response [17, 18], many nematodes are 9 

able to subvert this response to varying degrees. Such immunomodulation may be 10 

particularly important for blood-feeding species. These nematodes are usually very 11 

harmful to their host, causing both tissue damage and anaemia, with heavy infections 12 

sometimes proving fatal [19]. In addition, blood-feeding nematodes are frequently found 13 

at a high prevalence in their host populations [20, 21]. Therefore, it would be reasonable 14 

to expect hosts to evolve strong immune responses against blood-feeding nematodes. 15 

Yet age-prevalence and age-intensity curves for these parasites show that they cause 16 

chronic infections and / or repeatedly re-infect the host [20], suggesting that immune 17 

responses are functionally unsuccessful against them. Further, many blood-feeding 18 

nematode species have been shown to have wide-ranging immunomodulatory capacities 19 

(e.g. Ancylostoma duodenale, A. caninum, Necator americanus, Angiostrongylus 20 

cantonensis, H. contortus [22-26]). While these species do induce a strong Th2 response 21 

[23, 27], many simultaneously subvert that response through a range of mechanisms [28]. 22 

These immunomodulatory effects may have consequences for other coinfecting parasite 23 

species. In contrast to blood-feeding nematode species, Trichostrongylus spp. browses 24 

on intestinal mucosa and bacteria, and shows limited invasion and penetration into host 25 

tissues [29]. These nematodes tend to produce shorter lived infections than those of 26 
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blood-feeding species, being more rapidly and effectively controlled by the host [30, 31]. 1 

While there is evidence that Trichostrongylus spp. may have some immunomodulatory 2 

capacity, it does not appear to be as immunologically broad ranging as that observed 3 

among the blood-feeding species [16, 32]. Further evidence of the different immune 4 

responses to these parasite groups is seen in rabbits, where the temporal pattern of 5 

natural and laboratory infections suggests that T. retortaeformis is effectively removed by 6 

the host while G. strigosum is not [3, 33]. In summary, we therefore propose that how 7 

these two parasite groups interact with their hosts’ immune responses will result in 8 

predictable interspecific interactions.  9 

 10 

Here we test our hypothesis in sheep experimentally coinfected with H. contortus and T. 11 

colubriformis (comparing them to sheep mono-infected with each species, and with 12 

uninfected controls), by measuring nematode intensity and the host immune response. 13 

We specifically predict that in coinfections (i) the blood-feeding H. contortus will suppress 14 

aspects of the host immune response, thereby facilitating the establishment and / or 15 

survival of T. colubriformis and (ii) the T. colubriformis-induced immune response will 16 

negatively affect H. contortus.  17 

 18 

Materials and Methods 19 

Pre-infection Protocol 20 

Following approval by the FD McMaster Laboratory, Chiswick, Animal Ethics Committee, 21 

at weaning, 132 Merino wethers (castrated rams) were brought into CSIRO Livestock 22 

Industries animal house where faecal samples were analysed using a modified McMaster 23 

technique (as in [34]) to diagnose any helminth infection. Animals were then treated with 24 

a mixture of Abamectin and Praziquantel, Levamisole, and Benzimidazole, using the 25 

manufacturers’ recommended doses. Twelve days later a second faecal screen for 26 
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helminth infection was performed to confirm that animals were helminth free. All animals 1 

were blood sampled via jugular venepuncture to provide a pre-infection baseline immune 2 

and health status measure. Animals were then assigned to one of four treatment groups 3 

using a stratified random assignment (where groups were balanced for body mass, body 4 

condition and original faecal egg count). The four treatment groups were: (i) control, 5 

uninfected (n=12), (ii) H. contortus mono-infected (n=40), (iii) T. colubriformis mono-6 

infected (n=40), or (iv) H. contortus and T. colubriformis coinfected (n=40) (Fig. 1).  7 

 8 

Infections and Sampling 9 

An overview of the experimental protocol is shown in Fig. 1. Animals in the coinfected and 10 

mono-infected groups were each infected twice weekly for ten weeks with 300 larvae of 11 

H. contortus and / or 1500 larvae of T. colubriformis. For animals in the coinfection groups, 12 

doses of both parasite species were given simultaneously as an additive dose. Differential 13 

dosing was used because of the different size and pathogenicity of the two helminth 14 

species, T. colubriformis being considerably smaller and less pathogenic than H. contortus 15 

[35]. Animals in the control, uninfected group were handled in the same manner as other 16 

animals. Throughout the experiment animals where maintained on raised slatted floors to 17 

prevent self-reinfection, provided fresh water ad libitum, and fed daily with a ration of 700 18 

g of standard pellets consisting of lucerne (500 g/kg), wheat (100 g/kg), pollard (200g/kg), 19 

bran (160 g/kg), salt (20 g/kg) and ammonium chloride (20 g/kg), the quantity of which 20 

was set for normal growth.  21 

 22 

At weeks 6, 10, 14 and 18 post initial infection (where initial infection indicates the first day 23 

of larval dosing) all animals were blood sampled, as above, and body mass and body 24 

condition (assessed using industry standard scale of 0 to 5, 25 

www.lifetimewool.com.au/conditionscore.aspx) were recorded. At each of these four 26 
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sample points a sub-set of animals (10 for each infection group, and 3 for the control, 1 

uninfected group) were humanely slaughtered and tissue collected, and processed as 2 

described below.  3 

 4 

Worm Counts 5 

From killed animals the abomasum and small intestine were sampled in sections, placed 6 

into separate dissecting trays, the tissue opened and the contents gently washed into 7 

collecting jars to remove all adult nematodes. The number of worms in sub-samples was 8 

then counted to determine the total number of worms of each species infecting each 9 

animal. Samples of abomasal and jejunal tissues (4 cm2 squares) were fixed in Bouin’s 10 

solution for later histological analysis. H. contortus larvae can developmentally arrest 11 

within the host at the L4 stage, a form of diapause known as hypobiosis. Hypobiosis does 12 

not occur in the strain of T. colubriformis used in our study. Remaining abomasal tissue 13 

was, therefore, digested in phosphate buffered saline containing 10% v/v HCl to release 14 

any arrested H. contortus fourth stage larvae, which were then counted.  15 

 16 

Measures of Immune Response 17 

We measured the number of immune cells in the fixed abomasal and jejunal tissue, which, 18 

following standard sectioning, were stained with haematoxylin and eosin, and toluidine 19 

blue [36]. For both tissue samples, cell counts and scores were estimated per villus-crypt 20 

unit (i.e. from the tip of one villus to the next). For the abomasal tissue, we determined the 21 

number of globule leukocytes, mast cells, eosinophils, and scores for lymphocyte 22 

infiltration (0 = no infiltration, to 4 = heavy infiltration). For jejunal tissue the same cell 23 

counts and scores were made, but in addition the number of goblet cells, and a score of 24 

the proportion of goblet cells containing granules (0 = no cells contained granules, to 5 = 25 
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most cells contained granules) were also recorded, together with a score of the thickness 1 

of the smooth muscle layer (0 = very thin, to 4 = thick).  2 

 3 

We determined the concentration of IgG1 antibodies against H. contortus and against T. 4 

colubriformis L3 antigens using previously described ELISAs [36, 37].  5 

 6 

Statistical analyses 7 

One animal was removed from the control group prior to infection due to ill health, leaving 8 

a control group sample size of 11 animals. One animal was also removed from each of 9 

the coinfection and H. contortus mono-infection groups prior to the 6 week sample point, 10 

due to ill health unrelated to the helminth infections, leaving a sample size of 39 sheep for 11 

each of these two groups. A small number of other sampling losses, due to processing 12 

problems are detailed in S1, which provides an overview of sample size by sample point 13 

for all analyses.  14 

 15 

Analyses were conducted in R v3.1.2 [38]. The effect of infection treatment group on the 16 

number of adult T. colubriformis worms, the number of adult H. contortus worms, and the 17 

number of H. contortus arrested larvae were assessed in three general linear models 18 

(GLMs). Infection group (mono- or coinfected), days post initial infection (i.e. cull day; 19 

included as a categorical variable) and their interaction were included as independent 20 

variables. In addition, the faecal egg count pre-anthelminthic treatment, and animals' total 21 

gain in mass were also accounted for by inclusion as independent terms. Following 22 

preliminary model assessments, the number of arrested larvae of H. contortus was square 23 

root transformed (sqrt(x+1)) to normalize the residuals of that GLM. Neither Poisson nor 24 

negative binomial error distributions provided better model fits for any model (S2). 25 

 26 
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We used two steps to determine how treatment group affected the measures of immune 1 

responses in the abomasum and jejunum. First, two principal components analyses were 2 

conducted separately on the abomasal and jejunal measures of immune responses, using 3 

a singular value decomposition of the centered and scaled data matrix [39]. All scores 4 

where treated as numeric data and scaling was applied. The measures of the abomasal 5 

immune responses were compared between the H. contortus mono- and coinfection 6 

groups; and measures of the jejunal immune responses were compared between T. 7 

colubriformis mono- and coinfection groups; in both cases this separation reflects the 8 

location of these species within the animals. The principal component (PC) explaining the 9 

majority of the variation in each analysis was then used as the dependent variable in a 10 

GLM where treatment group, time of sampling, and their interaction, were the explanatory 11 

variables. Models were refined in a stepwise manner by evaluating the F statistics (terms 12 

were rejected when P > 0.05). Where the GLM analyses showed significant differences in 13 

PC values between treatment groups, the second step in the analysis was undertaken. In 14 

these second analyses the bootstrapped mean value was calculated for each individual 15 

measure of immune response, to qualitatively explore the effect of treatment group on 16 

these individual measures. For the treatment groups, bootstrapped mean values were 17 

calculated for each time of sampling. For the uninfected control animals, the data were 18 

pooled across sample points due to the smaller sample size in this group. 19 

 20 

The effect of treatment group on anti-H. contortus and anti-T. colubriformis IgG1 titres 21 

were assessed in two general linear mixed models (GLMMs using the R package ASReml-22 

R v3.0 [7]) in which each animals' individual identification number was included as a 23 

random term to control for pseudoreplication. The titres of IgG1 were transformed to 24 

normalize residuals in the model, as ((x+1)0.12) for anti-T. colubriformis and ((x+1)0.18) for 25 

anti-H. contortus responses. Results shown here are back-transformed. In these models, 26 



 

11 
 

treatment group, time of sampling (included as a categorical variable), and their interaction 1 

were included as fixed effects. This fixed effect model was refined in a stepwise manner 2 

using the Wald test and evaluation of the conditional F statistics (terms were rejected when 3 

P > 0.05). Where treatment group was found to be a significant effect, differences between 4 

treatment groups were assessed by within-model contrasts. 5 

 6 

Results 7 

Coinfection Affects T. colubriformis and H. contortus 8 

T. colubriformis was a more successful parasite of sheep when it was in a coinfection with 9 

H. contortus (the number of adult T. colubriformis differed between the coinfection and 10 

mono-infection groups through time post initial infection F3,69 = 3.38, P = 0.023; Fig. 2). 11 

There were more adult T. colubriformis worms in coinfected sheep than in T. colubriformis-12 

only infections at 14 and 18 weeks post initial infection (t = -2.08, df = 69, P = 0.041; t = -13 

3.96, df = 69, P <0.001, respectively). A total of 30,000 T. colubriformis infective larvae 14 

were given to each sheep, which by week 14 could all have developed into adult worms. 15 

In the coinfected animals a mean of 23,380 adults were present (78%), whereas only 16 

16,761 (56%) were found in the T. colubriformis-only infections (see S3 for mean and SD 17 

of raw counts through time).  18 

 19 

H. contortus was also affected by coinfection, but differently compared with T. 20 

colubriformis. To assess the H. contortus infection we analysed both the number of 21 

arrested L4 stage larvae in the host tissues along with adult worms (see S3 for mean and 22 

SD of raw counts through time). There were fewer H. contortus arrested larvae in 23 

coinfections, compared with H. contortus-only infections (F1,71 = 4.15, P = 0.045; Fig. 2); 24 

the number of these larvae was also affected by the time post initial infection (F3,71 = 9.79, 25 

P <0.001; S4). In contrast, the number of adult H. contortus was not affected by 26 
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coinfection, though numbers did vary through time post initial infection (F3,72 = 14.73, P 1 

<0.001; S5). As the number of adults show no evidence of being bolstered by larvae 2 

leaving the arrested state in the coinfection group, together these data mean that in 3 

coinfections there are overall fewer H. contortus worms. 4 

 5 

Coinfection Affects Host Cellular Immune Responses  6 

T. colubriformis infects the jejunum and to measure the immune responses in this site we 7 

used a principal components analysis of jejunal immune measures. All immune measures 8 

positively loaded onto principal component axis 1 (PC1), which explained 49% of the 9 

variance in these components (S6). PC1 was subsequently used in the GLM analysis and 10 

transformed (Ln(PC1+3)) resulting in a normal distribution of the model residuals, the 11 

results shown in the figures are back-transformed. The PC1 scores significantly differed 12 

between the coinfection and mono-infection groups, through time post initial infection 13 

(GLM analysis of PC1 scores F3,71 = 3.84, P = 0.013; Fig. 3). The PC1 scores for the 14 

coinfected group did not vary with time post initial infection, whereas those of the mono-15 

infected group increased through time. The predicted PC1 values in the coinfected 16 

animals were significantly lower than in the T. colubriformis-only infection group 17 

(significant difference between coinfected and mono-infected group at weeks 14 and 18 18 

post initial infection t = 2.32, df = 71, P = 0.023, t = 4.50, df = 71, P < 0.001). Together, 19 

this means that the jejunal immune response induced by T. colubriformis was suppressed 20 

in coinfected animals. Analysis of the individual cell types in the jejunum also showed that 21 

the greatest responses were in the T. colubriformis-only infection group and lower in the 22 

coinfected animals, presumably due to the immunosuppressive effect of H. contortus (Fig. 23 

4, S7). In animals mono-infected with H. contortus, the jejunal immune responses were 24 

often as low as those in the control (uninfected) animals, which is unsurprising given that 25 

H. contortus is not present in the jejunum. H. contortus infects the abomasum, and 26 
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abomasal immune measures loaded positively onto PC1 explaining 62% of the variance 1 

(S8). PC1 was subsequently used in the GLM analysis and transformed (Ln(PC1+3)) 2 

resulting in a normal distribution of the model residuals, the results shown in the figures 3 

are back-transformed. GLM analyses of the abomasal PC1 scores showed that they did 4 

not differ significantly between the coinfected and mono-infected animals, nor did they 5 

vary through time post initial infection. 6 

 7 

Coinfection Increases anti-H. contortus Larval Immune Responses 8 

The concentration of anti-H. contortus IgG1 was significantly different between coinfected 9 

and H. contortus-only infected animals (effect of treatment group excluding the T. 10 

colubriformis mono-infection group F8,300 = 3.31, P = 0.001; Fig. 3). The response was 11 

significantly greater in the coinfected animals, compared with the H. contortus-only 12 

infected and control animals, which did not differ from one another (Fig. 3). In the 13 

coinfected animals at 18 weeks post initial infection the IgG1 response was reduced, 14 

coinciding with a reduced number of arrested H. contortus larvae (S4).  15 

 16 

The concentration of anti-T. colubriformis IgG1 was significantly affected by treatment 17 

group (effect of treatment group, excluding the H. contortus mono-infection group, F8,300 = 18 

3.09, P = 0.002, S9). Specifically, these responses were significantly higher in the 19 

coinfected and T. colubriformis-only infection groups compared with the control, 20 

uninfected group. The coinfected and T. colubriformis-only infection groups were not 21 

significantly different from one another (S9).  22 

 23 

Discussion 24 

We hypothesised that, by defining parasite groups using taxonomy and parasite traits, we 25 

could infer the host response to those groups and hence the expected interaction among 26 



 

14 
 

coinfecting parasites. Our hypothesis was supported. Specifically we demonstrate that 1 

immune suppression by the blood feeder H. contortus had a positive effect upon the 2 

numbers of mucosal browser T. colubriformis, while the immune response promoted by 3 

the mucosal browser negatively affected the numbers of the blood feeder. 4 

 5 

Effect of the Blood Feeder on the Mucosal Browser 6 

The presence of H. contortus resulted in comparatively more T. colubriformis adult worms 7 

in coinfected sheep. The trajectory of adult worm numbers in the T. colubriformis mono-8 

infected sheep shows a classic convex age-intensity curve, indicative of host immune 9 

responses removing adult worms [30, 40, 41]. In the coinfection treatment group the 10 

number of worms reached an asymptote suggesting that adult worms were not being 11 

removed by the host immune response. There was, however, some evidence of a 12 

reduction in larval establishment in this coinfection group (though less than in the mono-13 

infected group), likely indicating that anti-T. colubriformis response was beginning to 14 

develop. This is consistent with previous studies that have shown the anti-T. colubriformis 15 

immune response acts first against incoming larvae [42]. 16 

 17 

As we hypothesised, the difference in the number of T. colubriformis adults between 18 

coinfection and mono-infection groups appears to be immune mediated. Our data 19 

demonstrate that there was a reduced immune response in the jejunum in the coinfected 20 

animals, compared to the T. colubriformis mono-infected animals, and most pronounced 21 

in the latter time points (weeks 14 and 18 post initial infection) (Fig. 3, 4 & S7). This 22 

differentiation between the infection groups suggests that the immune suppression we 23 

observe is dependent on the adult H. contortus (since by week 14 all larvae would have 24 

developed to adulthood or arrested their development). We use the presented immune 25 

measures as general indicators of anti-helminth immune responses, rather than 26 
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implicating individual immune components. Nevertheless, all these immune components 1 

have been associated with the immune response against helminths in sheep [43-45]. 2 

 3 

Effect of the Mucosal Browser on the Blood Feeder 4 

There was no evidence of an effect of coinfection on the number of H. contortus adults, 5 

nor on the abomasal cellular immune response. However, the significantly fewer arrested 6 

larvae in the coinfected animals demonstrates that coinfection still has a negative effect 7 

on H. contortus (Fig. 2). In natural infections, arrested larvae resume development to 8 

adulthood during periods of host stress [36]. There are significantly less arrested larvae in 9 

the coinfection group but no more adults. These missing larvae must, therefore, (i) be lost 10 

to the system entirely, or (ii) have replaced adults that have been lost. Thus, these larvae 11 

either (a) never established in the arrested state in the first place, (b) were destroyed in, 12 

or expelled from, the tissues, or (c) following a period in the arrested state, resumed their 13 

development and either replaced lost adults, or failed to establish as adults. The difference 14 

in the number of larvae found in the arrested state between singly and coinfected groups 15 

of sheep is relatively small, approximately 40 larvae, and is thus unlikely to be of clinical 16 

significance in these sheep. We highlight, however, that this study is not focused upon 17 

clinical significance per se, but upon the ability of our predictive framework to establish the 18 

form and direction of the parasite interactions, which we have achieved. Nevethereless, 19 

even these few larvae, as adults, could contribute substantially to the potential infectious 20 

burden on pasture under natural conditions. Assuming an average daily fecundity of 4,700 21 

eggs per female (see [46]) and a sex ratio of 1:1, twenty adult female worms could be 22 

adding >94,000 eggs per day to pasture. 23 

 24 

As predicted, the loss of H. contortus arrested larvae appears to be immune mediated. 25 

Although the abomasal immune components do not differ among infection groups, the 26 
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concentration of anti-H. contortus IgG1 was significantly higher in coinfected animals (Fig. 1 

3). H. contortus larvae were the source antigen for the IgG1 assay and it is likely that this 2 

antibody response reduces larval development, as has been previously been reported 3 

[47].  4 

 5 

Is the Observed Interaction Robust?  6 

The host immune response to T. colubriformis and H. contortus in mono-infections is well 7 

documented [47-50]. A feature of these responses is that they differ in strength depending 8 

on host species (sheep or goat), breed [17, 51-53], age [30, 54], and diet [55], although 9 

the same immune components are implicated in helminth control amongst these host 10 

groups. An important consideration, then, is whether the interactions we have described 11 

between the coinfecting parasite groups, would be robust to such host differences. Since 12 

the immune components involved in the host response are the same, we suggest that 13 

while there may be quantitative differences in intensity of infection due to variation in the 14 

strength of the immune response, the qualitative result (i.e. positive consequences for a 15 

mucosal-browsing nematode and negative for the blood-feeding group) will likely persist. 16 

This view is further supported by the identical pattern of interaction seen in the rabbit-17 

coinfection system between its blood feeding and mucosal browsing nematode parasites. 18 

It should be noted that one laboratory study of coinfection with the same rabbit helminths 19 

did not find this pattern of interaction during coinfection [33]. That laboratory study, 20 

however, used a single, high dose infection (rather than the trickle infections we used), 21 

which can dramatically alter the form of the elicited immune response [56], in turn altering 22 

the nature of the interspecific interactions. 23 

  24 

Our hypothesis for the interaction between the sheep nematodes was based on data from 25 

a different host and different parasite species, where we defined parasite groups based 26 
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on their taxonomic and parasitological (i.e. resource use, site of infection) traits. We 1 

suggest that this novel approach can be more generally applied to other host and parasite 2 

systems. While we have successfully applied this approach here, we acknowledge that 3 

this is a single test and that further work is required to confirm that the approach could be 4 

applied beyond our defined parasite groupings. However, we note that our predictive 5 

ability crossed host species (rabbits and sheep) that are distinct taxonomically, 6 

behaviourally and physiologically, suggesting that host similarity does not underlie our 7 

successful prediction. Regarding the parasites, we also emphasize that our hypothesis of 8 

how the sheep parasites would interact came solely from our predictive framework. 9 

Specifically, despite extensive prior study of these parasites in sheep, the interactions we 10 

correctly predicted had never previously been hypothesised. Together this suggests that 11 

our predictive framework is neither host nor parasite species specific. Future exploration 12 

of this topic could include a meta-analysis to determine whether parasite traits can 13 

represent patterns of immune function across multiple host types and different forms of 14 

parasite (i.e. beyond helminths).  15 

 16 

Notably the parasite species in our study all belong to the superfamily Trichostrongyloidea 17 

and it is possible that the interaction observed would be restricted to species within this 18 

superfamily – though this would still be an important result. Nevertheless, we have 19 

described here the common immunomodulatory features of several blood-feeding 20 

nematode species, which further supports this parasite grouping and also proposes a 21 

mechanism (i.e. suppression of the intestinal cellular immune response), for this groups’ 22 

potential interaction with other parasite groups. There is less information available to 23 

support the grouping of mucosal browsing nematodes, as the host immunological 24 

response to this group has been less well studied. Even if we narrow this group to mucosal 25 

browsing Trichostrongylus spp. the only immune function studies conducted appear to be 26 
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on T. colubriformis and T. retortaeformis, the species involved in our studies. It will 1 

therefore be interesting to determine whether other members of the group also stimulate, 2 

and are controlled by, a classic Th2 response, which underlies the mechanism of their 3 

interaction with the blood feeders and, further, whether the group could be expanded to 4 

other helminth species displaying similarly low levels of tissue invasion, i.e. browsing 5 

nematodes beyond Trichostrongylus spp.  6 

 7 

We propose that the form of acquisition of a given resource is likely to be an important 8 

indicator of how the host will respond to any parasite. For example, while nematodes and 9 

malaria both use the host blood as a resource, they acquire that resource in a different 10 

way. We suggest that taxonomically more related parasites are also more likely to evolve 11 

related mechanisms of resource acquisition and therefore that a combined grouping 12 

strategy involving location, resource use and parasite taxonomy may be a good indicator 13 

of host immune response, the ultimate mechanism of the interspecific parasite interaction 14 

in our study. Our classification mechanism requires that the resource use of the parasite 15 

is known. For some species this will not be the case. However, using physical location in 16 

conjunction with taxonomic similarity to other known species will often be a suitable proxy.  17 

 18 

Implications for Parasite Control and Economic Losses 19 

H. contortus and T. colubriformis are both economically important parasites, causing 20 

substantial production losses in both sheep and goats [48]. Production losses due to T. 21 

colubriformis are likely to be greater in sheep coinfected with H. contortus, due to the 22 

higher worm burdens and prolonged infection in such coinfections. Notably, the condition 23 

and mass of coinfected animals did not significantly differ from the other treatment groups. 24 

However, pasture-reared sheep, not provisioned with the high-quality maintenance diet 25 

provided in our experiment, would likely experience more severe effects during 26 
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coinfection. Transmission of T. colubriformis in coinfected sheep could be substantially 1 

higher due to the higher worm burdens and prolonged infection during H. contortus 2 

coinfection, meaning potentially higher worm burdens at a population level, requiring the 3 

use of anthelmintics. However, density-dependent reduction in per capita worm fecundity 4 

has been observed for T. colubriformis [49], which may ameliorate such effects. 5 

Nevertheless, host immune response appears to play a role in this density dependent 6 

restriction of fecundity [17], and thus such immune effects may be reduced during H. 7 

contortus coinfection. A change in H. contortus-induced production losses during 8 

coinfection are unlikely, as adult worm burdens of this species were not affected by the 9 

coinfection. The economic implications of this coinfection are, therefore, principally a 10 

consequence of the altered dynamics of the T. colubriformis infection. 11 

 12 

Conclusion 13 

This work represents a first experimental proof-of-principle that groups of parasite can be 14 

identified and thereafter used to predict the outcome of a previously unexplored 15 

interspecific parasite interaction in a different host species. Given the ubiquity and 16 

multiplicity of coinfection in nature it is important that we derive such grouping 17 

mechanisms. In previous work, we suggested grouping parasites by an immunological 18 

profile [14]. A problem with this idea is that immune profiling is complex, expensive and 19 

reagents may not be available for novel or lesser-studied hosts. However, the current 20 

study offers an alternative mechanism for classification by using taxonomy and more 21 

easily identified parasitological traits, to act as a proxy for the immune traits. Further, we 22 

have demonstrated that we can successfully use these traits to predict the 23 

immunologically-based interaction of two parasite groups. This work therefore proposes a 24 

general framework for predicting the relationships between other parasite groups, and 25 

next steps should be to determine how widely applicable such a framework can be. 26 
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Figure Titles and Legends 16 

 17 

Figure 1. A schematic description of the experimental protocol. Coinfection and 18 

mono-infection groups of animals were infected twice weekly for 10 weeks (shaded box) 19 

and the animals were then sampled (10 / infection group, and 3 for the control group) after 20 

6, 10, 14 and 18 weeks post initial infection. 21 

 22 

Figure 2. Effect of coinfection on within-host parasite dynamics. The predicted 23 

number of (a) T. colubriformis adult worms by time post initial infection and infection group 24 

and (b) H. contortus hypobiosed larvae by infection group. Error bars are the 95% 25 

confidence intervals. In (a) the T. colubriformis mono-infection group is denoted by the 26 



 

28 
 

closed grey squares, and the coinfection group by the crossed diamonds, the black arrow 1 

represents the last day of larval dosing and the grey arrow represents the first day by 2 

which the last larval dose may potentially have reached adulthood. Groups have been 3 

offset by one day to aid visualisation.   4 

 5 

Figure 3. Immune responses during coinfection. (a) The predicted PC1 scores of 6 

jejunal immune response, with time post initial infection and T. colubriformis infection 7 

group (i.e. mono- and coinfection). The T. colubriformis mono-infection group is denoted 8 

by the closed grey squares and the coinfection group is denoted by the crossed diamonds. 9 

(b) Predicted anti-H. contortus IgG1 titre concentration through time post initial infection 10 

for the control (open black circles), H. contortus mono-infection (solid black circles) and 11 

coinfected (crossed diamonds) groups. In (a) and (b) groups have been offset by one day 12 

to aid visualisation. Error bars are the 95% confidence intervals. The black arrow 13 

represents the last day of larval dosing and the grey arrow represents the first day  14 

by which the larvae from the last dose may have reached adulthood.  15 

 16 

Figure 4. Jejunal immune responses shown as the bootstrapped number (per villus-17 

crypt unit) of (a) eosinophils, (b) goblet cells, (c) globule leukocytes and (d) score 18 

of goblet cells with granules. Treatment groups have been offset by one day to aid 19 

visualisation. Error bars are the 95% confidence intervals. The solid black line and dashed 20 

lines represents the bootstrapped mean for the control treatment group and its 95% 21 

confidence intervals, respectively. Grey squares are T. colubriformis mono-infection, solid 22 

black circles are H. contortus mono-infection and crossed diamonds are coinfection. 23 
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