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Abstract

One of the main motivations for Homotopy Type Theory (HoTT)
is the way it treats of identity and the rich ∞-groupoid structure of
types and identifications to which this gives rise. This paper inves-
tigates the conceptual and philosophical status of identity in HoTT.
We examine the formal and technical features of identity types in the
theory, and how these relate to other features of the theory such as
its intensionality, constructive logic, and the interpretation of types
as propositions and concepts. We explore the possibility that identity
types might be better understood as encoding the indiscernibility of
two tokens. We argue that identity types are a primitive component
of HoTT.

Contents

1 Introduction

One of the main motivations for Homotopy Type Theory (HoTT) is
the way it treats of identity and the rich∞-groupoid structure of types
and identifications to which this gives rise. Indeed, the homotopy in-
terpretation of Martin-Löf’s constructive intensional type theory that
gives HoTT its name depends essentially upon identity types, because
it is based on an interpretation of identities as paths, and between
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DRAFT: 10:33, Thursday 28th January, 2016 Section 1.0

identity types and homotopy types.1 Furthermore, the way identity
and equivalence are related by the Univalence Axiom is taken by Steve
Awodey [?] to be fundamental to HoTT’s claim to provide a new foun-
dation for mathematics and to express mathematical structuralism.

As is standard in mathematics and logic, in HoTT identity is
treated as a relation. In HoTT relations are types and in particu-
lar they are predicates. Predicates are functions that map tokens of
one or more types to the universe U (for more on universes see Sec-
tion ??.2 In particular, identity is a function type that maps pairs of
tokens of a given type to U .3

This paper investigates the conceptual and philosophical status of
identity in HoTT. We examine the formal and technical features of
identity types in the theory in Section ??, and how these relate to
other features of the theory such as its intensionality, constructive
logic and the interpretation of types as propositions and concepts in
Section ??. These are matters that are not made explicit in extant
accounts which focus on the mathematics.

In category theory it is said “never mistake an equivalence for an
equality” [?, 33]. The axiom of Univalence, which is considered to be
one of the main discoveries of the Homotopy Type Theory project,
roughly says that identity is equivalent to equivalence (where equiva-
lence is akin to isomorphism) and so embodies the idea that reasoning
in mathematics should be invariant under sameness of structure. In
this and other respects, the way identity is treated in HoTT departs
considerably from orthodox views of identity in philosophy and logic.
Indeed, these departures are so radical that they lead us to question
whether ‘identity’ in HoTT is worthy of the name. Perhaps identity
types should be interpreted instead as representing some other relation
(closely related to identity). This approach offers a way of resolving
many of the puzzles and problems with ‘identity’, and in particular

1We use the term ‘HoTT’ to refer to theories like that of the HoTT book that are
constructive and intensional. There are theories associated with the HoTT programme
that introduce the Law of the Excluded Middle and various other innovations so not
everything we say about ‘HoTT’ should be taken as applying to all theories that might be
so-called.

2Terminology varies in the literature – in the HoTT Book the words ‘term’, ‘object’,
‘element’, and ‘point’ are used interchangeably for what we are calling a ‘token’ of a type.
We prefer the word ‘token’ for reasons we give in [?]; briefly ‘term’, which is the most
common word used, has the connotation of something syntactic.

3In general, the type corresponding to the proposition that some token of some type has
some property, is not the same type as that corresponding to the proposition that some
other token of the type has some property. Similarly with identity types, the identity type
of any pair of tokens of some type is distinct from the identity type of any other pair of
tokens of that type, see below.

2
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might make univalence seem very natural as we explain in Section ??
In the standard presentation of HoTT, identity types are intro-

duced as primitive components of the system. Of course, in some
logics, identity is defined in terms of other resources, for example by
the Hilbert-Bernays method. In Section ?? we explore the possibil-
ity that identity types might be better understood as encoding the
indiscernibility of two tokens. This is of course closely related to the
status of the Principle of the Identity of Indiscernibles (PII). How-
ever, after examining this option (and considering how discernibility
and indiscernibility might be formulated, we find in Section ?? that
treating identity as indiscernibility does not work. Hence, this pa-
per provides a justification for why identity types are introduced as
a primitive component of HoTT. Section ?? briefly concludes and we
consider different formulations of PII in a constructive setting in the
Appendix.

2 Identity in HoTT

As mentioned above, identity in HoTT is represented by identity
types.4 In accordance with the Curry-Howard correspondence, the
identity type IdA(x, y) expresses the proposition that tokens x and y

of type A are identical. Note that there isn’t a single identity type ex-
pressing all the identity facts about A, but rather an identity type for
each ordered pair of tokens of A. Tokens of an identity type IdA(x, y)
are referred to as ‘identifications’ of x and y. In the special case
IdA(x, x) we are always guaranteed to have a token of this type, since
identity is reflexive. Thus the token constructor for identity types
produces a token reflx : IdA(x, x) for any token x : A. The following
subsections review the most important features of identity in HoTT.

2.1 Internal versus External Identity

Fundamental to identity in HoTT is the distinction between ‘external’
and ‘internal’ identity, also described as the contrast between ‘judg-
mental equality’ and ‘propositional identity’.

Given any two expressions exp1 and exp2 naming tokens or types,
the external identity exp1 ≡ exp2 says that exp1 and exp2 name the
same token or type, and thus are intersubstitutable in any circum-
stance without changing meaning.

This is a different notion from the ‘internal’ or ‘propositional’ iden-
tity, which is represented by the identity types described above. In

4[?] explains identity types in HoTT in more detail.
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particular, internal identity, being represented by a type, can be com-
bined with other types to make more complex propositions. Judgmen-
tal equality, being external, cannot be combined in this way.

Note that clearly external identity implies internal identity. This
is because, as noted above, we always have a token of IdA(x, x) for
any token x, and so it follows that if we also have x ≡ y then we get
a token of IdA(x, y) by substitution. If the converse implication does
not hold we call the theory ‘intensional’ following Martin-Löf.

The fact that standard HoTT is intensional is very important as
discussed in Section ??. To avoid confusion we refer to externally
non-identical tokens or types as ‘distinct’.

2.2 Multiple Identifications and Higher Iden-
tities

The token constructor refl is the only way, without further premises,
to produce an identification.

However, the intensional nature of the type theory means that the
existence of some other identification of a token with itself cannot be
ruled out even though there is no particular token-constructor that
could produce such an additional identification. The same goes for
identifications of any given pair of tokens of some type.

It is fundamental to HoTT that there can potentially be multiple
identifications in any particular identity type. The homotopy inter-
pretation, which gives the theory so much of its interest, is based on
thinking of tokens of types as points in spaces, and identifications be-
tween tokens as paths. Without multiple identifications the structure
of identity types would be trivial, and so there could be no interest-
ing connection between type theory and homotopy theory. Below we
show that the intensional nature of HoTT is a necessary condition for
multiple identifications.

Note that in some contexts the idea of multiple identifications is
quite natural especially if one thinks of identifications as like proofs of
identity, since there is often more than one way to prove something.
Extending this analogy, there may be proofs which seem different but
are in fact identical themselves. Similarly, in HoTT for any two iden-
tifications α and β of tokens a and b in A there is the proposition that
asserts that these two identifications are themselves identical, and this
is represented by the so-called ‘higher identity type’ IdIdA(x,y)(α, β).

This ramifies, so there is no limit in principle to the hierarchy of
higher identity types; in other words, identifications of identifications
may themselves be identified, and so on. It is this higher identity
structure of multiple identifications at every level that gives rise to

4
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the ∞ groupoid structure explained in the next subsection.

2.3 The Groupoid Structure of Identity

Tokens of some type and the identifications between them can be taken
to be the objects and arrows of a category: refl gives the identity
arrows, and transitivity of identity gives the associative composition
of arrows.

A groupoid is defined to be a category in which every arrow has an
inverse, and in the present case these inverses arise from the symmetry
of identity. Thus types can be understood as groupoids.

Moreover, the structure of the higher identity types means that
every type is an ∞-groupoid. It was known before HoTT that there
is a correspondence between ∞-groupoids and homotopy theory, and
the connection with constructive intensional type theory is what gave
birth to Homotopy Type theory.

2.4 (Based) Path Induction

To use identifications we need the elimination rule for the identity
type, called ‘based path induction’. This says that for any type A, any
token a : A, and any predicate K that can be asserted of pairs (x, q)
(where x : A and q : IdA(a, x)) there is a function of type

K(a, refla)→
∏

(b,p):E(a)

K(b, p)

(Path induction is the formulation that does not involve fixing a.)
Path induction so stated is far from a self-evident principle govern-

ing identity. Ladyman and Presnell ? discuss its epistemological and
methodological status. Here were note that it is an essential feature
of identity in HoTT that can be explained and justified either with
or without the homotopy interpretation. In the next section we will
make use of it to show how the intensionality of HoTT is connected
to how it treats of identity.

It may seem that path induction says that all identifications are
trivial. However, to prove this we would need a predicate Q that says
of any given identification p : IdA(a, b) that it is identical to the trivial
self-identification of some token of A.

Q(a, b, p) :≡ IdIdA(a,a)(p, refla)

But such a predicate is not well-typed, because p is not a token of
IdA(a, a).

5
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In the next section, we reflect on the above formal features of
identity in HoTT.5

3 The Conceptual and Philosophical

Status of Identity in HoTT

Identity types and their structure can be regarded as formal features
of HoTT that are of mathematical interest independently of their con-
ceptual and philosophical status. However, the latter is also novel and
interesting and below we explicate some of its features.

3.1 Absolute or Relative?

In HoTT identity is absolute, in the sense that the identity of tokens
does not vary across contexts or aspects, and there is no question of
two tokens being identical in one way and not another.

In many systems we can always ask if two elements are identical
to each other. For example, in ZFC, we can always ask whether a set
is equal to another, whether an element of a set is equal to some set,
and so on.

However, in HoTT two tokens of distinct types can never be iden-
tical and it makes no sense to ask if they’re identical. The only way to
ask whether a and b are identical is to ask whether an identity type is
inhabited. But if a and b are of different types then there is no such
identity type.

3.2 Identity and Distinctness

Identity is always of tokens of some particular type, and identity types
are indexed by other types. Moreover, if a and b are of different types
then we also can’t assert that they are non-identical. To this extent,
then, identity and non-identity are relativised to types.

Since the type of natural numbers is not identical to the type of real
numbers, there is no question as to whether the natural number 2 is
identical to the real number 2. (This is in roughly in accordance with
how identity is treated in Michael Resnik’s version of mathematical
structuralism.)

This is one respect in which the way identity is treated in HoTT
is contrary to orthodoxy. However, the more radical respect in which

5The constructive logic of HoTT also gives rise to nonstandard features such as non-
decidable identity statements in the sense that it is not true that for all x and y either
x = y or x 6= y.
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identity in HoTT is unorthodox is that, as explained in the previous
section, there can exist multiple certificates to the identity type of two
tokens, and higher identities between such identifications. In the next
subsection we explain how the intensionality of the theory is closely
related to the way it treats of identity.

3.3 Intensionality and Internal Identity

Identity, extensionality and intensionality are closely related. The
identity criterion for sets expresses the extensionality of set theory.
Intensionality means that substitution of co-referring terms does not
always preserve truth where the meaning or mode of presentation
of terms affects the truth-value of the relevant proposition. Recall
that external identity entails internal identity. That the converse im-
plication, from propositional/internal identity to judgmental equal-
ity/external identity, does not is definitive of an ‘intensional’ type
theory rather than an ‘extensional’ one, since without external iden-
tity, two tokens cannot always be substituted for each other while
preserving truth.

If the implication from internal to external identity (called ‘reflec-
tion of identity’) were to hold then the predicate Q defined in the last
subsection of the previous section would be well typed (since from
p : IdA(a, b) we could derive a ≡ b). Hence, we could use path in-
duction to prove that all identities are trivial. If the latter were so
the ∞-groupoid structure of higher identity types and so the connec-
tion with homotopy theory would be lost. Hence, the intensionality
of HoTT is essential to it.

3.4 Types as propositions and types as con-
cepts

As noted in Section ??, by the Curry-Howard correspondence the
identity type IdA(x, y) corresponds to the proposition that x and y

are identical tokens of A. If we interpret types as propositions and
tokens as certificates to propositions, then IdA(x, y) says that x and y

are identical as certificates of the proposition A. This accords with the
idea that we may have many ways to prove a given proposition, but
some of these proofs may differ only in a trivial way and so should be
considered identical.

We may alternatively think of types as concepts, with tokens as
specific instances of them. (Recall that internally to the language of a
constructive theory we can only say there are mathematical structures
of a given type if we can actually construct a particular instance.) For

7



DRAFT: 10:33, Thursday 28th January, 2016 Section 4.0

example, the type of metric spaces has as tokens particular metric
spaces such as the Euclidean Plane.

This makes it natural for it to be possible to have identifications
between distinct instances, since they may be identical qua that type,
even though the symbols representing them are not externally identi-
cal. For example, consider two distinct Euclidean planes in Euclidean
three-space; these are two distinct tokens of the type of metric spaces,
but arguably we should think that they are nonetheless identical qua
metric space. The intensionality of HoTT means that distinct tokens
can capture the fact that we are thinking about our two copies of
the Euclidean plane differently, even though thought of qua metric
space we may identify them. Similarly, two tokens in one type may
be identical while their counterparts in another type may not be. For
example, the Hyperbolic Disc and the Euclidean Plane are not the
same qua metric space but they are qua topological space. We can
think about the same topological space differently by thinking about
different metric spaces and forgetting about their metric structure.

Identity in HoTT is always relativized to types in this way. That
is, IdA(x, y) does not express absolute identity between x and y, but
rather that x and y are identical qua token of type A.

3.5 Is ‘Identity’ in HoTT identity?

The radical innovations in the way identity is treated in HoTT make
it worth questioning whether ‘identity’ is the right name for the type
IdA(x, y). Maybe, what is called ‘propositional/internal identity’ in
HoTT is really some other kind of relation. Indeed it is often also
called ‘equality’, and furthermore much of the work on HoTT con-
cerns what follows when a further principle about identity called the
‘Univalence Axiom’ (UA) is added to the theory which relates iden-
tity and a weaker relation called ‘equivalence’. In the next section, we
briefly explain UA and consider its significance for our understanding
of identity in HoTT. In particular, we relate UA to indiscernibility.

4 Identity, Equivalence and Univalence

Up until now we have considered the identity relation between tokens
of a given type. However, we also need to consider identity between
types themselves. The identity relation between types is not an ad-
dition to that between tokens as described above, because types may
themselves be regarded as tokens of a higher-order type (or ‘universe’).
In other words, any two types A and B are tokens of some universe U

8
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(i.e. A : U and B : U), and thus we may form the identity type IdU(A, B)
as we would for any tokens of any type.

We can use the resources of the theory to define other relations
between arbitrary types that we can’t define between arbitrary to-
kens, and then consider how these relations interact with and relate
to identity. A relation between types that is of particular importance
is called ‘equivalence’ (').

4.1 Equivalence

Equivalence in HoTT is a relation between types that is similar to the
familiar relation of isomorphism. An isomorphism between types A

and B is a function f : A→ B having a function g : B→ A that is both
a pre- and post-inverse:6

(f ◦ g)(b) = b for any b : B

(g ◦ f)(a) = a for any a : A

Rather than requiring that a single function g serves as both pre- and
post-inverse, we could ask instead for functions h1, h2 : B → A such
that h1 is a pre-inverse of f and h2 is a post-inverse of f:

(f ◦ h1)(b) = b for any b : B

(h2 ◦ f)(a) = a for any a : A

The type of equivalences between types A and B, which we write as
Equiv(A, B), has as its tokens triples (f, h1, h2) where h1 and h2 are
respectively pre-and post-inverses to f. Every function that is an
isomorphism is also an equivalence, and it is a theorem [?, Section 2.4]
that from any equivalence we can produce an isomorphism.

4.2 Univalence

The Univalence Axiom (UA) relates identity between types to equiva-
lence. UA says, roughly, that identity and equivalence are equivalent
(as mnemonic we can write ='' but this makes no formal sense).
More precisely it says that types of the form IdU(A, B) are equivalent
to the corresponding types of the form Equiv(A, B), i.e.

UA : Equiv
(
IdU(A, B), Equiv(A, B)

)
Note that UA can be applied to the equivalence between identity

types and equivalence types. That is, from the equivalence between

6 Pre- and post-inverse are more commonly called right- and left-inverses.
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IdU(A, B) and Equiv(A, B) asserted by UA we can derive (by an appli-
cation of UA) an identification of IdU(A, B) and Equiv(A, B).

It might appear that the equivalence (and therefore identity) be-
tween the identity and equivalence relations means that one or other of
these relations can be dispensed with. Perhaps UA means that iden-
tity does not need to be introduced as a primitive of the language,
since it can be replaced with equivalence. This is not the case. Re-
call that the equivalence relation is only defined between types, not
between tokens of arbitrary types. Thus UA says only that identity
and equivalence are equivalent where both are defined. It does not
allow us to eliminate identity from the language, since UA is a state-
ment about equivalence and identity between types in a universe (not
identity within any particular types) so we still need a way to express
identity between tokens of arbitrary types. (Furthermore there is no
external analogue of equivalence so we still need external identity.)

4.3 Univalence and Intensionality

Univalence is sometimes said to be a kind of extensionality principle
because in HoTT without UA the product A×B cannot be proved to be
identical to the product B×A but with univalence it can. Furthermore,
UA ⇒ Function Extensionality, which identifies functions that have
the same input-output behaviour [?]. Note that =6⇒≡ still holds so
HoTT with UA is still intensional in the sense defined above.

4.4 Justifying UA

The Homotopy Type Theory research programme is closely associated
with the idea of ‘Univalent Foundations’ due to Voeveodesky, and UA
is taken to be one of the most important new discoveries arising from
this approach to mathematics. It is said by Awodey and Michael
Shulman that UA gives rise to a ‘different understanding of identity’.

However, as noted above, even with univalence we cannot replace
identity by equivalence, and the two notions are not externally equal
(i.e. = 6≡').

Given that the difference between equivalence and identity is still
recognised in standard HoTT, what justifies their unification by UA?7

Awodey claims that UA is equivalent to the Principle of Invariance
(PI) which states that all reasoning internal to the theory is invari-
ant under isomorphism ([?]). He relates univalence to mathematical

7There are approaches broadly within the HoTT research programme in which equiv-
alence and identity are the same by definition
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structuralism, which he expresses in terms of the idea that isomor-
phic structures are the same. If equivalence rather than isomorphism
amounts to sameness of structure then arguably structuralism moti-
vates the principle that reasoning should be invariant under equiva-
lence. Elsewhere we argue that this is not sufficient to justify UA [?].
Another approach to justifying it begins from the observation made
in Section ?? that in HoTT identity is always identity of tokens in a
type. This suggests the idea of identity qua some structure – for ex-
ample, the Euclidean plane and the Hyperbolic disc are not identical
simpliciter, but they do correspond to tokens of the type qua topo-
logical space that are identical in that type. Relatedly, the things we
can say within the language of HoTT about some entity depend upon
what type that entity belongs to, i.e. as what kind of structure it is
being regarded.

Different mathematical theories are designed to have the resources
to describe mathematical structures of different types, forgetting about
other features. For example, the permutation group of three objects
and the symmetry group of the triangle are identical qua groups so we
can regard them as distinct tokens between which there are identities.
If we take ‘equivalent’ to mean indiscernible within some type then IP
follows since reasoning about types can only use the properties defined
for the type in question. This suggests that in full HoTT including
identity types we can read Id as ‘indiscernibility’. On this reading
of the Id relation between types, it is natural to take indiscernibility
to be equivalent to equivalence. Perhaps also if we took IdA(a, b) to
denote indiscernibility rather than identity, any problems with think-
ing of identity types as expressing identity would dissipate and the
motivation for principles such as Univalence would become clearer.

If we define a relation of indiscernibility within the language we can
explore its relation to Id (in the same way that we can define a relation
on N that’s provably equivalent to IdN, and likewise for coproducts).
This brings us to the Principle of the Identity of Indiscernibles (PII)
and the question as to whether identity needs to be taken as primitive
in HoTT or whether it might be reducible. If the interpretation of
Id as indiscernibility works, might we go further and replace Id with
InDis (or some similar relation). In the next section we consider
discernibility, indiscernibility and PII in HoTT.

11
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5 Identity, Discernibility and Indiscerni-

bility and PII in HoTT

It is easy enough to represent discernibility and indiscernibility in
HoTT but the correct formulation of PII in the context of HoTT is
a very complicated issue, largely because the constructive logic of the
theory means that classically equivalent statements may mean very
different things. In particular, as shown below, in HoTT natural in-
terpretations of ‘indiscernible’ and ‘not discernible’ do not mean the
same thing, because the latter just means we do not have a predicate
that applies to one and not the other, whereas the former expresses
the stronger claim that we have a way of deducing that a predicate
applies to both if to one of two tokens of a type. Furthermore standard
statements of PII assume the classical equivalences between condition-
als and disjunctions and conjunctions that do not hold constructively.
This means that PII comes in many different from. The formal defi-
nitions in HoTT of discernibility and indiscernibility adopted in what
follows are given in the next two subsections.

5.1 Discernibility

A natural definition of discernibility is

DisA(a, b) :≡
∑

P:A→U
P(a)× ¬P(b)

which asserts that there is some property – a ‘distinguisher’ – that
holds of a and not of b.

Note that despite the asymmetry in the statement of the definition
this relation is symmetric, since if we have (Q, qa, q̄b) : DisA(a, b) then
by Double-Negation Introduction we have (¬Q, q̄b, ¯̄qa) : DisA(b, a).

Note that the requirement that there be a one-place predicate that
applies to one object and not the other is equivalent to absolute dis-
cernibility in standard logic (assuming that for every formula free in
one variable there is a corresponding monadic predicate). While much
recent debate about PII has involved the notion of weak discernibility,
this notion can be set aside in HoTT, since weak discernibility col-
lapses to absolute discernibility. This is because predicates are func-
tion types, and a function type free in two types can always be used to
make function types free in one type by currying. (Note that in gen-
eral a predicate being one-placed says nothing about the metaphysics
of the corresponding property, as with the monadic predicate ‘is an
uncle’ and the relational not intrinsic property of being an uncle.)

12



DRAFT: 10:33, Thursday 28th January, 2016 Section 5.3

5.2 Indiscernibility

A natural definition of indiscernibility is

InDisA(a, b) :≡
∏

P:A→U
P(a)↔ P(b)

where the notation ‘X↔ Y’ is an abbreviation for (X→ Y)× (Y→ X).
Note that this form mirrors exactly standard statements of indis-

cernibility in the literature on PII quantifying over all predicates and
saying that any that applies to one applies to the other and vice versa.

Clearly InDisA(a, b) is symmetric, reflexive, and transitive, and
supports substitution: if we have P(a) (for some property P) and
InDisA(a, b) then we have P(b). It is therefore of interest to see
what parallels can be drawn between the behaviour of IdA(a, b) and
of InDisA(a, b) in HoTT.

Perhaps, as suggested above, the unusual features of the treatment
of identity in HoTT are collectively telling us that ‘identity’ types are
simply mis-named, and that the relation they represent is not identity
at all but rather indiscernibility. Rather than supplementing HoTT−

with the addition of identity types, as we do in HoTT, we would
instead define InDis within HoTT− show (if possible) that it satisfies
the defining properties of the identity type in HoTT, and then use this
in HoTT− in place of identity types.

We have the same type construction (given a type and two tokens
we can form the corresponding indiscernibility type). For any a : A we
have a token refl′a : InDisA(a, a) given by the function that returns
for any P the identity function on P(a). As mentioned above Indiscerni-
bility is an equivalence relation. We could introduce path induction
by stipulation, by defining E′(a) :≡

∑
x:A InDisA(a, x) and asserting

that for any token (b, p) : E′(a) we have InDis
(
(b, p), (a, refl′a)

)
.

5.3 To Discern or not and to Indiscern or not

What is the relationship between InDis, Dis, and their (single and
double) negations? Clearly InDis and Dis are of opposite ‘valence’,
but what entailments hold between them?

First, it is clear that InDis and Dis are contrary to one another:

(InDis× Dis)→ 0

Thus each entails the negation of the other:

InDis ` ¬Dis
Dis ` ¬InDis

13
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and so by contraposition (and Double Negation Introduction) we
have

Dis ` ¬¬Dis ` ¬InDis
InDis ` ¬¬InDis ` ¬Dis

By contraposition and Triple Negation Elimination,

¬InDis ` ¬¬Dis if and only if ¬Dis ` ¬¬InDis

and these entailments follow from either of ¬InDis ` Dis or ¬Dis `
InDis.

The negation of indiscernibility, ¬InDisA(a, b), implies∑
P:A→U

¬ (P(a)↔ P(b))

However, from the negation of a conjunction we cannot derive the
negation of either conjunct, so for a given P we cannot in general
determine from ¬InDisA(a, b) which of P(a) → P(b) or P(b) → P(a)
fails. Thus, for many applications, ¬InDisA(a, b) may be too weak to
be useful and we need the positive characterisation of discernibility
above.
¬Dis is equivalent to∏

P:A→U
¬
(
P(a)× ¬P(b)

)
Since ¬(X×¬Y) is in general weaker than (X→ Y), ¬Dis does not

entail InDis.

5.4 The Indiscernibility of Identicals

An important feature of identity in HoTT is that identical tokens share
all their properties: for any type A and any predicate P : A→ U , there
is a function

f :
∏
x,y:A

∏
ι:IdA(x,y)

P(x)↔ P(y)

(where A ↔ B abbreviates (A → B) × (B → A)), and in particular for
any x : A

f(x, x, reflx) :≡ (idP(x), idP(x))

Thus identical tokens are indiscernible. (This is proved in the
HoTT Book as a consequence of path induction in Section 1.12.) (Note
that of course external identity therefore also implies indiscernibility.)

14
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5.5 Indiscernibility and Language

Since the definition of indiscernibility involves quantification over pred-
icates we must pay attention to what language we are working in (es-
pecially when we considerng using indiscernibility to extend one lan-
guage to resemble another). PII is trivially true if its scope includes
predicates representing haecceities since everything is discernible from
everything else by such predicates.

We could just formulate InDis in HoTT−, but to express PII we
need identity types in the language as well. In a language such as
HoTT containing identity types, given any a : A we can construct the
predicate IdA(a). Then, since this predicate holds of a it must also
hold of any b that is indiscernible from a. Thus in such a language
indiscernibility entails identity, and so PII follows trivially.

We might try to define the notion of non-identity-involving (NII)
predicates within HoTT. The obvious way to (try to) do this would
be to define NII recursively, with some base cases and some rules for
construction. If we could do this correctly, then we could restrict
attention to NII predicates, and thus consider whether PII holds non-
trivially in HoTT.

In the next section we consider how PII should be formulated as-
suming the definition of InDis however the quantification over predi-
cates is restricted.

5.6 The identity of Indiscernibles

PII is usually stated as follows: For every two objects, if for any
property, one has it if and only if the other has it, then they are
identical. We can state this in HoTT as follows:∏

A:U

∏
a,b:A

(
InDisA(a, b)→ IdA(a, b)

)
The problem is that PII is just as usually stated in contraposi-

tive form as follows: There are no two objects that share all their
properties. Indeed, Leibniz’s formulation of PII is “it is not true that
two substances may be exactly alike and differ only numerically, solo
numero”. 8

The most direct translation of this is:

¬
∑
x,y:C

(
Alike(x, y)× ¬IdC(x, y)

)
8Leibniz gives an argument from haecceities in the Discourse on Metaphysics. He also

argues for PII from the Principle of Sufficient Reason (if objects differed solo numero then
God would have no reason to arrange them one way rather than another).
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where Alike(x, y) expresses that x and y have all properties in com-
mon, and we take “differ only numerically, solo numero” to mean
simply that x and y are not identical.

But constructively this is a very different statement from the posi-
tive claim above because in constructive logic properties and relations
do not either hold or not hold. Hence, it is very difficult to say how PII
should be formulated in HoTT. There are three strengths of material
implication depending on whether it is put in terms of the conditional
or conjunction or disjunction. This can apply to both the principle as
a whole and within it so we have potentially nine forms of PII. These
are presented and briefly analysed in the Appendix. In the next sec-
tion we give two arguments for the claim that, regardless of the form
or status of PII in HoTT, identity types must be taken as primitive
components of the theory.

6 Identity is Primitive in HoTT

Unlike identity, discernibility and indiscernibility quantify over predi-
cates and so they should be indexed according to levels of the hierarchy
of types as explained in the next subsection. We argue there that there
are important differences between Id and InDis, and that this means
that identity types cannot be reconstrued as indiscernibility types and
are primitive elements of the theory.9 In the next subsections, we con-
sider identity and indiscernibility in the context of ‘finite types’, and
then in types in general. The penultimate subsection considers how
case analysis relates to ‘uniqueness principles’ for types. In the final
subsection we consider the status of identity and diversity facts in
HoTT

6.1 Universes

In the definition of InDis we have written the type of the predicates
that we quantify over as A → U , where U is the universe under con-
sideration.10 But since no universe contains all types we cannot pick
in advance a single universe to be the domain of all our mathemati-
cal reasoning. We must therefore consider the possibility of different
versions of InDis that quantify over predicates mapping into differ-
ent universes. That is, rather than saying that two tokens are simply

9Whether we can plausibly retain the informal interpretation of Id as ‘indiscernibility’
and use it to justify UA is not considered further here.

10 For a more detailed discussion of universes in HoTT, including an explanation of their
most important properties, see [?, Section 2].
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‘indiscernible’, we should say that they are ‘indiscernible relative to
universe U ’, ‘indiscernible relative to universe V’ (i.e. they share all
properties that map into that universe) etc., where for any V,

InDisVA (a, b) :≡
∏

P:A→V
P(a)↔ P(b)

A failure of indiscernibility relative to U implies a failure of in-
discernibility relative to U ′ for arbitrary U : U ′, since universes are
cumulative. However, it is not clear whether the fact that two tokens
are indiscernible relative to U implies that they are also indiscernible
relative to V for arbitrary universes U and V.11 Since there is no type
or universe of all universes, we cannot quantify over them to express
‘indiscernibility relative to all universes’

One response to this would be to re-interpret the statement of
indiscernibility via typical ambiguity ([?], [?, Section 2]). That is,
rather than taking ‘U ’ to denote one particular universe, we could take
it as a ‘dummy variable’ that can stand for any universe. Thus the
intended meaning of the statement of InDis would be that whatever
universe is introduced, the two tokens are indiscernible with respect
to all predicates mapping into that universe.

This is a mismatch between identity types and indiscernibility
types, since the former express a single relation, while the latter, ac-
cording to this proposal, collectively express an indexed family of re-
lations. PII would then be a schema and all instances of it could be
true but no finite collection of them would express the reducibility of
identity to indiscernibility.

6.2 Finite Types

The debate about mathematical structuralism seems to have con-
cluded that even PII formulated in terms of weak discernibility fails
to hold for some mathematical structures such as edgeless graphs be-
cause they arguably contain elements that are utterly indiscernible
(see [?] and [?]). We might therefore expect a similar phenomenon to
arise for finite types in HoTT, i.e. types that have a finite number of
nullary (no input) token constructors and no others (such as the unit
and binary types that are of fundamental importance). However, we
show that this is not the case.

Consider, for example, the type 2 with two token constructors
producing tokens α : 2 and β : 2. To discern α and β we need a
predicate of type 2 → U that holds of one and not the other. Recall

11 It may be the case that a theorem of this kind holds, but it has not yet been proved
as far as we know.
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that predicates on a given type, like all functions, are given by the
recursion and induction rules for that type. In the present case, the
recursion rule for 2 [?, Section 1.8] says that to define a predicate
P : 2→ U we must pick out two types P(α) and P(β), and any choice
of two types gives a predicate on 2. In other words, a predicate on 2

is completely specified in terms of what it does with tokens α and β.
In particular, let P be the predicate that maps α to the Unit type

1 and β to the Zero type 0, and vice versa for Q. Clearly we have a
token of P(α)×¬P(β) and a token of Q(β)×¬Q(α). These predicates
therefore discern α and β.

More generally, a predicate on any finite type is defined by the
recursion rule for that type, which says that to define a predicate we
must pick out a type for each constructor of the finite type, and that
any such choice defines a predicate. Thus for any finite type F and for
each constructor producing a token f : F we can define a ‘characteristic
predicate’ like P and Q above that returns 1 when given f and returns
0 when given any other token of F.

Thus by use of characteristic predicates all externally distinct to-
kens of finite types can be discerned – for tokens x, y of any finite
type, if x 6≡ y then Dis(x, y) (and of course, if x ≡ y then InDis(x, y),
trivially). In this sense the rules for defining functions on finite types
reflect the facts about the external identity and distinctness of tokens
of those types into theorems about their indiscernibility and discerni-
bility (respectively).

One might object that this discernment is somehow illicitly using
identity because, for example, the predicates P and Q need to be able
to tell the difference between α and β in order to give the right output
when given a particular input. However, recall that predicates, like all
functions, are defined via substitution on expressions. The predicates
P and Q are not given as their inputs the tokens α and β but rather
expressions denoting α and β. Hence, this kind of discernment is via
names. In HoTT every token of every type has a name which is an
expression that refers uniquely to that token and to no other. Of
course, the name of a token is arbitrary, and could be changed to
any other expression (as long as this is done consistently and without
collision with any expression already in use). We are assuming that
the distinctness and discernibility of expressions is not uncertain, since
this is a basic requirement of being able to use expressions at all.
Thus the definition of P and Q does depend upon a pre-existing notion
of identity, but this is the external judgmental equality relation ≡
that holds between expressions, rather than the internal propositional
identity represented by identity types.
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6.3 Generalising from Finite Types

We turn now from finite types to types in general. For an arbitrary
type X it is still the case that predicates on X are defined via the
recursion/induction rules. In some cases we will be able to define
characteristic predicates for each token. For example, for the natural
numbers N (with zero element 0N : N and successor function s : N→
N) we can define the following family of predicates χi : N → U (for
i : N)

χ0N(0N) :≡ 1

χ0N(s(m)) :≡ 0

χs(n)(0N) :≡ 0

χs(n)(s(m)) :≡ χn(m)

Thus for any n : N we have χn(n) ≡ 1, and χn(j) ≡ 0 for all j 6≡ n, so
χn is a characteristic predicate for n.

The recursion rule for an arbitrary type X will (in most cases) say
that in order to define a predicate (or any function) on X it suffices
to specify what that predicate does to the outputs of the constructors
for X. [?, Section 5.6] Thus arbitrary constructed tokens (i.e. tokens
arising as the output of a constructor) can in general be discerned
by characteristic predicates. However, we cannot assume that every
token is externally identical to the output of a constructor, and so it
does not follow that all tokens can be discerned.

This is good news – if we could define characteristic predicates for
all tokens then, as in the case of finite types, tokens would be dis-
cernible iff they were judgmentally distinct, and so (in)discernibility
would reflect external identity into the language. Thus taking in-
discernibility as a substitute for identity would give an extensional
theory in which no (non-trivial) ‘higher identities’ could exist, and so
the distinctive features of HoTT explained in Section ?? – such as
the analogy with homotopy theory and the ∞-groupoid structure of
identity types – would be lost.

Moreover it would be contradictory then to add to the language
a separate internal identity predicate (with a corresponding trans-
port function defined as in HoTT) which identified tokens that are
externally distinct, since for any a = b this would give a function
χa(a)→ χa(b), i.e. 1→ 0, so producing contradiction.12

12 However, Voevodsky [??] is investigating ways to define a language with two internal
identity relations, one extensional and the other intensional, so evidently it is possible to
have two such relations in a language if suitable constraints are imposed.
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6.4 Case analysis

An alternative way to write function (and predicate) definitions is
‘case analysis’ or ‘pattern matching’ style; for example, the definition
of the predicate P : 2→ U considered in Section ?? may be written as

P(α) :≡ 1

P(β) :≡ 0

Such a definition might be understood as standing for an ‘if . . . then
. . . ’ expression; specifically, either

if x ≡ α then P(x) :≡ 1; else if x ≡ β then P(x) :≡ 0

or, if we have identity types in the language, perhaps as

if x =2 α then P(x) :≡ 1; else if x =2 β then P(x) :≡ 0

One might object to such a definition on the grounds that it only
says what to do with the constructed tokens, and says nothing about
how to handle arbitrary tokens. In order for such a definition to be
adequate we need some assurance of exhaustivity – either that no other
tokens of the type exist, or that the value of P at any other token is
fully determined by the above specification.

In HoTT this is resolved by proving a Uniqueness Principle for
the type, which (in many cases) says that every token of the type is
equal to some constructed token.13 For example, for the finite type 2

described above the Uniqueness Principle says [?, Equation 1.8.1]∏
x:2

Id2(x, α) + Id2(x, β)

Thus given any arbitrary token x of the type, the uniqueness prin-
ciple gives an identification between x and some constructed token
c, and then transport along this identification gives an identification
between f(x) and f(c), where f(c) is given explicitly by the func-
tion definition.14 Thus the uniqueness principle ensures that although
the function is only explicitly given values at constructed tokens, it

13 This is not always what the uniqueness principle for a type says: for example, for
identity types the uniqueness principle doesn’t say that every identification is equal to a
trivial self-identification (which statement is not well-typed), but rather that every iden-
tification has a counterpart in a based identity type that is equal to the counterpart of a
trivial self-identification. See [?, Section 6.2].

14 A similar situation holds when the uniqueness principle doesn’t give an identification
between arbitrary tokens and constructed tokens, as discussed in footnote ??.
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is nonetheless well-defined for all tokens of the type, up to internal
identity.

Since uniqueness principles directly involve identifications they of
course cannot be stated in the language without identity types that
we consider here, and so this assurance of exhaustivity is not available.
However, wherever in HoTT we could prove a Uniqueness Principle
for a type saying that every token of the type is equal to a constructed
token, we expect to be able to prove a corresponding Indiscernibility
Principle saying that every token of the type is indiscernible from a
constructed token. For example, for the finite type 2 the Indiscernibil-
ity Principle (corresponding to the above Uniqueness Principle) says∏

x:2

InDis2(x, α) + InDis2(x, β)

To prove this we use the induction principle for 2, which says that
to derive a dependent function of type

∏
x:2 T(x) (for any predicate

T : 2→ U) it is sufficient to give its values at α and β. Since we triv-
ially have tokens of InDis2(α, α) and InDis2(β, β) the Indiscernibility
Principle for 2 follows immediately.15

Thus, when given an arbitrary token x : 2 to which P is to be
applied, we may apply the dependent function witnessing the above
Indiscernibility Principle to this token, thus yielding either a token of
InDis2(x, α) or a token of InDis2(x, β). From the resulting token we
extract either a function of type P(α) → P(x) or a function of type
P(β)→ P(x). Thus the Indiscernibility Principle ensures that function
definitions in the above style are indeed exhaustive.

6.5 The grounding of identity and diversity
facts

We have seen that even without identity types in the language we
can recover the expected facts about discernibility and indiscernibil-
ity of tokens. In particular, for any uniqueness principle in HoTT
we expect in general to have a corresponding indiscernibility princi-
ple in HoTT−. The proofs of these principles and the construction
of characteristic predicates (where these are possible) indicates that
the facts about identity and diversity of tokens are built into the re-
cursion/induction rules for types. In many cases, the definition of
the recursion/induction rule for a type encodes the intention that all

15 This argument may appear circular: to justify the claim that function definitions
via the recursion/induction rules are adequate (i.e. exhaustive) we prove a theorem by
constructing a function defined via the same recursion/induction rules. We address this
in the next subsection.
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tokens of the type are the outputs of constructors, and the unique-
ness or indiscernibility principles then reflect this intention into the
language.16 In sum, in HoTT type definitions involve both construc-
tors and recursion/induction rules. Since the latter control what can
be said in the theory about the tokens of a type, they enable us to
control what tokens can be said to exist in the type (up to identity
or indiscernibility in the type). Very roughly, we may say that the
constructors set a lower bound on what tokens exist, while the recur-
sion/induction rules set an upper bound on what tokens exist.

In the light of the above, it is clear that identity and diversity facts
in HoTT are not grounded in qualitative facts, since the latter are all
the facts that are determined by what can be predicated of what, and
as we have seen, predicates are functions, and the rules for functions
already encode the identity and diversity facts. In this sense, identity
and diversity facts are primitive, however, they can also be seen as
grounded in the recursion/induction rules.

7 Conclusion

Both the intensionality of HoTT and its constructive nature are im-
portant for the understanding of identity types. The very definition
of intensionality requires that identity types do not reflect external
identity, and even with UA equivalence and internal identity are not
externally identical. Constructive logic considerably complicates in-
discernibility in the theory and its relation to identity types. Identity
types cannot be reconstrued as indiscernibility types, since however
these are defined they must be indexed to Universes where identity
types are not. Furthermore, we can always discern distinct constructed
tokens, but in general, because of the intensionality of theory, there
can be externally distinct tokens that are not internally discernible.

We raised the question of whether internal identity in HoTT is
worthy of the name. Clearly, there is a different notion of external
identity which lacks the novel features of identity types. Whether we
can plausibly retain the informal interpretation of Id as ‘indiscerni-
bility’ and use it to justify UA along the lines suggested above is not
considered further here. Given a clear understanding of the status
of identity types in HoTT and how they work what we call them is
somewhat moot. They are essential in HoTT for the formulation of
UA, and because equivalence does not apply to tokens that are not

16 However, these principles do not rule out ‘exotic models’ in which (from an external
point of view) a type may have additional elements that go beyond the intended content
of the type [?].
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themselves types. Identity types are the internal way of representing
identity facts in general, and so it seems right to say that what is
expressed by identity types is identity rather than some other rela-
tion, and hence that identity is indeed treated in a nonstandard way
in HoTT.

8 Appendix: What’s the correct for-

mulation of PII in HoTT?

Recall that the most direct translation of Leibniz’s formulation (as-
suming we have fixed a type C) is:

¬
∑
x,y:C

(
Alike(x, y)× ¬IdC(x, y)

)
where Alike(x, y) expresses that x and y have all properties in com-
mon. Below we consider different definitions of Alike. First we con-
sider different forms of PII that arise however it is defined.17

Since not-exists and forall-not are constructively equivalent, we
can rearrange the above to:∏

x,y:C

¬
(
Alike(x, y)× ¬IdA(x, y)

)
Arranged this way, the body of the quantified proposition has the

form of one of the three (classically equivalent) variants of material
conditional:

¬A + B ` A→ B ` ¬(A× ¬B)

where constructively both entailments are strictly one-way.
Note that ¬(A × ¬B) is equivalent to A → ¬¬B, so we’ll use the

latter variant.

8.1 Variants of PII

We should therefore consider three variants of PII:

PII++ :≡
∏
x,y:C

(
¬Alike(x, y) + IdA(x, y)

)
17Analogously different formulations of PII arise in any constructive setting making

the below taxonomy applicable more widely. Of course all these formulations of PII are
trivially true unless the scope of quantification over predicates is restricted somehow as
explained above.
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PII+ :≡
∏
x,y:C

(
Alike(x, y)→ IdA(x, y)

)
PII− :≡

∏
x,y:C

(
Alike(x, y)→ ¬¬IdA(x, y)

)
PII++ seems too strong to be reasonable: it says that for any two

tokens of C we know either that they are identical or that they are not
alike. But constructively we can be in the situation where there are
two contrary possibilities but we know neither of them. So we would
not expect PII++ to hold for most types, and we won’t consider it
further for now.

For a given x, y : C, the type Alike(x, y) says that x and y share
all their properties. Thus it involves a quantification over predicates
on C. As with PII this has multiple formulations corresponding to the
different variants of the material conditional.

8.1.1 Variants of Alike

Alike++(x, y) :≡
∏

P:A→U

(
¬P(x) + P(y)

)
×
(
¬P(y) + P(x)

)
Alike+(x, y) :≡

∏
P:A→U

P(x)↔ P(y)

Alike−(x, y) :≡
∏

P:A→U
¬
(
P(x)× ¬P(y)

)
× ¬

(
P(y)× ¬P(x)

)
8.1.2 Elimination of the Strongest (again)

By distributivity, Alike++(x, y) can be reformulated as∏
P:A→U

(
P(x)× P(y)

)
+
(
¬P(x)× ¬P(y)

)
However, to capture the intended meaning of ‘alike’ we must have

Alike(x, x) for any x : C, and so Alike++(x, x) ≡
∏

P:A→U P(x)+¬P(x)
is too strong, since it asserts that every predicate on C is decidable.

We therefore set aside Alike++ and don’t consider it further.
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8.2 Four Forms of PII

Alike+ is just InDis as defined above.
By a constructive de Morgan law, Alike−(x, y) is just the negation

of Dis(x, y) as defined above.
Putting these variants together, we therefore get four forms of PII:

PII++ :≡ Alike+(x, y)→ IdC(x, y) ≡ InDis(x, y)→ IdC(x, y)

PII+− :≡ Alike−(x, y)→ IdC(x, y) ≡ ¬Dis(x, y)→ IdC(x, y)

PII−+ :≡ Alike+(x, y)→ ¬¬IdC(x, y) ≡ InDis(x, y)→ ¬¬IdC(x, y)

PII−− :≡ Alike−(x, y)→ ¬¬IdC(x, y) ≡ ¬Dis(x, y)→ ¬¬IdC(x, y)

8.2.1 Entailments

The following entailments follow immediately from the relative strengths
of the variants of material conditional involved:

PII+−
//

��

PII++

��
PII−−

// PII−+

Since the conclusion of PII−+ and PII−− is the rather weak ¬¬IdC(x, y),
these ought to be acceptable even to the opponent of PII. But perhaps
they are too weak to be of interest. That leaves us with PII++ and
PII+− . If we replace classical implication and seek to avoid negation
where possible, then we can take PII++ to be the right version of PII
in a constructive setting.
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