
 Yeh, C. T., Brunette, T. J., Baker, D., McIntosh-Smith, S., & Parmeggiani, F.
(2018). Elfin: an algorithm for the computational design of custom three-
dimensional structures from modular repeat protein building blocks. Journal
of Structural Biology, 201(2), 100-107.
https://doi.org/10.1016/j.jsb.2017.09.001

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.jsb.2017.09.001

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://www.sciencedirect.com/science/article/pii/S1047847717301417 . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1016/j.jsb.2017.09.001
https://doi.org/10.1016/j.jsb.2017.09.001
https://research-information.bris.ac.uk/en/publications/elfin(b463c8ac-4ecc-41a1-95dd-09bff82a54c9).html
https://research-information.bris.ac.uk/en/publications/elfin(b463c8ac-4ecc-41a1-95dd-09bff82a54c9).html

Title
Elfin: an algorithm for the computational design of custom three-dimensional structures
from modular repeat protein building blocks

Authors
Chun-Ting Yeh 1
TJ Brunette 2
David Baker 2
Simon McIntosh-Smith 1
Fabio Parmeggiani 3,4

1 Department of Computer Science, University of Bristol, UK
2 Department of Biochemistry, Institute for Protein Design, University of Washington,
Seattle, WA, USA
3 School of Chemistry, School of Biochemistry, University of Bristol, UK
4 BrisSynBio, BBSRC/EPSRC Synthetic Biology Research Centre, Bristol, UK

Corresponding author: Fabio Parmeggiani, fabio.parmeggiani@bristol.ac.uk

Keywords
Repeat protein
Protein design
Protein origami
Genetic algorithm
Computational protein design

Abstract
Computational protein design methods have enabled the design of novel protein structures,
but they are often still limited to small proteins and symmetric systems. To expand the size
of designable proteins while controlling the overall structure, we developed Elfin, a genetic
algorithm for the design of novel proteins with custom shapes using structural building
blocks derived from experimentally verified repeat proteins. By combining building blocks
with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>
1000 amino acids) that match three-dimensional geometric descriptions provided by the
user. A run time of about 20 minutes on a laptop computer for a 3000 amino acid structure
makes Elfin accessible to users with limited computational resources. Protein structures
with controlled geometry will allow the systematic study of the effect of spatial
arrangement of enzymes and signaling molecules, and provide new scaffolds for functional
nanomaterials.

1. Introduction
The precise design of nanometer-size protein structures is becoming increasingly important
with the emphasis on miniaturized devices and interest in spatial organization of enzymes
and molecular binders (Glover and Clark, 2016), but so far custom structures have been
mainly designed with DNA nanotechnology (Zhang et al., 2014).
The complexity of interactions within proteins limits the ability to reliably generate new
structures with custom shapes (protein origami), but computational methods can now

accurately design de novo proteins without relying on template structures (Gradišar et al.,
2013; Huang et al., 2014, 2016a; Marcos et al., 2017), or combine multiple polypeptide
chains into oligomers (Thomson et al., 2014), symmetric cage-like structures (King et al.,
2012, 2014; Lai et al., 2014) and lattices (Gonen et al., 2015; Lanci et al., 2012).
De novo proteins are designed in two steps: backbones are sampled through peptide
fragments (Koga et al., 2012; Kuhlman et al., 2003; Lin et al., 2015), kinematic closure
(Bhardwaj et al., 2016; Coutsias et al., 2004), combination of secondary structure elements
(Jacobs et al., 2016), and parametric equations (Crick, 1953; Grigoryan and DeGrado, 2011),
followed by diverse search strategies for backbone compatible sequences, recently
reviewed (Gainza et al., 2016).
Sequence length heavily influences design complexity, increasing the number of pairwise
interactions to be sampled and the time required. Larger designs were achieved by using
repeated structural motifs within the polypeptide (Brunette et al., 2015; Doyle et al., 2015;
Huang et al., 2016b; Parmeggiani et al., 2015).
In these cases, complexity is not simply reduced by constraining structurally equivalent
positions to the same amino acid. Contacts between residues along the chain are limited,
since generally each repeat interacts only locally with its two neighboring units, located
before and after it in the primary sequence (Javadi and Itzhaki, 2013; Kajava, 2012; Paladin
et al., 2017; Parmeggiani and Huang, 2017). Combinations of different repeats with
compatible interfaces allow control of the overall protein shape (Park et al., 2015). These
interfaces ensure that a continuous hydrophobic core is formed across the structure and
that adjacent units are precisely oriented.
We exploited repeat protein features to develop Elfin, a genetic algorithm (GA) for assembly
of compatible repeat protein building blocks. By using structurally characterized units with
known sequences, we drastically reduce the search space and enable the design of large
structures with custom shapes using geometric specifications, similarly to what occurs for
DNA nanostructures (Douglas et al., 2009; Veneziano et al., 2016).

2. Material and methods
Programming languages and library dependencies

• Python for auxiliary tasks such as database pre-processing, benchmark generation,
and output post-processing. Libraries: biopython, pymol, numpy, matplotlib.

• C++(11) for the main GA. Libraries: STL, JSON by nlohmann (open source), and in-
house C utility library (open source)

Elfin was ported to OpenMP4.0 to take advantage of multithreaded processing on both
CPUs and GPUs.
The code and the JSON database containing centers of mass and geometric relationships are
publicly available at https://github.com/joy13975/elfin.
Genetic algorithm solutions can be converted into center of mass representations. The
structural database will be released upon publication of the designed structures it contains,
allowing users to convert solutions to full-atom pdbs.

2.1 Database generation
2.1.1 Module pre-processing
The generation of compatible modules requires uniform interfaces. We used the repacked
and minimized interface between internal repeats of designed helical repeat proteins

(Brunette et al., 2015) as our reference, and enforce backbone and side chain dihedral
angles on all equivalent interfaces.
Modules were repacked and minimized with the fast relax protocol of the Rosetta modelling
suite (Leaver-Fay et al., 2011; Tyka et al., 2011) while holding the interfaces fixed. Modules
with a root mean square deviation of more than 1 Å after relax were not included in the
database, to avoid potential flexibility issues. Through this process, the N and C termini of
compatible modules are already located in the correct position to form a peptide bond and
do not require additional design.

2.1.2 Database abstraction
For each single module PDBs, we first compute the center of mass (CoM) using carbon-alpha
(Cα) coordinates, and then translate the module to place the CoM at the origin of the
Cartesian coordinate system. The alignment to the origin reduces the number of operations
at the building stage, increasing the speed. The module size is indicated by the radius of
gyration, defined as the average Cα distance from the CoM. Each module pair is aligned to
the centered version of its first module using Kabsch’s absolute orientation algorithm
(Kabsch, 1976). For each pair, we then compute the CoM of each single module, and the
translation T and rotation R for aligning the pair to the centered version of its second
module. The CoMs, R, and T are stored into a new “abstraction” database. Hereafter, all
mentions of “pairs” and “singles” are respectively the aligned and the centered versions
(pre-processed) of their original PDB representations. These pre-processed versions are just
3D points (CoMs), related by their corresponding R and T. The “abstraction” database is
stored in JSON format and also contains the information about the compatible modules.

2.2 Target representation and protein building from abstraction database
3D trajectories describing target shapes were specified using a Matlab script, available in the
github repository, which allows the user to plot points and scale the shape. However, any
other tool that generates a sequence of points in 3D space will be suitable.
Module sequences for the genetic algorithm’s initial population and benchmark shapes
were built by sequential addition of randomly selected compatible modules. From the
sequence of modules, we can build its 3D point-representation using the abstraction
database. The shape is built by sequential placement of CoM pairs, using the second CoM of
the last added pair to place by superposition the first CoM of the next pair (“place” step).
The chain is then re-oriented with the new CoM at the axis origin (“push” step). Each step of
chain growth is a matrix transformation X’ = RX + T, where X is the array of 3D CoMs
currently representing the shape we are constructing, followed by the addition of a new
CoM (the second of the last added pair). The geometry of the overall shape is described by
the sequence of CoMs for the constituent modules. At each step, collision checks are
performed to ensure that the radii of gyration are not violated when placing the next
module.

2.3 Genetic Algorithm features
Elfin is a Genetic Algorithm (GA) that iterates through mutation, scoring, ranking, and
selection. Each individual is a vector of protein module identifiers. The initial individuals and
any new sequence introduced at each cycle are generated as described in section 2.2.
In addition to the population size and maximum iteration settings, Elfin contains the
following tunable parameters that affect the quality of the solution and the execution time:

• Average Pair CoM Distance: the average CoMs distance of all database pairs is used to
compute an expected sequence length for real design inputs. The value is derived from the
input abstraction database, 45Å in our case.
• Length Deviation allowance: the number of modules from the expected sequence length
that an individual is allowed to deviate.
• Survival Rate: the ratio of population to survive each generation.
• Crossover Rate: the ratio of non-survivors to undergo crossover.
• Point Mutate Rate: the ratio of non-survivors to undergo point mutation.
• Limb Mutate Rate: the ratio of non-survivors to undergo limb mutation.
• Score Stop Threshold: the score below which the GA should consider the solution
acceptable and stop. We kept it at a value of 0 (perfect matching) for all our cases.
• Maximum Stagnant Generations: the number of iterations without score improvement
after which the GA exits.

2.4 GA scoring
In our context, scoring is a shape analysis problem that requires matching of rotation and
translation, but not scale. Each individual design is to be scored against the input shape
specification, which means assessing a generally imperfect superimposition of the 3D CoMs.
This is in fact the partial Procrustes problem (Schönemann, 1966), usually solved by
Kabsch’s absolute orientation algorithm (Kabsch, 1976). However, Kabsch’s algorithm only
works for two shapes that have an equal number of points. Since we can only estimate the
design length for any given shape specification, and that each individual design in GA is
allowed a deviation from that expectation, a method to compare differently-sized 3D CoMs
arrays is needed. We developed a proportional re-sampling subroutine to equalize the
number of points defining the two shapes in question. Elfin up- or down- samples the
designed shape to the number of points present in the target. Distances between points are
proportional to the distances in the input shape. A perfect superposition has a score of 0,
with larger positive values indicating increasing deviations.
Finally, ranking is simply sorting the individuals in ascending order of score. Care was taken
to enforce diversity, meaning no repeating parents should survive in the same generation.
This was achieved using a cyclic redundancy check (CRC), conveniently computed during the
generation of each individual design.

2.5 Benchmarks and optimization:
We randomly generated from the database (see section 2.2) shape specifications of various
lengths (10 made of 10 modules, 5 of 20 modules and 5 of 30 modules) to test the
effectiveness of Elfin.
Two grid searches were conducted in order to determine optimal parameters for the
genetic algorithm. In the first search, a wide spread of discrete values were tested on
benchmarks and on real designs. The Pareto Front taking target similarity score and
execution time as objectives was identified to guide a second search that covered a
narrower spread of discrete values.
After two searches the configuration did not seem to shift from the first Pareto Front. The
parameters we found to reach exact benchmark solutions in the shortest time are below:
Length deviation allowance: 0.2 (20%)
Population survival rate: 0.02 (2%)
Crossover rate (of non-survivors): 0.2 (20%)

Point mutate rate (of non-survivors not crossed over): 0.4 (40%)
Limb mutate rate (of non-survivors not crossed over): 0.4 (40%)
The numbers in parenthesis indicate the percentage of the population at each iteration. The
remaining fraction is filled with new randomly generated individuals.

2.6 Performance evaluation
A runtime measurement of Elfin was conducted across several CPUs and GPUs. Since Elfin
makes heavy use of random number generators and single precision floating point
operations, executing on different platforms or being compiled by different compilers could
introduce a difference in the total number of iterations required for solving a particular
design problem. Therefore, during our experiments Elfin was configured to always process
50 generations, with a population of 524288, and use the ‘B’ letter shape input. This number
of generations ensured the best solution was found for this particular design on each
platform, while keeping the amount of computations roughly equal. On each platform, we
compiled Elfin with GCC 6.1.0 without architecture-specific optimization flags.

3. Results
We developed a pipeline to describe and manipulate structures in an abstract
representation, allowing us to rapidly compare designs to target shapes. The algorithm
builds a single polypeptide by linking structural building blocks.
The pipeline stages are (Fig.1):

1. Collection of structurally characterized repeat proteins (section 3.1)
2. Assembly of a database of compatible structural modules (section 3.2)
3. Description of modules and target shapes in a simplified abstract representation

(section 3.3)
4. Search for module combinations that satisfy the target shape (section 3.4)
5. Transformation of abstract representations of solutions in structural models and

validation (section 3.5)

Upon optimization of the performance on a benchmark test set, we used Elfin to design
custom three-dimensional structures (section 3.6).

3.1 Experimental data
The design process relies on building blocks that are directional, interacting specifically with
the previous and the following modules in a structure, as repeats in solenoid-like proteins
(Kobe and Kajava, 2000). Among repeat proteins, designed helical repeat proteins (DHRs)
(Brunette et al., 2015) are highly stable and display a broad range of structural diversity that
can be incorporated in our modular system. For each protein, internal repeats are identical.
Small angle x-ray scattering (SAXS) data indicate that designed repeat proteins maintain in
solution the same conformation observed in crystal structures and the overall shape can be
correctly predicted even upon an increase in the number of repeats (Fallas et al., 2017),
therefore they can be considered rigid on a first approximation. Since the interface between
repeats is responsible for compatibility, it is possible to generate different structures that
display the same interface. In analogy to previous work on leucine rich repeats (Park et al.,
2015), proteins containing two different types of DHR repeats at the N and C termini were
designed, expressed and characterized by SAXS (manuscript in preparation). A non-repeated
portion bridges the two repeat interfaces and maintains a continuous hydrophobic core.

These designs are referred to as junctions and provide an additional source of structurally
validated proteins for our database.

3.2 Module database
The building blocks we used in our database are called modules. Base modules correspond
to the central portion of characterized proteins, after removing the N- and C-terminal
repeats that shield the hydrophobic core from the solvent (Fig.2A and 2B). For DHRs, each
module is constituted by the two identical central repeats. DHR repeats are characterized by
helix-loop-helix-loop structural motifs. Junction modules are derived from experimentally
validated fusions between different repeat units with shared hydrophobic core and
secondary structure elements (manuscript in preparation) (Fig.2C). Junction modules allow
us to connect different types of DHRs (Fig.2D). The database includes 35 single modules
(singles), 12 from DHRs and 23 from junctions, and 143 module pairs (pairs) that describe
interactions between two modules, either DHR-DHR, DHR-junction or junction-junction.
Modules to include in the database were selected as described in section 2.1.1.

3.3 Abstraction and design specification
Modules are considered rigid building blocks and represented by a center of mass (CoM)
and a radius. Interacting pairs, based on the presence of compatible interfaces, are
described by the translation and rotation of the second CoM in relation to the first (Fig.1
and section 2.1.2). The final design is then represented as a series of CoM in 3D space
related by rigid body transforms. Similarly, a target shape is described by a sequence of
points in space and their order of connectivity.

3.4 Genetic algorithm (GA)
The Elfin GA iterates between mutation, scoring, ranking, and selection. In contrast to
previous GA applications in protein design (Jones, 1994; Lazar et al., 1997; Pedersen and
Moult, 1996; Unger and Moult, 1993), we do not search for amino acid sequences or
minimize the energy of the system, but explore sequences of modules that most closely
describe the target shape. However, the number of combinations increases rapidly with the
size of the target, the modules in the database and the number of pairs available. The
complexity for a 30 modules design with our current database is approximately 1015.
The initial population for the GA is randomly assembled from pairs in the abstraction
database, which contains only allowed module combinations (see section 2.2). The target
length is calculated as the sum of distances between consecutive points. A length deviation
allowance is included to ensure a broad range of starting designs with different number of
modules. The designs are built sequentially by aligning the first module of a pair to the last
module of the growing chain and reorienting the chain in space. The series of “place” and
“push” steps are shown in Fig.3a and described in section 2.2. Designs are scored by
similarity to the target (see sections 2.3 and 2.4). At each GA cycle, the high scoring
individuals are promoted to the next iteration, while others are recombined by crossing
over or mutated by replacing modules (Fig.3b) and new combinations are assembled and
added to the pool.
The mutation stage employs three operators:
1. Crossover: two randomly selected parents are checked for compatible crossing modules.

Once found, a child sequence is produced by combining complementing “limbs” of its
parents.

2. Point-mutate: performs an insertion, deletion, or alteration of one module in the
sequence.

3. Limb-mutate: from a randomly chosen point in the module sequence, a randomly
chosen side is erased and that “limb” is then re-grown randomly.

The GA exits with a solution when it reaches the maximum allowed number of iterations,
the score falls below a set threshold or the lowest score does not change anymore
(stagnation). The GA default output contains the three lowest scoring solutions but the
number can be increased.

3.5 Conversion to protein models and minimization
In our tests, repeated runs converged to the same lowest scoring solution, which we
converted into a full atom model using the modules sequence and the CoMs coordinates.
For complex designs where no convergence is observed, multiple solutions can be analyzed.
The process is similar to GA shape construction, except now PDBs from the module
database are used. Structures are then repacked and minimized iteratively using the fast
relax protocol in Rosetta (Tyka et al., 2011). Due to potential lever arm effects – small
deviations in modules can result in large overall deviation from the pre-relax structure
because of the length of the chain after that point – we evaluated the fidelity of the relaxed
design using windows of 300 residues with overlaps of 150 amino acids. If all windows have
RMSD below 5 Å we consider a design successful.

3.6 Designing structures
We first assessed the ability of Elfin to find solutions for target shapes generated randomly
from our abstraction database: 10 with 10 modules (RL10), 5 with 20 modules (RL20) and 5
with 30 modules (RL30). In all 20 cases, Elfin converged to the exact solution in a single run
within 100 GA generations. We then assessed Elfin’s capabilities of designing proteins
according to 10 hand-drawn (HD) target shapes. Fig.4 illustrates random test shapes and
hand drawn shapes results, for the best and worst targets in terms of RMSD before and
after relaxation. All the designs converged to a single solution within 1 run of Elfin, achieving
striking visual similarity to the target specification.
We then used the benchmark set and the hand drawn targets for optimization of the GA
parameters (see section 2.5). We evaluated Elfin’s performance across hardware platforms,
from consumer grade laptops to server CPUs to GPUs. Fig.5 shows the run time of a “B”
shape with fixed population and number of generations (see section 2.6).

4. Discussion
Elfin aims to control the overall shape and size of a protein using pre-existing building
blocks, in contrast to other approaches that aim to specifically design every residue. By
using known compatible interfaces between modules, no sequence design step takes
places, drastically reducing computing time. This approach allowed us, for the first time, to
build models for single chain proteins up to 5000 residues in size.
Elfin was able to correctly solve all 20 randomly generated tests (i.e. to find the exact
sequence of modules) after just one run per input. During these runs, the GA was set to stop
if a score of zero (perfect superposition with the target) was found, or if 50 generations
went by without any score improvement. For the RL30 sequences, Elfin searched no more
than two hundred generations with 524,288 sequences in the population. Out of an

estimated 1015 possible combinations in RL30 sequences only a total of less than 109 had to
be sampled before Elfin converged. This is evidence of the successful implementation of the
GA and the effective design of its mutagenesis operators.
Elfin’s speed allows its use on personal computers, where a more than 3000 residue protein
can be designed on a 2.6 GHz 4 core processor in less than 20 minutes (Fig.5). The algorithm
scales for clusters and GPUs, with GTX1080 outperforming all of the CPUs tested. This was
not surprising as Elfin is a compute intensive, easily parallelized code. However, we are
aware of limitations in the current GPU implementation of Elfin. The first of these is
workload imbalance, which leads to less efficient work sharing and overheads in scheduling.
Another known issue in the GPU version of Elfin is that it repeatedly copies the entire
population to and from the target GPU device memory. GPU optimization will address these
issues and further reduce the time required to reach a solution.
The major assumption in our approach is the rigidity of the building blocks. Although
building blocks were selected from experimentally characterized structures, their flexibility
in the context of larger proteins was not experimentally verified. The Rosetta relax protocol
highlighted that building block deformations can occur within designed structures.
However, even in the worse performing cases, according to our RMSD cut-off, the shape is
still clearly recognizable. This is possible because errors are confined: generally large RMSD
deviations are related to distortion in single modules after relax, indicating a problem in
local stability. A more extensive search, beyond the scope of the current work, will allows us
to identify these modules and establish whether the distortion is influenced by specific
neighboring modules. Moreover, experimental verification of designed structures will
provide valuable information about shape and rigidity that could feed back into the
database (e.g. modules or pairs associated with distortion or solubility issues).
The designs are currently limited to single protein chains with “open” structures, but we are
planning to extend elfin for building “close” structures, where N- and C-terminal modules
interact. The database can be expanded with new structural (e.g. oligomers) and functional
modules (e.g. enzymes or domains binding proteins, nucleic acids or small molecules),
allowing the design of novel protein architectures.

5. Conclusions
Elfin was developed to design large protein structures with custom shapes. Relying on
characterized building blocks reduces the search space, eliminates sequence design steps
and produces three-dimensional structures corresponding to user descriptions. The speed
and parallelization allow users to rapidly build multiple designs to be assessed
experimentally. This approach represents a new avenue for the generation of novel proteins
with specific shapes and could be used to investigate the effect of spatial organization of
enzymes, DNA and signaling molecules in vitro and in vivo. Moreover, the abstract nature of
the design process, requiring only geometric descriptions, opens up the possibility to build
custom structures not only from repeat proteins, but also from other modular system.

Acknowledgements
We would like to thank the Advanced Computing Research Centre (ACRC) and BrisSynBio, a
BBSRC/EPSRC Synthetic Biology Research Centre, at the University of Bristol for access to
the BlueCrystal and Bluegem supercomputers. We would also like to thank Intel and the
Intel Parallel Computing Center at the University of Bristol for access to the KNL system we

used for testing. This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

References
Bhardwaj, G., Mulligan, V.K., Bahl, C.D., Gilmore, J.M., Harvey, P.J., Cheneval, O., Buchko,

G.W., Pulavarti, S.V.S.R.K., Kaas, Q., Eletsky, A., Huang, P.-S., Johnsen, W.A., Greisen,
P.J., Rocklin, G.J., Song, Y., Linsky, T.W., Watkins, A., Rettie, S.A., Xu, X., Carter, L.P.,
Bonneau, R., Olson, J.M., Coutsias, E., Correnti, C.E., Szyperski, T., Craik, D.J., Baker,
D., 2016. Accurate de novo design of hyperstable constrained peptides. Nature 538,
329–335. doi:10.1038/nature19791

Brunette, T.J., Parmeggiani, F., Huang, P.-S., Bhabha, G., Ekiert, D.C., Tsutakawa, S.E., Hura,
G.L., Tainer, J.A., Baker, D., 2015. Exploring the repeat protein universe through
computational protein design. Nature 528, 580–584. doi:10.1038/nature16162

Coutsias, E.A., Seok, C., Jacobson, M.P., Dill, K.A., 2004. A kinematic view of loop closure. J.
Comput. Chem. 25, 510–528. doi:10.1002/jcc.10416

Crick, F.H.C., 1953. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689.
doi:10.1107/S0365110X53001952

Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., Shih,
W.M., 2009. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic
Acids Res. 37, 5001–5006. doi:10.1093/nar/gkp436

Doyle, L., Hallinan, J., Bolduc, J., Parmeggiani, F., Baker, D., Stoddard, B.L., Bradley, P., 2015.
Rational design of α-helical tandem repeat proteins with closed architectures.
Nature 528, 585–588. doi:10.1038/nature16191

Fallas, J.A., Ueda, G., Sheffler, W., Nguyen, V., McNamara, D.E., Sankaran, B., Pereira, J.H.,
Parmeggiani, F., Brunette, T.J., Cascio, D., Yeates, T.R., Zwart, P., Baker, D., 2017.
Computational design of self-assembling cyclic protein homo-oligomers. Nat. Chem.
9, 353–360. doi:10.1038/nchem.2673

Gainza, P., Nisonoff, H.M., Donald, B.R., 2016. Algorithms for protein design. Curr. Opin.
Struct. Biol., Engineering and design • Membranes 39, 16–26.
doi:10.1016/j.sbi.2016.03.006

Glover, D.J., Clark, D.S., 2016. Protein Calligraphy: A New Concept Begins To Take Shape.
ACS Cent. Sci. 2, 438–444. doi:10.1021/acscentsci.6b00067

Gonen, S., DiMaio, F., Gonen, T., Baker, D., 2015. Design of ordered two-dimensional arrays
mediated by noncovalent protein-protein interfaces. Science 348, 1365–1368.
doi:10.1126/science.aaa9897

Gradišar, H., Božič, S., Doles, T., Vengust, D., Hafner-Bratkovič, I., Mertelj, A., Webb, B., Šali,
A., Klavžar, S., Jerala, R., 2013. Design of a single-chain polypeptide tetrahedron
assembled from coiled-coil segments. Nat. Chem. Biol. 9, 362–366.
doi:10.1038/nchembio.1248

Grigoryan, G., DeGrado, W.F., 2011. Probing Designability via a Generalized Model of Helical
Bundle Geometry. J. Mol. Biol. 405, 1079–1100. doi:10.1016/j.jmb.2010.08.058

Huang, P.-S., Boyken, S.E., Baker, D., 2016a. The coming of age of de novo protein design.
Nature 537, 320–327. doi:10.1038/nature19946

Huang, P.-S., Feldmeier, K., Parmeggiani, F., Fernandez Velasco, D.A., Höcker, B., Baker, D.,
2016b. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level
accuracy. Nat. Chem. Biol. 12, 29–34. doi:10.1038/nchembio.1966

Huang, P.-S., Oberdorfer, G., Xu, C., Pei, X.Y., Nannenga, B.L., Rogers, J.M., DiMaio, F.,
Gonen, T., Luisi, B., Baker, D., 2014. High thermodynamic stability of parametrically
designed helical bundles. Science 346, 481–485. doi:10.1126/science.1257481

Jacobs, T.M., Williams, B., Williams, T., Xu, X., Eletsky, A., Federizon, J.F., Szyperski, T.,
Kuhlman, B., 2016. Design of structurally distinct proteins using strategies inspired
by evolution. Science 352, 687–690. doi:10.1126/science.aad8036

Javadi, Y., Itzhaki, L.S., 2013. Tandem-repeat proteins: regularity plus modularity equals
design-ability. Curr. Opin. Struct. Biol. 23, 622–631. doi:10.1016/j.sbi.2013.06.011

Jones, D.T., 1994. De novo protein design using pairwise potentials and a genetic algorithm.
Protein Sci. 3, 567–574. doi:10.1002/pro.5560030405

Kabsch, W., 1976. A solution for the best rotation to relate two sets of vectors. Acta
Crystallogr. A 32, 922–923. doi:10.1107/S0567739476001873

Kajava, A.V., 2012. Tandem repeats in proteins: From sequence to structure. J. Struct. Biol.,
Structural Bioinformatics 179, 279–288. doi:10.1016/j.jsb.2011.08.009

King, N.P., Bale, J.B., Sheffler, W., McNamara, D.E., Gonen, S., Gonen, T., Yeates, T.O., Baker,
D., 2014. Accurate design of co-assembling multi-component protein nanomaterials.
Nature 510, 103–108. doi:10.1038/nature13404

King, N.P., Sheffler, W., Sawaya, M.R., Vollmar, B.S., Sumida, J.P., André, I., Gonen, T.,
Yeates, T.O., Baker, D., 2012. Computational Design of Self-Assembling Protein
Nanomaterials with Atomic Level Accuracy. Science 336, 1171–1174.
doi:10.1126/science.1219364

Kobe, B., Kajava, A.V., 2000. When protein folding is simplified to protein coiling: the
continuum of solenoid protein structures. Trends Biochem. Sci. 25, 509–515.
doi:10.1016/S0968-0004(00)01667-4

Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T.B., Montelione, G.T., Baker, D., 2012.
Principles for designing ideal protein structures. Nature 491, 222–227.
doi:10.1038/nature11600

Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D., 2003. Design of a
Novel Globular Protein Fold with Atomic-Level Accuracy. Science 302, 1364–1368.
doi:10.1126/science.1089427

Lai, Y.-T., Reading, E., Hura, G.L., Tsai, K.-L., Laganowsky, A., Asturias, F.J., Tainer, J.A.,
Robinson, C.V., Yeates, T.O., 2014. Structure of a designed protein cage that self-
assembles into a highly porous cube. Nat. Chem. 6, 1065–1071.
doi:10.1038/nchem.2107

Lanci, C.J., MacDermaid, C.M., Kang, S., Acharya, R., North, B., Yang, X., Qiu, X.J., DeGrado,
W.F., Saven, J.G., 2012. Computational design of a protein crystal. Proc. Natl. Acad.
Sci. 109, 7304–7309. doi:10.1073/pnas.1112595109

Lazar, G.A., Desjarlais, J.R., Handel, T.M., 1997. De novo design of the hydrophobic core of
ubiquitin. Protein Sci. Publ. Protein Soc. 6, 1167–1178.

Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K.,
Renfrew, P.D., Smith, C.A., Sheffler, W., Davis, I.W., Cooper, S., Treuille, A., Mandell,
D.J., Richter, F., Ban, Y.-E.A., Fleishman, S.J., Corn, J.E., Kim, D.E., Lyskov, S.,
Berrondo, M., Mentzer, S., Popović, Z., Havranek, J.J., Karanicolas, J., Das, R., Meiler,
J., Kortemme, T., Gray, J.J., Kuhlman, B., Baker, D., Bradley, P., 2011. ROSETTA3: an

object-oriented software suite for the simulation and design of macromolecules.
Methods Enzymol. 487, 545–574. doi:10.1016/B978-0-12-381270-4.00019-6

Lin, Y.-R., Koga, N., Tatsumi-Koga, R., Liu, G., Clouser, A.F., Montelione, G.T., Baker, D., 2015.
Control over overall shape and size in de novo designed proteins. Proc. Natl. Acad.
Sci. 112, E5478–E5485. doi:10.1073/pnas.1509508112

Marcos, E., Basanta, B., Chidyausiku, T.M., Tang, Y., Oberdorfer, G., Liu, G., Swapna, G.V.T.,
Guan, R., Silva, D.-A., Dou, J., Pereira, J.H., Xiao, R., Sankaran, B., Zwart, P.H.,
Montelione, G.T., Baker, D., 2017. Principles for designing proteins with cavities
formed by curved β sheets. Science 355, 201–206. doi:10.1126/science.aah7389

Paladin, L., Hirsh, L., Piovesan, D., Andrade-Navarro, M.A., Kajava, A.V., Tosatto, S.C.E., 2017.
RepeatsDB 2.0: improved annotation, classification, search and visualization of
repeat protein structures. Nucleic Acids Res. 45, D308–D312.
doi:10.1093/nar/gkw1136

Park, K., Shen, B.W., Parmeggiani, F., Huang, P.-S., Stoddard, B.L., Baker, D., 2015. Control of
repeat-protein curvature by computational protein design. Nat. Struct. Mol. Biol. 22,
167–174. doi:10.1038/nsmb.2938

Parmeggiani, F., Huang, P.-S., 2017. Designing repeat proteins: a modular approach to
protein design. Curr. Opin. Struct. Biol., Engineering and design • Membranes 45,
116–123. doi:10.1016/j.sbi.2017.02.001

Parmeggiani, F., Huang, P.-S., Vorobiev, S., Xiao, R., Park, K., Caprari, S., Su, M.,
Seetharaman, J., Mao, L., Janjua, H., Montelione, G.T., Hunt, J., Baker, D., 2015. A
General Computational Approach for Repeat Protein Design. J. Mol. Biol. 427, 563–
575. doi:10.1016/j.jmb.2014.11.005

Pedersen, J.T., Moult, J., 1996. Genetic algorithms for protein structure prediction. Curr.
Opin. Struct. Biol. 6, 227–231. doi:10.1016/S0959-440X(96)80079-0

Schönemann, P.H., 1966. A generalized solution of the orthogonal procrustes problem.
Psychometrika 31, 1–10. doi:10.1007/BF02289451

Thomson, A.R., Wood, C.W., Burton, A.J., Bartlett, G.J., Sessions, R.B., Brady, R.L., Woolfson,
D.N., 2014. Computational design of water-soluble α-helical barrels. Science 346,
485–488. doi:10.1126/science.1257452

Tyka, M.D., Keedy, D.A., André, I., DiMaio, F., Song, Y., Richardson, D.C., Richardson, J.S.,
Baker, D., 2011. Alternate States of Proteins Revealed by Detailed Energy Landscape
Mapping. J. Mol. Biol. 405, 607–618. doi:10.1016/j.jmb.2010.11.008

Unger, R., Moult, J., 1993. Genetic Algorithms for Protein Folding Simulations. J. Mol. Biol.
231, 75–81. doi:10.1006/jmbi.1993.1258

Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe, M., 2016.
Designer nanoscale DNA assemblies programmed from the top down. Science 352,
1534–1534. doi:10.1126/science.aaf4388

Zhang, F., Nangreave, J., Liu, Y., Yan, H., 2014. Structural DNA Nanotechnology: State of the
Art and Future Perspective. J. Am. Chem. Soc. 136, 11198–11211.
doi:10.1021/ja505101a

Figures

Figure 1
The modular design pipeline relies on structurally validated designed repeat proteins
organized in a database containing atomic models and information on compatible interfaces
(grey area). Building blocks within pairs are described through a combination of rotation (R)
and translation (T) that places a module X (defined by its constituent points p1, p2, …pN)
respect to single building blocks. This information is collected in an abstraction database
and employed to design modular structures according to design specifications. A genetic
algorithm produces, scores and ranks designs, and the best scoring ones are converted into
full atom representations. Upon energy minimization, designs are accepted or rejected
based on root mean square deviation (RMSD) from the pre-minimized models.

Figure 2
Repeat protein modules. A) and B) Base modules are formed by the two central repeats of
designed repeat proteins. Repeats characterized by specific interfaces are depicted in
orange and blue, capping repeats and protein surfaces are in grey. C) Junction modules are
derived from designs were different repeat interfaces (orange and blue) are combined
together through connecting elements (purple). D) Modules from A, C and B, are combined
by association at conserved interfaces, indicated by the red dashed line. Repeats carrying
compatible interfaces are depicted in the same color.

A

B

C

D

A

B
C

Figure 3
Abstract model building. A) Initial models are built by sequential addition of building blocks.
First, a randomly selected module pair is placed with the first module on the axis origin.
Then the pair is pushed so that the second module occupies the axis origin. A new random
module, compatible with the last one, is placed and the whole design is pushed. The process
continues until the desired length is reached. All place and push moves follow the rotation
and translation information stored in the database. The CoM points used to describe the
designed shape are in grey and the target shape in cyan.
 B) The genetic algorithm generates diversity by crossing parent designs at a common
module (cross-over), performing module point mutations (insertion, deletion or swap), if
compatible with the neighbors, and removing and rebuilding whole terminal segments (limb
mutate). Each number represents a specific module.

A	

B	

Figure 4
Modular designs. Best and worst designs, according to the window RMSD score are
reported for each group. RL-n is random design of length n, with n = 10, 20, 30 for the
different benchmark sets. HD indicates a hand drawn shape. The design name is in
parenthesis. Specification shows the target shape; design is the full atom conversion of the

GA solution; relax is the structure after Rosetta relax. Max. Win. RMSD is the highest RMSD
for a 300 residues window. The last column shows the design size in number of residues.

Figure 5.
Performance evaluation. Benchmark execution times in seconds for 50 iterations on the ‘B’
design problem. Population size was set at 524288. MacbookPro (macOS Sierra, 10.12.4)
and Zoostorm (Ubuntu subsystem, Windows 10) times reflect Elfin’s performance on
consumer grade laptops. Ivybridge, KNL, and the Sandybridge CPUs represent a range of
server CPUs. Names in brackets are computer clusters tested at the University of Bristol. Zoo
runs on CentOS 7.3, Bluecrystal phase 3 (BC3) runs on Red Had Enterprise 6.3, Swan runs
SUSE 12, and Bluegem runs Scientific Linux 6.6. NVIDIA K40c is a server-grade GPU compute
card and the GTX 1080 is a recent high-end consumer grade dedicated GPU.

