
 Martinoli, M., Bertoni, G., & Molteni, M. C. (2017). A Methodology for the
Characterisation of Leakages in Combinatorial Logic. Journal of Hardware
and Systems Security, 1(3), 269-281. https://doi.org/10.1007/s41635-017-
0015-0

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1007/s41635-017-0015-0

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer at
https://doi.org/10.1007/s41635-017-0015-0. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/157816716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s41635-017-0015-0
https://doi.org/10.1007/s41635-017-0015-0
https://doi.org/10.1007/s41635-017-0015-0
https://research-information.bris.ac.uk/en/publications/a-methodology-for-the-characterisation-of-leakages-in-combinatorial-logic(d5f001c9-26a7-45e8-b81c-663c73bf44e1).html
https://research-information.bris.ac.uk/en/publications/a-methodology-for-the-characterisation-of-leakages-in-combinatorial-logic(d5f001c9-26a7-45e8-b81c-663c73bf44e1).html

J Hardw Syst Secur (2017) 1:269–281
https://doi.org/10.1007/s41635-017-0015-0

AMethodology for the Characterisation of Leakages
in Combinatorial Logic

Guido Bertoni1 ·Marco Martinoli2 ·Maria Chiara Molteni1

Received: 10 April 2017 / Accepted: 25 August 2017 / Published online: 30 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract Glitches represent a great danger for hardware
implementations of cryptographic schemes. Their intrin-
sic random nature makes them difficult to tackle and their
occurrence threatens side-channel protections. Although
countermeasures aiming at structurally solving the prob-
lem already exist, they usually require some effort to be
applied or introduce non-negligible overhead in the design.
Our work addresses the gap between such countermeasures
and the naı̈ve implementation of schemes being vulnerable
in the presence of glitches. Our contribution is twofold: (1)
we expand the mathematical framework proposed by Brzo-
zowski and Ésik (FMSD 2003) by meaningfully adding the
notion of information leakage, (2) thanks to which we define
a formal methodology for the analysis of vulnerabilities in
combinatorial circuits when glitches are taken into account.

Keywords Side-channel analysis · Hardware
countermeasures · Glitches · Formal method

� Marco Martinoli
marco.martinoli@bristol.ac.uk

Guido Bertoni
g.bertoni@securitypattern.com

Maria Chiara Molteni
mariachiara.molteni@gmail.com

1 Security Pattern, via Stassano 29, Brescia, Italy

2 Department of Computer Science, University of Bristol,
Bristol, UK

1 Introduction

Side-channel attacks were first introduced by Kocher et al.
[10] as a way to attack implementations of cryptosystems.
They exploit the relation between data being processed
and several physical emanations, for instance time taken or
power consumed to perform computations [11]. Since its
first appearance, side-channel analysis has grown quickly
with newly developed attacks as well as countermeasures,
which try to prevent any sensitive information from being
leaked. For instance, sharing schemes randomise interme-
diate values in such a way that the leaked information no
longer depends on any sensitive data [13]. However, the
efficiency of countermeasures is deeply linked to physical
characteristics of the device on which they are implemented:
in 2005, Mangard et al. [14] predicted the criticality of
glitches for hardware implementations, which was then
demonstrated in the same year [15]. They showed how the
propagation of signals in combinatorial logic implementing
an apparently secured SBox might result in critical leakages,
leading to an ineffective protection.

Overall, there is a gap in the capabilities of quantifying
the criticality of glitches in a hardware implementation. This
gap is not trivial to close, as glitches in combinatorial logic
are functions of the final layout of the circuit and the envi-
ronmental conditions, and might change during the life of
the device. In practice, two equal devices might exhibit a
different behaviour in terms of glitches.

Our aim is to provide a formal framework for evaluating
the presence of glitches under worst-case conditions without
the need of detailed characterisation of the combinatorial
logic, i.e. remaining at gate-level description. In order to
achieve this result, we start from the mathematical structure

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-017-0015-0&domain=pdf
http://orcid.org/0000-0003-3398-9444
mailto:marco.martinoli@bristol.ac.uk
mailto:g.bertoni@securitypattern.com
mailto:mariachiara.molteni@gmail.com

270 J Hardw Syst Secur (2017) 1:269–281

created by Brzozowski and Ésik [7], which simulates the
propagation of electric signals inside a circuit, and we build
a method to relate a modelled power consumption with the
sensitive variables that have caused it. Our analysis is done
in a worst-case scenario where all possible glitches are taken
into account as to achieve the maximum possible generality.
Our main result is an assessing tool which is able to for-
mally describe what kind of information could be leaked and
to give an heuristic estimate about the security of sharing
schemes implemented in hardware.

Related Work To solve the problem of glitches, Nikova
et al. [18, 19] suggested the use of threshold implementa-
tions, which allow to tackle glitches at root by developing
maps that do not handle all the shares in the same combi-
natorial circuit. Such maps obviously come at the cost of a
significant overhead compared to the unprotected version.
Implementations and practical discussions can be found in
the work of Moradi et al. [17] and of Bilgin et al. [6].
As for higher-order security, the issue of glitches has been
faced with a generalisation of threshold implementations [5,
23], and independently by Prouff and Roche [20]. Specifi-
cally on the effects of glitches on the AES SBox, Mangard
and Schramm [16] have reported a deep and complete anal-
ysis. From a design perspective, instead, some tools that
attempt to identify leakages in masked circuits, also caused
by glitches, already exist. Reparaz [22] described a method-
ology based on t test which, although similar in the goal,
differs from ours in that it inherits the heuristic nature of
the exploited statistical tools. Moreover, we do not require
collection nor simulation of power traces. Also, the idea pro-
posed by Leiserson et al. [12] is based on a heuristic method
that allows the analysis of values flowing in more parts of
a circuit through the so-called activity images. The main
focus of their technique is on circuit modifications to thwart
glitches’ threat, while we propose an evaluation of already
existing circuits without altering their structure. Finally, our
approach is similar to the work of Tiwari et al. [24] but
they only focus on how untrusted inputs propagate through
a circuit to the output, while we mainly care of leaked inter-
mediates. For this reason an important role in our work is
played by input transitions, while their focus is more on
fixed inputs.

Organisation of the Paper Section 2 provides the abstract
framework underlying our tool, with a particular empha-
sis on how circuits, signals propagating inside them,
power consumption and adversaries are modelled. Section 3
describes parts of the work of Brzozowski and Ésik [7]
which are also used by our construction. In Section 4, we
present our main contribution: we expand the functionali-
ties of the previously discussed mathematical model with
the notion of leakage and we show how such an improved

framework can be used to analyse cryptographic circuits.
The approach taken in this work is heuristic-oriented, for
the sake of focusing on practical experiments of the model.
For a more detailed and rigorous description of the latter
two sections, we refer the reader to our previous work [4].
In Section 5, we test our tool and the underlying model with
the sponge function KECCAK. We discuss the soundness of
our approach and several practical aspects in Section 6, and
we conclude our work in Section 7.

2 Preliminaries

Our work targets hardware implementations of crypto-
graphic schemes. Since the meaning of such can be quite
broad, the present section aims at specifying our envi-
ronment, as well as at setting the notation we adopt. In
fact, our mathematical model applies only to an abstrac-
tion of real-world circuits: we just refer to logic netlists;
hence, circuits formed only of logic gates and connec-
tions among them. Our tool therefore achieves a good
level of generality, since it does not require any knowledge
of implementation details apart from the circuit scheme
itself, which means that it is general enough to include
all the previously mentioned source of glitches (final lay-
out, environmental conditions. . .). In particular, we focus
on asynchronous feedback-free circuits. We claim this is
not too restrictive, because of the following argument.
Circuits can be divided into two parts: the combinatorial
logic and the state storing part. The combinatorial logic
is indeed asynchronous; it is the part in charge of imple-
menting the logic functionality and where glitches might
propagate. The state storing part, implemented via registers
or memory cells, is clocked and provides the synchro-
nisation between different sections of the circuits. Since
we apply our model to logic circuits performing sensitive
computations, the most natural choice is to focus on the
asynchronous part only. We do not consider the presence of
feedbacks in the combinatorial part for the sake of simplicity
and because they are not a common construction in this field
anyway.

We adopt a high-level abstraction of signals. Since we
are only interested in the Boolean value they represent, it is
convenient to think of them as square waveforms which can
assume the values 0 or 1. To push the abstraction further, we
define the following mathematical object.

Definition 1 A transient is a bit-string with no repetitions.
More formally, a bit-string t = a1 . . . ax ∈ Z

x
2 is a tran-

sient if ai �= ai+1 for all 1 ≤ i ≤ x − 1. Notice that
bit concatenation is denoted by simply writing one bit after
the other. Moreover, we denote by T the set of all possible
finite-length transients.

J Hardw Syst Secur (2017) 1:269–281 271

Informally, transients can only be of the form 1010 . . .

or 0101 . . . for an arbitrary finite length x ≥ 1 (note that
bits 0 and 1 can be considered as transients when x = 1).
The rationale behind transients is the following. Contracting
bit strings is equivalent to neglecting time periods during
which a signal assumes constant values 1 or 0. This results
in transients being exclusively designed to represent which
changes occur, but not when the order of switches can then
be freely tuned, in such a way that the worst glitch behaviour
is always shown at the output of a gate. That is to say if
two transients modelling two changing signals are given as
inputs to a gate, then the output will be a transient modelling
the signal showing the highest possible number of changes.
Section 3 specifies how to combine transients so to emulate
gates’ logic and to achieve such a functionality.

Further Notation We denote the power set (i.e. the set of
all subsets) of a set S by P(S). Vectors are denoted by
underlined letters while boldface is reserved for signals seen
as transients (cf. Definition 1 and Example 1).

2.1 Power Consumption Model

If we consider global synchronous circuits, the power con-
sumption can be divided in three components: the static
leakage, the switching of registers and the switching of com-
binatorial logic. The static leakage is the amount of power
needed by the circuit to maintain the current state when no
switch is present. The switching of registers is the consump-
tion taken by the circuit for updating the state and is easily
approximated by the Hamming distance of the state in two
consecutive clock cycles. The value of the registers can be
easily protected by masking schemes. The last contribution
is the most interesting for us and is related to the consump-
tion of the combinatorial logic. From a temporal point of
view, the switching of registers usually happens at the rising
edge of the clock cycle while the static leakage happens in
its last part. By contrast, the consumption of combinatorial
logic spans, in most cases, the entire duration of the clock
cycle [21].

Hamming Distance Model Consistently with the choice
of addressing only the asynchronous part of a circuit, our
power consumption model includes only the contribution of
the combinatorial logic. As mentioned above, such part of a
circuit is in charge for actually implementing the function-
ality of the circuit and it is the one where all the dynamic
changes in values carried by wires happen. Moreover, when
dealing with glitches, the main focus should be on how
many times and in which moments a signal change in order
to even recognise it as a glitch in the first place. For these
reasons, a natural choice for our setting is the Hamming

distance model, in which changes represent the most impor-
tant metric. When modelling a gate’s power consumption, it
is therefore appropriate to consider the signal it outputs or,
equivalently, the corresponding bit string. If the output sig-
nal changes, equivalently the corresponding output bit string
switches, the gate consumes. In these terms, the Hamming
distance model we assume in the present work is described
by the following three assumptions:

1. A gate consumes power if and only if its output bit-
string switches.

2. A zero-to-one switch consumes the same amount of
power as a one-to-zero switch.

As already stated, we neglect static leakage by means of
the first assumption. The second assumption is made for the
sake of simplicity and it can be dropped in favour of a more
realistic model built on top of a specific technology library.
Nevertheless, such assumption is often use in the literature.

The above two statements merely refer to what is con-
sidered to be the power consumption from a mathematical
point of view. They summarise what in literature appears as
Hamming distance model. For our purposes, however, a fur-
ther assumption is needed to relate how such consumption
affects what we will define as leakage.

3. Every time some power is consumed, an attacker can
measure and exploit it. Hence, we assume that a poten-
tial leakage exists as long as a switch occurs.

We will discuss in Section 2.2 more details on what type
leakage an adversary can retrieve, and in Section 4 how
we model leakage. In practice, the third assumption ensures
the highest possible generality: we consider as leaked any
variable that has a chance to be leaked.

2.2 d-Probing Model

Designing scheme being provably side-channel resistant
comes with the intrinsic problem of mathematically formal-
ising the environment in which a side-channel attack usually
takes place. Many models have been proposed, each cap-
turing certain aspects of practical attacks: e.g. whether the
adversary has the ability to inject faults, to learn only a small
amount of information being processed or to learn a more
complete but noisy view on the internal state. In this respect,
one of the most influential and seminal work was done
by Ishai, Sahai and Wagner [9]. Among other noticeable
achievements, they presented a mathematical framework in
which it is possible to prove cryptosystems secure against
adversaries who can probe a certain set of d wires in the
implementation and learn the values they carry. The proof
of security is based on the argument that, up to d probes,
the view of the adversary is independent of any sensitive
variable.

272 J Hardw Syst Secur (2017) 1:269–281

There are several reasons why the d-probing model has
been so widely adopted. First of all, Ishai, Sahai and Wagner
[9] built a generic compiler that can turn any cryptographic
algorithm in a version secure in the d-probing model. The
protection obviously comes with an overhead which is at
least quadratic in the number of probes the adversary is
allowed to use. Nevertheless, such an overhead is unavoid-
able if one aims for provable security. A further reason
why to prefer the d-probing model over more sophisticated
ones is its good adherence with what happens in practice: if
on one hand it might seem unreasonable that a real adver-
sary learns the exact value on certain wires, Duc et al.
[8] have shown this is equivalent to security in the noisy
leakage model, where the adversary is only given access
to a noisy internal state. The latter interpretation of the d-
probing model is much more realistic in that noise is an
essential component of hardware implementations.

From the perspective of this work, there are also several
reasons why the d-probing model seems a natural choice
when trying to model glitch propagation. As we will show
in Sections 3 and 4, our analysis is very much focused on
relating the switching activity of single gates to the input
variables that have caused it in the first place. According
to how a gate changes its output, which takes into account
glitches too, we will say that some variables are considered
to be leaked, under certain circumstances. Thus, it is natural
to think of such variables as being learned by an adversary
who probes the output of that gate, in the spirit of the d-
probing model.

3 Simulation of Signal Propagation

The choice of transients as a formalisation of signals relies
on the operations that it is possible to define among them.
Since the circuits we study are only formed of logic gates,
we want those operations to preserve gates’ functionalities.
Therefore, we aim at building a function f̂ : T n → T asso-
ciated to a Boolean function f : Zn

2 → Z2 whose inputs are
n transients, namely t = (t1, . . . , tn) ∈ T n.

Example 1 Let us suppose that two signals s1 and s2 are
given as input to a gate implementing a Boolean function
f : Z

2
2 → Z2. Firstly, they are fixed at constant values

b1 ∈ Z2 and b2 ∈ Z2, respectively. Suddenly, s1 changes
from b1 to c ∈ Z2, with c �= b1. This is represented by the
transient s1 = b1c which can be either 01 or 10. Then, the
idea behind the function f̂ is to emulate the behaviour of the
function f , but taking as inputs the two transients s1 = b1c

and s2 = b2 (seen as a length-one transient) and producing
a transient with the highest number of switches, i.e. as if the
highest number of glitches occurred. Note that we write a
variable in boldface if it is seen as a transient and that bit

concatenation is denoted by simply writing one bit after the
other.

In the present work, we simply assume that the function-
ality discussed in Example 1 can be achieved. The idea is
that, given two input transients t1 = a1 . . . ad1 and t2 =
b1 . . . bd2 , the first bit the gate computes is f (a1, b1). This
will be also called the initial stable state. Then the two inputs
change to a2 and b2, respectively, and we have the free-
dom to decide which is the first one to affect the gate such
that another change in the output (if any) is triggered. For
a rigorous definition of the above, we refer the reader to
our original paper [4] where all the steps are presented and
proven.

Theorem 1 Let f : Zn
2 → Z2 be a Boolean function. There

always exists a function f̂ : T n → T such that the out-
put transient models the maximum number of switches that
a gate implementing f might show. Moreover, f̂ is well
defined for any given input t = (t1, . . . , tn) ∈ T n.

3.1 Glitch-Counting Algorithm

The glitch-counting algorithm simulates the propagation of
signals inside a circuit in terms of transients. First of all, a
change in one or more inputs is assumed and represented
as a transient. The glitch-counting algorithm assigns a tran-
sient to each gate as soon as the change reaches it. If the
gate implements a Boolean function f , then the result is
computed according to f̂ .

Given a circuit with m inputs and k gates, we denote
by X = (X1, . . . , Xm) the vector of input variables and
by s = (s1, . . . , sk) the vector of state variables, which
are the gates’ outputs. We use boldface to distinguish when
variables are used as transients, as in Example 1. Initially,
suppose that the input X assumes the value X = a′ =
(a′

1, . . . , a
′
m) ∈ Z

m
2 , and that the state has the value s =

b = (b1, . . . , bk) ∈ Z
k
2. We assume that the input changes

to a = (a1, . . . , am) ∈ Z
m
2 . We call this a transition and

we denote it by a′
1 . . . a′

m → a1 . . . am. The goal is to study
how glitches might propagate as a consequence of such a
change.

The glitch-counting algorithm starts with the circuit in
the initial stable state (a′, b). The left-hand side is then set
to the transient a = (a′

1a1, . . . , a
′
mam) (note that in case

a′
i = ai for some i ≤ m, the transient obtained by con-

catenating them is only one bit) and is kept constant at that
value for the duration of the algorithm. This stores how the
input has changed. The right-hand side, instead, is stored in
a vector of transients s and is constantly updated through-
out the duration of the algorithm: its value is modified in
each position sj according to the function f̂ , where f is the
functionality of the gate computing sj . We refer the reader

J Hardw Syst Secur (2017) 1:269–281 273

Fig. 1 Example of a glitch-counting algorithm’s execution

to our original paper [4] and to the work of Brzozowski and
Ésik [7] for the pseudo-code of the algorithm and further
details. In this work, we opt for describing the algorithm by
means of an example.

Example 2 Suppose that, in the circuit depicted by Fig. 1,
the input changes from a′ = (1, 0, 0) to a = (0, 1, 0);
hence, the transition 100 → 010 occurs. The execution
of the algorithm is summarised in Table 1, where each
row represents one iteration of the cycle and each col-
umn refers to one variable (both input and state) of the
circuit. The last two rows are identical, which is the ter-
mination condition of the algorithm. At each step, the
algorithm computes the functions f̂ of each gate for which
previous transients are known. It follows the behaviour
of real-world signal propagation; hence, earlier gates (i.e.
closer to circuit inputs) are affected first. Indeed, the first
row just represents the initial state (when only inputs have
changed), the second one depicts a change in the first line
of gates while in the third row, signals propagate till the
last XOR. Figure 1 is a graphical representation of the final
situation, which is the output of the algorithm without inter-
mediate steps. Note that the final logic situation can be
retrieved from Table 1 by extracting the last bit of each state
variable.

We conclude the present section with a theorem stating
the asymptotic running time of the glitch-counting algo-
rithm. The proof is extensively discussed by Brzozowski
and Ésik [7] and is then omitted here.

Theorem 2 (Section 8 of [7]) Given a feedback-free circuit
and a transition of its inputs, the glitch-counting algorithm

Table 1 Example of a glitch-counting algorithm’s execution

h X1 X2 X3 s1 s2 s3

0 10 01 0 0 0 0

1 10 01 0 010 01 0

2 10 01 0 010 01 0101

3 10 01 0 010 01 0101

always terminates. Moreover, it runs in O(m + k2) time
where m is the number of inputs and k the number of gates.

4 LP Model

The glitch-counting algorithm was developed in the first
place to prevent unnecessary power consumption by dis-
carding netlists being particularly exposed to glitch propa-
gation [7]. Our main contribution is the LP (leakage path)
model, which is a mathematical abstraction that expands
the functionalities of the glitch-counting algorithm and
relates its simulations to the notion of leakage. Our result
leads to a tool that allows to evaluate if a circuit has
a critical leakage from the security point of view. The
remaining of this section explains the structure of the LP
model, which is formed of the following mathematical
entities:

Input variables can trigger a signal propagation. If no
input variable changes, no signal propagates and no
power is consumed, therefore no leakage exists according
to our power model.

Literals are sets of input variables. For each gate reached
by a signal’s change, a literal contains which variables
have caused the change and could then be leaked.

Literifiers are the link between transients and leakage.
Essentially, they relate the input and output transients of
a gate to the appropriate literal.

The general idea behind the above three objects is the
following. The process begins with a change in the input
variables, which generates a signal propagation inside the
circuit and affects some gates. The gates are then sup-
posed to produce a new output based on the new inputs and
their final result depends on which variables have changed
and how. In this framework, literifiers are responsible to
retrieve the variables involved and represent them via liter-
als. Finally, Section 4.2 develops an argument according to
which the above concepts are applied to a whole circuit, and
not just to a single gate, so to relate them to the d-probing
model.

4.1 Structure of LP Model

We now describe in detail each part of the LP model with
respect to a single gate. This means that when we talk of
input variables, we mean the variables that are directly given
as inputs to it. The next subsection will prove a broader
view, showing how to apply notions for single gates to a
whole circuit. Following the same notation as the input vari-
ables of a circuit, we denote such variables by Xj and by Xj

if they are seen as transients; we assume that f : Zn
2 → Z2

is the Boolean function implemented by the gate and we

274 J Hardw Syst Secur (2017) 1:269–281

denote by f̂ : T n → T the corresponding function among
transients.

As stated in the introduction of this section, input vari-
ables are of great importance for both the glitch-counting
algorithm, since nothing could be simulated without a
change of theirs, and the LP model. In essence, they are
the objects our study targets as we aim at following their
propagation along the circuit.

Definition 2 Given a gate with n inputs, namely
X1, . . . , Xn, we call literal any subset of {1, . . . , n}. The set
of literals is denoted by I = P({1, . . . , n}).

Literals are finite sets of input variables. In a sense, they
are the result we are looking for: the analysis of a circuit by
means of the LP model consists in assigning a literal to each
gate. Their utility stems from the fact that they list which
input variables are responsible for the power consumption
and could then be leaked according to our power model.
This is strictly connected with the rationale behind tran-
sients. In both cases, we assume the worst possible scenario:
transients are supposed to switch as if the worst possible
combination of glitches occurred in the same way as liter-
als list all variables being leaked in the worst possible case.
It is clear from the above discussion that the core of the LP
model is the way we assign literals to gates.

Literifiers are functions establishing which input vari-
ables are leaked by a gate, i.e. the ones having caused a
change in its output. They depend on how the gate’s inputs
change, i.e. which transients enter in it, and on the imple-
mented logic. First of all, we represent the input of a gate as
the following vector of couples:

((t1, l1), . . . , (tn, ln)) ∈ (T × I)n.

We call it transient-variable representation: the first compo-
nent of each couple is a transient modelling how that input
signal changes, while the second one is a literal listing the
input variables responsible for that change.

Example 3 Recalling Fig. 1, the gate computing s1 = 010
has the following input according to the transient-variable
representation.

((10, {1}), (01, {2}))

In Example 3, we have assumed that the literal of a cir-
cuit’s input is just the singleton containing its index. As for
now, the transient-variable representation is directly possi-
ble only for gates at height 1, i.e. whose inputs are inputs of
the circuit itself. In that case, each literal is simply the sin-
gleton of a variable. In the next subsection, we will show a
procedure similar to the glitch-counting algorithm to mean-
ingfully apply literifiers also to gates whose inputs have

already been processed. Such gates are said to have height
grater than 1. Informally speaking, the height of a gate is
inductively defined to be 1 if all its inputs are circuit inputs,
and to be the maximum height of its inputs plus one oth-
erwise. We intentionally omit any further formalisation to
avoid heavy notations. As an example, in the circuit in
Fig. 1, the AND and OR gates are at height 1 and the XOR is
at height 2.

We refer the reader to our original paper [4] for a detailed
and general description of how literifiers can be built for an
arbitrary Boolean function among transients f̂ : T n → T .
For the sake of simplicity, we limit the following discussion
to the specific case of the gates AND, NOT, OR and XOR
since a compact definition exists.

Definition 3 The literifier associated to a gate implement-
ing the Boolean function AND : Z

n
2 → Z2 is defined

as:

LAND((t1, l1), . . . , (tn, ln))=
{ ∅ if ∃j ∈ {1, . . . , n} such that tj =0⋃

j∈J

lj otherwise

where J = {j ∈ {1, . . . , n} | �(tj) > 1}.

Intuitively, the upper branch in Definition 3 states that if
there exists one input which is the fixed 0, then the output
will be the fixed 0 no matter how other inputs change. Since
the output is fixed, no power is consumed and the set of
leaked variables is empty. Otherwise, the union of all literals
corresponding to non-constant transients is returned. Since
we are in the second branch, there is no constant 0 transient,
which results in the rule excluding only literals being equal
to the constant 1, as they do not contribute to the switching
activity of an AND gate.

Example 4 Following Example 2, let us compute the liter-
ifier LAND((10, {1}), (01, {2})) associated to the gate com-
puting s1. A straightforward application of Definition 3
yields

LAND((10, {1}), (01, {2})) = {2} ∪ {1} = {1, 2}.

For the OR gate the argument is perfectly dual to the AND
gate’s, and then the literifier associated to it follows.

Definition 4 The literifier associated to a gate implement-
ing the Boolean function OR : Z

n
2 → Z2 is defined

as:

LOR((t1, l1), . . . , (tn, ln))=
{ ∅ if ∃j ∈ {1, . . . , n} such that tj =1⋃

j∈J

lj otherwise

where J = {j ∈ {1, . . . , n} | �(tj) > 1}.

J Hardw Syst Secur (2017) 1:269–281 275

The NOT gate is clearly the easiest: if the input transient
does not switch, so does the output, and then no power is
consumed. Otherwise, the only possible literal is returned.

Definition 5 The literifier associated to a gate implement-
ing the Boolean function NOT : Z2 → Z2 is defined
as:

LNOT(t, l) =
{ ∅ if �(t) = 1

l otherwise

Finally, the XOR is slightly different than the AND and
OR, since such a gate switches whenever at least one input
switches. This restricts the cases in which LXOR returns the
empty set.

Definition 6 The literifier associated to a gate implement-
ing the Boolean function XOR : Z

n
2 → Z2 is defined

as:

LXOR((t1, l1), . . . , (tn, ln)) =
{ ∅ if ∀j ≤ n, �(tj) = 1⋃

j∈J

lj otherwise

where J = {j ∈ {1, . . . , n} | tj �= 0}.

4.2 Application to Circuits

We conclude this section by showing how to apply the LP
model to a given circuit with m inputs and k gates. For
instance in Fig. 1, on one hand, it is immediate that the
transient-variable representation of gate computing s1 is the
one shown in Example 3, but on the other, it is less clear
what it should be for gates whose inputs are not the inputs
of the circuit, e.g. for the one computing s3. We recall that
we denote by X = (X1, . . . , Xm) the input variables and by
s = (s1, . . . , sk) the state variables of a circuit.

The idea is simply proceeding by height: the only gates
we can directly compute literifiers for are those at height 1,
since the input literals are just singletons of input variables.
Once all literifiers at height 1 have been computed, we can
apply those at height 2: their input literals can be either sin-
gleton of input variables or outputs of gates at height 1. This
procedure always terminates as there are finitely many gates
and is well-defined as there are no feedbacks.

Example 5 We conclude what Example 4 has begun by
computing all literifiers of Example 2. The only other gate
at height 1 is the one computing s2, for which we have the
following.

LOR((01, {2}), (0, {3})) = {2}
We now have all the information to compute the literifier for
the last gate.

LXOR((010, {1, 2}), (01, {2})) = {1, 2} ∪ {2} = {1, 2}

Fig. 2 Application of literifiers to a circuit

Figure 2 depicts the final outcome of the LP model
applied to the circuit in Fig. 1 during transition 100 → 010.
Essentially, the LP model adds one literal per gate to the out-
put of the glitch-counting algorithm. They describe which
input variables cause a particular gate to switch and whose
values could then be leaked through the power consump-
tion. Collecting such an information for all transitions gives
the designer a powerful tool to predict possible flaws. In
the next section, we deepen this discussion while providing
a real-world use case. Note that there is a straightforward
interpretation of literal in terms of the d-probing model:
they are the set of variables (i.e. their value) that an adver-
sary can learn by placing the probes on the output of the gate
which produced them.

Final Remarks In the present subsection, we have shown
how to practically apply the LP model to the netlist of a
circuit. Although the example we have considered was triv-
ial, the LP model is a formal tool to analyse netlists with
an arbitrary number of inputs and gates in the d-probing
model, where an ad hoc analysis would require much more
effort. Once a netlist and an input transition are fixed, the
LP model provides a list of variables based on which a risk
assessment in the context of side-channel analysis is facili-
tated. As the next section will suggest, a full analysis would
require the LP model to run over every non-trivial input
transition, hence 22m − 2m times where m is the number
of inputs and where we have subtracted transitions from an
input to itself as they clearly do not produce any consump-
tion in our power model. Such exponential requirement is
a drawback of our approach: a deeper insight will be given
in Section 6. Finally, for a fixed transition, the overall com-
plexity is asymptotically bounded by the running time of the
glitch-counting algorithm, described in Theorem 2.

5 Case of Study: KECCAK

The present section provides an application of the LP
model to KECCAK. We show, thanks to our tool, how an

276 J Hardw Syst Secur (2017) 1:269–281

unprotected implementation of KECCAK’s non-linear layer
is proved to be weak against side-channel attacks, and how
glitches might also compromise security in the masked
scheme. The reason why we chose to adopt KECCAK as
our case of study mainly relies on it being deployed in
real-world applications while still having a not too complex
structure. It is then the ideal candidate for being a test bench.

KECCAK is a family of sponge functions that uses a per-
mutation from a set of seven possible ones as a building
block [3]. The permutations are defined over a state s ∈ Z

b
2

where b = 25 × 2� is called width of the permutation and
� ∈ {0, . . . , 6}. Each round is formed of five maps: three
linear maps aiming at diffusion and dispersion, one non-
linear map aiming at confusion and one addition with round
constants. When it comes to implement sharing schemes,
linear maps can be directly applied to each share separately.
By contrast, non-linear maps need to handle every share to
preserve correctness. Therefore, we focus on the only non-
linear map of KECCAK, namely χ : Z

5
2 → Z

5
2 acting on

groups of five bits of the state called rows. For a complete
description of KECCAK, we invite the reader to refer to the
work of Bertoni et al. [3].

The map χ can be seen as the parallel application of
five identical maps each defined on three consecutive bits
(modulo 5) of a row. Formally:

χi : ri ← ri ⊕ ri+1ri+2 (1)

where r ∈ Z
5
2 denotes a row of the KECCAK state and

the index i is computed modulo 5. The bits ri are called
native values. For our analysis, it is important to note that
the five instances of the map χi : Z3

2 → Z2 are completely
independent; they do not share gates in their computation.
As a result, we can focus on a specific χi without loss of
generality.

5.1 Unshared χi

The first case that we study is the unshared χi , i.e. the
Boolean function in Eq. 1. As both the glitch-counting
algorithm and the LP model work with netlists, the first
step in the analysis of Eq. 1 is to produce one. Assum-
ing the naming convention at the beginning of Section
3.1, input vector X = (X1, X2, X3) corresponds to
(ri , ri+1, ri+2), while state vector s = (s1, s2, s3) corre-
sponds to (NOT,AND,XOR). See Fig. 3 for a graphical
representation of the latter.

It is trivial to see that any first order leakage at gate level
is a leakage of a sensitive variable, then a critical leakage.
Since χi has three input bits, the number of non-trivial tran-
sitions is 26 −23 = 56. We analyse two of them as example,
namely 100 → 011 and 110 → 111. The execution of
the glitch-counting algorithm for transition 100 → 011 is
reported in Table 2 (left).

Fig. 3 χi circuit after LP model, transition 100 → 011

The LP model is then used: at first, literifier correspond-
ing to s1 is applied, since it is the only gate at height
1:

LNOT(01, {2}) = {2}
Moving further to the gates at height more than 1, we
compute LAND for s2 and LXOR for s3.

LAND((10, {2}), (01, {3})) = {2} ∪ {3} = {2, 3}
LXOR((10, {1}), (010, {2, 3})) = {1} ∪ {2, 3} = {1, 2, 3}

In Fig. 3, execution of both the glitch-counting algorithm
and the LP model is depicted, in the case of the transition
100 → 011. Instead, in the case in which the inputs transi-
tion is 110 → 111, the glitch-counting algorithm shows that
no glitch happens, as summarised in Table 2 (right).

The above two examples are meant to show two very
different situations: in the first one, in Table 2 (left), it is
evident how as soon as any gate switches; the subsequent
power consumption will leak a sensitive variable. Indeed,
an adversary could learn one by simply placing one probe
(hence for d = 1) anywhere in the circuit. Table 2 (right),
instead, interestingly shows how not all changes in inputs
trigger some power consumption, although being restricted
to very few corner cases. Similarly to the latter scenario,
there are other three non-trivial input transitions that imply
no leakage in the considered circuit, i.e. 111 → 110,
011 → 010 and 010 → 011. Hence, summarising, there are
56 − 4 = 52 transitions that have some first order leakage,
namely roughly the 81% of all transitions.

Although being no more than an exercise, the above dis-
cussions stress that the glitch-counting algorithm together
with the LP model can be really fine grained in their
analysis: they are able to precisely state the entity of the
leakage even in the unprotected case which, surprisingly,
does not happen as a result of every possible input tran-
sition. Nevertheless, there is a high possibility of such a
critical leakage in this case, which is the reason why thresh-
old implementations are implemented as countermeasures
on χi [18].

5.2 χ with Two Shares

The first sharing scheme we adopt in our analysis is a two-
share Boolean scheme, i.e. each row is split in two shares

J Hardw Syst Secur (2017) 1:269–281 277

Table 2 Glitch-counting
algorithm’s execution for the
χi circuit, when the transition
is 100 → 011 (left) and
110 → 111 (right)

h X1 X2 X3 s1 s2 s3 h X1 X2 X3 s1 s2 s3

0 10 01 01 1 0 1 0 1 1 01 0 0 1

1 10 01 01 10 01 10 1 1 1 01 0 0 1

2 10 01 01 10 010 101

3 10 01 01 10 010 1010

4 10 01 01 10 010 1010

a, b ∈ Z
5
2 such that r = a ⊕ b [2]. Our results can be eas-

ily generalised to many shares. In this setting, Eq. 1 can be
masked as follows:

ai ← ai ⊕ ai+1ai+2 ⊕ ai+1bi+2

bi ← bi ⊕ bi+1bi+2 ⊕ bi+1ai+2
(2)

where a straightforward computation shows that (2) are cor-
rect as Eq. 1 is simply retrieved by XORing them. If the order
of operations was kept fixed from left to right then the above
sharing scheme would be secure in the first order. How-
ever, if Eq. 2 were implemented in hardware, such condition
could not be guaranteed, for instance because of glitches.
This results in possible vulnerabilities when the values ai+2

and bi+2 are involved in the computation of the three-input
XOR at the same time.

It can be easily seen from Eq. 2 that the two equations
are symmetric; hence, the two netlists are identical. We
will refer to them as being two branches of the implemen-
tation of Eq. 2. This also implies that we can focus only
on the first branch without loss of generality, i.e. the one
computing ai . Similarly to what discussed for the unshared
χi , the input vector X = (X1, X2, X3, X4) corresponds
to (ai, bi+2, ai+1, ai+2), while the components of the state
vector s = (s1, s2, s3, s4) correspond, respectively, to the
NOT, upper AND, lower AND and XOR. See Fig. 4 for a
graphical representation of the latter.

First of all an input transition is fixed among all the
28 − 24 = 240 non-trivial possible ones. Then, the glitch-
counting algorithm is applied as shown in Section 3.1 and
all the transients are computed, one per gate. Table 3 reports
the execution of the glitch-counting algorithm for the input
transition 0110 → 0001.

At this point, suitable literifiers can be applied as
described in Section 4.2, hence starting from gates at height

Fig. 4 One branch of two-shared χi circuit after LP model

1. In our example, this means computing the literifiers cor-
responding to s1 and s2 first, respectively an AND and NOT
literifiers.

LAND((10, {2}), (10, {3})) = {2} ∪ {3} = {2, 3}
LNOT(10, {3}) = {3}

There are two gates at height higher than 1: first we compute
LAND for the gate computing s3 and finally LXOR is applied.

LAND((01, {3}), (01, {4})) = {3} ∪ {4}={3, 4}
LXOR((0, {1}), (10, {2, 3}), (01, {3, 4})) = {2, 3} ∪ {3, 4}=

= {2, 3, 4}

Figure 4 summarises the execution of both the glitch-
counting algorithm and of the LP model for the transition
0110 → 0001.

To take the most out of the proposed method, a vulnera-
bility definition based on critical combinations of variables
needs to be formulated. This is checked among all the lit-
erals produced by the model, which has been run over
all possible non-trivial input transition. Notice, however,
that the sharing scheme outlined above is secure in the
one-probing model if the order of operations is enforced,
because at each step of the algorithm, each internal variable
is independent of any sensitive ones. Unfortunately, glitches
falsify such an argument.

A vulnerability of the circuit in Fig. 4 arises when the
two variables ai+2 and bi+2 are processed in the same
moment by the last XOR gate, as this could leak the value
ai+2 ⊕bi+2 = ri+2 which is unshared. As mentioned above,
this would not be possible without glitches: they make an

Table 3 Glitch-counting algorithm’s execution for the shared χi

circuit

h X1 X2 X3 X4 s1 s2 s3 s4

0 0 10 10 01 1 0 0 1

1 0 10 10 01 10 01 0 1

2 0 10 10 01 10 01 01 10

3 0 10 10 01 10 01 01 101

4 0 10 10 01 10 01 01 101

278 J Hardw Syst Secur (2017) 1:269–281

attack feasible with a single probe at the output of the XOR.
In our model, this translates to the existence of {2} and {4} in
the same literal corresponding to the XOR gate, since X2 and
X4 are the input variables corresponding to ai+2 and bi+2.
By running the model for all the 28 −24 non-trivial possible
input transitions, we have found that 32 out of 240 match
our vulnerability definition and could then lead to a criti-
cal first order leakage. At this point, the designer possesses
valuable information to base security improvements on. In
particular, leaving our gate-level abstraction, the designer
can carefully tune place-and-route paths in order to min-
imise the occurrence and impact of those critical transitions.
If such an operation is not feasible, the designer still has a
valid and sound criterion why to switch to a higher number
of shares (three in the case of KECCAK, since χ has degree
2).

The sharing scheme we have analysed [2] has not gained
much popularity due to its weakness in the presence of
glitches. However, our analysis is able to capture more
details: we can quantify and list all those transitions threat-
ening the security of unshared values. In this case, a
designer could just patch them while being sure that all the
others will never show a critical leakage of the first order
even in the presence of glitches. We note that the possi-
bilities for such a patch already exist in the literature. For
instance, the work by Leiserson et al. [12] presented masked
gates resilient to glitch propagation: it could be the case
that a clever combination of our approaches might lead to
beneficial results, for example by masking only those gates
being critical under a certain vulnerability definition and
not others, so to spare resources. Another possible heuris-
tic approach would be to link the results shown by our
model to practical considerations on actual vulnerability.
This means that it might be possible to bound the SNR
and other attacks’ success metrics given the simulation pro-
vided by our tool, to infer on practical (in)feasibility of
attacks. However, since our aim was just to exemplify the
potentiality of our model, we consider the latter modifica-
tions as being out of scope for the present work, but an
interesting future direction towards sound and lightweight
countermeasures.

5.3 χ with Three Shares

To overcome the presence of glitches causing a leakage of
the first order, generally the three-share Boolean scheme
is adopted. Each KECCAK row r is split in three shares
a, b, c ∈ Z

5
2, such that r = a ⊕ b ⊕ c [2]. Now Eq. 1 can be

masked in the following way:

ai ←− bi + bi+1bi+2 + bi+1ci+2 + ci+1bi+2

bi ←− ci + ci+1ci+2 + ci+1ai+2 + ai+1ci+2

ci ←− ai + ai+1ai+2 + ai+1bi+2 + bi+1ai+2

(3)

Fig. 5 Netlist of χi for one share, in the case of three shares

The XOR of equations in Eq. 3 allows to retrieve the χi

function in Eq. 1. Moreover, each equation in Eq. 3 never
processes all the shares of a native value. For example, the
map producing ai operates on one share of the native vari-
able ri (bi), two shares of ri+1 (bi+1 and ci+1) and two of
ri+2 (bi+2 and ci+2). Note that the missing share is exactly
the one being output, coherently with the definition of
threshold implementations [18, 19]. Since all the branches
are symmetric, their netlists are the same. The one produc-
ing ai is depicted in Fig. 5, where the input vector X =
(X1, X2, X3, X4, X5) refers to (bi, ci+2, bi+1, bi+2, ci+1).

Considering only one share function, no leakage of a
native value can appear, since its shares are never involved
in the computation of the four-input XOR by construction.
As we have just mentioned, the three branches are symmet-
ric; hence, we can focus our analysis on the two branches
that produce ai and bi without loss of generality. If we
monitor such circuits in at least two different points, it
should be possible to observe some leakages that can give
information on a native variable if combined together. In the
literature, this is usually referred to as high-order leakage.
Firstly, we jointly consider the two circuits, i.e. such that
the inputs vector is X = (X1, X2, X3, X4, X5, X6, X7, X8),
that corresponds to the native variables vector
(bi, ci+2, bi+1, bi+2, ci+1, ci, ai+2, ai+1).

Since the number of inputs is 8, the number of transitions
is 216, and among them 216 − 28 = 65280 are non-trivial.
As an example, we choose to show the behaviour of our
tool on the transition 00111111 → 01101000: the execu-
tion of the glitch-counting algorithm is reported in Table 4,
where we have adopted some simplifications to make the
table smaller. The variables X1, X2, X3, X4, X5, X6, X7 and
X8 are set, respectively, to 0, 01, 1, 10, 1, 10, 10 and 10;
hence they are not reported.

The next step is to apply the literifiers, starting from gates
at height 1, i.e. gates producing s1, s2, s4 for the first circuit
(equations on the left) and gates producing s6, s7, s9 for the
second one (equations on the right).

Then, literals for gates at height more than one are
computed too, i.e. for gates producing s3, s5 for the first

J Hardw Syst Secur (2017) 1:269–281 279

Table 4 Glitch-counting
algorithm’s execution for the
two branches of the three-share
χi

h s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0 0 0 0 1 1 1 0 0 0 0

1 01 0 0 10 1 10 0 0 010 01

2 01 0 0 10 101 10 0 0 010 01010

3 01 0 0 10 101 10 0 0 010 01010

LAND((01, {2}), (1, {3})) = {2} LAND((10, {7}), (1, {5})) = {7}
LNOT(1, {3}) = ∅ LNOT(1, {5}) = ∅
LAND((10, {4}), (1, {5})) = {4} LAND((01, {2}), (10, {8})) = {2, 8}

circuit (upper equations) and s8, ss10 for the other (lower
equations).

LAND((0, ∅), (10, {4})) = ∅
LXOR((0, {1}), (01, {2}), (0, ∅), (10, {4})) = {2, 4}

LAND((0, ∅), (01, {2})) = ∅
LXOR((10, {6}), (10, {7}), (0, ∅), (010, {2, 8})) = {2, 6, 7, 8}

Figure 6 summarises the execution of both the glitch-
counting algorithm and the LP model for the transitions
described in the example.

The first circuit can have a leakage of input variables X2

and X4 that refer to shares ci+2 and bi+2, while in the sec-
ond circuit, there can be a leakage of X2, X6, X7 and X8

corresponding to shares ci+2, ci , ai+2 and ai+1. Then, with
just two probes, an adversary could learn information on
shares ai+2, bi+2 and ci+2, making possible to recover the
native value ri+2. Obviously, this is no longer a first order
leakage, since an attacker has to use at least two probes to
implement the attack.

Considering only two branches of the whole sharing
scheme, there are some transitions that match the above
vulnerability definition and could then lead to a criti-
cal high-order leakage of the two native values ri+1 and
ri+2. In particular, there are 6016 transitions producing a
leakage on ri+1, namely roughly 9.18% of all transitions,
while there are 6144 transitions producing a leakage about
ri+2, roughly the 9.38%. Finally, 1024 of these transitions
lead to leakage on both ri+1 and ri+2, i.e. 1.56% of al
l transitions.

In conclusion, analysing the three-sharing scheme for
χi with the LP model, we have deduced that no critical
first order leakage can happen, since by placing only one
probe, it is not possible to recover information about all
the shares of a native value. Instead, studying the propaga-
tion of glitches in two circuits, we have noticed that there
can be a critical high-order leakage of some native vari-
able. In particular, an adversary being able to place two
probes can retrieve a variable which is correlated to a sen-
sitive one, giving rise to an attack of the second order. This

is a theoretical result shown by our model; hence, practical
experiments to verify the existence of the above would be a
very valuable future direction, also considering that the pre-
vious best attack against the three-sharing scheme is a third
order attack by Bertoni et al. [1]. Furthermore, we notice
that all the above discussions remain true even if any two
branches are chosen to run the LP model on, not just the
ones returning ai and bi . The latter fact reveals how such an
attack can work equally well against all the three couples of
chosen branches.

6 Computational Effort and Multi-output Circuits

Since our aim is not to find a specific method for KECCAK

but a rather generic methodology, there are two further top-
ics that need to be addressed: the computational complexity
for a generic circuit and the applicability of the method to
multi-output combinatorial circuits.

The former topic has been partially addressed in Section 3.1
for the glitch-counting algorithm (Theorem 2) and in Section 4.2
for the LP model. If we refer to KECCAK as a practical
example and we think at an implementation performing one
round in one clock cycle, the target combinatorial circuit is
the concatenation of θ , one of the linear maps, and χ [3].
This combinatorial circuit can be seen as a circuit with 33
input bits and 1 output bit in the unprotected version, while
the protected version using two shares is a 44-input circuit
[2]. As described in Section 4.2, this would turn in com-
puting the propagation of glitches through k gates for each
of the 22m − 2m non-trivial input transitions. Considering
that the computation can be parallelised and the evaluation
of the glitch-counting algorithm is not a very complex com-
putation, we claim that the method could be applicable for
a circuit with 44 inputs but would require a well-optimised
implementation.

Multi-output circuits are also a very interesting target. In such
circuits, there are gates contributing to the computation of
different output bits. One approach for tackling these cir-
cuits is to divide the circuit in N independent circuits with
single output, where N is the number of outputs of the

280 J Hardw Syst Secur (2017) 1:269–281

Fig. 6 Branches of the three-shared χi circuit after LP model; on the left, there is the first circuit producing ai and on the right, the second one
producing bi

initial combinatorial logic, nothing prevents the model to be
applied as it is to each of those separately, but meaningful
vulnerability definitions would be required to correctly
interpret the results.

7 Conclusions

In their work, Brzozowski and Ésik [7] have developed a
mathematical structure to estimate the potential waste of
power of a circuit due to glitches. Our first contribution is
the expansion of such framework to include a formal defi-
nition of leakage. We have then defined a formal procedure
to analyse circuits in the d-probing model which takes into
account the effect of glitches on the order of operations.
Our work analyses only the combinatorial logic and hence
achieves a good level of generality since it is not affected
by real-world constraints. As a consequence, the LP model
allows to retrieve how much a given protection scheme can
be weakened by glitches, thus enabling a deep analysis.
Using the proposed methodology, a designer might explore
alternative workflows for solving local problems of glitches
instead of adopting more costly solutions.

Funding The research leading to these results has received fund-
ing from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644052 (HECTOR). Further-
more, Marco Martinoli has been supported in part by the Marie
Skłodowska-Curie ITN ECRYPT-NET (Project Reference 643161).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Bertoni G, Daemen J, Debande N, Le T, Peeters M, Assche GV
(2012) Power analysis of hardware implementations protected
with secret sharing. In: IEEE/ACM International symposium on
microarchitecture, MICRO, pp 9–16

2. Bertoni G, Daemen J, Peeters M, Assche GV (2010) Building
power analysis resistant implementations of Keccak. In: Second
SHA-3 candidate conference

3. Bertoni G, Daemen J, Peeters M, Assche GV (2013) Kec-
cak. In: Johansson T, Nguyen PQ (eds) EUROCRYPT
2013, LNCS, vol 7881. Springer, Heidelberg, pp 313–314,
https://doi.org/10.1007/978-3-642-38348-9 19

4. Bertoni G, Martinoli M (2016) A methodology for the characteri-
sation of leakages in combinatorial logic. In: Carlet C, Hasan MA,
Saraswat V (eds) Proceedings of the 6th International Confer-
ence on Security, Privacy, and Applied Cryptography Engineering,
SPACE 2016, Hyderabad, India, December 14–18, 2016. Springer
International Publishing, Cham, pp 363–382. ISBN: 978-3-319-
49445-6, https://doi.org/10.1007/978-3-319-49445-6 21

5. Bilgin B, Gierlichs B, Nikova S, Nikov V, Rijmen V (2014)
Higher-order threshold implementations. In: Sarkar P, Iwata
T (eds) ASIACRYPT 2014, Part II, LNCS, vol 8874. Springer,
Heidelberg, pp 326–343, https://doi.org/10.1007/978-3-662-
45608-8 18

6. Bilgin B, Gierlichs B, Nikova S, Nikov V, Rijmen V (2014) A
more efficient AES threshold implementation. In: Pointcheval D,
Vergnaud D (eds) AFRICACRYPT 14, LNCS, vol 8469. Springer,
Heidelberg, pp 267–284, https://doi.org/10.1007/978-3-319-
06734-6 17

7. Brzozowski J, Ésik Z. (2003) Hazard algebras. Formal Methods
Syst Des 23(3):223–256

8. Duc A, Dziembowski S, Faust S (2014) Unifying leakage models:
from probing attacks to noisy leakage. In: Nguyen PQ, Oswald
E (eds) EUROCRYPT 2014, LNCS, vol 8441. Springer, Heidel-
berg, pp 423–440. https://doi.org/10.1007/978-3-642-55220-5 24

9. Ishai Y, Sahai A, Wagner D (2003) Private circuits: securing hard-
ware against probing attacks. In: Boneh D (ed) CRYPTO 2003,
LNCS, vol 2729. Springer, Heidelberg, pp 463–481

10. Kocher PC, Jaffe J, Jun B (1999) Differential power analysis.
In: Wiener MJ (ed) CRYPTO’99, LNCS, vol 1666. Springer,
Heidelberg, pp 388–397

11. Kocher PC, Jaffe J, Jun B, Rohatgi P (2011) Introduction to
differential power analysis. J Cryptograph Eng 1(1):5–27

12. Leiserson AJ, Marson ME, Wachs MA (2014) Gate-level masking
under a path-based leakage metric. In: Batina L, Robshaw M (eds)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-319-49445-6_21
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-642-55220-5_24

J Hardw Syst Secur (2017) 1:269–281 281

CHES 2014, LNCS, vol 8731. Springer, Heidelberg, pp 580–597,
https://doi.org/10.1007/978-3-662-44709-3 32

13. Mangard S, Oswald E, Popp T (2008) Power analysis attacks:
tevealing the secrets of smart cards, vol 31. Springer Science &
Business Media

14. Mangard S, Popp T, Gammel BM (2005) Side-channel leakage of
masked CMOS gates. In: Menezes A (ed) CT-RSA 2005, LNCS,
vol 3376. Springer, Heidelberg, pp 351–365

15. Mangard S, Pramstaller N, Oswald E (2005) Successfully attack-
ing masked AES hardware implementations. In: Rao JR, Sunar
B (eds) CHES 2005, LNCS, vol 3659. Springer, Heidelberg,
pp 157–171

16. Mangard S, Schramm K (2006) Pinpointing the side-channel leak-
age of masked AES hardware implementations. In: Goubin L,
Matsui M (eds) CHES 2006, LNCS, vol 4249. Springer, Heidel-
berg, pp 76–90

17. Moradi A, Poschmann A, Ling S, Paar C, Wang H (2011) Push-
ing the limits: a very compact and a threshold implementation of
AES. In: Paterson KG (ed) EUROCRYPT 2011, LNCS, vol 6632.
Springer, Heidelberg, pp 69–88

18. Nikova S, Rechberger C, Rijmen V (2006) Threshold implemen-
tations against side-channel attacks and glitches. In: Ning P, Qing
S, Li N (eds) ICICS 06, LNCS, vol 4307. Springer, Heidelberg,
pp 529–545

19. Nikova S, Rijmen V, Schläffer M (2009) Secure hardware imple-
mentation of non-linear functions in the presence of glitches. In:
Lee PJ, Cheon JH (eds) ICISC 08, LNCS, vol 5461. Springer,
Heidelberg, pp 218–234

20. Prouff E, Roche T (2011) Higher-order glitches free implementa-
tion of the AES using secure multi-party computation protocols.
In: Preneel B, Takagi T (eds) CHES 2011, LNCS, vol 6917.
Springer, Heidelberg, pp 63–78

21. Rabaey JM, Chandrakasan AP, Nikolic B (2002) Digital inte-
grated circuits, vol 2. Prentice Hall, Englewood Cliffs

22. Reparaz O (2016) Detecting flawed masking schemes with leak-
age detection tests. In: Peyrin T (ed) FSE 2016, LNCS, vol 9783.
Springer, Heidelberg, pp 204–222, https://doi.org/10.1007/978-3-
662-52993-5 11

23. Reparaz O, Bilgin B, Nikova S, Gierlichs B, Verbauwhede I
(2015) Consolidating masking schemes. In: Gennaro R, Robshaw
MJB (eds) CRYPTO 2015, Part I, LNCS, vol 9215. Springer, Hei-
delberg, pp 764–783. https://doi.org/10.1007/978-3-662-47989-
6 37

24. Tiwari M, Wassel HM, Mazloom B, Mysore S, Chong FT, Sher-
wood T (2009) Complete information flow tracking from the
gates up. In: Proceedings of the 14th international conference on
architectural support for programming languages and operating
systems, pp 109–120

https://doi.org/10.1007/978-3-662-44709-3_32
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37

	A Methodology for the Characterisation of Leakages in Combinatorial Logic
	Abstract
	Introduction
	Related Work
	Organisation of the Paper

	Preliminaries
	Further Notation
	Power Consumption Model
	Hamming Distance Model

	d-Probing Model

	Simulation of Signal Propagation
	Glitch-Counting Algorithm

	LP Model
	Structure of LP Model
	Application to Circuits
	Final Remarks

	Case of Study: Keccak
	Unshared i
	 with Two Shares
	 with Three Shares

	Computational Effort and Multi-output Circuits
	Conclusions
	Funding
	Open Access
	References

