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ABSTRACT
The mid-p-value is a proposed improvement on the ordinary p-value for the case where the test statistic
is partially or completely discrete. In this case, the ordinary p-value is conservative, meaning that its null
distribution is larger than a uniform distribution on the unit interval, in the usual stochastic order. The
mid-p-value is not conservative. However, its null distribution is dominated by the uniform distribution
in a different stochastic order, called the convex order. The property leads us to discover some new finite-
sample and asymptotic bounds on functions of mid-p-values, which can be used to combine results from
different hypothesis tests conservatively, yet more powerfully, using mid-p-values rather than p-values.
Our methodology is demonstrated on real data from a cyber-security application.

1. Introduction

Let T be a real-valued test statistic, with probability measure
P0 under the null hypothesis, denoted H0. Let X be a uniform
random variable on the unit interval that is independent of
T under P0. X is a randomization device which is in practice
usually generated by a computer.

We consider the (one-sided) p-value,

P = P0(T∗ ≥ T ), (1)

the mid-p-value (Lancaster 1952),

Q = 1
2
P0(T∗ ≥ T ) + 1

2
P0(T∗ > T ), (2)

and the randomized p-value,

R = XP0(T∗ ≥ T ) + (1 − X )P0(T∗ > T ), (3)

where T∗ is a hypothetical independent replicate of T under P0.
If T is absolutely continuous underH0, then the three quantities
are equal and distributed uniformly on the unit interval. More
generally, that is, if discrete components are possible, the three
are different. Two main factors, one obvious and one more sub-
tle, make this a very common occurrence. First, T is discrete if
it is a function of discrete data, for example, a contingency table,
categorical data, or a presence/absence event. Second, discrete
test statistics often occur as a result of conditioning, as in the
permutation test or Kendall’s tau test (Sheskin 2003). Partially
discrete tests occur, for example, as a result of censoring.

When P, Q, and R are not equal, it is a question which to
choose. The ordinary p-value is often preferred in relatively
strict hypothesis testing conditions, for example, in clinical
trials, where the probability of rejecting the null hypothesis

CONTACT Patrick Rubin-Delanchy patrick.rubin-delanchy@bristol.ac.uk School of Mathematics, University of Bristol, Bristol BS TH, United Kingdom.

must not exceed the nominal level (often 5%). The random-
ized p-value has some theoretical advantages, for example,
the nominal level of the test is met exactly. However, to quote
one of its earliest proponents, “most people will find repugnant
the idea of adding yet another random element to a result which
is already subject to the errors of random sampling” (Stevens
1950). Randomized p-values also fail Birnbaum’s admissibility
criterion (Birnbaum 1954). Note that we can also work with
an unrealized version of the randomized p-value, known as the
fuzzy or abstract p-value (Geyer and Meeden 2005), and either
stop there—leaving interpretation to the decision-maker—or
propagate uncertainty through to any subsequent analysis, for
example, multiple-testing (Kulinskaya and Lewin 2009; Habiger
2015).

Although it can allow breaches of the nominal level, the mid-
p-value is often deemed to better represent evidence against
the null hypothesis than the ordinary or randomized p-values.
Justifications are not just heuristic as, for example, the mid-p-
value can arise as a Rao–Blackwellization of the randomized
p-value corresponding to the uniformly most powerful test
(Wells 2010), as an optimal estimate of the H0 versus H1 truth
indicator under squared loss (Hwang and Yang 2001), or from
asymptotic Bayesian arguments (Routledge 1994). Performance
has also been demonstrated in applications, for example, in
the context of healthcare monitoring (Spiegelhalter et al. 2012)
(an article read before the Royal Statistical Society), genetics
(Graffelman and Moreno 2013), a wealth of examples involving
contingency tables (Lydersen, Fagerland, and Laake 2009), and
more. Our own interest stems from cyber-security applications,
and a motivating example is given in Section 3. Most arguments
for using the mid-p-value in hypothesis testing scenarios also
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work for confidence intervals. Here, using the mid-p-value
over the p-value can result in a smaller interval, with a closer-
to-nominal coverage probability (Berry and Armitage 1995;
Fagerland, Lydersen, and Laake 2015).

In this article, we are able to make further mathematical
progress on the mid-p-value by using a stochastic order known
as the convex order. The problem we focus on is meta-analysis,
that is, combining evidence from different hypothesis tests into
one, global measure of significance. In several scenarios ana-
lyzed, the use of the ordinary p-value leads to suboptimal, and
even spurious results. New bounds for some commonly used
methods for combining ordinary p-values are derived for mid-
p-values. These allow large gains in power over using ordinary
p-values, while, unlike any previous study based on mid-p-
values, the false positive rate is still controlled exactly (albeit
conservatively).

The remainder of this article is structured as follows. In
Section 2, we summarize our main results. Section 3 gives a
cyber-security application where, using mid-p-values, we are
able to detect a cyber-attack thatwould likely fall under the radar
if only ordinary p-values were used. Section 4 elaborates on the
results of Section 3, with improved (althoughmore complicated)
bounds, simulations, and discussion. Section 5 concludes. All
proofs are relegated to the Appendix.

2. Main Results

This section summarizes themain ideas and findings of the arti-
cle. LetU denote a uniform randomvariable on the unit interval,
with expectation operator E, and let E0 denote expectation with
respect to P0. Under the null hypothesis, it is well known, see, for
example, Casella and Berger (2002), that P dominates U in the
usual stochastic order, denotedP ≥st U . Oneway towrite this is

E0{ f (P)} ≥ E{ f (U )}, (4)

for any nondecreasing function f , whenever the expectations
exist (Shaked and Shanthikumar 2007). It is also well known,
and in fact true by design, that R is uniformly distributed under
the null hypothesis, denoted R =st U . On the other hand, it is
not widely known that, under the null hypothesis, Q is domi-
nated by U in the convex order, denoted Q ≤cx U . One way to
write this is (Shaked and Shanthikumar 2007, chap. 3)

E0{h(Q)} ≤ E{h(U )}, (5)

for any convex function h, whenever the expectations exist. We
have used the qualifier “widely,” because an effective equivalent
of Equation (5) can be found in Hwang and Yang (2001).
However, even there, Equation (5) is not recognized as a major
stochastic order, meaning that some of its importance is missed.

In particular, we now present three concrete, new results,
made possible by the literature on the convex order. Each pro-
vides a method for combining mid-p-values conservatively, the
first two in finite samples and the last asymptotically. Details and
improved (butmore complicated) bounds are given in Section 4.
In what follows, Q1, . . . ,Qn denote independent (but not nec-
essarily identically distributed) mid-p-values, with joint proba-
bility measure denoted P̃0 under the null hypothesis.

Let Q̄n = n−1∑n
i=1 Qi denote the average mid-p-value. For

t ≥ 0,

P̃0
(
1/2 − Q̄n ≥ t

) ≤ exp(−6nt2). (6)

Note that, first, no knowledge of the specific individual mid-
p-value distributions is required. Second, Hoeffding’s inequal-
ity (Hoeffding 1963), which would be available more generally,
gives the larger bound exp(−2nt2) (the cubic root).

Let Fn = −2
∑n

i=1 log(Qi), known as Fisher’s statistic (Fisher
1934) and the most popular method for combining p-values. In
the continuous case, it is well-known that Fn has a chi-square
distribution with 2n degrees of freedom underH0. For t ≥ 2n,

P̃0(Fn ≥ t ) ≤ exp{n − t/2 − n log(2n/t )}. (7)

Finally, assume additionally that Q1, . . . ,Qn are identically dis-
tributed. Then applying Fisher’smethod as usual, that is, treating
the mid-p-values as if they were ordinary p-values and using the
chi-square tail, is asymptotically conservative as n → ∞.

3. Example: Network Intrusion Detection

The perceived importance of cyber-security research has risen
dramatically in recent years, particularly after several well-
publicized events in 2016 and 2017. In this area, anomaly
detection over very high volumes and rates of network data
is a key statistical problem (Adams and Heard 2016). In our
experience of the field, discrete data, whether they be pres-
ence/absence events, counts or categorical data, are the norm
rather than the exception. We will demonstrate the value of our
article’s contributions in a network intrusion detection problem.

Figure 1 shows publically available authentication data cov-
ering 58 days on the Los Alamos National Laboratory computer
network (Kent 2016). Nodes in the graph are computers, and
an edge indicates that there was at least one connection from
one computer to the other, resulting in a graph withm ≈ 18,000
nodes and ∼400,000 directed edges. An exciting opportunity
offered by this data resource is that it contains an actual cyber-
attack: or, to be precise, records of penetration testing activity
conducted by a “red-team.” One of the four computers used for
the attack (the highest degree of the four, ID “C17693,” with 296
out of 534 edges labeled as nefarious) is highlighted in red on
the left, with its connections highlighted in pink on the right.

Figure . Authentication data: Full network of connections comprising ∼18,000
nodes and∼400,000 directed edges. Edges are colored by authentication type. On
the left, nodes are shown as black points, with node ID “C” highlighted in red
(and larger). On the right, the points are hidden to better see the connectionsmade
by node ID “C,”which are now highlighted in pink.
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Earlier work on network intrusion has suggested that the
occurrence of new edges on the network can be (weakly) indica-
tive of nefarious behavior (Neil et al. 2013; Neil 2015). Looking
at the outward connections from a given computer, in particu-
lar, those which at the other end involve a computer otherwise
receiving relatively few new connections present special interest.
Because the first day of data has no red-team activity, we use
this day to learn a rate λ j, j = 1, . . . ,m at which each computer
receives new connections, assuming, admittedly unrealistically,
that the times are right-censored independent and identically
distributed exponential random variables. For every computer
on the network, the set of outward new connections made
over the remainder of the observation period [1, 58] is scored
according to this model. The test-statistic

Ti j =
⎧⎨
⎩
57 if no connection occurs from i to j,
τ − 1 if a new connection from i to j occurs

at time τ ≥ 1,

is considered for every directed pair (i, j) not occurring as an
edge on the first day, so that each node i has associated with it a
collection of test statistics Ti·, which are partially discrete, with
a point mass at 57.

For regularization purposes, the rates λ j, j = 1, . . . ,m are
assumed a priori to follow a Gamma distribution matching
the mean and variance of the empirical rates computed for
each j = 1, . . . ,m over the full period of 58 days. The use
of this prior implies that before censoring Ti j has a Gamma-
Exponential (also called Lomax) predictive distribution, which
is used to compute the collection of ordinary, mid, and ran-
domized p-values Pi·,Qi·,Ri· corresponding to the outward
connections of each node i = 1, . . . ,m. Mathematical details
about the calculations above are in the Appendix.

Since we are interested in the ranking of computer ID
“C17693” among the other ∼18, 000 computers, as well as its
p-value, it makes sense to extend the ranges of the bounds (6)
and (7) as follows:

P̃0
(
1/2 − Q̄n ≥ t

) ≤ exp{−6 sgn(t )nt2}, t ∈ R, (8)

P̃0(Fn ≥ t ) ≤ exp[sgn(t − 2n){n − t/2 − n log(2n/t )}], t > 0,
(9)

which preserves monotonicity, and remains valid because larger
values than unity are returned outside the old ranges. Our
options are:

1. to compute the average ordinary, mid, and randomized
p-values, and obtain a significance level using bound (8).
Computer ID “C17693” then ranks as 8th (p-value ≈ 1),
8th (p-value ≈ 10−7), and 9th (p-value ≈ 10−7) most
anomalous of the ∼18,000 computers, respectively.

2. to compute Fisher’s statistic for the ordinary, mid, and
randomized p-values, and obtain a global significance
level using bound (9) for the second case, and the chi-
square tail otherwise. Computer ID “C17693” now ranks
joint 8118th (p-value ≈ 1), 2nd (p-value ≈ 1), and 9th
(p-value ≈ 10−43), respectively.

3. to assume an asymptotic regime and use the chi-square
tail for the Fisher-with-mid-p-values statistic instead.
Computer ID “C17693” then ranks 8th (p-value ≈ 1).

As rankings go, therefore, the mid-p-value is never beaten,
with computer ID “C17693” coming in the top 10 every time
and coming second once. The most obvious approach of using
Fisher’s method with ordinary p-values fails completely. As for
the other three red-team computers: using the best performing
method, that is, Fisher’s statistic with mid-p-values and bound
(9), where Computer ID “C17693” comes second, their ranks
are 384th (ID “C18025”), 550th (ID “C19932”), and 1079th (ID
“C22409”).

4. Meta-Analysis of Mid-p-Values: Further Details

This section elaborates on the results of Section 2. We say that a
random variable (and its measure and distribution function) is
subuniform if it is less variable than a uniform random variable,
U , in the convex order.

To see why the mid-p-value is sub-uniform, notice that Q =
E0(R | T ). By Jensen’s inequality, for any convex function h,

E0{h(Q)} = E0[h{E0(R | T )}] ≤ E0[E0{h(R) | T}]
= E0{h(R)} = E{h(U )}, (10)

whenever the expectations exist, since R =st U . Remember that
we do not claim this result is new, see, for example, Hwang and
Yang (2001), but rather the idea to exploit the literature on the
convex order.

To formalize themeta-analysis framework, letT1, . . . ,Tn be a
sequence of independent test statistics. We consider a joint null
hypothesis, H̃0, under which T1, . . . ,Tn have probability mea-
sure P(1)

0 , . . . ,P(n)
0 , respectively. The p-values, Pi, mid-p-values,

Qi, and randomized p-values, Ri, are obtained by replacing P0

with P(i)
0 in (1), (2), and (3), respectively. In the case of the ran-

domized p-value, an independent uniform variable,Xi, is gener-
ated each time. P̃0 denotes the implied joint probability measure
of the statistics under H̃0. The focus of this section is on testing
the joint null hypothesis H̃0. Probability bounds that followoften
have the form P̃0{ f (Q1, . . . ,Qn) ≥ t} ≤ bn(t ). If the observed
mid-p-values are q1, . . . , qn and level of the test is α (e.g., 5%),
then a procedure that rejects when bn{ f (q1, . . . , qn)} ≤ α is
conservative: the probability of rejecting the null hypothesis H̃0,
if it holds, does not exceed α.

4.1. Sums ofMid-p-Values

An early advocate of mid-p-values, Barnard (1989, 1990) pro-
posed to combine test results from different contingency tables
by taking the sum of standardized mid-p-values. His exposition
relies on some approximations.Our resultsmake exact inference
possible.

We begin with a bound on the sum of independent mid-p-
values. This bound bears an interesting resemblance to Hoeff-
ding’s inequality (Hoeffding 1963). It will later be extended to
be relevant to Barnard’s analysis.

Theorem 1. Let X1, . . . ,Xn denote n independent sub-uniform
random variables with mean X̄n = n−1∑n

i=1 Xi. Then, for 0 ≤
t ≤ 1/2,

P
(
1/2 − X̄n ≥ t

) ≤ min
h≥0

{
2e−ht sinh(h/2)/h

}n
, (11)
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≤ exp(−12nt2) {sinh(6t )/(6t )}n , (12)
≤ exp(−6nt2). (13)

A subuniform random variable has expectation 1/2 and is
bounded between 0 and 1. Hoeffding’s inequality would there-
fore give us P(1/2 − X̄n ≥ t ) ≤ exp(−2nt2) for 0 ≤ t ≤ 1/2,
the cubic root. Our improvement is substantial, for example,
suppose we observe an average of 0.4 from n = 100 mid-p-
values. This is very significant: P̃0(1/2 − Q̄n ≥ 0.1) ≤ 0.0025
using (13). However, we would only find P̃0(1/2 − Q̄n ≥ 0.1) ≤
0.14 using Hoeffding’s inequality.

Instead of summing the mid-p-values directly, Barnard
(1990) actually considered sums of the standardized statistics

Di = (1/2 − Qi)/σi,

where σi is the standard deviation ofQi under H̃0. The upper tail
probability of the sum is then estimated by Gaussian approx-
imation. In the purely discrete case, Barnard shows that σi =
{(1 − si)/12}1/2 where

si =
∑
t∈Si

{
P(i)
0 (Ti = t )

}3
,

and Si is the (countable) support of Qi. Instead of appealing to
the Gaussian approximation, the convex order allows us to find
an exact bound.
Lemma 1. Let X1, . . . ,Xn denote n independent subuniform
random variables with standard deviations σ1, . . . , σn, respec-
tively, and let

Ȳn = 1
n

n∑
i=1

(1/2 − Xi)/σi.

Then, for t ≥ 0,

P(Ȳn ≥ t ) ≤ min
h≥0

( n∏
i=1

exp[−h{t + 1/(2σi)}]

×
{
eh/σi − 1s

h/σi
+ h2

(
1
2

− 1
24σ 2

i

)})
, (14)

≤ exp{−6n(σ̄ t )2}, (15)

where σ̄ = (
∏

σi)
1/n is the geometric mean of the standard

deviations.

In practice, the bound (14), which is an important improve-
ment over (15), can be found numerically by minimizing over
h. Of course, even if the optimum cannot be determined exactly
the obtained bound still holds, because the tail area is simply
over-estimated.

To illustrate how the bound (14) performs in practice, we now
revisit Barnard’s example (Barnard 1990, p. 606). The first exper-
iment he considers yieldsQ1 = 1/7, s1 = 9002/423,D1 = 1.32.
The second yields Q2 = 1/9, s2 = 141/729,D2 = 1.5. Since
the sum divided by

√
2 is almost two, that is, two standard

deviations away, he finds “serious evidence” against the null
hypothesis. Lemma 1 gives P̃0(D1 + D2 ≥ 1.32 + 1.5) ≤ 0.12,
providing some evidence in favor of the alternative, but not sig-
nificant at, say, the 5% level. On the other hand, evidence would
start to become compelling if we were to observe the second
result again, Q3 = 1/9, s3 = 141/729,D3 = 1.5; Lemma 1 then
finds P̃0(D1 + D2 + D3 ≥ 1.32 + 1.5 + 1.5) ≤ 0.036.

4.2. Products ofMid-p-Values (Fisher’s Method)

Fisher’s method (Fisher 1934) is the most popular way of
combining p-values. As is well-known, under H̃0, the statistic
−2
∑n

i=1 log(Pi) has a chi-square distribution with 2n degrees
of freedom if Pi are absolutely continuous. Therefore, the p-
value of the combined test is P† = S2n{−2

∑n
i=1 log(Pi)}, where

Sk is the survival function of a chi-square distribution with k
degrees of freedom. This results in an exact procedure when
Pi are absolutely continuous, and a conservative one otherwise,
that is, P† ≥st U under H̃0.

Our next result allows us to use the mid-p-valuesQ1, . . . ,Qn
in place of P1, . . . ,Pn while retaining a conservative procedure.
We were able to derive three probability bounds. None beats
the other two uniformly for all n and all significance levels (see
Figure 2), but the last is often the winner, hence the simpler
statement of Section 2.

Theorem 2. Let X1, . . . ,Xn be a sequence of independent sub-
uniform random variables. Then for x ≥ 2n,

P

(
−2

n∑
i=1

log(Xi) ≥ x

)

≤ min
[
S2m(x − 2n log 2), n

/ [
n + {(x − 2n)/2}2] ,

exp{n − x/2 − n log(2n/x)}] = un(x).
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left-censored Beta(1, 20) distribution. n = 100, β = 5:  p-values from a left-censored Beta(1, 5) distribution. Dotted line: Randomized p-values. Solid line: Mid-p-value.
Dashed line: Standard p-values. Further details in the main text.

The first uses P(Xi ≤ α) ≤ 2α for α ≥ 0, obvious in the case
of a mid-p-value, but actually true of any subuniform random
variable (Meng 1994). The second uses bounds on the mean
and variance of − log(Xi) (given in Lemma 2, in the Appendix)
and then applies the Chebyshev-Cantelli inequality. The third
is based on a bound on the moment generating function of
− log(Xi). Derivation details are in the Appendix.

For a given n and α ∈ (0, 1], let tα,n denote the critical value
of Fisher’s statistic, that is, tα,n satisfies S2n(tα,n) = α. Figure 2
presents the behavior of the different bounds for different n (20
on the left and 1 billion on the right) and α. The curves show
the bound given by each formula at different α (which can be
interpreted as “canonical levels”), that is, inputting x = tα,n in
Theorem 2, as α ranges from 10−5 to 0.1. For low α, the bound
based on the moment generating function, marked MGF, is by
far superior.

Let Q† = un{−2
∑n

i=1 log(Qi)}. Then Q† is again conser-
vative, that is, Q† ≥st U under H̃0. Both P† and Q† are valid
p-values. Clearly, if the underlying p-values are continuous, then
the standard P† is superior (in fact, deterministically smaller).
However, Q† seems to be substantially more powerful in a wide
range of discrete cases. This is demonstrated by simulation in
Section 4.3.

Finally, we find this interesting asymptotic result.

Theorem 3 (Fisher’s method is asymptotically conservative). Let
X1,X2, . . . denote independent and identically distributed sub-
uniform random variables. For any α ∈ (0, 1], there exists
N ∈ N such that

P

(
−2

n∑
i=1

log(Xi) ≥ tα,n

)
≤ α,

for any n ≥ N.

Hence, we can dispense with any correction entirely if
n is large enough and the Qi are identically distributed. A
formal proof is given in the Appendix. Since E{− log(Xi)} ≤
E{− log(U )}, from the definition of the convex order, a direct
application of the law of large numbers gets us most of way,
except for the possibility E{− log(Xi)} = E{− log(U )}. In fact,
this exception is no problem because, perhaps surprisingly, it
implies that theXi are uniform, using Shaked and Shanthikumar
(2007, Theorem 3.A.43).

4.3. Simulations

To illustrate the potential improvement of employing Fisher’s
method with mid-p-values, using the bound (7), over the tradi-
tional approach of using ordinary p-values and the chi-square
tail, we considered p-values from three types of support. In
the first column of Figure 3, each p-value Pi can only take
one of two values, 1/2 and 1. We therefore have Qi = 0.25 if
Pi = 1/2 and Qi = 0.75 if Pi = 1. Under the null hypothesis,
P(i)
0 (Pi = 1/2) = P(i)

0 (Pi = 1) = 1/2. In the second column,
each p-value Pi is supported on the pair {pi, 1}, where pi were
drawn uniformly on the unit interval but are subsequently
treated as fixed known values. We have Qi = pi/2 if Pi = pi
and Qi = (1 + pi)/2 otherwise. Under the null hypothesis, we
have P(i)

0 (Pi = pi) = 1 − P(i)
0 (Pi = 1) = pi, for each i. Finally,

in the third column each p-value Pi takes one of 10 values,
1/10, 2/10, . . . , 1, and therefore Qi = Pi − 1/20. Under the
null hypothesis, P(i)

0 (Pi = j/10) = 1/10, for j = 1, . . . , 10. The
rows represent two different alternatives and sample sizes. In
both cases, the Pi are generated by left-censoring a sequence
of independent and identically distributed Beta variables,
B1, . . . ,Bn, that is, Pi is the smallest supported value larger than
Bi. In the first scenario, the dataset is small (n = 10), but the
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signal is strong (a Beta distribution with parameters 1 and 20).
In the second, the dataset is larger (n = 100) but the signal is
made weaker accordingly (a Beta distribution with parameters
1 and 5). Comparing just the solid and dashed lines first, we
see that Q† always outperforms P† substantially, and sometimes
overwhelmingly. In the bottom-left corner, for example, we
have a situation where, at a false positive rate set to 5% say, the
test Q† would detect the effect with probability close to one
whereas with P† the probability would be close to zero.

As a final possibility, consider R† = S2n{−2
∑n

i=1 log(Ri)}. A
disappointment is that this randomized version, the dotted line
in Figure 3, tends to outperform even the mid-p-values, and
by a substantial margin. On the other hand, as pointed out in
the introduction, the randomized p-value has some important
philosophical disadvantages, and did not perform better in our
real data example.

5. Conclusion

The convex order provides a formal platform for the treatment
and interpretation of mid-p-values. This article usedmathemat-
ical results from this literature to combine mid-p-values, which
are not conservative individually, into an overall significance
level that is conservative. As shown in real data and simulations,
the gains in power can be substantial.

Whereas the focus of this article was on meta-analysis,
another canonical problem is multiple testing, where the task is
to subselect from or adjust a set of p-values, for example, subject
to a maximum false discovery rate (Benjamini and Hochberg
1995). The case of discrete data has been analyzed in a number
of articles, including Kulinskaya and Lewin (2009); Habiger and
Pena (2011); Liang (2016); Habiger (2015). A promising (but
ostensibly harder) avenue of research would be to investigate the
use of the convex order in this problem.

Appendix: Mathematical Details and Proofs

A1. Section 3: Mathematical Details

First, we calculate the empirical rates

r j = number of new connections to j over [0, 58]
(number of nodes - 1) × 58

,

for j = 1, . . . ,m, and then set α = {mean(r j )}2/var(r j ), β =
mean(r j )/var(r j ), so that a Gamma distribution with parameters α

and β has mean and variance equal to the empirical mean and variance of
r j , respectively. This distribution is used as the prior for each rate λ j . After
a day of observation, the posterior distribution for λ j is also Gamma, with
parameters

α j = α + #{new connections to j over [0, 1)}; β j = β +
∑

τi j,

where

τi j =
{
1 if no connection occurs from i to j in [0, 1),
τ if a new connection from i to j occurs at time τ < 1.

For each i, restrict j to the indices of nodes that did not receive a connec-
tion from i over [0, 1). Conditional on the observation period [0, 1), each

statistic Ti j has a probability measure, denoted P(i j)
0 , with a point mass at 57

and an absolutely continuous distribution over [0, 57) given by

P(i j)
0 (Ti j ≤ t ) = 1 −

∫ ∞

0
e−λ j t · β

α j
j

�(α j )
λ

α j−1
j e−β jλ j dλ j

= 1 −
(
1 + t

β j

)−α j

, for t ∈ [0, 57),

P(i j)
0 (Ti j = 57) = (1 + 57/β j )

−α j .

Since low values of Ti j are of interest, the p-value and mid-p-value asso-
ciated with Ti j are computed from lower-tailed versions of (1) and (2) by
substituting P(i j)

0 in for P0, giving

Pi j =
{
1, Ti j = 57,
1 − (1 − Ti j/β j )

−α j , Ti j < 57,

and

Qi j =
{
1/2 + {1 − (1 − 57/β j )

−α j }/2, Ti j = 57,
1 − (1 − Ti j/β j )

−α j , Ti j < 57,

respectively.

Proofs

Proof of Theorem 1. Since 1 − X is subuniform if and only if X is sub-
uniform, it is sufficient to prove the bounds in (11), (12), and (13) hold for
P(X̄n − 1/2 ≥ t ). Since exp(xh) is a convex function in x for any h, the con-
vex order gives us E{exp(hXi)} ≤ E{exp(hU )} = (eh − 1)/h. Therefore, for
any h ≥ 0,

P
(
X̄n − 1/2 ≥ t

) = P

[
exp

( n∑
i=1

hXi

)
≥ exp{nh(t + 1/2)}

]
,

≤ exp{−nh(t + 1/2)}E
{
exp

( n∑
i=1

hXi

)}
,

≤ exp{−nh(t + 1/2)}{(eh − 1)/h}n
= {

2e−ht sinh(h/2)/h
}n

,

where the second line follows fromMarkov’s inequality. The choice h = 12t
(motivated by an analysis of the Taylor expansion in h at 0) leads to

P
(
X̄n − 1/2 ≥ t

) ≤ exp(−12nt2) {sinh(6t )/(6t )}n
≤ exp(−6nt2)

{
e−6t sinh(6t )/(6t )

}n ≤ exp(−6nt2),

using the fact that e−x sinh(x)/x = (1 − e−2x)/(2x) is one at x = 0 (using
l’Hospital’s rule) and decreasing. �
Proof of Lemma 1. Again, we will prove the bound holds for
Wn = n−1∑(Xi − 1/2)/σi, so that the theorem holds by symmetry.
For any h ≥ 0,

E{exp(hXi/σi)} = 1 + E(hXi/σi) + E
{
(hXi/σi)

2} /2 + · · ·

= 1 + E(hU/σi) + h2
(
1
2

+ 1
8σ 2

i

)
+ · · ·

≤ E{exp(hU/σi)} + h2
(
1
2

+ 1
8σ 2

i
− 1

6σ 2
i

)
,
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because E{(hXi/σi)
n} ≤ E{(hU/σi)

n} for n ≥ 3, by the convex order, and
E{(U/σi)

2}/2 = 1/(6σ 2
i ). Therefore,

P(Wn ≥ t ) = P

[
exp

{ n∑
i=1

h(Xi − 1/2)/σi

}
≥ ehnt

]
,

≤ e−hntE

[
exp

{ n∑
i=1

h(Xi − 1/2)/σi

}]
,

=
n∏
i=1

exp[−h{t + 1/(2σi)}]
{
eh/σi − 1
h/σi

+ h2
(
1
2

− 1
24σ 2

i

)}
,

proving that (14) holds. Next, since σ 2
i ≤ 1/12,

P(Wn ≥ t ) ≤
n∏

i=1

exp[−h{t + 1/(2σi)}]
(
eh/σi − 1
h/σi

)

=
⎛
⎝2e−ht

[ n∏
i=1

sin h{h/(2σi)}
]1/n/

(h/σ̄ )

⎞
⎠

n

≤ {
2e−ht sin h(h/(2σ̄ ))/(h/σ̄ )

}n
,

using the fact that the function sinh is geometrically convex on [0,∞)

(Niculescu 2000). We proceed as in the proof of Theorem 1, choosing
h = 12σ̄ t . �

The proofs of Theorems 2 and 3 both need the following result.

Lemma 2. Let X be a sub-uniform random variable. Then either (i) X is
uniform on [0, 1] or (ii)

E{− log(X )} < E{− log(U )} = 1; var{− log(X )} < var{− log(U )} = 1,

whereU is a uniform random variable on [0, 1].

Proof. Shaked and Shanthikumar (2007, Theorem 3.A.43) provide the
following theorem. If X ≤cx Y and for some strictly convex function h
we have E{h(X )} = E{h(Y )} then X is distributed as Y . The function
− log(x) is strictly convex, therefore either X is uniform or E{− log(X )} <

E{− log(U )}. If the latter is true, then

var{− log(X )} = E[− log(X ) − E{− log(X )}]2
< E[− log(X ) − E{− log(U )}]2
≤ E{log(U ) + 1}2
= var{− log(U )}.

In the second line, the fact that the expected squared distance from themean
is smaller than from any other point is used, and in the fourth we used the
fact that (log(x) + 1)2 is convex. �
Proof of Theorem 2. Let Gn = −2

∑
log(Xi). Now, Ui/2 ≤st Xi, for

i = 1, . . . , n, where U1, . . . ,Un are independent uniform random vari-
ables on [0, 1]. This implies − log(Xi) ≤st − log(Ui/2). Because the usual
stochastic order is closed under convolution (Shaked and Shanthikumar
2007, Theorem 1.A.3), we have Gn ≤st −2

∑
log(Ui) + 2n log 2. The sum

−2
∑

log(Ui) has a chi-square distribution with 2n degrees of freedom,
proving the first bound.

Lemma 2 implies E(Gn) ≤ 2n and var(Gn) ≤ 4n. Therefore, using Can-
telli’s inequality,

P[Gn ≥ x] ≤ var(Gn)/
[
var(Gn) + {x − E(Gn)}2

]
≤ var(Gn)/

[
var(Gn) + {x − 2n}2]

≤ n/
[
n + {(x − 2n)/2}2] ,

for x ≥ 2n. This proves the second bound. Finally, the moment generating
function ofGn is E{exp(tGn)} =∏E(X−2t

i ) for t ≥ 0. For t ∈ [0, 1/2) each

E(X−2t
i ) ≤ E(U−2t ) = (1 − 2t )−1 since x−2t is a convex function in x for

x ∈ [0, 1]. Using Markov’s inequality,

P(Gn ≥ x) = P{exp(tGn) ≥ exp(tx)}
≤ exp(−tx)E{exp(tGn)}
≤ exp(−tx − n log(1 − 2t )),

for t ∈ [0, 1/2). The minimum of this function is at t = 1/2 − n/x, giving
the third bound. �
Proof of Theorem 3. Let Vi = −2 log(Xi), μV = E(Vi), Wi = −2 log(Ui),
whereU1, . . . ,Un are independent uniform random variables on [0, 1], and
μW = E(Wi). If μV = μW then by Lemma 2 the Xi are uniform on [0, 1]
and we are done. The statement is also true if α = 1. Therefore assume
μV < μW , α ∈ (0, 1) and let t ∈ (μV , μW ). By the weak law of large num-
bers there exists an N ′ ∈ N such that, for n ≥ N ′,

P

( n∑
i=1

Wi ≥ nt

)
≥ α,

so that tα,n ≥ nt . Therefore, for n ≥ N ′,

P

( n∑
i=1

Vi ≥ tα,n

)
≤ P

( n∑
i=1

Vi ≥ nt

)
.

Again by the law of large numbers, the right-hand side tends to zero. Hence,
there exists an N ≥ N ′ such that it is bounded by α for n ≥ N. �
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