
THE APPLICATION OF MESSAGE PASSING TO
CONCURRENT PROGRAMMING

David M. Harland

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1981

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13425

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13425

 ̂ v ' '■>' -̂f - ■ ' ■■ . - ■ .rTTTTT̂ ^̂ a

Î
UNIVERSITY OF ST. ANDREWS

Thesis Copyright Declaration Form. :

A UNRESTRICTED

"In submitting this thesis to the University of St. Andrews I understand that

I am giving permission for it to be made available for public use in accordance

with the regulations of the University" Library for the time being in force,

subject to any copyright vested in the work not being affected thereby. I

also understand that the title and abstract will be published, and that a copy

of the work may be made and supplied to any bona fide library or research

worker."

B RESTRICTED ;

"In submitting this thesis to the University of St. Andrews I wish access to * (

it to be subject to the following conditions:

for a period of years [maximum S] from the date of submission the

thesis shall be

a) withheld from public use.

b) made available for public use only with consent of the head or chairman

of the department in which the work was carried out.

I understand, however, that the title and abstract of the thesis will be

published during this period of restricted access; and that after the

expiry of this period the thesis will be made available for public use in -i;f

accordance with the regulations of the University Library for the time being '

in force, subject to any copyright in the work not being affected thereby, ;l

and a copy of the work may be made and supplied to any bona fide library or

research worker."

Declaration

I wish to exercise option [i.e. A, Ba or Bb] of the above options.

Signature Date
I

(J
'■’.it' ■ ' ..St :!« 'di/K&L j

ProQuest Number: 10167179

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167179

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

The development of concurrency in computer systems will be
critically reviewed and an alternative strategy proposed.
This is a programming language designed along semantic
principles, and it is based upon the treatment of concurrent
processes as values within that language's universe of
discourse. An asynchronous polymorphic message system is
provided to enable co-existent processes to communicate
freely. This is presented as a fundamental language
construct, and it is completely general purpose, as all
values, however complex, can be passed as messages.

Various operations are also built into the language so as to
permit processes to discover and examine one another. These
permit the development of robust systems, where localised
failures can be detected, and action can be taken to
recover.
The orthogonality of the design is discussed and its
implementation in terms of an incremental compiler and
abstract machine interpreter is outlined in some detail.
This thesis hopes to demonstrate that message-oriented
communication in a highly parallel system of processes is
not only a natural form of expression, but is eminently
practical, so long as the entities performing the
communication are values in the language.

\

The Application Of Message Passing To

Concurrent Programming

David M Harland

A thesis submitted for the degree of Doctor Of Philosophy

Department Of Computational Science
University Of St.Andrews

Scotland
1981

J

Contents.

Introduction,...1
A Historical Perspective...........................2
Concurrency In Operating Systems................. 2
Concurrency In Programming Languages............ 4
Rev iew.................................. 7

Another Look At Concurrency....................... 8
The General Problem...........9
The Problem Reconsidered................... ..11
The Actual Problem.................... 14
A New Approach........ ...20

A Means Of Communication............... '........ ...22
On Type Checking.................................... 24
Definitions, Instances & Messages 27
Networks............ 29
Message Queuing........31

Asynchronism.............. 31
Synchronism. 31

On Storage Management....... «.............. 32
The Message Pool............... 32
Garbage Collection.......... .32

Communication Facilities............................33
Identifying The Activity Being Undertaken...... 3 4
Data Flow In The System 34

A Continuous Record 35
An Up-To-Date Record....... 35

Interrogating Message Queues......................36
Scheduling......... 3 7

Managing A System Of Processes........... 42
States And Tasking Exceptions................42
The Status Of An Instance. 44
Tasking Exceptions..................................46
Deadlock. 50

Detecting Deadlock................. .51
Removing Deadlock............... .53

On Correctness And Survivability 53
Distributed Systems................... 56

Conclusions......................59
What Has Been Achieved?............................60
Is This Sufficient?....... 64
The State Of The Art 1 68

The Design Of Protocol.................. 73
Names & Locations....................... 75
Degrees Of Constancy...............76
Sequences & Scope Rules........................... 7 8
On Control Structures.............79
Statements & Expressions.......80

Assignments.......................................81
Conditionals 82
Iteration... 83
Expressions And Operators...................... 85

Abstraction 91
The Syntax Of Message Passing.................... 94
Chaining...95
Concrete Syntax............. 97
Type Matching Rules........................... ...100
Literals.. -... 103
Further Examples.................................. 105

Protocol As A CAM AC Programming Aid112
A General Summary....... 112
Sites 114
Our View Of CAM A C 115
The Tools Available To U s 117

Creating CAMAC Sites............... 117
Locate And Extract..................... 119
Display.. 119
Moving CAMAC Items............... 122

Interacting with CAMAC.............................123
A Brief Example............. 124

Implementation Details................. '.......... 125
Driving CAMAC Hardware............................. 127
Access To Status Registers........................ 128
On Multi-Processors................................ 130

10. The Implementation Of Protocol.................... 131 |
The Protocol Compiler....... 131 I

Error Detection.................................. 134 j
Error Recovery................................... 134
Code Generation................ 136

The Library...139
An Abstract Machine Architecture................ 140

Overview........ 141
On Data Structures..............................146
The Instruction Set............................ .148

11. References........ 158

Declaration.

I declare that this thesis has been composed by myself and
that the work that it describes has been done by myself.

This work has not been submitted in any previous application
for a higher degree. The research has been performed since
my admission as a research student under Ordinance General
No,12 on 1st, October 1978 for the degree of Doctor Of
Philosophy.

David M Harland

I hereby declare that the conditions of the Ordinance and
Regulations for the degree of Doctor Of Philosophy (Ph.D) at
the University Of St.Andrews have been fulfilled by the
candidate, David M Harland.

Professor A J Cole

Acknowledgements..

It is a pleasure to acknowledge the assistance of Professor
A . J . Cole, my supervisor during the period of this research,
who, despite being bombarded with preliminary drafts and
notes, was always the epitome of encouragement and
improvement.

I must thank Ron Morrison and Mike Livesey, for suggesting
fruitful areas for investigation, particularly at the start
of this project. Mike Weatherill is also to be thanked for
further discussions towards the end, and for initial
readings of this thesis. I cannot sufficiently thank Hamish
Gunn for providing and maintaining the language in which
Protocol is written, which made the implementation
considerably easier than it might otherwise have been.

Martyn Szyplewski, whose gift for finding 'bugs' and
irregularities in software is also to be thanked for acting
as 'user', as are my fellow research students, who often
wondered what I was doing!

Finally it is a pleasure to acknowledge the financial
support of the Science Research Council [UK], without which
this work would have not been possible, and to thank my wife
for making it all worthwhile.

literal

name
Denotation :
location 1

X+--- > ;Values:
T I

integer
boolean

site
+ 1 instance I <---

definition
type

string
exception

status
list
set

machine

Protocol ; An Ontology Diagram.

_1,0 Introduction.

In this thesis we will outline the history of attempts to
incorporate parallelism into programming systems; its
origins in operating systems, and its evolution within
programming languages.

We shall critically examine the most widely adopted
techniques pointing out their déficiences, and then propose
an alternative approach which seems both more natural and
more powerful.

In the second section we will discuss the details of
designing a programming language which captures the flavour

of this new approach. Then in the third section, we will
present one possible application, in terms of an on-line
plug-in hardware system for laboratory experiments.

Finally, various details of an implementation of this
language for the Digital Equipment PDP-11 computer, under
the UNIX operating system, will be discussed.

— 2 —

2.0 A Historical Perspective.

In this section we shall briefly outline the development of
concurrency in computing systems, and point out the major
problems encountered, and then we shall propose another,
much simpler, and it is hoped better, approach to
concurrency.

2*1 Concurrency In Operating Systems.

In the beginning computer systems were monolithic in
structure and strictly sequential in execution. Thus when
the processor initiated an external operation it simply
monitored some register or other, patiently idling v/hile it
waited for its completion. This greatly under-used the
capabilities of the most expensive component, the central

iprocessor, particularly when it was communicating with slow)|
peripherals or its human operators. Not surprisingly, it I

Iwasn't long before this situation was remedied by the IIIintroduction of interrupt-driven hardware. Here the central |
iprocessor was able to continue operations after requesting ■)

an external activity because it would be 'interrupted' when
the task was completed. To take advantage of such parallel
architectures operating systems were structured so that they
could run several independent user 'processes' at the same
time, interleaving them in space and time in response to
peripheral performance. Later 'time-shared' systems, such as
the MAC project at MIT, enhanced this illusion of
parallelism by directly managing a number of interactive
terminal users. These efforts were based on the dictum that

the central processor should be kept busy at all times
whilst on-line users should be able to work as if they had
it dedicated to their needs alone.

These developments in hardware, exploited by advances in
operating systems, naturally revealed many 'new' problems.
Firstly, the very nature of the interrupt mechanism produced
the problem of instantaneously saving the current activity
whenever an interrupt arose. This, also required that system
software be reentrant, so that there could be no
interference between the various user processes during such
suspensions, and so that the priority layering of the
various interrupt levels could be undertaken directly in the
hardware, with automatic 'stacking up' of pending and partly
executed lower priority services. Finally the
nondeterministic asynchronism of the interrupt mechanism
produced severe scheduling problems, both in terms of
servicing peripherals promptly and enhancing overall
productivity. There are three main requirements, often
mutually conflicting, which are bound up in the scheduling
problem, efficient use 1) of processor time, 2) of central
and backing store and 3) of user service (usually measured
by response time). Each presents its own difficulties.

It would be fair to say, however, that by the early 1970's
satisfactory techniques had been developed to cater for all
these requirements, and that there were several multi-user
time-shared systems in widespread use. The UNIX system [R8]
is perhaps particularly successful, and it is noteworthy
because it was one of the last such systems to be written in

— 4 —

a programming language which, although high-level, did not
have specific constructs for creating and managing
interactions between concurrent processes. In what we might
call the 'classical* programming languages, these complex
interactions were specified by ad hoc low-level mechanisms.
It was at about this time that a new class of programming
languages emerged.

2.2 Concurrency In Programming Languages. *

Since Dijkstra's classic paper [Dll] exposing the pitfalls
of parallelism there have been numerous programming
techniques put forward. Most primitive was the semaphore,
with its P/V-operations. Although ultimately the most
powerful they were found to be too difficult to use in
general. Whereas semaphores were originally implemented by
the user, as integer variables, and were- manipulated
directly by addition and subtraction, Algol-68 [W13],
introduced them directly into the language itself. They
formed values of type sema and v/ere manipulated by special
operators up and down.

This subtle change of status, from a user application to
part of the language, was highly significant. By exploiting
the concept of a data type the implementation was able to
protect the user by checking that he did not corrupt the
semaphores with illegal operations (such as multiplying them
for example)..

A 'critical section' was a segment of program which
manipulated a data structure 'shared' with another part of a ;

g

— 5 —

concurrent program. By placing semaphore operations around
such critical sections of a program it was possible to
synchronise the requests of the various parts of a
concurrent program for access to common data. However, this
was extremely tricky in practice, and potentially disastrous
in any non-trivial application.

This insecurity arose principally because the critical
regions were apparent only to the user and the
implementation was unable to protect him in any way. For
example, it could not verify that he associated the
appropriate semaphore with a given critical section; it
could not guarantee that he performed the up/down operations
in the correct sequence and indeed it could not even verify
that he had remembered to protect the critical section at
all I It was in this light that Brinch Hansen [B20,B21]
introduced the attribute shared to declarations of data,
together with a control structure called the region to
augment the semaphore variables (which he called
conditions). In this way the critical text was explicitly
delimited by the region block, and access to it was
regulated by a semaphore, whilst shared items could only be
accessed within a region block. The advantage of all this to
the user was that he could be protected from his own follies
whilst being relieved of much of the burden of the
programming. However, even here, he could still manipulate
the semaphores incorrectly and there was no way for the
implementation to know which semaphore guarded which
region/data combination. There was still considerable room

— 6 “

for error.

It was at this point that Hoare [H13] and Brinch Hansen
[B21,B22] independently proposed the 'monitor* construct.
This gathered together all the above individual ideas into
one single easy-to-use facility for programming access to
data shared within a concurrent program. The monitor drew on
the concept of a class in Simula [Dl], by isolating the
declarations of the data structures to be shared, together
with all their critical sections, from the main program
text, by enclosing them in a monitor-block. This could then
be given a name. Access to such data was strictly
controlled by the monitor itself.- Apart from the purely
lexical advantage of having all the relevant code and
declarations gathered together into one place, the
implementation was now in a position to protect the user
more thoroughly. For example, the 'controlling semaphore'
which guards the monitor was implicit in the monitor block
structure - it was invisible to the user and so could not be
corrupted, furthermore it operated entirely automatically,
leaving little scope for error. The monitor was a tool since
the user needed only to declare it for the tricky details of
the implementation to be provided for him. It was a logical
development of the concept of sharing data between
concurrent processes.

First in the new genre of languages were Wirth's Modula
[W16] and Brinch Hansen's Concurrent Pascal [B22], both

exploiting the monitor concept. In addition, to capture the

flavour of concurrency, they Introduced a block-like
construct to delimit the text of the various processes in
the concurrent program. This, they argued, was more modular
than the simple 'concurrent statement* of Algol-68, Many
languages have been implemented using the process/monitor
mechanism, consider Simone [K2], CCNPASCAL [Nl], Pascal-Plus
[W6,W7] and Concurrent SP/k [H16] for example, and in some
cases monitors have been provided as applications packages
to much lower level languages, such as in the case of BCPL
[L12],

2.3 Reviev;.

It would be fair to say that considerable success has been
achieved with the monitor-based view of concurrency, but it
conceals several critical issues, some fundamental to its
entire philosophy. The monitor is about ’ sharing. It
guarantees secure access to its data structures by
permitting at most one process to be active within it at any
given time. However, as its designers recognised, there is a
need to be able to 'delay* processes within a monitor.
Suspended processes need to be queued up, temporarily
releasing the monitor so that some other process can enter
it. Once this process departs, conditions will hopefully be
such that one of the suspended processes can be reactivated.
This procedure is essential if request/release operations
are to avoid deadlock. The significance of this delaying
tactic is that the monitor enforces sequentiality in order
to implement concurrency! The enforcement of sequential
access has far reaching implications for scheduling

- 8 -

strategies (see, for example, the discussion of Legally
[LI]). When one considers the consequences of nested
monitor calls [see H2,L10,L11,L12 and PI for example], it
becomes obvious that monitors are not the ideal solution
that they appear to be. Thus, for example, should nested
monitor calls be permitted as being essential [B20] for
hierarchical systems, or forbidden [K2] as entirely
unnecessary?

3.Q Another Look At Concurrency.

During these developments, from semaphore and regions in
monolithic programs to monitors and processes in modular
programs, the unquestioned assumption adopted by all, was
that processes actually need to interact via shared data
structures, and so efforts have always been directed towards
providing more secure mechanisms for such interactions.

The monitor approach is essentially oriented towards the
development of new control structures, enhancements of
block-structure itself, with the emphasis on encapsulation
via the Simula notion of block-retention, treating
concurrency as an issue in 'flow of control'. In this thesis
we hope to show that concurrency is not a matter of
sequentiality via control structures, but of communication.

The real problem is therefore much more fundamental than
simply providing secure access to shared data structures, it
lies in our entire approach to the concept of interaction.
Previous efforts have been geared towards interaction via
side-effects (by way of an updatable store) but interaction.

- 9 -

in abstract terms, is the communication of messages, and in
terras of computing such messages are values. The
implementation of concurrency by imposing sequentiality,
with all its scheduling effects and bottlenecks, seems to be
counterproductive, and despite its data sharing it conceals
the assumption of a common store in the implementation (to
be controlled by the monitors) - a fact that will probably
not be the norm in the distributed multi-computer systems of
tomorrow. A more natural approach would seem to need the
specification of individual behaviours (the definitions of
processes) together with a generalised, polymorphic message
passing system which is completely asynchronous^ (so that
parallelism can be exploited without imposing
sequentiality). Furthermore, such a system must not be tied
to current centralised architectures, or else it will offer
no alternative at all to the unwieldy systems currently
being 'extended’ to distributed and embedded networks.

Since the basic problem is embedded in our approach to
programming we shall now examine the language design process
itself, as opposed to specific extensions to its present
form. We will endeavour to reveal the principles which lead
to a 'well designed' language, in order that we can then
exploit them whilst designing a message-oriented programming
language.

2.1 The General Problem.

When concurrency is incorporated directly into a programming
language several quite distinct problems arise. All of the

— 10 —

languages onto which concurrent 'features’ have been grafted
suffer from these problems, and each shows its own scars, as
its designers tried to overcome them.

Here we shall begin by introducing the most obvious areas in
which the traditional freedoms conflict with the discipline
demanded by the inclusion of concurrency into a language.
Then we shall attempt to discover the root of the ailment,
and go on to suggest a less painful antidote. In later
sections we shall develop this new approach, and show how it
offers a more natural and higher-level framework in which to
programme concurrent activities. But for now we discuss the
problems.

As we have seen most of the languages so far supporting
'concurrent processes' permit them to interact via shared
data structures. Direct sharing is therefore the most
obvious problem in such languages. This is so for several
reasons. Firstly, there is the problem of actually
addressing shared data structures. How are they to be
recognised and where are they to be held? Secondly there
must be secure access to any such objects in a concurrent
environment.

Sharing occurs for two reasons, environmental and by
parameterisation. Environmental sharing arises because free
variables inherited by any particular process will be shared
with other activities created in this environment.
Similarly, items passed as parameters upon initialisation of
an instance of a process (in the case of explicitly declared

- 11 -

procèss-blocks which make use of parameter lists) may be
accessible to other parts of the system. We must therefore
take account of the different variable and parameter passing
mechanisms. If we refer to objects by-reference then all
objects (inherited or passed) are actually shared. If
however we use a pass by-value mechanism then only inherited
free variables are shared with surrounding activities, the
initialising parameters being copied into local (and so
private) space at the time of creation.

It could be reasoned that all that need be done is to
enforce by-value passing and arrange , for context-shared
objects to be declared in some special way, and incorporate

some special access mechanism to ensure secure access. It
is this approach that gave rise to the concept of the
monitor. The isolated scope is exploited to hide the shared
data structures from their users, and the monitor's
procedures guarantee that they cannot be corrupted.
Aesthetically, however, the monitor leaves a lot to be
desired, because whilst it takes advantage of the scope
rules on the one hand it violates them by making its
procedures visible outside 1 Undoubtedly the monitor can be
forced into a language, and used, but it does not really
solve the problem.

2.2 The Problem Reconsidered.

So far we have seen that the problem of shared objects
involves inherited free variables (generally arising from

block structured scope rules) and have countered this by

- 12 “

introducing the monitor-like construction which takes
advantage of very elegant and powerful program structuring
rules. But there was another problem, supposedly swept away
by enforcing a pass by-value strategy for parameters. Here
the important issue is.not so much that they are passed by­
value, but that in most such languages rules are introduced
to restrict parameter types to those which are easily
handled. The values discriminated against are the compound,
or 'structured', data types. Such restrictions are directly
counter to the design principles of Correspondence and data
type Completeness, so eloquently expounded by Tennent [Tl]
and Strachey [S12].

These principles of good design require that all data types
have the same 'civil rights' [S12] (so that values of any
type can be built into any other data structure, passed as a

parameter or returned from a function) and that there be a
strict correspondence between properties of names introduced
by in-line declarations and names introduced as parameters
to abstractions (so that they may all have the same
potential for constancy or type restriction).

Simple, or .'primitive' data values (integers and the like)
pose no problem - they can be passed by-value quite easily.
Compound data structures (arrays, vectors, structures etc.),
hov/ever, if implemented in harmony with the principles of
data type completeness and correspondence, usually
reintroduce the very problem just 'solved' by the monitor.

Consider, for example, a process initiated with a compound

- 13 -

data structure as one of its parameters. This, by-value, may
(for reasons of efficiency) be a pointer to the base of the
composite value, which means that its components are
effectively being passed by-reference. This process will
then share the contents of such a data structure with
surrounding activities — without the protection afforded by
the monitor concept. It is apparent, therefore, that in a
clean programming language the sharing problem will usually
still exist, despite the discipline of the monitor
construct.

The usual escape is to start making restrictions as to what
the programmer can do here as opposed to there, or if you do
this here it isn't the same as if you do it there, or these
values cannot be passed here, but they can there,.,. The
story is all too familiar. Such rules only serve to
complicate the language, lengthen its formal specification
and irritate the user.

It is noteworthy that this situation is not a particular
characteristic of the new concurrent languages. It exists to
some extent in all popular programming languages; the
consequences are simply more pronounced when combined with
concurrency. The solution of a problem by the introduction
of a special case, or a localised restriction is simply a
short term 'fix'. Such restrictions are entirely
unnecessary. Compound data structures tend to fall foul of
such strategies rather often. Such things are a matter of
language design, not pragmatic afterthought. The lesson is
clear: if your, language cannot handle a concept uniformly,

14 -

then live without it altogether. Concurrency is an
excellent example of this dilemma. Unfortunately few of the
languages into which concurrency has been incorporated have
accepted it harmoniously. This is probably due to the fact
that such concepts have been 'added-on' to existing
languages, extending their facilities. In most cases the
host languages v^ere designed to a quite different set of
criteria, often conflicting with the needs of concurrency.
Such efforts, because they try to retain the facilities of
the host language, resolve conflicts at the expense of the
newer facilities.

It is easy to carry out character assassinations with
particular points in particular languages which, with
hindsight, highlight the problems. It is less easy to
actually recognise the ailment (as opposed to. its symptoms)
and even more difficult, counter it.

In each case above, be it by-reference parameters (even if
disguised in a by-value language), or items made available
via a block structuring mechanism, the problem appears to
concern shared data in a concurrent environment.

2-2 The Actual Problem.

Here we suggest that shared data, per se, is not so much the
problem, but merely the most obvious symptom of the problem,
this being the degree to which the notion of the store
influences the language. The elementary notion of a store is
not trivial, its effect on a language can dominate its
overall appearance. Witness, for example, the differences

- 15 -

between the store-oriented algol tradition and the more
elegant of the applicative languages [M2,T6]. It is

worthwhile digressing for the moment, to underline the
importance of including a store in the basis of a
programming language,

A store manifests itself in a language as a location into
which values can be placed (by assignment). A name, or
identifier is taken to bind to or denote the location
itself, not the (current) value held within it. This then
introduces the notion of the 1-value (address) and r-value
(contents) of a name [S12], so that assignment can be
thoroughly explained. That is, a name has different meaning

when on the right of an assignment to when it is on the left
side.

This, however, is only the most obvious consequence of
having the store built into the model of the language
(rather than hidden in its implementation). It has a more
subtle effect. The store, and its ability to be updated,
enforces sequentiality of execution. This may appear to be
obvious - a program starts at the top and works its way to
the end, but it need not always be so. This is because, when
a store can be updated a program must be executed in a
particular sequence in order to achieve consistent results.
It introduces the notion of 'flow of control'. Thus
repetitive constructs like while-loops and for-statements,
which do not actually produce values but alter the store,
appear and are accepted as natural, even though they are not
essential.

- 16 -

The third consequence of introducing the store into a
language is its effect on compound structures, which as we
have seen, if they are implemented as values in their own
right, are generally taken to be pointers to amalgamated
components. The store has become a value in its own right
(as a pointer value to a location). A data structure value
is therefore a reference [R4] to the amalgamation of
locations holding the actual data values.

This use of pointers to link together regions of the store
is simply one aspect of the 'efficiency syndrome'; it
permits large data structures to be manipulated without
copying (ie efficiently), but it also introduces the problem
of side-effects. Whilst this tradeoff may be quite
acceptable in traditional languages, such as the algols, it
is the crux of the concurrency problem.

Data structures such as arrays and the like, embody an
abstraction, and in these cases this relies primarily upon
selective updating of components for its effect - ie on
selective assignment. In such languages the notion of the
store is very strong.

We conclude, then, that it is the presence of the store in a
language's realm of data values, together with the need to
update locations, which is at the heart of the problem. The
two combine to cause the problem, but it is assignment that
is dominant. Assignment cannot take place without the
store, but the store can exist and be exploited (for
efficiency) by a concurrent language so long as selective

- 17 -

assignment is forbidden. That is, so long as the data
structures are composed of values and not of locations
holding these values (see the ontology diagram in the
preface).

If a motto is to be coined then surely it should be this: if
you have a language in which the store is already dominant,
then don't try to include concurrency (it will involve lots
of special cases and ad hoc restrictions and even then
probably a lot of hard work). How might we overcome this
problem?

Firstly we can decree that all operations on compound data
types be either selectors, which do not change anything,
extractors, which pull out values while leaving the data
structure intact, or mergers, which take copies of data
structures and merge them to produce new values, leaving the
operands unchanged.

To reinforce this psychological change of emphasis we can
decline to use the traditional side-effect oriented data
structures. Strictly speaking this is not necessary because
they could safely be manipulated by the above operations.

However, it is felt that there are other data structures
with even more powerful abstractions. To replace them we
have selected lists and sets, which have sensible
abstractions independent of selective updating. Lists are
the traditional composite structure of the applicative
languages, we use them in much the same way. In the case of
sets, however, we are being slightly more adventurous,

— 18 —

because they are implemented as unordered collections of
values, where the various values can be of any arbitrary
mixture of types. Both compound data structures are values
in their own right and both may contain other compound data
structures as components.

There is no need to update the components of such data
structures, so we will forbid it. In fact we lose little by
selecting alternative data structures, since we can always
index into a list, just as with a vector, whilst we gain
much in the form of 'extra' properties, such as sublists
(the equivalent of slicing vectors). It is not the
particular data structures which we implement that is
important, but rather the underlying principle that is the
crux; namely that selective updating is an indirect form of
sharing and should therefore be banishhed.

What of direct sharing of data ?

It seems that the well trodden road towards the monitor
could be a wrong turn! At least in the sense that it is not
so much a solution but a convenient 'ad hoc* technique which
hides the problem (for another day), and seems to hinder the
development of a 'clean' language, by itself imposing and
then breaking rules (the violation of scope rules being most
blatant).

Here we shall abandon the monitor construct and its
precursor in the form of critical regions, and we shall
consider afresh the real problems, without requirements to
'extend* an existing language. We will therefore build up

*” 19 ""

an entirely new approach, incorporating only those concepts
which support, rather than hinder the expression of
interactions in a system of concurrent processes.

Before we move on however, it is interesting to note that
the originators of the monitor have also had second thoughts
concerning direct data sharing. Both Brinch Hansen and Hoare
have recently put forward proposals for languages in which
there is no shared data. Brinch Hansen [B24] proposes that
processes be lexically distinct, but in order that they be

able to interact he proposes that procedure 'entries' be
visible outside their native scope (so breaking the scope
rules). This idea, also at the heart of the Ada approach,
calls for processes to call on one another's procedures, and
because a process can only carry out one activity at one
time it again enforces sequential access to 'local' data
indirectly accessed from outside.

It is significant that Brinch Hansen's scheme does not
include procedures as 'first class' objects, they are not
values, and so cannot be passed around from process to

process. They are made visible by composite naming
conventions. Brinch Hansen's strategy actually relies upon
this fact, because the desired sequentiality enforced by
entry procedures would not exist if the procedures were
passed out to other processes so that they execute them,
while the 'owner* does something else! This, incidentally,
is why we will have no procedures in our language - if they
were to be included at all then, in keeping with our adopted
principles of good design (Correspondence and Completeness),

- 20 -

they would have to be included as values, not denotations.
Recall our tenet about only including a concept if it can be
handled uniformly. Designers, we suggest, would do well
always to apply this version of Occam’s Razor.

Whereas Brinch Hansen retained much of the flavour of the
earlier approach, merely replacing the monitor with another
process, Hoare [H13] has proposed something more radical. He
suggests that input/output is a fundamental operation and
that all processes should interact, only by specific i/o
operations. He goes on to suggest a syntax for sending and
receiving values - messages - between processes. To simplify
matters he recommends that related input and output be ;j
synchronised, so that either a sender or a receiver is I

I
forced to wait until the other is ready, at which time the |Ivalues being passed are instantly exchanged. Many have jiheralded Hoare‘s CSP, as it has come to be known, as a major J1step forward. This is so. Unfortunately it, like its |Ipredecessors, imposes a 'second class' status on its |

iprocesses. We shall return to Hoare's proposals in a later |Isection. I

"13.4 A New

It is a characteristic of the languages produced so far,
that the processes they envisage are introduced as
denotations rather than as values in the language. That is,
they are names representing static textual definitions, the
task-bodies, rather than the dynamic incarnations of such
definitions. This use of the terra process is undesirable,

- 21 -

because it should really denote the dynamic execution of
that definition. If there should be more than one such
entity then they should be distinct processes, even though
they execute the same textual definition. There is
generally no means provided for identifying particular
members of the system when it is running. This anonymity is
actually regarded as advantageous by some (such as Modula
[W16], and Ada [B5,I2]) .

The language proposed herein includes both the static
definitions and their individual incarnations as separate
data types. That is, executing entities -as values of type
instance, are part of the value domain of the language. An

instance is therefore different from its specification,
being of type definition. Both are data types and, in
accordance with good design, they are both 'first class'
values (in the sense of Strachey [S12]). This fact is
clearly seen in the Ontology diagram in the frontispiece.

The implementation of values of type instance is absolutely
fundamental to the proposed approach to concurrency in a
programming language. No restriction whatsoever is made on
the numbers- of simultaneous instances of a given definition,
each is distinct and is uniquely identifiable. Such values
are produced when a definition is initiated. An instance of
a definition can be formed at any time, it can even occur
recursively.

If we accept the critical distinction between the usual

meaning of the term process, or task, and the envisaged

- 22 -

concurrent instances [H43, then we can go on to investigate
and exploit message passing as a means of communication. We

introduce message passing as a fundamental mechanism in a
language, here called Protocol, which elevates processes to
’first class citizenship’ [S12].

Message systems, as such, are not untried. Several
implementations have been reported [for example Gl,Hl,R6 and
L93, but each has tended to superimpose it upon some other
system, rather than introduce it as part of the fabric of
the system. Perhaps the best of these proposals is the MIT
'guardian’-based system [L9], but even this passes its
messages to ports (developed originally by Balzer [B4])
instead of directly between the processes.

Such systems have appeared to be rather ad hoc, with
arbitrary restrictions on the nature and quantity of
messages being passed. In some [eg B10,E4,H13 and W 9] , where
the message passing is fully synchronous, they have also
tended to have adverse effects on the underlying system’s
scheduling strategies. The ’bad press’ often directed
towards message passing systems is considered to be very
much a criticism of their various implementations, rather
than as a mechanism for communication.

A Means Of Communication.

Concurrent instances must be able to communicate, with each
other and with the outside world. Most existing languages
promote process interaction via shared data structures,
within the system, and have separate i/o statements for

- 23 -

communication with the outside world. Since message passing
is a more natural method of communication we will use it to
unify internal interprocess communication with traditional
i/o operations. Since the instances and their definitions
are an integral part of the proposed language itself, we
suggest that the message passing constructs be part of that
language too, and not some operating system provided
facility, added later on.

The message system proposed here is therefore fundamental to
the language, in much the same way as parameter passing is
in the case of procedures. Indeed, the analogy is quite
appropriate, as it is suggested that a message system for
parallel instances is the concurrent equivalent of the
sequential procedure's parameter mechanism.

All communication is undertaken by message passing, as there
are no shared data structures (and*so no need for complex
mechanisms for arranging exclusive access). This philosophy
is similar to that which suggests that procedures should
only interact via their parameters, not via global
variables. Indeed, the case against indirect interaction is
even more justifiable when concurrency is incorporated.

A message passing facility within the fabric of a language
for a system of concurrent instances, based on the analogy
with the parameter passing mechanism of sequential
procedures, with values being passed as messages is
considered to be quite new. Its uniformity makes it far more
intellectually manageable than previous systems. This is

- 24 -

especially true if all objects in the language are values,
and if all values have equal citizenship.

The guiding tenet is simple - anything can be passed
anywhere — and the entities doing the passing are
themselves values. The principle of data type completeness
[R4] is rigidly enforced, so any data value can be passed as
a message. The writing of general purpose programs, ie
software tools, is encouraged, simply by this uniformity.

4.1 On Type Checking.

The topic of type checking is rather contentious. There are
various schools - of thought, and matters of type checking
should be resolved very early on in the process of a
language’s design, as such decisions can either free or
strangle it.

To some, types are unnecessary and so 'typeless' languages
appear [for example G17,M4,R4,R5,W21 and W22], in which the

user specifically models the types he needs from raw bit
patterns. There is obviously no checking, so the matter of
compile time versus run time action is immaterial. Others
[such as K5 and II] maintain that types are merely a means
of specifying to the compiler the kind of storage required
for any given object, and so employ them while encouraging

relative freedom of use. To others again [M6,H10,H12,S2,T5
and W15], types are of paramount importance in a language,
and they recommend that a compiler should check programs
thoroughly, before they are run.

- 25 -

The pros & cons of type checking are open to controversy.
There is a case for having the compiler detect errors, and.
prevent a faulty program from running, but there is the
point that if taken to extremes, complete checking
undertaken by the compiler begins to restrict the language
quite severely. It is, of course, feasible to check types
dynamically, if the appropriate mechanisms are built in
properly, and this has the advantage that it can impose
strict checking without restricting the language so much. If
an operation makes sense at run time then carry it out. The
old banner of efficiency can, of course be raised [B13], but
there are measures which can be taken to ensure that total
checking can be achieved largely unobtrusively.

There is therefore a balance, between the two extremes, and
this is where we find our language. Type checking is
considered to be very important, but ^s it would be almost
impossible to check types at compile time in such a
generalised message passing system, type checking is

undertaken mainly at run time.

Checking is carried out dynamically by operators, which
verify the compatibility of their operands. In contrast,
the message system itself is polymorphic, since it allows
values of any type to be passed as a message between any
pair of instances. This combination of freedom (to pass any
values anywhere) when combined with the protection (validity

of operations on values) of strong type checking is highly
desirable. By distinguishing between passing values and
operating on values we can avoid the complexities of the

- 26 -

typed-channels or typed-ports which have plagued previous
attempts to combine message passing with strict type
checking (see the Thoth system [Gl] for example).

Most computers are constructed along the lines of the
original von Neumann architecture [N4], in which memory is
organised as a contiguous area of identical locations, the
contents of which are indistinguishable. Here we implement
dynamic type checking via a tagged architecture, the tags
being used to hold type markers. The tagging of memory

locations, and the widening of the data busses to
accommodate them, is not a new concept, but few real
computers have been built with this feature. Notable
exceptions are the Rice R-2 research machine [F4] and the
Burroughs B5000 machines [01] .

Feustel [F3] and Myers [M8] have suggested that such tagging
could make high-level languages both easier to implement and
more reliable, with more compact code. It is a pity that
most machines follow the von Neumann design. Several
workers [B8,04,C5,D5,H8 and M3 for example] have discussed
the degree of support given by machines to programming
languages. The general reluctance to build ’better'
machines has been analysed by Frailey [F6], who concludes
that as manufacturers are wanting volume sales of compatible
machines they have been unwilling to invest large amounts of
capital in non-standard architectures. The relatively
flexible and aggressive market of the microcomputers might
well see such experimental work brought out into the open.
It is to such a tagged machine that our language is aimed.

— 27 —

If the computer being used is not of-such design then this
must be simulated. As we shall see later tagging provides
an extremely simple means of producing run time diagnostics.

^,2 Definitions, Instances & Messages.

A system [H4] is considered to come into existence complete,
with an infinite number of instances, although initially
only one of these, the user's instance, is active. Most of
the instances have nothing to do, they are dormant, awaiting
a definition to execute. Because they have not been
allocated a definition, most instances in the system, are
anonymous. An instance only becomes known (ie its value is
made available) when an already active instance requests the
system to allocate another instance to execute a particular
definition. This can occur at any time, by using the nev/
operator, which takes a definition value and returns a new
identity.

For example;
let new demo -> x

will simultaneously declare "x" and initialise it with a
value of type instance. The entity in the system to which
the value in "x" refers then starts executing the definition
known as "demo".

The symbol "demo" is therefore a literal of type definition.
This literal will have been defined earlier on, by
requesting the system to store a statement away in its
library and return a value which will thereafter denote it.

- 28 -

The definition values can be regarded as an incrementally
enumerated finite set, the members of which are known by
unique literal symbols.

Concurrent instances may send and request messages at any
time, unlike the sequential procedures which take parameters
once, on entry, and may produce one value, on exit.
Instances may thus interact with each other while executing.

Naturally messages have to be directed to their destination
and, correspondingly, instances awaiting a message may
specify where it is to come from. A message transaction
employs a value of type instance to indicate the desired
member of the system. The system automatically transfers the
messages, all that need be specified is the target and the
value.

We propose the following concrete syntax. Sending a message
takes the form;

instance.value _ message.value

where the two expressions are evaluated to produce the
target instance and the actual message value. The is
the concrete symbol chosen to represent the send operation.
Requesting the acquisition of a message takes the form;

(instance.value) -> xyz

where the expression in the and ")" brackets evaluates
the source of the message. These brackets form the concrete

representation of the read-in operation. The symbol is

— 29 —

the assignment operator. A complete language definition will
be given later on. Here examples are merely intended to give
a taste of the concurrency related constructs. The message
so acquired will then have to be used elsewhere, so this
forms an expression, here it is assigned to the variable
"xyz".

Such a system can only be achieved if the instance's
identities are values in the language, unless, as in Ada,
there is a restriction so that there is at most one
incarnation of any given definition at any one time, in
which case the task 'name' degenerates to identify that
single instance by default.

To create multiple coexistent copies of given tasks
languages in the Ada tradition invoke 'families' by using
special array constructions, where the subscripted names
select the tasks required. This feature is, however, not as
general as truly first class processes since the individual
members of such families cannot be passed around within the
system: they are not really values in arrays,' but
subscripted names, borrowing the syntax of an array.

_4.2 Networks.

Since all values have equal status, and so can be passed as
messages within the system, it is perfectly feasible to send
an instance's identity across the system to place
statically unrelated instances in direct contact with each
other. For example, if an instance is to set up a pair of
other instances, initialise them and arrange for them to

- 30 -

communicate with each other, then all it needs do is
initiate each, recording its instance value, and then send
to each any initialising message, together with the identity
of the other. They can then communicate directly, leaving
the creator free. It can proceed independently, interact
with each if necessary or may even terminate.

It is thus possible to build a dynamically variable
network-like system in which new communications paths can
come into being spontaneously without the need for such
artificial facilities as the virtual ports [B4] implemented
in the 'guardian' system at MIT [L9] and in an extension to
Hoare's CSP by Silberschatz [S8].

In our case instances have two predefined literals, "input"
and "output", forming the default communications paths for
messages. These are both initialised dynamically to the
creator of an instance, so that different incarnations of a
given definition can have different default communications
paths, depending upon where they were initiated from. The
system's communications system is, therefore, initially
hierarchical, but as pointed out it can become as convoluted
as necessary merely by passing around the identities of the
members of the system.

Two-way communication with the outside world is achieved by
sending to, and receiving messages from, the "world", a

ipredeclared instance literal, thus unifying internal A

communications with i/o activities. Standard inlet and |
outlet for the initial instance are dynamically initialised

31

to the "world" value.

4.4 M e s s M e Queuing.

If the system were so primitive as to require a receiver to
restart as soon as it was sent a message, interrupting the
sender then overall performance of the system would be very
difficult to manage. It is suggested, therefore, that there
be queues attached (invisibly) to each instance, into which
messages are delivered. Each message is tagged with the
identity of its sender. It is now possible to have a stream
of messages arrive at an instance, possibly being sent by
different instances in the system, all intermixed in the
queue. When that instance eventually requests input from a
given source the system looks along its input queue,
matching the identities. If an input is found then it is
'read in', otherwise that instance is suspended until after
such a message actually arrives.

Asynchronism.

It is obvious that the instances can communicate
asynchronously, rather than by enforced synchronised
rendezvous, whenever it is a simple one-way send that is
required, leaving the sender free to continue immediately,
having dispatched its message. Each instance can therefore
run at its optimum rate (processor sharing aside).

j4._4.2 Synchronism.

Equally obviously, in interactions where synchronisation is
essential, the send/receive operations incorporate the

- 32 -

necessary scheduling requirements, as can be seen in:

(instance .value message.value) -> xyz

for example. The implicit synchronisation in the operations,
due to the relative precedences of sending messages by " "
and requesting messages be read-in, by "(" ")" brackets,
sending occurring before the wait, makes message passing
constructs 'high-level'.

^.5 On Storage Management.

As all instances are active 'simultaneously' a simple stack
mechanism is insufficient. Although a cactus stack would be
sufficient its linkage is not actually necessary, since
instances have no shared data, so a heap based
implementation is employed, with the heap being carved up
into independent miniature stacks, one per instance, so that
each can expand and retract without interference.

The Message Pool.

Messages, being sent asynchronously, can accumulate in
queues attached to instances. These are implemented simply
as linked lists in the heap, each link holding an 'input'.
Each input consists of the actual message value, its type
tag, and the identity of its sender. Naturally the numbers
of messages permitted to pile up depends upon how liberal
the system is with its heap space.

i . • Z Garbage Collection.

A garbage collector runs in the system, effectively as one

- 33 -

of the instances, known only to the scheduler, reclaiming
used space in the heap. This works in collaboration with
the scheduler. The scheduler's strategy can be dynamically
v'ariable, to take into account the garbage collector's
activity. This is a matter for fine tuning.

_5.£ Communication Facilities.

We will see that by elevating the concurrent instances to
first class status, by making them values in the language,
it is possible to construct systems of parallel processes
which are truly dynamic. By adding message passing
operations as primitives too, we have been able to
incorporate asynchronous interactions and, where necessary,
the automatically synchronised transactions of two-way
communication.

As the system evolves dynamically, and the interactions can
take place asynchronously, we must provide facilities which
permit the instances to act non-deterministically. This we
will achieve by permitting instances to interrogate the
system, to find out about each other, and of the origin of
the messages in their input queues. It is by examining their
environments that the instances can dynamically match their
activities to a varying workload. As we shall see, it is
possible to express local scheduling algorithms directly in
their definitions.

Having established the basics of starting up an instance
from a definition and of sending and receiving messages, we
can exploit the simplicity and conciseness to accommodate

- 34 -

the new requirements [H5].

5.1 Identifying the activity being undertaken.

The instance values are unique and serve to identify
particular members of the system; this is why we use them to
direct messages. The definitions, being distinct from their
incarnations as instances, can be related to individual
instance values to determine whether an instance is
executing that particular definition. It is therefore
possible to find out, dynamically, what any particular
instance is doing (in terms of the available definitions).
For example:

if X is demo then ... else

where "x" is a value of type instance and "demo" is a value
of type definition. This is self explanatory.

5.2 Data flow in the system.

Instances communicate via messages, and messages are sent
asynchronously. Messages accumulate in queues attached to
the target instances, from where they can be 'read in' when
needed. These queues serve to buffer the transfer of data
within the system. By absorbing variable transaction rates
by,holding temporary overruns the queue mechanism implements
the synchronisation. It is the flexibility of the message
queue which makes the system tolerant of unpredictable data
rates, and it is this which enables us to separate out
user-oriented scheduling requirements from system scheduling
constraints. As we shall see later, the user can write

35

private scheduling algorithms directly.

The asynchronous nature of a queue means that messages can
arrive from a variety of sources, in any order, whilst those
from a particular source may be read in sequence,
irrespective of any other messages, from other sources,
already in the queue. By examining the queues, to

determine the origin of the messages, and the nature of the
senders, nondeterministic interactions can be undertaken.

A Continuous Record.
In situations where a continuous stream of data is required
it is merely necessary to request that the next message from
that source be read in (with an automatic wait should it not
yet have arrived). This is the default action, but can be
explicitly specified by using the keyword first, eg;

(first X) -> xyz

5.2.2 An Up-To-Date Record .
In some cases it is essential that only the most recent data
be used, and that all intermediate messages from that source
be discarded (but leaving messages from other sources
undisturbed). This can be specified quite easily by the
keyword latest, eg;

(latest X) -> xyz

These simple mechanisms provide quite a powerful data
handling facility.

If an instance, such as a line printer driver, is neither

- 36 -

interested in who it serves, nor in what they are doing,
then it can use the predefined instance identity "system",
which matches against any instance. This permits an instance
to serve others in general, without taking specific action
to find out the identities and requirements of all the
members of the system.

The "system" instance valued literal, when used for input of
a message with either the first or the latest options,
accepts either the first or the latest message from any
source. When used for output this instance identity serves
to send a copy of the given message to every active instance
in the system, providing, as a result of the uniformity of
the system, a 'broadcast’ facility;

system _ xyz

Since every instance has an identity* of its own, it is only
natural that an instance is able to access its own identity,
by way of a local constant called "identification", which it
can then pass around the system, to other instances, and so
identify itself explicitly. Because the system is orthogonal
it is even possible, although somewhat superfluous, for an
instance to send a message to itself!

^.3 Interrogating Message Queues.

Merely requesting that a message be received incorporates an
automatic delay until such a message becomes available, if
one is not already in the queue. There are situations, eg in
an instance serving a variety of other instances, where this

~ 37 -

enforced delay is unsatisfactory. In, such cases it is more
sensible to cycle, polling the queue, in order to decide
what action to undertake next. It is therefore necessary to
provide a means of interrogating a queue to determine
whether or not there are messages available from particular
sources, or classes of sources.

This can be achieved simply by the message predicate:

if message x do ...

which, given an instance value reports whether there are any
messages currently in the queue from that source or, given a
definition value, reports whether there are any messages
from any instance executing that definition. If no argument
is given then it simply returns whether there are any
messages at all, from any source. We shall have more to say
on extracting information from the message queues in a later
section.

5.4 Scheduling.

Being able to interrogate message queues, identify messages,
and select the order in which to consume them provides the

basis for a user-oriented scheduling mechanism.

For example, if an instance services messages from a variety
of producers, then it can select its work according to some
in-built priority scheme, written by the user. Although the
system automatically buffers messages, the user could
simulate this if he wished. The classic reader/writer
problem could be written so that the 'common buffer' is

— 38 —

actually managed by a separate instance; this taking
requests from a "reader" and a "writer" instance. The
buffer manager then serves the writer before the reader
simply by:

if message writer then ... else

This is simple for the trivial case of a single writer and
reader instance pair. If, however, there were many readers
and writers then the buffer manager would have to discover
which of its messages came from instances executing a
write-oriented definition, and which were from a read-
oriented definition. This can be done using the ils operator
mentioned above, or by using the write-oriented definition
value, to find out whether there are any messages from any
writer instances, whoever they may be, before serving read-
oriented instances. This is extremely concise!

So far all communication has been with either instances
which know of each other personally, or with instances of
known definitions. If interacting directly they must have
been placed in contact with each other either by being
directly related, via default communications paths, or by
having been sent their mutual identities via the message
system, so that they could communicate directly.

Any instance can send a message to any other instance, so
long as it has been given its identity. However, that
instance might not know of, and so will not be expecting
messages from, such an instance, and because it does not
know its identity it cannot specifically ask for its message

- 39 -

to be read in ! If the definition that such an instance is
executing is known in advance then, as in the case of the
extended reader/writer problem, the message could be
retrieved by asking for the message from an instance of that
definition. If however the receiver does not know of the
sender directly, and does not know which definition it is
executing, then it simply knows that it has a message from
somewhere, but has no way of directly asking for it. The
generality of the message scheme being outlined permits even
this sort of situation to be managed sensibly.

Apart from polling the queue to see if there are any
messages, either at all or from specific sources or classes
of sender, it is possible for an instance to request the
identities of all senders of messages currently in its
queue. The system primitive census achieves this. It returns
a set (sets are one of the data types in the language) of
identities.

This set value can then be examined to decide how to manage
the messages in the queue at that time. Unlike the above
cases, where only previously known instances could be
served, the receiver is now given the identities of all of
the senders, from which it can find out what they are doing,
and so ask for their messages in whatever order is deemed
appropriate.

The mechanism is completely general purpose: if census is
given an argument, corresponding to a currently active
instance in the system, then it samples the input queue

- 40 -

attached to that instance, otherwise it examines that of the
current instance.

A two-way link can establish itself automatically, as once
one instance knows another, the second can find out the
identity of the sender of the 'anonymous’ message. This is
quite an attractive capability, and it permits a system of

interacting instances to 'grow' new communications paths as
and when desired.

As a data type a set is merely an unordered collection of
values. The set returned by census is a set which is
composed entirely of instance identities. There are various
operations on a set, one is a simple membership predicate:

if census has x then ... else ...

where 'x ' is again a previously known instance value, would
test for messages from the above mentioned instance. This is
as before. The advantages are only realised when the set of
identities is used in conjunction with the is operator
discussed earlier, or the classof operator. The operator
reports whether a particular instance is executing a
particular definition. The classof operator takes an
instance and returns its definition value. This definition
value may not have been known to that particular instance
before. By testing elements of the census set the senders,
even if previously unheard of and so with unknown

requirements, can always be identified in terms of 'what
they are doing' as well as 'who they are'. This permits
scheduling-by-activity, as well as scheduling-by-identity.

41

For example, if we take a census of the queue and save it,
by:

let census -> ids

then by using an iterative set element selector (which
applies a statement to each member of a set, in some
'randomised' order) v/e can service all of those messages
from instances performing a certain function, whatever their
identities :

forall sender in ids do
if sender is tape.driver do

In this way it is possible to test the senders against known
definitions, if it was necessary to find out,the definition
being executed by any given instance then the classof
operator will report this. It is possible, therefore, to
write a definition which records the names and activities of
all instances which send it messages, even if they were
unheard of before the message arrived. It is even possible
to write a definition which, depending upon some test, is
required to invoke a new instance of its creator:

if ... do new classof input -> x

and so replicate some arm of the system hierarchy.

Note that such high level scheduling is based on the nature
of the concurrent entities and their activities, rather than
on some 'ad hoc' priority scheme. This mechanism enables the
user to write his scheduling algorithms directly into
general purpose message managing systems.

- 42 -

These facilities, taken together, support many data handling
and communications requirements, and permit instances to
schedule their activity in accordance with dynamically
variable workloads.

Having outlined how concurrent processes can interact with
each other, both asynchronously and nondeterministically, we

will move on to explain how they can widen their horizons by
examining their environment, inspecting one another
directly,

6.0 Managing A System Of Processes. .

Here we shall develop facilities for handling tasking
exceptions arising in and propagating thru such an
interacting system. These permit processes to examine one
another, in order to avoid failure, and enable supervisory
processes to manage the activities of others. We shall then
investigate the need for a means of dynamically detecting
deadlock, and show "how this can be removed by exploiting
such task-oriented operations. It will be shown that these
facilities can be provided inexpensively in a message-based
language provided the concurrent processes are values in
their own right.

6.1 States And Tasking Exceptions.

Whenever an instance wishes to send a message to, or receive
a message from, another instance in the system it specifies
that instance's value. At this time the system automatically

- 43 -

checks that the companion still exists in the system and
that it is running normally (ie that it has not suffered an
exceptional condition). If the specified instance has either
terminated, or has aborted prematurely due to some run
error, then the instance requesting a transaction is itself
aborted; it being an error to attempt to interact with a
faulty part of the system. Other than by being preempted
for this reason, an instance will abort if it encounters a

dynamic type mismatch or other such data-oriented error.

It is apparent, therefore, that a system of highly
interacting instances will fall apart If one of its member
instances falls foul of even a type mismatch in its datai

In order to make a system more robust, so that it is not so
sensitive to such ’trivial' and highly localised errors as
mismatching data, types are themselves values in the
language. For example, the literal int is a value of type
type, with value integer, as opposed to something of type
int with an integer value. An instance can therefore
examine its inputs, in order to verify them, or to select
which of several actions to take on this basis. A user who
misfeeds data can then be prompted for more appropriate
input, and the system will survive the error, rather than
this causing some part of the system to collapse in a chain
reaction of tasking errors.

In the same way as a location can be examined to find out
the type of its current contents, a value of type instance
can be interrogated. It is possible to determine what it is

— 44 —

doing, in terms of its definition, by using the classof
operator mentioned earlier. Its current status, that is

whether it is running normally, is finished or has aborted,
can also be determined. We see, therefore, that just as an
instance could protect itself against faulty input values,
it can protect itself against faulty transactions too. If an
instance examines its companion immediately before it
interacts with it then it can be forewarned of a fault
propagating thru the system, and so avoid contact with the
ailing instance. Having detected this failure it can then
voluntarily abort or follow up some contingency strategy.
For example, if it was a line printer spooler, serving an
entire system, and it noticed a failure in the instance that
it was currently serving, it could simply abandon that
particular activity and service the next request. Such
'service* oriented facilities would therefore have to
protect themselves, by being cautious, and examine their
environment before acting.

Whether or not a system is protected depends upon the user,
because he must write definitions which check before acting,
and he must specify what they are to do when failure is
detected. If he naively writes his system such that it
assumes valid data and no unforseen events • then any error
will propagate. The important point is that the facilities

for providing protection are there and they are present in a
thoroughly 'natural fashion, in a high-level form, in the
programming language itself.

6.2 The Status Of An Instance.

- 45 -

To acquire the status of an instance the operator stateof is
provided. Given an instance value this will return its
current state. For example:

let stateof worker -> x

The value returned is of type status. The values of this
type comprise a finite set, one for each of the possible
states of an instance. Each value has its own literal
symbol, for example:

active : running normally
complete ; completed normally
aborted : terminated abnormally
waiting : as yet undelivered message

are all values of type status, and like all other values
they can be passed around freely. This is rather similar to
the set of "boolean values, comprising true and false. A
separate type was introduced for the status of an instance,
rather than employing some integer values, say, because the
distinct type serves as a measure of protection and also
enhances the degree of abstraction.

There is no need for 'nil' values corresponding to as yet
uninitialised instances, because instance value only come
into existence when a definition is started up, at which
time it assumes the active state. An alternative
explanation could proceed as follows: there are actually an
infinite number of instances in the system, most of which
have not been assigned definitions to execute, and so have
not had their instance values made available - so they are

..

- 46 -

essentially unknown and cannot be asked about. The two
approaches are equivalent.

This interrogative operator now enables the user to write
definitions which examine their environment before
attempting any interaction! Consider, for example:

if stateof worker = active then ... else ...

or, more interestingly;

if stateof worker = waiting do

which leads on to the enquiry holdup. Given an instance
value that is currently in a waiting state, this reports
the identity of the instance in the system upon which the
worker instance is waiting. Thus:

world _ holdup worker

will show the user at his terminal exactly why the worker
instance is waiting. This can be built into a loop to

follow a trail of waits to its source. It is now possible
to trace out a chain of waiting instances, in order to
identify the cause of the delay,

^•2 Tasking Exceptions.

When the system aborts an instance it is because it suffered
a 'hard' failure. Such faults include type mismatches which
the user did not check, or an overflowing stack, or an
attempt to interact with a faulty part of the system. The
exact nature of the error is recorded by the system as it

- 47 -

deletes the main part of the ailing instance. This
information is made available to the user, should he want to
use it. Such values are of type exception. There is a
predeclared exception value for each possible hard failure.
The exceptions form an enumerated type, as did the status
and boolean values, and are available as literals, eg
Overflow, Mismatch and Interaction «

It is therefore possible, on discovering that an instance
has the aborted state, to enquire as to the nature of its
fatal act. This is achieved by the faultof operator which,
given an instance value, will return its exception
condition. For example;

if stateof worker = aborted
do world _ faultof worker

will display the exception to the user. An exception is
raised when an instance aborts. This may happen because the
instance commits an error, or voluntarily, because it finds
itself unable to continue.

The user can introduce his own exceptions, and is free to
pass them around within the system as necessary; exceptions
have the same rights as all other types in the language. A
new exception literal is created by introduce which is a
predefined literal for an instance which updates a list of
user-defined literal symbols associated with the requesting
instance. Thus;

introduce Too.Many. Items
will add a literal of type exception with T o o .Many.Items as
its basic symbol.

- 48 -

Since an instance can only generate an exception as it
fails, there is an abort mechanism which takes an exception
value and terminates an instance signifying that as the
fault. The name "abort" is another predefined literal for an
instance, in this case it kills off the indicated member of
the system. Unless an instance value is specifically given,
abort terminates the current instance. For example;

abort _ Too.Many,Items
will terminate the current instance with the stated
exception. Similarly;

abort _ worker. Too.Many.Items
will evaluate worker and terminate that instance. It is
possible for any instance to abort any other instance that
it knows of, with any available exception value. The
mechanism is quite uniform.

This provides the user with an application dependent means
of introducing failure, for cases where progress is no
longer possible.

In the language envisaged here the exception is simply a
value indicating the reason for failure of an instance to
terminate properly. The exception is not a general purpose
shared signal mechanism by which processes can synchronise.
This limited application contrasts with the PL/l-like
'events* [II], which can be used for explicit interaction.
We provide a completely buffered message passing facility
for such communication.

Values of type exception are more like the exceptions in

Ada [12] f to the extent that when raised they terminate a
process, but here exceptions cannot be trapped by
'handlers*. That is, there is no when-clause, or on-
condition. The philosophy advocated here is rather
different; the user should be able to interrogate every
aspect of his data, and the system itself, so that he can,
if he wishes, make his programs 'fail-soft'. To achieve this
he has various primitives, including stateof, holdup and

faultof which together with the typeof operator and the
message, census, first and latest facilities enabling an
instance to select its work according to a private
scheduling strategy, provide a much more powerful facility.

The language is specifically designed to exploit the
underlying system, and that system relies on the
expressibility of the language - it is a symbiotic
relationship. The user is given full access to the
available information by way of operators which extract
specific values from the system.

The simplicity of the mechanism encourages the user to
develop more sophisticated system-probing operations, and
the orthogonality of the constructs ensure that there are no
artificial restrictions placed upon him in his efforts.
Such constructs fit into a language in which the running
entities, the instances, are first class values; and they
harmonise extremely well with the concept of message
passing. Such a scheme is both high level and
intellectually manageable, because the user is more
concerned with the interactions in his system of processes.

- 50 -

than its implementation.

Consider the following system-interrogating definition:
let survey -> sys
world _ "Survey Of The Entire System"
forall id in sys do
{

world id
world __ stateof id

if stateof id = waiting do world holdup id
if stateof id = aborted do world faultof id

}

which, apart from elementary layout of the output, will
report on the current state of all the instances in the
system. Note in passing that the survey operation was used.

This is similar to census introduced earlier, but it works
on the system as a whole, rather than on a particular input
queue. If it is given an argument of type definition it
returns the identities of only those instances executing
that definition, otherwise it returns all the instances in
the system.

The design tenet is clear - all constructs should be
orthogonal, and every value should have the same rights, so
that it can be passed around in safety. Any irregularities
immediately undermine the generality of the mechanism.

Deadlock.

One of the major problems facing the designer of a system of
concurrent processes is the potential for deadlock, or the
"deadly embrace" [Dll]. Current works, eg Hoare's
[H14,H13], have suggested that a static analysis should be
employed to generate "partial proofs' that deadlock is

- 51 -

absent from a system. Early efforts along axiomatic lines
[A4] seem to be encouraging. Techniques based on graph
theory [J3] are also being studied.

Such a strategy is, however, entirely inappropriate in a
concurrent system of the sort proposed here. This is because
of a fundamental difference between this and previous

languages developed to express interactions in systems of
concurrent processes. In Hoare's CSP, probably the best so
far proposed, the "processes’ he employs are names in the
program, not values generated dynamically within the system
to denote the running instances...

It is this distinction which provides the power of our
approach, as the processes, or instances, can be passed
around within the system, making it possible to establish
direct communications links between any members of the
system, as and when necessary. The advantages of awarding
the parallel processes full civil rights were discussed
earlier. This freedom renders a full static analysis of
likely interactions quite impossible, as the members of the
system develop their message routes dynamically. It is
therefore essential that such a system has deadlock
detection built-in at run time.

6.4.1 Detecting Deadlock.

Here we are not so badly off as most other systems which
have the problem of dynamically detecting deadlock. The
complexity and expense of deadlock-related schemes is
probably attributable to the lack of suitable information on

— 52 —

the state of the system. In our case, however, this
difficulty is somewhat eased. As a by-product of providing
access to the current status of instances in the system (and
if they are waiting, then who they are waiting for, together
with the nature of the hold up), the system always has
sufficient information about the state of its members to
permit it to detect some elementary forms of deadlock (an
Eulerian chain for example). Moreover, all this information
is readily, and inexpensively available to it.

The time to look for deadlock is system dependent. It might
only be undertaken when the system scheduler finds that all
its instances are waiting; or it might, like the garbage
collector, be an instance in the system, known only to the
scheduler, running incrementally. This is a matter of
detail, and is of no real interest here. The important point
to note is that the system holds all the information needed
to detect trouble, and this is already in a form suitable
for surveying the system.

The overheads incurred by any deadlock-detecting system, as
with garbage collection, should be absolutely minimised, as
they are due to a 'scanning* process which may strike often,
while contributing nothing to the thruput of the system.
Static analysis for detecting deadlock depends upon many
simplifying assumptions, most notably the ability to deduce
communications paths by examination of the source text, and
as this is frequently not the case it is often necessary to
resort to dynamic detection of deadlock.

- 53 -

The costs of such a scheme then depends upon how readily the
necessary information can be collected. In this system,
where the message passing and exception facilities exploit
the fact that the processes are values in their own right,
this information is readily available, and so the costs . of
detecting and removing deadlock can be minimised.

^.4.2 Removing Deadlock.

Furthermore, the user can dictate how the system should
attempt to recover from deadlock, because the system (in the
experimental implementation developed for this project)
looks for a specific definition, from which it will create a
deadlock-scanning instance. This definition can be written
by the user, and so be application dependent. In this
definition he can interrogate the system to discover which
instances are involved, what they are doing, and the cause
of the deadlock. This instance can then selectively delete
all or part of the crippled section of the system. Those
left running will/ of course, have to have been written so
as to recover from such an interruption. In this way the
user can preserve 'service'-oriented instances caught up in
system failures. The system's default action, if such a
definition does not exist, is to abort all of those
instances involved in the deadlock.

§.•1 On Correctness And Survivability.

As we have seen, the subtle shift in attitude, making
processes values in the language's universe of discourse
rather than named pieces of text, has the effect of making

- 54 -

it generally impossible to deduce the participants in any
particular interaction until it occurs. This expressibility
is at the heart of the power of the system. It is however,
in direct conflict with the much coveted goal of language
designers of being able to submit a program to a static
correctness check before execution starts.

In the same way the polymorphism of the message system,
which permits us to write general purpose definitions which
handle all data with equal ease, is together with the
ability to have general purpose variables, in direct
contrast to the growing support for static type checking
systems.

This is the classical conflict between language expressivity
on the one hand and data security on the other. In the past
this has been tackled by increasing security at the expense
of expressivity. Here, however, we take the view that strict
adherence to static techniques is, in the long term,
detrimental to the development of advanced programming
languages, and that this conflict of interests should be
resolved not by sacrificing either of these highly desirable
goals, but of something else. We propose to trade these off
against.run time efficiency, by undertaking comprehensive
dynamic checks. Dynamic type checking is not new, of course,
but the extent to which it has been built into our system,
in all its aspects, and particularly with regard to the
implementation of instances as values, is quite
unprecedented. Protocol is extremely expressive yet totally
secure.

- 55 -

The consequent inability to perform static correctness
proofs lead to the development of a somewhat different
philosophy towards failure. Instances can be written so as
to embody a high degree of intelligence, because they can
inspect their inputs and be suspicious of their partner's
ability to perform. Indeed the safest members of the system
would be over-inquisitive, in self-protection, perhaps to
the point of appearing rather neurotic, since more often
than not their suspicion would be quite unnecessary! The :j
basic requirement when writing the definitions of the |
instances which will form the system is to check immediately |
before acting. This contrasts with the static analysis which j
leads to a certificate of correctness before execution j
begins, or the somewhat ungainly recovery techniques i
proposed for languages such as Ada. j

1All this naturally leaves the naive system wide open to |
j

accidents or malicious attack by irresponsible members, but |Iin a well designed self-sufficient system such damage or j

sabotage would be detected by the proposed victims and 4
I

evasive action initiated, perhaps even leading to the demise 4
Iof the perpetrator!]
Î

We therefore advocate dynamic checks, with a comprehensive |
but orthogonal set of probing operations to permit instances |
to examine their environments, so that they may assume I

Jresponsibility for their own survival. In the rather |
expressive system that we have designed this is deemed |I
preferable to restricting that freedom simply to permit «i
rigorous static analysis. Remember that even in certified |

— 56 -

systems accidents occur! At least an inquisitive system will
notice this instead of blindly carrying on.

The emphasis here is towards robustness, survivability
rather than pronounced correctness. It is only by
acknowledging that failures occur in real life that fail­
safe systems can be constructed.

Distributed

The system, in the form of a infinite number of instances,
working concurrently, has so far been discussed without
reference to its physical implementation. For example, we
have not determined if the instances do, or indeed can,

execute truly concurrently, or whether the parallelism is
simulated, on a single processor. We will now show that the
system does not depend upon simulated concurrency, as it can
take advantage of highly parallel multi-computers, to form a
truly distributed system.

If we acknowledge the existence of multi-processors, by
introducing a new type, "machine" say, with as many values
of this type as there are processors available, then the
notion of an instance value can be seen to be sufficiently
high-level to form a useful abstraction of the activities in
such a system.

This set of machine values, like the sets of definition and
exception values, can be incrementally extended, to
accommodate dynamic variations in a hardware configuration.
This could easily share the syntax for specifying new

- 57 -

exception literals:

introduce __ Z.80 , machine

for example. This would also require that the new machine
value be bound to some particular piece of hardware.
Naturally the hardware drivers for such processors would
have had to have already been included in the
implementation.

Any instance starting up a companion could then have the
option of specifying which machine it wished it to be
executed on. This would be a natural extension of the new
operation, eg:

let new demo on Z.80 -> x

If none is specified then it is left to the system itself to
decide where to execute the new instance. This might well be
on the same processor as the creator, or it could b e 'any
processor which happened to be less-loaded.

It is only sensible, having introduced these machine values,
to take full advantage of them, as we did with the message
queues, and permit them to be interrogated, to determine
which instances are on which machines. We should be able,
therefore, to ask an instance value which machine it is
executing on, and ask a machine value for the set of
instances which it supports. We should also associate status
values with machines, so that machines can go ’off-line',
assuming the completed state, or if they fail beyond
recovery then they would take the aborted state, possibly

- 58 -

even displaying some exceptional condition. This permits
machines, and the activities running on them, to be handled
in a single uniform, and thoroughly natural form. This is
discussed in greater detail elsewhere [H7].

The instance value is, therefore, not simply a numerical
activation index, it is an abstract representation of a
particular entity running on a particular machine. Messages
directed towards it are automatically routed across the
hardware channels, between processors, by the implementation

of the system. The interpreter on any given processor,
scheduling its local instances, detects transactions for
instances not resident on its own machine, and transfers the

messages to the appropriate hardware, where another
interpreter takes it and delivers it to its target's queue.
This is similar to the way i/o is incorporated into the
message passing system, by having the interpreter detect the
instance value associated with the terminal.

- 59 -

Conclusions.

We can summarise the major failings of previous attempts to
incorporate concurrency into programming languages as
follows :
1) In such languages processes were included as denotations,
names not values, so making it difficult to identify

particular members of the running system,
2) they supported, and often relied upon, shared data for
communication. This required that they impose sequentiality
in order to implement concurrency! In addition,
3) nearly all involved attempts to 'extend' existing
languages, designed to different requirements. This fact was
often noted because
4) most of those previous languages contained concepts
antagonistic to the incorporation of concurrency. In
particular , ■
5) they were languages in which the store was dominant. That
is, the data structures relied upon pointers and selective
updating for their usefulness.

It is interesting to note that thus far there have been no
attempts (?) to include concurrency in the applicative
languages. This is rather puzzling, as such languages, with
referential transparency established, offer a much more
hospitable base on which to build a system of interacting
concurrent processes. Perhaps the reason for this obsession
with what we might call the algol-like languages (leaving
aside the attempts to graft concurrent features onto
Fortran), is more rooted in tradition than in good sense.

— 60 “ ■

The proposals put forward herein are also distinctly algol-
like. This is so largely because of familiarity with the
store-oriented languages, together with more than a touch of
reticence concerning functional languages. Nevertheless
careful selection of concepts has enabled us to avoid the
abovementioned pitfalls.

Z ’i: What Has Been Achieved?

Firstly, we have avoided the trap of grafting on
'extensions’ to an existing language. This has enabled us to
step back so as to examine dispassionately some of the
problems encountered in earlier efforts by others, and to
deduce the underlying cause of those problems. The presence
of the store in the realm of data values and abstractions
exploiting selective updating are prime examples. Thus we
have tended to remove the source of the problem rather than
to live with it and hide its effects in return for some
'essential' feature. To replace the traditional side-effect
oriented arrays and such we adopted lists and sets, which
have useful abstractions without the need for selective
updating, even if implemented as pointers. This switch of
data structure is made simply to reinforce our awareness of
the root of the problem.

Secondly where previous attempts were lacking we have tried
to extend all concepts to fulfil the same general
principles.- In particular processes, or instances and
definitions as we call them here, have been elevated to
'first class citizenship', and all values can be passed as

('j*!#

61

messages.

Since several message-oriented systems have already been
implemented it is fair to ask how that proposed here is an
improvement on such systems. Message passing systems can be
categorised in various ways. Most use fixed sized buffers,
into which the messages must be squeezed. Naturally once a
buffer size is specified one has the problem of messages
which are larger than that buffer size. Here all messages
are the same size because each is a value, which can be an

arbitrarily complex data structure.

In a single address space this can be highly efficient for
'large messages' because data structures are passed as
pointers. If messages are to be passed between processors,
to instances on other machines, then direct i/o is
performed, and the operation is correspondingly slower, as
copying would be required for large messages. In this
multi-processor system, however, all the buffering and i/o
transfers would be undertaken by the interpreters on the
respective machines. All that the instances (on separate
processors) would do is pass a message as normal. Thus
instance values are not simply numerical values (as in most
other systems), they are more abstract, embodying the
identification of their processor (ie its machine value)
and their relationship to it. In a system running (possibly
on a variety of machines) the various interpreters, one per
machine, manage all the detailed buffering of physical i/o
transfers, to provide the level of abstraction on which the
instances operate. The language, therefore, is free of such

- 62 -

matters, ie it is. truly high-level.

One can also categorise message systems by their type-
checking mechanisms. Most are either typeless, as in TRIPOS
[R6], or heavily type-checked, as in Thoth [Gl]. To permit
polymorphism the heavily checked systems introduce
extraneous syntactic constructs, such as the modified Pascal
variant-records in Thoth. We take the view that whilst types
and type-checking are important, static checks are too
restrictive, so we implement a dynamic type-checking

mechanism via a tagged architecture. This ensures complete
freedom of action, yet it is fully protected.

The message system is inherently asynchronous, permitting
each instance to run at its optimal rate (processor sharing
aside). Instances only need to wait when they request inputs
which have not yet been sent. This involves queues attached
to instances, in which as yet unwanted messages accumulate.
Because queues reside in the same heap-based address space
as the rest of the^system they can grow arbitrarily long.
These queues implement the synchronisation implicit in
sending and receiving messages. Our use of instance values
both for receiving and sending messages, together with the
no-wait send and queues contrasts with the blocking sends of
CSP [H13], and the need for special reply-messages provided
by the Thoth system. Storing messages in queues also
removes the need to reschedule every time some process tries
to send or to receive a message, unlike the fully
synchronous proposals of Hoare's CSP system.

. ■’i- -h 5,.'I • V

- 63 -

Separating out internal system scheduling from localised
user-oriented scheduling requirements is considered to be
particularly well implemented, as it is based upon the
identities of the participants and their activities, not on
some arbitrary priority scheme.

Then we brought everything 'out into the open' because all
of the information held within the system about the state of
the instances and their input queues, is available by way of
interrogative operators. This permits the user to write
inquisitive programs which examine their environment before
acting.

As demonstrated the current system offers considerable scope
for nondeterminism, because an instance can evaluate its
workload (in its queue) and schedule its own activities
accordingly. It can always identify the senders of its
messages, and can read the messages in as necessary. It can
respond at any time, without being delayed. This system is
extremely orthogonal, unlike its predecessors. Indeed, many
of the Thoth restrictions and 'extra' concepts are avoided
here, and the dynamic type-checking, instance values and
asynchronism makes our system much easier to use.

In short, we have here an interactive facility which is
both a programming language and its own 'shell' [R8], in
which concurrency is a fundamental concept, not an add-on
feature, and a completely uniform generalised message
system, passing arbitrarily complex values, is the only

means of communication.

— 64 —

It is quite clear that these communication primitives
provide considerable freedom of action. All of the
constructions embody the essence of the desired activity
without involving the user in the details of the
interactions. It is felt that it is only by abstracting the
essential purpose of a construct, and by pitching it at such
a high level of participation, that the immensely
complicated interactions taking place in a system of
concurrent instances can be reduced to an intellectually
manageable form.

2«2 This Sufficient?

We have argued that the approach adopted herein avoids,
rather than actually solves, many of the trickiest problems
faced by previous attempts to incorporate parallelism into a
programming language. We developed the notion of passing
messages and found it to be an extremely uniform and
flexible mechanism. But is it sufficient?

Well, there is always a tremendous temptation to regress, to
reinstate some degree of selective updating within the
structured objects. In short there is a lingering desire to

bring the store back into play. As things stand the store is
relatively inconspicuous, being visible only in the case of
individually named variable locations. We could do away
with the store altogether, bind names directly to values,
and replace iteration by recursion to control evaluation. In
the longer term this might be the best way forward, but such
programming techniques are relatively little understood by

- 65 -

the computing world at large. Most computational problems
are stated in terms of, and solved by exploiting, an
updatable store. Thirty years of hard learned programming
technique and style presents a tremendous inertia, and poses
a formidable obstacle to any radically different approach.
The applicative programming languages have been around for
over twenty years, but have made relatively few inroads into
the establishment.

The domination of our programming languages by the store is
founded in a desire, sometimes almost obsessive, to run our
programs efficiently on our machines. Similarly new machines<
are generally nothing more than faster versions of the

previous generation, because that is the design which best
supports the most widely used languages. It is a vicious
circle. Unfortunately most attempts to • incorporate
concurrency have been based on languages thereafter intended
for 'systems programming', where their desire for direct
access to the underlying sequential machine conflicts most
with their planned parallelism. The two levels of
abstraction have very little in common. It is hardly
surprising, therefore, that all such efforts have run into

difficulties almost immediately.

It is only natural to wonder whether we could write an
operating system more or less easily in such a new language?
To contemplate this would, however, be a futile exercise,
because the implementation of such a language is itself a
complete system. It is visible as an incremental compiler.
As a built-in mechanism it provides a polymorphic message

- 66 -

system. There is therefore no reason to expect that its
basic mechanisms should then be re-implementable in that
language I The language depends on the implementation for its
effect whilst the implementation depends upon the the
expressivity of the language - it is clearly a symbiotic
relationship.

Most previous languages for writing systems of processes
have deliberately provided only very primitive operations,
and their data structures have extended right down into the
realms of the implementation (consider the otherwise
unnecessary access to bits and device registers of Modula
for example). Inherent in such languages has been the
'bootstrap syndrome' which demands that any language be so
widely based that it can write its own implementation. In
the world of concurrency we should give more than a passing
thought to the old adage regarding the performance of the
'jack of all trades'. The two extremes, of low-level
implementation and the abstractions of high-level systems of
concurrent systems, are at opposite ends of the language
spectrum, and since there are so many areas of conflict it
is not really advisable to try to merge them.

The language presented here is, therefore, not intended for
writing operating systems and the like, because its
implementation is itself a complete system. That
implementation is written in a language more suited to this
task, in which there is no trace of parallelism. It is
doubtful whether we will ever see a truly general purpose
programming language!

- 67 -

Is this sufficient? There are many computing problems, eg
large data bases, in which concurrency is desirable, but the
nature of a solution, within our language, is not
immediately obvious. The language should suggest a solution!
We may well find an indication of a solution in the multi­
computer systems of tomorrow. In such a system a data base
would inevitably be distributed, with separate processes
managing different catalogues of information. The structure
of the file system would therefore have to be changed from a
central memory threaded with location-links to a distributed
memory threaded with process(or) linkage. Information would
then have to be extracted by sending a message to its
managing process. As this would be running in parallel with
its enquirers together with its companions in other
sections, it could service its requests in whatever order it
prefers, whilst simultaneously sending out other requests
for information to its companions to satisfy its own needs.
The data base is therefore nothing more that a distributed
system of concurrent processes. Any restriction on either
the mode of communication or the material permitted as a
message will immediately complicate such a dynamically
evolving network. An asynchronous message system such as
that proposed here might prove to be ideal, since it
enhances parallelism, and the fact that it is polymorphic
means that there are no restrictions on the content of
messages.

The greatest obstacle in the way of better solutions to such
massive systems is inherent in our traditional approach to

~ 68 -

the problem, because all of our traditional techniques are
geared towards "efficient" solutions, and these are always
thought of in terms of central inter-related storage.

There are two outstanding requirements which must be
fulfilled before the benefits become evident. Firstly, that
the design of our language continues, and hopefully
improves. Secondly there is an urgent need for programming
techniques to exploit it. Since the field of the
applicative languages is not bound by the limitations of
present-day machines, this is probably a fertile area in
which to search.

7.3 The State Of The Art!

In this thesis we have tried to argue the case that there
was something drastically wrong with the early attempts to

build concurrency into a programming language. Certainly
this is all too obvious in the case of PL/I [N3], and
Algol-68 [W13]. These particular languages added it to their
list of features almost before it was realised that it
involved a whole new approach to programming. Both languages
also include free pointers - a sure recipe for disaster.

One might well expect therefore that the concurrent
languages of later years had learned from this. Apparently
not. Wirth introduced Modula [W16,W20], building into it
'processes' which interact by fairly well defined interfaces
based on the monitor of Hoare and Hansen. Wirth deliberately
designed Modula as a static-storage system, there were no
explicit pointers, and compound objects had restricted

- 69 -

rights. This situation did not last for long, however. Wand
[W2] proposed that numerous 'extensions' be grafted on,
including, almost incredibly, pointers. Naturally he also
suggested a list of rules to try to restrict their use.
This is precisely what is not needed, even in Modula.

Modula is not particularly offensive, it is selected simply
because it is typical. Perhaps the worst offenders are those
who unilaterally 'extend' an existing language out of all
recognition, while retaining its name. In this category

Pascal, also by Wirth [W17], has probably suffered most. Of
late, apart from Modula itself, there have been the
processes, monitors and classes of Hansen's Concurrent
Pascal [B19,B22], the envelopes and modules of Welsh &
McKeag's Pascal-Plus [W6,W7], and the assorted extras in
CCNPASCAL [Nl]. There are even secondary extensions, with
Silberschatz et al enhancing Concurrent Pascal to permit
dynamic structures [S9], and later [86] a 'capability!-
oriented mechanism for specifying access-rights and
exceptional conditions.

Most intriguing of all, however, is the Pascal-based
language described by Andrews and McGraw [A3] from Cornell
University. They present what they call "a unified set of
language features" designed to control process interactions.
Of four possible developments which they considered, they
incorporated three, all in the same language! They have
'resources', which they say is "an extension of Hoare's
monitor", 'protected variables' and 'shared reentrant
procedures' (which are naturally second class objects, made

— 70 —

visible by violating scope rules).- Interestingly enough
their other option, considered first and rejected, was
message passing. This was rejected "because policy
decisions [concerning what could be passed and how] would
then have to be made [by the language designer]." Obviously
this did not fit into their "unified set of language
features". Instead their users are presented with a
bewildering set of language features ranging from Dijkstra's
P/V operations [D9] and Hansen's condition variables [B25],
to a form of Habermann's path expressions [Cl,Hi], together
with so-called 'capabilities' [Fl,M9] . As if this vzas not
unified enough they also brandish global variables, call
by-value and call by-reference and pointers! They further
declare that it is essential that everything be verifiable
at compile time. At the end of their paper there is a
discussion on the possibilities for detecting deadlock in a
system of such interactions!

Against this background it is hardly surprising that the
latest international collaborative effort, the DOD's Ada
project [see B5 or 12 for a summary], is Pascal-based, with
pointers (access types) and shared variables (which are "not
recommended" as a means of parallel interaction), together
with every other 'feature' that might possibly be of some
use. For various critical comments on the Ada tasking
facilities the reader is referred to [B14], E[6], H[3],
[J4] , [S15] or [W8], and to [Ml] for a general evaluation of
its real time aspects.

Standing out in this wilderness is Hoare's CSP proposal

- 71 -

[H13]. This, as was indicated earlier, is probably the most
radical rethink of the concurrency problem so far published.
Apart from the fact that his system* is fully synchronised,
with either partner waiting until the other is ready to
interact, Hoare's proposals are different from those
developed herein mainly in that we treat processes as
values, whereas he regards them as names. The main
limitation, noted by Hoare himself (see his line-printer
spooler example [H13]) stems directly from the fact that
processes are names in CSP. The obvious solution therefore
is to make processes values, as we have done here, but what
do we see in the. literature? We see an 'extension' to CSP by
Silberschatz [S8] proposing that this particular problem be
overcome by making processes communicate via ports, rather
than directly with each other.

The state of this particular part of the art is an odd one
indeed! It was the purpose of the work reported herein to
reexamine this view, in an attempt to devise some truly
unified set of language features capable of exploiting the
multi-computer systems now becoming available. Our
overriding concern, at every stage, was to keep it simple,

while including only those concepts which were directly
related and could be implemented uniformly. Complete
uniformity is of paramount importance - any special case, no
matter how trivial, serves only to undermine the generality
of any mechanism. The message passing scheme presented here,
unlike others before it, is completely uniform. It is a
tool, with this tool one can express arbitrarily complex

- 72 -

interactions. As a mechanism for programming concurrency it
is therefore a success.

- 73 -

.̂_0 The Design Of Protocol »

What constitutes a 'well designed' programming language?
This is a contentious issue with, it seems, as many views as
there are workers in the field. The methodology adopted here
is relatively new, as a basis for the process of designing a
language, although it has been frequently employed as a
means of reviewing the failings of existing languages.

There are several important principles, forming a kernel of
good design, which if adhered to rigidly, provide essential
language properties. These are due originally to Landin
[L3,L4,L5], Reynolds [R4] and Strachey [811,812,813], but
are frequently attributed to Tennent [T1,T2] because of his
strong criticisms of Pascal. Morrison [MG] has recently
demonstrated that these principles of design can lead to a
language which is powerful and expressive precisely because
of its simplicity, uniformity and lack of special cases.

The notion of a store is important, because the degree to
which this infiltrates a language sets its overall
characteristics. The concept of scope, first introduced by
the designers of Algol-60 [N2], is perhaps the most
significant feature of the languages in the Algol-family,
Scope determines the lexicographical properties of user-
defined symbols (literals, names etc) as defined by block

structure. The designers of Algol-68 [W13] emphasised the
need for orthogonal concepts, ie that the concepts bound
together to form a language should interact uniformly in all
cases, without peculiar conventions and restrictions to

- 74 -

control their combination. The principle of Completeness
[R4] requires that values of all types be 'first class
citizens' [Sll,S12] of the language. That is that all
values can be passed around, or assigned or built into data
structures with equal freedom. The Correspondence principle
dictates that all user-defined names in a program should
have the same potential attributes, ie names introduced as
parameters, or components of data structures should have the
same constancy options, modes of initialisation etc, as
names introduced by in-line declarations.

Underlying this there is a sound theoretical framework, the
denotational semantics [see G5,S5,S13 or T2 for details],
which provides a framework on which a language may be
constructed. This work has the double advantage that it
provides both a methodology for designing a language and a
means of rigorously defining it.

The design of Protocol, as a programming language, has been
based upon this -kernel of guidelines. The design process
itself is therefore not original, but^the language produced
by it is considered to be quite new in several respects. ■ |
Protocol is a prototype for a highly parallel interactive
command language. It differs from most command, or job-
control languages, because it's structures are those of a
full-grown programming language. It is usable at a command
level because it is interactive. It is block structured, has
quite a few data types, including composite types such as
lists and sets, and is completely type-checked at run time.
Protocol is really a complete programming environment, with

.J

- 75 -

a means of dynamically defining, editing and running library
files (definitions and instances thereof).

8 .1 Names & Locations

Declarations introduce new names into the programming
environment and request space in which to store some value.
A name (as opposed to a literal, see the ontology in the
frontispiece) denotes a location in the computer memory, and
locations hold values. All declarations are initialised.
Names for data objects may be associated with either
constants or variables. The only difference is that a
variable can be updated later in a program, whereas
constants cannot. A constant is therefore regarded as a
location which, once initialised, cannot be updated. Note
that a constant is distinct from a literal, as it can be
dynamically initialised from any appropriately typed
statement, as demonstrated by Gunn and Morrison [G8]. The
compiler reports attempts to update constants. |

■ . IWhen discussing concrete syntax we shall employ the meta- |jsyntax suggested by Wirth [W19], where {} implies zero or I’
more occurences, [] implies optionality and () requires ^1exactly one alternative. The standard BNF [N2] symbol for ij
enumerating alternative syntactic units, ie the | meta- {

!symbol, will also be used. The productions employ the = |

meta-symbol for definition.

The syntax of a declaration includes:

"let" exp init.symbol [type] name { "," [type] name }

- 76 -

where an init.symbol is of the form "->" for a variable, and
"=>" for a constant. As we shall see later, in relation to
'chaining' messages across instances, there is another means
of producing the initialising value, apart from the simple
expression.

A name can be any combination of letters, dots and digits,
so long as the first is a letter. By initialising all data
objects as they are declared the common problem of
uninitialised variables is banished.

In the syntax given above it is possible to have a number of
names on the right hand side, each with some type
restriction specification. Each will then be declared with
that restriction, if any, together with the constancy
specified by the initialising symbol. In such a case the
value of the initialising expression must be ‘ a list, and
that list must contain at least the desired number of
components. The elements of the list are then 'stripped o f f
and assigned to consecutive names. This is really a form of
'syntactic sugar' for a series of head and tail operations

on a diminishing list, initialising a series of
declarations. Naturally there is also a similarly sugared
form of assignment, as we shall see below.

8.2 Degrees Of Constancy.

The syntax for a declaration holds four variants, with
differing degrees of constancy. Constancy is a natural form
of value protection. It is often the case that most
'variables' are never changed. To guarantee that such a

- 77 ~

value is never corrupted it can be declared to be constant,
with "=>".

This polarisation, variability and constancy, provides a
very useful facility, but it does not fully exploit the
dynamic type checking of Protocol. It is quite reasonable
to require that a certain location be limited to a certain
type, yet remain a variable over the range of values of that
type. It is also desirable that if an operation makes sense
at run time then it should be permitted to take place. This

requires that it be permissible to assign differently typed
values to a location at different places in the program.
Protocol readily permits a location to be initialised to

different values, via messages, on different incarnations of
a routine. It is natural therefore to permit the user to
specify exactly what degree of protection or, conversely,
degree of freedom, a location is to have [G9].

For this purpose it is possible to declare a name to denote
a location which is to be completely general purpose:

let 0 -> X

which can take any type and value at any time and place, but
is initially an integer with the value zero; or it can be a

variable integer value

let 0 -> int X

initialised to zero. Alternatively, it could be a constant.
There are two forms of constant, as with variability. The
form:

- 78 -

let 0 => int X

would initialise x to be a fixed integer constant with the
value zero. This can never be altered. It is a true
constant.

The final form:

let 0 => X

is also a constant value, but because the type was not
actually fixed it would be permissible to initialise it with
a value of any type.

8.3 Sequences & Scope Rules.

A sequence is the unit of scope. It comprises a series of
declarations and statements arranged in any order. The order
of execution is sequential, top-to-bottom, according to the
state of the various selective and repetitive statements
making it up.

Brackets and "}" may be used at any time, to form a new
sequence, with its own scope, or to override the default
precedence of the operators in an expression.

A sequence may, or may not, contain local declarations. Of
the statements all but the last must be void (declarations
are considered to be void statements). If the last statement
is also void then the entire sequence is void, and returns
no value, otherwise the sequence forms an expression with
the type associated with the value produced by its final

79

statement.

In accordance with orthogonality, any statement, no matter
how complex it is, can appear anywhere a value of the same

type is required, so even a literal enclosed in a {}-pair is
a sequence (not much of a sequence!), with that value, and
can be employed anywhere that that value is valid.

As we stated earlier, all names for data objects must be
introduced before they are used, by declarations, and all
declarations must be initialised, so a sequence is made up
of interspersed declarations and statements. This is
intuitively more natural than the mass of name declarations
found at the top of the more traditional algol-like blocks.

(declaration I statement) [separator sequence]

It is important to note that, since names for data objects
must be initialised before use, the scope of a name starts
immediately after its initialising statement, and so is not
defined within it.

On Control Structures.

In order to express an algorithm we need some control
structures. Since the store is present in the language we
will exploit it to efficiently implement iterative
constructs.

Most high level programming languages popular today provide
a fairly orthogonal set of control structures. We provide

several syntactically distinct forms of loop-control, rather

- 80 -

than a single low level loop or label and goto facility.
Some have argued against redundant control structures,
either on the grounds of compiler efficiency, eg Wirth’s
comments on the design of Modula [W16], or lack of
understanding [SI]. We offer various, slighly different
forms, because each expresses one form of algorithm more
clearly than the others. For example the while-do loop and
the repeat-while appear, together with the repeat-while-do
form. These forms can, despite Wirth's claims for simple
compilers, result in more efficient code if there is a re­
initialisation phase in a loop which duplicates the initial
entry code, because the repeat-while-do construct can be
used to remove duplicate code.

8.5 Statements &

The statement is the basic mechanism for coding an
algorithm, and as this is what programming is all about, the
fewer and more general the rules the better. There are
several different statements. All may be considered in a
frame of type rules, by giving a traditional statement a
type void, and expression statements a type associated with
the value that they produce. This slight extension of the
notion of type allows us to discuss the various statements
in a unified frame of reference. Type void is a convenience
only, it has no tangible value, and does not appear
explicitly.

— 81 —

Assignment.

Perhaps the most fundamental statement is the assignment.
It certainly has the greatest impact on the underlying
semantic model, because without it there would be no need
for the notion of a location, The assignment statement,
though unobtrusive, is of great significance. This takes

the form of;

expression name

where the value produced by the re-initialising expression
must concur with any type restrictions introduced at its
declaration. It is possible, following the simultaneous
declaration, to assign the leading components of a list, to
given names, by;

expression "->" name { name }

where the expression must yield a list. The appropriate
number of components will be stripped off and assigned in
order to the named variables. The list must, obviously be at
least long enough, and is left unchanged by the operation.
One could regard this construction as the pairing of the
elements of the actual list value with the names enumerated
in the assignment, and the updating of each in turn. The
remaining tail of the list, if present, could be thought of
as being ’assigned' to the null element at the end of the
'list* of names, which, as expected, means that its elements
are inaccessible.

It is obvious therefore that this provides a natural

~ 82 —

swapping construction;

y,x -> x,y

which does not require auxiliary variables. This is better
illustrated in;

z,y,x -> x,z,y

which is terse but clear. The contents of "z" are placed in
the location named "x", then those of "y" are placed in "z"
and finally the contents of "x", as it originally was, are
placed in "y ". All these transfers are performed by a single
operation which uses the stack for temporary storage.

Assignment has the effect of updating the contents of the
location denoted by the name, replacing its previous
contents, which are then lost.

Conditionals.

There are several selective and .conditional statements.
Firstly, a simple conditional, in which a boolean value is
evaluated from any appropriately typed expression, and is
used to decide whether to execute the attached statement, or

to skip it, and go on to the next statement. This is quite
traditional, and is considered to be void. That is, it can
never return a value as this would cause problems, perhaps

producing a value if the test was true, none if it was
false. It takes the form;

"if" expression "do" statement

- 83 -

The second version is a two-armed selection, with the
appropriate arm being decided by the boolean value evaluated
in the initial test. This takes the form:

"if" expression "then" statement "else" statement

in which the first is the boolean expression, and the other
two must either both be void or both produce a value of some
type. If values are produced they need not be of the same
type. It is illegal to have a void and a value-producing
branch together. The compiler flags void and typed arm
combinations.

If the branches are void then the entire statement is void,
otherwise, it forms an expression, the type being determined
dynamically from the particular branch executed as a result
of the test.

With these two forms there is no ’dangling else’ problem,
and there is no need to incorporate explicitly matching
terminator symbols, as all compound statements are enclosed
in {}-pairs, forming sequences.

^•5.3 Iteration .

There are various forms of looping statement, for repetitive
algorithms. The for-statement, another old favourite of the
algol family, takes the form:

"for" [name "=" expression "to"] expression
["by" expression] "do" statement

and is always void since it produces no value.

— 84 ~

The newly named location is called the control constant. It
is redeclared and re-initialised every time the body is
executed. The scope of the control constant starts as soon
as it is initialised, so it is available to the increment or
the limit, and it extends to the end of the main statement.
This lets us perform a statement a given number of times
whatever its initial value. The control constant is made a
constant because it is bad practice to adjust it within the
main statement. If the control constant is named its
initial value must be given, otherwise it is made equal to
unity. The increment if given (unity is default), and the
limit, are evaluated once before the body is entered. The
limit must always be given. If the initial value of the
control constant is outwith the limit then the body is never
entered. The repeated execution of the body ceases as soon
as the value of the control constant passes the limit. More
precisely, when the control constant is greater than .the
limit (if the limit is positive) or less than the limit (if
it is negative), Notice that the test is not for equality
of constant and limit, as the step could cross its value
without actually matching the limit.

There are three forms of while-statement, providing the test
at the top, in the middle and at the end of the body. The
simplest is:

"while" expression "do" statement

and it is void. It has the test at the top, so the loop can
be executed zero or more times. The next form is:

- 85 -

"repeat" statement "while" expression

which is also void, and it has its test at the end. This is
executed at least once. The final form is:

"repeat" statement "while" expression "do" statement

which is again void, here with the test in the middle. The
first part is executed at least once, and the final part
depends on the test, as do further loops around the initial
statement. Note that in the latter two, the scopes of the
repeat part and while part are distinct, and so it is
necessary to declare common, but otherwise private, data
objects outside of the entire statement. It would, perhaps,
be more aesthetic to merge the same scope over' both arms of
the broken loop. Such a change, with the broken syntactic
form, would require a complication of the otherwise
extremely simple unit of scope (the sequence).

Expressions And Operators.

The other forms of construction are traditionally called
expressions, in that they always produce values.

The simplest is the bracketed statement, or sequence, which
as we have just seen can lead to a value being produced.

Next we might consider the general form:

value [binary.op expression]

The syntax for a value can be found in the Concrete Syntax
elaborated below. The various operators are applied to

86 —

their operands as subexpressions according to their default
precedence of application. A (partial) list of operators
contains ;

unary: + - ~ hd tl sizeof typeof endof

binary: + - * div rem and or
= ~= < = > = < > + + ,
I <> >< has & of << >>

and their precedence is as follows:

<< >>

* div rem ++ has <> >< & of
+ —

= - = < > < = : > =

and
or

, I

The highest precedences are the unary operators, which bind
closest inwards; of the binary operators, the top of the
table is higher precedence. For any level in the table, the
binary operators have equal precedence, and are applied left
to right in expression evaluation, but the user can format
his own subexpressions by bracketing with (}-pairs.

Note that string subscripting is of higher precedence than
concatenation, by The syntax for this is:

value "[" expression "by" expression "]"

— 87 —

such that on the left we haye the string value being
subscripted, and the specification for its substring to its
right. The two expressions within the "[" and "3" brackets
describe the substring required. These are integer values,
the first being the starting character position, the second
the number of characters in the substring, starting with
that character. Strings start at character position one.
The system checks that the substring is sensible, that is
that the bounds are positive, and that they indicate a
substring entirely within the base string. A substring
length of zero results in a null string. It is not sensible
to specify negative string lengths.

Boolean expression evaluation is non-strict, that is in the
left to right evaluation the process stops once the final
result is found, rather than continuing with, in this case,
superfluous evaluation of following sub-expressions.

We can summarise the operators directly related to the
instances and their message system as follows;

survey [DEFINITION] gives the set of instances currently
known to the system, possibly restricted to those executing

the specified definition value.

stateof INSTANCE gives the status value currently associated
with the specified instance value.

holdup INSTANCE. If the specified instance has the waiting
status this will give the instance value, or class of
instances, from which it is expecting to receive a message.

8 8 “

If the specified instance is not waiting then this operation
will cause the investigator to abort with the Delay,Err
exception value.

faultof INSTANCE gives the exception value raised by the
specified instance as it failed. If that instance has not in
fact aborted then this operation will cause the investigator
to abort with the Abort.Err exception value.

classof INSTANCE gives the definition value associated with
the specified instance. This functions even if the
specified instance has ceased to operate.

census [INSTANCE] gives the set of instances which form
the sources of the messages currently in the queue of the
specified instance value. If none is specified then the
operation is performed on the current instance.

message [INSTANCE 1 DEFINITION] reports whether there are
any messages in the current instance’s queue from a
particular source, or class of sources. If none is specified
then it reports whether there are any messages at all.

Of the data structures, lists can be specified by separating
values by commas "," whereas sets can be enumerated by bars
" I " . In the case of sets duplicates are stripped out and the
ordering of the enumeration is not necessarily preserved,

since sets are inherently unordered. All sets start off as
the empty set value, and lists always start with an implicit
tail of null.

The set operators are:

— 8 9 —

SET "has" T

which indicates whether the specified value, of any type, is
in the given set value. Actually the "has" operator is more
powerful than it seems, because it can be applied to either
a set or a list, to find out whether a given value is within
the data structure, and it can also be used on a queue of
messages (by giving it an instance value) to see if a
particular value (from whatever source) has been sent.

The following operator:

SET "<>" SET
T "<>" SET
SET "<>" T
T "<>" T

has four variations. If both operands are set values it
forms the union of the two sets, if only one was a set then
it augments it with the other value, and if neither was
actually a set then it forms a set and adds these two values
to it. Like operations on strings the operands are unaltered
by such 'changes', as new sets are created whenever they are
updated.

The intersection operator is:

SET " X " SET

and it produces the set of values which are in both given
sets. This, together with the equality operator, which is
defined for all types, permits a 'subset' operation to be

— 90 -

simulated, viz:

let { A >< B } = B -> B .is.subset.of.A

as expected.

Since it is not possible to access particular elements of a
set, there is an iterative construct which permits a given
statement to be applied to all its elements. This takes the
form of:

"forall" name "in" SET "do" statement

This makes all elements available, but the order in which
they are presented is unpredictable, as it depends upon the
internal representation of the 'unordered' set.

There are the usual list operations for head "hd" and tail
"tl", and they function for all lists except the null list,
which has no internal structure. Like sets, new lists are
formed whenever an 'update' operation is performed. This,
as explained earlier, is essential if data structures are to
be passed freely within a system of concurrent instances.
The updating operations are:

LIST LIST
T LIST
LIST "&" T
T T

and like the union "<>" for sets, this joins lists together,
prefixes or postfixes them with a given value, or forms a
list out of two new values. Where it is necessary to prefix

- ;

- 91 -

a list with a value, possibly another list, without actually
joining such lists together, should they both be lists, the
following operator suffices:

T ">>" LIST

Similarly:

LIST "<<" T

will append the value to the list. The difference between
LIST LIST and the form LIST "<<" LIST is that the case
of " results in a new list made up of the elements of each
component list joined together, whereas the "<<" or ">>"
operations tack-on another element in which the extension
forms a sublist. As with all "adjustments" to data
structures the actual operands are copied before the
"update" is performed.

Apart from a succession of hd and tl operations, the inner
components of a list can be accessed randomly by:

INT "of" LIST

where the n'th component is extracted from the given list.
Naturally the list must be at least that length 1

The remaining operators, for the logicals, relational and
arithmetic operations will not be elaborated upon here, as
they are well known.

Abstraction.

Abstraction is the process of hiding details of

- 92 -

implementation and representation so that the essential
purpose of a mechanism . is laid bare. In programming
abstraction is a major tool because it permits complex
mechanisms to be broken down into more, individually simpler
mechanisms.

Most programming languages popular today provide procedures
and/or functions as the means of abstraction (over
statements and expressions respectively). A similar
abstraction, the definition, is available in Protocol. This
enables a segment of code to be stored in the library. Each
entry in the library is identified by a unique user-coined
symbol - a literal of type definition.

Because the store has been constrained to individually named
locations, and definitions cannot have free variables, they
cannot share data, nor can instances (executing definitions)
influence each other by 'side-effects*. The concept of the
message supports all communication requirements, both
internal and with the outside world.

There are no procedures, functions nor parameters as such,
because the instances, passing each other messages,
communicate at a more fundamental level. A procedure-call
corresponds to invoking an instance of some definition
(corresponding to the procedure body) and any parameters are
equivalent to the sending of an initialising message.
Similarly a function-call, taking parameters and returning a
result, corresponds to an instance invoked with an initial
message, followed by an immediate (from the viewpoint of the

93

caller) reply message.

We see therefore, that the distinct concepts of procedures
and functions are merely special cases of what we term
instances, with message passing as the mode of interaction.
Furthermore, the concurrency of Protocol, together with the
ability to send and read-in messages at any point in a
definition, permit instances to interact with each other
during their execution.

The abstraction mechanism of Protocol is thus both simpler
and more powerful that the traditional procedural
mechanisms. The concept of the Message i's more general than
the parameter because, when combined with a queuing
mechanism, it can support asynchronous interaction.

We wish to have as few concepts in out language as possible
(although each is exploited thoroughly and uniformly) so we
have not included procedures nor functions, the instance
with its message system being sufficient to fulfil these
roles. If we had included either, to give local
abstractions, then, if we were to implement them in
accordance with the principles of Correspondence and
Completeness, they would have to be provided as values in
their own right, and so they could be passed as messages,
and executed by other instances within their creators local
environment, thus re-introducing the problem of shared data
which we have taken such pains to eradicatei It is
significant, therefore, that Hansen's new language for
concurrency, Edison [B26] which depends upon procedures for

- 94 -

its communication mechanism, includes them only as names,
not as values, so complicating its ontology.

The Syntax Of Message Passing.

As outlined earlier the message system is dynamic because it
evaluates the instances taking part in each transaction. To
send a message we construct:

INSTANCE " T

where the message value, of any type, is passed to the
instance evaluated on the left of the " " operator.
Similarly, to request that the next message to arrive from a
particular source be read-in we write:

"{" INSTANCE ")"

so forming an expression, with the type of * the acquired
message value. Normally this value will then be assigned to
a variable, or used to initialise a newly declared name. For
example :

let (input _ "Enter Maximum ?") -> Max.Value

will declare "Max.Value", make it a variable, and
initialise it with the value acquired from the instance
associated with "input" (here a literal of type instance -
the standard inlet), having first sent it the prompt "Enter
Maximum ?".

Consider the following "echo" definition:
let "Start'n" -> x
repeat world typeof x, x, "*n"

- 95 -

while X ~= -1
do (world X

which loops until it receives the value -1, prompting with
">>" before reading in some value, the type and value of
which it then prints out. Note in passing that 'n is the
newline character and 't is the tab character. This is
quite succinct, but as we shall now discover, there is also
a ’sugared' mechanism for pipelining messages across members
of the system, which directly expresses a complex series of
interactions.

8.8 Chaining.

The concrete syntax chosen for the message sending and
requesting operations is deliberately terse, and it lends
itself well to the ’one-liner’ syndrome. Each such
construction is, however, only capable of expressing a
single interaction, be it a simple sehd, a request for a
message or a request associated with a prompt message.

By slightly extending the concrete syntax, as we do here
with the operator, it is possible to combine
interactions into a pipelining construct. We take advantage
of this syntactic simplicity to "chain" together several
interactions. In complex cases there may be a whole series
of ’filter’ instances, down which values have to pass before
being written out. Consider, for example, some data which is
to be'analysed, tabulated, built into columns and then paged
before output, this might be processed:

analyse data : tab : col __ 2 : page _ "ABC", 1 : world

— 96 —

where the indicates that the activity on its immediate
left will produce a message, which it waits for, and then it
feeds it over to the next activity.

Notice that the messages 'flow' from left to right,
eventually being output to the terminal, and that at each
stage additional messages can be tagged on to the 'passing'
message. The messages need not be simple values, they can be
lists, as can be seen for "page", and any message tagged
onto the flow is automatically bound into a list with that
value before it enters the next stage. We call this chaining
a message. In an interactive programming environment, as a
'shell' [R8] mechanism, this is extremely powerful,
exploiting as it does the generality of the message passing

system.

97

8.9 Concrete Syntax.

(declaration 1 stat) [sep sequence]

stat =
"if" exp { "do" stat I "then" stat "else" stat)
"for" [name "=" exp "to"] exp ["by" exp] "do" stat
"repeat" stat "while" exp ["do" stat]
"while" exp "do" stat
"forall" name "in" exp "do" stat
value "_" value
chain ":" (value I "->" names)
exp ["->" names]

chain =
interaction { interaction }

interaction =
["first" I "latest" 3 value [" " exp]

exp -
"if" exp "then" exp "else" exp

I value [binary,op exp]

value =
{ unary.op } (name

- 98 -

I literal
I [sequence]

I *'(" interaction ")"

I "var" name) { "f" exp "by" exp "]" }

declaration -

"let" (exp I chain ":")
(I "=>")

[type] name { "," [type] name }

u n a r y .op =

"+" I 1 1 "hd" I "tl" I "typeof" | "endof" I "new"

"sizeof" 1 "classof" | "stateof" | "holdup" t "faultof" |

"message" 1 "survey"

,p£ =
» + n I I I "div" I "rem" 1 "and" | "or" I "++" 1
II — H I II " — II I II 1̂1 I «< — 11 I «>« I «> = " j ” xs" I I

" < > , , j " > < « I ” 1" I "has" 1 I "of" I ">>" I "<<"

literal =

digit { digit } I d e f i n e d ,symbol | s t r i n g .literal

names =

name ["," names]

name =

letter { letter I digit 1 }

- 99

type =
"int" 1 "bool" I "site" i "set" 1 "list" I "identity"

"library" 1 "string" 1 "type" I "status" I "exception"

sep =

";" I <newline>

- 100 -

. 10 Type Matching Rules .

"{" [VOID 3 => VOID
[VOID sep 3 T => T

"if" BOOL "do" VOID => VOID
"if" BOOL "then" T "else" T => T
"for" [name "=" INT "to" 3 INT ["by" INT 3 "do" VOID => VOID
"repeat" VOID "while" BOOL ["do" VOID 3 => VOID
"while" BOOL "do" VOID => VOID
T "->" name => VOID
LIST "->" name ["," names 3 => VOID
("first" 1 "latest") [INSTANCE 3 => INSTANCE
"message" [INSTANCE I DEFINITION 3 => BOOL
"new" DEFINITION => INSTANCE
"let" T ("->" I "=>") [TYPE 3 name-T { [TYPE 3 name-T } => VOID

ip ~ > iji

STRING "[" INT "by" INT "3" => STRING
T~1itérai => T
INSTANCE "is" DEFINITION => BOOL
T "<>" T => SET
INT "of" LIST => T
T T => LIST
LIST "<<" T => LIST
T ">>" LIST => LIST
SET " X " SET => SET
(SET I LIST I INSTANCE) "has" T => BOOL
"forall" name "in" SET "do" VOID => VOID
INSTANCE "_" T => VOID
"(" INSTANCE [" " T 3 ")" => T

- 101 -

INSTANCE T) { INSTANCE T] } " : " = > T
INSTANCE T 3 { INSTANCE [T 3 } INSTANCE => VOID
"endof" LIST => BOOL
"typeof" T => TYPE
"sizeof" (LIST 1 SET | STRING) => INT
(j) INT => INT

BOOL => BOOL
STRING "++" STRING => STRING
INT ("+" 1 I "*" I "div" j "rem") INT => INT
INT ("<" 1 "<=" I ">" I ">=") INT => BOOL
BOOL ("and" I "or") BOOL => BOOL
T ("=" I "~=") T => BOOL
T T { "," T } => LIST
2 H|« T { "I" T 3 => SET

"hd" LIST => T
"tl" LIST => LIST
"introduce" name ["," TYPE 3 =>• VOID
"abort" " " [INSTANCE "," 3 EXCEPTION => VOID
"define" "_" name stat => VOID
"stateof" INSTANCE => STATUS
"holdup" INSTANCE => [INSTANCE 1 DEFINITION 3
"faultof" INSTANCE => EXCEPTION
"census" [INSTANCE 3 => SET (of INSTANCE)
"survey" [DEFINITION 3 => SET (of INSTANCE)
"classof" INSTANCE => DEFINITION
"var" name => BOOL

To be legal a program must satisfy the type matching rules

- 102 -

as well as be syntactically correct. The type rules are used
to restrict the otherwise permissive syntax to a class of
sensible operations. It might be run time before any
particular type rule is matched.

The type T includes all types, except VOID which is merely a
null-type used to provide a unified frame of reference in
which to discuss type matching rules.

- 103 -

8.11 Literals.

Two instance literals
input,
output

form the default communications paths to the creator of an
instance. These are initialised dynamically, on start up,
and so can be different for separate incarnations of any
given definition. The literal:

world

is fixed to the terminal, that is the on-line user, for
direct communication with the external world. The original
instance, the interactive shell-like instance, has its
default paths linked to the terminal.

Each type has a literal representation, these are:
int
bool
string
list
status
exception
site
type
machine
set
instance
definition

The status literals are:
active
waiting
complete
aborted

104

The following literals are the predefined exception values
Stack.0
Stack.U
Library.Err
Type.Match
Type.Wrong
Interaction
Null.List
Short.List
Camac.Err
World.Err
Delay.Err
Abort.Err
Digit.Err
Const.Err
Index.Err
Index.Neg

and of course new ones can be defined by the user at any
time.

Further instance literals are:
introduce
define
abort

and these are explained in the text.

- 105

Further

The simple factorial evaluator, which sets up a series of
instances, serves to illustrate the flavour of the message
passing primitives.
define factorial
{

let { input) -> val
output __ if val = 1 then 1
else val * (factorial val - 1)

}

Note that "define" is a predefined constant holding an
instance which, given a name, reads in a statement which it
parses to form a definition -which it then adds to the
library.

Here we are simulating functions with individual instances,
Although the instances of the factorial definition execute
in parallel they do not actually interact, other than via
the initial and final messages. This example, therefore,
simply demonstrates the message system in a familiar
situation, and shows how Protocol lends itself to recursive
programming techniques.

Similarly, the famous Towers of Hanoi game can be solved
recursively by:
define hanoi
{

let (input) => N , a, b, c
if N < 1 then output "Done" else
{

hanoi __ N - 1, a, c, b :
world ___ "Disk ", a, " to ", b, " ’n"
hanoi __ N - 1, c, b, a :

}

— 106 —

which invokes a tree of instances, none of which actually
interact other than on entry and exit. In this case
individual instances wait for their subtrees to complete
before continuing, so as to guarantee the ordering of the
messages sent directly to the terminal (the world instance
value).

We see therefore, that although these classic examples of
recursive programming techniques can be expressed within the
framework of a message passing parallel system, they do not
exploit it. Even so, the message system permits the various
subtrees of the hanoi execution sequence to synchronise
correctly, without resorting to low-level semaphores.

The following example provides a little more insight into
the advantages of the asynchronous message system. The
problem involves finding all the permutations of characters
in a string 'p*, appended for output to the base string 's',
for permutations of length 'n ' characters.
define perm
{

let (input) -> s,p,r
if r = 0 then world s,"'n"
else
{

for i = 1 to sizeof p do
{ let s ++ p [i by 1] -> ns

let sizeof p -> length
let { if i+1 > length then i else i+1 } -> break
let p [1 by i-1 3 ++ p[break by length - i] -> np
perm _ ns, np, r-1

}
}

}

Notice here, that although it sets up a tree-like system of
instances, any instance which yields a permutation writes it

- 107 -

out and terminates immediately. All others set up more
instances to find more permutations before .themselves
terminating. The order of evaluation is immaterial, all that
is required is a series of permutations, as opposed to the
hanoi problem which needs to order its outputs. It is
obvious therefore, that in the evaluation of permute,
complete instances can be garbage-collected, to release
space for further instances. On a simple procedural stack
implementation this would not be possible, as each level
would have to remain in the stack until its subtree
completed. We will return to the permutation problem in a
moment, but first another example of a more traditional
recursive solution illustrating the dynamic type checking
built into Protocol. Here we wish to beautify a list for
display to the user:
define print
{

let (input) -> X
if typeof X = list then
if X = null then output _ "{}"
else if typeof hd x = list then

output
(print _ hd X), { print _ tl x)

else
output

(print _ hd X), "," , (print _ tl x)
else output __ x

}

where again the output has to be ordered on the terminal and
so the various instances printing sublists have to
synchronise correctly.

All of these simple examples are directly expressible in
sequential procedural programming languages allowing
recursion. None really exploit the potential for interaction

— 108 •-

which Protocol offers. Consider the next definition, which
is another form of the above permutation mechanism.
define permute
{

let identification => self
let (input) -> s,p,r
repeat
{

if r = 0 then world __ s , " ' n" else
for i = 1 to sizeof p do
{

let s ++ p[i by 1] -> ns
let sizeof p -> length
let { if i+1 > length then i else i+1 } -> break
let p [1 by i-1] ++ p[break by length - i] -> np
self _ ns, np, r-1

}
}
while message self
do self : -> s,p,r

}

This version, like the first, sends messages representing
the permutations still to be found, but unlike the earlier
case, where the messages were sent to new incarnations of
permute, this one sends itself the messages, and reads them
back in when it is free, ie after it has found a
permutation. This instance of permute will therefore find
all the permutations on its own, rather than calling on a
family of similar instances to help it.

Another facet of the message system is the ability to send
or read in messages at any point. This is seen in the
permute definition, which picks up its own messages, but can
be used in a slightly different way to produce ’memo'-
functions - instances which remember previous results.
Consider the simple Fibonacci series evaluator:
define __ Fibonacci

let {1,0},{2,1} -> list results
while true do

109

let input : -> int n
if n > sizeof results do
for i = hd { sizeof results of results } + 1 to n do
{ let hd tl { {i-1} of results } -> il

let hd tl { {i-2} of results } -> i2
results << { i, il+i2 } -> results

}
output hd tl { n of results }

}

which holds the values known so far in a list, and loops
back to pick up further requests. If the required value has
already been calculated then it is written straight out,
otherwise the known-value list is extended to include it.
The more this instance is interrogated, the more it
remembers, just as with memo-functions.

Note, however, that in this case the 'memory', in the form
of a local list, is implemented by reading in new requests
within the body of the definition, not by some special
mechanism specifically for this purpose. Ih effect this
provides the "own" property of Algol-60.

Several other examples will be given in the section dealing
with CAMAC, since they provide administrative facilities for
this application. The Protocol system, as explained earlier,
permits instances to find out about any other member of the
system. The following system state-display is quite useful.
define _ system.survey

let survey -> sys
world _ "'nSurvey Of System'n'n"
forall id in sys do
{ world stateof id,"'t"

world _ if stateof id = waiting
then holdup id else "'t 't"

world "'t",id

- 1.10

if stateof id = aborted
do world " ’f t " , faultof id
world "In"

}
}
Similarly, an instance can examine the queues of other
instances, as well as its own; here we have a queue state-
display :
define __ queue.survey
{

let survey -> ids
world _ "Survey Of Inputs'n’n"
forall i in ids do
{

world _ i ,"'f
world __ if stateof i=waiting then holdup i else "'t"
world _ " ’t"
world __ if {active I waiting} has stateof i

then census i else "'t 't"
world "'n"

}

The famous dining philosopher (spaghetti eater) problem can
be written as follows:
let (input) => right
let (input) => left
let { input) -> forks
while true do
{

while forks ~= 2 do forks + (first THINKER) -> forks
world _ identification," is eating'n"
right _ 1
left _ 1
0 -> forks

}

where each instance of this definition is initialised by
being passed the instance value of its immediate neighbours,
left and right, and the number of forks with which it is to
start. The various THINKER instances will therefore start
off with either 2 or 0 forks, except the odd man out, which
will have the remaining fork. All interactions are

- Ill -

automatically synchronised, and the philosophers settle down
to a fair and uneventful life, eating and thinking!

- 112 -

£•1 Protocol As A CAMAC Programming Aid.

In this section we will show how the general philosophy
behind Protocol can be put to use, as an aid for programming
CAMAC hardware. CAMAC [E2] is a hierarchical hardware
system, and it has been adopted as a standard by the IEEE,
It is mainly used in high data rate electrical monitor and
control equipment, such as in nuclear physics, astronomy or
medical data acquisition. CAMAC is basically a plug-in
system for hardware 'modules'. The stand'ard specifies
physical and electrical characteristics for such equipment.
The standard defines signal protocols for inter-module
communications, but it does not specify any communication
format between external processors and a CAMAC system.

A General Summary.

There are various schemes for such machine control already
in existence, but it is felt that these are lacking in
several respects. Most were developed from add-ons to
existing languages, notably FORTRAN [H5,K10] and Basic
[El,K9], or by standard macros into such low level languages
as Forth [810]. Each has its own devoted following, and each
has, as always, its attractive features. The FORTRAN
facilities permitted substantial and easy data analysis to
be carried out, by way of a similar approach to accessing
the NAG Libraries. The Basic fraternity could point to the
interactive nature of their base language, but could not
perform such exhaustive data analysis so easily. The Forth
people pointed out that the design of Forth permitted them

- 113 -

to programme intricate machine control sequences easily, and
so CAMAC standards were soon grafted on here too. Those
users though, soon realised too that the extreme power to
fiddle with the individual bits of the machines was
hindering them in the realm of data analysis, when fourier
transformers etc were to be written!

It was decided herein that the add-on strategy so avidly
expounded by the CAMAC IML [L8] Committees (the CAMAC
standards people for software) was not really adequate, as
it merely half-introduces CAMAC control to the host
languages. To be done more effectively the CAMAC programming
facilities must not only introduce a means of defining and
operating on CAMAC names, but they- must also harmonise with
the language, not distort it, so that they exploit the
natural power of the language to its fullest. It was
therefore decided early on that CAMAC hardware should appear
as a new data type in the language. Thus the type site -was
introduced (see below). This single data type is used for
all items in CAMAC, the branch, crate, module or subaddress
attributes of a particular item being part of the site
value, automatically deduced during such a declaration. The
value of a site is effectively its CAMAC address (in terms
of BCNA codes). This however is not wholly new; some Basic
systems, notable RT-Basic [El,K9], have CAMAC items
introduced as 'variables', but they are special process
variables (to use their terminology), and as such are a
special case (as indeed most things in the Basics tend to
be). Here the site values are thoroughly normal, that is

- 114 -

they have the same 'civil rights' as values of any other
type (in accordance with the principles of data type
completeness and correspondence).

Thus it was decided that the CAMAC programming facilities,
embedded in an otherwise self supporting language, should
not only fit into that language naturally, but they should
also be able to exploit it fully.

9.2 Sites.

The 'peculiar' type is called a site, and it represents a
piece of hardware in a CAMAC system. There are four variants
in such hardware, branches, crates, modules and substations,
but all are of type site. CAMAC offers a powerful tree-
structured architecture, of branches of crates, holding
modules, which in turn house individual registers, or
substations. Although it is bus-oriented it has a fully
synchronous bus protocol, so bus operations can not be
multiplexed, and transfers are quite slow (typically two
microseconds). However there are many interlinked busses in
a fully tree-structured system; each crate has a bus of its
own, and the appropriate busses are linked together via
branch highways (longer busses) whenever intercrate
transfers need to take place. The entire system is therefore
made up of largely independent crates of modules, working in
parallel. At the root of the .system lies the master
Controller, .and each crate is supervised by lesser crate
controllers, each autonomous within its own crate. To
communicate with any item in a CAMAC system it is only

" 115 -

necessary to specify the CAMAC address (in terms of
numerical B,C,N and A codes) and the operation required (the
F code) to the main controller. This usually looks like a
peripheral to the computer.

In principle then, programming CAMAC is quite trivial. In |
practice it is rather tricky (if it is to be done well). In |

■|Protocol we have introduced CAMAC as a data type in the |
■Ilanguage, the power and flexibility stem directly from a j

strict adherence to the guiding principles of programming 1
language design. Ij
There are no literals of type site,' but there is one ^I
predeclared site valued name "root", which is the top of the j
hardware tree. This is a constant. There are also four 1j
predefined library routines, already initiated, whose |
identity values are held in predeclared constants, which |

Itake various inputs and return a value of type site. II
9.3 Our View Of CAMAC. j

I
The CAMAC facilities implemented with Protocol are intended j
to exploit the interactive base, to provide a flexible tool j
for setting up, monitoring and if necessary, dynamically i1
adjusting a CAMAC system. To this end names introduced for * j
CAMAC sites build up a symbolic tree structure, directly '
representing the hardware architecture, and this tree is
available to users to survey, traverse and adjust at will.

For instance, as one would expect in a file system, it is
possible to display the current contents of any particular

~ 116 -

item in the tree. This could be useful, say for general
system housekeeping or statistics on usage etc. The user has
a pointer into this tree marking his local objects. It is
quite feasible to change the current container marker within
the system. In fact each instance has a predeclared
constant, "container", indicating its current position in
the tree, so each instance can change its locality in the
CAMAC system. All operations are relative to this, unless
expressed by path-names from the "root". All this, though,

is rather administrative, primarily concerned with observing
the system.

It is further possible to move items about within the
system, so long as it makes sense CAMAC-v/ise. One could,
therefore, develop software for a given set of modules in a
specific crate, then later (even while running) adjust the
layout so that those modules are logically transposed to
some other crate, simply by changing the position of their
container. This would be the logical counterpart of
unplugging a crate at place-A and reconnecting it at place-
B, perhaps some distance away. The programs which use it
need not be aware of this change, as they could find its
place in the tree dynamically, wherever they are set up, or
whenever it moves while 'on-line' to the system.

This is not as fanciful as might at first be thought, as
say, if the pin connectors at one module station turned out
to be faulty, that module could be slotted in and moved to
that position logically, and all programs which use it will
automatically find it there. There is no need to change

-y

- 117 -

them.

9 The Tools Available.To U s .

Creating CAMAC Sites.

The site creating instances "B", "C", "N" & "A" are
predeclared, and so are immediately available. They take, as
will be seen, several possible sets of inputs, and return a
site value if no error occurs. The basic format is the path,
in existing site values, to the desired container, either
from the local position or from the root of the system. If
none is given the current container is used. This can be
followed by an integer value, and if present this is taken
to be a request to make a new site at that position, if not
no particular place is looked for. Finally a string can be
taken. This forms the name by which the system will know the
object in the CAMAC tree. If an integer code was given then
an attempt will be made to add a site at that place and give
it the associated name, returning its site value. If no code
was given then the current container will be searched, by
name, for the appropriate object and, if present, its site
value returned, its actual position being immaterial here.

This flexibility of inputs is characteristic of Protocol,
consider ;

let B __ 2, "lab" : => a
which tries to make a new site at position 2 in the current
container, initially the root crate of the system, and since
we are trying to site a branch it has to be there, as
opposed to:

- 118 -

let B _ "lab" : => b
which, because it hasn't got a numerical argument, doesn't
try to make a new site, but searches the current container
for an item with the name "lab" and returns this site value.
Naturally it is illegal to either make a new site at an
occupied position, or attach on to one that is not there.

This permits the dynamic binding of program names to
existing sites, as well as the creation of new sites.

It is quite obvious that there are two naming conventions,
those internal to a program, and those outside, for any
CAMAC item. A site can, therefore, have 'a variety of names
in different routines, either from being linked to as above,
or by being passed as messages, but only one system wide
name; that nominated when the site was initially made, "lab"
in the above example, with its two internal, temporary names
"a" & "b". This is the 'official* name of the item, but all
represent the same object.

The user, able to inspect and alter the tree structure of
the CAMAC system, is able to display the contents of any
item, and access them via their stated names, if they were
set up before the current session, or recently from another
instance, or by his local name if they were created during
his current session, or have been linked to.

Now, a library routine can be set up to use a given pattern
of CAMAC items, not in any particular positions, and having
had these items placed beforehand, it can automatically find
them wherever they happen to be, so long as that part of the

— 119 —

tree pattern is correct.

The way to change the current position in the tree,
originally at its root, is to enter a given path. This
leaves you at the end of the path if it exists^ and where
you were if the path was broken. This instance is also
predeclared, and returns nothing.

There are a number of other predeclared instances which take
a site value, or a path leading to one, the current
container being assumed if none is given, and these may
return lists of values.

.2 Locate And Extract.

The locate facility produces a list of site names, tracing
an object from the root, and extract does the same but with
a list of position codes and BCN or A codes, indicating the
structure of the hierarchy to that place. It is important to
note that such routines do not print their results but pass
them back to their caller. This can then be printed, if that
is all that is required, or examined and used in whatever
manner is deemed appropriate. This will be mentioned again
below.

2'^. 3 Display.

There is one other major administrative feature, the
display. This also takes a site, or a path to one, or the
current position by default, and produces a list of lists,
each sublist being the pertinent information describing the
items in that container. Thus it is perfectly feasible to

- 120 ~

examine the distribution of modules in a crate, crates in a
branch, or registers in a module, simply by sending its site
value to display, and printing the list it produces. All
values in Protocol can, of course, be printed out, but any
list so produced will require 'beautifying' as lists are
printed "flat" by default, but this is a minor point.

Now, as indicated, these are merely tools with which to
construct more sophisticated routines. They are simply
interrogative routines which report various information
about the CAMAC layout. For example, display shows the
contents and status of a given item, and it might be
desirable to be able to view the entire hierarchy,
sequentially, so rather than repeatedly • request that
specific items be displayed, manually, it is quite easy to
write a library routine "show.system" say, which displays
the root crate, takes its list of lists and recursively
descends each of its constituent containers, in whatever
order is required.

Consider, for example, the following definition "select":
define select
{

let input : -> 1 ,s
let empty -> out
introduce __ UNKNOWN
let { if s=B then 1 else if s=C then 2 else if s=N then 3

else if s=A then 4 else { world __ "??" ; -1 }
} => S

if S = -1 do abort __ UNKNOWN
while ~ endof 1 do

. {
if hd hd 1 = S do out <> hd 1 ~> out
tl 1 -> 1

}
output out

'N" else
"A" else "??"
''t" ; tl X ~ > X
n"

if M=3 then
if M“4 then

world __ hd X,
world __ hd X,

} .
} else forall i in x do table i.: output

output "

» 121 -

which, given a list of sites and a 'key', will select those
sites in the list which are of that form (ie B,C,N or A).
Note that an instance of this definition will abort with the
new exception valued literal "UNKNOWN" if the key does not
match any of those catered for. Normally an instance of j
this definition would be sent the output from a call to j
display, that is; j

I
display ; select __ N ; output |I

■ Iwhich will write out the (still flattened) set of lists |i
.1holding module information. |
■1

Another useful facility, when writing out lists of j
information is a tabulator, such as is provided by the next I

i
definition: ij
define __ table !
(- Ilet input : -> x |

if typeof X ~= set and typeof x ~= list then world _ "??" “j
else j

■ ■ { ■ I
if typeof X = list then |
(Iwhile X null and typeof hd x = list do I{ I

table hd x : output I
tl X -> X I} Iif X null do i

(1let hd X -> M ; tl X ~> X I
world _ { if M=1 then "B" else j
if M=2 then "C" else i

- 122 -

which would slot into the chain immediately before the
information is written out;

display : select _ N : table ; output

In this case the output from select will be arranged in the
form of a three columned table giving various
characteristics of the items selected from the display.

This demonstrates the power of the message passing system,
since information is handled uniformly, being processed en-
route as it is chained from its source to its destination,

2.j4,4_ Moving CAMAC Items.

The move instance, again predeclared, given a site (either
from a simple site expression, or some arbitrarily complex
statement of that type) and a (perhaps trivial) path to
another place in the tree structure, and a numerical
position code, will try to reconnect that site at that
position in the container indicated by the second site
value. That place is checked out first, to ensure that it is
free and that the two items are compatible CAMAC-wise
(modules in crates, crates in branches etc). The move only
occurs if all the parameters are valid. This then makes the
item appear to be in the new position in the CAMAC system,
and so it should be physically moved to match its logical
position.

In the implementation it is essential that this entry in the
tree of entries, tracing out the system, remains fixed, as

- 123 -

the value of a site is essentially a pointer into a data
structure containing these entries. Thus the pointers
threading the tree are adjusted, the actual entries
remaining fixed. This structure is discussed below.

2._5 Interacting With CAMAC.

Now, when a CAMAC function code (F-code) is to be initiated
it requires that the appropriate F-value & CAMAC address
(BCNA) be encoded into some CAMAC Controller dependent bit
pattern. Naturally, in Protocol, the user need not be aware
of how this is carried out, he does not need to know
anything about the particular interface used, only his
module positions and the F-codes needed to control them.
Once he has defined names for these objects and functions he
can forget that they are CAMAC items, and programme them as
if they were normal data items and instances.

The definition of names to be employed as CAMAC F-codes is
quite straight forward. There is a predeclared instance,
called "F", obviously enough, and this takes a numerical
F-code as its input, optionally followed by a value of
type-type, type int is default. This type specification
either tells the,system to check inputs when applied, or
produce output of that type (CAMAC functions are relatively
simple, they either take or produce, not both). Since CAMAC
is rather limited in the hardware data types it handles, it
is likely that this will be either int or bool, for data or
status signals. Such a call to F produces an instance as a
result, which can subsequently be applied in its own right

- 124 -

to a site. For example:

let (F _ 8fbool) => state.of.module

would indicate that "state.of.module" would be an F=8
command, actually a test of LAM status, and the result is
tagged as a boolean value. It could be applied by:

if (state.of.module _ counter) then ... else ...

to select actions by the current state of that piece of
hardware. It is quite transparent, as .the CAMAC is hidden
from the user.

9.5.1 A Brief Example.

Here we have a preset (an interrupt on zero counter) and two
scalers (pulse counters) in another module, we wish to load
the preset, have it count down and interrupt,- at which time
we will read the counters. This is based on an example used
by Stephens [810] in a comparative study of CAMAC oriented
languages. That report considered various versions of Basic,
FORTRAN and Forth, all of which were programming CAMAC via
'add-ons'.
let A _ preset,8 => timer
let A scaler,0 => sky
let A __ scaler,1 => star
let F _ 0 => value.of
clear __ timer j
if ~ accepted then output "Faulty Setup!'n" |
else 1
{ world __ "Interval ? " : deposit __ timer |

while ~ lam _ timer : do {} IBusy Wait! j
let value.of __ star : -> v.star j
let value.of sky : -> v.sky I
world "Star =", v.star," Sky =", v.sky j

} 1

125

The text between the shrieks ("I") is taken to be a comment.

This assumes that "preset" and "scaler" have been sited as
modules (N) and F-codes such as "clear", "lam" & "deposit".
The "accepted" value merely checks that the last instruction
to CAMAC was accepted - that is that the hardware exists
(for those in the know it is the X-test),

9.6 Implementation Details.

Each site value initialised corresponds to an entry in the
data structure holding all the'information needed in order
to programme CAMAC. This table is threaded, tracing out the
current hierarchy of the CAMAC hardware. When dynamically
altered the various pointers within the table are reset, the
entries remaining fixed. The entire scheme depends on this
fact.

As it is necessary to work down thç tree, for new sites to
be added, and also upwards, to dynamically extract the
current position of an object in the tree, it is clear that
the threading within this table will have to be
bidirectional. The entries take the general form:

i CHAIN I BACK I LINK \ TYPE 1 CODE 1 NAME I etc ... \

The BACK link points to the entry corresponding to the
container in which it sits, for working back up the tree.
The LINK,connects items in a CHAIN hanging off a container.
The CHAIN here is the base of a LINKed list of items to be

- 126 -

placed within this item. The TYPE is the B,C,N or A
designation of the item. The CODS is its numerical position
code within the container in which it is to be found. The
NAME is that seen in display (not necessarily the same as
that used locally). The rest is system housekeeping.

- 127 -

2-2 Driving CAMAC Hardware.

When an instance corresponding to a CAMAC F-code is involved
in a transaction the system recognises this fact and sends
the F-code together with the .site value and any parameters
to the CAMAC Table Manager. The Manager is another part of
the system, distinct from the interpreter, and its job is to
build and maintain the tables mapping out the CAMAC system.

In practice the Manager resides in an on-line
microprocessor, along with the CAMAC device driver and
assorted user programs. The actual i/o is controlled from
here, so that CAMAC is invisible to the main processor.

Given a site value the Manager returns the current BCNA, as
appropriate, to identify the path (CAMAC address) of the
site in the system. These, together with the F-code
associated with the operation required are then encoded, in
the micro, and physically directed at the CAMAC Controller.

This hardware unit then strips apart the command and its
target, carries out the operation and, if appropriate, sends
an interrupt to the micro. On receiving such an interrupt
the micro reads in the BCNA of the LAM source (supplied by a
diagnostic module called a Grader working with the
Controller within the CAMAC system). This is then sent on to

the Manager, which traces the appropriate table entry and
picks out the service routine required. In practice this
will probably be an instance actually awaiting a response or
it could be a routine instance linked to a LAM source, to be
triggered off whenever that LAM is asserted. It is

A

— 128 —

considered to be an error to generate an unexpected LAM
interrupt - this is taken to indicate that the hardware is
malfunctioning.

Access To Status Registers.

The exact nature of the interface of Protocol to CAMAC
depends upon the particular Controller employed, using
Controllers produced by different manufacturers requires
that the software driver reflect the particular Controller
design adopted. There are many such designs, some more
suited than others to different applications. For example
the General Electric Co. Executive Controller has a single
control & status register (CSR) and (in the PDP-11 version)
it looks like a device on the UNIBUS with thousands of
registers. It is programmed by addressing a register at a
particular address, that being an encoded form of the CAMAC
operation required, and this is stripped down by the
Controller. The NE [N5] Series-9000 Controllers, however,
have a main CSR and a small cluster of addressing registers
which are loaded with equivalent information. These
hardware differences are, however, completely hidden from
the user of Protocol, and are only apparent in the machine-
specific part of the driver.

There are several status lines in CAMAC, and their state is
usually available by way of bits in a CSR. However this is
managed by the Controller employed, it is the responsibility
of the driver to make them available to users. This though,
is done such that these signal lines are readily available.

- 129 -

in a transparent yet unobtrusive manner.

There are several predeclared variables, corresponding to
the signal lines. There is, for instance, a line (called
*X' in CAMAC parlance) which is asserted (made true) if the
last command to CAMAC was accepted, so it is introduced as a
boolean called "accepted". It can be used, for example to
test if a module is actually in situ. It is available if
needed, and is set automatically. If not needed it can be
ignored.

In a similar vein there is the Q-line, here called
"response", which is set or cleared (made true or,false) in
response to various commands. This is a commonly used means
of testing signals in CAMAC. The state of X and Q are set
into their associated variables as each CAMAC operation is
undertaken. They are therefore there and set each time, if
needed, yet inconspicuous if not required in any particular
operation. This is considered to be better than the
recommended IML practice [E3] of having to supply some user
defined variable as a by-result parameter to every call to
some extra-language standard subroutine for CAMAC operations
(such as is.the case in the more common add-ons to FORTRAN
and BASIC).

Naturally, in view of the parallelism inherent in Protocol,
these variables cannot be uniquely defined in the system
itself, but must be private to each instance, so that each
instance can operate on CAMAC in parallel with others
(carrying out unrelated tasks) yet refer to the state of the

— 130 —

"last CAMAC operation" as if it were the sole source of
CAMAC commands. Each instance has, therefore, an image of
the state of the CSR status lines which it can examine at
its leisure, so permitting other instances to operate on
CAMAC items (via the CSR) immediately thereafter.

2*2 On Multi-Processors.

This separation of powers, the user and real time
programming on-line in a main processor, * and a micro
dedicated to servicing CAMAC and the execution of tested,
down-loaded routines, in production, is considered to be
quite efficient. It permits each activity to run at its
optimum speed. The micro need not be concerned with the high
level user language, and the main processor need not be
concerned with the peculiarities of CAMAC, indeed it is
invisible to it.

Nowadays, with micros becoming more powerful this strategy
is perfectly feasible. This is especially so because
microprocessors are now being housed within CAMAC crates.
Indeed the Controllers themselves are becoming intelligent,
and in one case the same CAMAC unit contains a DEC LSI
processor, a standard CAMAC Controller, a Grader and DEC
terminal and Q-Bus driver, making it almost ideal for our
purpose.

— 131 •“

10.0 The Implementation Of Protocol.

Protocol is visible to the user as an interactive high-level
language. He communicates with the compiler which analyses
his commands and reports any syntactic errors or obvious
type mismatches. The compiler then produces 'machine code'
for an interpreter which then performs the desired actions.
Any output or direct input is supervised by the interpreter.
If the desired actions fall outwith the set of sensible
operations then the interpreter presents some diagnostic to
the user, resets itself and reports to the compiler that the
last request failed. By cooperating in this way the compiler
and the interpreter combine to implement Protocol.

For this project Protocol was implemented on a Digital
Equipment PDP-11 computer running under the UNIX system

[R8].

J.0..3. The Protocol Compiler .

A language and its compiler are closely related - they are
best designed together, but neither should be compromised at
the expense of the other. The actual concrete syntax to be
compiled, although essentially independent of the underlying
language, should be chosen so as to be readily parsed. If it
is not then the compiler's job will be all the more
difficult, and its size and complexity enlarged accordingly.

Because Protocol is interactive it's syntax is quite terse,
rather than being elaborate; the amount of text being
significantly reduced by the omission of formal parameter

- 132 -

declarations, together with type keywords in declarations.

In general Protocol is an LL language [F5,K8], making it
particularly well suited to recursive descent parsing,
without incurring back tracking overheads. The concrete
syntax adopted is almost entirely LL(1). Most constructs
actually start with a terminal symbol, such as 'if or
'while', and so need no look ahead, but at worst, we need to
examine the symbol after a starting non-terminal. In an
incremental compiler it is highly desirable to be able to
parse in a top down fashion, so this grammar is quite well
suited to our purposes. Most other attempts to develop
incremental compilers, for example [C2,G2,G3 and P3], have
been based on LR(k) grammars, with elaborate tree-forms for
holding parse trees. Parsing top down is, however, not
without its problems, because it is not always possible to
peep ahead into the source, at the end of a line for
example, and this poses a slight difficulty.

The compiler is «built along the lines of one suggested by
Ammann [Al] some time ago, and owes much to the compilers
written by Morrison [M6] who refined this simple but
powerful version of recursive descent.

There are a few places where Protocol becomes rather
difficult to parse. The most obvious case concerns the
syntax of the generalised message interactions. The various
forms and optional terms are parsed essentially bottom up,
and are resolved via context-dependencies.

This, however, is justified on the grounds that it is a

- 133 -

highly localised- irregularity, and is included because the
resulting "chained" syntax is particularly attractive,
especially interactively, as it allows for various optional,
or default constructions. As message passing is fundamental
to the system, and as it is interactive, it was felt that it
was not prudent to clutter such constructions up with
brackets and other punctuation, simply to make it parse more
easily, especially as such constructions are susceptible to
typing errors. Nor was it desirable to split operations
into primitive actions, as this requires a lot of typing for
even simple interactions.

The recursion is broken when parsing expressions, as it is
felt that this is better done via iteration following an
operator precedence grammar. This is quite acceptable. The
recursive descent is employed mainly to parse the control
structures and follow the block structure, for which it is
very well suited.

As an example of tailoring the concrete syntax to aid the
compiler, the assignment statement is reversed from its
traditional form. The usual ":=" is now the "->" symbol, and
the 1-value is now on the right, with the r-value on the
left! The 'becomes equal to' is now 'goes into', following
the arrow. This is not really too confusing, so long as the
terras are not taken literally. The flip was made in order to
permit lists to be parsed properly. A list of identifiers
(1-values) to be simultaneously updated from a list value
cannot be readily distinguished from a list value enumerated
as the end of a block expression. This then is uprooting

— 134 —

the traditional syntax to conform with the LL(1) grammar, as
opposed to above where it was deliberately broken,

Error Detection.

There are three sources of error: context-free lexical
errors, ill-formed syntactic clauses, and context-sensitive
type errors. The simple lexical errors, unknown symbols
etc, are detected by the input scanner and are reported as
such. That which passes the lexical analyser is now in the
form of 'basic symbols', rather than in the form of the
concrete representation. Syntax analysis as such is
undertaken by a set of mutually recursive procedures, one
for each syntactic construction, and follows a recursive
descent.

Being one-pass the compiler takes the raw input and feeds it
thru the parser. During the descent the context sensitive
syntactic errors are detected and reported. On the way back
up from the recursion the compiler type matches the various
expressions, reporting any type errors. This technique
produces a small, fast and intelligible compiler, and its
error diagnostics are made clearer because the nature of an
error is clear as soon as it is detected. Because the
compiler cannot employ a complete static analysis of
expression types, it relies rather heavily on 'excess'
symbols, such as the " " and of message interactions.

Ecfoc Recovery.

Having detected an error a question naturally arises - what

- 135 -

degree of recovery should be attempted? There are various
levels of recovery which are employed by different
compilers, exploiting different aspects of the parsing
technique for their implementation. Of these the simplest of
all is to simply abandon the compilation, skipping over the
rest of the input. In an interactive environment this is
actually quite an attractive option, and to some extent it
has been adopted here.

Erroneous input will never be executed so if parsing
continues the code generation can be disabled, relieving the
burden of address calculation etc during the recovery. As
the system is interactive only one error message per faulty
statement is generated, so as to prevent ’the user being
flooded with diagnostics from a single line of input
(remember that an error detected deep in the recursive
descent is likely to generate others on the return).

The strategy adopted for Protocol is therefore quite
simplistic, there is after all little point having a
sophisticated scheme. When parsing at most one error report
is generated per statement, and if the input was a compound
statement (a sequence) then one is allowed per component.
This also applies to the on-line definition of library
routines, as they are simply named statements. In the case
of library definitions the listing, with any error messages
embedded in it, is stored in the library for later viewing,
and a report is delivered to the user informing him of the
success or failure of the addition. If this was indeed
faulty then it can be edited and recompiled.

~ 136

AÈ'l'l Code Generation.

The one-pass recursive nature of the compilation process is
exploited by embedding code to generate abstract code in
line, at the base of each level of recursion, so having
passed over the input text once, it is completely parsed and
the appropriate abstract code is planted.

We do not, as often seems to be the case, produce a parse
tree after the parse, and subsequently traverse this in
order to generate code or interpret it. We plant the code as
soon as it is available - at ' the base of each level of
recursion. If the parse was completely successful, with no
errors being detected then that code stream is sent to the
interpreter for immediate execution. This is quite straight
forward - there is no code to plant parse trees, none to
read them in and none to evaluate them, and there is no need
to store large tree structures, as we never explicitly
manipulate the parse as a tree, A tree is present,
conceptually at least, during the parsing, but it is
implicit, being embodied in the stack, as it follows the
recursive descent.

There are various reasons for choosing such a scheme.
Firstly, since the compiler works incrementally when
directly interacting with the user, it must generate code
quickly for the interpreter to work from, so we should make
as few passes of the input as possible. This code must be
produced at the time, not later on, and it must be self-
supporting, not be dependent upon code from the previous

- 137 -

input (now executed). Remember that when defining library
routines, which are compiled and stored for later execution,
such libraries must be compact, and be able to be called
upon at any time. Secondly, going straight into abstract
code is preferable, in an interactive situation, to holding
and incrementally updating parse trees, especially in the
case of library definitions.

In such 'hybrid' systems, where source is compiled into an
abstract code which is then interpreted, although a program
will run more slowly than one compiled into real code, the
abstract code can be designed so as to be extremely compact.
The degree to which this is possible depends upon the
'height' of the abstract machine above the real machine, in
relation to the language being coded. In Protocol this is
quite significant.

Traditionally incremental and interactive compilers have
tended to employ tree representations for the compiler
output. This is then interpreted, it being argued that this
is better than interpreting the source directly, as was the
case in the earliest interpreters. Interpreting from a
parse tree is only marginally better, as much time can be
spent 'walking' over the tree, and searching the environment
for entries, especially if such tables contain type matching
information.

The interactive nature of the applications being supported
by such compilers nowadays has though, one major crippling
effect on such tree based schemes, and this concerns the

138 —

patching up of trees after dynamic errors, or on-line
changes of lines of already parsed input.

This problem is made even more acute if the system is
enhanced to run faster by dynamically replacing the nodes of
a tree with values once the corresponding subexpressions
have been evaluated. Adjusting trees to follow changed
input is even more difficult in interactive compilers
working on block structured languages, as can be seen for
example in [C23, where this is discussed at some length, for
the case of LR(k) parsing.

The case against interactive systems working from tree-based
program representations is quite strong. Bornât [B13] notes
that because a program compiled into an abstract code is
already linearised, the interpretation of such code will be
faster than walking an equivalent tree structure.

One of the major reasons, it seems [B13] for the preference
for tree-walking interpreters in interactive systems is the
desire to be able to reconstitute the program from the tree,
by using an attached symbol table, in order to produce more
meaningful error diagnostics. That this is advocated surely
says more about the inadequacy of the error detecting
capabilities of such systems rather than the 'efficiency' of
tree structures! In some such systems the symbol table is
also used to hold type information, and this is searched
dynamically in order to perform run time type checking.

Protocol is not implemented in this way. Firstly the tagged
architecture of the abstract Protocol machine permits type

- 139 “

and constancy information to be part of a location along
with the value itself* This makes dynamic type checking
very simple and very fast. The space overhead needed for the
tagging depends upon the nature of the underlying real
machine. On a suitable machine this could be a non-existent
overhead. Even so the tags are likely to be no more costly
than the symbol tables, and are easier to use.

Secondly, despite the fact that Protocol throws away the
symbol table during the parsing process, making it
impossible to reconstruct a readable program from the
machine readable form, the library keeps a listing of each
routine, along with its abstract object code, and so it is
an easy matter to recall this to digest an error message.
Dynamic errors are reported in terms of routine name, line
number and a brief diagnosis of the error. Any run time
information, such as the actual as opposed to the expected
types, if the error was a type mismatch, can also be
provided, so it is an easy matter to determine the exact
cause, of an error. Once diagnosed the routine can be
corrected and recompiled for later use.

101._2 The Library.

In an interactive system it is frequently necessary to
either define new routines or adjust existing ones. The
Protocol Library assists here too. Because routines are
compiled straight into abstract code, and these tend to be
short, there is little overhead in completely recompiling
the body of a routine. This will most likely be no worse

- 140 -

than attempting to trace and patch up a parse tree,
especially in a block structured language. The system
therefore provides a simple editor for examining and
changing the library routines.

The very existence of the Library offers a degree of
abstraction not found in the Basic-like systems, and the
block structure together with the universal message passing
system make Protocol much more useful.

10.3 An Abstract Machine Architecture,

The Protocol system acts conversationally, permitting on­
line development of programs. The user's text is read in by
the compiler and this is compiled into instructions for an
abstract machine. This code is then executed by the system's
interpreter. In this way the interpreter effectively
simulates the abstract machine on the underlying real
computer. The notion of an abstract machine can be traced
back to the 'beta machine' of Randell and Russell and to
Landin's classic SECD machine [L5,R3,R4], These formed the
first real attempts to implement a software machine, and
because this approach permits the design of 'clean' high-
level machine structures it is now a widely accepted
technique for enhancing language portability. A discussion
on the motivations for such implementations can be found in
[E5] by Elsworth.

All of Protocol is constructed around this abstract machine.
The interpreter is its implementation on a given computer.

— 141 ~

To move the system to a different computer one must
reestablish the interpreter on that machine. We have
examined the Protocol compiler, and the way it handles the
source text, parsing it, checking it out, as far as it can,
generating the code for the interpreter, we will now
concentrate on the interpreter itself.

1^.3.3. Overview.

The abstract machine at the heart of the Protocol system
reflects the parallelism of the language. At any time the
system comprises the interactive outer level’s environment,
and an arbitrary and dynamically variable number of
instances of library routines. Each instance carries within
it sufficient information to permit the interpreter,
simulating the abstract machine, to switch between
instances, as circumstances demand, without loss of
continuity. This produces the illusion of concurrency.

Initially it executes in the outer interactive level,
switching to other instances whenever necessary. The rules
for such switching constitute a scheduling strategy. The
current Protocol strategy generally permits an instance to
run until it either waits for as yet unproduced input, or it
exits (either normally or with an exception), at which time
another instance, if one exists, is selected.

When an instance waits for input, its producer is
reinstated; this occurs recursively, until the desired value
is produced. This is the basic philosophy; it could be said

- 142 -

to be a "lazy" scheduler, as it doesn’t actually run
anything until it has to. Actually it is rather more
responsible than that, as it monitors the build up of
messages awaiting service and when things look as if they
are getting out of hand such as too many at a particular
instance the interpreter tries to reactivate that instance
in order to to clear the backlog.

It is quite straight forward to schedule an instance which
is blocked waiting for input (we start its companion), but
whenever one terminates, the system is examined and the
scheduler chooses one arbitrarily. In cases of abnormal
termination the system clears away the remains of the ailing
instance before reselection.

Each instance in the .system has certain information
representing its environment and state. This is called its
frame. The system scheduler works on a linked list of such
frames. Each frame includes, amongst other things, the
instances identity,- its title (definition name) , various
counters and machine registers, a pointer to its executable
code (in the library) and a pointer to its initial stack
segment, on which it operates when active. The list of
frames is also interlinked, or threaded, with pointers to
other frames, tracing out the master - slave hierarchy. The
current status of an instance (waiting, active, completed
and aborted) is held in the main list of frame pointers, for
the use of the scheduler.

Each frame has its own stack. This is private, so

- 143 -

communicating instances send messages to one another (rather
than take and leave items on each others stacks). This
involves a sender placing a message on the input queue
attached to the receiver instance’s frame. The input queue
is a linked list of messages, all of which are tagged with
the identity of the sender and its type (for the dynamic
type checker). Since it is a list, messages from a
particular source need only arrive in relative sequence,
they can be intermixed with messages from other sources.
This asynchronism is . important, as it is both in harmony
with the parallelism in the system and is tolerant of
variable transaction rates for any pair of communicating
instances. The scheduler can therefore select the next
instance without having to schedule according to as yet
unfinished transfers. It is akin to having a pool of message
buffers, commonly available, in which more can be sent even
though the consumer hasn’t yet received earlier messages.
This tolerance could not be achieved if instances had a
single (or some fixed number of) message buffer, as the
sender would then have to be delayed until the receiver had
cleared out his buffer! A discussion of the importance of
such tolerance to temporary overproduction of data, and its
associated asynchronism can be found in [C7].

The abstract Protocol machine is stack oriented, but rather
than employ one large stack, accessible to all instances,
each instance’s frame has a separate, much smaller stack.

As the number of instances in the system is dynamically
variable, with new ones being activated, and others

— 14 4 —

terminating or aborting, it is obvious that storage must be
dynamically allocated. In principle, however, there is no
reason to complicate the abstract machine; we could.give it
an infinite store, in which space is always available, and
simply forget about now unwanted store, and similarly, we
could regard the system as being composed of an infinite
number of instances, most of which are awaiting a routine
definition to execute.

The actual computer, on which this is being simulated (by
the interpreter) has, of course, an all too limited store,
and so a scheme must be devised for releasing and re-using
no longer needed storage. The interpreter, then, takes as
much store as it can get on the real computer, and starts
carving off space for instance frames and their associated
stack space, whenever an instance terminates the bulk of its
space is released, only a small epitaph (in the main list)
remains to say how it passed away (ie did it terminate or
did it abort) so that its companions may be informed as and
when necessary.

Whenever the system finds that it has allocated all of the
space initially available, it takes a survey of all the
still active instances, marks their space, and collects up
all of the remaining garbage (the space left by terminated
instances and obsolete data structures) for reuse. The
system scheduler, being all knowledgeable, can adjust its
scheduling strategy to suit the space constraints, when
space is plentiful it tends to create new instances' and
leave them as runable but as yet uninitiated, and continues

- 145 -

with the creator, until it has to wait. If the space begins ,
to run low then it senses the frequency of garbage
collections, and automatically changes gear, becoming more
conservative, running old instances trying to coerce them to
completion, and reading in messages, so as to release space.
The performance of such a strategy is naturally a matter of
fine tuning.

The interpreter acts, therefore, like a typical garbage
collector for a heap based language implementation. There
are obvious disadvantages: the heap might become hopelessly ij

I
fragmented, so making reuse difficult, and any system which J

Ihabitually grows too large on a small machine will have to |
:{take drastic action, but this is merely an indication that j
]the underlying computer is not sufficiently endowed, not a ;i
Ifault in the Protocol system. The infinite store is only an |

illusion in the implementation . I

The task of the garbage collector is simplified by the |
existence of the tagged memory. It only needs a pointer to |

jthe root of the main list of instance's frames, and from 1IIhere it can recursively descend all heap pointers. Thus it jIfollows the stacks, and the compound items residing in them, #
•jand traces the input queue of messages, marking all of the

heap blocks currently in use. The remaining heap blocks are |
ithen chained together, into a free-space list, with adjacent |
Ifree blocks being coalesced into a single bigger block. It

can identify every object it finds simply from the tag
field, so all that it need know about are those tags which
denote block pointers. As all items in the heap are acquired

— 146 —

from the system via an allocate instruction, all items in
the heap are blocks. As the entire store is arranged as a
heap of variably sized blocks it is clear that the garbage
collector is part of the fabric of the machine itself.

Pu Data Structures.

As far as the compiler is aware, all objects are placed on
the stack, and are all of the same size. This is an
important piece of deception, because as the the compiler
cannot always deduce the type of an expression it would not
be able to manipulate a multi-stack implementation. In the
case of simple objects, such as integers, this is straight
forward. In the case of strings (and other complex objects
such as lists and sets) the actual value on the stack is a
pointer to an object in the heap. This simple strategy
permits dynamically variable length objects to be
implemented easily. Thus arbitrarily long lists can be
formed. It is this too which provides the enhanced extents
needed to pass such compound objects out of scope and beyond
the lifetime of their creators. It is clear, then, that all
data objects are represented by some value on the stack, and
each is necessarily the same size.

The interpreter, in implementing the abstract machine, is
wholly responsible for management of the heap. The compiler
knows only of the stack, and is primarily concerned with
parsing and the generation of abstract code. It is
essential that the real and virtual stacks remain in phase
as they follow the block structure of the language. When a

*“ 147 —

block is left the stack is retracted to where it was prior
to block entry, thus disposing of space allocated to local
variables in that block instance.

Any block which ends with an expression produces a value.
This is at the top of the stack at block exit, so it is
copied down to the new stack top, ie to where the stack was
before block entry. The compiler knows whether or not it
wants the top of the stack to be copied down at this time,
and it informs the. interpreter via part • of the return
instruction.

The compiler is totally ignorant of the details of the
implementation of lists. It sees a list simply as a value on
the stack, and as we have seen all stack items are of the
same size, so a list must appear to be a normal value on the
stack. The interpreter, on finding a list on the stack
(deduced from its type tag), is responsible for tracing its
components in the heap. A list or a set is held as a bound
mass of values corresponding to the "individual components,
each tagged with its type. Thus lists, sets and strings
behave as normal objects on the stack. As Protocol is a
clean language strings, sets and lists can be passed around
and returned as block expressions. This presents no problem
because we use the heap.

Because Protocol upholds the principle of data type
completeness strings, lists or sets can be passed as
messages between instances, so they might be accessible to
many concurrent instances at once. It is therefore important

148 —

that operations on them leave them unchanged from the
viewpoint of the other instances using them. Update
operations on any string, list or set produce new values.
Lists and sets are loops in the language’s data space, not
loops back into the denotation space; that is they are
composed of values, not locations holding values.

The Instruction Set.

The abstract machine designed to support the Protocol system
has its own instruction set. It is these, together with the
storage management and i/o subsystem, which must be
simulated on a real computer in order to implement the
system.

There is a single instruction format. This is 16-bits long,
with 7-bits holding the actual operation code, giving 128 in
all, and some 9-bits of additional encoded information.

Some operations, mainly jump instructions, carry a code
address (offset in the abstract code stream) in this
information field. Such simple, one-word jump instructions
are therefore limited to a 512 word abstract code jump.
Although this sounds rather limited, the abstract code,
being quite 'high-level' is quite compact, and so a 512 word
jump range is actually sufficient.

As Protocol is an interactive system its routines are likely
to be very.small. If however, longer jumps are needed, then
auxiliary two-word jump instructions can be used which carry
the code address in the following word. Here though this is

- 149 -

not done.

Other instructions carry stack addresses, but most use this
instruction field to carry type or other flags to the
interpreter.

Many of the instructions are closely related to the state of
the stack. There are various instructions which load items
on to the stack. Most load values, of various types; one
loads, addresses, which are actually stack offsets to other
locations.

There are several jump instructions, which branch either
forward or backward depending on whether the stack top is
true or false, and can do so either leaving the stack as it
is, or popping the top element automatically, so making
things a little simpler for oft encountered sequences.
Similarly, there are two instructions specifically related
to the for-statement, stepping and testing the control
constant, which help speed up matters in such well defined
iterative sequences. Most of these instructions, although
commonly used, are derived directly from the work of
Morrison [M6], and are to be found in the S-algol abstract
stack machine [B2].

Although it would serve little purpose to describe in detail
each instruction in the repertoire of the abstract Protocol
machine, we will elaborate on those which relate to the
creation, closedown and interaction of the concurrent
instances which make up the system.

- 150 •

There are four such instructions

startup
exit
receive
send

and we shall take each in turn.

And Exit.

Loosely speaking, the startup instruction, the "new"
operator, is executed by an instance in order to cause a
thus-far dormant instance in the system to start executing
some definition. An instance runs until it either aborts, is
aborted or completes. It completes simply by ’dropping o u t ’
of the end of its definition. The last instruction in any
definition is exit. This informs the machine that this
instance is closing down so that* its space can be
reallocated. It also causes the system to recognise that it
will not be able to accept any more messages.

Interactions.

Messages are sent asynchronously, directly between
instances. This is called an interaction. The two message
oriented instructions handle all of the various possible
combinations of message passing, from simple sends or
receives to the more complex chaining operations.

These interactions are syntactically of the form;

value " " exp

- 151 -

for sending a message (of arbitrary complexity) , and

"(" ["first" I "latest") value [" exp] ")"

which requests the next message from the given source be
read in (in this case the optional send will be performed
first). The more complex interactions are;

chain ";" (value | "->" names)
where

chain = interaction { ";" interaction }
and

interaction = ["first" I "latest"] value [exp]

A few examples should suffice;

world _ "a message"
eval world
eval message
send(trailing)

input ; world __ "was the value received"
eval input
receive(first)
eval world
eval message
send(lOS, trailing) I for lOS see below 1

. input "prompt" : world __ as above"
eval input
eval message
send(trailing then setup)
receive(first)
eval world
eval message
send(lOS, trailing)

display __ rootcrate ; select _ N ; table ; world
eval display

152 -

eval message
send{ trailing then setup)
receive(first)
eval select
eval message
send(lOS and trailing then setup)
receive(first)
eval table
send(lOS then setup)
receive(first)
eval world
send(lOS only)

The send and receive instructions correspond to the isolated
sends (as in the first case), chained requests
(without sending some precursor message) as in the second
case for "input", and in the 'combined operations' (of
sending to and immediately requesting from a single
instance) as in each of the and formations. As can
be seen from the sample fragments of abstract code, in the
complete case the compiler actually plants pairs of
instructions, first to send then to receive a message from
the given target. In such cases this might well be
optimised to a single, heavily encoded instruction for the
entire interaction.

The receive instruction finds a value on the stack which
evaluates the source of the message. Its lower field carries
a flag indicating whether it is the first or the latest
message from that source that is required. The value on the
stack is replaced by the acquired value. A simple* send
instruction takes the message value itself above a target,
and both are removed from the stack after the operation.

The send instruction also handles the 'merging' of the

- 153 -

message, travelling left to right across the chain, and any
other message, ‘trailing’ behind the of the interaction.
For example, in:

input : world _ "was the value received"

the request {":'*) from "input" will produce a message, and
this will be ’merged’ into a list along with the ’trailing’
"was the value received", before this is sent ("_") off to
"world".

In this combined operation the following sequence of actions
takes place. Firstly the value "input" is stacked. A call to
request is made. The request is performed. The instance
will pick up the first (default) value in its message queue
which matches the desired source. If none is currently in
the queue, then the instance will sleep until after such a
message arrives. Having acquired the desired message, this
will replace the instance value on the stack.

The next part of the chain will then be performed, in the
knowledge that there is already an ’item on the stack’, or
IOS for short. This next operation loads the second
occurrence of "world" onto the stack. It also loads the
trailing message value, and then send is called. This is
informed that the IOS condition is true and so it merges the
value below the instance on the stack with the trailing
value above the instance value. This new message is left on
the top, replacing the trailing message as such. The send is
then performed, dispatching the merged message to the
instance value one down the stack. As it leaves the send

— 154 —

instruction tidies up the stack by removing however many
items were on the stack. In this case it would be three. If
there had just been a trailing message, or just a chained
message then it would have been two. After this combined
operation the 108 condition is false.

If the chain had been longer, as in the earlier parts of the
later examples, then the send would have left its instance
value on the top of the stack, for immediate use by the
following receive operation. This would push the acquired
value, leaving 108 true for the next interaction (or end-
of-chain assignment) to manage.

The simple receive instruction corresponds to the form:

"(" ["first" I "latest"] value [" " exp] ")"

which, after an optional initial send, receives a message
from the given source. Since the send is performed via a
trivial call to interact (with 108 false and trailing
message) which clears the stack, we duplicate the instance
value if there is a "_" following it. This preserves it for
the subsequent receive operation. Since this "("...")"
format produces a value to form an expression, this is not
really part of the sugared chained syntax. Note that the "("
and ")" brackets form a (split) operator, and are not simply
parsing brackets. Note that the following:

(input _ "? ?") ; world
eval input
duplicate
eval message
send(trailing)

- 155 -

receive{ first)
receive{ first)
eval world
send(lOS only)

is not the same as:

input _ "??" : world
eval input
eval message
send(trailing then setup)
receive(first)
eval world
send(lOS only)

because whereas the second form prompts the "input" instance
with "? ?" and then performs a request from this same
instance before sending the acquired value to world, the
first form prompts "input" with "? ?" and receives a message
from it before using the received value itself as the source
from which to acquire the value to be sent to world.

As a programming convenience the compiler permits the
omission of the "new" operator whenever it is ’obvious' that
a definition is to be coerced into a new instance value. The
send instruction might well find itself given a definition,
rather than an actual instance as its destination. In such
cases the send calls on the startup instruction, after
beautifying the stack to suit that expected by the startup,
and then it uses the newly created instance for the
transaction. This instance will therefore remain essentially
anonymous to the user, who neglected to store it for later
use. Such ’coerced' instances are only capable of single
interactions with their creators, unless the creator takes
the trouble to interrogate the system to determine its

- 156

companions.

A somewhat similar situation can arise in the case of the
receive instruction. When it is given a definition value,
rather than an instance value, it means that the user wishes
(either the first or the last) input from any instance
executing that particular definition. It will scan the queue
looking for such a source, and if it does not find one then
it will await such an arrival (actually it suspends itself).

Because the interactions are very high level, even in the
abstract machine, the code is very compact. For example a
chain with half a dozen sends and receives, involving a
total of five instances, will only be of the order of 26
bytes of abstract code.

Conclusions.

The raw instructions are not, of course, actually available
to the user, who need not know of the stack underlying the
computation. They are generated by the compiler as it parses
his high level text. This is considered to be better than
presenting the user with a naked stack machine of the same
power, as seems to have occurred in the very popular, but
difficult to use, ’threaded' [see D2 or D7 for this
technique] Forth [M4,J1] system. It is more important that
the user concentrate on the logic of his program, than be
needlessly concerned with the mapping of its computation on
a stack. The same stack machine can, no doubt, be more
effectively, and safely used, from the distance of a higher
level input language.

- 157 -

This is all the more true when we consider the machine
instructions which approach the level of the Protocol system
itself, such as the startup & exit instructions for spawning
and clearing away new instances in the system, which carry
out all of the housekeeping and storage management

jassociated with such activity. Likewise the send & receive iI
instructions for building and transmitting messages within j
the system, are too complex for hand-coding. !

!
jIn addition there are various instructions related to the I
Ibuilding and stripping of lists, and others for sets and j

strings. There is a plethora of instructions which enable /j
the instances in the system to interrogate their input jI
queues, and each other's status. All these are relatively |

1high-level instructions which one would not find on simpler |isequential machines. |1In the main, however, apart from the storage management, |j
which is totally dynamic, the tagged architecture for 1

I
dynamic type matching, and the more abstract instructions]

Imirroring the Protocol system the abstract machine is |
essentially a simple stack machine, and is easily '

jimplemented. -;i

- 158

11.0 References.

Al Ammann ü.
"The Method Of Structured Programming Applied To The
Development Of A Compiler"

Proc. Int. Comp. Symp. pp93~99 (1973)
North“Holland Publ. 1973

A2 Andler S.
"Synchronisation Primitives And The Verification Of
Concurrent Programs"

Carnegie-Mellon CS Report (1977)
A3 Andrews G.R. and McGraw J.R.

"Language Features For Process Interaction"
Proc. ACM Conf "Language Design For Reliable Software"
March 1977 in ACM SIGPLAN vol.12 ppll4-127 (1977)

A4 Apt K.R., Francez N. and De Roever W.P.
"A Proof System For Communicating Sequential Processes"
ACM TOPLAS vol.2 pp359-385 (1980)

A5 Atkinson L.V. and McGregor J.J.
"CONA - A Conversational Algol System"
Software vol.8 pp699-708 (1978)

B1 Backus J.
"Can Programming Be Liberated From The von Neumann
Style? A Functional Sytle And Its Algebra Of Programs"

CACM vol.21 PP613-641 (1978)
B2 Bailey P.J., Maritz P. and Morrison R,

"The Abstract S-algol Machine"
CS/80/- St.Andrews (1980)

B3 Balzer R.Mr
"Dataless Programming"
AFIPS vol.31 PP535-544 (19??)

B4 Balzer R.M.
"PORTS - A Method For Dynamic Interprogram
Communication And Job Control"

AFIPS vol.38 PP485-489 (1971)
B5 Barnes J.G.P.

"An Overwiew Of Ada"
Software vol.10 pp851-887 (1980)

B6 Barnett J.K.R.
"The Design Of An Inter-Task Communication Scheme"
Software vol.10 pp801-816 (1980)

B7 Barron D.W. et al
"The Main Features Of CPL"
Comp. J. ppl34-143 (1963)

159 -

B8 Battarel G.J. and Chevance R.J..
"Design Of A High-Level Machine" .
AFIP NCC 1979 pp649-655 (1979)

B9 Bell J.R.
"Threaded Code"
CACM vol.16 (6) PP370-372 (1973)

B10 Bernstein A.J.
"Output Guards And Nondeterminism In
‘Communicating Sequential Processes* "

ACM TOPLAS vol.2 pp234-238 (1980)
Bll Berry D.M.

"Language Design Methods Based On Semantic
Principles: - A remark of RD Tennants paper.
Algol-68, A Language Designed Using Semantic
Principles"

Acta.Inf vol.15 pp83-98 (1981)
B12 Bochmann G.V.

"Compile Time Memory Allocation For Parallel
Processes"

IEEE. Trans.SE. vol.SE-4 pp517~520 (1978)
B13 Bornât R.

"Understanding and Writing Compilers"
Macmillan Press. Ltd. (1979)

B14 Bos J. van den
"Comments On ADA.Process Communication"
ACM SIGPLAN vol.15 (6) p77 (1980)

B15 Bourne S.R.
"The UNIX Shell"
Bell Systems Technical Journal vol.57 (6/2)
PP1971-1990 (1978)

B16 Brinch Hansen P.
"The Architecture Of Concurrent Programs"
prentice-Hall Publ. (1977)

B17 Brinch Hansen P.
"Universal Types in Concurrent Pascal"
Inf.Proc.Lett vol.3 pl65 (1975)

B18 Brinch Hansen P.
"The Nucleus Of A Multiprogramming System"
CACM vol.13 PP238-242 (1970)

B19 Brinch Hansen P.
"The Purpose Of Concurrent Pascal"
ACM SIGPLAN vol.10 (6) pp305-309 (1975)

B20 Brinch Hansen P.
"A Programming Methodology For Operating System
Design"

- 160 -

In "Information Processing 74", Rosenfeld (Ed.)
North Holland, Amsterdam, p394 (1974)

B21 Brinch Hansen P.
"Structured Multiprogramming"
CACM vol.15 PP574-578 (1972)

B22 Brinch Hansen P.
"The Programming Language Concurrent Pascal"
IEEE. Trans. SE. vol.SE-1 (2) ppl99-207 (1975)

B23 Brinch Hansen p.
"Experience With Modular Concurrent Programming"
IEEE. Trans. SE. vol.SE-3 (2) ppl56-159 (1977)

B24 Brinch Hansen P.
"Distributed Processes : A Concurrent Programming
Concept"

CACM vol.21 (11) PP934-941 (1978)
B25 Brinch Hansen P.

"Concurrent Programming Concepts"
Comp.Surveys vol.5 (4) pp223-245 "(1973)

B26 Brinch Hansen P.
"Edison : A Multiprocessor Language"
Software vol.11 pp325-361 (1981)

B27 Brinch Hansen P. .
"The Design Of Edison"
Software vol.11 pp363-396 (1981)

Cl Campbell R.H. and H.abermann A.N.
"Specification Of Process Synchronisation By
Path Expressions"

In "Operating Systems" - Lecture Notes In
Computer Science 16, 1974.

C2 Celentano A.
"Incremental LR Parsers"
Acta.Inf vol.10 PP307-321 (1978)

C3 Cheatham T.E.
"The Recent Evolution Of Programming Languages".
,IFIP'71 PP118-134 (1971)

C4 Chu Y.
"High-Level Language Computer Architectures"
Academic Press Publ, (1975) - Editor

C5 Chu Y. and Cannon E.R.
"A Programming Language For High-Level Architectures"
AFIP NCC 1979 pp657-665 (1979)

C6 Coffman E.G., Elphick M.J. and Shoshani A.
"System Deadlocks"
Computing Surveys vol.3 pp67-78 (1971)

161

C7 Cohen D.
"Flow Control For Real-Time Communications"
ACM SIGCCR vol.10 PP41-47 (1980)

C8 Coleman D. et al
"An Assessment Of Concurrent Pascal"
Software vol.9 pp827-837 (1979)

Dl Dahl 0 .f and Nygaard K.
"SIMULA - An Algol-Based Simulation Language"
CACM vol.9 PP671-678 (1966)

D2 Dakin R.J. and Poole P.C.
"A Mixed Code Approach"
Comp.J. vol.16 (3) PP219-222 (1972/3)

D3 Dawson J.L.
"Combining Interpretive Code With Machine Code"
Comp.J. vol.16 (3) PP216-219 (1972/3)

D4 Dembinski P. and Schwartz R.
"The Taming Of The Pointer"
ACM SIGPLAN vol.?? pp60-73 (1977)

D5 Denning P.J.
"Why Not Innovations In Computer Architecture?"
ACM SIGCAN vol.8 (2) p4-7 (1980)

D6 Denning P.
"Third Generation Computer Systems"
Comp. Surveys vol.3 ppl75-216* (1971)

D7 Dewar R.B.K.
"Indirect Threaded Code"
CACM vol.18 (6) PP330-331 (1975)

D8 Dijkstra E.W.
"The Humble Programmer"
CACM vol.15 PP859-866 (1972)

D9 Dijkstra E.W.
"Hierarchical Ordering Of Sequential Processes"
In "Operating Systems Techniques" Academic Press
(1972), and
Acta.Inf. vol.l ppll5-138 (1971)

D10 Dijkstra E.W.
"The Structure Of ’THE’ Multiprogramming System"
CACM vol.11 PP341-346 (1968)

Dll Dijkstra E.W.
"Cooperating Sequential Processes"
In "Programming Languages" pp43-112 (1968)
Academic Press Publ.

162

D12 Donahue J.E.,
"Locations Considered Unnecessary"
Acta.Inf. vol.8 pp221-242 (1977)

D13 Doran R.W
"Architecture Of Stack Machines"
In "High-Level Language Computer Architecture"
Edited By Chu pp63-109 (1975)

El ESONE
"Real-Time Basic for CAMAC"
ESONE/RTB/0 2 (19 77)

E2 ESONE
"CAMAC - A Modular Instrumentation System For
Data Handling"

EUR 4100e (march 1969), TID-25875.
E3 ESONE

"The Definition Of I.M.L. - A Language For Use In
CAMAC Systems"

ESONE/lML/01, TID-26615.
E4 Ekanadham K. and Mahjoub A.

"Microcomputer Networks"
The Computer Journal vol.24 ppl7-24 (1981)

E5 Elsworth E.F.
"Compilation Via An Intermediate Language"
Comp.J. vol.22 PP226-233 (1979)

E6 Eventoff W . , Harvey D. and Price R.J,
"The Rendezvous And Monitor Concepts: Is There
An Efficiency Difference?"

ACM SIGPLAN vol.15 ppl56-165 (1980)
FI Fabry R.S.

"Capability-Based Addressing"
CACM vol.17 (7) PP403-412 (1974)

F2 Feiler P.H, and Medina-Mora R
"An Incremental Programming Environment"
CMU-CS-80-126, Carnegie-Mellon Univ. (1980)

F3 Feustel E.A.
"On The Advantages Of Tagged Architecture"
IEEE. Trans. Computers. Vol.C.22 pp644-656 (1973)

F4 Feustel E.A.
"The Rice Research Computer - A Tagged Architecture"
AFIPS SJCC vol.40 PP369-377 (1972)

F5 Foster J.M.
"A Syntax Improving Device"
Comp. J. vol.11 pp31~34 (1968)

F6 Frailey D.J.

- 163

"Innovations In Microprocessor Architecture
- Another View"

ACM SIGCAN vol.7 ppll-13 (1979)
F7 Freeman M., Jacobs W.W, and Levy L.S.

"On The Construction Of Interactive Systems"
AFIPS NCC 1978 pp555~562 (1978)

G1 Gentleman W.M.
"Message Passing Between Sequential Processes"
Software vol.11 pp435-466 (1981)

G2 Ghezzi C. and Mandrioli D.
"Augmenting Parsers To Support Incrementality"■
JACM vol.27 (3) pp 564-579 (1980)

G3 Ghezzi C and Mandrioli D.
"Incremental Parsing"
ACM TOPLAS vol.l (1) PP58-70 (1979)

G4 Goodenough J.B.
"Exception Handling: IssCies And A Proposed
Notation"

CACM vol.18 PP683-696 (1975)
G5 Gordon M.J.C.

"The Denotational Description Of Programming
Languages"

Springer-Verlag Publ. (1979)
G6 Gries D.

"Compiler Construction For Digital Computers"
Wiley Publ. (1971)

G7 Gunn H.I.E.
"hil Reference Manual"
CS/80/3 - St.Andrews (1990) '

G8 Gunn H.I.E. and Morrison R.
"On The Implementation Of Constants"
Inf.Proc.Lett. vol.9 (1) pl-4 (1979)

G9 Gunn H.I.E. and Harland D.M.
"Constancy In Programming Languages"
Inf.Proc.Lett. In Press (1981)

Hi Habermann A.N.
"Synchronisation Of Communicating Processes"
CACM vol.15 (3) PP171-176 (1972)

H2 Haddon B.K.
"Nested Monitor Calls"
ACM SIGOSR vol.11 (10) (1977)

H3 Haridi S., Bauner J-0., and Svensson G.
"An Implementation And Empirical Evaluation Of

— 164 —

The Tasking Facilities In Ada"
ACM SIGPLAN vol.16 pp35-47 (1981)

H4 Harland D.M.
"Concurrency In A Langauge Employing Messages"
Inf.Proc.Lett. vol.12 pp59-63 (1981)

H5 Harland D.M.
"On Facilities For Interprocess Communication"
Inf.Proc.Lett. vol.12 pp221-226 (1981)

H6 Harland D.M.
"On Facilities For Handling Exceptions And
Preventing Deadlock In A System Of Concurrent
Processes"
Inf.Proc.Lett. (Submitted 1981)

H7 Harland D.M.
"The Role Of Machines In Distributed Systems"
Inf.Proc.Lett. (Submitted 1981)

H8 Hehner E.C.R.
"On Removing The Machine From The Language"
Acta.Inf. vol.10 pp229-243 (1978)

H9 Heller G ., Kneis W . , Rerabold U. and Wiesner G.
"Standards And Proposals Of Industrial
Real-Time FORTRAN"

Ann.Rev.Auto.Prog. vol.9 pp9 5-10 7 (19 80)
HI0 Henderson P.

"An Approach To Compile Time Type Checking"
IFIP'77 PP523-527 (1977)

Hll Hewitt C.
"Viewing Control Structures As Patterns Of Passing
Messages"

AI vol.8 PP323-364 (1977)
H12 Higley

"Type Checking In A Typeless Language"
Comp. J pi06 (1976)

H13 Hoare C.A.R.
"Monitors : An Operating System Structuring Concept"
CACM vol.17 p549 (1974)

HI4 Hoare C.A.R.
"An Axiomatic Basis For Computer Programming"
CACM vol.12 PP576-583 (1969)

HIS Hoare C.A.R.
"Communicating Sequential Processes"
CACM vol.21 PP666-677 (1978)

H16 Holt R.C. et al
"Structured Concurrent Programming With Operating

- 165 - 1

System Applications" j
Addison-Wesley Publ. (19 78) j1

H17 Howard J.H. j
"Proving Monitors" I
CACM vol.19 PP273-279 (1976) Ij

11 I.B.M. j
"PL/I Language Reference Manual" |
(1969) j

12 Ichbiah J.D. et al j
"Rationale for the design of the ADA programming |
language"]

ACM SIGPLAN vol.14 (6) (1979)]
1J1 . James J.S. i

"FORTH For Microcomputers" j
ACM SIGPLAN vol.13 pp33-39 (1978) |

J2 Jamnel A.J. and Steigler H.G. 1
"Managers vs Monitors" j
IP'77 p827 (1977) - 1

1J3 Jamnel A.J. and Steigler H.G. {
"On Expected Costs Of Deadlock Detection" 3
Info.Proc.Lett vol.11 pp229-231 (1980)]IJ4 Jones D.W. |
"Tasking and Parameters ; A Problem Area In Ada" j
ACM SIGPLAN vol.15 (5) p37 (1980) 1

K1 Kahrs M.
"Implementation Of An Interactive Programming
System"

ACM SIGPLAN vol.14 pp76-82 (1979)
Symposium on "Compiler Construction".

K2 Kaubisch W.H., Perrott R.H. and Hoare C.A.R.
"Quasi-Parallel Programming"
Software vol.6 p341 (1976)

K3 Keedy J.J.
"On Structuring Operating Systems With Monitors"
ACM SIGOSR vol.13 (1) pp5-9 (1979)
and in Aust.Comp.J. vol.10 pp23-27 (1978)

K4 Kernighan B.W. and Plauger P.J.
"Software Tools"
Addison-Wesley Publ, (1976)

K5 Kernighan B.W. and Ritchie D.M
"The C Programming Language"
Prentice-Hall Publ, (1978)

K6 Kessels J.L.W.
"An Alternative To Event Queues For Synchronisation

- 166

In Monitors"
CACM vol.20 (7) PP500-503 (1977)

K7 Kieburtz R.B.
"Programming Without Pointer variables"
ACM Conf on "Data Abstraction, Definition & Structure"
(1976)

K8 Knuth D.E.
"Top Down Syntax Analysis"
Acta.Inf. vol.l pp79-110 (1971)

K9 Koblitz W.
"Real-Time BASIC: A Suitable Tool For
Process Control"

Ann.Rev.Auto.Prog. vol.9 pp61-66 (1980)
K10 Koblitz W, et,al

"Industrial Real-Time FORTRAN"
EÜRO-IFIP PP21-25 North-Holland Publ. (1979)

Kll Kratzer G. and Schrott G.
"Interfacing Real-Time Operating Systems To
Process Control Languages"

Ann.Rev.Auto.Prog. vol.9 ppl-16 (1980)
K12 Krull F.N.

"Experience With ILIAD: A High-Level Process
Control Language"

CACM vol.24 PP66-72 (1981)
LI Lagally K.

"Synchronisation In Layered Systems"
Lect.Notes In Op. Sys. - An Adv. Course p254

L2 Lampson B.W. and Redell D.D.
"Experience With Processes And Monitors In Mesa"
CACM vol.23 (2) ppl05-117 (1980)

L3 Land in P.J,
"A Correspondence between Algol-60 and Church’s
Lambda-Notation"

CACM vol.8 (2) and (3) pp89-101 and ppl58~165 (1965)
L4 Landin P.J.

"The Next 700 Programming Languages"
CACM vol.9 (3) PP157-164 (1966)

L5 Landin P.J.
"The Mechanical Evaluation Of Expressions"
Comp.J. vol.6 (4) pp308-320 (1964)

L6 Ledgard H.F. and Marcotty M.
"A Genealogy Of Control Structures"
CACM vol.18 PP629-639 (1975)

L7 Levin R.

- 167 -

"Program Structures For Exceptional Condition
Handling"

Ph.D. Thesis, Computer Science, Carnegie-Mellon
(1977) [See summary in Wand,1979]

L8 Lewis A.
"Definition Of The CAMAC Intermediate Language"
ESONE SWG-20 (19 73)

L9 Liskov B.
"Primitives For Distributed Computing"
ACM SIGOSR vol.?? PP33-42 (1979)

L10 Lister A.M.
"The Problem Of Nested Monitor Calls"
ACM SIGOSR vol.11 (2) (1977)

Lll Lister A.M. and Sayer P.J.
"Hierarchical Monitors"
Software vol.7 p613 (1977)

LI2 Lister A.M. and Maynard K.J.
"An Implementation Of Monitors"
Software vol.6 pp377-386 (1976)

LI3 Lohr K.
"Beyond Concurrent Pascal"
Proc. 6th ACM Symp. "Operating System Principles"
in ACM SIGOSR vol.11.(5) ppl73-180 (1977)

LI4 Lomet D.B,
"Process Structuring, Synchronisation, And
Recovery Using Atomic Actions"

ACM SIGPLAN vol.12 ppl28-137 (1977)
LI5 Lucas P.

"Formal Definition Of Programming Languages And
Systems"

IFIP'71 PP110-116 (1971)
LI6 Luckham D.C. and Polak W.

"Ada Exception Handling; An Axiomatic Approach"
ACM TOPLAS vol.2 pp225-233 (1980)

L17 Lycklama H. and Bayer
"The MERT Operating System"
Bell Systems Techinical J. [UNIX] vol.57 (6/2)
PP2049-2086 (1978)

Ml Mahjoub A.
"Some Comments On Ada As A Real-Time Programming
Language"

ACM SIGPLAN vol.16 pp89-95 (1981)
M2 McCarthy J. et al

"LISP 1.5 Programmer’s Reference Manual"
MIT Press (1965)

168

M3 McMahan L.N. and Feustel E.A.
"Implementation Of A Tagged Architecture For
Block Structured Languages"

ACM/IEEE Symposium "High-Level Language Computer
Architectures" in ACM SIGARCH/SIGPLAN Issue
pp91-100 Nov 1973

M4 Moore C.H.
"FORTH : A New Way To Program A Minicomputer"
Astronomy & Astrophysics Suppl. vol.15 pp497-511
(1974)

M5 Morrison R.
"S-algol Reference Manual"
CS/79/1 - St.Andrews (1979)

M6 Morrison R.
"On The Development Of Algol"
Ph.D Thesis St.Andrews (1980)

M7 Morrison R.
"A Method Of Implementing Procedure Entry And Exit
In Block Structured High-Level Languages"

Software vol.?? pp537-539 (197?)
M8 Myers G.J.

"Advances In Computer Architecture"
McGraw-Hill Publ. (1978)

M9 Myers G.J. and Buckingham B.R.S.
"A Hardware Implementation Of Capability-Based
Addressing"

ACM SIGCAN vol.8 (6) ppl2-24 (1980)
N1 Narayana K.T., Prasad V.R and Joseph M.

"Some Aspects of Concurrent Programming In CCNPASCAL"
Software vol.9 p 749 (1979)

N2 Naur P. et al
"Revised Report On The Algorithmic Language Algol-60"
CACM vol.6 (1) ppl-17 (1963)

N3 Nehmer J.
"The Implementation Of Concurrency For A PL/l-like
• Language"
Software vol.9 ppl043-1057 (1979)

N4 Neumann J. von., Burks A.W. and Goldstein H.H.
"Preliminary Discussion Of An Electric Instrument"
Inst. For Advanced Studies. Princeton (1947)

N5 Nuclear Enterprises Ltd.
"CAMAC Product Range" - Sales and Technical Info

01 Organick E.I.
"Computer System Organisation - B5700/6700 Series"

- 169 -

Publ. Academic Press (1973)
Pi Parnas D.L.

"The Non-Problem Of Nested Monitor Calls"
ACM SIGOSR vol.12 (1) ppl2-14 (1978)

P2 Parnas D.L.
"On A 'Buzzword' - Hierarchical Structure"
IFIP'74 PP336-339 North-Holland Publ. (1974)

P3 Peccoud M. et al
"Incremental Interactive Compilation"
IFIP '68 PPB33-B37 (1968)

P4 Popplestone R.J.
"The Design Philosophy Of Pop-2"
In "Machine Intelligence 3" edited by Michie D.

P5 Prasad V.R.
"Variable Numbers of Parameters In Typed Languages"
Software vol.10 pp507-518 (1980)

P6 Pyle I.e.
"I/O In High Level Programming Languages"
Software vol.9 pp907-914 (1979)

Rl Radue J.E. and Mullins J.M.
"Solving Synchronisation Problems Using Semaphores"
Software vol.5 pp51-64 (1975)

R2 Ramsperger N.
"Concurrent Access To Data"
Acta.Inf. vol.8 pp324-334 (1977)

R3 Reynolds J.C.
"Definitional Interpreters for higher-order
programming languages"

proc 27th ACM Nat. Conf. pp717-740 (1972)
R4 Reynolds J.C.

"GEDANKEN : A Simple Typeless Language Based On
The Principles
Of Completeness And The Reference Concept"

CACM vol.13 (5) pp??-?? (1970)
R5 Richards M.

"BCPL ; A Tool For Compiler Writing And System
Programming"

AFIPS SJCC PP557-566 (1969)
R6 Richards M. , Aylward A.R., Bond P., Evans R.D, and Knight B.J

"TRIPOS - A Portable Operating System"
Software vol.9 pp513-526 (1979)

R7 Ritchie D.M.
"The UNIX I/O System"
UNIX Documentation (level-6). Bell Systems.

170 -

R8 Ritchie D.M. and Thompson K.
"The UNIX Time-sharing System"
CACM vol.17 PP365-475 (1974)

R9 Russell B.
"On An Equivalence Between Continuation And Stack
Semantics"

Acta.Inf. vol.8 ppll3-123 (1977)

51 Sale A.H.J.
"Addition Of Repeat And Until As Identifiers"
ACM SIGPLAN vol.16 pp98-103 (1981)

52 Schild R, and Lienhard H.
"Real-Time Programming In PORTAL"
ACM SIGPLAN vol.?? pp79-92 (1980)

53 Schmid H.A.
"On The Efficient Implementation Of Conditional
Critical Regions And The Construction Of Monitors"

Acta.Inf. vol.6 pp227-249 (1967)
54 Schuller G-

"Conversation Among Processes"
?? PP460-469 (197?)

55 Scott D. and Strachey C.
"Towards A Mathematical Semantics For Computer
Languages"

In "Computers And Automata" ppl9-46 (1972)
Wiley Publ,

56 Silberschatz A.
"On The Access-Control Mechanism Of The Program
Component Manager"

Software vol.11 ppl59-166 (1981)
57 Silberschatz A.

"On The Synchronisation Mechanism Of The Ada Language"
ACM SIGPLAN vol.16 pp96-103 (1981)

58 Silberschatz A.
"Port Directed Communication"
The Computer Journal vol.24 pp78-82 (1981)

59 Silberschatz A., Kieburtz R. and Bernstein A.
"Extending Concurrent Pascal To Allow Dynamic
Resource Management"

IEEE. Trans. SE. vol.SE-3 (3) pp210-217 (1977)
S10 Stephens C.L.

"A Consumer's Guide To CAMAC Software"
ESO/SRC (UK) PP76-92 (1978) Geneva
"Applications Of CAMAC To Astronomy"

■'4!

171

S U Strachey C.
"Varieties Of Programming Languages"
In "High Level Languages" Infotech State Of The
Art Report No.7

512 Strachey C.
"Fundamental Concepts In Programming Languages"
OU PRG (197?)

513 Strachey C.
"Towards A Formal Semantics"
In "Formal Language Description Languages"
North-Holland (1966)

514 Strachey C. and Wadsworth C.P.
"Continuations - A Mathematical Semantics For
Handling Full Jumps"

OU PRG-11 (1974) Oxford.
515 Stroet J.

"An Alternative To The Communication
Primitives In Ada"

ACM SIGPLAN vol.15 pp62-74 (1980)
T1 Tennent R.D.

"Language Design Methods Based On Semantic Principles"
Acta.Inf. vol.8 pp97-112 (1977)

T2 Tennent R.D.
"The Denotational Semantics Of Programming Languages"
CACM vol.19 (8) PP437-453 (1976)

T3 Thompson K.
"The UNIX Command Language"
In "Structured Programming" Infotech pp375-384 (1976)

T4 Turner D.A,
"Error Diagnosis & Recovery In One Pass Compilers"
Inf.Proc.Lett vol.6 (4) ppll3-115 (1977)

T5 Turner D.A,
"Programs That Are Better - In Any Language"
Datalink 8/9/80

T6 Turner D.A. and Campbell R.W.
"SASL Language Reference Manual"
CS/-/79 (Revised)

W1 Wand I.e.
"Systems Implementation Languages and IRONMAN"
Software vol.9 pp853-878 (1979)

W2 Wand I.C.
"Dynamic Resource Allocation And Supervision With
The Programming Language MODULA"

Computer J. vol.23 ppl47-152 (1980)

.7 2

W3 Ward S.A. and Halstead R.H.
"A Syntactic Theory Of Message Passing"
Journal ACM vol.27 pp365-383 (1980)

W4 Wegner P.
"Data Structure Models For Programming
Languages"

ACM SIGPLAN vol.6 ppl-54 (1971)
W5 Weinberg G.M.

"The Psychology Of Computer Programming"
Van Nostrand Reinhold Publ. (1971)

W6 Welsh J. and Bustard D.W.
"Pascal-Plus = Another Language For Modular
Multiprogramming"

Software vol.9 p947 (1979)
W7 Welsh J. and McKeag M.

"Structured System Programming"
Publ. Prentice-Hall International

W8 Welsh J. and Lister A. M.
"A Comparative Study Of Task Communication In Ada"
Software vol.11 pp257-290 (1981)

W9 Welsh J., Lister A.M. and Salzman E.J.
"A Comprison Of Two Notations For Process
Communication"

In "Language Design And Programming Languages"
Lecture Notes in Comp.Sci No.79 (1980) Tobias (ed.)

W10 Wettstein H.
"The Implementation Of Synchronisation Operations
In Various Environments"

Software vol.7 ppll5-126 (1977)
Wll Wettstein H. and Merbeth G.

"The Concept Of Asynchronisation"
ACM SIGOSR vol.14 pp50-70 (1980)

W12 Whitby-Strevens C . , May M.D., Taylor R, and Booth T.
"The Distributed Computing Research Project"
Collected Papers,
Dept Computer Science, Warwick (April 1978)

W13 Wijngaarden van et al
"Revised Report on the Algorithmic Language Algol-68"
Acta.Inf. vol.5 ppl-236 (1975)

W14 Wilner W.T.
"Design Of The B1700"
AFIPS vol.41 PP489-498 (1972)

W15 Wilner W.T,
"B1700 Memory Utilisation"

173

AFIPS vol.41 PP579-589 (1972)
WIG Wirth N.

"Modula : A Language For Modular Multiprogramming"
Software vol.7 p3 (19 77)

W17 Wirth N.
"The Programming Language Pascal"
Acta.Inf. vol.l pp35-63 (1971)

W18 Wirth N.
"On The Design Of Programming Languages"
IFIP-74 North-Holland Publ. pp386-393 (1974)

W19 Wirth N. j
"What Can We Do About The Unnecessary Diversity Of I
Notation For Syntactic Definition?"

CACM (november) (1977)
W20 Wirth N.

"Toward A Discipline Of Real-Time Programming"
CACM vol.20 (8) PP577-583 (1977)

W21 Wulf W.A., Russell D.B. and Habermann A.N.
"BLISS : A Language For System.Programming"
CACM vol.14 (12) PP780-790. (1971)

W22 Wulf W.A. et al '
"Reflections On A System Programming Language"
ACM SIGPLAN vol.G (9) pp42-49 (1971)

