
AN EXPERIMENT IN HIGH-LEVEL MICROPROGRAMMING

John F. Sommerville

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1977

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13423

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13423

AN EXPERIMENT IN HIGH-LEVEL MICROPROGRAMMING

ABSTRACT

This thesis describes an experiment in developing a true high-level

microprogramming language for the Burroughs B1700 series of computers.

Available languages for machine description both at a behavioral .level

and at a microprogramming level are compared and the conclusion drawn

that none were suitable for our purpose and tl^^*t it was necessary to

develop a new language which we call SUILVEN.

SUILVEN is a true high-level language with no machine-dependent features.
It permits the exact specification of the size of abstract machine data
areas (via the BITS declaration) and allows the user to associate structure
with these data areas (via the TEMPLATE declaration), SUILVEN only
permits the use of structured control statements (if~then-~else, while-do
etc,) - the goto statement is not a feature of the language. SUILVEN is

compiled into microcode for the B1700 range of machines. The compiler is

written in 5N0B0LT and uses a top-down recursive descent analysis technique.

Using abstract machines for PASCAL and the locally developed SALE, SUILVEN
was compared with other high and low level languages. The conclusions .

drawn from this comparison were as follows:-

(i)

(ii)

(ii.i)

SUILVEN was perfectly adequate for describing simple S-machines
SUILVEN lacked certain features for describing higher-level machii
The needs of a machine description language and a microprogram
implementation language are different and that it is unrealistic
to attempt to combine these in a single language.

ProQuest Number: 10167173

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.
ProQuest 10167173

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

7-•'< K';"' / ’,\ ?v'*-***-'W

AN EXPERIMENT IN
HIGH-LEVEL MICROPROGRAMMING

JOHN F. SOMMERVILLE

-S'- %

This thesis descibes an experiment in developing and evaluating
a high-level microprogramming language for the Burroughs B1700
series of computers.

The work on this project was carried out in the Department of
Computational Science, University of St Andrews in fulfilment
of the requirements for the degree of Doctor of Philosophy.

The study and research' for this thesis has been carried out
by myself and the thesis has been composed by myself.

The thesis has not been accepted in fulfilment of the requirements
of any other degree or professional qualification.

ACKNOLFECGMENTS

Thanks are due to the staffs of the Ceparment of Computational

Science and the Computing Laboratory in the University of

St Andrews, who provided help and encouragement during the course

of this progect. Special mention must be made of Mr R, Morrison,

the project supervisor and Professor A.J\ Cole,

I'&

CONTENTS

PAGE

1 . INTRODUCTION
1.1 The General .Area of Research
1.2 The Particular Area of Research
1.3 The Structure of the Thesis

2. BACKGROUND MATERIAL
2.1 Machine Description Languages

2.1.1 APL
2.1.2 AHPL
2.1.3 SED-ALGOL
2.1.4 APDL
2.1.5 ISP
2.1.6 MDL

2.2 The Design of the B1700
2.2.1 Store Utilisation
2.2.2 Program Execution Speeds
2.2'.3 System Performance Analysis
2.2.4 The B1700 - A Summary

2.3 Microprogramming the B1700
2.3.1 The B1700 Microarchitecture
2.3.1 MIL
2.3.3 BML
2.3.4 MPL1700

2.4 Microprogramming Languages for Other Machines
2.4.1 The Datasaab FCPU Microprogramming

Language
2.4.2 The MLP-900 Microprogramming Language
2.4.3 MPL - A Machine Independent

Microprogramming Language
2.5 Summary .

3. SIMULATING THE B1700 SYSTEM
3.1 An Overview of the Haddwrre Simulatop Pgrgram

3.1.1 The Structure of the SimulatorProgram
3.1.2 Simulating the Arithmetic and Logical

Unit
. 3.1.3 Simulating the B1700 Memory Management

System

1
2
7
1 1

13
15
17
17
18
19
20
23
25
27
28
29
30
32
33
35
37
38
41
41
43
44
46

49
51
51
53
54

PAGE

3.2 Extensions Mude tc the B1700 Simulator
3.2.1 Additional Simulator Microinstructions
3.2.2 System Measurement

57
57
59

3.3 A Translator Ocr MIL 60
3.3.1 The TranslationProgram 62
3.3.2 IntermedLagt Machant Language 65

3.4 The Output Produced by the Simulation System 66
3.5 An Evaluation oO the Simulation System 72

3.5.1 The PerOormance oO the System 72
3.5.2 DeOects and Improvements 74

3.6 Summary and Conclusions 76

4. THE PROGRAMMING LANGUAGE SUILVEN 78

4. 1 Programming Language Design 79
4.1.1 Storage Allocation 80
4.1.2 Program Control Constructs 81

4.2 InOluences on the Design oO SUILVEN 82
4.3 The Structure oO a SUILVEN Program 84
4.4 SUILVEN Declarations 85

4.4. 1 Macro Declarations 86
4.4.2 Data Area Declarations 86
4.4.3 Structure Declarations 88
4.4,4 Flag Declarations 90
4.4.5 Procedure Declarations 91
4.4.6 Local Declarations 93
4.4.7 RedeOining the Structure oO Data Areas 93
4.4.8 The REDIMENSION Statement 95

4.5 Expressions in SUILVEN 99
4.5. 1 Bits Expressions 99
4.5.2 Logical Expressions 101

4.6 SUILVEN Statements 102
4.6. 1 The Assignment Statement 102
4.6.2 Procedure Calls 103
4.6.3 SUILVEN Control Statements 104
4.6.4 The IO and While Statements 105
4.6.5 The Case Statement 106
4.6.6 The Repeat-Until-Do Statement 108
4.6.7 The Exit and Stop Statements 1 10

4.7 Using SUILVEN to Describe an IBM S/360 Computer 1 10
4.8 Summary and Conclusions 1 17

5. THE IMPLEMENTATION. OF SUILVEN
5.1 Compiler Design
5.2 The Compiler Progranmiing Language
5.3 The SUILVELN Compiler
5.4 The Implementation of ILIENEN’s Dutu

Description Features
5.4.1 The Symbol Table
5.4.2 The Template Table

120

120
124
127
130
131
133

PAGE

5.4.3 Local Declarations 135
5.4.4 The Procedure Table 137

5.5 Compiling SUILVEN Statements 138
5.6 SUILVEN Input/Output Features 140
5.7 Code Optimisation 142

5.7.1 Microcode Inefficiencies 143
5.7.2 Minimising Register/Store Data Transfers 144
5.7.3 Eliminating Redundant Microinstructions 148

5.8 The Lineprinter Output Produced by the SUILVEN
Compiler 154

5.9 Statistics Concerning the SUILVEN Compiler 155
5.10 Summary 156

6. THE IMPLEMENTATION OF ABSTRACT MACHINES 157

7.

6.1
6.2
6,3

6,4

6.7

6.8

Abstract Machine Interpreters 158
The PASCAL Machine 160
Implementing the P-machine in SUILVEN 162
6.3.1 Implementation Data for the SUILVEN

P-machine 164
A Comparison of P-machine Implementations 165
6.4.1 SUILVEN and PASCAL 165
6.4.2 SUILVEN and PL360 168
The SASL Machine 169
Implementing the SASL Machine in SUILVEN 172
6.6.1 Data on the SASL Machine Implementation 179
A Comparison of SASL Machine Implementations 180
6.7.1 and BCPL 181
6.7.2 SUILVEN «rnd MIL 183
Summary and Conclusions 186

CONCLUSIONS 188

7. 1
7.2

7.3
7.4
7.5

The B1726 Simulator
SUILVEN as a Machine Description and
Implementation Language
7.2.1 Structured Data Operations
7.2.2 Recursive Machine Instructions
Comparison of Abstract Machines
General Conclusions
Future Research

190
192
195
197
199
201
204

6.5
6.6

REFERENCES 206

APPENDIX 1
A DESCRIPTION OF THE MICROPROGRAMMING LANGUAGE SUILVEN

APPENDIX'2
THE MICROARCHITECTURE OF THE B1700

APPENDIX 3 .
EXAMPLES ,

APPENDIX 4
AN ALGORITHM DESCRIPTION LANGUAGE

CHAPTER 1

INTRODUCTION

The research project described in this thesis originated from
a dissatisfaction with the current state of programming language
implementation, coupled with a belief that it was possible to
improve that situation.

In particular, we were unhappy about the discrepancy between the
machine-level facilities which we regard as necessary for the
efficient implementation of high-level programming languages,
and the actual facilities provided by most current machines.
Therefore, the broad objective of our research was to study
means of reducing this discrepancy by designing and constructing
machines specifically geared towards executing high-level
programming languages.

The material in this introductory chapter is split into three
sections:-

(i) An overview of the general area of research.

(ii) A brief description of our particular research area.

(iii) An outline of the structure of the remainder of the
thesis.

/’ >W„,. !• s?. ' • ' -"«T^ Y--- ' V V ?'

1.1 The General Area of Research

The development and implementation of high-level programming languages
is essential to the successful application of computers to the
solution of user-defined problems. Such languages must offer
particular problem-solving facilities without imposing a
severe cost overhead for the provision of these facilities. The
general area of our research was to study techniques for achieving
this aim.

Programming language implementation has been the subject of much
research and, indeed, many of the problems associated with
compilation have been solved. However, the implementation of
a high-level language on most current computers is still a
difficult and time-consuming task. Common difficulties arise
in the implementation of both special-purpose and general-purpose
programming languages.

These difficulties are largely due to the incompatibility between
current machine architectures and the machine facilities required
for the efficient implementation of high-level programming
languages. In particular:-

(i) Artificial restrictions must be imposed on the high-level
language to avoid heavy run-time penalties. For example,
the overhead involved in run-time type checking, input-
output, and dynamic storage allocation can be severe. Thus,
powerful programming languages such as EULER, GEDANKEN,
LISP, and SNOBOL become too inefficient for widespread
use.

-3-

(ii) As current machine architectures are rarely oriented
towards the execution of high-level programming languages,
compilers must include extensive translation and optimisation
facilities. The high-level language shields the programmer
from, the limitations of the machine, and he is often
unaware of the space/time requirements of his executing
code. This means that there is often no a priori method
of determining the ’best’ algorithm for solving a problem
in a high-level language.

(iii) Generally, the machine architecture and instruction sets
of machines marketed by different manufacturers are distinct.
Hence, the implementation of a high-level language is
usually ’once-off* and geared to a particular machine.
Attempts to provide portable compilers can result in
system inefficiencies or, the re-implementation of a
compiler may require a programming effort which is almost
as great as that involved in initially implementing that
compiler.

The development of high-level languages has demonstrated that
problem areas may usefully be categorised - numerical programming,
list processing, text handling, etc, etc. It seems natural to
develop separate programming languages specifically designed
for encoding solutions to problems in each area and allow the
user to tune this problem-oriented machine to his own application.
Each of these problem-oriented languages should execute efficiently
on a computer whose primitive operations and data types reflect
the needs of its high-level language.

4-

This language-oriented approach to machine design has been adopted
by the Burroughs Corporation, initially in the B5000 range of
machines described by Lonergan and King(Ll), and more recently
in the B5700/6700 machines, described by Organick(Ol). These
machines are oriented towards the efficient implementation of
an extended ALGOL60, and include hardware features such as a
stack, descriptor-based data organisation, and a reverse Polish
instruction set.

However, the implementation of a language-oriented machine as .
a hard-wired unit,imposes restrictions on the implementation of
programming languages, other than the language for which the machine
is designed.

For example, the implementation of programming language compilers
on B5700 computers is fraught with difficulty. Although the stack-
based architecture suits many high-level languages, the machine
instructions, data organisation, and conventions used by this
machine are not necessarily suitable for ■ /other high-level
languages. Adapting compilers to fit this strictly ALGOL-oriented
organisation. is extremely difficult:.

Because of the restrictions imposed by a hard-wired machine
geared towards a particular language, it is desirable that a
language-oriented machine be available for executing each
programming language. Presently, the only economically viable
means of providing each language with its own machine is to
emulate that machine using a computer program. Such a machine
is known as an abstract machine, a virtual machine, a soft machine,

-5'

or an s-macbine. These terms are used interchangeably throughout
this thesis.

An early use of this language-oriented soft machine approach,
was in the implementation of the Whetstone compiler for ALG0L60,
described by Randell and Russell(Rl). In this case, code was
generated for an ALGOL-oriented machine called the Beta machine,
and this was implemented via an interpreter. The Beta machine
is an early example of a stack-oriented s-machine with an
instruction set designed to efficiently implement ALGOL60. In
particular, instructions for procedure entry and exit, and array
bound checking are included.

Other implementations of language-oriented s-machines include
Griswold's SNOBOL machine(G1.,G3), and a machine.'designed for
text handling applications, described by Poole et al(Pl). Unlike
the Beta machine, these machines were not implemented via an
interpreter, but were bootstrapped onto a host machine using
a macro processor to generate host machine code from the abstract
machine code. ' •

More recent soft machine implementations include the P-code
machine for PASCAL, which is described by Jensen(Jl), and a
development of Landin's SECD machine(L2). This machine has
been designed to efficiently execute a list-processing language
called SASL, described by Turner(Tl). Both the PASCAL and the
SASL machine are interpretatively implemented, and are discussed
in more detail in subsequent chapters of the thesis..

_ ■-_ <

*-6-

iln designing a language-oriented soft machine there are three
major factors which must be taken into consideration. These are:-

(i) The ’fit’ between the soft machine and the high-level
language.

(ii) The ’fit’ between the soft machine and the underlying
hard-wired machine.

(iii) The tools available for designing and implementing the
soft machine.

An s-machine for a high-level language may be designed by
incorporating instructions in that machine which directly implement
the primitive operations of the high-level language. Examples ,
of such operations might be procedure entry in ALGOL or record
referencing in PASCAL. This approach avoids the generation of
extra code by the compiler, reduces the demands made on the run­
time system,-and produces compact code. Hence the machine/language

interface has been moved away from the hardware towards the
programming language, and the- required run-time interface is
implemented via primitive s-machine operations.

The implementation of s-machines on conventional machines using ’ an
interpretative system, usually results in machines which run
significantly slower than conventional machines. However, the
technique of’ microprogramming, using a machine with writeable
control store, can partially reduce this overhead. At little cost,
s-machines may be defined to fit a high-level language and, by

-7-

allowing the control store of the microprogrammable machine to
be shared, different s-machines may be multiprogrammed. A host
'hard* machine may support a number of different s-machines with
each high-level language executing on a machine sympathetic to
its requirements.

The broad objective of this project has been to develop tools
for the design and implementation of s-machines. Up until now,
s-machine design has been specified in an informal manner and, .
if the s-machine is microprogrammed, it has been encoded in a low- •
level language. We do not regard this situation as particularly :
satisfactory, as the implementation of s-machines using this
technique is both time consuming and error prone. The specific aim
of our project, therefore, was to develop tools for the documentation
and implementation of s-machines.

1.2 The Particular Area of Research

The research project described here is a part of a larger research
project at St Andrews University. This project is'investigating
methods of soft machine implementation and has as its ultimate
aim,-the automatic generation of s-machines from some formal
specification.

The underlying microprogrammable machine which we chose to 5
implement these s-machines was a Burroughs' B1726 computer. This
machine, whose architecture is described in chapter 3, is
designed explicitely for the emulation of abstract machines. In
fact, there is no conventional machine code, and all languages <'

■ 1

±r -•;?r '-•J Mb—

-8-

available on the system are implemented by translating them to
an s-machine code and subsequently interpreting that code.

The B1726 is user microprogrammable and has a vertical microinstruction
format. Control store may be dynamically reloaded, thus permitting
the multiprogramming of microprograms. However, the most significant
design feature of the B1700 is its bit-addressable store organisation.

The machine store is addressable • to the single bit with no- arbitrary
word boundaries and no need for information alignment in store.

Hence, the size of an information cell on this machine may be
defined by the s-machine programmer and, indeed, may vary, depending
on the machine instruction being interpreted.

This very flexible storage organisation coupled with the machine
microprogrammability makes the B1700 eminently suitable for
the implementation of s-machines. For this reason, the B1726 was
chosen as the host machine for our project.

When the project was conceived(in 1973), it seemed likely that
B1700 hardware would be available at St Andrews. Unfortunately,
due to changed economic circumstances, our hopes were not fulfilled
and no B1700 hardware became available locally. Naturally, this
lack of hardware has been a significant.constraint •on our project.

As we were involved in the early stages of the larger research
project, it was decided that a B1726 simulator should be constructed
to act as an initial test-bed for microprograms whilst real
hardware was unavailable. As events transpired, this simulator
remains the only means of executing B1700 microprograms in
St Andrews.

While the simulator was under construction, we considered the
problems of designing and implementing s-machines.

We came to the conclusion that we should investigate the
possibilities of microprogramming s-machines in a high-level
language. We planned that this language(called SUILVEN) would
not only be used for implementing s-machines but would alse serve
as a vehicle for documenting and desribing s-machine architecture.

The advantages of programming in a high-level language are well known,,
but most microprograms are written in machine, language. This
technique is adopted for efficiency reasons - microprograms are
frequently executed and should be as efficient as possible. Working
in a research environment, there is no need to produce optimally
efficient microprograms, and we wished to identify the benefits
which accrue from high-level microprogramming. At the same time,
we accepted the need for efficiency, and hoped that high-level
microprograms would be comparable in efficiency with hand-coded,
machine-level programs.

In order to investigate the efficacy of high-level microprogramming,
we decided to compare SUILVEN implementations of two radically ■
different s-machines, and to compare these implementations with
implementations of these s-machines in other programming languages.

The s-machines chosen for this exercise were the P-machine for
PASCAL(Wl), described by Jensen(Jl), and a development of Landin's
SECD machine(L2), for the lambda-calculus based language SASL(Tl).
The P-machine is a fairly conventional stack machine, with a reverse

-10-

Polish instruction set. Instructions are included to implement
special PASCAL operations such as set union, intersection, etc.

The SASL machine, on the other hand, is a higher-level machine with
run-time type checking, a list-based storage organisation, and a
high-level machine instruction set. As well as the usual reverse
Polish operations, the SASL machine has a number of special-purpose
instructions geared towards implementing unusual features of SASL.

To summarise therefore, the particular aims of this research project
were as follows:-

(i) To program a simulator for the B1726 system at the
microprogramming level. This simulator was to be. implemented
on our local IBM S/360 computer.

(ii) To design and implement a high-level microprogramming
language for the B1700 range of computers. This language

. . .should also be suitable *for describing s-machine architecture.

(iii) To evaluate the utility of this high-level language by
comparing s-machine implementations in this language with
the same machine implementations encoded in other
programming languages.

* "i i ‘ ~i -ri .1 - ; ilfn

-1 i“

1,3 The Structure of the Thiesis

The remaining chapters oO this thesis are devoted to a survey of
the background to our particular research topic and to describing
the research which we have undertaken.

Chapter 2 concentrates on the background to the design and
implementation of SUILVEN. The chapter is split into four
distinct sections:-

(i) A survzey of HigH—level machine description, languaess.

(ii) Aiexamination of the design philosophy behind the B17Q0

range oO computers.

(iii) A descnipfcionof microprogramming languages for the B170S.

(iv) A survey of current microprogramming languages for other
user-microprogrammable machines. ?

Chapter 3 is a description oO a B1726 simulator which was encoded in *
ALGOLW. We also describe the implementation oO a compiler Oor
MIL, the standard B1770 microprogramming language. These programs

$
simulate the microprogramming , environment on the•B1700 and provide
a means oO implementing s-machines in a low-level programming
language. .

Chapter 4 is a description oO the programming language SUILVEN.
SUILVEN has a static storage allocation scheme, permits the exact
speciOication oO the size and structure oO s-machine data areas,
and allows the user to define procedures. The language conlrol
statements are simple andstxuctuired - ths goto stee^ee^ is

not included.

;

I

-12’

Chapter 5 describes the implementation of the SUILVEN compiler.
This compiler, written in SN0B0L4, is one-pass, uses a top-down
recursive descent parsing technique, and generates a mnemonic
form o# B1700 microcode.

Chapter 6 is comprised of a general discussion of interpreter
structure and a comparison of implementations of the PASCAL and
SASL s-machines. The SUILVEN implementations arc compared with
implementations in PASCAL, PL360, BCPL, and MIL.

Chapter 7, the concluding chapter, discusses how well the project
achieved its objectives and possible improvements which could be
made to our system. We finally conclude that a separation of
the functions of machine description and machine implementation
is a better approach than that we adopted and suggest further research
topics in this field. •

There are a number of appendices which contain material rather too
detailed to be included in the body of the thesis. These are:-

(i) A reference manual for SUILVEN. .

(ii) A description of the B1700 microarchitecture.

(iii) Program listings of the PASCAL and SASL s-machines, plus
test results from executing these machines.

(iv) A description of the notation used to describe
algorithms throughout this thesis.

CHAPTER 2

BACKGROUND. MATERIAL

This chapter consists of a survey and review of background
material relevant to the research work described in this thesis.

Currently, virtually all work on microprogramming and abstract
machine design has been of an engineering nature. Little or no
theoretical background exists and the approach taken by research '

workers is to approach systems design on an 'ad hoc' basis. The
resultant system is then tested and evaluated.

While this is a practical approach, it results in the building of
special, one-off, systems. As a result, research in this field .
can only use these systems as a guide rather than as building blocks
for further work;.

This lack of theoretical background may be attributed to a number
of factors:-

(i) Technological developments of system components has been .

extremely rapid. This new technology offers orders of
magnitude improvements in speed and storage capacity. As a
result, previously impractical systems may now be implemented
and existing systems operate both more quickly and more
cheaply. There has been little need to analyse and develop
systems in order to produce improvements and little general
knowledge of machine design has emerged.

" -14-' • ' ‘ •

(ii) Up until fairly recently, computer design was the province
of the electronics engineer. The prime aim was to extract
maximum hardware performance and little attention was paid
to the requirements of the machine software.

(iii) Very little experimental work has been done regarding
machine design for software systems. This is primarily
due to the difficulty and expense of carrying out such
research. To do so realistically,requires normal computer
users to use an experimental system. Naturally they are
reluctant to do so,and hence the machine designer must ,
postulate a design on the basis of his own experience.

This lack of general knowledge is regrettable, but we cannot honestly
envisage the situation changing in the near future. Paradoxically,
because computing is so expensive, it is not possible to conduct
some experiments which might ultimately reduce computing costs.
To do so can result in an unacceptable increase in the immediate cost
to the user.

The background material covered in this chapter is basically a
study of existing microprogramming and machine description languages.
In addition, as the B1700 computer is central to our project, we
present an overview of the machine design and microprogramming
languages developed for that machine.

“15~

(i)
This material is presented in four distinct sections:-

(i) Machine Description Languages
(ii) The Design of the B1700
(iii)
(iv)

Microprogramming the B1700
Microprogramming Languages for other Machines

2.1 Machine Description Languages

This section of the survey describes the uses of machine description
languages, identifies various types of machine description languages,
and briefly surveys several languages which have been used to describe
machine architecture. In general, these languages have been used to
describe 'hard* machines but the section concludes with a discussion
on the description of soft machines.

Machine description languages were originally developed by digital
engineers and their prime function is to document and hence
communicate a machine design. A computer system may be described at
a number of different levels and machine description languages .have
been designed to describe each of these levels. The levels in a
system are:-

(i) The Algorithmic Level

This level is the logical description of the machine
architecture. That is, it provides a definition of the
machine data areas which are visible to an executing
program and describes the instructions which operate on
these data areas.

“16-

(ii) The Configuration Level

This level, often called the PMS(Processor, Memory,
Switch) level, defines 'the interconnection between the
various units in the system such as store modules, arithmetic
function boxes, etc.

(iii) The Register Transfer Level

A machine description at this level describes how information
is ' transferred between the system registers. This information
flow executes machine instructions. The register transfer
level is the level at which microprograms operate.

Below these levels there are, of course, levels concerned with
machine electronics but these are not generally considered the
province of the ...computer scientist.

The work covered in this dissertation is concerned with levels
(i) and (iii), that is, the algorithmic level and the register
transfer level. Register transfer level languages are discussed
in sections 2.3 and 2.4.

Languages covered in this section have all been used to describe
machine architecture. In general they have been specifically
designed for this purpose although APL, the first language
discussed, is a more general purpose language.

2.1.1 APL

The form of the language APL, designed by Iverson(Il) is now well
known. The language is primarily suited to vector manipulation
as it has special purpose operators for working with arrays.

Iverson(I2) maintains that APL may be used for describing digital
systems both at an algorithmic and at a register transfer level.
Indeed, he has used it to describe the architecture of the S/360
range of computers(I3). Iverson has categorised APL as a universal,
concise, precise, systematic language which is easy to learn,
to remember, and to use. -

Be that as it may, we do not consider APL to be a particularly.'
good machine description language for the following reasons:-

(i) The lack of declarations makes the description of machine
data areas almost impossible.

(ii) The APL character set is not widely available. .

(iii) The syntax of APL is unnatural and rebarbative, primarily

because of its right to, left expression evaluation. APL
programs, although concise, tend to be unstructured and unreadable

2.1.2 AHPL

AHPL(A Hardware Programming Language) is a development of
APL by Hill(Hl). He designed the language specifically to describe
the design of digital systems.

The primary addition to APL is the introduction of declarations

into the language, to permit the description of machine data areas.

— 18“

For example:-

REGISTERS A(4),B(4),C(4)

This would define 3 4-bit registers A, B, and C,

However, there is no means of assigning any structure to these
registers. The language, apart from its declarative facilities,
has similiar operations to APL and consequently shares APL's
disadvantages.

2.1.3_ SPP-ALGOL

The language SFD-ALGOL, developed by Parnas(P2), was an early
attempt to design a machine description language based on
ALGOL 60.

SFD -ALGOL is essentially oriented towards describing ’hard*
machines with the language extensions including declarations
specifying which procedure parameters are input and■output parameters,
and * time blocks*. The inclusion of input/output declarations
allows a procedure to be regarded as a ’black box* accepting
certain inputs and producing certain outputs. Time blocks
specify which operations- are carried out during a single system
clock pulse.

Parnas did not introduce facilities into SFD-ALGOL for specifying
the width or the structure of machine data areas and this is a
serious drawback to its use as a machine description language.
In general, the language is more suited to describing the operation

-19-

of a particular hardware component rather than describing the
overall behaviour of a system.

2.1.4 APDL

APDL(Algorithmic Processor Description Language) is a development
of SFD-ALGOL. The language was designed by Darringer(Dl).

For providing a behavioural system description, the language is a
considerable improvement over SFD-Algol. Darringer has introduced
a new type into ALGOL called a binary register type. Using this the
width of data areas may be specffidd. For example:-

(i) REGISTER ACC <0:23>

(ii) BINARY REGISTER aRRAYY MM10RY [l:nopages,:U28<<0:31>

(i) above specifies that ACC is a 24-bit register while (ii)
specifies that MEMORY is an array of 32-bit words split into pages.
Each page contains 128 words. APDL also allows the user to
associate some structure with declared registers by declaring
subregisters. For example

BINARY SUBREGISTER FLAGS <1:2> = ACC "<<:]>

This associates the name FLAGS with the first two bits of ACC.

The time blocks and input/output declarations from SFD-ALGOL have
been retained in APDL as have the control constructs of ALGOL 6<.
As an example of APDL, a short segment of a program describing

a minicomputer is shown below. The reader may assume that names
used in the program have been previously declared.

-20'

cycle: time begin
IR■ := MEMORY [MADR ' : MADR := MADE * 1
go, INSTRUCTION [IR <2> + 1]
end

cla: . time begin
ACC := MEMORY [IADR]

.go, „t£ out
end

add: time begin
ACC := ACC + MEMORY [IADR]
go to out
end

stop: print (0)

An Example of an APDL Program.

The above program shows how APDL describes instruction fetching,
the load accumulator instructionC cla) and the add instruction.

2.1.5 ISP

ISP, designed by Bell and Newell(Bl) is another machine description
language with an ALGOL-like structure.

~2!~

Tbe language contains a number of features which make it a
reasonably good machine description language.

(i) ' A means of specifying the width of machine data areas, plus
facilities for ascribing structure to these areas.

(ii) A powerful conditional construct, similiar to the guarded
statement command recently proposed by Dijkstra(D4). This
.conditional statement is very useful for selecting statements
for execution using the' instruction op code.

(iii) The usual logical and arithmetic operations plus a feature
for specifying which operations may be executed in parallel.

The examples below, taken from the ISP description of the PDP-8
computer, illustrate the language

INSTRUCTION EE6KT^^\IR <0:11>

This sets up"- 12—bit rreister ccrlee IR, which acts as an
instruction register.

OPERATION ' CODE \0P <0:3> IR<0:2>

This specifies that the first three bits of IR may be regarded as
the instruction op code.

(OP = 0 => AC ;= AC A MP [EA])

This statement illustrates the'form of the ISP conditional
sScSemtnt.

-22-

Translated into the more familiar ALGOL this statement isi-

if OP - 0 then
AC := AC and MP C EA 3

These ISP conditional statements may be combined in .a list as
shown below

(OP = 0 => si)
(OP = 1 =>: s2)

•
• •

(OP = 15 «> sl6)

Effectively, a guarded statement list has been built with only
the ISP statement preceded by a condition which is true being
executed.

ISP, like the other languages described above, has been
developed by digital engineers for describing 'hard* machines.
These machines tend to have a simpler structure than language
oriented soft machines, as ’hard* machines usually lack higher
level machine operations. Although both APDL and ISP could be
used for abstract machine descriptions their hardware oriented
features would make such descriptions rather clumsy.

23-

2.1.6 MDL

MDL(Machine Description Language) is the only language referenced
in the literature which is specifically designed for describing
abstract machines. It was designed by Wortman(W2) for describing
the architecture of • a PL/1 machine.

MDL, whose syntax is based on PL/1, is a high-level language
whose features include (procedures, if-then-else statements, _

while-loops, and case statements. Language declarations allow the
width and structure of data areas to be specified exactly.

To illustrate ' MDL, the MDL code describing the .PL/1 machine
instruction CATENATE is shown below. The meaning of 'the MDL code
should be obvious to the reader familiar with high-level languages,

. CATENATE
local p,q

" procedure catenate uses a data stack called dss

with stack pointer dsp„ ds Is struotured Into

fields with the operand value held In field v

and Its length held In a subfield of v called a "

" force types to chan type^ sur operand lengths ■

and obtain space for result " •

force__type (dnar, dsp, dsp-1)
q.- ds[dsp].v.a + dsEdsp-l].v.a
p ■” string space(q) ,

" copy operands to string store and create

descriptor for result n

move(dsEdsp~13.v,p)
move(ds[dsp3.v,p+ds[dsp“l3.v.a)
dsCdsp-U.v <- (q,p)
popds

An Example of an MDL Description

We considered using MDL as a vehicle for our experiments but
finally rejected it because of language features such as compound
statements being bracketed by indentation. Such features cause
compilation problems as can certain aspects of the PL/1 based
language syntax.

- 25 -

2.2 The Design of the B17Q0

As the B1700 series of computers was chosen as the implementation
vehicle for our project, it is appropriate to present an overview

. . \ •­of the design of that machine. " ‘

The B1700 architecture is a radical departure from conventional • .
machine architectures as it is designed solely to support the
emulation of language oriented abstract machines. The design
philosophy is expounded in a series of papers by Wilner(W3,W4,W5)
and the design is fully documented in the B1700 System Reference
Manual(B2).

The fundamental design tenet of the B1700 is flexibility. This
has been achieved by leaving certain machine features to be
specified by the implementor of the abstract machine rather than
by the hardware designers. These features are:-

(i) The size of the basic memory cell
(ii) The machine instruction set

Generally these features are fixed by the hardware engineers
and this immediately imposes certain machine constraints.
These are:-

(i) By fixing the machine cell size, operand precision is
defined, In order to circumvent this, clumsy high-level
language constructs such as double precision type variables
must be introduced.

“26“

(ii) The implementation of languages which require unorthodox
storage organisations(such as LISP or SNOBOL) is often
awkward on conventional machines. The natural store
organisation of such languages must be forced onto the
rigid underlying store structure. This naturally results
in losses, both in store utilisation and in execution speed.

(iii) Machine, instruction sets are usually designed as
'general purpose' instruction sets. This usually means
that they are not particularly suited to the support of any
high-level language. The machine support requirements of
different programming systems differ radically and it is
impossible to accomodate all of them using a general purpose
instruction set.

The B1700 has a bit addressable store where cell sizes may be
defined by the s-machine implementor. S-machine instruction sets
are implemented via microprograms held in an overlayable control
store. Separate instruction sets may be defined to support each
programming system on the machine and these may execute concurrently
by multiprogramming microprograms in control store.

The freedom made available by the variable memory cell size and
definable instruction set offers economic advantages in:-

(i) Store Utilisation

(ii) Program Execution Speed

(iii) System Performance Evaluation

-27“

Wilner suggests that the extra .computation required tq accomodate
this flexibility is more than compensated by the above advantages.
Each js considered in more detail below.

• 2.2.1 Store Utilisation

The ppoblem of minimising memory usage is one which has existed
throughout the history of computing. Whilst'the introduction of
virtual memory systems has largely solved the problem as far as the
user is concerned, the use of memory must now be managed by 'the

I .
system. Optimum utilisation requires program working sets to be
minimised. By physically reducing the store requirements of a
program,more usable information can be stored per memory page.
Hence the number of pages in the program working set may be reduced.

The representation of information in systems with a fixed memory
cell size has a high degree of redundancy. Program data must be
fitted to the machine cell size and situations where truth values
are stored in 8 bits and small integers in 24 bits are not uncommon.
Such situations need not arise on the B1700 as data may be stored
in the appropriate number of bits required to hold that information.
For example, truth values would be represented by a single bit. As
a result, the number of bits required to encode a given amount of
data can be significantly reduced in a bit addressable machine.

Compaction may also be achieved in the storage of s-machine code
by utilising frequency encoding techniques . with instruction
op codes. These techniques, suggested by Huffman(H2) involve

:} it. ■ .’A. ■ -Ts.

There are two primary contributions to this increase in speed:-

(i)

(ii)

Language oriented abstract machine instructions can have
a higher semantic content than general purpose machine
instructions. This means that a single language oriented
instruction may replace a number of general purpose machine
instruct!ons.

As language oriented machine instructions reflect High-—
level language operations, there are fewer instructions to
execute when compared with the same high-level program
compiled into a general purpose instruction set.

Implementing language oriented abstract machine interpreters via
a microprogram removes the traditional disadvantage of interpretative
implementation, that is, the significant decrease in execution
speed in an interpreted system. Wilner estimates that microprogrammed
interpreters are about 10 times faster than the same interpreters
coded in a high-level language.

When a suite of programs was executed on a B1700 and on an IBM S/3
computer of similiar power, the B1700 executed the programs in
about half the time taken by the S/3 machine. This illustrates
the gain in speed possible with a language oriented machine.

2.2.3 System Performance Analysis

The need for an analysis of program performance is becoming more
important as high-level languages displace machine qpdes for
general programming. Knuth(Kl) has shown that most programs spend
about 90% of their execution time in relatively short code sections, i

I®

—30“

For optimum performance it is important to identify and 'tune*
these sections of code.

Up till now, system performance analysis has been mostly intuitive
rather than based on quantitative measurements. This is partially
due to the fact that performance analysis can perturb a system to
such an extent that the validity of measurements is in doubt.
Even if this is not the case, performance measurements usually
result in significant systems overhead.

A solution to this measurement problem is to build the measurement
tools into the machine hardware, thus avoiding any perturbation of
the software performance. This is the approach used on the B1700,

Special purpose monitoring instructions, suitable for gathering
information on the performance of executing programs can be
included in each s-machine. Wilner estimates that this adds no
more than to program execution time. It is likely that this
slight overhead can be compensated for by software tuning using
the results of the system monitoring.

2.2.4 The B1700 - A Summary

The design of the B1700 computer is a, significant advance over
most current machine architectures. The machine is designed
solely for the implementation of soft machine interpreters and
exhibits more flexibility than is usual in computer architectures.

“31-

This flexibility is attained by:-

(i) Microprogramming
The B1700 has no fixed instruction set and different machine
instruction sets may be implemented for each s-machine.

(ii) Bit AcldiressabXe Store
An arbitrary store cell size is not imposed on the s-anachine
programmer. He may design his' s-machine to use the most
suitable store cell size.

As' a result of 'this flexibility, more efficient use may be made of
the machine store, program execution times may be reduced, and
system measurement facilities may be included in each s-machine.

T
.y

■ja*
• I

4
JU5<-

■HI
■£

■a

4

4.£

i

JSJ
S
I

••4

-32-

2,3 Microprogramming the B1700 .

This section surveys microprogramming languages which have been
developed or proposed for the B1700 computer series. Three
languages, each of which may be regarded as a high-level assembler
language, are discussed. These languages are:-

(i) MIL
Burroughs proprietary language developed for microprogramming
the B1700.

(ii) BML
A register transfer language whose syntax is based on ALGOL..

(iii) MPL1700
A higher-level language than either BML or MIL but still
oriented towards the B1700. .

The features of each of these languages will be discussed in turn ,
with the section concluding with a comparison of MIL, BML, and
MPL1700.

Before describing these languages however, we provide a brief
exposition of the B1700 micro-architecture. This should enable
a reader without detailed machine knowledge to understand examples
used in the text. A fuller description of the micro-architecture
can be found in Appendix 2 and the definitive description in
the B1700 Systems Reference Manual(B2). .

-33-

2.3,1 The B1700 Micro-architecture

The B1700 has a fairly complex micro-architecture. The machine
has a total of 59 registers accessible to an executing microprogram,
a 32 element address stack, and a scratchpad of 16 48-bit registers.
The scratchpad may also be considered as 32 24-bit registers.
Of the 59 registers, there are 4 general -purpose registers called
X, Y,.T, and L. These are 24-bit registers. The remaining registers
are dedicated to special purposes. These are:-

(i) Store Addressing
FA and FB, which may be concatenated to form the F register.

(ii) Condition Registers .

XYCN, XYST, FLCN, BICN, and INCN. These hold information
about the relative states of the X, Y, and F registers and
also may act as interrupt registers.

(iii) Result Registers
These hold the results of functions of X and Y computed by

■ ■ a 24-bit -function box.

(iv) Microinstruction Addressing
Registers A, M, and MBR.

(v) Control Register .
Register C holds information about the kind of data(binary,
decimal, etc) currently in use.

(vi) Base and Limit Registers
Registers BR and LR

-34-

The address stack is used when calling micro-routines,with the
top of ' this stack held in a register called TAS. The scratchpad
is used for the storage of temporary information and for implementing
s-machine registers.

The B1700 is a vertically microprogrammed machine. This means that
each microinstruction specifies a single machine operation.
Horizontally microprogrammed machines, like some models of the
S/360 series, have wider microinstructions in which several
operations to be executed in parallel may be specified.

Each B1700 microinstruction is 16 bits wide and there are 36
instructions in the microinstruction set. As the majority of
computations involve either the general purpose registers or
the F register, there are a number of microinstructions for operating
on these registers. For example:-

(i) Shift/Rotate Instructions
Either the X, Y, or T registers may be shifted or rotated
as can the concatenated register XY.

(ii) Memory Transfer Instructions
These cause data to be moved to and from memory using the
general purpose registers. The memory address is specified
in FA and the number of bits to be transferred in FB.

(iii) F Register Instructions
These instructions change the memory address and/or the
field length.

35

In addition, microinstructions exist to transfer data between
registers and between registers and the scratchpad. • There are
instructions for conditional and unconditional branching, call
instructions and a special instruction., permitting control store
to be reloaded dynamically. ’ f

2.3.2 MIL

The language MIL(Micro Implementation Language) is a language,
developed ' by Burroughs, to microprogram the B1700. It is
fundamentally an assembly language with the majority of MIL
statements translated into a single microinstruction. However,
there are a number of higher-level facilities in MIL;-

(i) Macros
The user may define simple string replacements or more
complex macros which may have parameters.

(ii) Conditional Statements .
If-then-else conditional statements are a feature of MIL.

(iii) Block Structure
A limited form of block structure is allowed which defines
compound statements and the scope of macro names.

The syntax of MIL is based on English rather than algebraic notation
It has some affinity with COBOL as each MIL statement starts with
a reserved verb and ’noise’ words are permitted within statements.
The language is illustrated by example below,and is fully defined

in the appropriate Burrough’s•reference manual(B3).

-”6~

Some examples of MIL statements are:-

(i) DEFINE BASE_REG = SIA

This associates the name BASEJREG with the scratchpad location
< SIA, Subsequent references to BASEJREG will cause it to be

replaced by the string "SIA”.

(ii) MACRO ADD(A, B, C) = .
MOVE A TO X
MOVE B TO Y
MOVE SUM TO C$

This defines a macro called ADD with formal parameters
A, B, and C. The actual parameters would be registers or
scratchpad locations.

(iii) READ 8 BITS TO X INC FA

This statement transfers data from memory to the X register.
Eight bits are transferred and the memory address register
FA is incremented by 8.

(iv) IF XYCN(3) THEN
BEGIN

SHIFT X LEFT BY 3 BITS
COUNT FA DOWN BY 8

END ELSE
CALL JUMPOVER ’

'/ This example illustrates the IF statemnt, and the SHIFT,
COUNT, and CALL statements. Bit 3 of register XYCN is

■ tested. If it is on, the X register is shifted left and

-37-

register FA is decremented by 8. If the tested bit is off,
a call is made to the micro-routine JUMPOVER.

2.3.3 BML .

BML is a - register transfer language for the B1700, designed by
De Witt et al(D2). The motivation for its implementation was that,
when introduced, MIL was 'company confidential* and MIL programs
could not be published.

The language is slightly lower level than MIL, but its syntax is
more consistent, as it is based on an algebraic notation. To illustrate
BML, the examples below; display BML commands along with their MIL
equivalents. •

(i) MIL

READ 8 BITS TO X INC FA

BML ’

X::= MEMC8,FA+3 .

Memory references in BML are made via the reserved word
MEM. The bracketed symbols include the parameters of the
instruction.

(ii) MIL
IF X > Y THEN

CALL XCREATER -
ELBE BEGIN

MOVE Y TO X
LIT 0 TO Y •
SHIFT T RIGHT BY 5 BITS

END

BML
IF X > Y GO TO LAB

CALL XGREATER
GO TO LABI

LAB: X := Y
, Y := 0
T := SHL T(5)

LAB! '

Notice that BML does not have a compound statement facility
or an if-then-else statement. This necessitates the use of
labels and go to statements to implement simple conditionals

BML has no macro facilities and lacks MIL’s limited block structure
Apart from a slightly neater syntax(at least for non-COBOL
programmers) it appears to offer no advantages over MIL,

2.3.4 MPLI700

MPLI700 is a BI700 microprogramming language designed as part of
the microprogramming research project at iSt Andrews University.The
language is described by Fisher et al(FI).

MPL1700 is a machine dependent language but at a higher level than
both MIL and BML. The language has high-level control statements
such as repeat-until, if-then-else, case-of, etc. There is a
simple macro facility, variables may be declared•and structure may
be ascribed to these variables.

“39“

An example.of this latter-facility is;-

structure listelem = (car(16),cdr(16))

This indicates that a list element is a 32-bit quantity.
The first 16 bits are referred to as 'car* and the second
16 *cdr*. .

Similiarly arrays of structures may be defined:-

array 26 structure list = (car(16),cdr(16))

This defines an array of 26 structures which may subsequently
be associated with some name.

Structures are associated with names as follows:-

list baseregs •

This specifies that the variable baseregs should be considered
of type list.

Individual elements of the structure may be accessed via the
associated name:- ,

baseregs(7).cdr
This accesses the second 16 bits of the 8th element of
baseregs.

-40-

-MPL1700 statements are register transfer statements allowing both
right and left assignment. Some examples are given below:-

(i) T := S1A => LR

This specifies that the contents of S1A be moved to T
and also to LR

(ii) iT L < 10 then
• { if T = 4 then T := 0 else T := 1 }

An MPL1700 conditional statement whose meaning should be
fairly evident.

(iii) while T < 10 do
T T + a + 5

Similiarly, an MPL1700 loop with a fairly obvious meaning.

MPL1700 is an interesting attempt to raise the level of
microprogramming languages although it is difficult to envisage
the language implementation producing microcode as efficient as
that possible using a lower-level language. This, however, can
only be demonstrated when the language implementation is complete

-41-

2.4 Microprogramming Languages for Other Machines

In this section, we examine a number of other microprogramming
languages which have been developed to microprogram various
computers.

Recent trends in microprogramming language design have been away
from the complex, difficult to read, micro-assemblers towards
higher-level, more readable languages. Generally, however,
commercially developed languages are still fairly low-level -
the level being approximately that of MIL.

In a university environment, some research work has been carried
out in developing a high-level microprogramming language for an
Interdata 3 computer. This language, based on PL/1 is described
in section 2.4.3 below.

Firstly, we examine two microprogramming languages which illustrate
the trend towards higher-level microprogramming. These languages
are:-

(i) The Datasaab FCPU microprogramming language.

(ii) The MLP-900 microprogramming language.

2.4.1 The Datasaab FCPU Microprogramming Language

The microprogramming language for the Datasaab FCPU(Flexible
Central Processing Unit) has been described by Lawson and
Blomberg(L3). It was designed to facilitate writing and reading
microprograms, as it was anticipated that more microcode would

-42-

be written for the FCPU than for previous medium-scale machines.

The language has simple block structures allowing local and global
declarations, do-loops, and a case statement. In spite of this, the
language is still a low-level language as the FCPU machine registers
may be directly accessed. The example below provides an illustration
of the form of the language.

/* Emulation of Datasaab D23 processor */

D230P: DO CASE (8)
OPOO: . DO

END

• ’
OP07: DO /* Add instruction */

AR = ADD (AR, AUTFR,0)
SS-S-INty = AU-OVERFLOW
FUTFR = AR
WRITE(ACR.l,FUTFR.O,LEFT) LENGTH (24)
VLS-I-IND = AU-SIGN
START(TARGET,D230P)

END
END

An Example, of the Datasaab FCPU Microprogramming Language

-43-

The case switch is made on the basis of a register value with
the number of possible cases indicated by the bracketed figure
following the reserved word CASE.

According to Lawson, the use of this language has improved initial
program construction and subsequent debugging, as well as
simplifying microprogram maintenance.

2.4.2 The MLP-900 Microprogramming Language

The MLP-900 was a fairly early(1970) user-microprogrammable machine.
The machine design is described by Lawson and Smith(L4) and its
microprogramming language by Oestricher(O2).

This microprogramming language, called GPM, is a register transfer
language but it has high-level control statements and a means
of writing simple arithmetic expressions.Some examples of GPM
statements are given below:-

F1 + (F1 AND F2) OR (F3 AND F4)

This is a register assignment statement assigning the
value of the logical expression to register F1.

DO
FO + F1 + F2 .
IF FO > F4 BREAK

END

This Is a GPM loop. Notice that the DO-END pair delimit
an unbounded loop with loop exit made via the BREAK statement.

-44

Other control statements in GPM include an if-then-else statement
and a case statement. Unfortunately, Oestreicher’s paper on GPM
is rather brief and it has not been possible to obtain fuller
information about the language.

2.4.3 MPL - A Machine Independent Microprogramming Language

MPL is a ’machine independent:’ microprogramming language developed
by Eckhouse(El) for the Interdata 3 computer. Its syntax is based
on PL/1. Eckhouse has also surveyed a number of other
microprogrammable machines and maintains that reasonably efficient
implementations of MPL could be devised for them.

MPL has facilities for declaring data area names and for defining
the width of these data areas. There is no mechanism for ascribing
structure to the data areas. The language facilities include
procedures, expressions, and control statements such as if-then-else,
do-while, and go to. Some examples of MDL statements and
declarations are;-

(i) DCL (R0,R1,R2) BIT(12)

This declares three 12-bit registers R1,R2, and R3.

(ii) R0//R1 = R0//R1 + 2

This specifies that registers RO and R1 are to be concatenated
and that the contents of the concatenated register are to be

- - •- ' increased by 2. The concatenation operator is //.

-45-

(iii) IF CARRY THEN GO TO RXFORM

This tests'the logical variable CARRY. If true, control
is transferred to the label RXFORM. CARRY is declared
as an EVENT type which may be mapped onto the particular
bit in the underlying machine which detects carries.

Eckhouse has implemented MPL using a three phase system. Firstly,
the language is translated into a machine independent intermediate
code. Eckhouse claims that this code may be mapped onto a number
of different microprogrammable machines. This intermediate code
is translated by phases 2 and 3 of the compiler into Interdata 3
microcode.

The system appears to be successful but, as the author admits, the
Interdata machine has a very simple microinstruction set and
micro-architecture. As MPL was designed to produce emulators for
'hard* machines no information on its suitability for the building
of language oriented soft machines is available. Unfortunately
there appears to have been no further work done with MPL since
Eckhouse*s thesis and, as a result, language evaluation is
a difficult task.

-46-

2.5 Summary

This chapter has covered background material which is relevant
to our project. Much of the research in this field has taken
place on an * ad hoc* basis. With the exception of Wortman*s MDL
and, to a lesser extent, Eckhouse’s MPL little direct contribution
was made to our work by previous research. Four distinct'topics
have been covered:-

(i) Machine Description Languages

(ii) The Design of the B1700 Computer

(iii) Microprogramming the B1700

’• (iv) Other Microprogramming Languages

Section (i) reviewed a number of machine description languages.
Most of these are designed as ’hard* machine description languages
and are not particularly suitable for the description of s-machines.
One s-machine description language, based on PL/1, is described. .

Section (ii) examined the design of the B1700 and how that machine
is designed to support s-machine interpreters. The B1700 has a
store which is bit adressable and may be user microprogrammed. The
microinstruction set has been designed as a general purpose instruction
set for constructing a variety of s-machine interpreters. The
flexibility offered by these features has advantages in memory
utilisation and increased program execution speed.

•47-

The remainder of the chapter is devoted to a study of microprogramming
languages. Firstly, three microprogramming languages for the B1700
are described. These are all machine dependent languages with some
high-level language features. Of these languages, MIL and BML •are
basically assembly codes but MPL1700 adopts a somewhat higher
approach to microprogramming the B1700.

Finally, we examined microprogramming languages available for other
machines. These exhibited a definite trend towards a higher level
and the final microprogramming language studied, MPL.,, appears to
be a true high-level language. Unfortunately,development of MPL
does not appear to have continued beyond the stage of investigating
its feasability.

From our survey of background work on machine description and
microprogramming languages a number of conclusions can be drawn.
These are:-

(i) The trend in microprogramming appears to be towards higher-
level languages which are machine dependent. PL/l appears
to be the dominant language influencing the syntax- of
these microprogramming languages.

(ii) Machine description languages have been designed primarily
by digital engineers for describing current hardware. With
the exception of Wortman’s MDL(again PL/1 based) these
machine description languages are not particularly suitable
for the description of more complex, language - oriented soft
machines.

—48—

(iii) Apart from Eckhouse’s pioneering MPL there seems to have
been no attempts made to develop a true high-level
microprogramming language. Indeed, a recent conference
discussion, chaired by Lawson(L5) regarded the prospect
with horror because of possible inefficiencies.

Our survey of background material convinced us that investigating
the possibilities of a combined microprogramming and s-machine
description language was a useful aim.

Note added in preparation

A very recent publication by Dewitt(D6) describes a proposed
high-level microprogramming language which is, in many respects,
similiar to ours. Special attention has been taken over the
problem of generating efficient microcode, but the language
implementation is not yet complete.

“49-

CHAPTER 3

SIMULATING THE B1700 SYSTEM

This chapter is a description and evaluation of a simulation
package for the B1700 micro-computer system. This simulation
system is comprised of two programs:- ■

(i) A hardware simulator.

(ii) A compiler for MIL, Burroughs microprogramming

language.

The simulation system is described in a number of sections:-

(i) A simulator description. This presents an overview of the
hardware simulator and describes the simulation of the B1700
arithmetic unit and memory management system.

(ii) Simulator extensions.This describes a number of facilities
which we have added to the simulator for simplifying
the collection of diagnostic information.

(iii) The MIL compiler. This section is an overview of the
system used to compile MIL and a description of an
intermediate machine code used in the compilation.

(iv) A review and evaluation of the system. After presenting
examples of system output, the performance of both the
simulator and the MIL compiler is described. Defects and
possible system improvements are discussed.

“50“

However, before covering this material, it is apposite to examine
the reasons why this part of the project was undertaken.

As explained in Chapter 1, the work described here is part of a
larger research project investigating the construction of s-machines.
This larger project was initially based on the B1700 computer. The
author of this thesis was involved at an early stage of the project
before any hardware became available. The decision to build
a B1700 simulator was taken at this stage, for two reasons:-

(i) It would provide an opportunity for the author and others
working on the project to familiarise themselves with the
B1700 micro-hardware. This was important in view of the
projected development of our research towards a high-level
microprogramming language.

(ii) A simulation system would allow microprograms to be constructed,
tested, and evaluated without recourse to (unavailable)
BI700 hardware. The debugging and evaluation advantages •
of a simulation system compared to a hardware system are well
known.

Accordingly, the system described below was built and, in general,
has satisfied our initial aims. The implementation of the
simulation system unquestionably provided in-depth knowledge of
the machine hardware which has been essential for later parts of
the project.

-51-

The system has been used to develop and test microprograms but,
unfortunately, system considerations dictate that it executes
under a batch operating system. As interaction with the system
is impossible, its use as a debugging tool is necessarily limited.

3.1 An Overview of the Hardware Simulator Program

In this section, we present an overview of the hardware
simulation system. The general structure of the program is
described along with the simulation of memory addressing and the
arithmetic and logical function box. For a fuller description
of the simulator, the reader is referred to the document by
Sommerville(Sl) which provides a complete description. The BI 700
micro-architecture is described in Appendix 2 and, more fully,
in the BI700 System Reference Manual(B2).

3.1.1 The Structure of the Simulator Program

The BI700 simulator is implemented in ALGOLW and runs on an
IBM S/360 computer. The program interprets BI700 microinstructions,
and, therefore, has the usual interpreter structure. That is, the
main program consists of a loop, fetching and decoding each
microinstruction and then switching to the appropriate code to
interpret that instruction.

-52

The main simulator algorithm is shown belowi-

while simulating do
' {

fetch and decode instruction
case

op code = 1: REGISTER MOVE
op code = 2: SCRATCHPAD MOVE

. •
• -
op code = 0004: NORMALISE

endcase
else , error

} •

The Structure of the B1700 Simulator

Programming the simulator presented few problems as each
microinstruction has a clearly defined function with no
intra-instruction parallelism. However, the simulation of the
arithmetic unit and its associated parallelism is of interest
as is the simulation of the B1700 memory addressing scheme.
These are described in more detail below.

3.1.2 Simulating the Arithmetic and Logical Unit

The arithmetic and logic unit of the B1700 is a hardware module
which accepts as input the general purpose registers X and T, along
with the control register C, The output from this unit consists
of various arithmetic and logical functions of X and Y, such as
sum, difference, logical and, etc. These functions are
automatically computed in parallel whenever the contents of X,
Y, or C is changed. The C register provides information about the
type and length of the operands in X and Y,

Obviously, in a serial program such as the B1700 simulator, it is
impossible to simulate factually the parallel operation of this
unit. A different approach, producing the same result, was
therefore adopted. ■

It is clear that the recomputation of all arithmetic and logical
functions whenever X, Y, or C is changed is unnecessary. The X
and Y registers may be used for purposes not requiring ALU results
and, when such results are required, generally only one function
is needed. This fact is used in the technique adopted to
simulate the ALU.

When a microinstruction calls for an ALU function result(these are
held in special purpose registers), this call is detected and
an ALGOLW function is called. This function computes the appropriate
arithmetic or logical function required using the X, Y, and C
registers. Thus ' the operation of the ALU may be simulated without
parallelism and without unnecessary computation being carried out.

-54-

3.1.3 Simulating the B1700 Memory Management System

In a B1700 processor, all memory operations are channelled
through a hardware module known as the memory control unit(MCU).
The function of this unit is to provide memory bit ■ addressability
for the ■ executing microprogram. Memory is, in fact, organised
in bytes and the MCU must resolve the difference between the bit
address used by the microprogram and the actual byte address.

Main store on the B1700 is addressed by a 30-bit address, divided
into three fields.

(i) Bits 0-23
The absolute bit address in memory

(ii) Bits 24-28
The number of bits required(0-24)

(iii) Bit 29
A direction bit indicating whether the address refers to the
top or bottom bit of the element being fetched.

The MCU fetches the byte addressed by the most significant 21
address bits plus three bytes above or below it in memory, depending
on the field direction bit. The appropriate number of bits are
then selected from this group of four bytes.
The simulation of the MCU is carried out by an ALGOLW procedure
called MEMORY CONTROL.

-.55*

MEMORYjCONTROL takes three parameters

(i) The general purpose register used as a source or
destination register for the • data transferred from memory.

(ii) The number of bits to be fetched from memory.

(iii) The operation to be executed(read, write, or swap).

Notice that a field direction is not specified. This is unnecessary
as the address register FA is modified at an earlier stage in the
simulation if the field direction is negative. Register FA,
therefore, always refers to the most significant bit of the
element in store. The algorithm describing the procedure
MEMORY_CONTROL is shown below

MEMORY_CONTROL

% Parameters are: a general purpose register
% : the number of bits to be fetched from store
% : the operation to be executed
% Local variables: MIR, MIR2

Compute byte address from FA
MIR•: = Fetch 4 bytes from store
Compute bit address using least significant 3-bits in FA
ifoperation = read then

{ .
Transfer appropriate number of bits from MIR to
specified general purpose register

} .

—56~

else
if operation - write then

{
Enter appropriate number of bits into MIR from
general purpose register
Rewrite MIR to memory

}
else

{
% Swap operation
MIR2 : = MIR
Perform write operation
MIR := MIR2
Transfer appropriate number of bits to general
purpose register .

}

END MEMORYjCONTROL

The Algorithm used in the Simulation of the B1700
Memory Control Unit

-57-

3.2 Extensions made to the B170Q Simulator

A simulator program designed for debugging and program evaluation
should contain facilities over and above those provided by the
bare machine hardware. These facilities should allow diagnostic
information to be collected and should gather information on the
performance of the machine. Accordingly, additional microinstructions
have been added to the B1700 simulator instruction repertoire and
system measurement routines have been designed for the simulator.
These are described below.

3.2.1 Additional Simulator Microinstructions

Microinstructions have been added to the simulator to perform the
following functions

(i) To dump the contents of specified storage areas to the
line printer

(ii) To provide simple read and write input/output operations

These added microinstructions permit the programmer to display
the contents of B1700 storage areas during the testing and
debugging phase of microprogram development;

-58-

Dump Microinstructions

These instructions may be included anywhere in a microprogram and
allow the following operations to be carried out:-

(i) Dump memory

(ii) IDx^mp main, memory between the base and limit registers

(iii) Dump alt regiseem , the scracchad, , and the stack

(iv) Dump the mccaint adresst stack

(v) Dump hit scrathhadd

(vi) Dimpp tilt sinrrat p^psi, and addrsst regisSris

The provision of these operations considerably simplified the testing
of the simulator and the development of microprograms. Until the
I/o operations described below were implemented the dump
instructions were the only means of output from the machine.

Input/Output Microinstructions

Input/output on the B1700 is normally descriptor based and requires

a considerable amount of operating system antsrveiSion. It was not
thought appropriate to include such a general purpose system in our
simulator.

Thus, a very simple I/O scheme was devised primarily to simplify
microprogram SsiSiig. Two additional instructions were added to
the maceoai.iSeutSaoi set.

-59-

These instructions are:-

(i) A read instruction

(ii) A write instruction

When using these instructions, the microprogrammer specifies the
number of bytes to be input or output, the store address of the
information to be transferred and a peripheral device number. This
information must be loaded into general purpose machine registers.
The read and write microinstructions extract this information from
the appropriate registers and carry out the data transfer.

3.2.2 System Measurement

The simple provision of facilities for system measurement and
performance evaluation is a significant advantage offered by
a simulation system compared to a ’hard’ system. Facilities of
this type which have been designed for inclusion in the BI700
simulator are:-

(i) A means of counting the number of accesses to each machine
register?

(ii) A means of counting the number of accesses made at a
particular store address.

(iii) A count of the number of times each instruction in the
microinstruction set is used.

“60-

To date, only the latter facility has been implemented. With the
information obtained from the microinstruction count the simulator
calculates the total time(in B1700 clock cycles) taken for
program execution.

The implementation of the location access count features in the
simulator is a straightforward process. A simulator directive

COUNT <parameter list>

specifying the locations and registers to be monitored could
be introduced. This facility would enable the user to optimise
his use of registers and store.

3.3 A Translator for MIL

This section of the thesis discusses the reasons for implementing
an MIL compiler, and gives a brief over-view of the structure of
that program. For a fuller description of the techniques used
in compiling ' MIL, the reader is referred to Sommerville(S2).

The language MIL.is a low-level microprogramming language which
has been used to implement all the manufacturer supplied'

microprograms implemented on the B1700. The language is briefly
described in chapter 2 of this thesis and definitively in the
appropriate Burroughs reference manual(B3). Fundamentally, it is
an assembler language with a COBOL-like syntactic structure. That is,
an English-like rather than an algebraic syntax notation is used.
MIL statements generally have a one-to-one correspondence with
B1700 microinstructions.

-61-

However, the language has a number of high-level features:-

(i)

(ii)

(iii)

Foggi'animer defined macros

An if-se conditional statement

At limited fornn of block sfcrrucfcim where macro

names may be localised

The implementation of a compiler for MIL is therefore more complicated
than the construction of a simple assembler. However, the work
involved is in no way comparable with implementing a compiler for
a high-level language.

The decision to undertake the implementation of an MIL compiler
was made for the following reasonss-

(i) The B1700 simulator was in the final stages of implementation
. and a means of writing test microprograms was required.

Previously, a very simple assembler had been used to write
such SssS programs but using this was a tedious and error-
prone procedure. This assembler language was later modified
to become IML, the code generated by the MIL compiler.

(ii) As part of our larger research project, is was decided
to implement various s-machines as B1700 microprograms. A
language was required for writing tCsie matronrogrami.

(aia) The construction of an MIL compiler would provide
experience in using various translation techniques. It was
envisaged SCiS this would be useful at a later stage of
this project.

-62-

3.3.1 The Translation Program

The system which was implemented to compile MIL to microcode is a
two-pass system. The first pass accepts MIL statements as input
and generates an intermediate code called IML. This is translated
to binary microcode by the second pass.

There were two reasons for adopting this two-pass organisation:-

(i) The syntax of MIL is such that SN0B0L4, with its powerful
pattern matching facilities, is a very suitable language
to use in the translation of MIL. However, it is not
particularly suitable for the generation of binary code
strings.

(ii) A translator for IML could be easily produced by modifying
an already existing program. The construction of the second
pass of the MIL translation system was therefore a simple
operation.

SNOBOL4 is a very suitable language for processing MIL statements
because of its ability to handle MIL’s English-like syntax. Most
MIL statements contain ’noise’ words such as BY, TO, FROM, etc
whose function is merely to act as separators. SNOBOL’s pattern
matching features simplify the recognition and removal of such
words.

A feature of MIL is the alternative notations allowed for various
constructs, especially the conditional statement. For example, a

-63-

simple test for equality of machine registers X and Y may be
expressed in four different ways:-

(i) IT* X « Y THEN

(ii) IF X EQL Y THEN

(iii) II* XYCN(2) THEN

(iv) IF XYCN(2) TRUE THEN

Naturally, such a plethora of notations causes compilation problems.
However, SNOBOL's pattern matching features may be used to convert
all alternative notations to that shown in (iv) above before
any syntactic or semantic analysis. Notation (iv) is the most
general form of the conditional statement.

The removal of 'noise* words and the simplification of alternative
notations is carried out by the scanning procedure in the MIL
compiler. This procedure also deals with the expansion of macros
using the well known input stack technique.

After this preprocessing, the translation of MIL statements is
essentially the same as that carried out in a conventional assembler,
The first word of each statement uniquely identifies the
microinstruction to be generated.

-64-

The basic translation algorithm is shown below

C0MPILEJ1IL

initialise compiler
while compiling do

' {

Abstract first word of MIL statement
case

word =? "MOVE” : REGISTER MOVE INSTRUCTION
word « "LIT” : LITERAL MOVE INSTRUCTION

word = "SHIFT" : SHIFT OPERATION
endcase

else error
}

END COMPILEJ4IL

The Basic Translation Algorithm used in the MIL Compiler

Having identified the statement to be translated, it is checked
for semantic and syntactic errors. If it is free of errors, the
statement is converted to its IML form. This conversion is
straightforward as IML expects register names, literals, etc to be
used rather than some more concise notation. The intermediate
language IML is described briefly below.

“ 65'

3.3.2 Intermediate Machine Language

Intermediate Machine Language is a very simple assembly language
for the BI700 system. It was originally devised to ease the
testing of the B1700 hardware simulator, but ii now used as the
code generated by both the the MIL compiler and the SUILVEN
compiler(described in Chapter 5).

There is a one-to-one correspondance between binary microcode and
IML instructions. Each IML instruction has the form:-

<op code>C,<register list>3C,<variant list>3 '

where enclosure in square brackets indicates that the enclosed
elements are optional depending on the individual instruction.
The op code is a numeric(not mnemonic) code defining the
instruction, with the register'list being a list of register
names. The variant list is a list of numbers representing
possible variants for each instruction. IML has no labels -
all jumps are encoded as numeric displacements.

To illustrate the language, some examples of IML instructions along
with their MIL equivalents are shown below.

IML

(i) 1,X,Y

(ii) 12i 15

(iii) 8,FL,H18

MIL

MOVE X, TO Y

GOTO BABEL

MOVE HEX 18 TO FL

-65-

3.3.2 Ii■Serms<iiats MaotiinLe Language

Intermediate Machine Language is a very simple assembly language
for she BI700 system. IS was ogaganllly dsvaisd So ease she
SssSang of she B1700 hardware simulator, but is now used as she
code generated by bosh the the MIL compiler and she SUILVEN
compile! described in Chapter 5).

There is a one-So-one toreeipomdance between binary mateocods and
IML amstructaoni. Each IML anssrucsiom has she form:-

<op code>C,<eegasSsr lisS>3E,<varianS list>]

where enclosure in square brackets indicates that the enclosed
elements are optional depending on she individual instruction.
The op code is a numericC nos mnemonic) code defining she
instruction, with she register list being a list of register
names. The vaeaamS list is a list of numbers representing
possible variants for each instruction. IML has no labels -
all jumps are encoded as numeric displacements.

To illustrate she language, some examples of IML instructions along
wish their MIL equivalents are shown below,

IML MIL ---

(i) 1,X,Y MOVE I TO Y

(ii) 12,15 GOTO LABEL

(iii) 8,FB,H18 MOVE, HEX 18 TO FL

-66

3.4 The Output Produced by the Simulation System

In this section, an example of the output produced when a microprogram
is compiled and executed on our system is presented. The example
consists of a micro-routine to convert numbers input from EBCDIC
representation to their appropriate numeric equivalent. This is
a•commonly required operation in any high-level language. In the
example below, appropriately placed DUMP microinstructions show the
changing values of the simulator registers.

■57-

ft +•} •1

k

Lvo

UJo<Ck

«-tr-
c

CCtucCs:UJ
>oz

CO
3C
UJof
Q
z
<

co

'X
UJ

z
UJ
23
JJ
k-
<t&-
CO
UJ
Z
«—
u.
UU
c
lU
k-
<
CC
»-
CO
z>

COUJ
z—-•
V­
d
O
Of
d
Of
o

.o
h-
to
o
a:
O
X
UJ
XU.
O
CO
UJ

UL
UJCl

%fc%fc o
UJ UJ h­
d . 3>
OC CC CO
H— k— <X

k~
(M UJ
~ >
OX 51-

z
u
>
X
II
>-•
Ci
UJ

of
UJ
>
CZ
CL
34
X
CO
Q
z<
UJ
ofo
k-
tC

X X

o
X
II
X
z
<_J
00

UJ UJ UJ UJ
Z Z Z zH4 *-* 34 k-i
u_ u_ u. u_
JU UJ tU UJ
Q d d O

a
of
H­
z
C
o
UJ
X
M­

X
X
d
d

a
oc k-
k- Of Z <f
a h­
O CO
ou a
X k-
d C
O Cf>

tu
UU to <t k-
o CO < > a34 tu CO 34 —{ Zf 0^
z Of X 34 O J d CU <t UJ

CO k— C o)- UU U4 k-
to o <t 2f d z x k- d to UJ

>- X > o <t to k- of z UU UU o cf d Z < co
CC of z CC to UU < X k- —4 i-u d UZ h- Cf of

uJ « < LU UJ —1 to o Cl I— k- x o <r UU
o X < o X of k- of Z O CC o —> Z LU o 3 k-
z z r-4 t—e UJ >- a o < Z of CO Ol d k~ 0 to»—« >- 34 k- CO CL 00 d Of < 34 <t uu k z »- 34
> uJ O? uJ a < CJ <t u_ x —J I—- <U 34 X k- 0
< X CL M 3 a k- Of x to o of V- < CO o 3- X UJ
UJ »—« of 2 !— .> Of u- LU o » UJ UU Of X k- 3-4 co UJ of
uJ >- k- O Of LU k—4 NJ W- Of Xf CC UJ 34 d —J o Z

C. uJ X O < > CO <i 3« < o X > of. d UJ 0^-
O O d O C 34 z z k- - UJ d z UJ k- CO d > k- 0rk O X C.3 Of Q <-4 O oz uo Cf O u_ UU X Z o cz uj uj d o UJ to).

< LL O CO o J- Cl UU < —4 ZC o o O cf <t X 0 co
>• c0 k- UU uu
CO — — # —- . • LU — — CO Of —■ — — — — — — — — — — 0

U-4 0
Of X o
UJ c UU cl
k- Of Cf
CO Uu z
nm tu U4
o k J- <
UU of < X
of LU o co

>- d z s: CL
X z tu UU 31 2Z

o X Xf X UUU o of < z z d
2? co to UU LL uJ a
,k“ k- a k- k- cc z •>

34 M- CL U4 Z o Of
>• co O CO 34 z o o UJ
uJ tu 34 H- k- ac
o. CO z O fO z o o XZ
—4 —-1 k~ < X co o d
H X >- k— >- >- CO z
d co u O CO to o z Z —1 <
d z X X a o co <t k- Cf UU >- UU J— of UU
X 34 k— of O k- . < < H X X > o < 0

>- x a c rk UL LL H- d CO i- o k- F- o > 03 X
a V- UU k- k— Of u-4 LU LU K— X H— a X —4 H-. 0 0
f- uJ a uj tu O uJ d C CO 3. Z > >- k- UU k- a d zr
d 23 X o Cf U~ h- 3) CC < • O' • UL X d k- X < —j

UJ co x u> U; LU o >- u_l a mo V- O 34 CJ d u JJ
Z UJ X CO co V- CO > o CO 00 CC LU CM _j «- d <t X u ; CO of V-34 Of k- z k- 3 • « CM k- <£
w- UU IX UJ tu k- 34 UU u. UU UU d UU X UU X UU (O d UJ UJ 0
UZ UJ > 34 > > 34 h- > U4 > > CO < > > h- > CL d > > k^ US
a X o X c o X UJ O X O a < UU O u. o U- 34 CD o . . <r a O 0 di
Of k- X co 5: X LU o x to X X k- cf x 34 X. 34 Z X (j s; X o z

orUJo Cf •Ul <
O k- Xs Z oK- »~4 d
_J k-» <
z> Ul UJ* # X * o * of *

X.'.
Of
J

d?co
UJ
of'

otf
k«l
—q

- J
i

jb

1

O w np o f-msihcoo' o <—,cm f k ''■oh.ocoo.-icjn-n fmo r c O o w
H(\f<)4,tnOr>-COa'^rJHr-lr-(HHr4-4rJM(\NMNM(\INNNr<1fnr^(nrr|fCfCfCrOfO't^‘

..J

M1V-TRAN-SLATI0N SYSTEM ST-ANDREWS-UNI VERSTP^—27THNOVEMBER 1974s------PAGE-2

43 - .. EXIT
44 NONNUMB MOVE. 1 TO X
45

<46
POPSTACK Y
CALL ERROR '

^7 EXIT
48 .

f49 ERROR ROUTINE IS NOT
? 50 ’ * TO INDICATE AN ERROR

51
T52 ERROR MOVE 999 TO Y

53 DUMP REGISTERS
<54 EXIT
' 55

56 ★ THIS-IS THE START OF
; 57
<5.8 START LIT 0 TO X
i.59 LIT 5 TO L

60 CRDIN
761 • CLEAR Y

62 CALL GETINTEGER
<63 DUMP MAINREGS

* PUT ERROR CODE IN X
* CLEAR STACK

IMPLEMENTED.IT MERELY MOVES 999 TO Y
HAS OCCURRED AND DUMPS THE REGISTERS

THE PROGRAM

* SET UP I/O INSTR.
* X HAS ADDRESS,L THE
* NO OF CHARS READ

■ * SET Y TO ZERO
* CONVERT TO BINARY

5

F

IMPLEMENTED.IT

ST ANDREWS UNIVERSITY 61726 PROCESSOR SIWI&T-10N ~

CONTROL STORE DUMP
■ -

—

0 #00000005 • #0000C022 #000010Al #00000403 ------ #000010E0
6 #0000lBA4 #00008018 #00000423 #000011A8 #00008800

12 #00008140 #00004CCl #0000C00A #000081EF #00004CAl
18 #000081FQ #0000l8E3 #00001BA0 #OOOOFOl4 #000013Al
24 #0000D00E #00000008 #00001BAO #00001BA4 ' #00008001
30 #OOOOEC01 #0000lBA4 #00009100 #000003E7 #00000004
36 #00000000 #00008305 #00000600 #00000320 #0000F022
42 #0000FFFF

DUMP OF MAIN PROCESSOR REGISTERS **********

GENERAL PURPOSE REGISTERS X = #00000040 Y » #00000040
L = #00000003 T = #00030016

ADDRESS 'REGISTERS FA = #00000020 FB “ #FBFBFBFB
INSTRUCTION REGISTERS M = #00000008 A = #0000001A
BASE/LIMIT REGISTERS , BR = #00000000 LR = #00000000
TOP ELEMENT OF ,ASTACK TAS * #00000355 ■

DUMP OF MAIN PROCESSOR REGISTERS **********

GENERAL PURPOSE REGISTERS X = #00000355 Y = #00000040
L = #00000003 I ’» T = #00030018

ADDRESS REGISTERS FA = #00000020 FB = #FBF8FBFB
INSTRUCTION REGISTERS M = #00000008 A = #0000002A
BASE/LIMIT REGISTERS BR = #00000000 LR = #00000000
TOP ELEMENT OF ,ASTACK TAS = #00000000 1

#000010EO
#00007108
#0000C00A /
#000010EB
#000016Al
#00001BA4
#00000008

iO' VO " I

7 l

MICRO-INSTRUCTION

HALT
OVERLAY
NORMALISE
CASS CONTROL
BIAS
STORE F
LOAD F
SET CYF
SWAP MEMORY
CLEAR REGISTERS
SHIFT/ROTATE X OR Y
SHIFT/ROTATE X AND Y
COUNT FA/FL
EXCHANGE DOUBLE WORD
SCRATCHPAD RELATE FA
MONITOR
REGISTER MOVE
SCRATCHPAD MOVE
FOUR.BIT MANIPULATE
BIT TEST BRANCH
SKIP WHEN
READ/WRITE
MOVE 3 BIT LITERAL
MOVE 24 BIT LITERAL
SHIFT/ROTATE T REGISTER
EXTRACT FROM T REGISTER
BRANCH
CALL
DUMP REGISTERS
DUMP CONTROL
MULTIPLY
DIVIDE
DUMP MAIN REGISTERS
DUMP STACK
DUMP SCRATCHPAD
COREDUMP
I/O READ
I/O WRITE

i

NO OF EXECUTIONS

i
oi

NO OF CLOCK CYCLES 36

##* END OF SIMULATION— ALL MICRO INSTRUCTIONS PROCESSED ***

i
!

I

-72-

3.5 An Evaluation of the Simulation System

This section of the system description presents some figures
regarding the speeds of the B1700 simulator and the MIL compiler.
It also examines defects in the overall system and suggests how these
defects might be remedied.

3.5.1 The Performance of the System

The figures presented below have been gathered by executing
microprograms of various sizes on the simulation system. •

Average number of microinstructions
executed per second on the B1700 1000
hardware simulator

Theoretical number of microinstructions
executed on a real B1700 processor 6 % 10*

The great discrepancy in execution speeds is to be expected for '

two reasons:-

(i) Interpretative execution of machine instructions is
always much slower than hardware execution of the same
instructions

■r

J

•73- j -• "" ' »• ' "■• •’M-'

(ii) The semiconductor technology used in the construction
of the B1726 store is much more modern than that used in
the IBM S/360/44. Hence the B1700 is inherently a faster
machine than the 360. Therefore, even if microinstructions
were executed at hardware speed, the discepancy between the
B1700 and the 360 would still exist.

The MIL compiler has been evaluated in a similiar fashion by
compiling a number of microprograms. These were also compiled
using Burroughs's MIL compiler on a B1726 with 48k bytes of store.

Average number of MIL statements
translated per minute by the S/360 160
version of the MIL compiler

Average number of MIL statements .
translated per minute by the B1726 50
MIL compiler

Notice that, in this case, the combined SN0B0L4/ALG0LW system
is about 3 times faster than the MIL compiler on the B1700. This
is due to the fact that the comparison was made using a B1700
with only 48k bytes of store. This was the only machine available.
48k bytes is an inadequate amount of store to run the B1700
efficiently and thrashing is a serious problem. In fact, most of
the compilation time on the B1700 is spent transferring segments
from disk.

-74-

3,5.2 Defects and Improvements

Naturally the system as it stands contains a number of defects.
However, it must be borne in mind that the simulation system was
constructed as part of a research project where it was important
to produce a usable system in the shortest possible time.

Of the failings of the hardware simulator, the most serious is
that it is merely a hardware simulator. No attempt is made to
simulate the actions of the B1700 operating system(MCP).

The MCP interacts to a significant extent with microprograms
executing on a B1700. The lack of this interaction is a serious
drawback, when the simulator is used to test microprograms which
are subsequently to run on a real machine. This was recognised
when the simulator was being programmed but no' operating system
simulation was included for the following reasons:-

(i) The details of the interaction of the MCP and an
executing microprogram are shrouded in mystery. Documentation
is almost non-existent and to discover the extent of the
interaction would have involved much study of the source
code listing of the MCP,

(ii) When the simulator was under construction, it appeared
that the inclusion of any operating system simulation
would significantly degrade the program performance.

In retrospect, it is probably possible to modify the simulator
program so that it may mimic the responses of the MCP when a call
is made to the operating system by a microprogram. If such a
feature were included,simulator tested microprograms would be'
more compatible with those for a real machine.

Other, lesser, incompatibilities of the simulator are a result
of the fact that the simulator must run under a batch operating
system. These incompatibilities are:-

(i) Microprogram loading, normally carried out via a cassette,
may not be simulated.

(ii) The machine panel display may not be simulated.

(iii) External interrupts to executing s-machines are not
possible.

We see no way of rectifying these defects apart from running the
simulator on a dedicated machine.

The MIL compiler suffers from surprisingly few incompatibilities
and defects considering the time taken to implement the system,'
roughly two months. The need to implement the system quickly
was directly responsible for those drawbacks which exist in the
MIL compiler. These drawbacks are:~

(i) The compiler does not optimise the generated microcode.

(ii) The error messages produced by the compiler are not
particularly informative and error recovery is poor.

As our system is a research tool, we do not consider time spent
rectifying these defects to be justifiable.

-76-

3,6 Summary and . Conclusions

This chapter has described and evaluated a simulation of the
microprogramming environment of the B1700, The system was designed
to familiarise the author with this environment and to enable
the testing of B1700 microprograms.

Two distinct programs make up the simulation system:-

(i) A hardware simulator. This program is encoded in ALGOLW
and interprets B1700 microinstructions. A number of additions
have been made to the simulator to aid the debugging and
testing of microprograms.

(ii) A compiler for Burrough's microprogramming language MIL.
This compiler is encoded as a two-pass system. The first pass
converts MIL statements to an intermediate representation with
the second pass converting this representation to binary
microcode.

It is fair to say that the system, as it stands, has met our
expectations and serves a useful purpose as a tool in our research
project.

Constructing the system indubitably provided extremely useful
background information on the B1700 microprogramming environment.
Although it is far from ideal for microprogram testing, the simulator
is adequate for this purpose, and for programs encoded -in MIL the
conversion to a real machine is fairly trivial. This.is due to
the fact that the B1700 MIL compiler generates the machine interface
information and it is transparent to the programmer.

~77-

Although the overall system performance could he improved, we do not
consider that time spent on this improvement would be justified. As
the system is essentially a research tool, a production standard
system is unneccessary and we believe that the time necessary to
attain such a standard may be better employed on other projects.

78-

CHAPTER 4

THE PROGRAMMING LANGUAGE SUILVEN

The programming language SUILVEN is a high-level language
designed for describing and implementing abstract machine-
interpreters. In this chapter, the design of the language and
the factors which influenced that design are described.

A SUILVEN program'is compiled into microcode for the B1700
computer. As discussed previously, the purpose of designing and
implementing SUILVEN was to investigate the possibilities of
high-level microprogramming.

At the outset of the project, we were aware of the proliferation
of programming languages currently in use, and hesitated to add yet
another language to that ever increasing pool. However, for the
reasons below, we found it desirable to design a new language,
rather than produce a compiler for an existing language. The
.reasoning behind this decision is:-

(i) Apart from Wortman’s MDL(W2), .which is.' a highrlevel
s-machine description language, machine description
languages appear to be designed for ’hard* rather than
soft machine description. As a result, they contain
features such as timing facilities which are inappropriate in
an s-machine description language. In addition, we considered
the control constructs in these languages to be inadequate

for producing well-structured programs. ‘ ' .

-79-

(ii) Wortman’s MDL, designed solely for describing s-machines
is not easily compiled into microcode. The language is
informal in nature which is, of course, acceptable in a
description language but not suitable for a language which
is to be compiled.

It was therefore decided- to design a programming language for
s-machine description which may be compiled to microcode. The
language, loosely based on MDL, was to be such that a compiler
could be produced fairly easily and, as a result, language design
and implementation proceeded together for a time. However, before
describing this language, subsequently named SUILVEN, some general
aspects of programming language design are considered.

4.1 Programming Language Design

In designing a high-level programming language there are a number
of trade-offs which must be made between efficiency, convenience,
and reliability. Up until recently, efficiency was generally regarded
as the most important of these factors. However, Dijkstra and
others(D3,D5) have suggested that convenience and reliability are
now more important than efficiency. This is due to the ’ increasing
discrepancy between the cost of software and the cost of hardware.
The cost of writing and maintaining a programming system is now
much greater than the cost of the hardware running that system and
any programming language features or programming techniques which

decrease software costs are desirable.

- 80-

General programming language features which are concerned with
efficiency, convenience and reliability are:-

(i) Storage Allocation Strategies

(ii) Language Control Construcss

These topics are discussed below.

4.1.1 Storage Allocation

High-level language storage allocation schemes fall into two
categories:-

(i) Compile-time(static) storgee allocation

(ii) Run-ii-me(<170^^) storgge allocation

The former scheme allocates absolute addresses to vaoiabils at
compile time, whilst the latter aiiocaal(relative addresses at
compile-time. These are converted at run-Stml to absolute machine
addresses.

Dynamic storage allocation is the method adopted by programming
languages such as ALGOL60. It has several advantages over a
static allocation scheme, viz:-

(i) Recursion may be implemented in a clean and straightforward
manner.

(ii) Dynamic arrays may be included as a feature of the
programming language.

(iii) Storage may be shared as local variable storage may be
allocated and de-allocated

-81-

However, the penalty for these advantages is a reduction in_program
execution speed,as run-time intervention by the programming system
is needed to handle storage allocation. This penalty is avoided
with a static allocation system, although at a cost of a more
inflexible system for the user.

4.1.2 Program Control Constructs

The control constructs available in a programming language
significantly affect the convenience of programming in that language
and the readability of programs written in that language. If the
flow of control during program execution matches the static
representation of the program, understanding and debugging the
program is considerably simplified.

The control statement GO TO was first condemned by Dijkstra(D3) and
shown to be unnecessary by Bohm and Jacopini(B4). The statement
has been condemned because of • its power to transfer control to
anywhere within a program. The execution sequence of a program '
with GO TO statements is not necessarily "top-to-bottom” and,
as a consequence, predicting the behaviour of such a program is
often difficult. As well as this, the inclusion of GO TO statements
render ineffective recently developed techniques for proving the
correctness of a program, These techniques rely on flow of
control in a program being sequential, with each loop having only
one entrance and exit.
Although it is possible to construct a program using only if-then-else
and while statements, to do so may necessitate an increase in the
length of the program. Hence developments of these statements such

-82-

as repeat-until and case statements may be introduced. These
facilitate the programming of certain control paths without
destroying the essential "top-to-bottom" program execution flow,

4.2 Influences on the Design of SUILVEN

In this section, the design criteria on which SUILVEN is based are
described, along with some general comments on design decisions
which were made at an early stage of the project.

The design criteria which we established for SUILVEN we.re:-

(i) The language should be a high-level language which should
not contain features dependent on the architecture of a
particular computer.

(ii) The language should be such that an accurate and readable
machine description may be specified.

(iii) The microcode generated by the SUILVEN compiler should
execute reasonably efficiently.

(iv) The compiler for SUILVEN should be fairly simple to construct.

Inevitably, with such criteria, conflicts arose and compromises
had to be made between conflicting demands. In particular, the
need for microcode efficiency often conflicted with features
which would have improved the power of SUILVEN as a machine
description language.

When such conflicts arose, we generally chose the most efficient

-83-

method of solution. Current microprogramming practice emphasises
efficiency and, if a high-level language is to be accepted by
present users, the code produced must be comparable with machine
language in efficiency.

The most significant influence this had on the design of SUILVEN
was the adoption of a static rather than a dynamic storage
allocation scheme. We believe that a dynamic allocation scheme
is not only more general but is also aesthetically preferable
to a static scheme. However, the loss of efficiency with such a
scheme and our anticipation that features such as recursion and
dynamic arrays would not be necessary in implementing s-machines
caused a static allocation scheme to be adopted for SUILVEN.

Other design decisions made at an early stage werei-

(i) , Only sequential control constructs such as if-then-else
and while-do should be included in the language.

(ii) SUILVEN variables should not be typed.

The reasoning behind the former decision has been discussed
previously in this chapter. We wholeheartedly agree with the
opinion that uncontrolled branching in a program is undesirable and
only a simple set of control constructs have been included in
SUILVEN.

The decision not to include typed variables is perhaps more
controversial. The inclusion of types permits the detection of
a number of programming errors at compile-time. Whilst languages
such as ALGOL60 have basic types such as integer and boolean,
Wirth's PASCAL(Wl) has carried typing further and allows

the user to define his own types

However, for certain applications, the typing of language variables
is a distinct disadvantage. If a number of different operations
such as real addition, integer multiplication, and logical oring
are to be carried out on a storage area(a typical example is a stack),
typing that storage area Is inconvenient. Either type transfer
functions have to built into the language(as in ALGOLW), or
such an area must be represented as a PASGAL-type tagged record.

We anticipated; that situations where different kinds of operation
are carried out on a data area are common in s-machines, and
subsequent experiment has shown this to be true. Hence a decision
was made to exclude types from SUILVEN.

Individual features of SUILVEN are described in some detail below
in an informal manner. The reader is referred to Appendix 1 for
a more formal description of the language. As well as describing
language features, we also discuss, where appropriate, the reasoning
behind the inclusion of certain features in the language.

4.3 The Structure of a SUILVEN Program

A SUILVEN program consists of a sequence of declarations, followed
by a sequence of SUILVEN statements. A program is terminated by
the reserved word ENDPROGRAM.

SUILVEN declarations include data declarations, structure declarations
and procedure declarations. They allow the user to specify and
ascribe structure to machine data areas and to give names to
machine operations.

-85-

SUILVEN statements include assignments, control statements, and
procedure calls. They specify operations to be executed using the
s-machine data areas.

4,4 SUILVEN Declarations .

The declaration part of a SUILVEN program has a threefold purpose;-

(i) To allow the user to define names referring to data areas
and sections of SUILVEN code.

(ii) To provide information about these data areas and code sections
which the compiler may use in generating microcode,

(iii) To provide a description of the size and structure of •
the data areas in the s-machine described by the SUILVEN
program.

In order to fulffl these purposes, there are five kinds of
declaration alllwee ti e SUILVEN program. The ossiflS t declarations
are;-

(i) Macot declarhlfoes

(ii) DDt:t. tars declarations

(iii) Structure declarations

(iv) Hat ecllclhlfoes

(v) ^cve^st ant lunhlfoe declarations

These different declarations are covered in turn below.

4.4.1 Macro Declarations

SUILVEN macro declarations are designed to offer facilities for
a limited degree of textual replacement within a program. If
carefully used, this can improve the readability and ease the
maintenance of a program.

A macro is declared:-

MACRO *<string>* = *<string>*

and specifies that each occurrence of the string to the left of the
equals sign is to be replaced by ' the string to the right of the
equals sign. Notice that only simple substitution is allowed
and that it is not possible to pass parameters to a macro.

Macros were included in SUILVEN to allow the naming of constants
and the naming of frequently used code segments. For the■former
purpose the present construct is quite adequate.

However, after using SUILVEN, we now believe that the naming of
constants and the naming of code segments should be separate. For
the latter purpose, it is desirable that parameter passing should
be permitted and any future development of SUILVEN will include
this extension to the language.

4.4.2 Data Area Declarations

SUILVEN data area declarations permit the programmer to name and
to specify the size of data areas in the abstract machine which he
is constructing. The width of each data area is specified exactly

-87-

as a number of bits rather than as multiples of some arbitrary
cell size,such as a byte.

The declaration setting up these data areas may take the forms

(i) BXTS(<width>) <identifier list>

(ii) BITS(<width>) ARRAY(<size>) <identifier list>

Declaration (i) above, sets up scalar data elements of the
specified width, whereas declaration (ii) sets up vectors of
data elements. Examples of each type of declaration are:-

(i) BITS(24) AREG,BREG

This defines two data areas called AREG and BREG each 24 bits wide,

(ii) BITS(32) ARRAY(512) STACK

This defines a data area called STACK, which is a vector of
512 elements each 32 bits wide.

The flexibility allowed in defining the sizes of variables means
that the data architecture of an abstract machine may be exactly
specified. Space is conserved by eliminating the need to accomodate
registers of varying widths in arbitrarily sized storage cells.
Similiarly, machine store and storage areas such as stacks may be
defined to accomodate data to any precision.

This flexible means of defining data areas is a significant
contributor to the descriptive power of SUILVEN and to the
efficient implementation of abstract machines.

—88—

4.4.3 Structure Declarations

Declarations are provided in SUILVEN vzhich allow the programmer
to define the form of a data structure and to declare that a
machine data area should be associated with that structure.

This is accomplished by means of a TEMPLATE declaration
which defines a template describing the data structure. This
template may be assigned to a data area Via a DEFINE declaration.

A TEMPLATE declaration has the following syntax:-

TEMPLATE <identifier> = <identifier>(<number>)
L,<identifier>(<number>)J

■ r-i* «The starred square brackets LJ indicate that the elements enclosed
in these brackets may be repeated zero or more times.

A TEMPLATE declaration defines the name of a template consisting
of one or more fields of a specified size. For example:-

TEMPLATE LIST_ELEMENT = GC(1),HE/AX24) TATB(12)

This specifies that the template names LIST_ELEMENT may be
regarded as having the following fields:-

(i) A 1—bit field named GC

(ii) A 24-bit field named HEAD

(iii) A 12 hit field nmned TAIL

-89-

Templates do not, themselves, define any data areas but merely
define a pattern which may be subsequently assigned to a data area.
This is accomplished using a DEFINE declaration. This has the form:

DEFINE <template name> : <identifier list>

This specifies that the variables named in the identifier list
take the structure defined by the named template.

Not only may scalar variables be structured in this way, but also
a template may be assigned to a vector. In this case, each element
of the array is considered to be of the structure defined by the
template.

The utility of these declarations is illustrated by the example
declaration sequence shown below:-

BITS(48) AREG,BREG
BITS(48) ARRAY(512) STACK
TEMPLATE B5700J70RD = FLAG(l) ,SIGNM(1) ,SIGNC(1) ,MANTISSA(6) ,

CHAR(39)
DEFINE B5700_WORD : AREG, BREG, STACK

The above declarations state that the variables AREG, BREG, and
STACK are to be considered as structured data areas, having the
structure defined by the TEMPLATE declaration. Notice that the
declared width of the data areas and the total number of bits
declared as components of template fields should be the same.

-90-

This type of data structuring was included in SUILVEN as it is
often necessary to consider a machine register as being composed
of several fields. The example above defines the structure of the
stack and the stack registers in a Burrough's B5700 computer.
Similiarly, the template for an IBM S/360 program status word
would be:-

TEMPLATE PSW = SYSMASK(8),PROT_KEY(4), AMWP(4) .INTERRUPT(16),
ILC(2),CC(2),PROGMASK(4),ADDRESS(24)

Allowing the user to name the fields within a data area and to
access these fields via the names rather than via shift and mask
operations reduces the chances of errors occurring when using
these fields. In addition, this extra level of abstraction makes
for clearer.more readable abstract machine descriptions.

4.4.4 Flag Declarations

The SUILVEN flag declaration facility permits the user to define
names which are single-bit logical elements. The need for this
type of declaration in a high-level microprogramming language
arises for two reasons:-

(i) Within the underlying ’hard' machine on which SUILVEN
is implemented there are a number of single-bit flip-flops
which detect various interrupt conditions. As it is

. necessary that the soft machine tests these conditions, a
means of so doing must be introduced into the abstract
machine programming language. In SUILVEN. these interrupt
flip-flops may be accessed via predeclared flags.

2, , ,

-91-

(ii) As well as 'hard' interrupts, the soft machine programmer
must be able to define flip-flops which can be used to
mark soft machine interrupts such as a stack overflow.
BITS variables are somewhat clumsy for this function, hence,
flag type variables were introduced into SUILVEN.

A FLAG declaration has the syntax

FLAG <identifier list>

This merely declares the names of flags which may be accessed using
special flag operations which allow flags to be tested and set.
These operations are discussed in section 4,5,2, which deals with
SUILVEN logical expressions and in section 4,6.1 which covers
assignments,

4,4.5 Proeedirre Declarra-ixans

The advantages of including a facility in a programming language
which allows code sections to be named and subsequently activated
are well known. Procedures allow code to be shared and ‘ programs
to be structured as a set of logically distinct modules.

Procedures in SUILVEN may be of two kinds

(i) Proper procedures, identffied by the reserved word
PROCEDURE. These procedures are simply named sections
of code which may or may not have parameters.

(ii) Function procures,, identffied by the reserved word
FUNCTION. A function always returns a value and is
called as a primary element of an arithmetic expression.

-92-

Parameters, in the form of BITS variables, may be passed to
a SUILVEN procedure and must be declared as formal parameters
in the procedure heading. The syntax of procedure declarations
is rather lengthy and, as the concept is familiar, procedure
headings are illustrated by example below:-

(i) FlftJCTION POPSTACK()

(ii) PROCEDURE PUSH(BXTS(4) TAG; BITS(24) VAL)

Declaration (i) above declares a function procedure called
POPSTACK, POPSTACK has no formal parameters. Declaration (ii),
on the other hand, defines a proper procedure. This is named
PUSH and has two formal parameters - a 4-bit variable called
TAG and a 24-bit variable called VAL,

The body of a SUILVEN procedure consists of local variable
declarations, if required, and statements comprising the code
of the procedure. A procedure declaration is terminated by the
reserved word END.

The value returned from a function procedure is indicated by
following end with an arithmetic expression, where appropriate.
For example:-

END = <expression>

The value of that arithmetic expression constitutes the value
returned by the function.

-93-

4.4.6 Local Declarations .

Within a SUILVEN procedure, it is possible to declare names
which are local to 'that procedure. The declarations which may
be used to establish local names are:-

(i) Macro declarations

(ii) Data area declaraiions

(iii) Structure declarhtions

(iv) Flag declarant^s

It is not possible to declare procedures which are local to other
procedures. This is in keeping with our design decision to use
a static rather than a dynamic storage allocation scheme in SUILVEN

The form of the local declarations for macros, bits variables, and
flags is identical to that of the global variable declarations
described above. However, local structure declarations have
an additional facility(the REDIMENSICN declaration) which is
only meaningful within procedures. The structure of data areas
may be reallocated within a procedure using locally or globally
defined templates. This structure modification is covered in more
detail below?.

4.4.7, Redefining the Structure of Data Areas

It is often desirable to modify the structure of a data area
depending on the operation acting on that area. For example, the
top element of a stack may be of integer type for an ADD operation
yet may take the form of a string descriptor for a CCNCATENATE
operation.

“94-

Within a procedure, structured BITS variables may have their
structure redefined using a template which is declared either
locally or globally. Naturally, locally declared variables
may also be structured using a local or global template.

The example below illustrates the operation and utility of this
feature; • - Consider a global variable defined as follows:-

BITS(32) REGISTER

For integer arithmetic operations, it may be convenient to
regard this register as being made up of a sign bit plus an
integer. Hence within the procedure which performs integer
arithmetic there might be the following structure declarations:-

TEMPLATE INTEGER = SIGNJ3IT(((,NUMB(31)
DEFINE INTEGER ; REGISTER

For other operations such as as conversion from character to
integer it may be convenient to regard this register as being
composed of four 8-bit characters. Therefore, within a procedure
which executes character operations the declarations below
might be used:-

TEMPLATE CHARS = Cl(8),C2(8)sC3(8),C4(8)
DEFINE CHARS : REGISTER

This ability to locally redefine the structure of variables
contributes significantly to the clarity of machine descriptions.
In addition, the possibility of error when operating on data areas
is reduced, as ■ these areas may be structured according to the
function operating on them.

-95-

4.4.8 The REDIMENSION Declaration

A fairly common feature shared by a number of machines is to
have a range of widths for machine instructions. For example,
the IBM S/360 series has certain instructions 2 bytes wide,
others 4 bytes wide and a third category 6 bytes wide. Where
Huffman encoding techniques, as described in chapter 2, are used
it is necessary to utilise instructions of differing widths.
Hence, an s-machine implementation language requires some facility
to handle differing width instructions.

The SUILVEN REDIMENSION declaration is a declaration which
enables the user to redefine his basic cell size in any array.
Naturally, by so doing the number of elements in the array is
also changed. The syntax of the REDIMENSION declaration is:-

REDIMENSION <array name>(<cell size>,<number of cells>)
C,<array name>(<cell size>,cnumber of cells>)]

The declaration specifies that the named arrays should be
redimensioned according to the bracketed specifications.

The REDIMENSION declaration enables the soft machine store to
be modified in such a way that, irrespective of the width of
the instruction, the instruction may be fetched from store
in a single operation rather than in a loop. This is perhaps
best illustrated using examples.

,-?V - -96- ■ ' ' . "*■

Example 1

The IBM S/360 series of computers has a byte oriented store. There
are four basic types of machine instruction and three different
instruction widths - 2 bytes,'4 bytes, and 6 bytes. The
REDIMENSION declaration can be illustrated using two of these
instruction types:-

(i) The RR type instruhtion, whoee op code occupee' caee byee
and whose parameters occupy one byte,

(ii) Thp RX typ5 inhttuhtion , whse, op coep o'ccppesp on, byee
and whose parameters occupy three bytes.

The 360 machine store may be declared as a BITS array

BITS(8) ARRAY(stiresize) STORE

The procedure for handling RR type instructions would not
need to ^dimension STORE as the instruction parameters are
contained in a single byte. For example:-

BITS(8) PARAMETERS

PARAMETERS := STORE(.POINTER.)

However, the procedure processing RX type instructions must
fetch three bytes from STORE to obtain instruction parameters
and would therefore ^dimension STORE to the appropriate
format

-97-

BITS(24) PARAMETERS
REDIMENSION STORE^siz^)

PARAMETERS := STOEE(.POINTER.)

As the store has been ^dimensioned, the assignment statement
which fetches one cell of the array takes 24 bits from STORE
rather than 8 bits.

Example 2

To illustrate how the REDIMENSION statement can be used to handle
the situation where Huffman encoding techniques are used to optimise
the use of store, we present the example below. Machine codes
are encoded in a number of bits inversely proportional to the
frequency of instruction occurrence.

Consider the situation where op codes may be encoded in either
3, 7, or 10 bits. Instruction parameters may also be encoded
in a varying number of bits. The machine store may be , defined
as an array of single, bits:-

BITS(l) ARRAY(storreize) STORE

•Defining the machine store in this way allows maximum flexibility
when the store is to be regarded as cells of varying size.

-98-

Within the procedure which fetches instructions having 3-bit
op codes, STORE might be redimensioned:-

REDIMENSION STORE(3,size2)

Three instruction bits are always fetched by the instruction
decoder and an escape op code signifies whether further bits are
tp be fetched to make up a 7-bit or a 10-bit code.

The procedure which builds 7-bit opcodes requires 4 additional
bits. Store might therefore be redimensioned:-

REDIMENSION STORE(4,size3)

Similiarly, the procedure which builds 10 bit codes requires 7
additional bits, and it might redimension store

REDIMENSION STORE(7,size4)

The REDIMENSION declaration, therefore, provides SUILVEN with
a feature allowing the flexible structuring of abstract machine
data areas. By using this statement to alter the dimensions of
an array, the efficiency of the generated s-machine is increased.
This is due to a reduction in the number of store fetch operations
required when transferring instructions from store into a register.

Obviously, the REDIMENSION declaration is logically unnecessary but
this is a construct which was introduced into SUILVEN in order
to increase the efficiency of the generated microcode. As
instruction fetching is probably the most frequent s-machine operation
we consider the inclusion of the REDIMENSION declaration in SUILVEN
to be justified by this potential increase in efficiency

-99-

4.5 Expressions in SUILVEN

Before going on to describe the range of SUILVEN statements, it
is apposite to describe the form of arithmetic and logical
expressions in the language.

As in most high-level languages the expression is the basic element
in many language statements. Procedure parameters, the right hand
side of assignments, and so on are all represented by expressions.
There are two types of expressions in SUILVEN:-

(i) Bits expressions, which are evaluated to produce a bitstring
representing some s-machine data type e.g. an integer.

(ii) Logical expressions, which are evaluated to produce a
truth value, true or false.

4.5.1 Bits Expressions

SUILVEN bits expressions consist of a sequence of one or more primary
quantities possibly separated by operators. The syntax for.
expressions is fairly simple:-

•k<bits expression> : := <primary>C<operatorxprimary>]

<primary> ::= <simple variable> | <function designator:* |
<array element>| <field of structured variable:* |
<constant>

<operator> :: = + I - I * | / | REM | SHL | SHR I & I XOR
J <or>

<or> | where | is not a metasymbol

“100

Bits expressions are evaluated on a strict left-to-right basis.
Bracketing is not allowed and no one operator takes precedence
over another.

This very simple method of expression evaluation, rather than
the more usual precedence based system, was again a feature of
SUILVEN which was promoted for efficiency reasons. The B1700
arithmetic unit is a simple module with no provision for the
storage of intermediate results. Therefore, in order to avoid
introducing a clumsy scheme for storing intermediate results, it
was decided to use a system of expression evaluation which did
not produce intermediate results.

Io practice, there seems to be little or no need for the
evaluation of complicated arithmetic expressions within an
s-machine interpreter program. Hence, a simple left-to-right
expression evaluation scheme as in SUILVEN causes few practical
problems for the s-machioe implementor.

The operands in ao expression need not all be the same width.
Before evaluation all operands in ao expression are automatically
right justified and left padded with zeros to the size of the
widest operand.

Notice that a result of SUILVEN's lack of typing , is that ' arithmetic,
shift aod logical operations may be intermixed within an
expression.

-101-

4.5.2 Logical Expressions

SUILVEN logical expressions are used in control statements and
are evaluated to yield a value which is either true or false. The
form of logical expression syntax is:-

<logical expression> ::=<logical primary>E<connective>
<logical primary>3

<logical primary> ::= <condition>|<flag test>

<condition> : := <bits expressionxrelationxbits expression>

<flag test> :TRUE(flag name) | FALSE(flag name)

<connective> AND | OR

<relation> ::= = I * I > I < I >= I <=

Logical expressions allow the comparison of bits expressions using
the relational operators which have their usual meanings. The
connectives AND and OR allow a number of different tests to be
carried out in the same expression. For examplei-

A = B AND C = D OR P = Q

Flag tests, which may also be used as logical primaries, allow
the SUILVEN programmer to test the value of a flag variable. The
tests have their obvious meaning.

-102-

4«6 SUILVEN Statements

This section of this chapter on SUILVEN covers the possible
statements available to the SUILVEN programmer. These statements
fall into three distinct classes:-

(i) Assignment statements

(ii) Procedure calls

(iii) Control statements

Statements may be combined into compound statements by enclosing
them in tagged brackets £(and £). The sections below deal with
each type of SUILVEN statement.

4.6.1 The Assignment Statement

The SUILVEN assignment statement is similiar in syntax and semantics
to the assignment statement in most other high-level ALGOL-like
languages. Its syntax is:-

<LHS> := <bits expression>

where the left hand side may be a simple variable, a field of a
structured variable or an indexed variable. Examples of each
of these are:-

(i) A B

A simple variable assignment

(ii) STORE(.POINTER.) := AREGISTER

An assignment to an indexed variable

-103-

(iii) LISTR.HEAD := A + B

An assignment to the field(HEAD) of a structured variable .

Flag assignment is carried out via a different mechanism. Two
. standard procedures SET(<flag>) and UNSET(<flag>) are used to

assign values of true and false to flag variables.

4.6.2 Procedure Calls

Like the assignment statement, the syntax and semantics of
SUILVEN procedure calls is similiar to that of other high-level
languages. A procedure is called by writing the name of the
procedure followed by a bracketed list of actual parameters(if any).

The syntax of procedure calls is defined:-

<procedure call> <procedure name>(<actual parameter list>)

The actual parameters are evaluated and their values are passed
to the procedure. Parameter passing by value is the only method
possible in SUILVEN. The decision to allow only the values of
parameters to be passed to procedures was taken for a number of
reasons:-

(i) Safety - there is no way in which the values of global
machine data areas may be accidently modified within a
procedure.

(ii) Clarity - to modffy a global variable is mustbe
to by name.

(iii) Efficiency - after parameter values have been copied no
further overheads are incurred.

104—

z i

Some examples of procedure calls are;-

(i) GET_EEW_VLUEES))

This is a call of the procedure GET_NEW_VALUES which does
not take any parameters.

(ii) PUSHSTACK(TIEGG + SREG)

The procedure PUSHSTVCK which has one parameter is called. The
expression TREG + SREG is evaluated and its value passed to
PUSHSTVCK.

4.6.3 SUILVEN Control Statements

Vs discussed earlier in this chapter(section 4.1.2), recent
computer science developments have suggested that the use of certain
control constructs such as the if-then-else statement and the
while statement produces more understandable and more reliable
programs than the use of conditional and unconditional go to
statements. This has influenced the design of the control constructs
included in SUILVEE with the result that only structured control
statements have been included in the language.

Necessary control statements in a programming language are the
if-then-else and while-do statements. However, for reasons of
efficiency and convenience other control statements have also
been included in SUILVEE. These not only include extensions of
basic control constructs but also statements which allow the
user to directly exit from a procedure and to abort the program.

-105“

The set of control statements available in SUILVEN is composed of:

(i) An if-then-else statement

(ii) A while-do statement

(iii) A case statement

(iv) A repeat-until-do statement

(v) An exit statement

(vi) A stop statement

The If and While Statements

These statements are the well known control statements available
in many current high-level languages such as PASCAL and ALGOLW.
Their use is illustrated by exampl^:-

Examples of If Statements

(i) UF A = B .ANd C > D THEN
£(

X := ' Y; P := Q;
£)

(ii) IF X = 0 THEN
£(

SET (ANY_INTERRUPT); SET(DIVZERO);
£)

ELSE
PUSHSTACK(Y/X) >

-106-

Examples of While Statements

(i) IWHILE LIST(.POINT...TAIL = NIL DO

POINT ;« LIST(.POINT.).TAIL;

(ii) WILE A <= STACKSIZE DO

£(

STACK(.A.) := 0; A := A + 1;
£)

4.6,5 The Case Statement

The SUILVEN case statement is derived from the case , statement of
ALGOLW and selects a statement for execution depending on the
value of some arithmetic expression. The form of the statement is

CASE <bits expression>•OF
<statement list>

ENDCASE

The arithmetic expression is evaluated and the statement whose
position in the list corresponds to that value is selected for
execution.

In a language for implementing s-machines, this type of statement
is especially useful for selecting an execution sequence on the
basis of an instruction op code.

-107-

For example

CASE OP CODE OF
PUSH(A + B) ;
PUSH(A - B);
PUSH(A * B);

"ADD"
"SUB"
"MUL"

ENDCASE;

With this type of case statement, the statement selected for
execution has an implicit dependance on the value of the expression
used in the case statement. This may be compared with the type of
case statement where the relation; --between - the -.case - expression aiid
the statement executed is explicitely stated;as in PASCAL. Another
alternative form of case statement is the guarded command set
recently proposed by Dijkstra(D4).

These types of case statement are safer as they are not susceptible
to errors made by the programmer in the ordering of the statement
list. This we were aware of when designing the SUILVEN case
statement but efficiency reasons again governed our choice of
statement. The simpler type of case statement used in SUILVEN
can be compiled to more efficient microcode, both in terms of 1
space and execution speed.

In practice, the main function of the case statement in s-machine
implementations is to select a statement for execution on the
basis of an instruction op code. As these op codes are generally

108-

sequential, without gaps in the op code sequence, the SUILVEN
case statement is not seen to be significantly disadvantageous.

4.6.6 The Repeat-Until-Do Statement

The repeat-until-do statement, a modified form of the familiar
repeat-until statement, permits the test for loop termination
to be placed anywhere within a loop.

The syntax of this statement is:-

<repeat statements- ::- REPEAT <statement> UNTIL <condition>
"DO '<statement>

The first statement is executed and the condition tested. If this
condition is false, the second statement is executed. This process
is repeated until the condition is true,when the loop terminates.
As either statement may be a null statement this arrangement
allows the loop termination test to be positioned at the start,
in the middle, or at the end of the loop.

This type of construct obviates the necessity of using boolean
variables or go to statements within a loop in order that the
test for exit may be made after some other statement in the loop.

A common situation where this occurs is when data is being fetched
and processed,with the loop terminating when all data has been
consumed. The examples below compare programs where this is
handled using boolean variables and where the repeat-until-do
statement is used

-109-

Using Boolean Variables

SET(NOTFINISHED)
WHILE TRUE(NOTFINISHED) DO

£(
GETJDATA();
IF TRUE(ENDJDATA) THEN

UNSET(NOTFINISHED)
ELSE

PROCESSJDAITA) •
£) ■

Using the Repeat Statement

REPEAT . ’
GET_DATA()

UNTIL
TRUE (ENDjDATA)

DO
PROCESSjDATA() s

Clearly the repeat statement is more natural and concise. It
also has the advantage that more efficient code may be generated
as only one rather than two tests need be made on each loop
execution.

-1 10-

4.6.7 The Exit and Stop. Statements

The exit and stop statements respectively allow the programmer
to leave a procedure or to terminate.the program. . They are
represented by the reserved words EXIT and STOP.

The inclusion of an exit statement allows the return from a procedure
if some exceptional condition is encountered. Naturally, this may
be achieved using nested if-then-else statements but an explicit
exit is often clearer and more efficient.

A stop statement was introduced into the language as it is often
necessary to terminate the program on the detection of an
unrecoverable error. Again, a possibly complex sequence of
if-then-else statements can be avoided without loss of clarity.

4 . 7 Using SUILVEN to Describe an IBM S/360 Computer-'

Perhaps the best way to illustrate a programming language is to
present an example of a familiar problem in that language. The
example below shows part of the SUILVEN description of a machine
in the IBM S/360 range, whose architecture is well known. Naturally,
a complete description would be very lengthy and, as a result, only
the data area description and descriptions of representative
instructions are shown below.

An IBM S/360 computer has a -'general purpose' architecture. Its
store is made up of 8-bit bytes grouped into 4-byte words, it
has 16 general purpose registers with program control information
stored in a program status word. It has a comprehensive instruction

-Ill-

set which includes register-register, register-store, and
store-store instructions. A full description of the machine
may be found in the appropriate IBM reference manual(14).

The example below describes the machine data areas, the Add Register
instruction(an RR instruction), the Compare instruction(an RX
instruction), and the Move Character instruction(an SS instruction)
All 360 op codes occupy one byte and the instruction descriptions
below assume this has been identified. For clarity, comments in
the machine description are included in italic type, although
this is not a feature of SUILVEN.

11 This is an example program in SUILVEN describing part of

an IBM S/360 computer. Data areas visible and invisible to

the machine language programmer are described along with

the operation of instructions representative of each

instruction type.

Firstly3 describe the machine data areas accessible to the

programmer n

BITS(32) ARRAY(16) REGISTERS;
BITS(8) ARRAY(STORESIZE) STORE;
BITS(6 4) PROGRAM-STATUS—WORD;

" Define the structure of the PSW and assign‘it "

TEMPLATE PSW = SYSMASK(8), PR0TKEY(4), AMWPC(4), INTCODE(16),
ILC(2), CC(2), PR0GMASK(4), ADDRESS(24);

DEFINE PSW : PROGRAM_STATUS_WORD;

1 12'

" Now define some internal registers used by the machine

in instruction execution " .

BITS(4) SR, DR, IR;
BITS(12) DISP, DISP2;
BITS(8) OPCODE, SSLEN;

" Define some utility procedures. These are procedures used

by a number of instructions to perform tasks which are common\
to each lt

PROCEDURE GETJRR_PARAME TERS;

" Fetches the parameters for an RR type instruction. The

source register is left in SR and the destination

register in DR "

BITS(8) P;
TEMPLATE RR = DR(4), SR(4);
DEFINE RR : P;

" Fetch instruction parameter into P, Assume that the

ADDRESS field of the PSW points to this "

P := SUORE(.PROGRAM_SUAUUSjWORD.ADDRESS.) ;
PROGRAMJSTATUSjWORD.ADDRESS := PROGRAMsSTUTUS>_SWORD. ADDRESS + 1
SR := P.SR; dr := P.DR;

END;

-113-

PROCEDURE GET_RX_PARAMETERS; '

" Fetches the parameters for an RX type instruction. The

destination register is left in DR, the index register in

. IRS the base register in SR and the displacement in DISP.

As the parameters for an RX instruction occupy 24 bits

• ' STORE is redimensioned so that all 24 hits may be fetched

in a single instruction "

REDIMENSION STORE (24,STORESIZE2);
TEMPLATE RX = DR(4),IR(4),BR(4),DISP(12);
BITS(24) P, SP;
DEFINE RX.: P;

" SP is a pointer into the redimensioned store area. Compute

its value from the _ PSW ADDRESS field rt

SP := PROGRAMJSTATUSJTORD.ADDRESS / 3;
PROGRAM_STATUSJWORD.ADDRESS := PROGRAM_STATUSJTORD.ADDRESS + 3;
P := STORE(.SP.);
DR ; = P.DR; IR := P.IR; SR := P.BR; DISP := P.DISP;

END;

PROCEDURE GET_SS_PARAMETERS;

" As for above procedures but for SS type instructions. The

number of bytes involved in the instruction is in SSLEN,

the base registers are DR and SR, and the displacements are

in DISP and DISP2, Store is again redimensioned, this time

to a cell size of 40 "

-114“

BITS (40) P; BITS (24) SP;
TEMPLATE SS = LEN(8), BRI(4),DISP1(12), BR2(4), DISP2(12);
DEFINE SS : P;
REDIMENSION STORE(40,ST0RESIZE3);

n Compute value of store pointer(SP) from PSW ADDRESS field ”

SP := PROGRAM_STATUS_WORD.ADDRESS / 5;
PROGRAM_STATUS_WORD.ADDRESS := PROGRAMJ>TATUS__WORD.ADDRESS + 5;
P := STORE(.SP.);
SSLEN := P.LEN; SR := P.BR1; DISP := P.DISP1;
DR := P.BR2; DISP2 := P.DISP2;

END;

PROCEDURE ADD_REGISTER:

" This is an RR instruction which adds the values in the

specified registers. The condition code field of the

PSW is set by this instruction "

GET_RR_PARAMETERS;
REGISTERS(.DR.) := REGISTERS(.DR.) + REGISTERS(.SR.);

" Assume the existence of a flag variable OELOW which is set

if integer overflow occurs. OELOW would be an internal

machine flip-flop associated with the adder "

IF TRUE (OFLO.W) THEN
PROGRAM STATUS WORD.CC := 3

ELSE

~1 15-

IF REGISUERS(.DR.) > 0 THEN
PROGRAM_SUATUS_WORD,CC :« 2

ELSE
IF REGISUERS(.DR.) = 0 THEN

PROGRAM_STATUS_WORD.CC : = 0
ELSE

PROGRAM_SUAUUS_WORD.CC ;= 1;
END;

PROCEDURE COMPARE;

" Compare is an EX type instruction which compares the

value in a register with a value held in store. The

condition code field of the PSW is set on the basis of

this comparison.

A temporary register TEMP is used in this instruction

to hold the value of the operand in store. This avoids

unnecessary store fetches "

BITS(32) TEMP;
GETJRX_PARAMETERS;

IF IR = 0 THEN
TEMP := SUORE(.REGISUERS(.SR.) + DISP.)

ELSE
TEMP := SUORE(.REGISTERS(.SR.) + REGISTERS(.IR.) + DISP.)

• IF REGISTERS(.DR.) TEMP THEN
PROGRAM STATUS WORD.CC := 2

ELSE

-116-

IF REGISTERS(.DR.) = TEMP THEN
PROGRAM_CTATUS_JWORD.CC : = 0

ELSE
PROGRAMJ3TATUSJTORD : = 1;

END;

PROCEDURE MOVIJJHARACTERS >

" This is an example of an SS type instruction. The function

■ of the instruction is to move a specified number of

characters(bytes) from one location in store to another

The instruction uses some temporary registers to hold

intermediate addresses and lengths, "

BITS(24) ADDR, ADDR2; BITS(8) COUNTER;
get__ss__parameters >
COUNTER ;= 0;
ADDR ;= REGISTERS(.SR.) + DISP;
ADDR2 := REGISTERS(.DR.) + DISR2;
REPEAT

STORE(.ADDRl.) : = STORE(.ADDR2.)
UNTIL

COUNTER = SSLEN - 1
DO

£(ADDR := ADDR + 1;
ADDR2 := ADDR2 + 1;
COUNTER := COUNTER + 1; £)

END;

“117-

The above description gives some idea how SUILVEN may be used to
describe a computer such as the IBM S/360. However, it must be
borne in mind that this is a description of a 'hard* machine.
SUILVEN is designed primarily for the description of language-
oriented soft machines and is therefore not ideal for describing
machines like the S/360.

4.8 Summary and Conclusions

This chapter has provided a description of the design of a
programming language called SUILVEN. This language is intended
for the description and implementation of language-oriented soft
machines. .

SUILVEN contains powerful data description features enabling the
user to express the full range of data organisations which might
occur in abstract machines. These data description facilities include
declarations for defining the width of data areas and declarations
for assigning structure to these areas.

The statements of SUILVEN are made up of assignments, procedure
calls and control statements. Only a limited but adequate set.
of control constructs have been provided and the go to statement
has been completely excluded from SUILVEN. Uo facilitate loop
exit a repeat-until-do statement has been included in the language.
This statement permits the test for loop exit to be placed at the
beginning, the middle, or the end of the loop.

-118'

The reader will have noticed that no input/output statements
have been described in this chapter. No such statements are
defined in SUILVEN. This was a deliberate decision made for the
following reasons:-

(i) We were unsure of the I/G requirements of s-machines. The
s-machines which were studied all carried out I/O via calls
to the underlying operating system.

(ii) SUILVEN wss originally intended to produce mcerprrogaams
which would run on our B1700 simulator. As this had
minimal I/O facilities it was decided to postpone the
decision on which I/O facilities were to be included
in SUILVEN.

Simple input/output has now been implemented as standard procedures
in the language. These are described in the following chapter
which covers the implementation of SUILVEN.

SUILVEN has now been used to implement a number of different
abstract machines. Using these implementations, the language
design has been evaluated as a description language and as an
implementation language. A full description of this evaluation
is given in chapter 7 and it is summarised below.

In general terms, the design criteria for SUILVEN which were
established in section 4.2 have been fulfilled. The language
is a high-level machine description language without machine
dependent features. It is, however, oriented towards the B1700
computer series. The SUILVEN compiler was reasonably easy to
implement.

-119-

It is in criterion (iii), i.e. that the microcode generated
from a SUILVEN program be efficient, that SUILVEN is not as
satisfactory as may be desired. Compromises have been made to
make the language more efficient, but there are still serious
inefficiencies in the microcode generated for certain constructs.

We now believe that the requirements of a machine description
language and a high-level microprogramming language are different,
and that the inefficiencies of SUILVEN are a consequence of attempting
to combine these functions. This will be discussed in more detail
in chapter 7.

-120-

CHAPTER . 5

THE IMPLEMENTATION OF SUILVEN

This chapter describes the implementation of a compiler for
SUILVEN. The SUILVEN compiler is programmed in SN0B0L4 and uses
a top-down recursive descent syntax analysis technique,to parse
SUILVEN statements. The intermediate form of B1700 microcode,
which is described in chapter 3, is generated by the compiler.

Compiler construction has been well documented by authors such
as Randell and Russell(Rl) and Gries(G2). Therefore, a full
description of the compilation of each language feature is not
given here. Instead, the design decisions involved in the
implementation of the compiler 'are discussed, along with an
overview of the compilation process. The implementation of
SUILVEN’s data description features is described in some detail
as these constructs are not available in other programming
languages and hence their compilation is not widely documented.

The chapter concludes with a discussion of the problems involved
in optimising SUILVEN code and presents some information on the
performance of the SUILVEN compiler.

5.1 Compiler Design

The'overall structure of a compiler program is well known. It
consists of a number of modules performing different functions
associated with the translation process.

-121“

These functions can be categorised as follows:-

(i) Lexical analysis

(ii) Syntatiic and semaniic analyiss

(iii) Code generation

In addition to these essential modules, the compiler may include
a module designed to optimise the generated code.

Compilers may make one or more passes through the source code being
translated. In a single-pass compiler, all the above functions are
carried out in a single pass through the code being compiled, whereas
in a multi-pass compiler, several passes are made through the code.
Each of these passes often corresponds to one of the above functions
with an intermediate form of the source code being generated by each
pass.

The lexical analysis phase of a compiler is generally straightforward
and consists merely of identifying tokens from the input source code.
These tokens may be entered in a symbol table, if appropriate, and
a numeric code representing the token passed to the syntax
analysis phase of the compiler.

The generation of compiled code is still essentially , an cd hoe

process. Although intermediate code forms such as reverse Polish
notation or triples may be produced, the generation of code is still
largely dependent on the intimate machine knowledge of the compiler
writer.

-122“

Syntax analysis, however, is much less of an ad hoc process
and a good deal of research has been carried out in this field,
investigating different analysis techniques.'. Fundamentally, a
programming language syntax may be analysed in either a top-down
or a bottom-up manner.

Using bottom-up techniques, the source string is reduced until the
goal symbol of the language grammar is attained. The reduction of
phrases in the language depends on the precedence of language
symbols, and syntax analysis methods depending on simple precedence,
operator precedence, and 'mixed-strategy precedence(W6,F2,Ml) have
been developed.

Top-down syntax analysis methods depend on starting with the
goal symbol of the language grammar and deriving the source string
from this.

Probably the most straightforward technique of top-down analysis
is the method of recursive descent. This method represents each
non-terminal symbol in the language grammar by a recursive
procedure which checks the syntax of that particular non-terminal,
A syntax tree is therefore constructed implicitely by a sequence
of procedure calls.

-123-

As an example of the simplicity and elegance of the recursive
descent analysis technique, the example below presents a
procedure called WHILE^JSTATEMENT. This procedure parses the
non-terminal <while statement> in a language grammar.

while_stauemenu
BEGIN

CONDITIONALjEXPRESSION
NEXT_SYMBOL
CHECK("DO")
next_symbol
STATEMENT

END

When a recursive descent analysis technique is used, only one
or two symbols are required from the input stream at any one time.
Semantic analysis and code generation are generally intermixed
with syntax analysis. Recursive descent compilers, therefore, are
basically one-pass compilers, although extra passes may be included
to optimise the generated code.

Recursive descent compilers are simple to construct, efficient,
and easy to understand. However, the class of languages
compilable via this technique is restricted by the following
conditions:-

(i) All names used in a program must be declared before
they are used in program statements.

-124-

(is) The language grammar must he LL(1). This' means that
parsing decisions can be made on the basis oo the
current symbol from the input stream which is available
to the compiler.

These requirements are not usually disadvantageous, especially
in the situation where the language design and compiler
construction proceed in parallel. Simple language modifications
are then possible in order that the language be made compilable
using a recursive descent technique. Under special circumstances,
it may no d bd fossIH' td modffd thd langaggd and , in this case,
it is oavhadgao d t d chluat ’ yy tooing d hemd in order tn make
a parsing decision. Such circumstances are rare and do not
impose significant compiler overhead.

5.2 Thee Compiler PrograimsingLanguage

The choice of a language in which to program a system is one which
has to be made at an early stage of the system design. Features
available in a programming language can simplify certain
implementation techniques, whereas the lack of particular features
can render some techniques completely impractical.

There were a number of programming languages available to us.
These fell into three clObgordes:-

(i) Lovr-level languagesl S/360 Assembbed, PL360)

(ii) General-purpose highi level languages! FORTRAN, ALGOL,,
SN0B0L4, BCPL)

(iii) Special-purpose compiler writing llaguages(XPL)

-125-

The decision which language to use for writing the SUILVEN
compiler was governed by a number of factors:-

(i) The suitability of the language for compiler writhi..
This is primarily governed by the data types and structures
available in the language. .

(ii) The cost of using a particular language processor on our
system. Different language processors require differing
amounts of system resources such as disk files and machine
store. As program turnround time is a function of the
system resources utilised it was to our advantage to
minimise resource consumption.

Notice that the efficiency of the compiler for SUILVEN is not
of great importance as the language is a research tool,with the
compiler used by relatively few people.

Although the low-level language and FORTRAN compilers consumed
the least amount of system resources they were immediately
rejected as compiler writing tools, because of their unsuitability
for this application. Our choice of programming language was
therefore narrowed to four alternatives:-

(i) XPL

(ii) ALGOLW

(iii) SN0B0L4

(iv)

-126-

XPL(Ml), a PL/1 based language, is part of a translator writing
system which includes an automatic precedence table generator and
a syntax analyser. This syntax analyser uses a bottom-up mixed-
strategy precedence analysis technique.

These features aid the production of a compiler and preliminary
experiments were carried out with XPL, Unfortunately, these
indicated that the system resources required by the language
processorC 4 disk files, 200K bytes of store) would make the
production of a large program impractical. XPL was therefore
rejected as a compiler writing tool.

For similiar reasons, BCPL was rejected as the compiler programming
language. Not only did the BCPL compiler require a large amount of
system resources but the language also suffered from an unreliable
implementation. .

Neither ALGOLW or SN0B0L4 suffered from ' this disadvantage. Both
these languages had efficient and reliable implementations and
neither consumed an excessive amount of system resources. Our
choice, therefore, was dependent on the suitability of each language
for compiler construction. Finally, we choose SN0B0L4 as the
compiler programming language for the following reasons:-

(i) SNOBOL's inbuilt data types and data structuring features
are significantly more powerful than those of ALGOLW. SNOBOL
has a primitive data type called TABLE, which can be regarded
as an associatively addressed array, and a facility for the
user to define his own structured data types. The combination
of these features makes the construction and use of compiler
tables a relatively trivial task.

-127-
t

(ii) SNOBOL*s powefful string manrpuilattiori and pattern, matching
features considerably simplify the production of some parts
of the compiler, such as the lexical analyser and the code
generator.

(iii) Our ALGOLW implementation imposed restrictions on the
maximum number of possible record types. We anticipated
that this might cause problems when implementing a compiler.

SN0B0L4 undoubtedly suffers in comparison with ALGOLW inasmuch as
it lacks structured control constructs and, in that little compile­
time checking is carried out by the SN0B0L4 compiler. In spite of
this, because of its data structures and superior string manipulation
facilities, SN0B0L4 was chosen as the language for the SUILVEN
compile!?.

5.3 Thee (PoTni^:^l^^rr

This section of the thesis presents a brief overview of the SUILVEN
compiler and displays, in diagrammatic form, the structure of that
program.

Having chosen SN0B0L4 as the compiler programming language it was
decided to utilise a top-down recursive descent syntax analysis
technique to parse SUILVEN statements. This decision was made for
the reasons discussed in section 5.1, viz, recursive descent
compilers are simple to construct, efficient, and easy to understand.

-128-

There are three basic parts to the SUILVEN compiler:

(S)

(is)

The scanner or lexical analyser

The syntactic and semlaOsi analyser

CSSS) The code generator

The scanner and the code • generator are relatively simple procedures
called by the analysis section as required. Their functions are to
return the next symbol from the input stream and output
microinstructions respectively. Microinstructions are not output
Sn binary form but in the dntermeOiaOg form, IML, described in
chaper 3. ■

The syntactic and semantic analyser comprises the major part of
the compiler. Its functions are to build the compiler tables from
information supplied by SUILVEN dbclaratStns, to check the syntax
and semantics of SUILVEN statements, and to translate these
statements into microcode.

This part of the compiler was constructed Sn a top-down fashion
and has a hierarchical structure. This•structure is displayed below
Sn a simplified form in figure 5.1. The nodes of the tree illustrating
the program are procedure names whose function is, hopefully,
obvious.

COMPI
LE PROGRAM

THE STRUCTURE OF
 THE SUILVEN CO

MPILE
R

-130-

The rbmlsaSag sections of this chapter 0gsirSbb the implementation
of SUILVEN’s data description features and, very briefly, the
translation of SUILVEN statements. The chapter concludes with
sections which discuss code optimisation and the performance of
the SUILVEN compiler,

5,4 The Implementation of SUILVEN’s Data Dgscrdption Features

In this section, we discuss in some detail the implementation of
SUILVEN’s data description declarations. These features are covered
Sn some detail as they are the features of SUILVEN which distinguish
the language from other high-level languages.

The implementation of SUILVEN declaration requires a number of
tables to be built by the compiler to hold information about
dgcllrgd names. The major tables used Sn the compiler are:-

(S) A symbol table

(is) A template table

(SSS) A procedure table

The itructure and functions of each of
below.

these tables Ss described

The implementation of all these tables in SN0B0L4 Ss greatly
simplified by SNOBOL’s associative addressing feature and data
definition facilities. This latter feature allows the itructure
of a table entry to be defined using a DATA declaration. Any
table entry can therefore be made by specifying the table name,
the name to be entered, and a list of attributes.

»I

-131-

For example:-

SYMBOLS<'STACK’> = SYMBOLENTRY(24,ARRAYTYPE,50,2000,0,NIL)

This would enter the name STACK into the table SYMBOLS along
with the attributes of STACK which are specified in brackets.
SYMBOLENTRY is the name given to the structured type representing
an entry in the symbol table.

5.4.1 The Symbol Table

The symbol table is the main compiler table. It holds information
concerning the data areas declared using the BITS declaration, with
each entry structured into six fields as follows:-

(i) LBN

Holds the width, in bits, of a variable if it is a scalar
variable or the width of each array element if an array
type variable.

(ii) TYPE

Specifies whether the symbol table entry is a scalar, a
flag, or an array.

(iii) SIZE

If the entry is an array, specifies the number of elements
in the array.

(iv) ADDRESS

This field hoisi the btl addresi in machine store ol the
declared variable if a BITS variable, or, if a FLAG variable,
the bit in the L register representing that flag.

-132-

(v) SADD

This field specifies whether a variable is in a fast
scratchpad register or in store. This is discussed in
more detail in section 5.7 which covers microcode
optimisation.

(vi) TEMP

If a BITS variable is structured, this field points
to the appropriate structure in the template table.

The -examples below illustrate typical symbol table entries for a
sequence of declarations.

Declarations .

BITS(24) AREG,BREG;

BITS(24) ARRAY (512) STACK;

FLAG AFULL, BFULL;

Symbol Table Entries

Assume that the first - bit address allocated is address 2000.

AREG 24, S, 0, 2000, 0, NULL

BREG 24, S, 0, 2024, 0, NULL

STACK 24, A, 512, 2048, 0, NULL

AFULL 1, F, 0, 0, 0, NULL

BFULL 1, F, 0, 1, 0, NULL

“ 1 33-

5.4.2 The Template Table '

The template table is a table which holds the form of each template
declared in the . program. For each template, a linked list is
constructed with each element in the list holding information
about one field of the template. It'.is necessary to use a list
organisation for this table, as a template may have any number of
fields.

Each element in the linked list is divided into four fields:-

(i) NAE
The name of the template field.

(ii) LENGTH
The width of the template field in bits.

(iii) OFFSET
The displacement of the field in bits from the beginning
of the template structure.

(iv) NEXT .
A pointer to the next field of the,templatt.

Figure 5.2, ' below,'illustrates the structure of the template
table for typical declarations.

Declarations

TEMPLATE LIST « GC(1),TAG(4),H3EAD(2O), TAIL(20);

TEMPLATE STACKSTRUG = TAG(4), DATA(20);

-134“

LIST

STACKSTRUG

TAG 4 1

HEAD 20 TAIL 20 29

> TAG 4 0 » DATA 20 4

\ GC 1 0

E

FIGURE 5.2

THE STRUCTURE OF THE TEMPLATE TABLE

A DEFINE declaration causes a template to be associated with a
declared program data area. This association is accomplished by
linking the appropriate entries in the symbol table and the template
table using the TEMP field of the symbol table entry.

Figure 5.3 below illustrates this linking for the following DEFINE
declaration:-

DEFINE STACKSTRUG : AREG, BREG, STACK;

FIGURE 5.3

RELATING A NAME TO A STRUCTURE

-135-

5.4.3 Local Declarations

An important contibution to the power of SUILVEN’s data description
facilities is provided by the ability to define names local to a
procedure.

As there are only two levels of scope(local and global) in
SUILVEN, local declarations are set up in essentially separate
tables. If the local declaration pertains exclusively to locally
defined names, the declarations are handled as the global declarations
described above.

Recall, however, that it is possible to locally redefine the structure
of global data areas either by using a TEMPLATE or by a REDIMENSION

statement. This situation is handled by taking a copy of the
appropriate global table entry in the local table and associating
the locally declared attributes with this copy. The example
below illustrates the process. z

The global declarations set up 32-bit variables structured as two
16-bit fields

BITS(32) ARRAY(250) STORE;

BITS(32) REGISTER;

TEMPLATE HALFWORDS = HW1(16), HW2(16);

DEFINE HALFWORDS : STORE, REGISTER;

-136-

Assume that a particular function requires 8-bit variables. The
procedure implementing that function could have the declarations

TEMPLATE BYTES = Bl(8), B2(8), B3(8), B(4);

DEFINE BYTES : REGISTER;

REDIMENSION STORE (8,1000);

The organisation of the local and global compiler tables after
this sequence of declarations has been processed is shown in
figure 5.4 below. -

STORE 32 • 1 250 L.
Glohats j--->REGISTER 32 0

STORE 8 1 1000
Locals

--------------------REGISTER 32 0

HALFWORDS —

BYTES —>

FIGURE 5.4

TABLE ORGANISATION AFTER STRUCTURE REDEFINITION

Naturally, when compiling a SUILVEN procedure, the local table
is searched before the global table and this table is re-initialised
at the beginning of each procedure header.

“137“

5.4.4 The Procedure Table

Information pertaining to SUILVEN procedure declarations is stored
in a separate table called PROCEDUKE__DiCTIONARY. Each entry in
this table is structured into five fields as follows:-

(i) NOFORMALS
i The number of formal parameters,

(ii) PTYPE
Indicates whether the procedure is a function or a proper
procedure.

(Hi) PADDR
The control store address of the Oaose microinstruction
in the procedure.

(iv) 'FADDR
The address of the Oaose formal parameter.

(v) FPLEN
A pointer to a linked list holding the width of each
formal parameter.

Unlike fixed word length systems, it is not enough to hold the
number of formal parameters and the address of the first parameter
Because of the possibility o1 forma1 araametrrs Vaning difeerent
widths, it is necessary to ssvv fte wianr of aach. his1 is
accomplished using a linked list.

-138-

Again, the structure of an entry in the procedure dictionary is
best illustrated by example. Consider the procedure head;-

PROCEDURE ADDN0DE(BITS(1) GC; BITS(4) TAG;
BITS(24) HEAD,TAIL);

Figure 5,5 below shows the form of the entry in PROCEDUFESJ3ICTIONARY
for this declaration.

ADDNODE 4 0 50 5860 —

PROCEDURE DICTIONARY

1 —> 4 —> 24 — V I1
■,
l—1 24

FIGURE ' 5.5

AN ENTRY IN PROCEDURE DICTIONARY

5.5 Compiling SUILVEN Statements

The compilation of language statements such as assignment, procedure
calls, and control statements is admirably documented by authors
such as Gries(G2),and Randell and Russell(Rl). The general
techniques described therin have been followed in the implementation
of the SUILVEN compiler.

A repetition of the description of how to compile such language
statements would be tedious, especially as these techniques are
well known. We therefore confine ourselves to a brief description
of the compiler procedure STATEMENTS which is the main procedure
used in the compilation of SUILVEN statements.

-139-

SUILVEN control statements may all be identified without lookahead
by the reserved word beginning the statement. Assignment statements
and procedure calls are distinguished using a single symbol
lokkahead. If the next symbol is a left parenthesis the compiler
assumes the statement is a procedure call, otherwise the statement
is taken as an assignment statement. This is the only example
of compiler lookahead used.

The structure of the procedure STATEMENTS is shown belox^:-

case SYMBOL of

"IF” : IFJSTATEMENT;
"WHILE" : WHILE_STATEMENT;

• »

endcase
else

if LOOKAHEAD = "(" then
PROCEDURE__CALL

else
ASSIGNMENT;

Very few problems were encountered in compiling SUILVEN statements.
Those difficulties which arose were caused by the fact that the BI 700
micro-architecture is unsympathetic to the needs of a high-level
language, principally because of the lack of provision for
the storage of intermediate results in expression evaluation.

Adapting SUILVEN to the B1700 micro-architecture has resulted in
inefficiencies in the machine code generated for certain high-level
constructs, notably:-

(i) Function designators used in expressions.

(ii) Conditional expressions.

(iii) Subscripted variables.

All these constructs require the use of some intermediate storage
area. In fact, extra code is generated to move these intermediate
results to and from the BI700 address stack which is used for
temporary storage of results. Inefficiencies and optimisation will
be discussed in more detail in section 5.7.

5.6 SUILVEN Input/Output FTeahures

The reader will have observed from the previous chapter that
SUILVEN input and output statements are not defined as part of
the language. As the I/O requirements of the s-machines which
we have implemented have been minimal, only simple standard
procedures have been included in SUILVEN to provide an I/O facility.

The SUILVEN I/O procedures require the programmer to use two
I/O buffers called INPUT_BUFFER and OUTPUT_BUFFER. Associated
with each of these buffers is a pointer respectively named INPOINT
and OUTPOINT. These variables are automatically predeclared in
all SUILVEN programs and may be accessed like all other variables
declared in a SUILVEN program.

-141~

There are five I/O functions which operate either on INPUT_JUFFER
or OUTPUT_BUFFER.

(i) READ) •
Reads a card image from the input . stream.into INPUT__BUFFER

(ii) WRITE ,
Writes OUTPUTJBUFFER to the line printer in character form

(iii) PUT(<expression>)
Evaluates the given expression, converts the result to
characters and moves these characters to OUTPUT'BUFFER.

(iv) PUTSTRING^strin^)
Moves the specified string to OUTPUT_BUFFER.

(v) CLEAR.;
Sets all characters in OUTPUT_BUFFER to blank:.

These simple I/O statements have been adequate for the testing and
evaluation of those s-machines which have been implemented in
SUILVEN.

The use of I/O statements for s-machine evaluation significantly
degrades s-machine performance. This is due to the fact that
characters may only be moved singly to OUTPUTjBUFFER. The reader
will realise the effect of this on machine performance when
diagnostic strings are output. .

-142-

Naturally, should a language like SUILVEN be used in a production
rather than a research environment, the language input/output
facilities would have to be improved. We envisage that this is
best achieved using a descriptor based system but, considering
the present usage of SUILVEN, we feel the standard procedure
I/O system is adequate,

5.7 Code Optimisation

The traditional requirement of microprograms is.that they be -as •

efficient as possible. All sorts of programming * tricks’ are
used to increase the speed and reduce the size of microprograms.

We believe that this view is destined to change, as it is now
changing with regard to high-level languages. As technological
developments increase the speed and decrease the cost of fast
access store, microprograms will have a wider application, and
reliability and easy maintenance rather than efficiency will be
the prime concern of the microprogranmier.

At present, however, if a high-level microprogramming language is
to be at all credible, the generated microcode must be comparable
in efficiency with hand-written code. We have, therefore, given
a good deal of thought to optimising the code output by the SUILVEN
compiler, although no automatic optimisation techniques have yet
been implemented.

This section of the thesis discusses some of the problems of
optimising B1700 microcode and the techniques we have used to
optimise the code. These techniques are all reliant on programmer
intervention by the s-machine implementor.

-143-

5.7.1 Microcode Inefficiencies

The generation of optimal microcode from a high-level language
program is hampered by a number of factors:-

(i) Micro-architecture is not designed to sutppoirt High-—jLeve 1
languages. Consequently, problems arise in generating
efficient code for some high-level constructs such as
arithmetic expressions

(ii) Microprogrammable machines usually have a number of
general purpose registers. There is a very significant
difference in execution speed between register-register
and register-store instructions. Typically, register-
register operations are 5 times faster than register-
store operations and,'as a result, it is obviously
beneficial to optimise the use of registers. If
attempted automatically, this is a non-trivial problem.

(iii) There is usually no multiply microinstruction available
on microprogrammable machines. The implementation of
arrays where the user may define his word size in bits
and access the array as an array of words requires • a
multiplication. For example, if the array A was composed
of 32-bit words, the bit address of the nth element is
computed:-

BASE(A) + 32 * (n-1)

This essential multiplication introduces very significant
microprogram overhead as it must be executed using a
sequence of microinstructions.

-144-

The solution to these problems, in the long run, requires the
modifications of micro-architectures so that they support high-
level languages more efficiently. In our implementation of
SUILVEN, the above problems have resulted in some serious
inefficiencies in the microcode generated by the compiler.
Hence, some attempts have been made to eliminate redundant
microinstructions and to minimise the number of register-store
data transfers.

5.7.2 Minimising Register-Store Data Transfers

The B1700 has a group of fast storage registers known as the
scratchpad registers. Normally, variables declared in a SUILVEN
program are allocated addresses in the machine store, but it
is obviously desirable to utilise the scratchpad registers for
the storage of frequently accessed variables.

As the compiler cannot know in advance which variables will be
most used, compiler directives have been introduced which allow
the user to specify which program variables are to be stored
in the scratchpad. We assume that the s-machine programmer
has some intuitive notion of how frequently each variable
in his program is accessed. The compiler directives are:-

(i) SCRATCHPAD <list of variable names>
This specifies that the named variables should be
allocated to scratchpad registers.

— 1 '45-

(ii) CCPYSCCATCH <list of variable names>
This causes code to be generated which will copy the
specified variables from store into a scratchpad register

(iii) CLEARSCRATCH <list of variable names> -
• This causes code to be generated which will copy the

specified variables from the scratchpad to store, thus
freeing their scratchpad locations for subsequent use.

As all variables always have a location reserved for them in
store it is permissable to transfer a variable to the scratchpad
on entry to a routine which uses that variable frequently. It
may be returned to store on exit from that routine.

The performance improvement obtained by retaining variables in
the scratchpad rather than in store is clearly demonstrated by
the example below.

Example

This example compares the generated microinstructions from a
SUILVEN assignment statement when the operands are in store, and
when they are in the scratchpad.

Consider the assignment:-

A := A + B

The microinstructions generated when both A and B are in store
are shown overleaf.

146-

Microinstruction . Number of machine cycles

FA:=Address (A) 2
X:«READ 5
FA:=Address(B) 2
Y:=READ 5 .
X:=SUM • 1
FA:=Address(A) 2
WRITE (X^) 6

Total number of microinstructions generated = 7

Total number of machine cycles used = 23

This may be compared with the microinstructions generated for the
same assignment statement when both A and B have been allocated
scratchpad locations.

Microinstruction Number of machine cycles

X:=Scratchpad(A) 1 .
Y:=Scratchpad(B) 1
X:=SUM 1
Scratchpad(A):=X 1

Total number of microinstructions = 4
Total number of machine cycles used = 4

This represents a reduction of about 50% in the number of
microinstructions but, because of the elimination of store-
register data transfers, an execution time improvement of about
500% is achieved

-147-

The reader will recall that a field named SPAD exists in the symbol
table entry for each declared name. This field is used to hold
the scratchpad location of that variable, should it have been
assigned by the programmer. '

The ability to retain variables in'the scratchpad can also
significantly reduce the number of array accesses made when a
stack is implemented in SUILVEN. It is obviously impossible
to retain all stack elements in fast ' scratchpad registers, but
the top few stack elements may be kept in the scratchpad rather
than in store. If this is done, very few store accesses need
be made when the stack is used for computation. .

We have carried out a number of simulations to determine the
optimum number of registers needed as top stack registers. Our
results are tabulated below:-

Number of stack registers Average % of store transfers

0 100

2 11
4 3
6 2

TABLE 5.1

STACK REGISTERS -AND PERCENTAGE OF STORE ACCESSES

-148“

Naturally,- thj.s_ method of stack makes, .£
complex stack manipulation routines. The more elements retained
in registers, the more complicated become the stack push and pop
procedures. In the s-machines which we have implemented, two
stack registers have been used. We estimate that the overhead
involved in the more complex stack routines does not justify
the decrease in store accesses which would result from using
more stack top registers. Typically, the execution speed of
a stack machine is increased by about 30% by using two stack top
registers.

5.7.3 Eliminating Redundant Microinstructions

This section of the thesis describes how redundant microinstructions
are necessarily generated by the SUILVEN compiler, how they may
be eliminated, and the improvement possible by so doing. No
automatic techniques have been developed to remove these
instructions but aids have been provided to assist hand optimisation.

Redundant microinstructions occur most commonly in two constructs
translated by the SUILVEN compiler:

(i) oonitiional exreessions

(ii) Demai^s 1 oi structuedl aam aeass

In the former case, the redundancy is a direct result of the
generality of SUILVEN conditional expressions. Recall that such
an expression has the form:-

<expression> <relation> <expression>

-149“

Expressions are • always .evaluated into -a- • B1700 register .called, .the. ■ ■
X register and comparisons are made using this register and the
Y register. Therefore, the code generation sequence for a
conditional expression is:-

X := <left side>
Save X on address stack
X := <right side>
Y := top of stack
Compare

If, as is most common, each side of the conditional expression is
a simple variable, this code sequence may be reduced to:-

X := <left side>
Y := <right side>
Compare

Two redundant microinstructions may be eliminated.

When working with structured data areas, it is common to manipulate
more ' than one field of a particular structure. The SUILVEN
compiler treats each field separately and generates code to
compute the field address in each case.

However, the B1700 has an automatic address updating feature which
increments or decrements the store address register in parallel
with the store access operation. When judiciously used, this
can make a significant contribution to microcode efficiency.
This is illustrated by the example overleaf:-

-150

Example

The variables A is structured into twTo fields called HEAD and TAIL,
Consider the following assignment statements

A.TAIL : = B;
A.HEAD := C;

Assuming B and C are held in the scratchpad and A in store, the code
generated by the SUILVEN compiler is:-

X := Scratchpad(B)
FA : = Address(A.TAIL)
WRITE(X)
X := Scratchpad(C)
FA := Address(A.HEAD)
WRITE (X^)

If the automatic address updating feature in the B1700 is used,
the second assignment to FA may be eliminated:-

X := Scratchpad(B)
FA := Address(d,TAI.L)
WRITE(X) DEC FA
X := Scratchpad(C)
WRITE(X)

Obviously, this is most beneficial when operating on structured
array elements, as the need to recompute the array index is
eliminated. This reduces the number of microinstructions and
significantly increases -program execution speed.

-151-

It is very difficult for the SUILVEN compiler to generate code which
uses the address updating feature of the BI700. The code to evaluate
an expression operand is generated before consuming the next operand
from the input stream. Hence, there is no way of knowing whether
operands are adjacent in store and of using the address updater
accordingly.

To remove the redundancies in conditional expressions and to utilise
address updating, the machine code generated by the SUILVEN
compiler may be hand optimised.

This approach is not usually adopted with high-level languages as
the code generated by the compiler is not usually geared towards
the human reader. An additional problem with hand optimisation
is that the displacement in branch instructions must be modified
when instructions are deleted. This is a tedious and error prone
task. We have developed facilities to simplify the hand
optimisation of the generated code. These are:-

(i) The microcode- generated by the SUILVEN compiler for each
language statement may be listed adjacent to the statement.
This code listing is in an easily readable mnemonic form.

(ii) A special purpose editor has been written which enables
the generated microcode to be modified. This editor takes
care of changes in branch displacements when instructions
are added or deleted. Clearly, the consistent control
structure of SUILVEN, and the lack of undisciplined
branching in a SUILVEN program simplifies the construction
of such an editing program.

-152-

The hand optimisation of an s-machine whose size is about 2000
microinstructions can be accomplished fairly quickly. We estimate
that approximately 95% of redundant microinstructions can be
eliminated if two optimising passes are made through the object code.

To give some indication of the effectiveness of hand optimisation,
the histograms below show the number of microinstructions in an
s-machine before and after optimisation. The programs used to
gather this information were:-

(i) An s-machine for a lamda-calculus language(SASL)

(ii) A general purpose stack machine for PASCAL

(iii) A simple stack machine(SIMPS), developed initially as a
vehicle to test the SUILVEN compiler. .

Both (i) and (ii) above are described in detail in chapter 6.

FIGURE 5.6

SIZE COMPARISON OF OPTIMISED AND UNOPTIMISED S-MACHINES

-153-

The approximate reduction in the number of microinstructions
for each s-machine is as follows:-

... SASL machine 20%

PASCAL machine 15%

SIMPS machine 14%

The discrepancy between the figures for the SASL machine and the
figures for the other s-machines may be accounted for. The SASL
machine is a higher level machine than the comparitively simple
stack machines. As a result, the program emulating that machine
contains relatively more conditional expressions and operations
on structured data areas. As microinstruction redundancy is most
obvious in these contracts, their optimisation results in a
relatively greater reduction in the size of the SASL machine.

-154

5.8 The Lineprinter Output Produced lay the SUILVEN Compiler

The format of the lineprinter output from a compiler is often
a feature which is neglected by the compiler writer. However,
as this output is the sole means of communication between the
compiler and the programmer, we believe that much care should be
taken over its design.

A good listing contains much more than a printout of the source
text. It must establish a co-ordinate system within the program
by which program elements may be identified, both for human
communication and for association with compiler error messages.

Accordingly, the listing produced by the SUILVEN compiler is
distinguished by the following features

(i) aI infonaative "heading providing infonnation about
the compiler and compiler options.

(ii) SUILVEN statement numbrrs and crdd sequence numbers.

(iii) ft e ss wtthen e prcedduee : tee pooedduee amet
is printed by the rtateuenn.

As the full width of the linepriatcr carriage is used to provide
this hnfrrmanhra, it is not possible to give examples of the
compiler output here and still retain neatness. However, Appendix
3 consists of SUILVEN program listings where the output format
may be examined.

-155-

5.9 Statistics concerning the SUILVEN Compiler

The evaluation of a compiler is only meaningful when it is
compared with similiar compilers. For example, Witchman(WS)
has compared a number of ALGOL compilers, and Wortman(W9) a
number of PL/1 compilers. As no other SUILVEN compiler exists,
it is impossible to evaluate the compiler objectively. However,
some figures concerning details of the compiler implementation
are given below?.

Approximate Compilation Rate

Store Occupied by the Compiler

Store Occupied by the Compiler
plus the SPITBOL system

Compiler Development Time

300 SUILVEN statements
_per minute

75K Dyess

140K yyess

9 mottss

Unquestionably, the compilation rate could be increased and the
store requirements decreased had a language other than SN0B0L4
been used to implement the compiler. However, this would probably
have resulted in an increase in compiler development time. As
SUILVEN is a research tool, rapid compiler development took
priority over the construction of a fast/compact system.

156-

5.10 Summary

In this chapter, the development of a compiler for the high-level
microprogramming language SUILVEN has been described. Emphasis
has been placed on discussion of design decisions, compilation
of SUILVEN’s data description features, and the optimisation
of the microcode generated by the compiler. Because the techniques
are well known, the compilation of SUILVEN statements is only
discussed briefly.

We believe that the construction of the SUILVEN compiler has been
a successful part of our research project. Improvements could
be made in the compiler error recovery strategy and, possibly,.

some automatic code.optimisation could be attempted. However,
as SUILVEN is a research tool,designed for a limited purpose,
it is arguable whether the cost of implementing such improvements
is justified.

-157-

CHAPTER 6

THE . IMPLEMENTATION OF ABSTRACT MACHINES

In this chapter,'the implementation of interpreters for two
non-trivial abstract machines is discussed. These abstract
machines are:-

(i) A stack machine used to implement PASCAL.

(ii) A 1ist—oriented machine used to implement SASL, a
locally developed lambda-calculus programming language.

SUILVEN implementations of these machines have been programmed by
the author of this thesis. These implementations are compared
with other implementations in both high-level and low-level
programming languages. In particular:-

(i) With tire PASCAL stack machine programmed in PASCAL
and in PL360.

(ii) With the SASL machine programed in BCPL and MIL.

This chapter, therefore, begins with some general discussion
concerning the characteristics of s-machine interpreters. This
is followed by a description of the PASCAL s-machine. The various
implementations of that machine are then compared paying particular
attention to the descriptive power of the languages used to
implement the interpreters.

-158-

The final 'sections of the chapter provide a corresponding description
of the SASL machine and its implementation. The chapter concludes
with a general evaluation of SUILVEN as a machine description
and imple^ltoya.tioo language.

The implementation of the PASCAL and SASL s-machines occupied
some months. As will become clear later, these machines have a
radically different structure, with the PASCAL machine being a
fairly simple stack machine of a conventional design. The SASL
machine, on the other hand, is a true high-level machine which
utilises high-semantic content instructions, a list-oriented store,
and a tagged data architecture.

SUILVEN was therefore . tested using significantly different s-machines
These machine implementations provided insights.into both the good
and the bad features of the language design.

6.1 Abstract Machine Interpreters

The structure of abstract machine interpreters mimics the instruction
fetch-decode-execute sequence on ’hard* machines.

The main interpreter loop checks for interrupts, handles them if
necessary, fetches and identifies a machine instruction, and
executes the appropriate sequence of operations to interpret that
instruction, A skeleton of a typical interpreter is shown
overleaf in figure 6.1.

-159-

INTERPRETER
INITIALISE
while . interpreting do

' {

if cny_ianeurdpt then
HANDLE__INTERRUPT

FETCH_INSTRUCTION
case hnstruothoa op code of

•
Code to execute each machine instruction

• •• ■•
endcase

else
ERROR

}
END INTERPRETER

FIGURE 6.1

THE SKELETON STRUCTURE OF AN S-MACHINE INTERPRETER

This structure, with a greater or lesser degree of enhancement
depending on the machine being implemented, is fundamental to
all s-machine hancrpucters, Clearly, SUILVEN has the necessary
control facilities to implement such a structure.

-160-

6.2' The PASCAL Machine •

The architectural features of an abstract machine for PASCAL(WT) are
described in this section. We assume that the reader has some
knowledge of the general features of that language. The machine
was designed by Jensen(Jl) as part of a project to provide a
portable implementation of PASCAL.

As PASCAL is a block-structured language, it is natural that the
PASCAL machine(subsequently referred to as the P-machine) should
be a stack machine. To support PASCAL*s record structures, a heap
is also an integeral part of_the machine architecture. The
diagram below illustrates the machine organisation:-

HP-------- >

Sp--------- >

PC-T —

HEAP

I
T

STACK

CONSTANTS

MACHINE CODE

HP Heap pointer

SP Stack pointer

PC Program counter

FIGURE 6.2

THE ORGANISATION OF THE PASCAL S-MACHINE

-161-

It should be noted that the heap is not a true heap but is organised
on a LIFO basis. The machine has no mechanism for garbage collection.

A P-machine instruction is split into three fields:-

(i) The op code

(ii) Thee P field

(iii) Tlee Q field

The P and Q fields are not used in all instructions but, for
convenience, a consistent instruction format has been used. The
instruction set consists mostly of instructions such as ADD, MULTIPLY,
EQ, GRT, etc which operate on the stack. In addition, • there are a
number of instructions which have an address as a parameter. These
are used for loading data onto the stack and storing information
from the stack. There are some instructions which are specifically
oriented towards features of PASCAL. These instructions include
operations such as:-

(i) inn Tetss fos tet membshship

(ii) INT Set intersetiion. operator

(iii) ODD lets if the top of the stack is odd

Naturally, instructions for array bound checking, procedure entry
and procedure exit are included in the machine instruction set.

The P-machine can therefore be summarised as a typical stack
machine, not dissimiliar to Randell and Russell’s Beta machin^Rl).
The machine has been deliberately organised in this simple
manner so that it may be more portable.

162'

6.3 Implementing the P-machine in SUILVEN

The SUILVEN implementation of the P-machine is described here
with a listing of the program displayed in appendix 3.

The organisation of the data areas in the P-machine is exceptionally
simple and is easily described using two SUILVEN BITS declarations

BITS(WORD_SIZE) ARRAY(STORE_SIZE) STORE;

BITS (WORD_SIZE) STACKPOINTER,HEAPPOINTER,PROGRAMCOUlNra:R:

A number of other variables are declared which act as hnneracl
machine registers. These include variables to hold a machine
instruction, an op code register and an interrupt ueghsneu.

The implementation of many of the stack machine instructions is
correspondingly simple. Most instructions are executed by either
one or two SUILVEN statements. For example

Add Integer : PUSH(POP)) + POP)))

Load Address : PUSH(BASE(P) + Q)

Branch false : IF POP)t = 0 THEN
PROGRAMCOUNTER : = Q

An hnnbresning point which emerged from the implementation of the
P-machine was that there was little need for local BITS variables.
Those which were used, could easily have been replaced by global
variables, without causing any problems or confusing the program
structure.

-163-

However, use was made of locally declared templates in routines
which interpreted real and integer arithmetic operations. For
example, the template for a real number is declared:­

. TEMPLATE REAL = CHAR(7), SIGN(l), MANTISSA(16)

whereas that for an integer is:-

TEMPLATE INTEGER = SIGN(l), NUMB(23)

The positioning of the sign bit to the right rather than to the
left of the mantissa in a real number is forced on the s-machine
implementor by the operation of the B1700 arithmetic unit.

SUILVEN was found to be an adequate language for implementing
the PASCAL machine. Apart from real operations, which often
present implementation problems, SUILVEN easily implemented and
described the data areas and operations of the abstract machine.

I

-164-

6,3.1 Implementation Data for the SUILVEN P-machine

Table 6.1 below summarises miscellaneous items of quantitative
information concerning the SUILVEN implementation of the P-machine,

Number of SUILVEN statements 570

Number of microinstimetions 2342
generated by the SUILVEN compiler

Number of microinstructions 22010
after hand optimisation

Implementation time 6 weeks

TABLE 6.1

P-MACHINE INTERPRETER INFORMATION

The number of microinstructions after hand optimisation is 2010
and this figure represents 32160 bits of information. This may
be compared with the 28K-32K bits figure specified by NUnerC!^)
as the size of a typical s-machine programmed in MIL. Such a
machine, although slightly more complicated than the P-machine,
is of the same order of complexity.

Therefore, it appears that encoding a fairly low-level s-machine
in SUILVEN involves only a slight overhead in terms of numbers
of mscrosntybucyioos compared to a hand coded machine. We suspect

-165-

however, that a hand coded machine operates more efficiently
because better use is made of fast registers and store accesses
are mhnhmhrcd.

Notice that figures are not given for the execution speed of the
P-machine. It has not been possible to collect coIuparinhve
information crncerahng the machine speed as an MIL version
of the machine is not available to us.

6.4 A Comparison of P-machine Implementations

In this sectim, the SUILVEN implementation of the P-machine
is compared with other P-machine interpreters encoded in PASCAL
and PL360. Naturally, as microcode is not generated by the PASCAL
and PL360 crmphleur, it is not possible to give an objective
comparison of the haneuprettus. Rather comparisons are made
on three bases

(i) TTh number of statements in each interpreter

(ii) TTh readability of each interpreter listing

(WwO Tth suitablity of each language as an MDL

6.4.1 SUILVEN ad PASCAL

The P-machine interpreter used for this comparison is the defhahnhie
version of the hnterpuener supplied by the P-machine designers. The
designers claim/Jl) that the interpreter constitutes an adequate
description of the P-machine and provide only minimal extra
documentation about the machine.

-166—

When comparing this program with the SUILVEN version of the interpreter,
the reader must bear in mind that some operations, such as set
operations and real arithmetic operations, are implemented in ,
PASCAL using themselves. For example, the set operation INN is
encoded

SP := SP - 1;
STO1RE(.SP.).VB := STORE(.SP.).VI IN STORE(.SP+1.).VS;
STORE(.SP.).STYPE ;= BOOL;

While this is a simple way of implementing the instruction, it has
the disadvantage, as far as machine description is concerned, of
giving no indication of how sets and set operations are implemented
as bitstrings.

In spite of PASCAL’s advantage in this respect, the sizes of the
PASCAL and SUILVEN P-machine interpreters are roughly comparable.

This may be explained by the fact that PASCAL has a very strict
type discipline which is not particularly appropriate in the
implementation of interpreters. The type discipline necessitates that
the P-machine stack is implemented as a tagged structure, with
the tag indicating the type of operand on the stack. This is ''
illustrated in the example above. Naturally, extra code is needed
to accomodate this tagging and this increases the overall size of
the interpreter.

As would be expected, the implementation of simple machine instructions
such as ADI(Add Integer) and UJP(Unconditional Jump) is siminar
in PASCAL and in SUILVEN. For example

Add Inyegeb(ADI)

PASCAL
SP := SP - 1;
STORE(.SP.).VI := STORE(.SP.).VI + STORE(.SP+1).VI;

, SUILVEN
PUSH(POP0 + POP(>)

Because of the particular implementation of the P-machine stack,
using stack top • registers, the SUILVEN add instruction is implemented
as procedure calls to push and pop routines rather than as a direct
stack manipulation.

In terms of readability, both the PASCAL and SUILVEN P-machine
interpreters are reasonably clear and easy to understand. Readability
is significantly affected by programming style, and it is our opinion
that the style displayed in the PASCAL interpreter program leaves
a great deal to be desired. In particular, we deplore the use of
one and two character identifiers and the lack of comments in the
program.

Disregarding this however, we believe that the SUILVEN interpreter
is slightly easier to understand than the PASCAL interpreter. This is
due to the fact that a reader not completely familiar with PASCAL
may find the tagged stack architecture fathtr confusing, with the
rigid type discipline concealing rather than displaying the salient

features of the P-machine.

-168-

Our general opinion of the merits of SUILVEN and PASCAL as machine ■
description languages is that they are comparable. While SUILVEN,s
data description features allow the machine data areas to be more
exactly specified, PASCAL*s higher level operators can be ■ used
to provide an extra level of abstraction. -- ■ " -
c.; ■ r . - '* :

6.4.2 SUILVEN and PL360

This section consists of a brief comparison of P-machine interpreters
encoded in SUILVEN and PL360. The PL360 version was locally
programmed to bootstrap PASCAL onto an IBM S/360 computer.

PL360, designed by WirthCW?), is a machine oriented programming
language for the IBM S/360-370 range of computers. It superimposes
high-level language features such as procedures, control statements,
and expressions onto the S/360 assembly code. These high-level
features make PL360 much easier to use and understand than
assembly code.

Nevertheless, PL360 still remains c low-level language as is
reflected in the comparison of the sizes of the SUILVEN and PL360
P-machine interpreters. In spite of the availability of real
arithmetic features(the real arithmetic package is a large part
of the SUILVEN interpreter), the PL360 hnnerpueteu has about
5 times as many statements as the SUILVEN interpreter.

Because of PL360*s excellent control structures, the interpreter
description is surprisingly clear. The well structured nature
of the hnnerpreteu means that machine language is introduced at
a fairly low level. However, the SUILVEN version of the hnnerpuenbu

“169-

provides a more readable and understandable description of the
P-machine, This is to be expected as SUILVEN as a much higher
level language than PL360.

SUILVEN’s power as an interpreter programming language is illustrated
by the time taken to encode each interpreter. Encoding the P-machine
in SUILVEN occupied about 6 weeks, whereas programming the interpreter
in PL360 took about 5 months.

6,5 The SASL Machine

This part of the thesis describes the design of an abstract machine
for a list processing language called SASL. This machine, based
on Landin’s SECD macCine(L2), is defined and described by Turner(T2)
and Nelson(Nl), As SASL is not widely known, a vefyzbrief . -

overview of the language is given below.

SASL is a descriptive language, defined by Turner(Tl). Fundamentally,
it is a convenient notation for expressing the lambda calculus.
The language has no goto statement, no assignment statement:, and
no explicit iteration features. Loops are programmed using
recursion. A SASL program is an expression and its outcome
is to print the value of that expression.

SASL is intended for list processing and recognises four basic types
of object - integers, characters, truthvalues, and lists. Types
are not checked at compile time but at run time by the SASL machine
interpreter. As the language is based on the lambda calculus,
functions may be treated as any other object and may be arguments
to other functions and function results.

-170-

Eyen from the very brief description^ above, it is obvious that ■
SASL is unlike most conventional programming languages such as
PASCAL. Their s-machines, correspondingly, have completely different
architectures. •

The SASL machine is based around a list area and a stack. The
s-machine code and data are held in the list area, with a register
called the C register pointing to the next machine instruction
to be executed. Another register, called the E register, is the
environment register. That is, the E register points to the list
of data items accessable to the program at any one time. This
organisation is diagrammed below in figure 6,4.

STACK
“I
t

< ---------- c register
LIST AREA

< ---------- e register

FIGURE 6.4

THE ORGANISATION OF THE SASL MACHINE

-171

The elements in the list constitute both luactWae instructi-ons and
data. Each element is structured hnnr four fields

(i) A tag bit, used in garbage collection

(ii) A field specifying the type of the element

(wwi.) A field holding the value of the list element

(iv) A prwencr to the following element

The stack is more simply structured into a type field and a value
field.

The hnsnrucnion set of the SASL machine is made up of two kinds
of inrtruonhons:-

(i) Fairly simple stack instructions appropriate, for a
list processing environment. These hnstuucnhonr include
ADD, EQ, GEQ, HEAD, TAIL, etc, etc. ,

(ii) Instruchrons whOth hvve one parameeer and which generally
perform more complex operations than the simple stack
instructions.

These latter wesnrdonhons are more interesting than the simple
stack instructions. They include instructions to update the
program envhrrament list, hnsnrucnhoar to handle recursive
declarations, and instructions to manipulate functions. The
combination of these instructions with the stack operations
results in a simple, elegant, and powerful abstract machine.

-172-

6.6 Implementing the SASL Machine in SUILVEN - •

This section deals with the SUILVEN implementation of the SASL
machine. This was a more complex and difficult program to
construct than the P-machine interpreter. A complete listing
of the SUILVEN version of the SASL machine interpreter is available
in appendix 3.

The main data areas of the SASL machine are defined using BITS
declarations:-

BITS(STACK_WIDTH) ARRAY (STACK_SIZE) STACK;

BITSCLISTjWIDTH) ARRAY (LIST_SIZE) LIST;

BITS (VORD__SIZE) CREG , EREG;

The stack and list areas are structured using the following
template declarations:-

TEMPLATE STACKSTRUCTURE = TAG(TAG__SIZE) , DATA(WORD_SIZE) ;
TEMPLATE LISTSTRUCTURE = GC(1), TAG(TAG_SIZE), HEAD(WORDJSIZE),

TAIL(WORD_SIZE);

In order to minimise the number of store accesses, scratchpad
registers are used to hold the top stack elements with the stack
push and the stack pop routines programmed accordingly.

The overall structure of the stack machine is- that described
in section 6.1. That is, the program consists of a while loop
fetching an instruction, checking for interrupts, then executing
that instruction. The SASL machine.interpretation loop is a little

-173-

tlobt complex than the simple loop in section 6,1, as it includes
provision for run-time type checking of instruction operands.

The implementation of many of the SASL machine instructions in
SUILVEN is fairly straightforward. Like the PASCAL machine, most
instructions can be interpreted by a few SUILVEN statements. In
the examples below, it may be assumed that run-time type checking
has been carried out when the instruction is fetched from the list
area.

Instruction HEAD

" The top of the stack is a pointer to a tist. Replace

this pointer with the element at the head of the list.

The top of stack data element is held in a register

called TORS "

PUSH(LIST(.TOPS.).TAG, LIST(.TOPS.).HEAD);

Notice that the stack push procedure takes two parameters - the
tag holding the data type and the data value.

Instruction ADD

y Adds ■the top stack elements "

PUSH(INTEGERJTYPE, TOPS + SECS);

-174-

Inrtuuetirn COMMA. • •

" This instruction appends an item onto a list. The

item to he appended is in the second top stack element

and a pointer to the list is on top of the stack. A

pointer to the new list is pushed onto the stack "

TR : = GET^A.JNEW-LIST-CELLO;
LCST(.TR.).TACL := TOPS;
LIST(.TR.),TAG ;= POINTER_TYPE;
LCSh(.hR.).HEAD := SECS;

PUSHShACK(POCNhERJhYPE, TR);

The implementation of some of the more complex SASL machine
instructhras, notably those handling declarations, was more
difficult. The inrnruotioar which deal with SASL declarations
are as follows:-

(i) I^^C^L <name>

Removes the top item from the stack and makes a new entry
in the environment list, associating ^amo with the value
taken from the stack.

(ii) IE2OGUJE'ss ■■.icuO-

Makes a new entry in the cavwurautet list associating ^namo
with the unknown value GUESS. This is used when dccahag
with recursive declarations where the item to be associated
with ^amo is undefined.

-175-

(iii) TIEKNOT <name> ’

The environment contains <name> associated with the value
"GUESS". This instruction pops the stack and overwrites
GUESS with the value popped from the stack.

As <name> in each of these instructions may'.be ■ the name of a list
type entity, which may itself be composed of lists, the ■ reader will
appreciate that the most natural implementation of these instructions
uses recursion. Unfortunately, such a facility is not inherent in
SUILVEN, and the programmer must use the SASL machine stack to
save and restore local variables when recursive routines are to
be implemented.

All three of the above instructions are concerned with modifying the
environment list in some way. In order to minimise the number
of recursive procedures, the approach which we have adopted in
implementing these instructions is to flatten all lists, thus
ensuring that the instructions may be interpreted in an iterative
manner. List flattening means that each list component which is
itself a list is replaced by the actual elements of that list,
resulting in a final list which is strictly linear.

The instructions DECL, DECLGUESS, and TIEKNOT all call the .
recursive procedure FLATTEN to accomplish this list flattening.
The examples overleaf illustrate this ■procedure and the procedure
DECL which implements the DECL and DECLGUESS instructions.

-176-

PROCEDURE FLATTEN(BITS(WORD_SIZE) L1,LAST); . ,

" The effect of this procedure is to flatten the list pointed
at by Ll, i,e, all list elements.which are lists ore replaced

by the actual list components, FLATTEN may be called recursively,

and if so, LAST points to the element immediately preceding

the element whose value is LI, LAST is used when replacing

the list descriptor by the list components. The recursion

level is held in the global variable RECLEVEL "

if LIST(.L1.).TAG = POINTERjTYPE then
£(
" List element is a list - chain it onto previous list

pointed to by LAST, "
PUSHSTACK(POINTER_TYPE,LI);
L!:=LIST(.L1.).HEAD;
LIST(.LAST.).TAIL:=LI;
RECLEVEL:=RE CLEVEL+1; •

£)

ELSE
IF LIST(.L1.) = NIL THEN

£(

" If processing subsidiary list chain its last element

onto the next elernnt in higher level list.. Restore P

from the stack and reduce RECLEVEL, If RECLEVEL is

0 we are at end of main list so exit "
IF RECLEVEL > 0 then

£(

RECLEVEL:=RECLEVEL~1; - •

FCLLJ(OOSTACK_REGCSTERSO ;
LAST:=L1; UNSET(OOPSF);
L1^LISTC.TOPS_DATA.).TAIL;
LIST(.LAST.);TAIL;=L1;
£)

ELSE
" End of highest level list so exit "

EXIT

£)

ELSE
" Element is not a list so no flattening required..

Move on to next element "
£(' .

LAST:=L1; Ll:=LCST(.LI.(.hACL;

£);

" Now call FLATTEN reoursively. Unless the pointer

LI has been stacked this is not really a recursive call

but is merely a dump back to the beginning of the procedure

to repeat the operation sequence on the next list element "
FLATTEN (L^LAST); ’

END "FLATTEN" ;

-178-

PROCEDURE DECLO; • ■

" This procedure processes SASL declarations. If the declaration

is recursive* the value to he associated with the given name is

not known when the declaration is processed so the unknown value

GUESS is filled in, A DECLGUESS operation is identified by the

setting of a global 'flag called GUESS_PLAG, The instruction

parameter points to the list of names to be added to the

environment and * if a DECL instruction* the top of the stack

points to the associated value list "

BITS(WORDsSIZE) OP;
OP:«NIL;
PUSHSTACK(GETJ?ARAMETERO) ;
FLATTEN (TOPS_DATA, OP) ; ,
IF UNSET (GUESS__FLAG) THEN

FLATTEN (SECSJ>ATA, OP) ;
REPEAT

£(
ADD_NAME_A.ND_VALUEjTO_ENVIRON^IENT () ;
TOPS_DATA:=IIST(. TOPSJDATA.) . TAIL;
IF UNSET(GUESS_sFLAG) THEN

SECSjDATA: =LIST(. SECSJDATA.) . TAIL;
UNTIL

TOPSjDATA = NIL
DO ;

END "DECI" ;

179-

6.6.1 • Data on - -the SASL Machine Implementation

The table below summarises miscellaneous items of quantitative
information about the SUILVEN program which interprets the
SASL machine.

Number of SUILVEN statements 520

Number of microinstructions 1895
generated by the SUILVEN compiler

Number of microinstructions 1480
after hand optimisation

Implementation time 10 weeks

TABLE 6.2

SASL-MACHINE INTERPRETER INFORMATION

Notice that the decrease in the number of microinstructions after
optimisation is greater than that achieved with the P-machine.
This is a direct result of the more frequent use of operations
on structured data elements in the SASL machine. The code
generated by the compiler for sequences of these operations
contains redundant microinstructions and removal of these
results in a significant decrease in the size of the s-machine.

Notice also that the size of the SASL s-machine after optimisation
is about 24k bits. This is significantly smaller than the average

— s 80-

s-machine size quoted by Wilner(30K bits). To account for this,
decrease in size, we can only conjecture that the design of most
s-machines contains inherent redundancies, such as different
load instructions for loading different types of data. The
generality and elegance of the SASL machine design appears to
have eliminated these redundancies resulting in a more compact
interpreter.

6.7 A Comparison of SASL-Machine Implements at ions

As well as the SUILVEN implementation of the SASL-machine,
implementations exist which have'been programmed in BCPL and
MIL. In this section, the SUILVEN version of the SASL-machine
is compared with these other interpreters.

SUILVEN and BCPL are compared as s-machine programming languages
using the same bases of comparison as were used with PASCAL: -

(i) The rnmnber of statements in each version of the
interpreter.

(ii) The readability of the interpreter.

(SSS) The suitability of each language as a machine description
language.

However, as MIL is the B1700 micro-assembler, the SUILVEN version
and the MIL version of the SASL-machine are not compared as
machine descriptions. Instead, a comparison Ss made between the
microcode generated by the SUILVEN compiler and the MIL
program.

6.7.1 SUILVEN and BCPL ' ■

The programming-languages BCPI and SUILVEN display some similiarity
inasmuch as neither language requires the types of variables
to be declared. Hence, the awkwardness of PASCAL’s strict type
discipline is not a feature of BCPL programs used to implement
interpreters. .

As a result, the SUILVEN and BCPI code which interprets the simpler
stack operations of the SASL machine is very similiar. For example

Instruction ADD

SUILVEN
CHECKjEYPE S_ON_STACK (INTEGER_TYPE) ;
PUSH(INTEGER_TYPE,TOPS+SECS);

BCPI
A :« NUMBER(A) ;
B := NUMBER(B);
PUSHN(A+B); •

The BCPL function NUMBER checks that the type of its parameter
is a number and the procedure PUSHN pushes a number onto the
stack.

However, in spite of the similiarity of the implementation of the
simpler SASI-machine instructions, the BCPI interpreter contains
around 350 statements - significantly fewer than the SUILVEN
interpreter which is about 520 statements long.

-182-

ThCs difference is attributable to two factors:- •

(i) More use of procedures for code sharing is made in the
BCPL program. The SUILVEN interpreter uses similiar
in-line code in many places and this could be replaced by
a procedure call. This programming style of using in-line
code rather than procedures was adopted to avoid the -
inevitable overhead associated with calling and returning
from a procedure. .

(ii) BCPL has a very widevariety of control constructs, including
recursion. As a result, the coding of the more complex
SASL-machine instructions is more concise in BCPL than
in SUILVEN.

In spite of the fact that the BCPL version of the interpreter
is more concise, we consider that it is less readable and
understandable than the equivalent SUILVEN program. In short, the
SUILVEN program is a better description of the SASL machine.

This difference in readability is attributable to two factors:-

(i) CCPf hss ns ooh^^cS ors cxccII- spccffyinf ths szze
of data areas or for ascribing structure to these areas.
Fields within words must be referenced via shifts and
logical operations such as AND and OR.

(CC) hes atcCUcuhtf rogrhamyins syyes o f hlis Cdf SALL
interpreter utilises many of BCPL's wide range of control

statements. We believe ChaS'this detracts from program
readability as some BCPL control statements such as UNLESS
and TEST we find opaque.

-183-

In comparing the inherent suitabl^y of SUILVEN and BCPL as .
machine description languages, rather than merely their utility
for describing the SASL-machine, two'salient factors emerge;-

(i) SUILVEN is a superior language for describing the
s-machine data areas because of its declarations which
allow the user to exactly specify the size and structure ■

of these areas.

(ii) BCPL is a better language for describing complex s-machine
insnructions(as is PASCAL), primarily because recursion
is a feature of the language. It must be emphasised,
however:, that BCPL’s plethora of control constructs may
be abused, producing opaque and unreadable programs.

In summary, therefore, if properly used, BCPL ■ can probably
provide a clearer description of abstract machine architecture
than SUILVEN, assuming that the BCPL description is supplemented
with further information specifying the exact structure of
the s-machine data areas. It also assumes that control
constructs are used in a disciplined manner - something
which is forced on the SUILVEN programmer,

6.7.2 SUILVEN and MIL

In this section, the SUILVEN version of the SASL-machine is
compared with the corresponding interpreter encoded in MIL.

Unfortunately, the implementation of this MIL s-machine was
delayed by difficulties in implementing the SASL-machine
instructions to handle declarations. By the time these
difficulties had been resolved, the machine around which our

-184-

more general project was based, had changed from the B1700 to
the PDR'/11, and the MIL implementation of the SASL~mautine was
never properly ShsShi. However, the program'cs htseiScally
complete and, by extrapolation, conclusions regarding its
performance have been drawn.

As MIL is almost at the level of an assembly language, it is not
intended to provide a behavioural description of an s-machine.
Our comparison of MIL and SUILVEN Cs not, therefore, a comparison
of the languages as MDL’s. Rather, the microcode generated
by the SUILVEN .ccmpilhr Cs compared with the MIL program. Table
6.3 below summarises some information about the corresponding
interpreters.

SUILVEN MIL

Number of micrncitStuutcnis 1890 1320

Number of mcurniitstuusinit
after hand npscmctascni 1480 1320

Mean number of mccrnCistrucCcnns
per ASAP-mactcih instruction 46 40

Time taken to execute example
progtam(uynuk cycles) 6240 300(0 (estimate)

Time taken to implement
interpreter 10 weeks 7 months +

TABLE 6.3

A COMPARISON OF MIL AND SUILVEN INTERPRETERS

Notice that, after hand optimisation, the number of microinstructions
in each version of the interpreter is roughly comparable. Notice
also that the execution time of the SUILVEN encoded interpreter
differs considerably from the estimated time taken by the MIL
program. The SASL program used for making this comparison
was the following short program: -

rec sumlist (x,y) be.
y = () -> x;
x + sumlist y

in
}

sumlist(1,2,3,4,5,6,7,8,9,10)

This program adds lists of numbers - in this case its answer
would be 55.

The program was translated to SASL-machine code and executed
on our BI700 simulator. The program execution time was estimated
for the MIL interpreter by examining which machine instructions
were used and then hand simulating the action of the interpreter.

The large discrepancy in execution times may be explained by the
fact that the MIL program makes better use of registers and the
machine scratchpad. Therefore, far fewer store transfers need
take place and the execution time is correspondingly decreased.

For constructing microprograms, SUILVEN’s chief advantage is
that a working program may be achieved fairly quickly. Although
we cannot claim our SUILVEN interpreter to be completely debugged,
its implementation time compares very favourably with the time
needed to program an interpreter in a low-level language.

-186

6.8 Summary and Conclusions

This chapter has described the programming, in SUILVEN, of
two s-machine interpreters. These SUILVEN implementations have
been compared with corresponding interpreter implementations
in both high and low-level languages. The machines which were
implemented are:-

(i) A stack-oriented s-machine for PASCAL

(ii) A list oriented s-machine for SASL .

These machines have completely different architectures. Because
of this, we reasoned that each machine would test different features
of SUILVEN, hence providing a balanced language evaluation.

SUILVEN is an adequate language for describing and evaluating the
PASCAL machine. However, because it lacks recursion, its
description of some SASL machine instructions is a little unnatural.

It is an excellent language for the description of sMmachine
data areas - indeed this is probably the best designed feature
of SUILVEN. Its facility for exactly specifying the width of
dat areas and its flexible structure assignment, provide a
clear and readable description of s-machine data organisation.
For describing complex recursive machine instructions, the language
is inadequate, but it is suitable for describing simpler
s-machine operations.

187-

The code generated by the SUILVEN compiler for a typical
interpreter seems to contain about 20-25% more microinstructions
than the corresponding MIL encoded program. This figure may be
significantly reduced by hand optimisation of the generated microcode.
The run-time efficiency of a SUILVEN interpreter is much less
than that of an interpreter encoded in machine code. This is
primarily due to the difficulty of generating microcode which
will optimally utilise the fast machine registers.

A full evaluation of SUILVEN and possible improvements in the
language, is the subject of the following chapter.

s "»i • • • '-■■:■■ ■ V. ., ■': ■/'. V •' i" '\Y ■" ,-P-
“188“

- ■! »»»"- ■

CHAPTER 7

CONCLUSIONS

In this final thesis chapter, we critically examine the work
which we have done in the course of the project, and suggest
improvements which could be made. We draw a number of conclusions
from the research work we have undertaken and put forward some
suggestions for further work in this research area.

However, before discussing the above in detail, let us consider
our research in the context of the more general research project
discussed in chapter 1.

The research which we undertook was part of a larger research
project investigating techniques for the construction of abstract
machines. As part of this, in parallel with our project, there
were a number of other projects investigating machine-dependent
microprogramming languages, and language-oriented abstract machines.

When the general project was initially conceived, it was decided
to base the system • implementation on the B1700 range of computers,
for • the reasons discussed in chapter 1. As we were involved in
the early stages of the project, it was natural that out own
research should be biased towards this machine.

As economic circumstances changed, the possibility of acquiring
a B1700 computer receded. Dedicated hardware was considered
essential to the success of the main research project, and a

~ 189

decision was made to acquire an alternative,cheaper machine -
a PDP/11.

By this time, we were committed to our B1700 based project and we
decided to continue our research towards some sort of conclusion.
Unfortunately, the change in machine from the B1700 meant that
some of the support we had hoped for 'was redirected towards the
alternative machine. In particular, the MIL version of the SASL
machine was never completely operational and a MIL version
of the PASCAL machine was never even started. Had these programs
been available, we believe that we could have better evaluated the
work we have done. '

In an attempt to evaluate the success of the project, we shall
examine how well we achieved the aims of the research, as set
out in chapter 1. To recap, the aims of our project were:-

(i) To construct a simulator for the B1726 system at the
microprogramming level. The simulator was to be implemented
on an IBM 360/44 computer.

(ii) To design and implement a high-level microprogramming
language for the B1700 range of machines. Not only
should this language be compilable into B1700 microcode,
but also,a program listing should constitute a clear
description of the implemented abstract machine
architecture.

-190

(iii) To evaluate the utility of this microprogramming
language by comparing s-machine implementations in
this language with the same machine implementations
in other programming languages.

After considering our success in achieving the above aims, we
draw a number of more general conclusions concerning the way in
which we approached the problem. We then suggest an alternative
approach, which, in the light of experience, we now believe would
have been better and speculate upon future research work in the
field of language-oriented machine implementation.

In the sections below, we consider aims (i) - (iii) in turn
and critically evaluate the work done towards these aims. Where
appropriate, we indicate shortcomings in our design and methods,
and suggest modifications*to alleviate these shortcomings,

7.1 The B1726 Simulation

This section of the project involved constructing a simulator
for the B1726 computer and a compiler for the standard machine
microprogramming language, MIL. These programs were written in
ALGOLW and SN0B0L4 respectively, according to the specification
laid out in the appropriate Burrough's reference manuals.

The MIL compiler which we developed, performs satisfactorily
and the processor simulator is an accurate simulation of the
micro-architecture af the B1726 computer.

-1911
I

Unfortunately, the simulator which we developed is not an
exact replica of the B1726 system as seen by a microprogram
executing on that machine. On the real machine, executing
microprograms are given considerable support by the machine
operating system and it did not prove possible to simulate this
support. There were two reasons for this:-

(i) We anticipated tHat simulating the operating system
actions would impose unacceptable overheads - in the
time taken to simulate a microprogram execution. We
also believed that the size of the simulator would
be significantly increased.

(ii) The documentaiion which •was available to us concerning
the role of the operating system was incomplete and
imprecise. To fully understand that role would have
involved a good deal of work, studying the^ou^e code
listing of the operating system. We did not consider
the results important enough to justify this work:.

As discussed in chapter 3, which describes the simulation programs,
the simulation of a machine such as the B1700 under a batch
environment poses problems. Features such as external interrupts,
console communication, and user interaction cannot be properly
simulated.

In spite of these drawbacks, we believe that there were a number
of benefits gained from undertaking this part of the project.

-192

These benefits were:-

t . J(i) The construction of the simulator in the initial
stages of the project ensured that we acquired an
intimate knowledge of the micro-architecture of the
B1700. This knowledge proved invaluable when implementing
the SUILVEN compiler.

(ii) The simulator can act as a test bed for locally written
. microprograms. Using the simulator, it is possible to

test much of the logic of these programs, and their
subsequent implementation on a real B1700 merely involves
modification of input/output and interrupt handling
routines.

In general, we consider that the exercise of constructing the
simulation system was worthwhile, but that such a system is,
in no way, an adequate substitute for a- real machine.

7.2 SUIIVESN ass a Medline 1^^^and Implementation barrguajge

The high-level language SUILVEN was designed to serve a dual
purpose:-

(i) To describe the architecture, of abstract mcchines

(ii) To implement abstract macbirae inteirpirets as
on the B1700 computer.

We shall evaluate how well SUILVEN meets these design aims and
shall examine shortcomings in the design of the language. These
became apparent when SUILVEN was used 'to implement s-machines for
SASL and PASCAL.

The description of an abstract machine must contain a complete
specification of the data areas of that machine, both in terms

of their width(in bits) and their structure. The data description
facilities offered by SUILVEN, that is, the BITS declaration, the
TEMPLATE and DEFINE declarations, and the REDIMENSION declaration,
ensure that an accurate description of data areas is possible.
Not only may the width of a data area be precisely specified, but
also the structure of that area may be varied depending on the
instruction operating on it.

However, as well as defining the size and structure of machine
data areas, we have now reached the conclusion that an abstract
machine description language ought to give some indication
how these are to be mapped onto the data areas of the underlying
machine. For example, when implementing a stack machine, the
stack pointer will be frequently accessed, and should be
retained in a fast access register. When the variable STACK_POINTER
is declared in the program, it should be possible to specify this.
For example:-

BITS(24) REGISTER STACK POINTER;

“194“

This would declare that the variable STACK_POINTER should be
stored in a machine register.

Similiarly, in order that conditions such as interrupts, overflow,
etc may be specified, a description language should have a declaration
setting up single bit boolean flags. Naturally, there must also
be operators to manipulate these objects.

r~'

Whilst SUILVEN has a flag declaration, the register declaration
is implemented by means of a compiler directive. We now believe
that this is an essential part of machine specification, rather
than a compiler feature, and ought to be included in a machine
description language.

Apart from this single exception, we are satisfied with SUILVEN’s
data description features, and . have found them to be both convenient
and adequate for describing abstract machine data areas.

As well as providing a description of machine data areas, a •
description language must also specify the operation of the
machine instructions. It is this description which is mapped
onto the microcode of the underlying machine.

The operators presently provided in SUILVEN were found to be
adequate for describing and implementing the PASCAL s-machine. ■
However, the more complex SASL machine, some of whose instructions
are at a higher level than PASCAL machine instructions, highlighted
significant gaps in the operation repertoire provided by SUILVEN.

195-

The features lacking in the language were concerned with the
manipulation of structured data areas and with the implementation
of highly recursive, high-level , machine instructions.

7.2.1 . Structured Data Operations

The lack of provision of operations which deal with structured data
areas as a whole, rather than field by field, caused some
inconvenience in describing and implementing the SASL s-machine.
The following example, taken from that machine description,
illustrates how three separate statements must be made to assign
values to the fields of a structured data area:-

LIST(.NEWCELL.).TAIL : = TOPS_pATA;
LIST(.NEWCELL.).TAG := SECSJTAG;
LIST(.NEWCELL.).HEAD := SECSJATA;

The code generated for these rather repetetive assignment statements
is inefficient, as the address of each field is completely recomputed
for'each assignment. The B1700 has an automatic address-increment
feature which updates the memory address register in parallel with
a memory fetch. Therefore, as well as simplifying machine description,
operations on structured data areas would provide enough information
for the compiler to use this facility^

-196-"
... u-* - *jp'**'? *.'?•

There are two possible ways of including this feature in a machine
description language:-

Simultaneous Assignment .

An assignment statement which may be used to assign to all fields
of a structured data area should be a feature of a machine description
language. For example, the assignments above could be encoded:-

LIST (.NEWCELL.) : 0, SECSJTAG, SECSJDATA, TOPSJDATA;

A list element is structured into four fields and the expressions
on the right side of the assignment are assigned to each field
in turn,

A WITH Statement •

This statement would be used for operations on more than one,
but not all fields of a structured variable. The suggested construct
is based on the PASCAL WITH statement, designed for working with •
records. This allows the user to specify the name of a structure ■
and, in the succeeding block, to refer directly to -the fields
of that structure rather than prefix these names with the structure
name. For example:-

WITH LIST(.NC2.) DO
£(

TAG := LIST(.TOPSjDATA.).TAG;
HEAD := SECSJDATA;

£)

-n/' ______

-197-

This would specify that assignments be made to the TAG and HEAD
fields of LIST(.NC2.). We anticipate that efficient microcode,
using auto-address updating, could be generated for this construct;,

7.2.2 Recursive Machine. Instructions

Some of the machine instructions of the SASL machine are best
described and implemented recursively. In particular, the
instructions for altering the environment list fall into this
category.

The present SUILVEN implementation of procedures was not designed
to allow recursion. Although a procedure may call itself, by
virtue of the fact that an entry is made in the appropriate
compiler table when a procedure heading is processed, the saving
and restoring of local variables must be handled by the SUILVEN
programmer. Mutual recursion is not possible, as names must be
declared before use. These restrictions added to the complexity
of the SASL machine description and circumventing them introduced
redundancies in the generated microcode.

Unfortunately, it is not possible to make a relatively simple
modification to SUILVEN which would permit recursion and
mutual recursion. For efficiency.reasons, we are convinced that
s-machine storage allocation should be static, whereas the
implementation of recursion requires a dynamic storage allocation
scheme.

-198-

We see no way to resolve this dilemma, apart from separating
the machine description from the machine implementation. A' machine
description language should allow recursive descriptions where
this is natural, yet an implementation language should not.
This is discussed in more detail in section 7.4, which deals
with our recommendations regarding the description and
implementation of abstract machines.

To sum up, therefore, SUILVEN has shown itself to be a suitable
vehicle for describing the data areas of abstract machines. We
believe that it .is superior to other machine description languages
and general purpose programming languages for this function.

The operations provided by SUILVEN are adequate for describing
machine instructions with low semantic content, such as are used
in the PASCAL machine. However?, because of the lack of recursion
and the lack of structured data operations, SUILVEN is not
completely satisfactory for describing higher level machines
such as the SASL machine. Whilst operations could be added to the
language which would operate on structured data areas, it is
not possible to add recursion without introducing a dynamic
storage allocation strategy. We believe this would compromise
efficiency to such an extent as to be unjustifiable.

■•V V ■ "•3» \.-.V fn,;''t..

-199

7.3 Comparison.of Abstract Machines

The third aim of our project, was to construct abstract machines
using SUILVEN and compare them with the same s-machines implemented
using other programming languages. As explained in the introduction
to this chapter, some problems were encountered in achieving this
aim, due to the change in machine of the more general research
project:.

As discussed in the previous chapter, s-machines were programmed
in SUILVEN for implementations of PASCAL and of SASL. These
s-machines were compared with similiar machines programmed in both
low and high-level languages. Our conclusions on these comparisons
are discussed fully in chapter 6, with the main points summarised
below

(i) SUILVEN is a better language than both PASCAL and BCPL for
describing the data organisation of abstract machines.
BCPL’s lack of structured data types and, conversely,
PASCAL’s very strict type discipline meant that structured
data areas and areas of variable type (such as a stack)
were described in an unnatural fashion in both PASCAL
and BCPL.

(ii) For the fairly low-level PASCAL machine, the SUILVEN and
PASCAL descriptions of the machine instructions were
almost equivalent both in size and in clarity. PASCAL’s
operations such as set operators made for conciseness in
describing their own implementation but gave no indication

how they were to be implemented.

BCPL was better than SUILVEN for describing the operation of
the higher-level SASL machine. This was a result of
SUILVEN*s lack of structured data operations and recursion.

(iii) Microprogrammed s-machines generated by the SUILVEN compiler
appear to contain about 25% more microinstructions than the
equivalent hand-coded programs. This figure may be reduced
by hand-optimising the generated microcode. Because of the
difficulty of optimising the usage of the B1700 scratchpad,
SUILVEN programs execute at about half the speed of
hand-coded programs.

This execution time may be significantly reduced if the
microcode generated by the compiler is hand-optimised. We

estimate that execution speeds may be doubled by dint of
relatively simple hand-optimisation.

We believe that constructing abstract machines in SUILVEN
and hand-optimising these machines can be achieved in a
significantly shorter time than constructing the same
machines in a low-level language.

The above conclusions show that SUILVEN s-machines are less efficient
than machines programmed in a low-level language. They also show
that SUILVEN is not completely satisfactory as a vehicle for
describing machine architecture. As a result, we no longer
believe that our approach of developing a compromise'machine
description/implementation language is viable.

-201-

7.4 General Conclusions .

In this section of the thesis, we attempt to draw a number of
general conclusions derived from our work on tools for the
implementation of abstract machines. These conclusions reflect
our belief that the project was - worthwhile, and that the problem
of efficiently implementing and documenting abstract machines
is by no means solved. As discussed below, we believe that an
alternative approach involving separate machine description and
implementation languages may be more fruitful.

We have derived four general conclusions from our work:-

(i) The B1726 simulator which we produced is, to a limited
extent, successful but,because of three main factors,
is not an adequate substitute for a real machine. These
factors - are;-

(a) The system i(slow, .

(b) The simulator lacks an oeraailng system.

(c) The user cannot interact with the simulation.

We believe that a research project such as ours cannot
be satisfactorily undertaken without a real, dedicated
machine. This machine must be user microprogrammable.
In the forseeable future, microprogramming will be the
most cost-effective technique of implementing abstract
machines and, as micro-architecture is significantly
different from standard Von Neumann or high-level machine
architectures, research into abstract machine design
and construction should be carried out on a microprogrammable
machine.

-202'

(ii) SUILVEN is a reasonable tool for implementing abstract
machines in a research environment. In this type of
situation, although the generated microcode is less
efficient than that encoded by hand, SUILVEN's advantages,
viz programs may be produced quickly and easily modified,
justify its use. Using a high-level microprogramming
language means that different s-machine designs may be
constructed and evaluated without undue programming cost.

Because of its inefficiencies, SUILVEN is not suitable
for use in a production environment.

(iii) As a machine description language, SUILVEN is adequate
for describing the architecture of low-level abstract
machines. In particular, its features for describing
machine data areas are superior to those in other machine
description or general purpose languages which we have
examined.

The language is not completely adequate for describing
machines with high-level operations, particularly if these
are recursive operations or operations on structured data
areas. SUILVEN lacks constructs to describe such operations.

(iv) From the above, we conclude that, if microprogrammed
s-machines are to be widely implemented and used, there
must be a change of strategy. It appears that the requirements
of a machine description and a machine implementation
language are different. A machine description language

-203

must express, with the utmost clarity, the structure of
the machine data areas and operations whereas, machine
implementation languages must permit the user to have control
over the microcode•generated by the compiler. •

We believe, therefore, that developments in machine
description languages and machine implementation languages
must proceed in parallel. Future MDL’s will be high-level
languages with rigidly enforced conventions which will
force the user to produce clear and readable documentation.
Possibly they will be translatable into other high-level
languages so that a machine simulator may be produced from
the machine description.

Machine implementation languages, on the other hand, will
be higher-level machine-oriented languages in the manner
of Wirth's PL360(W7). These will retain much of the
convenience of high-level microprogramming yet give the
programmer full control over the microinstructions
generated by the compiler.

In the light of these conclusions, we recommend that the
continuing development of SUILVEN be abandoned and that future
developments proceed using separate machine description and
implementation languages. Should this approach be adopted,
we believe that flexibility can be retained yet microcode,
efficient enough to meet engineering and economic requirements,
might be produced.

-204-

7.5 Future Research

In the near future(5~10 years) we envisage that developments
in this field will proceed - using high-level description .
languages and machine oriented microprogramming languages.
With our present expertise, such languages may be fairly easily
implemented, although problems of generating absolutely optimal
code must be overcome before such an approach will completely
satisfy assembly language adherents.

We also believe that there is potential for considerable automation
in the construction of s-machine interpreters. It appears that
all interpreters have the same fundamental structure and, for
many applications, this may be programmed automatically. We
envisage a system being constructed which will enable the user
to tailor this general purpose interpreter structure to his
own needs. Indeed, the author of this dissertation is presently
designing and constructing an interactive system for this
purpose(S3).

Developments in machine oriented languages and design automation
appear to be the most fruitful avenues of research in the near
future. On a longer term basis we forsee other developments
occurring. These are detailed overleaf.

"■'i-■ ■/ 7 <;■ -■ J,.." v. • ’V ’
-205- ' "

(i) Machine independent microprogramming languages which are
optimally efficient will become possible. Such languages

• require micro-architectures designed for their support but
we believe that, as microprogramming becomes more
widespread, these architectures will evolve. There is
a need for research into micro-architectures needed to
support high-level microprogramming languages,

(ii) In conjunction with the development of microprogramming
techniques, we forsee the s-machine level becoming
obsolete. High-level languages will be directly executed.
Some research towards this end has been described by
Laliotis(L6) who discusses the architecture of the SYMBOL
computer. There is considerable potential for research
in this field which will involve a high level of cooperation
between digital engineers and software engineers.

We do not envisage microprogramming being eclipsed as an
implementation tool in the near future. It will not be replaced
until an automatic machine construction technique has evolved,
which has greater convenience, economy and flexibility.

-206-

REFERENCES

Bl, C.G. Bell and A. Newell
Computer Structures : Readings and Examples
pub. Mcgraw-Hill, New York, 1971

B2. Burroughs Corporation
B1700 Systems Reference Manual
Detroit, 1972

B3. Burroughs Corporation
Micro-Implementation Language(MIL) Reference Manual
Detroit, 1972

B4. C, Bohm and G. Jacopini
Flow Diagrams, Turing Machines and Languages with only
Two Formation Rules
Comm. ACM 16, 7(July,1973), 443-454

Dl, J. Darringer
A Language for the Description of Digital Computers
Proc. Design Automation Workshop, 1968, 15-1 - 15-8

D2. D.J, Dewitt, M.S. Schansher, and D.E. Atkins
A Microprogramming Language for the B1726
Sixth Annual Workshop on Microprogramming, ACM, Sept.1973
21-29

D3.\ E. Dijkstra
GO TO Statement Considered Harmful
Comm. ACM 11, 3(MaxcH,1968), 147-148

D4. E. Dijkstra
Guarded Commands, Non-determinacy and Formal Derivation
of Programs
Comm. ACM 18, 8(August,1975), 453-457

D5. O.S. Dahl, E. Dijkstra, and C.A.R. Hoare
Structured Programming
pub. Academic Press, London, 1970

-207-

D6. D.J. Dewitt
Extensibility - A New Approach for Designing Machine
Independent Microprogramming Languages
Ninth Annual Workshop on Microprogramming, ACM, Sept.1976
33-42

El, R.H. Eckhouse
A High-Level Microprogramming Language(MPL)
Ph.D. Thesis, Dept. of Comp. Sci., State Univ. of
New York at Buffalo, June 1971

FI. R.N. Fisher, G. Mcquarrie, and R. Morrison
A Microprogramming Language for the B1700 Computer
TR/75/9, Dept, of Comp. Sci,, Univ. of St Andrews,
February 1975

F2. R,W. Floyd
Syntactic Analysis and Operator Precedence
J. ACM 10, 7(July,1963), 316-328

G1. R. Griswold
The Macro Implementation of SN0B0L4
pub, W,H. Freeman, San Francisco, 1972

G2. D. Gries
Compiler Construction for Digital Computers
pub. Wiley, New York, 1971

G3, R. Griswold, J.F. Poage, and I,P. Polonsky
The SN0B0L4 Programming Language
pub. Prentice-Hall, New Jersey, 1971

Hl. F.J. Hill and G.R. Peterson
Digital Systems ; Hardware Organisation and Design
pub. Wiley, New York, 1973

H2. D.A. Huffman
A Method for the Construction of Minimum Redundancy Codes
Proc. IRE 40(Sept,1952), 1098-1101

Il. K.E. Iverson
A Programming Language
pub. Wiley, New York, 1962

-208-

12. K.E. Iverson
A Common Language for Hardware, Software, and Applications
Proc. FJCC, Philadelphia, Dec. 1962, 121-129

13. K.E. Iverson
Programming Notation in Systems Design
IBM Systems Journal, June 1963, 117-127

14. IBM Corporation
System 360 : Principles of Operation
Poughkeepsie, N.Y., 1964

Jl. K. Jensen, K.V. Nori, U. Amman, and H.H. Nageli
Implementation Notes for PASCAL
Technical Report No. 10, Eidgenossische Technische
Hochschule, Zurich

K1. D. Knuth .
An Empirical Study of FORTRAN Programs
Software - Practice and Experience 1, 2(March,1971), 105-133

LI. W. Lonergan and P.King
The Design of the B5000 System
Datamation 7, 5(May,1961)

L2, P.J. Landin
The Mechanical Evaluation of Expressions
Comp. J. 6, 2(April,1964), 308-320

L3. H.W. Lawson Jnr. and L.Blomberg
The Datasaab FCPU Microprogramming Language
Proc, Sigplan/Sigmicro Interface Meeting, May 1973, 86-96

L4. H.W. Lawson Jnr. and B.K. Smith
Functional Characteristics of a Multi-Lingual Processor
IEEE Trans. Comput. C-20(July,1971), 732-742

L5. H.W. Lawson Jnr.(Chairman)
Discussion on Microprogramming Languages
Proc. Sigplan/Sigmicro Interface Meeting, May 1973, 175-181

-209-

L6, T.A, Laliotis
The Architecture of the SYMBOL Computer System
High-Level Machine Architecture, ed. Y. Chu,
pub. Academic Press, London, 1975

Ml, W.M. McKeeman, J.J. Horning, and D.Wortman
A Compiler Generator
pub. Prentice-Hall, New Jersey, 1970

N1. G. Nelson and D.Turner
A Microprogrammed SASL Interpreter
TR/75/5, Dept, of Comp. Sci., Univ. of St Andrews, March 1975

01, E.I. Organick
Computer Systems Organisation
pub. Academic Press, London, 1973

02. D.R. Oestricher
A Microprogramming Language for the MLP-900
Proc. Sigplan/Sigmicro Interface Meeting, May 1973, 113-119

PI, P.O. Poole,W.M. Waite, and M.C. Newey
Abstract Machine Modelling to Produce Portable Software -
A Review and Evaluation
Software - Practice and Experience 2, 2(March, 1972), 107-136

P2. D.L. Parnas
A Language for Describing the Functions of Synchronous Systems
Comm. ACM 9, 2(Fe!orua:ry>1966), 72-77

R1, B. Randell and L.J. Russell
ALGOL60 Implementation
pub. Academic Press, London, 1964

T1. D. Turner
The SASL Language Manual
CS/75/1, Dept, of Comp. Sci., Univ. of St Andrews, Jan. 1975

T2. D. Turner .
An Implementation of SASL
TR/75/4, Dept, of Comp. Sci., Univ. of St Andrews, March 1975

-210-

SI. I. Sommerville
A Simulator for the BI700
TR/75/6, Dept. of Comp. Sci., Univ. of St Andrews, April 1975

S2. I. Sommerville
An MIL Translation System
TR/75/7, Dept. of Comp. Sci., Univ. of St Andrews, April 1975

S3. I. Sommerville
The Automatic Implementation of Interpreters
T.R. 4/77/11, Dept. of Comp. Sci., Heriot-Watt University,
Edinburgh, February, 1977

Wl. N. Wirth
The Programming Language PASCAL
Acta Informatica 1, 1(1971), 35-63

W2. D. Wortman
Language-Oriented Machines
CSRG-20, Comp. Sys. Res. Group, Univ. of Toronto, Dec. 1972

W3. W.T. Wilner
The Design of the BI700
Proc. FJCC, Anaheim California, 1972, 489-497

W4. W.T. Wilner
Burroughs BI700 Memory Utilisation
Proc. FJCC, Anaheim California, 1972, 579-586

W5. W.T. Wilner
Microprogramming Environment on the Burroughs BI700
COMPCON 79, Digest of Papers, IEEE(September, 1972), 103-106

W6. N. Wirth and H. Weber
Euler : A Generalisation of ALGOL, and its Formal Definition
Comm. ACM 9, 1(Jan.,1966), 13-23
Comm. ACM 9, 2(Feb.,1966), 89-99

W7. N. Wirth
PL/360 : A Programming Language for the 360 Computers
J. ACM 15, 1(Jan.,1968), 37-74

-211- ” ‘

W8. B. A. Wi chmann
ALGOL 60 : Compilation and Assessment
pub. Academic Press, London, 1973

W9. D. Wortman
Six PL/1 Compilers
Software - Practice and Experience, 6, 2(March,1976), 38-45

jiiir.'ri'i ti------------i------------------------- f)}

f.' ; ->**■.' •/•. ; ” *. .- '«■«’ <• ;■'.(-,y </ .v-m « <

APPENDIX 1

A DESCRIPTION OF THE MICROPROGRAMMING
LANGUAGE SUILVEN

,\. ’■■'.<<'i,.r ,'. >■ '? t ' "'! " ' .'' ' •’’”’ ' ' ' ’" -a' ' ': ‘ ' ‘ ' \

HERIOT-WATT UNIVERSITY, EDINBURGH TRl/77/8
DEPARTMENT OF COMPUTER SCIENCE

j
41
.-4

SUILVEN

LANGUAGE REFERENCE MANUAL

'4A;

IAN SOMMERVILLE

_LAx. AA__ A

FEBRUARY, 1977.

a— I&i iiM i < &Sll!

•i

- 1

1.0 INTRODUCTION.

This manual is a definitive description of the programming language
SUILVEN, a high-level microprogramming language for the B1700 series
of computers. The language was based on a soft machine description
language, described by Sommerville (1) and its design pholosophy and
implementation are also described by that author (2). We assume the
reader has some knowledge of programming language terminology.

2.0 NOTATION

The notation used to describe the syntax of SUILVEN is an extended form
of BNF. The symbols <»>, :: = , and | have their usual meanings but we
have extended BNF by introducing a starred square bracket construct, E 3 .
The enclosure of an element in starred square brackets means that an
occurrence of that element may be repeated zero or more times.

3.0 BASIC SYMBOLS

A SUILVEN program;consists of a sequence of identifiers, constants and
special symbols. These are syntactically defined below:

<identifier> ::= <letter> E<idsymb>3*
<idsymb> ::= <letter> | <digit> | _

<letter> • • A — Z
<digit> :6 — 9

<identifier list>::= <identifier> [, <identifier> 3
<constant> ::= <number>|<binconst>|<hexconst>
<binconst> :% <bindigit>

- 2 -

<hexconst>

<bindigit>

<hexdigit> ..

<nunxber>

<special symbol>

<char symbol>

<or>

■Preserved word>

<string>

<chars>

<char>

<blank>

;;= # <hexdigit>

:;= 0 | 1 . . . •

;:= 0 — 9. | A — F

;; = <digit> [<digit>]

'::= -Preserved word> j <char symbol>
::= I (I)T(. I .) | := |

: . > | < | = | >= | <= |-,= | -. | & |
.<or> I : I ; I ' I + I -| * | / I £(I £)

::= | where | is not a metasymbo.L

::= REM | SHL | SHR | XOR | MACRO | BITS]
ARRAY | TEMPLATE | DEFINE | FLAG|
PROCEDURE | FUNCTION | IF | &HEN | ELSE,
WHILE | DO | REPEAT | UNTIL | CASE|

I !
OF | ’ENDCASE |:|eND | TRUE | '.?ALSEi
SET | UNSET | 'IEAD | WRITE |/NULL|.
EXIT | STOP | REDIMENSION|
ENDPROGRAM •

: T<chars>’

::= <chars> C<char>3*

::= <letter>-| <digit> | <blank> | , | „ j (J) |
+ |-»|*.|/|>|<|ss|“|&| «*> I : I
5 I % I # I @ I $ I £

:A space

■ ..

-3 -

>■-

4.0 PROGRAM STRUCTURE

A SUILVEN program can be considered as consisting of three logical
sections. Firstly, a set of declarations establishing the names of
variables, structures, macros etc, secondly a set of procedure
declarations and finally a main program consisting of one or more
SUILVEN statements. A program' is terminated by the reserved word
ENDPROGRAM.

Syntax '.

<SUILVEN program> :<declaration part>
. <procedure declaration part>

<statement part>' ENDPROGRAM

5.0 DECLARATIONS

The declaration part of a SUILVEN program consists of a series of
declarations of macros, bits variables, structures, and flags.

Syntax . . •

<declaration part> :<decIaration>[^declaration'

<declaration> : :== <macro declaration]
<bits decla.ration> j
<template declaration>|
<define declaration |

<flag declaration

>* ...j,.- (i. f - A -

i1"/- -J

- A -

5.1 MACROS

Macro declarations define equivalent strings of characters.

■1
S
J'1
1

Syntax

<macro declaration :MACRO <string> = <string>

Semantics

Each occurrence of the string defined on the left side of the equals
sign above is replaced by its corresponding right side throughout the
SUILVEN program.

5.2 BITS DECLARATIONS

I
1

Bits declarations in a SUILVEN program name storage areas.

Syntax

<bits declaration • •“ <simple bits declaration | <bits array declaration

<simple bits declaration: := BITS (<number>) identifier list>

<bits array declaration> ::= BITS (<number>) ARRAY (<number>)
identifier list>

Semantics

Bits declarations associate a name with a machine storage area of a
specified width. The number specified after the reserved word BITS
specifies the width of that area. In an array declaration, the number
following the reserved word ARRAY specifies the number of elements in
the array. The first element of the array is considered to be element 1,

• *r -»• »’’V 1 ,<• m >»«v k . ’ •>* -i |»* »l * *»??•$•»»' <’ *■»»♦ ‘t •

3 ?A-.- /i1 •’ i .* vs - itj .S

- 5 -

5.3 TEMPLATE DECLARATIONS '

Template declarations serve to define a structure, and associate a
name with that structure.

Syntax

<template declarations- ::= TEMPLATE <identifier> =
<field> E,<field>]*

<field> ::= <identifier> (<number>)

Semantics .

A TEMPLATE declaration associates the name on the left side of the equals
sign above with a sequence of one or more fields. A field consists of a
name followed by a bracketed number, which specifies the width of that
field in bits.

5.4 DEFINE . DECLARATIONS

Define declarations serve to associate a data area with a structure.

Syntax

<define deplaration> DEFINE <identifier>:<identifier list>

Semantics

The identifier on .the left side of the colon should be a previously
declared template name and the identifier list should consist of names
of previously declared data areas. The define declaration specifies that
each of these data areas should be considered to have the structure
defined by the template name. Notice that the width in bits of the data
areas should be equal to the cumulative widths of the template fields.

i. _______

>-?•'•.

- 6 -

-■ •-.•.■i'V/.-i.J;'IV;'; i‘^.;-;,>■•«•■ , f—

5.5 ILAG)JECLaRATIONS3

Flag declarations establish names to be associated with > logical variables.

Syntax . .

<flag declaration> :: = FLAG <identifier list>

Semantics ' / '

Each identifier in the identifier list is considered to be a logical,
1-bit variables which■may take the truthvalues TRUE or FALSE,

6.0 PROCEnuREEjECLARATIONSs

Procedure and function declarations establish names which are associated
with SUILVEN declarations and statements.

Syntax

<procedure declaration> <function declaration>|mproper procedure
• • . . declaration>

<function declaration :FUNCTION <procedure header><pooedduee-bd<3y>

<proper procedure declaration:^ PROCEDURE procedure headerxprocedure body

procedure header> ::= <ideniffier> (ffornaal parmeetrr lit>>)

<formal parameter list> ::= <bits declaration> [;<bits declaration]
| <empty>

procedure body> :: = <loea.l declaration part>
• - ' • ' ■ " ■ '• <statement part>

END <result part>

<local declaration part> : := <empty> | <loca> declaration:) E;<loeal
declaration]*

<local declaration : : = ^eclrraiooni | ^edimensoon dealrraibon>

V. '■

7 -

<redimension declaration>::= REDIMENSION ■ <redimension- • list>

<redimension list>

<redimension>

::= <redimension> E,<redimension>]*

<identifier> (<number>, <number>)

<result part> <empty> |=<expression>

Semantics '

A procedure declaration associates a name with a sequence of SUILVEN
declarations and statements. Procedures may be either function procedures
or proper procedures. Function procedures always return a bitstring
as a result, this■bitstring being specified as the expression in• the result
part above. ,

Both function procedures and proper procedures may have zero or more formal
parameters. A formal parameter is a bits variable which may be referred
to within the procedure. Its scope is local to that procedure i.e. it
may only be referred to within the procedure body. An initialisation is
associated with each formal parameter each time a procedure is activated.

The local variables declared within a procedure establish names which are
only in scope within the procedure. These names may be used in an identical
fashion to global names, in ' SUILVEN statements.

The REDIMENSION declaration is only • meaningful within procedures and it
serves to restructure a global array. The array name is specified followed
by a bracketed pair of integer constants. The first of these specifies a
new length for the array and the second the width of each element in the
new array. Notice that the product length and width should be less than
or equal to the product length and width in the global array declaration.
The array specifications revert to their global specifications on exit
from a procedure where the array is • redimensioned.

w

- 8 -

-■-?1 " P't. ' V>'a.

7.0 ■ SUILVEN STATEMENTS

This section describes executable SUILVEN statements of which there •

are three basic types - assignments, procedure calls and control
statements.

Syntax

<statement part> : : = <statement> [;<statement>]I
<statement> ; : = <fssgnment> | <procedure call> (

. ' <control statement> | <compound statement>

7.1 EXPRESSIONS■■' ..

The expression is a basic part of most other SUILVEN statements. It
may be evaluated to return a bitstring.

<expression>
<signed var>

<var>

<function designator>

<actual parameter list>

<expression list>

<unary ope?ator>

<indexed var>

<structured element>

<array index>

operator

JL: :== <signed var> [<operator> <signed var>]
::« <unary operator> <var>

::= <identifier> | <constant> j <function designator> J
<indexed var> | <array index>

<name>(<actual parameter list>)

<empty> | <expression list>

<expression> [, <expression>]

:<empty> | n

*

;?= <structured element> , <idenfifier>

s: = <identifier> I <array index>

::== <identifier> („<expression>„)

: : + |-|+-|/|&| <or>ISHL|SHR|X0R|lEM|

pii.,'

* >R«; ‘-J- ■•■'■■?'• 'y i;<-"y-r-r f •.» Vinv-

“ 9 -

Semantics '

An expression consists of a series of one or more elements which may
be evaluated to produce a result which is a bitstring.

Each element in the expression is evaluated on a left to right basis
and operators, where they are included, are applied on the same basis.
No operator takes precedence over another.

The basic components of an expression may be the name of a bits variable,
an element of an array, a field of a structured bits variable or array
element or a function designator which specifies that the named function
be evaluated.

The operators +, -, and *, have their usual meanings, / is an integer
division operator and REM is the remainder operator. The shift operators
SHL and SHR shift the bits of their left hand operand either to the left
or the the right by the number of bits specified in their right hand
operand. The operator & is a logical AND, J is a logical inclusive OR
and XOR is 4 logical exclusive OR operator.

A. expression, may be negated by preceding it by the unary operator “> .

7.2 LOGICAL EXPRESSIONS

Logical expressions are a basic constituent of SUILVEN control statements

<logical expression>

<relation>

<logical connective>

<relation operator>

?i= <relation> [<logical connective> <relation>3

::= <expression> <relation operator> <expression>

AND | OR

1 = <=

> ■>.**.- •.■•i’?/-'^4'-, ■

W"'"

- 10

Semantics ' '• ...•••
. ■ ■ ' , • ' ■ . ■ ' ; . : ‘ O'

A ' logical expression is evaluated to produce a truthvalue, TRUE or
FALSE. It consists of one or more relations, which themselves are
evaluated 'to 'truthvalues, connected by the logical connectives AND
or OR. AND has its • obvious meaning, OR is an inclusive OR.

A relation is a comparison of two expressions. This comparison returns
a truthvalue and may be made on the basis of equality (“), inequality
(1 =), greater than (>), greater than of equals (>=), less than (<),
or less than/equal's (<=).

7.3 THE ASSIGNMENT STATEMENT ' .

The SUILVEN assignment statement has the same form as pertains in most
other high-level languages.

Syntax • : . . .'■■■■' • •

<assignment> :: = <lhvar>:= <expression>

<lhvar> . := <identifier> | <array index> | <structured element>

Semantics • ...

The semantics of the assignment statement are well known. The expression
to the right of the composite symbol := is evaluated and that value is
assigned. t$ the element on the left•of :=.

7.4 PROCEDURE CALLS

Again SUILVEN procedure calls are similar to procedure calls in other
high-level languages.

.•■••,.' >"4S .:■ '<>i’'-~’v<;»•.(•;, .-. j;

: • . - 11 -' 7. . . * * • . , ’ . *k '

Syntax

<procedure call> . ::= <identifier>(<actual parameter list>).

Semantics

When a procedure call is encountered, the parameters if any,are evaluated.
That value is then used to initialise the procedure formal parameters,
Call by value is the only parameter passing mode available in SUILVEN,

After initialising the formal parameters, control is transferred to the
code in the named procedure which is then executed. After execution,
control is returned to the SUILVEN statement following the procedure call.

7,5 CONTROL STATEMENTS .

SUILVEN.has a simple, sparse but adequate set of control statements.

Syntax

control statement = <if statement t>|
<while statement>j
<repeat statement>|

. • <exit statement>|
* <stop statement>|

<case statement>

7-5.1 THE IF STATEMENT

This is the familiar two armed conditional which is available in most
high-level ' programming languages,

A-V/ ■■ /, }.. :.A 5-yj.'a>*.\•»- Vtfe it W£ SixJ

c?:r V-‘

~ 12 -

i‘-1l -

Syntax • '

<if statement> :« <if clause> <simple statement>
<if clause> <simple statement> ELSE <statement>

<if clause> :IF <logical expression> THEN
<simple statement> :Any SUILVEN statement apart from an IF statement

Semantics

The logical expression following IF is evaluated. If it is true, the
simple statement following THEN is executed and after execution control
is transferred to•the next SUILVEN statement in the program.

If the result of the logical expression is false, and there is no ELSE
part, control is transferred directly to the next SUILVEN statement in
the program. If there is an ELSE part, the code following ELSE is
executed and control then is transferred to the next program statement.

7.5.2 THE WHILE STATEMENT

This is the familiar looping construct.

Syntax

<while statement> ::== WILE < 1'ogical expiress±OT>> DO <statemen>>

Semantics • ■

The logical expression following WHILE is evaluated. It it is true,
the statement following DO is executed. The ' execution sequence then loops
so that the logical expression is ^gain evaluated. Again, if true the

statement following DO is executed .• This sequence continues until the
logical expression becomes false, whence control is transferred to the
next SUILVEN statement in the program.

i-HW. r'.W’vk'-,,

- 13 -

7.5.3 THE REPEAT STATEMENT .

The repeat statement is designed so that the test for loop exit may be
placed anywhere within the loop.

Syntax

<repeat statement> ::= REPEAT <statement> UNTIL <logical expression>
DO <statement>

Semantics

The statement following REPEAT is executed. The logical expression
following UNTIL is then evaluated and, if false, the statement following
DO is executed. Control then returns to the statement following REPEAT
and the process continues until the logical expression is true. Control
is then transferred to the next SUILVEN statement.

Either statement in the repeat statement may be null (represented by the
reserved wprk NULL), hence allowing the test for loop exit to be placed
at the beginning, in the middle or at the end of a loop,

7.5.4 THE EXIT STATEMENT

This statement permits the programmer to specify immediate return from a
procedure.

Syntax

<exit statement> EXIT <result> ‘

Semantics

If a result is specified it is evaluated. Control is then transferred to the
statement immediately following the., call of the procedure containing the
exit statement.

■;;a, cv'hrij- -Thd-W..

- 14 ~

7.5.5 THE STOP STATEMENT

This statement permits the progratmner to abort his program.

Syntax

<stop statement> ::= STOP

Semantics

Causes immediate program termination.

7.5.6 THE CASE STATEMENT

This statement allows the programmer to select one of s number of

alternatives for execution.

Syntax

<case statement> ::= CASE <expression> OF <statement list>
ENDCASE

<statement list> ::= <statement> E;<statement>]

Semantics

The expression following the word CASE is evaluated. The statements in
the statement list can be considered as being implicitely numbered fro-m
1 to n, where there are n statements in the list. The statement whose
implicit number corresponds to the expression value is executed. Control
is then transferred to the next SUILVEN statement in the program.

Should the expression value be <1 or >n, where there are n statements in
the list, the action of the case statement is undefined.

Ax LA r Ai-.

- 15 -

8.0 STANDARDLPROCEDURES

All input/output and flag operations'in SUILVEN is carried out using
standard procedures.

8.1 INPUT/OUTPUT

SUILVEN has a primitive set if I/O functions which allow the system to
accept card input and produce line printer output. These functions ' are:-

(i) . BEAD ()
Reads a card image from the input stream into a predeclared buffer
called INPUT_BUFFER. Associated with this buffer is a pointer
called INPUT_POINTER. .

(ii) WRITE ()
Writes a line image to the printer of a predeclared buffer called
OUTPUT_BUFFER. Associated with this buffer is a pointer called
OUTPUT_POINTER, After output, OUTPUT_BUFFER is cleared to blanks.

(iii) PUT (<expression>)
Evaluates the expression, converts the result to EBCDIC and moves
this result to INPUTJBUFFER. (.INPUT_POINTER.)

(iv) PUTSTRING (<string>)
Moves the • specified string to INPUTJBUFFER (.INPUTJO INTER.)

.»i ■* re »/,• a .___ ___ . _ _ . j_ __ __ __ _’ .___

■'■ •>.''T*’4 - -ii--w ■■■ ’V T't «■?••.v?>

‘ - 16 -

\
8.2 OBEEAVTXQNS < ,

There are four primitive procedures for operating on flag type' variables:

(i) ' SET (<fl.ag name)
Sets specified flag to frue

(ii) . UNSSET . (fflgg' nmee>)
Sets specified:flag'to.false . .

J
(iii) TRUE (<flag namee)

Returns value true if flag is set, else false .

(iv) FALSE (<flag name)) ’
Returns value true 'if flag is unset, else false.

9.0 COMPOUND STATEMENTS’ .

Any group of SUILVEN statements may be converted to a compound statement
by.enclosing the statements in compound brackets £(and £).

10.0 USING SUILVEN

SUILVEN is available on the IBM 370/168 at the University of Cambridge.
It may be accessed via a dial-up terminal using the following Phoenix
commands :.- . , . . .

SET your user parameters

C ISIO.P: SUILVEN IF » <input source file namee,
OF = <output spool filee,
OC = <output code filee

tint nn-1

17 -

The microcode generated by the SUILVEN compiler : • may be executed on a
B1700 simulator using the following Phoenix command:--

C ISIO.P: B1700SIM IC = <input code file>,
OF = ,<output spool file>

REFERENCES ■ ' ■ . ■ •

(1) A Soft Machine Description Language J
I. Sommervilie
Dept, of Computer Science,.University • of St. Andrews
TR/75/6, March 1975. •

(2) An Experiment in High-level Micro -.programming
I. Sommerville ,
Ph.D. Thesis, University of St. Andrew’s, May IS77.

APPENDIX 2

THE MICROARCHITECTURE OF THE BI700

HERIOT-WATT UNIVERSITY, EDINBURGH
DEPARTMENT OF COMPUTER SCIENCE

A DESCRIPTION OF THE
.MICROARCHITECTURE OF THE B1700

I. SOMMERVILIE NOVEMBER, 1976

- 1 -

INTRODUCTION
- - .1 1.1. 1 IT- T - T^-r--,,,,

This document describes the micro-architecture of the B1700.
Section 1 is a description of the machine registers and their
function, section 2 describes how store is addressed, and
section 3 covers the B1700 micro-instruction set.

1. THE MICRO-ARCHITECTURE OF THE B1700

The micro-architecture of the B1700 that is, the machine
architecture as seen by the microprogrammer is fully documented
in the Burroughs B1700 Systems Reference Manual, with a short
description of the B1726 processor micro-architecture given
below.

The B1726 processor ' consists of a main store, a high speed
microprogram control store and a series of control and
combinatorial units and registers, interconnected by one main
data bus as shown in figure 1,

SCRATCHPAD
CYF CPU CPL

i
NJ

I

CONTROL
STORE

.v.

- 3 -

1.1 THE GENERAL.PURPOSE REGISTERS '

X, Y,'L and T are the general purpose registers for the B1726
processor. They are 24 bits wide and are "active" as data is
transferred to and from main memory using these registers. The
X and Y registers serve as inputs to the 24 bit function box,
T is connected to shift/rotate logic and L in used by the I/O
functions. Both L and T may be treated as a group of six 4 bit
registers. ’ -

1 * 2 THE FIELD DEFINITION REGISTER , '

The field definition register (F) specifies the lengths and
addresses of data fields in main memory which are to be transferred
to or from one of the general purpose registers. The F register
is 48 bits wide and is functionally divided into two 24 bit
portions (FA and FB). FA specifies the main memory address and

FB holds length information.

1.3 THE SCRATCHPAD .

This is an array of 16 registers which may be addressed as 16
48-bit words (SO - S16) or as 32 24-bit words (S0A-S16B). In
general, they are used for the storage of frequently accessed
information. SO is treated slightly differently as decision
making logic acts on the contents of SOB and FB determining
whether SOB is greater than, less than or equal to FB, This
can be used for, say, loop termination. .

A

- 4 -

1.4 THIS CONTROL REGISTER ' •

The control register (C) is actually a collection of independent
registers used by the interrupt system and the combinatorial
section of the processor.

1.5 THE INPUT/OUTPUT REGISTERS ' .

• The I/O registers (INCN, DATA, CMND, U) are used by the I/O system
of the processor for recording interrupts (INCN), loading micro­
programs (U) and transferring data to and from the I/O controllers
(DATA and CMND). .

1‘6 THE BASE AND LIMIT REGISTERS

These registers (BR and LR) can be used for main memory protection
and for base relative addressing. The processor addressing logic
checks if the address in FA falls within their bounds.

1.7 THE A STACK

This is a pushdown store 24 bits wide. It has 32 elements and is
designed for use as a micro routine linkage stack. It may also
be used for temporary data storage. One appalling feature of its
implementation is that it wraps around rather than gives an
overflow message when the stack is full. ,,

. - 5 -

1.8 THE MICRO REGISTERS • ‘ '

The micro registers (M, A, MBR, TOPM and M-STRING) are registers ' :
used ..in the addressing and execution of micro instructions, A
contains the address of the next micro instruction and M the
current micro instruction. MBR .and TOPM are used to address micro
instructions held in main store and M-STRING is used for error
diagnosis. .

There are other processor registers but these are inherent parts
of the control and combinatorial logic and are described along
with the control sections.

\

a
* ' t? J ■ > ± ?• XL i.JL. * $i-*‘’*4 i r Y■' X > L j f ' V i! rX-AY- C S Sv1 j* /

- 6 -

1.9 THE, ARITHMETIC AND COMBINATORIAL SECTION

This section is composed of a 24-bit arithmetic unit and a 24 bit
combinatorial unit. It.has as data inputs the contents of the
X and Y registers as well as the CYF, CPL and CPU sections of the
C register. When one of the input registers is changed this
section immediately generates a series of results. These results

- r

are held in the special purposes register which are those shown .

in the left hand column in Fig. 2.

CYF CPU CPL“T”

Functions of

24-BIT XY FUNCTION BOX

X and/or Y

BINARY, 4-BITSUM X + y
cmpx NOT X COMPLEMENT
CMPY NOT Y • COMPLEMENT
XANY X • Y AND
XEOY X © Y EXCLUSIVE OR
MSKX X MASKED CONTROLLED BY CPL
MSKY Y MASKED CONTROLLED BY CPL
XORY X + Y OR

DIFF X “ Y BINARY, 4-BIT, 8-BIT

The length of
in CPL.

functions is controlled by the value

XYST

XYCN

BICN

CYL
CYD

1
FIG. 2

“ 7 -

1.1° SUM REGISTER

This register is the sum.of the contents of the X and Y register
plus 'CYF which may hold a carry b:Ltt of of more than 24
bits are being used, ’Tie oif CPU governs whetHer* the operands
are regarded as binary, four-bit decimal or eight-bit decimal.

1.11 DIFF ' REGISTER '

This register holds the difference of the X and Y registers. Again
operands may be regarded as binary, four-bit decimal or eight-bit
decimal.

1.12 (A^NY?Y^^(^RY,OYOY) REGISTERS

These hold the result of the appropriate logical function AND/OR/YOR
of the Y and Y registers.

1.13 COMPLEMENT XcCOMPIPNE NT Y (CMPY, CPffY) REGISTERS •

These hold the one’s complement of tire appropriate regiseer X or Y,

'1.14 MASKED X, ' MASKED Y (MSKY, MSKY). REGISTERS

The mask of the contents of register Y or Y is produced and placed in
MSKY or MSKY. The value of COL determines the number of bits masked.

- 8 -

1.15 BINARY CONDITION (BICN) REGISTER ‘ ■

This register holds carry and borrow/ conditions when operating with
quantities greeter than 24 bits. -

1.16 X/Y CONDITIONS (XYCN) REGISTER

This register holds information on the relative states of X end Y
for example X = Y end so on.

1.17 X//Y STATES (XYST) REGISTER

This register holds information on the state of X and Y (are they
greater than zero) end also has a bit which is set by any interrupt,

1.18 THE FOUR-BIT FUNCTION , BOX

This is an arithmetic and combinatorial function box designed for
use with four-bit operands. Its iie is governed by the Four-Bit
Manipulate microinstruction but has as possible results most of the
functions between two operands such as AND/OR/XOR etc.

• -9 -

2. STORE ADDRESSING IN THE BI700

2.1 ' MICRO-INSTRUCTION_ ADDRESSING

Micro Instructions for the B1700 are-16 bits in length and are
held either in fast control store or in main store. Control
store size is either 1024 or 2048 16 bit words. Three registers
are used for micro-instruction addressing - A, TOPM and MBR.
The addressing mechanism operates as follows;

The A-register points at the next micro-instruction
to be fetched, TOPM points to the top of the control
memory in the system and MBR contains the base
address in main store above which micro instructions
are stored.

When a micro-instruction is to'be fetched the value
in A is compared with TOPM. If it'is less than
TOPM, the micro-instruction at address A in the
control store is fetched otherwise the micro­
instruction at address (A*16) + MBR in main store
is fetched. Micro-instructions are held in the
M register.

2.2 MAIN-MEMORY ADDRESSING .

Main memory is connected to the memory control unit which resolves
the addressing conflict between bit oriented data accesses and the
physical byte orientation of main memory.

k- cy. □... l.sfe

10 -

The main store is addressed by a 24 bit absolute address, a 1 bit •
field direction indicator and a 5-bit field length value which may
vary from 0 to 24. The field direction bit indicates whether the
memory operation is to be forward or re.verse.

The memory control unit ((MGU) resolves the bit/byte addressing
conflict by fetching the byte addressed by the most significant_

21 bits in the address and the three bytes above or below it
depending on the field direction indicator. Parity is checked
at this stage.

Next the MCU sorts out the actual bits to be transferred from the
least signficant 3 bits of the address, the field direction indicator
and the field length.

Data is always transferred 24 bits in parallel to and from main
memory. Any operation calling for less than 24 bits has leading
zeroes supplied by the MCU. .

- 11 ~

3. The B1700 MICROINSTRUCTION SET

Microinstructions for the B1700 are 16 bits wide and are transferred
from control store or main store into the M register. The full
instruction set is described' below. '

REGISTER MOVE

<op code = l>,<Source Register>,<Destination Register>

This microinstruction is used for arithmetic operations by moving
the result from a pseudo operation register'.

SCRATCHPAD MOVE

<op code " 2>,<Source or Destination Register>,<D>,<Scratchpad Address>

D indicates direction
0 - to scratchpad • .
1 - from scratchpad

Scratchpad address indicates the left or rightmost 24 bits of a scratch
pad register.

FOUR BIT MANIPULATE

<op code * 3>,<Register to be manipulated>,<Operation>,<Literal>

Operations include skip the next microinstruction if there is a carry
or borrow in addition or subtraction.

RELATIVE BRANCH IF BIT TEST FALSE OR TRUE

<op code « 4 or 5>,<Register to be tested>,,<S>,<Literal>

B specifies the bit in the register to be tested. If ' the S bit is one
go to the next microinstruction. Literal is the number to be added to
the CSAR if the tested bit meets the condition.

sr;i-R' J < r " : f It -

- 12 -

SKIP. WHEN . .

<op code = 6>,<Register to be tested>,<Variant>,<Mask>

Variant specifies condition to be tested for skip to occur. The
mask .field masks the four bit register selected.

READ OR WRITE MEMORY

<op code = 7>,<RW>,<Variant>,<Register>,<FD>,<Memory field length>

RW indicates read or write. Variant specifies incrementing or
decrementing FA and FL. Register is X, Y, T, or L, FD - field
direction forward or backward.

MOVE 8 BIT LITERAL .

<op code = 8>,<Destination register>,<Eight bit literal>

MOVE 24 BIT LITERAL .

<op code = 9>,<Destination register>,<Eight most significant bits of literal>

Sixteen least significant bits of literal are in next control store word.

SHIFT T LEFT .

<op code = 10>,<Destination register>,<EC>,<Shift count>

EC - end off or circular.

EXTRACT FROM T REGISTER ' i

<op code = 11>,<Starting bit number>,<Register>,<Number of bits>

Take the specified number of bits starting at the specified bit position
and assign them to the destination register: X, Y, T, L.

- 13 -

BRANCH•RELATIVE FORWARD OR BACKWARD

<op code « 12 or 13>,<Address>

Branch to the address formed by adding (subtracting) the specified
address to (from) the current address.

CALL RELATIVE FORWARD OR BACKWARD

<op code - 14 or 15>,< Address?

Push the next address onto the A stack and then perform a branch
as described above. ,

SWAP MEMORY WITH REGISTER

<op code = 02>,<Register>,<Memory field length>

Swap the specified number of bits in main memory with those in the
specified register (X, Y, T, L) in the indicated Field Direction.

CLEAR REGISTER

<op code = 03>,<Register mask>

Set the register indicated to zero. The 8 bits represent the
L, T, Y, X, FA, FL, FU, and CP registers.

SHIFT X OR Y

<op code = 04>,<EC>,<LR>,<XY>,<Shift count>

EC - end off or circular
LR - left or right
XY - X or Y register
If shift count is zero, get shift count from CPU register.

- 14 -

SHIFT X AND Y

<op code « 05>,<EC>,<LR>,<Shift count>

Concatenate X and Y and shift.

INCREMENT/DECREMENT FA AND. FL

<op code = 06>,<Variant>,<Literal>

Increment and decrement the FA and FL registers by the specified
literal according to operation in variant.

EXCHANGE SCRATCHPAD

<op code 07>,<Scratchpad source>,<Scratchpad destination>

Move the F register to the 48 bit scratchpad destination register
and move the scratchpad source register to the F register.

INCREMENT/DECREMENT FA REGISTER

<op code = 08>,<ID>,<Scratchpad register>

Increment (or decrement depending on the ID field) the FA register
with the contents of the specified scratch pad register.

BIAS

<op code = 003>,<Variant>,<TEST>

Set the CPL register depending on the contents of the FU register
specified by the variant. If the test bit is one and CPL is not
zero, skip the next microinstruction.

- 15 -

STORE F IN SCRATCHPAD

<op code - 004 >, Scratchpad register>

F is stored in specified scratchpad register.

LOAD F FROM SCRATCHPAD

<op code - 005>,Scratchpad register>

F is loaded from specified scratchpad register.
• (

SET CARRY FLIP FLOP

<op code = 006>»<Variant>

Set the carry flip flop to one if carry- from ALU or borrow
from ALU depending on variant.

HALT

<op code - 0001>

Causes machine to halt with the contents of the M register displayed
on machine panel.

OVERLAY CONTROL STORE

<op code = 0002>,

Write data from main memory into control store. FA register specifies
main memory address. L register specifies control store address.
FL register specifies number of bits to transfer.

NORMALIZE

<op code = 0003>

Shift the X register left until the bit specified by the CPL register
is one or until the number of bits shifted is the number in the FL register.

'APPENDIX’ 3

'EXAMPLES

The material in this appendix is made up of four program listings:

(1) A listing of the SUILVEN code plus generated microcode for a
simple s~machine called SIMPS. This is included to illustrate
the format of the output produced by the SUILVEN compiler.

(2) A listing of the SUILVEN code implementing the SASL s-machine.

(3) A listing of the output produced by the B1700 simulator when
executing a SASL program to sum the elements of a list.

(4) A listing of the SUILVEN code implementing the PASCAL s-machine.

The code given here and the examples given in the body of the thesis
may not exactly correspond. This is due to the fact that both the
SASL and the PASCAL machines were re-implemented and opportunity
was taken to improve them. The re-implementation was necessary
because the author of the thesis left St Andrews University and
had no access to the machine there. The programs which were written
were supposedly portable but, as usual, this portabilty turned out
to be mythical and an inordinate amount of effort was involved
in transporting the various programs.

The PASCAL machine implementation was only developed to the stage
where the salient features of SUILVEN are illustrated and not to
the stage where PASCAL programs actually run on the machine. As we
had decided to abandon the development of SUILVEN, we did not feel that
the effort of completely implementing the PASCAL machine was justified.

no CO
»4 44 C3 OO
4*a o v» r» .£ -4

D "0*“•*** -V* MSMM Hitt wiWinH
r- r-
rn rn
30 30

m
2CO
S»

CO COco coc •*4
m CO
03 C3
3> "n
CO *n
r trs u
CO X
-4 -•4
C3 i«
70 it
r 4-*s«* si
Si

O C3
"» 4—4 1-4 txt
30 30 30 W
O m m -"I
n co co GO

C r s -4 -4 CO /*»♦
o C3 4—4 44 44 4—*
C3 CZ < <3 -4 O—
rn 3 m: m CO
*0 rn x-s
o « « 1* 3>
r-4 1—4 • • O 30
2 c » Srf 30

-4 44 O'! CO 3>
m -cj a <“> CO -<
30 44 OZ 30 -4 rs
ii 3» rn c» 3> rcSI r* -4 CO 0
H« 14 CO 3^ CO
Si ■CO x I *•*
m *0z-% CO CJ co-4 4-4 -4SI 3» 2 3»

CO “4 COCO 3* rn 3\
•H I 70 Si
3* *0 s
OO cc CO
3G 4-4 a
I 2 C3XD -4 m
O m “01-4 30 a
zz s 44 CD
-4 co 2 4 4
m O •Mflj -4
30 K3 n CO
«* rn 30 rs
H "0 s H»
K* 0 -4 O'Si 4-4 Si w

zz.
*-4 3»
rn 30
3=0 30
% 3=»
-4 -<

a
p
JC f** r- r—* r** r** r-* r~* »**^ >■* ,■**
*0t-M4 4t»ic »*M«I NMt»«MMI «W» x-iW-Ji M-WSJ* «M9*WI MM* —■>-»- ulrTrUTl

r*m
30
O
4-1 J;
30
rn

' -<

ut00 N O* Vt ■f- cs ro ►* O 0
• • • » I* II ft 0
o O o o o o o o oc o o o o o o o o too o o 0 o o o 0 o -4m m m m m m m m mi O33>• ac •n x CO X CO X CO mi•• 30 > i 4» #■» 4-* • • 30 *»•I! 4-4 •i it V! II VI Si *n-4 —4 II 4« CO 41 3» 4»3» m rv 0 <• o
CO o II II COX 0)0 X X os doIN)

4>
so

CO
xg•”4 CO 3» >» to r* 3> r- to X

4-4 30 C3 CO a O O 44 »-4
c l-“4 CO CO 0 3> O 3» 33 tom 2 33 O 303 C3 -TJ' 4 I (33C m CO rn I to 44t 1 I M4 » i to« 1 </> t t 00 4-4* I to 3» » H» C/j -4CO C3 CO >> 1H. 0 3X3CD “0 00 0 Of 2: X3 >3 rn07 30 "4 CO a •X -4 3»m 4.4 70 30 13 0> O 30 tl 33\'S J» -4 rn >3. 30 >• -4 34

“H O 33 to 33 3 -4 X > OCO -4 rn CO > 3X X m o -) 44
CO XC m rn -4 PC r“

“4 -4 mi -H m 3»xX* -4 co •h n to 30 t» 2, n 33 3 mi 30 “4 3.rn 30 X- S3 tCO O"4 %: CO : 1 ‘ -i CO
O -4 a:: X 3C ‘--4 0 CO
-0 0 tc X 1-4 6 co rn“0 -4 4-4 Ci X 3£CO 3» ■O X -n-4 cn X w CO cca* 33\ CO 33 30
co CO C/I 4—3*; -H rn CO 3» 2 CO

>- r* n X M #—
rn O m »> CO 3£
r* 3»X 3< % 3» 3» 2£m 3 C3 OZ r-4 co
X ! 2 a» m O -4 Km r- -4 O 03 30 3C
zc rn CO 0 m »-4 3C 3; a tO 0m mm z CO to
2 CO -4 * r-4 1-4
-4 to 0 £r «x XCO I 0 CO

tO > - r
-4 X O 30 r-,m rm CO C330 O- CO
ro co -4 "4
CO -4 X -.•) X3» rn o 30
-4 OO 2 o
X PC O CO X
r O e 442 20”4 -4 m
CO m •
-O 2

-4o CO*n
O“4 *1

3m -4
3Z

CO >
•H -4
3>CO5K

4-* 4-* 4-» ^IM* fr1**
O CO "4 O- vo 4:
►4 44 >4 ►H% z 2 244 44 44 44-4 -4 -4 •4*-H ►-« 44 ►4> 34 3* 3E»r r r* r»4- 44 44 44
tC CO CO COm m r r

4"* *—• 4-* 4-*W f\ HQOOOjjQsUlNSjufjM

SU
ILVEN

CO
M

PILER —
ST

A
N

D
R

EW
S U

N
IVER

SITY--
VERSIO

N 24/8/75

TO
D

A
Y IS 29

A
PR

IL
77

SO
U

R
C

E
LA

N
G

U
A

G
E

:
SN

O
B O

L 4 C SP IT SQ
L)

TARG
ET

M
A

C
H

IN
E

:
IBM 360/370

O
PTIO

N
S

:
O

N
= LIST.

O
FF

=
C 90 £, CO

PY >0 UM
P

it I
It j FUNCTION GF ^PARAMETER* H
13 j T:=STOREC-CQDEPGINTER®5?

IS | C00EPOINTERs=CQDEPOINTER+1?

IS i END = t;

IS i
IS I FUNCTION PGPSTACKO?
13 | STACK.POINTER:=STACK POINTER-!?

2D 1 END=STACK<.STACK POINTER. 5?

!
1
1

20
21
22 get.paraketer

9: CODE X:=S15A
10s CODE Y: = 16
11: CODE X: = X* Y
12: CODE Y:=6304
13: CODE FA:=SUM
14: CODE READ(X.»> 16,0 >
15: CODE S14B:=X

ii 23 get-parameter
16: CODE X:=S15A
17: CODE Y:=l
18: CODE X:=SUM
19: CODE S15A:=X

1 24 GET.PARA METER
20: CODE X:=S14B
21: CODE A:=TAS

1 25
1 26
1 27 POPSTACK

22: CODE X:=S15B

23: CODE Y:=l
24: CODE X: = DIFF
25: CODE S15B:=X

1 28 POPS TACK
26: CODE X:=S15B
27: CODE Y: = 16
28: CODE X:=X*Y
29: CODE Y:=3104
30: CODE FA: = SUM
31: CODE READCX,16,0>
32: CODE A:=TAS

1 29

Z1) 1
COMPILER

PROCEDURE PUSHSTACKCBSTSC16) P;)Z
DIRECTIVE «,scratchcrpy p

2? 1 STACKC.STACK.POINTER.>:=PJ

24 1 STACK.POINTER: = Sr ACK.PO INTER-e-i;

2S | IF STACK POINTER > 200 THEN

.24 I
27 |

$ (___ . _____
WRITESTRI NG (• STACK OVERFLOW

? 30

33: CODE EA: = 14368
34: CODE REAO(X, 16,0 >
35: CODE S14A:=X

1 31 PUSHSTACK
36: CODE X:=S158
37: CODE Y:=16
38: CODE X:=X*Y
39: CODE Y:=3104
40: CODE TAS: = SUM
41 : CODE X:=S14A
42: CODE FA:=TAS
43: CODE WRITE(X,16,0)

1 32 PUSKSTACK
44: CODE X:=S15B
45: CODE Y:=l
46 : CODE X:=SUM
47: CODE S15B:=X

1 33 PUSHSTACK
48: CODE X:=S15B
49: CODE TAS:=X
50 : CODE X:=200
51: CODE Y:=X
52: CODE X:=TAS
53: CODE 8T8T(XYCN,0,1)

1 34 PUSHSTACK
JOB ZAPPED •) ; i 35 PUSHSTACK

55: CODE X :=S1 B
56: CODE Y: = 33
57: CODE S1B:=SUM
53: CODE SHIFT(X,L3)
59: CODE Y:=1080
60: COOE FA:=SUM
61: CODE X:=H404040
62: COOE WRITE(X,24,1)
63: CODE X: = H40E2E3
64: CODE W RITE (X,2 4, 1 >

23] writeo;

2Q |
3^ i END?

3D j
?r\ 5

£}

oon^rniior » n*nzx

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92

w*
93

CODE X: = HC1C3D2
CODE WRITE(X,24,1)
CODE X:=H40D6E5
CODE WRITE(X»24r1)
CODE X: = HC509C6
CODE W RI TE (X ,2 4, i)
CODE X: = H0 30 6e6
CODE WRITE(X>24, 1)
CODE X:=H406D6D
CODE WRITE (Xf24f1)
CODE X:=H4 0D10 6
CODE ViRITECX'24, 1)
CODE Xs=HC240E9
CODE WRITE(X,24r 1)
CODE X: = HC1D7d7
CODE WRITE(X,24,i)
CODE X: = HC5C440
CODE WRITE(Xr24, l)

1 36 PUSHSTACK
CODE X: = 1080
CODE L:=120
CODE Ys = l
CODE S1B:=Y
CODE WRITE
CODE X:=H404040
CODE FA: = 1080
CODE FL:=960
CODE WRI TE(X*24* 3)
CODE BTBTCFLCN'O,- 2)

j
i

37 PUSHSTACK
38 PUSHSTACK

CODE JUMP:=+38 AT 54
CODE As=TAS

1 39

'>'t }
i 3? f

f R'jvuuunc LUrtlM ft
PUSHSTACK(STORE G6ET.PARAMETER(5,)>;

34] end;

34 |
34 j
36 |

COMPILER
3? 1

PROCEDURE LOADCOz
3ITSC16) temp;

DIRECTIVE »*»SCRATCH TEMP
TEMP:=GET_PARAHETERO;

3^ ! PUSHSTACKCTEMP)J

40 I END ;

!
1

40
41 LOAD

94: CODE CALLRC86)
95: CODE Y: = 16
96: CODE X:=X*Y
97 : CODE Y:=6304
93': CODE F A: = SUM
99: CODE READCX*16^0)

ICO: CODE F A: = 14368
101: COOE WRITE(X,16,0)
102: CODE CALLRC70)

?1 42 LOAD
103: CODE A:=TAS

] 43
i 44
I 45 LOADC

1 46 LOADC
104: CODE C ALLRC96)
105: CODE SI4A:=X

1 47 LOADC
106: CODE X :=Sl4A
107: CODE F A:=14368
103: CODE W RITE CX * 16, 0)
109: CODE CALLR<77)

1 48 LOADC

5
40 | PROCEDURE STOREO?
4? j STGREf . GET_PA RA METERC) -) :=PGPSTAC K()?

44 j ENO;

44 |
44 | PROCEDURE AOOO?
46 1 T:=P9PSTACK() * POPSTACKO;

4B j PUSHSTACK'CT)?

4$ | eno;

43 J
43 j PROCEDURE SUBO;
51 | P USHSTA CK < POP ST AC KO - POPSTACKO)?

110s CODE A: = TAS
4 9
50
51 STORE

1 11 2 CODE C ALLRC103)
112: CODE Y:=16'
1 132 CODE X:=X*Y
114: CODE Y: = 6304
1 15: CODE TAS:=SUH
116: CODE CALLRC95)
117: CODE FA:=TAS
118 : CODE WRI TECX,16?0)

119: CODE A:=TAS
52 STORE

53
54
55 ADD

120: CODE C ALLRC99)
121 2 CODE TAS: = X
122: CODE C ALLRC101)
123: CODE Y:=X
124: CODE X:=TAS
125: CODE X:-SUM
126: CODE S14B:=X

127 : CODE X:=S148
128: CODE FA:=14368
129: CODE W RI TE (X >1 6r 0 >
130: CODE C ALLRC98)

1 31: CODE A:=TAS

132: CODE C ALLRClll)
1 33 : CODE TAS: = X
134: CODE CALLRC113)
135: CODE Y: = X
1 36: CODE X:=TAS
137: CODE X:=DIFF
138: CODE F A: = 14368
139-1-xaci- WRITE (XH6.-0)

5 6 ADD

57 ADD •

58
59
60 SUB

•1 40 = CO OE C ALL RCl oaO ;

'■
''J

5S
PROCEDURE PRINT (5/

WRi TESTRINGC’ THE RESULT IS

M C_

142
143
144
145
146
147
148
149
150
151
152
153

CODE
CODE
CODE
CODE
CODE
CODE
COOE
CODE
COOE
CODE
CODE
CODE

I 63
| 64 PRINT

X:=SIB
Yi=21
S1B: = SUH
SHIFTCX»L3)
Y 1 = 1080
FA:=SOM
X s=H404040
WRITE<Xf24x1)
X :=H404040
WRITE(Xj»24r 1)
X: = H40E3C8
WRITECX*24*1)

U1N

s:30
“4mz
03.•2’
rn
33

(O•4
3>O34
CO*H3>O34I"OCD
Z
*4
m33

8M*

* M* t*
0 nO 00

4 M
00 00 00 -4

M* M* h- ►-» M* H*
Co oo 00 oo CO 00

M* !-» M* »«* H* H* M* M* M* S* h-
4 -4 H CD

169:

M* H* M* S*
CN CN

M* H-* H*
CN
ro

M* M* M*t X-*
CN CN VO VO
n* O V) 0000 -4

© <3
-4
00

■nJ -4 -4 -0 -4 -4 CN
00

O'
-4

CN
JS

Cn
I44

•
o so Cn VC JS t4 ro H* *4 or VO JS tvl ro CN VO

* ro O OO ro OO oo oo CD oo oo CO OO CO OO OO ro ro ro ro ro ro ro ro ro CD ro ro ro ro ro ro ro
3 O CO CO CO o CD a CD CO CD a CD ro o CD a ro o a a ro ro a CD CD O ro CD CD CD CD oo ro
3 O CD CO ro ro CD CD ro ro CJ CD ro ro CD ro CD ro CD CD CD CD ro ro CD CD CD CD CD CD CD ro CD CDn m n m m m rn m m rn rn m m rn m m rn m rn rn rn m rn rn rn rn m rn m m m rn m m
V X ac X 30 to -4 to -< to X no CD X OC X X -4 X -< *n *n 3d -n -< X -< X ■< X a: X ac X
4 ro 30 CO rn o %- ro ii X i« *n -4 ii 30 • i D> \ it r* D»- m *■> it it it ii ii ii 33 ii 33 it
D x #4 X o* CD to 3* II Ml II > CD II M4 II II to -< II ii • • 3* • i II II II II II II h-t II Ml II
4 ~n oo it t it M* -n to -n -4 “4 -4 to ro it M* II ll ro II 04 X H* CD S* to -4 X -4 X•1 <- m z-s z-s II II II o -1 M* r- Z*H 1* rn cz JS II O co W4 Z-l to M-* «► CN MM M* rn ro m a
n ro Z"\ ro X -4 00 to 00 1*1 00 1% X CO 1-1 XC © X o vo X CZ © -n VO 1*1 SO rs Cm** X ** T 3> oo CZ © X -n -< X ro % XC Js *n CD X rn X m
"> ro M ro 00 CO x s 3* CO * M* % ro V t4
z *•1 00 w % r- % -4 oo <N ro Js ro JS
» % •r w M* % * V “s O JS oM* w w O VJ © s* *
• w VO « Sm» M* N*
1
oi

KZ I
00

SmZ w

154:
C

O
O

E
X:=HC540D9

155:

C
O

D
E

W R
ITE<X

p24, 1}
156:

C
O

D
E

X: = HC5E2E4
157:

C
O

D
E

H R
ITE (X *2 k, 1)

O'
vo

*3
30

z

On 0>-n ONf-
fc.-****

C 5
cn cn o- Vi m vn■vj j f* o a v

'D
•-WM* 1-4 ."*> *---*•* «#*Mn *M«M

VI
JO

miPO

■ o3*co
rn
o
o03O
m
o
~n

o cto *o m
PO 1~! PO zr ■*1 a c
C (O c v»«

at 0D -1 r %;
XC 40 Mi c PO
1-s O C ON c i_4
n o r PO -1r C r rn

r • o z*s
C »« # '0 3S w
"0 I » c 3* Mj.I
n 0"> to C3 1~4
O m c d ZC ~ < PO rn l“
r i OD-J 0
j 3* O S3
!! PO X rs

>• w
1* 3 C3 •»»
VI rn “o 4 cC m . odC pc a

n m

■**

rc rc rc
H*o

rc rc rc rc rc
o o o o OM»

CN
• »

1-
rc
•<

so 03 4 vc

o c a o o od o oc c c o a C a 03
c CD CD CD CD CD CD CDrn rn r r rn r rn m
•4 X 00 X -< X -4 X
30 44 -H 44 II *j 3> 44
cc IS cc IS II IS tc II
is cc -n -4 X •4 cc
SI M» 1s 3> vc SI 1l
X Js 3 to X Js

3* -< 3*oz
rC

rc rc
o o

rc
o
rc
i»

rc
o
M*

rc m» m» i -* 1» M­
sD oO
a- vo

1»
V0 st3
Js CO

N*
vO
rc

H
s
H
•

oo sO
V

-O
00

O‘?Js
44

CJ
44

n> Ci o CD CD n o en CD CD CD o CD r
CD a CD CD o CD a C3 C; CD a CD CD c
CD CD CO CD CD CD CD CD CD CD CD CD CD c
m rn m rn- m ro rn rn rn r ■ r rn rn r
cc CD So- 00 2C *n i| X ZK tc -< r- X c
i» 3» ♦4 -4 P0 r~ s- • < P0 1* • 4 44 44 -
Js r* It co M4 44 • 4 Il 03 II I! II r
Sc- r- •4 •4 —I I! ll X' -4 ♦ * 1* 1- 1* -
44 PD 3> /•a m O 1* Js II rc o z
ll o tc -c CN © © -< © 00 *X 1» r* X o co JS o f

sO o % O o <
VO Z ro Js
<*» t Js CD s

© % 1
* 0M -1 w
ro 1

4 4
-r- vj
X X
g >
1i 1-4z z
r* r*o o o o " "O

~s! 4 CN CN CN CN
ro 1* 0 ■ so 00 4>J CN

dh DC s: -3 no> 3> s» PO P0
n ►-«
z Z z z z
r* r r“ •4 *4
o CD CD
o CD oc
-0 *O “0

S 4 4/» JS 4 4 4
-4 »4 r-«

4
©

C CN CN
£> 4

Q
PC

O
SE:=G

ET.PA
R

A
M

ETER
C);

I
82

K
A

IN
LO

O
P

236:
C

O
D

E
CALLR(228)

237:
C

O
D

E
S14A

:=X
$)

1
83

K
A

IN
LO

O
P

run:
84

K
A

IN
LO

O
P

m
zs
o
a
3> r- 4 C/> 3» CO r~
(/I CD PO c: O •4 CD
rn 3» CO CP CD 3»*» CP MS M’S PO CP

D 4 S»M w r MS
MS MS S* »» MS S'
w»’ SO in,
S» Si Vt

*
n
*

n
*
JC
*H

»?
»
-
H*

*
**
*H

*
W*#*

*
x»
**

ro04V»
ro
04Js

ro
04
04

ro
04ro

ro
04!“•

ro
04o

ro
roSO

fro
ro00

to
ro4

I
I
i
II

ro
roVI««

ro
ro04«•

ro
ro4
t«

ro
h-SO<«

roM*4«»

ro
f*VI•t

a O o O a a a O o a D o o o O o o O o o O Oa O CC o o o o o o CP o o o o o CD o o o o o O
CP C3 c o o CP CP o CP CP o a a CP o o o CP o CP o O
r: r- r r r ■ r r m m r- n n r m m m r-1 r r r r r
c, a g c. t. c_ OD □3 CC CO ro co o: 03 X Cr o co a o a a
c: cr cr c: c: cr ro x> ro PO P3 X0 CP o* * cr X- c 3> x» >► 3-
z x x :z x c co <c CD o co ro ~o i II c: r~ r r- — r r-
“0 “0 “O “0 t O MS MS rs MS MS —4 13 p- r* p- p. r
t» «» *4 «• ■ « «# M* >-* Mi M— M— © 3» «• PO PO PO PO PO PO
It It It II II II Mi 14 14 Js VI CN V* co II MS MS MS MS MS MS

-r + + + 4- »o *# + M 00 SO Mi
M M (4 M- M f4 14 © o o roMi lo 4 s6 c o o © 4 (
J- V, —t S:M SV
—H 3= > »3 rc M3 3>

“4 -4 —4 —4 *4rc
ro ro r 14 14 rr ro
CN f4 !4 MM w M—

4S 4 O (CD o Js

00 00 4 4 4 4 4r- o O CO 4 CN vn
T rc PC ZC ZC -c ze:3» 3» > 3» 3». 3» 3-
Mi Mi M-» ►M Mi --
z=; 2: z Z4. 2C 32 PS
r~ r- f" r" P~ a P
a CD a o CP o G
o o CP o CD CD o
"U "3 "0 IO "U "0 "0

7S \
7> 5 " THIS IS THE MAIM PROGRAM w
7S I

233: CODE BRBC34)
****** CODE JUMP: =+27 AT 211

239 : CODE A:=TAS
85
86
87

?s j INITIALISE! 5

77 1 MAINLQQPO;

78 j
73 | ENO PROG RAM

2 40 : CODE CALLRC240)

241 : CODE CALLR(39>

2 42: CODE HALT

| 88

1 89

1 90
| 91

.-**** ** ** *** **********

1MPILATION COMPLETE NO Of ERRORS = 0

SUILVEN COMPILER — ST ANDREWS UNIVERSITY-- VERSION 24/8/75
SOURCE LANGUAGE : SNOB 0L4(SPIT80L) TARGET MACHINE : IBM 360/370
OPTIONS : ON = LIST- OF^ = C ODE* COPY ?DUMP

TODAY IS 21 APRIL 77

” kk -kk kk kk kk kk k k * *■ «•* kit kk kk k k kk kk kk kk ii k k k k it k kk **• kk kitkkkkkkkkkkkkkkkkkkk j 1
2

THIS IS THE SUILVEN CODE FOR THE SASL S.MACHINE WHICH WAS DESIGNED j 3
AT ST ANDREWS UNIVERSITY FOR THE LIST PROCESSING LANGUAGE SASL. j 4
THE SASL MACHINE HAS A TAGGED ARCHITECTURE »WITH TYPE ' j 5
CHECKING CARRIED OUT AT RUN TIME | 6

I ‘ 7
PROGRAMMER : IAN SOMMERVILLE — 5T ANDREWS UNIVERSITY -- 23/8/75 J 8

1 9
IN ADDITION TO THE MACHINE STACK , THE SASL MACHINE HAS A J 10
LIST STORAGE AREA , USED FOR BOTH PROGRAM AND DATA , AND TWO j 11
SPECIAL PURPOSE REGISTERS CALLED CREG AND EREG . CREG POINTS TO f 12
THE NEXT MACHINE INSTRUCTION TO BE EXECUTED OR TO THE PARAMETER j 13

OF THE CURRENT I NS TRUC TI ON IF IT HAS ONE) ANO EREG POINTS TO j . 14
THE CURRENT PROGRAM ENVIRONMENT - j 15
THERE ARE THREE TYPES OF MACHINE INSTRUCTIONS 1 16
1) THOSE WHICH TAKE TWO OPERANDS FROM THE STACK AND PUT ONE 1 17

OPERAND BASK ON THE STACK f 18
25 .THOSE WHICH TAKE ONE OPERAND FROM THE STACK AND PUT ONE BACK I 19

ONTO THE STACK | 20
3) THOSE WHICH HAVE A PARAMETER . THESE HAY OR MAY NOT ALSO ! 21

MANIPULATE THE STACK j 22
I 23
I 24

, j 12 5i j "
y: t I THE SASL OP COOES “0LL3W 1 26
■» i j J 27

t I
]

I 28
I* i 29
i i ! OP CODE = 1 3 IV INTEGER DIVIDE | 30
(' i Ii OP CODE = 2 mod MODULUS I 31
I

t j OP CODE = 3 3 LUS INTEGER ADDITION 3 32
i i OP CODE = 4 MINUS INTEGER SUBTRACTION j 33
i li OP CODE = 5 MULT INTEGER MULTIPLICATION 1 34

x 1I OP CODE = 6 G RT TEST GREATER THAN ! 35
i {

]
OP CODE = 7 GEO TEST GREATER THAN OR EQUALS j 36

i 0 p CODE = 3 LTH TEST LESS THAN 1 37
«I I OP CO DE = 9 LEG TEST LESS THAN OR EQUALS i 38
1 I OP CODE = 10 ANO LOGICAL AND i 39
1u 1 OP CODE = 11 OR LOGI CAL OR j 40
t J OP CODE = 12 COMMA ADDS ELEMENT r0 A LIST 1 41
1 i OP CODE = 13 A PP LY APPLIES A SASL FUNCT ION ! 42
1 !i OP CODE = 14 HEAD GETS HEAD OF LIST 1 43
1 ! OP CODE = 15 TAIL GETS TAIL OF LIST | 44

1 ‘ 1 3 OP CODE = 16 TLG TEST LOGICAL TYPE 1 45
I 1 OP CODE = 17 TCH TEST CHARACTER TYPE I 4 6 J

i' 1 OP CODE = 18 TP TEST POINTER TYPE i 47
I I OP CODE = 19 TF TEST FUNCTION TYPE 48
I I

1
OP CODE = 20 TDIG TEST DIGIT 49 "J

L 1 OP CODE - 21 TLE T TEST LETTER i 50
r 1 5

i
OP CODE = 22 0IG VAL GET DIGIT! IN CHAR FORM 5 VALUE 1 51 ■/,

I OP CODE = 23 MEG NEGATIVE TOP OF STACK I 52 -i

1 i OP CODE = 24 POSITIVE TOP OF STACK ! 53
F 1 i OP CODE = 25 NOT TOP logical NOT f 54
tie L i OP CODE = 26 FORK CODE BRANCH I 55
j». • 1 lj OP CODE = 27 TEG TESTS FOR EQUALITY I 56
g. 1JL 1 OP CODE = 28 NED TESTS FOR INEQUALITY 3 57
j*' 1 } OP CODE = 29 OECL PROCESSES SASL D EC LA RA TI ONS (NO N RECURSIVE) 1 58 • .i
£k- 1 1 OP CODE = 30 3ECG PROCESSES RECURSIVE SASL DECLARATIONS 1 59

{ ! OP CODE = 31 K NO I FILLS IN ENVIRONMENT LIST 1 60
E; 1 j OP CODE = 32 BLOCK BLOCK ENTRY 1 61
B-- 1 j 1 62

j *• * if ** ************** ****** **•** ****** ********** ** ****** ** ** **** ** ** ** *** 3 63

i i MA CRO •INTEGER.T YPE* = ’ 1’ ? MACRO ’LOG ICAL.TYPE* — » 2*; ! 65
3 j MA CRO ’CHAR.TYPE » - ♦ 3»; MACRO « GUESS.TYPE* = *4 ’ ? 1 66
s I MA CR 0 ’FUNCTION. TYPE * = *5’? MACRO * POINTER.TYPE » = *6 ’? 1 67
•7 J i 68
7 i MA CRO •LTRUE’ = ’ 1 ’ ? MACRO *LFALSE» = *0’ ? 1 69
3 j I 70
* ! MA CRO •NIL’ = ’0 ’? - i 71

13 j 1 72
13 j MA CRO •STACK.SI2 F ■* = » 25 0’ ? MACRO ’STACK.WIDTH’ = 32 4»? 1 73
1? j MA CRO 'LIST.SIZE » - ’3000’? MACRO ’LIST.WIDTH* = • 45 *? 1 74
14 I MA CR 0 ’TAG.S IZE’ - 1 4*; MACRO *W CRO. SIZE’ = ’20’ ? 1 75
IS 1 1 76
15 1 i 77
is i macro ?s AVE.VALUES .OF. POINTERS’ = * STACK!.STACK.POINTER.5 .DATA: =PL1 ? 1 78
17 1 STACK C. STACK. PQ INTER+1.). DA TA: = PL2? 1 79
17 1 STACK .POINTERS STACK. POINTER* 2? ’? 1 80
17 ! 1 81
17 2 MACRO ’ RESTQRE.VA LUES .OF. POINTERS’ = 1 82
n | • STA CK.POINTER:=S TA CK.P QI NT ER-2 ? I 83
is 1 PL1 : = S T A CKC. ST AC K. POINTER.). DATA ? 1 84
18 i PL 2 :=S TACK C. ST AC K.PO INTER+1.).DATA? *? 1 85
n I
13 i
n I
n i

1
n 1
n 1
p 1
i- i
23 j
23 j
23 |
23 j
23 j
23 j
23 I
23 j
QMPILER DIRECTIVE ...PAGE

MACRO SAVE.MACHINE.STATE ’ = ’ SECS,TAG : = PQ INTER.TY PE ?
SECS,3 A TA: =CREG? S TA CK C . ST ACK . PC IN TER-)-TA G: =PGI NT £R.TYPE?
ST AC K{ . STACK.?01 NTER.) -DAT A: =E REG?
STACK.PG IN TER: = STACK .POINTER+1? ’?

MACRO ’RESTORE.MACHINE.ST ATE* = ’ST ACK.POIN TER:=STACK.POINTER”1?
E REG: = STACK <- ST ACK.POINTER. 3. DATA?
C REG: = SECS.OATA?
SECS.T AG:=?OPS.TAG?
SEC S.3A TA: = T0PS.3 AT A?
UNSEKTOPSF)?
8 ;

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

29 j
29]
29 j 31 TS (S TA CK .WID TT) ARRAY (STACK.SIZE) STACK?
21 j BITSCL 1ST.WIDTH) A RR A Y (LI ST.S IZE) LIST?
2’ j SI TS (WORD.SI ZE > EREG*CRZG?

DEFINE THE MACHINE ARCHITECTURE USING BITS DECLARATIONS j 103
104

j 105
J 106

107

23 I
23 j

< 23 |
23 j
21 i
23 I
21 j

; •'
23 |
23 J
23 |
23 j
23 I
23 j
23 j
23 |
23 |
24 j

' 25 1
25 j
25 J

C OH FILER

n NOW DEFINE
BUT NOT

SOME OTHER
VISIBLE TO

STORAGE AREAS USED SY THE SA SL MACHINE j
THE SASL PROGRAM |

»T

THESE DATA AREAS ARE: J
FREE. SPACE 1ST USED TO RECORD WHICH LIST CELLS ARE j

AVAILABLE FOR USE j
STACK.P9 INTER OBVIOUS J
OP.CODE THE CURRENT INSTRUCTION QP.CCDE j
LIST.POINTER POINTER INTO LIST AREA I
FSLP” POINTER INTO FREE SPACE LIST
TOPS. TAGrTGPS. DATA, SECS. TAG,SECS. DATA THESE ARE FILLED BY THE j

POPSTACK INSTRUCTIONS AND ARE USED WHEN WE WISH TO OPERATE J
ON THE TOP STACK ELEMENTS !

INTERRUPT TYPE HOLDS THE TYPE GF INTERRUPT WHICH HAS OCCURRED j
I

BI TS (WORD.SI ZE) ARRAY (L I ST.S 12 E) • F REE.SP AC E. LI ST ? j
31 TS (WORD. SI ZE) STAC K.PQIN TER*QP .CODE,LI ST.POI NT ER rFSLP> TOPS.OAT A, SECS.DATA|

>TGPS.TAG* SECS .T AG* I NTER RUPT.TYPE* RE CL EV EL? j

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

DIRECTIVE ---PAGE

2^ i
2s j
2> J
25 j
25 !
27]
27 j
20 j
23 j
25 j
?9 J

" DEFINE THE STACK AND LIST AREA STRUCTURES USING TEMPLATE | 129
DECLARATIONS AND ASSIGN THESE TO STACK AND LIST . | 130

” j 131
TEMPLATE STACK.STRUCTUBE = TAG(TAG.SIZE)>DAT A(UQRD.S IZE); j 132
DEFINE STACK.STRUCTORE: STACK? “ j 133

| 134
TEMPLATE LIST.STRUCTURE = GUI), n A BIT USED SY THE GARBAGE COLLECTOR” j 135

TAGCTAG SIZE),KEADC fcORD.SIZE),TAILCWORD.SIZE); j 136
DEFINE LIST..STRUCTURE : LIST ; ‘ ~ " j 137

j 133
| 139

COMPILER DIRECTIVE ...SCRATCH C RE G, ER EG , STACK .P CI NT ER,L IS T_ FO INTE R, FS LP > OP.CO DE
COMPILER DIRECTIVE ...SCRATCH TOPS.TAG,TOPS.DAT A,$ECS.TAG ,SECS.DA TA

29 j | 140
29 | " DEFINE THE MACHINE INTERRUPT FLAGS 1 141
29 j 142
29 j FLAG S T A C K . 0 VE RF LO W, IN V A LID. T Y PE , DI V ZERO, FUNCTION. COMPARISON, GUESS .FLAG, 1 143
30 j FIRST.E NTRY,ENO PROG? j 144
30 ! FLAG | 145
si i DE CL FLA G , J 146
3t i SECSF, 147
31 ! topsf; 148
7* 1 j 14 9
31 | • | 150

COMPILER DIRECTIVE ...PAGE

PROCEDURE HANDLE IN TE RR UP TS < 3 ;
WRITESTR INGC’INTERRUPT ’ H WRITE NUMBER(I NTERRUPT
WRITESTR ING(* JOB ZAPPED *********** 5;
WRITEC 5;

HALT;
end;

TYPE); I
I
I

PROCEDURE E ILL.TOPS TACK.REG ISTERS ()/
IE FALSE CTOP 5E 3 THEN

S(
IE EALSECSECSE3 THEN

S{
TG?S.TA5:=STACK C . ST AC POINTER. 3. TAG;
TQPS_DATA:= S TA CK < • ST ACK-PQ INTER* 3* DATA;
STACK.PQINTER:=STACK POINTER-1?

1

s 3
E
S(

5 3

TOPS.TAG: = SECS.tag;
TOPS.DAT A: =S ECS.DATA;

SECS .T AG : = ST ACKC *S TACK.POI NTER . KT AG ;
SECS.DAT A: = STACK(. STACK.POINTER. 3. DATA;
SETT TGPSr3? SET(SECSF);
STAC K.PO INTE R: =S TACK.POI NTER-1 ;

S)
end;

I

\
I
1

PROCEDURE IN IT IA LI SE -S ASL .M ACH INE (3 ?
STACK.?01NTER: = 0; LIST_PQIN TER:=1;
unsetc secseb unset c topse);
CREG:=l; EREG:=i;
CQDESASECLIST 3;

eno;

15 1
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

HA NDLE_INTERRUPTS
HANDteZlNTERRUPTS

HANDLE.INTERRUPTS
HA NOLE.I NTERRUPTS
HANDLE.INTERRUPTS

ElLL.T OP STACK.REGISTEF
ElLL.TOP STACK.REGISTEF
FILL.TOP STACK.REG I STEF
FILL.TOP STACK.REGI STEF
FI LL .T OP ST A CK. RE GI ST EE
FILL. TOP STACK. REGI STEF
FILL.TOP STACK.REGISTEF
FILL.TOPSTACK.REGISTEF
FILL.TOP STACK. REGI STEF
FI LL.TOPST ACK. REGI STEF
FILL.TOPSTACK.REGISTEF
FILL.TOP ST ACK. REG I STEF
FI LlZt OP ST ACK. RE GIST EC
FILL.TOPSTACK.REGI STEF
FI LL.TOPST ACK. REGI STEF
FILL.TOPSTACK.REGISTEF
FI LL.TOPST ACK. REGI STEF
FI LL.TOPST ACK. REG I STEF
FILL.TOPSTACK.REGISTEF

INITIALISE.SASL.MA CHK
INITIALISERS ASL. MACH IF
IN IT IA LISE. SASL. MACHU
INITIALISE. SASL. MA CHIT
INITIALISE. SASL. MACHU

70 j
79 j
7? I

PROCEDURE P USHSTACK (B IT SC TA G. SI ZE) TAG? 8 ITS (h'0 RD _$ IZE) DATA?)/
J 191
j 192
J 193 PUSHSTACK

7? i " PUSHES AN ELEMENT ONTO THE SASL MACHINE STACK j 194 PUSHSTACK
77 s 195 PUSHSTACK
77 j IF FALSE(TGPSF) THEN j 196 PUSHSTACK
74 1 SC 197 PUSHSTACK
75 I IF FALSECSECSF) THEN j 198 PUSHSTACK

74 j SC j 199 PUSHSTACK

7? ! SECS-TAG: = TAG? SEKSECSF)? 200 PUSHSTACK
7*? j SECS.DAT A: =DATA? | 201 PUSHSTACK
39 j S) j 20 2 PUSHSTACK
81 j ELSE 203 PUSHSTACK
31 j s c j 20 4 PUSHSTACK
s? j TOPS.TAG:=TAG?. SETCTOPSF)? J 20 5 PUSHSTACK
84 j TOPsZdATA:=9ATA5 j 206 PUSHSTACK
8S j S) J 207 PUSHSTACK
84 j S5 j 208 PUSHSTACK

s7 i ELSE 209 PUSHSTACK
87 i IF STACK.PG INTER > STACK.SIZE THEN j 210 PUSHSTACK
33 j sc J 211 PUSHSTACK
89 ! SETCANY.INTERRUPT); j 212 PUSHSTACK
99 | INTE RR UP T. TV PE s = 1? J 213 PUSHSTACK
91 i S5 214 PUSHSTACK
97 | ELSE j 215 PUSHSTACK
9° 1 SC j 216 PUSHSTACK
93 j STACKC-STACK.POINTER-):=SEC S.TAG SHL WGRD.SIZE j DATA; j 217 PUSHSTACK
94 j SECS_TAG:=TOP S.TAGJ SECS.D AT A: = TOPS. DATA; j 218 PUSHSTACK
94 I TOPS.TAG:=T AG? TO PS.DAT A:=DAT A? } 219 PUSHSTACK
97 j STACK-POI NTER :=STACK_POINTER * 1? 1 220 PUSHSTACK
99 ! S) J 221 PUSHSTACK

109 j END? ” PUSHSTACK " } 222 PUSHSTACK
ICO j | 22 3
10*9] j 224
COMPILER DIRECTIVE .--PACE

1 00
100
100
100
100
100
100
100
100
1 00
100
100
107

" HERE ARE SOME UTILITY PROCEDURES

« THE GARBAGE COLLECTION PROCEDURES
GARBAGE COLLECTION IS DOME WHEN THE FREE SPACE LIST IS EMPTY
WHEN THIS OCCURS THE GARBAGE COLLECTOR IS AUTOMATICALLY CALLED
THE METHOD USED IS TO CHAIN THROUGH THE LIST AREA USING CREG / EREG *
AND ALL THE POINTER TYPE ELEMENTS ON THE STACK -

EACH CELL WHICH IS ACCESSIBLECPOINTED TD) IS TAGGED 1CTHE GC BIT)
WHEN THIS MARKING IS COMPLETE WE SCAN THROUGH THE WHOLE LIST AREA
COLLECTING UNMARKED CELLS AND ADDING THEM TO THE FREE SPACE LIST

r»
PROCEDURE MARKJ.ISTC8I TSCWORD.SIZE) R;)?

102 ! DOES THE LIST MARKING
107 i
107 REPEAT
104 >1 LI ST (. R.)-GC := 1 *

..105 J UNTIL R=NIL. DO ______ _____________ _ ••• ...
105 I R:=LIST(.R.).T AIL;
106 15 END:
106 j
106 j
1 06 i PROCEDURE GARBAGE-COLLECT*H
103 i
1 03 I BITS(WORD-SIZE) TP;
C O^PILER DIRECTIVE ...SCRATCH TP
107 ti MARK-LI ST (CREG 5 ; MARK
11? 1 TP:=i;
1 15 1 ’ WHILE TP< = STACK-PQI NTER DO
114 J IF STACK(.TP.)»TAG=POINTER-TYPE THEN

; 1 15 1 MARK-LI ST(STACK(.TP.).DATA);
1 16 i TP:=i; FSLP:=i;
1 13 1 WHILE TP<=L IST-SI ZE 00
1 17 I IF L 15 TC .TP,). GC=O THEN
120 J (
121 } FREE-SPACE-LISTC.FSLP.): = tp;
125 i $)
126 1i ELSE
1 24 ! LISTC.TP.).GC:=O;

* a 2»S

HARK-LI ST (EREG) ;

FSLP:=FSLP+i;

| 225
| 226
j 227
j 228

22 9
j 230

231
| 232

233
234
235
236
237
238
239
240
241

j 24 2
j 24 3
| 244
| 245
| 246

247
248

j 249

| 250
251

j 252

253
| 254
| 255
J 256
j 257
j 258
j 259
j 260

| 261
262

| 263

MARK-LIST
MARK-LIST
MARK „L 1ST
MA RKJ.IST
MARK-LIST
MA RK-LIST
MA RK-LIST
MARK-LIST

GARBAGE COLLECT
GARBAGE. COLLECT

GARBAGE-COLLEC T
GARB AGE-COLLEC T
GARBAGE-COLLEC T
GARBAGE-COLLECT
GARBAGE-COLLEC T
C-ARBAGE-COLLEC T
GARBAC-E-COLLEC T
GA RB AGE-COLLEC T
GARBAGE-COLLECT
GARBAGE-COLLECT
GARBAGE-COLLEC T
GARBAGE-COLLECT
GARBAGE-COLLECT
GARBAGE-COLLECT

1 25] FUNCTION GET.NEW.CELLS); J 265
j 266 GET.NEW.CELL

127 i " THIS FUNCTION RETURNS THE ADDRESS OF A FREE LIST CELL WHEN CALLED FOR J 267 GET. NEW. CELL
127 1 IF THERE ARE NONE AVAILABLE IN THE FREE SPACE LIST IT CALLS THE » 268 getZnewZcell
127 j GARBAGE COLLECTOR TO LOCK FOR SOME | 269 GE T.NEW.CELL
127 j j 270 GE T.Nt W. CELL
127 J IF LI ST.POINTER=FSLP THEN I 271 GE T.NE W.CELL
1 77 i - - j G ARBAGE.COLLECT() | 272 GET.NEW.CELL
130 J ELSE j 27 3 GET. NEW. CELL
1 30 j L1ST.POINTER:=L15T.POINTERS 1/ | 274 GElZ NEW.CELL
13i i END = FREE. SPACE. LISTS .LIST. POINTER. 35 | 27 5 get.NEW.CELL
1 31 < j 276
131 j FUNCTION GET.PARAMETERS); I 277
133 i | 278 get.parameter
133 j " GETS THE NEXT ITEM FROM LIST POINTED TO BY CREG AND UPDATES CREG " | 279 GET.PARA METER
1 33 j | 280 GET.PARA METER
1 33 | 21 TS (WORD.SIZE) TEMP? j 231 get.parameter
COMPILER DIRECTIVE ...SCRATCH TEMP
134 | TEMP: = L1ST(.CREG.).HEAO; CREG: =LISTS •CREG.).TAIL; | 282 get.parameter
137 { END = temp; 1 2,8 3 GET.PARAMETER
137 j J 284
137 | 1 28 5
137 | j 286

COMPILER DIRECTIVE ...PAGE

.137
13?
13?
13?
1 3?
13?
1 41
145
145
1 44
145
143

| PROCEDURE CHECK.!YPE(8 ITSCTAG.SI2E) TYPE?);
i

" CHECKS THAT THE TYPE OF TOPS.TAG IS THE SAME AS ITS PARAMETER
J IF IT IS’NT THE INTERRUPT BIT INVALID TYPE IS SET
I
j IF TOPS .TAG - = TYPE THEN
j $< SEtFaNY.INTERRUPT)? SETCINVALID.!YPE); INTERRUPT.TYPE : = 21
j end;

287
288 CHECK
289 CHECK'
290 CHECK
291 CHECK
292 CHECK
29 3 CHECK
294 CHECK
295
296
297
298 CHECK.

J 29 9 CHECK
1 300 CHECK,
j 301 CHECK,

302 CHECK,
j 30 3 CHECK,

304 CHECK.
| 30 5 CHECK

30 6 CHECK
j 30 7 CHECK

J 308
| 309

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES

$)

i PROCEDURE CHECK. TYPES (3 ITSC TAG. SIZE > TYPE?)?

148 1 13 CHECKS THAT THE TYPES OF TOPS AND SECS CONFORM
148 j THE TYPE SPECIFIED
148 j
148 j IF TOPS.TAG ■»= TYPE DR SECS.TAG -= TYPE THEN
150 j SC
151 | SET CANY.INTERRUPT >; SET CINV At ID.TYPE)?
153 | I NTERRUPT.T YPE: =2?
154 j $>
155 | END " CHECK TYPES” ?
155 i
155 |
COMPILER DIRECTIVE ...PAGE

15S | « THE INSTRUCTION PROCEDURES tf 1 310
1 55 j • 311

- 155 j PROCEDURE CO MM AO 5 j 312
; 157 j 313 COMMA
; 15? ! ” THE TOP STACK ELEMENT IS A LIST. GET A NEW LIST CELL AND INSERT 314 COMMA

1 57 ‘ j ‘ TOPS .DATA AND SECS.DATA INTO THE TAIL AND HEAD RESPECT IVELY | 315 COMMA
157 j THIS CORRESPONDS TO THE COMM AC,) OPERATOR IN SASL FOR MAKING LISTS " | 316 COMMA

• 157 | j 317 COMMA
r 157 j 31 TS (WORD.SIZE 3 NEWCELL; j 318 COMMA
.. COMPILER DIRECTIVE ...SCRATCH NEWCELL

158 j CHECK.! YPE { PO IN TER. TYPE 3 3 j 319 COMMA
1 6D | NEWCELL: = GET.NEW.CELL (); j 320 COMMA
16i J L 1ST(.NEWCELL .3 . TAIL: =TOPS.DATA? j 321 COMMA
16? j LIST (.NEWCELL. 3. TAG : = SECS. TAG t j 32 2 COMMA

; 163 j LIST(.NEWCELL.)-HEAD:=SECS.DATA; 32 3 COMMA
» 1 64 J PUSHSTACK (POI NTER „TYPE> NEWCELL) ; 324 COMMA

1 65 j end; { 32 5 COMMA
165 J 1 326

r 165 j _ PROCEDURE APPLYC >; j 327
167 j ! 328 APPLY1 67 j ” THE SECOND STACK ELEMENT IS OF TYPE FUNCTION , THE TOP ELEMENT IS | 329 APPLY
1 67 | ITS ARGUEMENT-remove the top element CHANGE CREG AND EREG TO 330 APPLY
1 67 i POINT TO THE FUNCTION, SAVING OLD VALUES ON THE STACK AND PUT j 331 APPLY

" 167 | THE ARGUE.MENT SACK ON THE STACK 1 33 2 APPLY
167 j 333 APPLY- 167 j 3 IT SC WORD.SIZE) LP? I 334 APPLY- 168 j IF SECS.TAG -> = FUNCTION.TYPE THEN | 335 APPLY
170 | SC SETC-ANY.INTERRUPT); SETC INVALI D.TY PE 33 EXIT; S) 336 APPLY
175 1 ELSE 337 APPLY
1^5 I S(338 APPLY

l 176 i LP: = $ECS.DATA ; j 339 APPLY
u 177 j SAVE. MACH INE. ST ATE | 34 0 APPLY
** 18? j CREG:=L IS T(.LP.). HEAD; 341 APPLY

183 J ER£G:=LIST(.LP. 3.TAIL; i 342 APPLY
184 j S3 343 APPLY
135 | eno; 344 APPLY
185 j | 345
185 j 1 346

L 185 j I 347
m 185 j • 348

ax».c*c.T-_y_u.c- to-A-c-c xu*. ■ &V vt.H- ,r - :> -- H 1. ...» „•; V-fti

f 1 ss i! « THE NEXT 3 PROCEDURES ARE CONCERNED WITH THE TEST EQUALS INSTRUCTION j 349
185 t

S WHICH CAM TEST ANYTHING > INCLUDING LISTS F CR EQUALITY. FUNCTION ARE 1 350
7 135 i

i EXCEPTED.TRYING TO TEST FUNCTION EQUALITY CAUSES AN INTERRUPT 1 351 '•
r las j THE FUNCTION COMPARE TESTS THE TOP STACK VALUES FOR ABSOLUTE EQUALITY | 352
; 1 85 i» BUT IF THEY ARE LISTS THE RECURSIVE PROCEDURE COMPARE-LISTS IS CALLED 1 353

185 j WHICH CHAINS DOWN THE LISTS TESTING EACH ELEMENT IN TURN J 354
185 JJ j, 35 5

: 185 { | 356
r 135 !2 I 357

1 85 1a PROCEDURE TEST„FOR.EQUALITY C); j 358
187 i | 35 9 TEST-FQR-EGUALITY

v 18? 1 n TESTS THE TOP 2 STACK ELEMENTS FOR EQUALITY .IF THEY ARE NOT 360 TEST.FOR-EQUAL ITY -
i s7 I LISTS. SECS J) AT A CONTAINS THE RESULT OF THE TEST J 361 TEST-FOR.EQUALITY

; 187 1 362 TEST-FOR-EDUAL ITY 5
1 8? t

s IF TOPS_TAG=" UNCTION-TYPE OR SE CS-T AG =FUN CT IO N. TY PE THEN j 363 TEST-FQR-EQUAL IT Y '
is'? i sc | 364 TE ST-F0R-EQUA1. ITY I

; 19Q Ii SET CANY-INTERRUPT); 1 NT ERRUPT-TY PE:=4? j 365 TEST-FOR-EOUALITY
* 19? I S) | 366 TEST.FQR-EQUAL ITY
/ 193 i ELSE 367 TEST-FOR-EQUALITY j

195 I IF TOPS-TAG = SECS-TAG THEN 368 TEST-FOR.EQUALITY
194 i SC | 369 TE ST^FOR-lQUAL IT Y
195 i IF TOPS-DATA = SECS-DATA THEN 1 370 TEST-FOR-EQUALITY '
195 i SEC S-DATA : = LTRUE j 371 TE ST-.FOR-EQUAL ITY •
19? J ELSE | 372 TEST-FOR-EQUALITY

• I 97 e1 SEC S-DA TA : = LFALSE; j 37 3 TEST.FOR.EQU AL ITY ;
> 193 1J S) | 374 TEST-FOR_EQUALITY

190 j SECS-TAG: =LQS ICAL-TYPE? | 375 TEST-FOR-EQUAL ITY
;* 2 00 i END? * TEST-FOR-EQUALITY * ’ 37 6 TEST-FQR-EQUAL ITY

I,

&

209 ! PROCEDURE COMPARE.LISTSC); | 379
2 0* I | 380 COMPARE.LISTS
20? j ” RECURSIVE PROCEDURE COMPARING ALL THE ELEMENTS Or A LIST " 331 COMPARE.LISTS
202 j j 332 COMP ARE.LISTS

2 0? J 9ITSCU0R0.S IZE) PL1/PL2? j 38 3 COMPARE.LISTS
•203 1 REPEAT j 384 COMP AReZlISTS
2 0 S j sc I 38 5 COMPARE.LISTS
20‘S i PL1 : = TOPS.DAT A; PL 2:=SECS.DATA; j 386 COMP ARE.LISTS
2 03 j TQ?S_TA G: = LIST(-PL1-).TAG; TGPS.QAT A:= LIS T(.PLI.).HEA 0; j 387 COMPARE.LISTS
219 j SECS.TAG:=L1STC,PL2«S »TAG; S EC$. 0 A TA : = LI ST C- PL2.). HE AD ; j 388 COMPARE.LISTS
2i* i PL1 :=LI STC. PL1.). TAIL; P L2 : = LI ST (. PL 2. 5- TA IL ; I 389 COMPARE.LISTS
214 | IP TOPS.TAG .= POINTER .TYPE AND SECS.TAG = POINTER.TYPE THEN j 390 COMPARE.LISTS
2 IS j SC j 391 COMPARE.LISTS

216 j SAVE.VALUES.OF.POINTERS j 392 COMPARE.LISTS
21"> j COMPARE-LI STSC); j 393 COMPARE.LISTS

2 20 i RESTORE.VALUES.OF.POINTERS 394 COMPARE.LISTS
223 j $) | 395 COMPARE.LISTS
224 j ELSE | 396 COMPARE.LISTS
224 |. TE ST .FOR.E QUAL IT YC >; j 397 COMPARE.LISTS
2 25 i S) j 398 COMPARE LISTS
2 26 ’ UNTIL 399 COMPARE.LISTS
225 { PL 1 ='4 IL AND PL2=NIL AND SECS. TAG=LOGI CA L. TY PE OR SECS.OATA= j 40 0 COMPARE.LISTS
2 26 j LPALSE DO NULL; J 401 COMPARE.LISTS
2 2* j end; w cohpare.lists j 402 COMPARE LISTS
22? j i 40 3
2 2? | ! 404
22? | | 405
c nMPT i ff? nTRFriTvr___ paop...

{£ -

J '*

X w W X W
X flu CL Cl a.
>* >- k >— k
k» k 9— 9—

A A A A t' A A A A i i » t f
X X X X X -J -J X hd h% Sd 7d hd
<s: <c « vC <C •< «C «C LU o o o AU
=7 33 =} =7 zd Z7 Z) ZU <u «C « «£ «ac
C3 O C3 C3 C3 O C3 a O k k k k~ k*
X X X X X W X X X A A tO A AO

1 1 i » i 1 1 i 1 i i t i i
1— k k k k k k k— k O eu Q CD o CD CD -J -J X X X X X k k k k kto A A A A A A c> A c ■ •< «C <c vf <C «C kt k h-4 k k k k X A A A to
X X X X UJ X X X X X X. X X X - X k. «£ *2 «£ «C -C «c X X X X Xk k ■ k- k k k k - ■ k" k - X X. - x X - k- k k k k k k k k k k

M3 fv A o o k ci tO «f A3 <5 v~ oo O' o «—4 CM to vf m O fv 03 o o i- CM to vf A3 M3 f— OO O' co d to vf to
o CJ O o k k k k 1-4 k k rH CM XJ XM CM CJ CM CM ft J C CM A ro NO to to k to 1*0 A kl vf vf vf vt vf vf
vf vf vf vf Vf vf vf vf vt vf vf •4 *4 vt vf vf vt vf vf vf vt vf vf vf vf vf vf vf vf vf vf vf vf vf vf vf vf vf vf vf

X
A
X
-c
L.

e x
A

hd X
O uj
-C hd
>- O LU
AO •- ;■

k CC
X A) >

Z X
X k X A
u : X LU
> , 3- k X

O X
X ' 02 Zd X
O. . u. O C-

g >- s
k CJ k •*9 Cd

i 52 V) X
02 «2 P-4 k

>-- X C lJ LJ X
9- 9“ X CU X
k Zd c. A) •d
X o k
<!' O U
X Q- X k
o II ! Z"
X eu oz> L.

<C ! O
nr k i X
C J hd a.1
Li- A ! •< s vC

L) >" UJ
AO X ■ X
L— A -« A
X ! X UJ
X CJ i C X
X i 33 k
X CO
X XJ k-
X XJ eu 3J

a o a.
hd >- ce
CJ k »V a. 2d >»
vC J CO AO
>- rr vu X kt•V A UJ >- s a hd X

<v L— i— o
k CM 5U fv I— k -C •V «2
A k V./ u| A O CC
X Ou CD A «C ul X k A
<C m a. >, X «d LU O 9-4
Z) >- to C3 33 k Zd vC
a> ii > i X »V O Uf O UJ S2
XJ (uJ I <"V LU UJ X OO

i X AO 1 02 U. i 2U k <2
p- >„ <C UJ O A >- 33 X 9-
A k 02 X. 0- A uj a. ce COXJ A i «X i O U! X 30
W™— >— AJ a... k k k k C7 a C_A3 (A U; A w< Z XJ o
t..l XJ CD O XJ k CJ 9-
dd k'v k CD UJ k X s CL:
k A0 to C2
O U- -J Zd K a. s
XI k-n X 37

k Cd
hd c
eu zv CL.
«d XJ
k NJ A3A »v 9-4 ■C

* K X A3
O Z. k ? X

• V <C cu -c AJ u
o X k vC -c
■— X ul » k AOk * kt V-z

0 «c » A0 UJ
uv » >- vC f.. u

f ► « vC I 9 >.. t~4 9—
fV -u: k -o k -2 00 z ■■
X k «d k UJ »V O VA AO X
a. "». O 33 a. X J X kl X
>- CJ I C- >- a. A C. k
> ■■ i A3 k >- 0- >- UJ X

i A1 O. k • >— O k Q. UJ Aor. a. O 33 0C 1 J—. t >- Cl -U
UJ >, > - m Ul (y • hd k >- —2k k # k X k O k U-
z: • w o tr-* >- k -2 id X
U-4 >.' >- vC kl 2d A3 J— eu II II
CJ k A3 XV UJ a I4 1—4 A3 -c r *•C- A >« k< X X a X 1 >- -c
vu 9-(L.j _) w a. II k A3 CD >•
UJ -U ll 9-4 A X ii • » A) -c <co_ II I l C -c o »• «d UJ CL­ k A,
>- 11 «2 > >- A k k OU i ik O 9- X k « k A? A

J «L «c UJ X • k O UJ a. a.
fd k 2.3 OC «2 ’.ad I i c. LU o CD
o I i 3d> A3 O A A3 A X k k
UJ A3 A o X C. C_ 33 k
X U. 0. UJ X o a X u_
cu CD C5 I N (L eu 9— k I V tJ X-

k k CX o O eu 9-4
'?2 Cd X Cd
Li a.. s LU a_ g

co •*>
C : '•02 " O- ■ ‘

C
CM
CJ

r c f' U c • C k V* vf v4 vf vi vf vf vf' f vT A C“ /-■ IT CD 2s c • 0 C' c vf- At •a •.o A* A or co cr-
(J CM CM CJ K3 h-3 A A A-1 k A N3 HO f-3 N3 k NO t-3 N3 A A A vf vf vf vf vf vf vf ' -v •f •‘v’ vf • -f vv- -vf -v* A3
CM CC CM CM CJ tCJ MJ ■MJ CJ CJ CJ CJ M1 CJ CJ .CCJ CJ CJ CJ CJ CJ CJ •MJ CJ CJ CJ CJ CJ CJ CJ CJ CJ AU CJ •MJ CJ CJ CJ Cl

UJ UJ U UJ (K. a a a a a a a a a a a a a a a a
0- a a a LU UJ LU UJ UJ LU UJ UJ UJ Ul LU Uj UJ IjlI LJ L-C UJ
k u— >■ >- k k k k k k k k k k k k k k- k k k
k k k k k k k k k k k k k k** 9— k k k k k k

s t i P UJ UJ UJ UJ U W U UJ UJ JI JJ UJ JI UJ U JJ UJ
hd hd hd hd -i _ _ _ _ _ _ _J _ -J xJ _
O CJ o CJ t t 1 1 1 » I t 1 1 f J t » t 1
C -d «d «d a a a a c a ce a a a a a a a a a a
k- 9— k k o CD o o CO CJ o o o a o a 3 a o o 3 o
A A A A t i i i t i t i t i t t i t i 1 t

{ t t 1 k k k k f™ k k- k- - k 9— k k k k k-
k k- k- k 9— 94 9V 94 94 94 9-4 9—< ►—< 94 94 94 94 9V 94 9 V
A A A A O A A A A A A AJ C’J A A A A CO A A A
W UJ U UJ 94 9-I 44 9-4 9-4 94 94 94 9-1 9-4 9—4 9-4 94 94 94 • V
k k 9— k O Q o CJ O Ci O O Q O Q O Q A O CJ o

vO f- A O O I-4 (J A Vf A O k- 03 o o v— CM A vf A O S- OD O' o rV
f Vf Vf Vf A A A A A A A A A A o -o O O O Ca A 03 A vO k- fu
vf vf Vf vf vf Vf Vf Vf f Vf vf Vf Vf vf Vf Vf vf Vf Vf Vf Vf Vf Vf Vf Vf vf

L
•X

Vf
PO
CM

• s
UIa>,
9—

A
0..

US 0
A k
-4
UJ

xJ
-x
cj
4-4

: t.3
t o
I _J

n
A

3A O
a z
O LU
k

aC3 5

k a94 wA k
9-4 A
CO

a
• X VC «c
»«v X
•X a CJk UJ
A X •X A
U k UU
k 94 UJ X

1 J4 CO 9k
9-4 A k cA 9-4 A P4l
94 3 CCJ
O k LUz A
4V J4 9 *
«-4 23 9-4
k UJ k
A J S «Xk UI o
44 »
CO hd A

o aa •cd i «
UJ 9- IV k
i“' A LU
k 0.. 0i o
UJ o >~ C--4 k 9- <2

I
a JJ t a ko LE «5C ll

i k X k
k CJ A
44 lu Od UJ lU
A k UU A IU 9 -
9’ ■■ 9-- -d l
O A k 3 >- k9— L»J U- 9- 94
UI A -.J 9—9 I Aa UjJ hd3 k <c A CU o
o vC t,)lU t: tv
o t U- CJ 9-3
CJ
a
a

<c

J-

k k

V

«d
«CCJ

A
Q.
C

c
;■

CMo

a

A
a
o

C-
zx
«cT

o
II
k
A
LU •*. 9— zv

3 A
k <X
IV _ I
O Lu
9-4 k"”
Q

k-Lu LU
A IU 9-3 A
A
_J
UI

LU
UJ
3
a

lu *C k O
l

UJ A
3 CL

•V ’t­
ill t
CO.

9— a
Iiu_ k

<t 9-
UJ LU
A
o a
-J C3
II

O »» k

A
Cl.a co lu a

9- A k

» A 94
«t A

I a

LU

zz
LU

UI
A
-d
a.

LU

CJ
LU
a
k
o

1*4 »>■ ’ k N- K* p” A' A A u- A A A O O» -' T- A' A vf -f A c A A
A A A A A A A A A A A A A A A O d) o-J SO O O -o sO 'O SO SO
CM CM CM CM CM CM CM CM CM CM CM CM CJ CM CM C-M CU C'J CM CM CsU CM CM CM CM C'J

a
LU
_»
94
C..

X X X X X X X X X X X
«C C *C <C «X <C vC <c ■ <c vC
X> > > > » 7> > > > J > CL c. a a c. 0_ A A A A A A
9— k k k k k k k k k k A o o C o o A a a A A CM
9-, 94 94 9-4 94 94 94 94 94 94 94 k 9— k k k— 1— O- a a, CL_ a c. z hS z hC y: V2
A A A A A A A A A A A k» k 9- k k— k A A A A A A a cc oz cz OZ cc
94 9-4 9-* 94 >-« 9-4 94 94 94 9-4 94 O CD A o A o LJ w w UJ W w o o o o o o
Q CD Q o O o o CD OD CD CD z A Z z z z z z z z z z u. c.. c O- u. u.

CM PO vt AO A fv. CO o o ,4 CJ PO «f 1/7 A k 00 o* o k-4 CM PO -f A o k 00 o o k-4 CM A vt A a k 00
fv. fv. |k fv. fv. fv. k k oo 00 CO CO oo CO oc oo 00 00 cp CP O’ o o O o CN o a o O o o O o o ovt vt vt -t vt Vt vt vt f ~t vt vt vt vt vt vt vt vt vt vt vt vt vt vt St vt A A A A A A A A A

AO
9-<

94 «
o

u.
94 UJ

9“ X
w Z •
a. LU 9V
>* X *
k— UJ A

X UJ
cz LU cz
<c A
X hC «
A A 94«x k-
>0 k A
o A 94
a J
u. g a It

C3 »»
LlJ k A
a JJ
k LU a
k X

k—
A

a
JJ z a k -
A LJ A f X «
LU X UJ
k »•> 1 k* XC «
Z o X k - A
94 vt UJ UJ LU

CM z »N UJ C
o ♦ \ y; • 9 UJ • 9 r-4 X « 9 30 A
k LiJ I ' oj 9 V X z—1 LJ 9V a ♦

a cc u.t » 9 Q- UJ •f Z JJ k- S4
hX t «9 A -C k a <c X a VC a. X k
A tit k - I- A >- k CD >- v'L c >- A
c ' UJ XTX l <c i— «X A k k co k It 94
k C. k GJ CD> a i A i <C i X

« V A k- UJ l a X l A a A UJ _j <c II
f> k C t.'J LO k «X A «»• j i l A a k—. • •

a,. IIO UJ a -9 A a n A LO U O A —X UJ
X o a cm —- O Z'v LJ 94 CJ 94 or UJ a LJ 94 o X ;
<r k-~ -C A k— V4 X A k...■. S4 k— k o »«x A 1 CC
> X A 14 It a k CD r 1.0 Z k z*9 vC CO A A
u- UJ A It • • A ...,l CD a 94 r 94 X a
>—-4 X V4 <C • » «x k— A U4 ii C_ X ♦—/ yx A V4 Cd
A k 1 » U.J k A k k k UJ »» A k UJ if a UJ UJ k-• UJ
94 94 a v: o Z a <C LJ a *« CD k a A
O V A >• Q — a z. JJ >- k Z A >- «C a 3 k a xU

■ 9» 94 9- 1 J i X- k <^C JJ k A k 94 to
UJ a CC f o> A A0 UJ IjJ l o UJ A i <c UJ UJ l
c UJ yc q a fl. cz X vr 1 a 3D V O a X y;
A - o -X A C o o 3 CL A A 3D CD A * A UJ A
O z UJ k k k o X UJ 0- o o UJ V O LJ
UJ :c LJ o X CJ U J a X CL. UJ X
A CJ A Lu A CD A k- fJ a LJ o .9 LJ CJ 9 09
CX ►-i W4 a a CC A k• o A o
a ♦A (A CtX a;' a z a f zz
0- c UJ 0, g JJ a f UJ a LJ

A (1- a <y cr o'- CD fix-* lN k If IT IO I*- C- fN (N e- e r- e- P. f (V (C >>«• IT If If fp fk Ik- f «4 Cu PA A A 'O A A |p- fv. C'v ffv u- fv rk. r- (p. fv pv fv. fv 00 co oO CO co (A oo (« (CO A CO CO CO CO (O O co o
fJ CM (CJ C.J (CJ fi CoJ (CJ CM (CJ <\J ai (CJ (CJ CM CM CM CM oj fv! (CJ roj CM (CJ (CJ CCJ CCJ (CJ (CJ (CJ CM CM (Cl (CJ (CJ (CJ CJ
A, U j A-. K?- _ •A -'9 .'t.L A -.4 1" '• -_4 U-- - 5v.. uu ...Xa

■ i

2 9? j " iHL NEXT LU! J h INSTRUCTION PROCEDURES ARE FOR THOSE INSTRUCTIONS J 509
29? j WHICH HAVE A PARAMETER j 510
292 J 511
29? j PROCEDURE LOADFNO;] 512
294 i j 513 LOADFN

2 94 | * PARAMETER IS A POINTER TO CODE- CREATE A FUNCTION WITH THIS AS | 514 LOADFN
294 j THE FUNCTION CODE AND EREG POINTING TO IT’S ENVIRONMENT i 515 LOADFN
2 94 j PUSH A POINTER TO THIS FUNCTION ONTO THE STACK j 516 LOADFN

2 94 j j 51? LOADFN

2 94 j 3 ITSC WORD.SIZE) NEWCELL? j 518 LOADFN
: COMPILER DIRECTIVE------SCRATCH NEWCZLL
r 2 9S 1 N EW CELL : = GE T_NE ?< CE LL <) ; J 519 LOADFN

2 97 <
i L IS T{- NEWCELL, 2- - TAG : = F U NC Tl ON _T YP E7 j 520 LO ADEN

’■ 2 9? i LISTC- NEWCELL-)-HEA0:=GET_PARAMETERC)? j 521 LOADFN
293 fJ

i
LISTC.NEWCELL,).T AIL:=EREGz | 522 LOADFN

■ 30? P US HS T A CK (F UNC T13 N_ TY p£ > \] EW CELL) ; j 523 LOADFN
3 01 j end; 524 LOADFN

; 3 01 1 525
301 i PROCEDURE SLOCKC); | 526
30? J

4 | 527 BLOCK
30? 1 " AN UNCONDITIONAL BRANCH , BUT SAVING THE MA CHINE STATE " 528 BLOCK

; 3 0? ! " PARAMETER GIVES NEW VALUE OF CREG w 529 BLOCK
? 30? 1 | 5 30 BLOCK
r 30? 1 SAVE MACHINE STATE j 531 BLOCK
■/ 3 03 1 CREG: =L ISTC .CREG. KHEADJ j 532 BLOCK
? 310 j EN D; J 533 8L OCK
~ 310 I J 534
i 31? I PROCEDURE RETURN (); | 535

3 1? i w IF STACK HAS ONE ELEMENT WE ARE FINISHED OTHERWISE j 556 RETURN
3 l7 1 TOP STACK IS THE RESULT OF A FUNCTION > RES TORE MACHINE STATE 537 RE TURN

f 3 I9 I THEN PUSH RESULT BACK ONTO THE STACK Tf | 538 RE TURN
31? J | 539 return

> 31? I 3 ITSCTAG.SIZE) Tl? BITSCWORD.SIZE) 12; I 540 RETURN
f 314] IF STACK.POINTER=O AND FALSE(TOPSF) THEN | 54 1 return
> 314 I SE ICENDPROG) I 542 return
; 317 r ELSE I 543 RETURN

3 I7 i RESTORE.MACH INE.STATE 544 return
32? j eno; j 545 return

e 3 23 i J 546

_______ .__.i..,. .v.

zsz
UJk
k
<C
.J
U-

z.
Ui
1 —
k-
d
a
U.

z: a z-
Uz JJ UJ
k k k~-
K- k~

zr
UJ
k
I—-
d
a
L

zz
LJ
9—
k-
d
. fa

zz
UJ
k-
k~
d
au.

x zz
JJ UJk k

-^ zzz
uj a a

z
UJk
k
d
a
a

-r
LU
k
k
d
nJ
a

Z z -
a ujk k—
k k*
d d
a nJ

z z
a uj

k
k
d
nJ
u.

k k
k k-
d d

k
k
d
a
a.

k”
kd
a
U-

kd
a
u.

k

nJ
L

<c
a
C

d d
a -J a

a.
.J
U-a a. a a

Nf AO '~O Cn oo 0 O t—4 CM PO Nf AO 0 k- 00 0 0 k CJ A nT
co AO AO AO AO AO MO o O MO NO NO NO SO NO NO >- c- a A a
0 NO vO NO O •o -O NO NO NO NO NO NO so nO nO NQ •o NO NO nO

6

S

k AnZ z>
UJ -0
a:
UJ A
- k
UJ

A)
k 94
X
UJ k
z

k~
k— CO A
9-4 k 94
_< a
UJ ■ zz9-4 d

<c
1 X 1—

0 0 f
k- z.
A CJ
4—4 A) a. t 94

k- UJ
a A x a
UJ kN a .co
z> a 3) O
aj O U
a d X AO

• •fc a d
k- K—— J a 02
A OO 9*« n Q-
UJ z n£
X • k- a UJ
CO A f a _:
4—4 9-4 XX uj a
X f >>

k a. W CO
U- Z • A X
C a or pv

»V ' •_; 9— -D k
0 k Lu J IV A5 0 d
X b-l a ft. k-J UI U!
uj X a 4 U ce 0.

Cxi • • II UJ
R 0... • • X 02' R a U. JJ

XX

a a
a 0
d .
..J A
U

»N

U
U«9

• 9k
R

LU
A
d
O

I
■«N V~Z •; Q- •
AO I. 95

A
a

a uj
a xd.f

N-«
Z
UJ

Z
UJ9-

•
Ui

uj 0 <c

t

t—-

d
..J
a.

k
d
..J
L_

>
9—4
k
CO
w
a

t
I

or
z a
UJ LU

3J
a

G CC e O k k C ' C' CL C! N- V* l k l A LA A a L —
ocooO'Ccooooo'-cjooo^co'O'OO'COoa^oa
to CO NO NO A A N7 C) A N7 A A A A A A A A A A A O

323 |
325 j

3 25 |
3 25 j
325 j

3 27 j
3 2* {
3 23 I
32* j
3 3* j
3 3* |
3 3* |
33* j
3 35 |
3 3* I
COMPILE
331 j
3 34 j
3 35 j
3 36 |
333 1
3 35 j
3 45 j
34* j
341 j
342 |
342 I

PROCEDURE HEADCONSTC);

” PARAMETER IS A CONSTANT -- PUSH IT ONTO~THE STACK " J
I

PUSHSTACK<LIST(»CREG- 3 • TAG/LI ST(•CREG.) *H EA D)/_______ ___ 1
CREG:=L 1ST C .CREG. 3.TAIL; I

'end; !
I

PROCEDURE LOOKUP (); I

" THIS PROCEDURE SEARCHES THE ENVIRONMENT FOR A NAME THE SAME AS ITS J
PARAMETER- WHEN FOUND PUSH VALUE ASSOCIATED WITH THIS NAME ONTO THE |

STACK

BITSC WORD-SIZE) T1*T2*T3,T4;
R DIRECTIVE ..-SCRATCH T1,T2,T3,T4

T1:-EREG; T2 : = GET_PARAMETERO?
RE PE AT

S(
T3:=L1ST(-Tl.).HE AO; T42 = LI ST(.Tl.).T A It;
T 1 :. = L IS T(.T 4-).TAIL;

S3
UNTIL T2 = T3 DO

null;
PUSHSTACK CL IST(-T4-)- T AG * LI ST(.T4-).HEAD);

end;

I

547
548 HEAOCQNST

549 HEAOCONST
550 HEAOCONST
551 HEAOCONST
55 2 HEAOCONST
553 HEAOCONST
554
555
55 6 LOOKUP
557 LOOKUP
55 8 LOOKUP
559 LOOKUP
560 LOCKUP
561 LOOKUP

562 LOOKUP
563 LOOKUP
564 LOOKUP
565 LOOKUP
566 LOOKUP
567 LOGKUP
568 LOOKUP
569 LOOKUP
570 LOOKUP
571 LOGKUP
572

w. I
3 44 j
344 |
344 i
3 44 •
344 j
3 44 I
compiler
344 j
3 43 j
3 40 j
3 50 j
351 I
351 j
351 j
351 1
35’ |
353 j
354 j
355 |
355 j
356 |
35? j
353 1
3 50 |
350 j
350 5

PROCEDURE ADD.NAME AND VALUE TO EN VI RQNMEN TC 3; j
I

" THIS PROCEDURE ADDS A NAME AND A VALUE TO THE FRONT OF THE j
ENVIRONMENT LIST . SECS.DATA POINTS TO THE NAME AND TCPS.OATA j

POINTS TO THE VALUE “ « j
1

3ITSCWORD.SIZE) NC1>NC2; j
DIRECTIVE ...SCRATCH MCl,NC2

NCI :=GET.NEW.CELL (3 ; NC2:=GET.NEW.CELLC 35 1
LIS TC.NCI.3.TAG: = LIST C.SECS.DAT A.3.TAG; j
LIST(.NCI•3-HEAD:=L1ST(.SECS_DATA.3.HE AD; j
LIST(.NC1.3.TAIL:=NC2; j

I
* IF NOT A GUESS TYPE ENTER VALUE ELSE SET TAG TO GUESS TYPE " j

I
If FALSEC GUESS. FLAG 3 THEN j

S(J
LISTC .NC2.3.T AG: = LIST (.TOPS.DAT A. 3. TAG; j
LISTC-NC2.) .HEA D : =L IS TC . TOP S„DAT A. 3 «H EA D5 j

$) J
ELSE • 1

LISTC.NC2-). TAG: =G'JESS.TYPE? I
L ISTC . NC2. 3 .TAIL: =E REG; j
ereg: = nci; •

*4. *4. -•*. 'd“j.1 <V>if;ri'• uw’iZ'"”;/ A/
Z) Z) "3 "3' 3 "3 3 3 3 3 3
k 9- k k k k k k (— H- —-u o O o O U O O O A O*c d d d d d d d d d d

t I I i I f » I I I IO O O O O O O O O O Ok k k k k 9- k k k k p-
j I I t j I I 1 I I I

A A A A A A A A A A A
A A A A A A A A A A A
UJ UJ UJ UJ LU W UJ UJ UJ UJ UJ3 3 3 3 3 3 3 3 3 3 3A O A O C A C A AZ A A

I I I I I I I 1 I I »
UJ 13 Uj UJ UJ UJ UJ UJ UJ UJ UJ
A A o C3 A A A A A A AZ Z Z Z Z Z Z Z Z Z Z
d d d d d d d d d d d
X X X X X X X X X X Xo o U o o u o A A O o

o O T f iJ A If O fi A O 0 iV A
O O O o o O O 0 O O O I- k -v kA O o o o no *0 O O O «O A nO

c

W
3
3

LJ d k
X > z
k WUJ X
— X ZZm k o

aa A O
UU W P d
X k z U
o d L.J Xk •
d O UJ5C O’ X ♦
A k d

UJ AJ k
X d Z dd 91 >N 0
Z 3 A 1
Z UJ d A

d 3 X . UJ a
O d X oA U- xa • • •K k

O 3 4
U.I X z LJ ♦ k 9/
3 9-1 UJ X d d k
,.J a X k 9. U— A
d 3 d 4 t4
s> k X O 9S 3

1 k $ —- » o « II
3 91 A O J »»d 3 d 5K W >v o
3 3 k UJ fi d d
k d d A k- fi UJ
O k o k • » Xd l< 99 ll ik 4

k A CJ P- a fi
O Z O 1 A k ♦
k- lj UJ A (f fJ 94 O k 3J X a a k 9- 3 d »
A Z O A. II LJ v. dA o >- k i-M »• X f. k-
UJ a CT. (r- P- fil » *
3 k >- k rv k fiV
A > o m A”* X 4 3 *

1 z k J o k -I k
LJ UJ »— ' fil k- k '»w* k
A Q d 94 d » fi 4
Z’ A LU A oc AZ s«r
d UJ 1— o »o k k-s k
X X Z UJ A A n\ vJ 3 AO
CJ o 94 k a 4 A 94 H

a O z C) « LJ 3 •* 3
UJ d a «-« X - a k
oc UJ CC k LU UI
3 A uj a A W II 3 P-
O X k■- ■» »• 94 AO
UJ d PM 94 v-4 X k
o z k- 9™ 3; 3

i

II

o W o
o: lj z
a g cc lu

9^
o
a
UJ
3
o,

C" o* ir-; s—• i— ! 9- —/ Ijk ♦i A -NT ♦ CA ♦
if If -o oO -0 O 0 O a •A •o •O •O -O A
A I A’! ff ff I ■ A I f IA IA IO A -A -A A n A

UJ
A
d
a4

» '

9
W
>P-4
ko
uj
a»-<
Q
CC
UJ
3

,— k-<
af y

o o

i,

— — — z — — z z — — — z z — — z — — Z — — — — — z z z — Z Z — — — — — — — z
U UJ JJ JJ J J UJ JJ UJ UJ UJ UJ JJ U UJ JJ UJ UJ JJ UJ UJ JJ JJ UJ JJ U JJ UJ JJ U U UJ UJ UJ UJ U UJ U
k k 9-' k k 9- 3 k 3 3 k - k 3 U— 3 k 3 3 3 3 k 3 3 k ■ 3 3 3 3 3 3 3 k 3 3 3 3 f
3 k— 9— 9- >— 3 3 3 3 P- 9- 3 k ■ k- ■ 9~ 9 • 3 3 3 3 3 3 3 3 k— 3 3 3 9. 3 3 3 3 3 3 3 3 k—
< 3 3 3 3 «c 3 3 3 3 3 3 3 3 d£ 3 3 « " «. 3 < 3 3 3 3 3 3 3 3 3 3 3 3 3 3 d
3 3 3 3 3 3 3 3 3 3 3 3 3 -J 3 3 3 3 3 ...J 3 3 -J 3 3 3 3 3 nJ 3 3 3 3 3 3 3 —i
U U. U- Ll U_ U. U. U. L. u U U. U U. Lu U U_ 3 U 3 3 I j ... 3 u 3 3 U- 3 U. 3 U U. 3 3 U 3 Lu u.

sf A nO 3 00 O O r-1 CJ A dj AO NO N 00 On O «H CjJ 3 d'. UJ NO N 00 ON O t-4 CJ 3 3 AO NO C- 00 O O r-4 CJJe-H r-“4 3 k I*** CJ CJ CJ CjJ CjJ (JJ CJ CJ CjJ CJ 3 3 3 3 AO 3 3 3 A A") 3- 3 vf 3 3 3 3 3 3 3 AN A VO
no O NO NO -O no o sO vO O O •O NO nO NO NO NO NO O NO NO •o NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO

UJ
>
W

O AJ
k W 3 3 U
Z X 3 UJ
UJ >- CO X
CU Ul OJ W AO AD
UJ x- AO OJ 3 3 3 g
3 k co 3 3 3 Z k X
W 3 vS z 9N93 k co CJ Z Ul
UJ f O 3 t 0. 3 X 3 i
XO 3 W 3 3 3 UJ
O AO 3 A) 93 00 X >94 9-1 U. 3 V> 3 CJ z j "i
> 3 94 X 94 z J— 3 • 7 •9 J
CD CO k— 3 Q- 3 J— OJ r-d »9 3 s
ce 3 Ql. 3 z 3 f— U 3 r~> 3
o_ l.9 3 >- X UJ AO — 02 A U- 3
3 3 CO CO O X 3 Ul CC A k j

UJ CD A A UJ 3 X JJ I7 JJ CU 4 j
x 94 AJ 3 CO 3 JJ (_) tJ J-— U id !
3 OZ 3 k 3 « UJ k 3 =0 t A • '"j

UJ — k k a UJ o 3 94 3 3 CU '■j
o CQ UJ JJ — O z AO k 3 UJ UJ C k k II

«9 k— _ _ X JJ UJ UJ fJ A • 9 k-4 k CC > UJ U 3 • • 'I
^d JJ 3 UJ X k* _ 3 3 Xd Q _ JJ CC A O 3
• 9 A _ 3 UJ — J-— 3 0. 3 UJ O 3 Z 4 I’M
C^ 3 z U 3 94 >- 7 C z z Z O yc CO A 3 J
o — JJ UJ Ul CO Ul 02 UJ U z 00 3 JJ UJ CO a J-^-
9 91 _ 3 UU a a 3 A a •9 JJ CD UJ _ CC 3 a » 'I
a. o 9’A’ k z >- 3 CO 3 3 _ A _ CU k II k k 1

a 3 k 3 k 3 Q _ k • s 4 J— 3 «• A • 4 1
rd Cu 3 A I 3 OK t «7 a 3 <5 J-- o 3 a k CU ‘j
JJ CU -J J- U. U. 9*t ce A CC CO ii UJ 3 Z O UJ UJ CO k o ’IJ o UJ CO 3 3 UJ CO 3 UJ 3 »t > 3 3 3 A A 0> 3 »9 A » ■;
h-4 AJ U XJ AO g k UJ 3 Lui — A — UJ UJ t U j— 7-4 •i]
A Cl 3 3 U' UJ z AO 3 — X 9-< 3 II A CO U . I 1 3 It 3 9- •■j

» z 3 z t _ 3 3 3 S 3 U 3 U UJ O 3 • « II A) -4
O 3 (/ co AJ 3 CO 3 O Id f— W »■— O 3 0* UJ 94 O_ «• 9*-CC A 94 z 3 a A a 1 • ce. 3 O Z UJ CC U CO 0- 3 jCO k— 94 A QO ii JI =0 3 Q. ii f— a J 1 3OC A z 3 94 3 CO D» O y: » ? »0 f a. 3 JO9/ 3 0_ UJ 3 3 z 3 3 3 a u 3 Q nJ U-i A JJAJ 3 3 _ _ f- > CO 3 3 o UJ « U 3 3 CC 9/ u> UJ
3 3 f— k— A> f « l -J 3 AJ k a 94 4J 3 L4 A?
94 3 91 3 4n rv, JJ a >- AJ 94 JJ ♦ Ll 3
GO 3 UJ 0> to » o a 03 _ 3 k-v 3 k £ 3 W
l> U 3 a a nJ UJ a AJ IJ UJ 3
Z 9* AJ X UJ 9— =0 «• k—» LJ AO
U 94 u AJ AO 3 3 a a 3 a 1—
3 AJ -J CO Z X CC 3 g 3 3
3 3 UJ UJ CO AO Wv t
3 Z UJ f— _ a k—I a I3 94 X CO UJ 3 oc 3 3 r-d UJ f— j
Lu O 3 UJ 3 o U U AJ

a a JJ 3 U» 3
U1 z Uj oe z 9~» UJa a 94 uj a 3 3
3
O
WO
o
xe
CL­

cr C- <T' c e f t'O «o CO «o rr £* k A- k A »<•' ,,,+ L" A h- ar cr r- C' CO <c (O L - 3 f- • A d.* V fN —NO N- b- A- fN- IN. IN fN- JN- J- fN fN. |N. (N- A-. fN. k IN. fN. (N. fN. fN N co co co co CO co co co co <xo NN co C)
A A A AO AO kA AA A CO A I A AO AA AA A AA '■•O A A A d-> A A A- A .'■A AA I •A A A AA AA A A 'A, A A

-■-Jd X J •" _L_ • < 0 'i u-_ ,±_;3 , .. > '9 N i-w!? ’■ .uVlO’iv"; ■ ■ L- .A J

c <»!

h~ k k f— k- kz z Z Z z Z
UJ IV w LJ UJ uX X X X X U
a u u-j uj uj ui

39
6 j

PR
O

C
ED

U
R

E DE
C

LO
;

j 675
39

8 |
*

|
67

6 DE
C

L
39

^ j
"

PR
O

C
ES

S SA
SL

 DE
C

LA
R

A
TI

O
N

S IF WE
 D0N

®
T KN

O
W

 WHA
T TH

EI
R

 VAL
U

ES

j 677 D
EC

L
39

S |
A

R
E FI

LL
S IN

 A G
U

ES
S VA

LU
E TO

 BE
M

O
D

IF
IE

D
 LAT

ER

|
67

8 DE
C

L
39

8 j
PA

R
A

M
ET

ER
 PO

IN
TS

 AT
N

A
M

ES
 r T

O
P ST

A
C

K PO
IN

TS
 AT

VA
LU

ES
 "

67
9 DE

C
L

3 3 3 3 3 3
UJ LJ LtJ LU lu uik* k k k Ui ti

3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 k k k k k f— 3 Z z z Z z Z
U O O O O U O O U O O O LO LO O LO LO o o o o CO O O t~< 3 3 nLJ IJ LJ LJ LJ W LJ LJ LJ UJ LJ UJ uj IJ IJ LJ UJ z z z z z z Z a a a a a a
O O O O O o O O O o Q O Q O Q O ij se ye ye yc se se a a a a a a,i
O 1— <M A d A O k 00 O' O V— (M A d AO NO k 00 o- o 3 CM A d A NO k A o o k CM A

. j
-

oo CO 00 A 00 A oo A 00 A o o O o O O' o O' o o 3' o o O O O O O O o «-N W rH k 3
no NO NO NO NO NO d -o NO NO *o NO NO 'O NO NO *O o NO NO k k k k k- k- k k- k k k k- k k- k

»7

dO

UJrJI— A 3♦ 7 • 7 z LU Ak 3 uj X 1*7 N1 • K 94 ». 3 OO99 k d z d aIN z 34 J— CO > o
91 UJ d » a za X k* «"9 3 O 71
LU z • * »7 > k A
k- o d 3J z k-
LJ a • fi- 3 UJ he 3
X 3-4 d d XO o 00
d > k“ z Q z UJ d
a z d LJ 1 X k «7 d
d LJ O X A k A CJ Ma 1 J u- O *c d

i G A LJ Z a •7 f—— Qk k a /*7 A co k^ o k It
LJ z »s f o A * o k 91 k »iA LJ IN LJ k d 71 A UJ UJ k
7 X a XO * 3 UJ 7 ♦ 7 X i
IJ • 7 f— o U.J 91 a A .30 k 3J 3 k
a rv 7 d f- | 3-4 3 3 A 9/ «C A Z
>~ D- k d > A A 3 3 d LJ a » 1 a* 7 h- CD A k 1 k A II z > X u 1 A •

a 1 7 d d Q _J UJ • » d k 3 d u
c- (d „-l O Z II XO d II A z Ll d f~ z Z 13d k U I d ♦ « A k A z X 91 LJ LJ 7^rv O d 1 AO 1 d 91 d‘ d u CO d k A X X CO
LU t—t O AO O LJ j— UJ o k X X a O k k k k*
f-i co t A UI X” d A 1 d LJ d d bMi—t O A UJ AO d Q 3 A O A a J 00 UJ LJ OA 3 Q. X) 9.1 Z 1 d O 1 UJ f.. I o 9./ C. 97 a IJ Nr CD A z A a LJ A »7 X Z fi k fi >- d k X
O ye k LJ O a A a k k 3 UJ i Z* k 1. k <o.a CJ 91 UJ k o o CO 3 O A A U 1 d . UIo d Z A k d k 3-* k k 0. II A • 7 X a O a LU3: k LJ ,J d k CO 34 »« UJ u UJ M d LLk A k d 3 d 3 «7 Z a d X g X A a X XAJ X k U- U UJ N- l-*4 s se A UJ k A UJ LJ UJ CO mk A d 0- f9 A9 k X X d 1 k 3« k m3 X) 3 Lu IJ z X LU -J LJ O UI O Z Z z II MOD a. Lu 34 a xo CO a 3 ♦ X 1 A z 3 3 X XLJ X a d A Z se a z A a

O o a A d a II LJ d kUJ d UJ X g H- k X
s G a A CJ UU A 3 OO CO CO a d a a
Z a z X f. or UJ 3LU a g LJ GO A ■

UJ Lu _ 1
CJ 3 UJ
coGL
n

cr- Cf' c a' k dt ir s(r h a- O' O o »-< 3 O ’ (J a' Z d- -d V'
On J CJ O> O O O o O o co O o kt 3 3 3 3 3 kt i" 3 3 3 3
f>l A Ai d sf d d d d d d d d d d d d d -J- d d d d d d

.—.. —,
N fV |7. N O k ■ a-W t-1 kt k-4 3 kS OJ 0-j ai

NJ- Nt NT Nf d d N -t

4 24 I
424 j
425 j
4 25 |
427 j
4 2" j
423 j
423 j
4 2? j EM3

4 2? I
4 2? j

ELSE
IF TAG = LOGICAL.TYPE THEN

IF DATA = 0 THEN
WRITESTRINGC MFALSE# ’>

ELSE
WRITESTR INGC *#TRUE£* 3

ELSE
WRI TEST RIMS C’ #FUNCTION# » 3?

" PR IN TELE KENT "J

42? |
4 2? 1
4 31 j

4 31 |
4 32 j
4 34 |
4 35 1
4 34 |
4 S'7 j
433 i
4 3? |
4 40 }
4 41 j
4 41 j
4 4° j
4 43 |
443 j
4 44 j
44S j
4 45 j
445 j

PROCEDURE PRINTRESULTO?

81 TS CW OR O.S I ZE 3 TJ
IF TOPS.TAG = POINTER. TYPE THEM

S (
FLATTENC T^TOPS.DATA);
REPEA T

S-C
PRINTELEME NT CLISTC.TOPS.DATA.).TAG^LIST<
TQPSJDAT A:=LISTC.TOPS.DATA.).TAIL/

S)
UNTIL

TOP S.DA TA = N I. DO NULL?
S 3

ELSE
PRINTELEMENTC TO PS .T AG TOP S. DA TA 3 ?

WRI TEC 3;
END ” PRINTRESULT «;

4 45 I
COMPILER DIRECTIVE ...PAGE

1 715 PRINTELEMENT
i 716 PR INTELEMENT

• j1 717 printelement
1 718 printelement
1 719 PR INTELEMENT
I 720 PRINTELEMENT
I 721 PR INTELEMENT
I 722 printelement
1
1
1
I
1

723
724
725
726
727

printelement

I 728 PRINTRESULT
i 729 PRINTRESULT
i 730 PR INTRESULT
i 73 1 PRINTRESULT
ii 732 PRINTRESULT
i 733 PR INTRESULT
ii 734 PR INTRESULT

TGPS_QA TA.) .TAIL) ; I 735 PR INTRESULT
1 736 PR INTRESULT
1 737 PR INTRESULT
1 738 PRINTRESULT
1 739 PRINTRESULT
I
i

740 PRINTRESULT
741 PRINTRESULT

I 742 PRINTRESULT
i! 74 3 PRINTRESULT
i
1
!

744
745
746

PRINTRESULT

1 747

■' ryf

$

,4
4S

 1
PR

O
C

ED
U

R
E KA

IN
LO

G
PO

;
|

74
8

a a
CD CD
o CD

a a
CD CD
o o
3 3
z z

a. a
o o
o o
a 3.j
z: z
94 3

A <C

a
a
o
3
z
94
d
X

a a
CD CD
o o
3 -j
z z
91 ,
d dC

a a
CD CD

a
CD
o
a
z
94
■X
X

a
o
CD
—i
Z
3
d
C

a a
o o
CD O
3 nJ
z z
94 94

a cl-
CD O
o o

a
CD
O
34
Z
94
d
C

ao
CD
3
z
1—4
d
C

a
CD
o
3
Z
94
■I
C

CD
.j
z
3
d
C

CD
3
z*
3
d
C.

3
z
4-4
d
C.

3
z
94
d
a

nJ
Z
9-4
d
CC

z
9-4
<
C_

94
d
X-

<C
C

d
CC

■X
CC X C C

o O r- a A d At NO 3~ CC o o t—4 CJ A tt A A 3. OO
tt LA A LA A A A A A3 A3 A A A a A a NO VO A a
3, a- 3- a 3- 3- 3- 3- 3- 3- a <3- 3- 3 3- 3- 3- 3. 3- 3-

a
CD
CD
U
z
3
d
C

a q
CD CD
O CD

3
z z

a a
a cd
CD CD
3 3
z z
3 3

a
CD
CD
3
z
3
d
C

a
CD
CD
nJ
z
94
d
X

a
CD
o
3
z
3
d
5U

a a
CD CD
CD CD
3 3
z z
3 3
d dt
C a-

a a a
cd o CD
CD CD CD

a a a.
CD
CD
3
Z
9-1
d
CC

a
CD
CD
3
z
3
d
a

a a t
CD CD /
CD CD. :
3 3/ -

CD
CD
-J
Z
3

d
C

o
CD
3
Z
3

d
a

3
z
3
d
C

3 3
z
3
d
C

z
94
d
CC

z
94
d
C

z -
9-4
d i a

94
d
DC

3
d
C

d
C

d
z

C- O «-« CL 9D tf A <5 3 CO CN O t-4 a A tt A NO
£

3 S
NO 3 3 3 3 3 3 3 3 3 3 o OO OO CO CO A A CO 5
ft- 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3:

I

t
* *
* *
*
* o X
* W LJ X
* a. DC X
* a X
* o CD X «•»
* a LJ X **»
* a X 3
* A a X A
* 94 CD X 3
* CD X a
* se CD X C
* o CD X C
* d X cx
* 3 LJ X LU
* W A > X 3
* Z d X Z
* 9/ LU X X 9-4
* a X X «
* O 3 A X LU
* d 3 X nJ
X Z 7 a X CD
X p.- 2D X A
X A LU a X d
X A a X X
X 3.J LJ X
X A A 3 X
X d 3 z X
X A 3 X
X CD X
X WJ CD a X
-X X a 3 X zc
X 3 a X U.J
X Q CD X -t- 3
* a z Z X p- 97 3
X o LJ d * 94 A
X a 7 X 4K 94 a. a A.
■X nJ X 9, P" UJ UJ LU
■X W! ,.J 3- X O a. 3 3 X C
X Cc. 94 >-L X «c =D Lj) A LU 3
•X o 3 * nJ a 2D 94 X
X CD O X L- CD a: d CD 3 O
X ai o LU X 3 O LU a UJ 3
X O UJ UJ X 3 k d CC
X CD X Z X 3 z 0. 1 ,-4 V
•X a <.) X LJ CD 94 « he
X a 3 X X A CD « Li V LJ
X LU C) X z L >„ UJ d 3
X a Lu 3 X CD a A CD 3 IU a
X LJ C X 0 d II CD 0
X » UJ 3C X Z-' 3 «« C. CD «
•X 9_| CC X UJ UJ UJ CD o.J a
•X ex. d A X 3 D> CD p— CD
X cd Z X • <7 UJ a o a
X A CD X CD A 3 CD 3.l 0 w U/
* UJ Z" 91 X d-C _J 1 A 3
X a O 3 X d a a 9^1 a
•X p~ i~i CD C X L- a 3 CD a. 94
X 3 C UJ X 9"
X m o CC X X UJ «■»
X 91 CD 3 3 X CD U W
X a A X d j—j
X A 3 z w X 3-J CD
X 9/ A f-4 3J X L. cs;
X X Z O X
X 3 94 OC z X
X CJ A. X
5 A Lu C X

l
I

I
J •■

• Pj
d'

-7 ► « »7 • 7 I «, 17
■X d d d d d
k** CD p- 3 P"
<C « d d d d
CD A CD CD CD CD

1 a 1 « z « «
A CD A A LU LlJ Z z A A
a P— a Cl. X X UJ LU Li LJ
CD CD CD 3 3 X X LU LU
i— X 3 Pn 3 3 A A

»x UJ d d
97 3 a 'P « 3 P— sC d ex! 7—
LU LU d d 3 3
d. a d d d d CD 0 d d d d
>- >• P-™ p. 9*- 3 « « CD CD 3 P--
3 3 d d d d A A « d d

« « CD CD CD CD a a A A CD a
ac nJ i » I I CD a a a « «
UJ d A A A A 3 3 CD CD A A
CD Li LJ CD: Li O 3 • 7 I’­ -7 0. 0_
LU 9« LU LUI LJ LU A • 7 ii *7 rv /*> CD CD
3 CD a A a' A) A A r-7 V CD ll LD 3 k—
Z CD CD II Hi II II d CD CD d V *C II II
94 _J »»< 4 4 »♦ 3 d •< d d _J 3.1 44 »» !=■'
3 7-> LU d <c: d d d 3 3 nJ 3 a d Cu d d
A A CD 3 p- 3 3 CD a d a d 3 3 p—)— I—
LU LU CD d d d d 13 CD J" Q sc d w d d
a a O CD CD CD CD A SC « SC «

A
P— CD p. CD CD ■:c

>- « 1 «) O k*- A 3 UJ « L)J ! ■:
9. l— a A A A A UJ tu Li UJ LJ A A </) PD A bJ "

« 1 CD CD Li Li Li A CO LU A LU Li 3 O OO
y: yc UJ LU W Ll A A Ll UJ Ii) d ?
(.) CD LU A A A A a A A A c>
LU W A j 3 C Ls CD .
X X d I 1-4 3 a z !

CD
LU

CD O 1

i
3 LU

A 1 j

3 1
LU I

1

j

f f f. f Is- f- n ft ft f<o 3 ft.- K* i/-. %r t- A~
d d d V --<• vt <f vf d -t d la A Li*» A A IA LA LA IA
d d -V- --t d d d vt d vt "■t-At, d V d d vt d d d

3

4
I

0 C O 0 * P" * tt IA A ft Cft. O r^n fC.' A d LA A 5
A A 'C O A A *O •0 A A A A [•3. /Jn f- r- f. ft-' J

d .'J- 'tf Tt- d-d d vt st d -st d -.t d
. I , 3.S - L4

0_ 0- CL. 0.. U U U U 0. U O. U o.. o 0- U U CL U U U U U U a. U 0— 0_ U U 0. U U o. U a. a.
a o o C5 o o o C3 o a a O CD CD o o o ad CD CD o o CD O a o CD CD CD CD 0D CD CD CD CD CD UO CD o O o C5 o CD o a o o O O o o o o CD CD o o O CD o CD CD CD CD CD CD CD CD CD CD CD o3 ,,J 3 3 3 3 -J 3 3 . j 3 3 3 3 3 3 3 -J 3 3 3 3 ,3 3 a 3 3 3 3 3 3 3 3 3 3 3 3Z z z — z z z — — — — z —■ — — — — z Z z z — — z — — — — — z z z z_ — — z z1-4 93 1-4 94 94 94 9-3 9-3 9-3 94 94 ►4 94 93 94 9-3 93 94 9-1 93 93 93 93 93 94 94 93 94 94 93 94 94 9t 94 94 94 9-4
■< 3 3 3 3 3 3 3 3 3 3 3 3 3 3 < 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 V 3
U z U a — _ — — z: 02 U — UU — U — U —; — — — — o. — — — — XL — QL — — — —

AD O' o 3-.! OJ A -f m a 3 AD Cf— O «j-4 U A <r AD CD 3 A Cf o t-4 Cj1 A -J AD od 3 C Cf— O k CJ A; vt
C) 00 Ci f Ci Cf c- CJ J C- Cf Cf o o o O O O O O o o —4 4- U-4 k k e-4 yU 3- r—4 CU CU UU CJ CM
3 3 3 3 3 3 3 3 3 3 3 3 AD A C A 00 A) AD a; AD AD AD AD A0 AD A0 AO AD AD A0 A0 00 ad AD AD AD

g

• 7

K
k94
A

U
—o
9—
3

•7 *7 rv 99 LU
X”* LU O 3

W LL O- g t
a •7 Q.
>• O- 3
3 LU 3 J

I a 1 z • 7
_J >" o^^ O 9^0

n 3 k w 94
Ul O I J-— 3 >-
CL >~4 OC z CD • 7 k-
5~ t A'D 3 93 Z • 9 49 ► 4
3 O X CD CD ik /A V.4 ,U

«s 1 Qu 3 0 0- U C5 3 — >~ 3
Ul 3 ■ O A>> •.4 S4 94 k CD

UJ A0 Z. 3 4(UJ UJ LU LU -r* C2 94 OJ
Z %D 3 LU CD 4 r4 CU a a 0_ UJ UJ a 3 Ul
W a 3 XQ 94 4 k >- >~ >- 1— J-— 0 3 1
X k U. I— CJ 4 9— k 9- 3 9- 9- =) 02
3 J 3 CD 4 Z l l 1 1 1 UJ LU ♦7 0 O o

il II o 3 " 4 UJ \0 se hC xx a 3 CM LU Uu
k • • • 4 k H X LU O 0 CD AD 1 I 7 V • X » 7 » 1
O 3 a »« <7 LU ►— O 4 7 • 7 3 3 3 3 a a 3 k xs ! CC 3
3 k k A OJ "1 CC a (-»» • 9 9- k- k ■ 3 0 0 <C A •V.J . s o CO
3 3 d-X 3 Ll. W r- C U rv» AD AD A) ! 1 ;> a A a. rv LU a Ui
l.L a o Uj! 3 AJ XX CU i 3 > U 1 l ! 1 P„ k H-- 0 JO CQ 9/ • 7 O t 3
9- 1 3 J CL­ a z C k*«« p— 9- 1— p—U 94 k-9 -U a.. f. se LU O k
74 A/D AD OD AD CD 1/5 V o y a. 3 AD A A5 CD CJ o LA CD U' AD {J A
LU O CD O O 3 z o U_ UJ LU U u LU LU 99 99 LU UJ 0 C3 3 f IU w
a UJ UJ ! LU k a LU LU o <c X k” 9* 9* 3 a 0 f-c Z — z Lu CD Q. fi AD
q A A 0.. 9-. VH O A Q CD
k Ul |-9 JU k A 3 Z

A A «C CJ o LU UJ
u. 3 Lu Z 02 I AD
94 LU f4 CO LU U 9" k 3

bO LU AD
A
_1
LU

I
t

O-
CD

O A
Ll

W 3 Ul
d-C A
OD 3

LU
AD
O
-J

•I

4
4r
4
4
4
*
4
4

I
i

I

I

6

NO ft- ce A O O 31 f- ft* f^ fv" A f*” v+ A ' ! A >A ft O” "• CD V>-4 f, ■ ft- vf A1 -f 3- A e C C- 3 k’ f— A' vf
f— 1- f3 3- f. CO A A CA A AD CA A AD CQ A AC (« 00 CO C — O CO C C O C Co 0 C C.•O C CC C O

.f vt vf vt •t vf 3" vt vt vt •3 vf vf -j- Vt ■f vf vf V* vf vf vf A vf uj- vf vf Vf A\ Al IN UQ A) A AD

5 OS < TQPS_DATA:= -'TQPS^DATA; *■' j 825 MAINLOOP
505 j 5) 826 MAINLOOP
50?] OECLCj; "NOT GUESS” j 827 MAINLOOP
5 03 I SC SETCGUESS_FLAG); j 828 MAINLOOP
510 i OECLC); S) " GUESS" 829 MAINLOOP
51? j < NQTO; j 830 MAINLOOP

513] BLOCK o; j 831 MAINLOOP
5 14 { enocase; j 832 MAINLOOP
514 j S) j 833 MAINLOOP
51S j eno; | 834 MAINLOOP
515 | MAINLOOPC); | 335
51? | PRINTRESULTC X •J f j 836
513 1 ENDPRO GRAM i 837

<r *-ir*if*******5r*<ri.Sr*******fr* *********** *************-Jr ****** ********** -If* * if ** if * *ir **

COMPILATION COMPLETE — NO OF ERRORS = 0

1357 MICROINSTRUCTIONS WERE GENERATED

- 07 00 SIMULATOR V.2(V»l ST ANDREWS) U NIVL k SHY

***** 1531 MICROINSTRUCTIONS GENERATEO *****

***** S'PROGRAM load from file #s,phdg *****

MM LOAO[R CDHMENTS I####- -

TKE SASL program to- sum the elements of a LISTc given on rage 185)
WAS TRANSLATED by HAND TO mAchInL COgE SUITAblL FOR IhL SASL S-MACHINE.

■ THIS CCOF IS shown•BELOy

■ 1 BLOCK 15 . ■
2
3 declguess sumlist. .

- 4 DECL LIST
-5 LOG.NIL
■ 6 tl list *■ - *'■

7 E0 . . •
-B FORK 9,10 ■ ' - • _ - ’ '

-- 9 HD LIST FOLLOWED, BY NIL POINTER TO INDICATE end OF FUNCTION
F - 0C HD LIST -
-11 Tl. LIST '
- 1 0 LOAOFN SUPLIST
:13 APPLY
nl4 PLUS " FOLLOWED 8Y NIL POINTER TO INDICATE end OF FUNCTION «
- 15 LDADFK SUMLIST
-16 TiEKN'C-T SUYLlST

17 LCC 1
ie LOG 2
1 9 COMMA • - . - . : .
2G LUC -3 - ■ ---- "

-21 COMMA ■ 0
• 22 LDC 4 ‘ ------- *-* ■ — --- *- _ . —- .
• 2 0 CO M0 0 - - . - ■ * -
- 24 LDC 5 ' ■ -

25 COMMA - . -- . • • • - •
- 2 6 LDC 6 - -’-- - - — • - • -
-- 27 COM 00 . • ... -
-28 LDC 7 •• - '' ----- --------------- -- - - .

29 COMMA .
-30 LDC 8 ’ --'=- - -...... ■ -
-31 COMMA - -

32 LDC - - • • • •
33 COMMA r- _ • - ■. -. ■ : .. • - ---. ... -.
34 LDC 10

- - ■ .-. . . - • • - . i - . .. —.

R 1 7 0 0 S I M U I, A T f) H V , 2 C V • t ST A N U H E W S) university o

35 COMMA
3C LUC NyL
3 f COMMA
38 LOADFN SUMLIST
39 apply ” follned by nil poinier ”

***** 00000039 S-INSTRUCTIONS LOADED *****

1I

1

•i

d

: I

I
t
4

nl/00 s I HULATON V.2(V*I ST ANDREWS) UNIVERSITY ' Oj

***** execution ***** '
55 ;S

*** STATISTICAL SUMMARY' HAS WEEN' SUPPRESSED ***

-“-I

NC OF CLOCK CYCLES 6 357

***** END OF SIMULATION-- ALL MICRO INSTRUCTIONS PROCESSED **

* * ******************* *-*■*' * **************************** * * * ** * * * * * * * * * ******** .
* * ***************** * T * * * ■ * ** '*(

0 12 3 4 5 6 7 8 9q123'I 5 67 8 Roi23A 5 6 7 70 9o123/| 5 67 « 9o12 3 4 5 6 7 6 9 012 3 4 5 6 7 B90I.234 5 67 89 qi23 4 5
7124-LPB+ + + * . • •MERIOT’NATT.UNIVLRSITY, . . ,85700. . . »uI29025,Ul'%V025. •U129025 + U
7124"lPRtttt,« » | iEElCT-UTTI.UNIVERSITY* #*.R5700.,■,UI29025,uI29025.*uI29025,U
7124-LPB+ + + «.’*HLRXOT“WATT#UNIVERSITY,.,,h5700,,,,UI29025,UI29025 ..UI29025 Uj
7124-LPB+t+HERIOT-WATT.uMVER$ITY,,..u5f00,».,ul29025,uI29025..Ul29025,j

-

.-J

.?]

s

SUILVEN COMPILER -- ST ANDREWS UNIVERSITY-” VERSION 24/8/75
SOURCE LANGUAGE s SNG3GL4<SPITBGL) TARGET MACHINE : IBM 360/370
OPTIONS : GN = LIST. OFF = CODE? COPY?DUMP

TODAY IS 03 MAY 77

1
i1
1
I
I

n •&* *ir •****■ * it fc * *• * ** hie hie hh h h hh hh hie hh hh h h hh hh hh hh ** ** ie h hh hh hh hh h h hh hh hh I
1
2
7

THIS IS THE SUILVEN CODE FDR THE PASCAL S MACHINE DESIGNED BY
I
1

5

4
1 W IR TH ET AL AT ZURICH - this machine was written inaccordance WI TH 5
I THE PASCA L P COMPILER IMPLEMENTATION NOTES SUPPLIED BY MIRTH 6
ii
i

PROGRAMMER : IAN S3MMERVILLE — ST ANDREWS UNIVERSITY -- 23/8/75 1
1

7
8

i
1
i

THE GP CODES FOR the P MACHINE INSTRUCTIONS FOLLOW
1
!
i

9
10
11
12

«
3 OP CODE = 1 AND BOOLEAN AND

1
1

i OP CODE = 2 I OR BOOLEAN INCLUSIVE OR 1 13
I GP CODE = 3 DIF SET DIFFERENCE 1 14
i OP CODE = 4 I NT SET INTERSECTION 1 15
I 0 P CODE = 5 * I NN TEST SET MEMBERSHIP I 16
i OP CODE = 6 UNI SET UNION 1 17
I OP CODE = 7 ADI INTEGER ADDITION I 18
j GP CODE = 8 SBI INTEGER SUBTRACTION I 19
I GP CODE = 9 MPI INTEGER MULTIPLICATION 1t 20
i GP CODE = 10 MOD MODULUS 1 21
I OP CODE = 11 D VI INTEGER DIVISION 1 22
1
I GP CODE = 12 ADR REAL ADDITION I 23
1 GP CODE = 13 SBR REAL SUBTRACTION I 24
I GP CODE = 14 MPR REAL MULTIPLICATION I 25
I GP CODE = 15 DVR REAL DIVISION 1 ' 26f OP CODE = 16 E QU TEST EQUAL ITY 1 27
i OP CODE = 17 NEO TEST NOT EQUAL j 28

i
DP CODE = 18 SEQ TEST GREATER THAN OR EQUAL J 29
0 P CODE = 19 GRT TEST GREATER THAN I 30

i
i

OP CODE = 20 LEO TEST LESS THAN OR EQUALS 1 31
GP CODE = 21 LES TEST LESS THAN 1 32

i GP CODE = 22 MOV COPY ARRAYS I 33
I OP CODE = 23 IXA COMPUTE INDEXED ADDRESS 1 34

UCON-oOCCOtJOJIH- WO(c.«O(»CJrJ(MM.llA»O0.OO(-Oj't4M»MAOC.a)C>o ^CCfk-t 3 3 Kj 3 3 -4 -- c4 —

t
*
X
X
X
*
*
*

VD
tow
CCoQ

O
P CO

D
E =

24

NG
I INTEGER

SI
G

N
 INV

ER
SI

O
N

O
P CO

D
E

=
25

N

G
R

R

EA
L SI

G
N IN

VE
R

SI
O

N
O

P CO
D

E
=

26

N
O

T
B

O
O

LE
A

N
 NOT

O
P CO

DE

=
27

EL

T
FL

O
A

T TO
P OF

 STA
CK

O
P CO

DE

=
28

7 L

G
 .. FL

O
AT

 NEX
T TO

 TO
P OF

 STA
C

K UJ
02 3»
U-i tC UJ k-
CD tC «J tC z:
tL -J k— L.j tC k- <c
k» UJ cr. U■ UJ tD k *
52 UJ •c a tC 02 UJ tC
1—4 02 CJ «C o 02 52

z- 02 <c 00 C' ■ v-t CD
u. «. tC O UJ tC <c CD CD
o CD tC k- 00 tC u_ lt 52

UJ UJ >2 UJ o CD uJ v-t l.
lj Id 02 _j 02 23 02 UJ CD
=D 2D O CD UJ 52 cd tC tC 3> k— k-
nJ -J Cd 52 CD o k- k- tC UJ 52 52 tC*s <C «c V-- UJ -J CD <c 52 52 tC uJ «C «C tC
2» 2> tC k- -CC CD UJ Lj : UJ k- UJ

CD k- UJ CD k- k- k— 02 UJ 00 00 02
UJ UJ 52 UJ t—t 02 2-2 z 52 CD tC 2 X Cd

k- k™ k- UJ k- 52 UJ CD CD CD <c C3 CD CD
«C 23 =) DC «t UJ UJ O 32 CD CD <C CC CD CJ «C
cd «J nJ UJ 02 02 02 UJ
C CD CD 02 UJ -C <C k- 02 CD C CD CD d CD CD
2D to •C U 52 Z) ZD tC CD <C <C <C <2 -X j
02 CO OO 52 UJ o O UJ UJ CD CD CD O CD CD CD
k” cC «C v-t CD tC •C k- CD -J u • J ™J -J -J

kt
CD k-J 02 CD tC k»t 02 CD CD Cl o <c CD CD CD02 CC 00 Z. CD C3 C3 CD UJ CD o CD «£ CD CD CD
k™ •S k-t tC tC tC CD O _J _J _J _J _J _J _J

C" o ♦H CJ kD -t 1C \O fs- 00 CN O »«t CJ 3 •4-
CP 3 NO 3 3 ND kC 3 kO 3 N3 -J- -U- «D -f -tC

II It It tt II tt tt tt tt ii tt tt tt It tt tt

LU UJ LU LU UJ LU LU LU UJ UJ UJ LU LU LU UJ LU
CD CD CD o CD O CD CD CD CD CD Q) Q CD a O
O CD CD o O CD O CD CD CD O O CD O CD CD
CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD

cu CL Cl Cl Cl Cl C. a. Cl Q_ Cl On 0- Cl a. Cl

CD CD CD O CD O CD CD O CD CD CD CD CD CD CD

to *Q *X *23 *O *
CC *

•X
CC *
UJ *

•C 32 *
tC CD *
UJ _J *
02 *
a UJ CD ■X
UJ 02 X *<c ZD ■tt

CD *
uj LU UJ 02 LU *
UJ 02 CD UJ -J O_ ■X>.» 2D 52 CD Cl kt 52 *

tC lj O CD 02 0l Lu 23 vt
tC uj UJ CD Cl 23 ”D *
UJ CD U Lu *
02 IjJ XT. CD 00 a k- CD -J *
CD tC CD 02 02 tc c CL. UJ *
CD <c k- 0_ k2 3u <c x CD 52 X 52 *
<c' CO I.U S2 CD CD CC .2 CD 2D Cl ►H ■ft

u. CD 02 CD 02 «• UJ *D 22 X *
k- k- UJ _J U. <C CD k~ 23 CD -X
*C «2 CD k- t^C 00 k— <c x HH CD «C 4t

LU •C 5D 52 •C CD G UJ X *
UJ UJ UJ 2 2 02 02 DC X X LU *
02 02 02 UJ \2 _J UJ 2D CD k- CD LU to a. *
O CD C2J C) 02 _J k- k- _J LU CD CD nJ o >xk- k- k- 52 «C •< 52 UJ -= 5J UJ X 3? <c k» •X
tC •C tc >—» z: Li UJ 02 CD CD •-» 2D I«"4 Un tC ■X

*
*
■!«
*

02 CD a CD k- On k- k«. CL V Uu C.. ft. Cl Cl 4
k- 02 k- z: (C 2D 52 UJ tc X CD -D -O -3 k~ •*
tC tC <c v-t 5Z CD UJ fl" C D < » tu 23 X U_ to •(

4t
■X
■X
•X
X
X

1C CD N- co CN O CJ 3 st tC C3 |N- CO O X
WJ- kt -U- <t -ki­ tC l/S tC tC 1C lO tC lO lO tC X

X
tt tt II ii ll tt tt tt tt tt tt It tt It tt X

X
Ul UJ UJ UJ LU UJ LU UJ ^U w UJ Ul) UJ LU X
CD CD CD a CD Q O Q O a CD CD Q Q Q X
CD CD CD CD Cd a CD O CD O CD CD CD o CD X
CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD X

O- C- Cl CL CL Cl Cl Cl Cl Q- (L Cl 0- Cl Q-
rX
X

CD a CD CD CD CD O CD CD CD CD C) CD CD CD XX
X

4 v* *-< T-;

>1 i
s 1
4 3
s I
7 i
’ I

l-n |
1? ?
14 j
H 3
is i
16 |
*7 i
i7 3
2*1 |
20 i
21 3
22 |
24 I
24 j
OMPILER
ompiler
25 I
DM FILER

MACRO *WQRD.S I ZE’ = « 24 * ?
MACRO ’P.SIZE5 = ’4«? MACRO ’G.SIZE’ = ’14*;
MACRO ’STACK.WIDTH*=*24*;
MACRO * TOPSTORE’= 96G00’; MACRO » 0 P.SI ZE 9 = » S 3 ?
MACRO ’LTRUE' = ’ !• ; MACRO ’LFALSE* = 50 5;
MACRO ’MAXSTR’ = *0*;
MACRO ’UMQEF9 = MFFFFFF9; MACRO ’ LA RGIN T’ = ’ #E FFFFFE ’/
MACRO ’INPUTADR5 = ?0«; MACRO «PRDADR« = » 0» ?

SITSt WORD.SIZE) ARRAY (TOPSTQRE) STORE;
S ITSC WORD.SIZE) ARRAY (64) INST.COUNT J
3 IT SC WO RD.SIZE) STACKP,HEAPP* TO PS * SECS* ACC* ACC2 *DAT A.SEG.PNT*

C INSTRREG*PROGC*1NTERRUPT.TYPE*
BITSCP.SIZE) P; SITSCG SIZE) Q* BITS COP. SI ZE) op.ccde;

J 75
3 76
I 77
1 78
j 79
j 80
I 81
j 82
| 83
3 84
I 85
| 86

FLAG UNINIT IA USED. VALUE* STACK. GFLOW* VA LUE. OU T. OF .R ANGE *E ND PROG ;
FLAG VAL.T00.3IG;
TEMPLATE REALNO = C HA RC 5} , S IG NC 1 > * MAN Tl SS A08);
TEMPLATE INI = SIGN Cl)* NUMBC23) ;

FLAG ANY.INTERRUPT* TOP"ULL*SECFULL*
DIRECT IVE ...SCRATCH STACKP*KEAPP* TOPS*SECS* ACC*ACC2*DATA.SEG.PNT *PROGC
DIRECTIVE ...SCRATCH CINSTRREG*IN TERR UPT.TYPE

DIRECTIVE ...PAGE

I 89
j 90
| 91
| 92
3 93
| 94

I 95

PROCEDURE PUSHO?

” HIS PROCEDURE IS USED TO PUSH A VALUE ONTO THE STACK. THE VALUE
TO BE PUSHED IS ALWAY5 HELD IN THE REGISTER AC C. IT IS IMPLEMENTED
THIS WAV RATHER THAN PASSED AS A PARAMETER E OR EFFICIENCY REASONS
PUSH IS ONE GE THE MOST FREQ UENTLY ' U SED ROUTINES IN THE MACHINE
AND AS PARAMETER PASSING IS RELATIVELY INEFFICIENT IT IS AVOIDED

IF TRUEC TOPFULL) THEN
SC

STORE(.STACK?-): = SECS?
SECS: =TOPS;
STACKP:=STACKP + 1?
TOPS:-ACC?

$}
ELSE

IF TRUE(SECFULL) THEN
SC TOPS:=ACC;

ELSE
sc

eno;
SECS:=ACC?
PUSH ”

SETC TOPFULL);

SETC SECFULL)?

S)

S 3

FUNCTION POPO?

" RETURNS THE TOP ELEMENT FROM THE STACK

IF TRUECTOP’ULL) THEN
S (

UNSETCTOPFULL)? EXIT = TOPS?
S)

ELSE
IF TRUE CSECFULL) THEN

SC
UNSETC SECFULL) ? EXIT = SECS?

S 3
ELSE

STACKP:=STACKP - 1?
= STORFC-STACKP- 3 Jfmd

1
1

96
97 PUSH

i 98 PUSH
1 99 PUSH
i 100 PUSH
1 101 PUSH
fi 102 PUSH
1 103 PUSH
i 10 4 PUSH
1 105 PUSH
1 106 PUSH
1 107 PUSH
1 108 PUSHij 109 PUSH
1 110 PUSH
1 111 PUSH
1 112 PUSH
1 113 PUSH
1 114 PUSH
I 115 PUSH
1 116 PUSH
I
I
i
I
1

117
118
119
120
121 POP

1 122 POP
1 123 POP
I 124 POP
1 125 POP
I 126 POP
I 127 POP
I 128 POP
1 129 POP
J 130 POP
1 131 POP
I 132 POP
1 133 POP
i 134 POP
i 135 POP

PROCEDURE TESTCBITSC2) ACTION,’);

FLAG irueresult? UNSET(TRUERESULT)?
CASE ACTION OF

-*=" IF ACC = ACC2 THEN SE TCTRUE RE SULT)?
«>=* IF ACC >= ACC2 THEN SETCTRUERESULT)?
"<=" IF ACC <= ACC2 THEN SET CT RUERES UL T) ?

END CASE?
IF FALSEC TRUERESULT) THEN

ACC : = O
ELSE

ACC:=1?
END " TEST ” ?

PROCEDURE HANDLE.INTERRUPTC 5?

" INTERRUPTS ARE NORMALLY HANDLED BY GISMO. THIS IS A
ROUTINE WHICH MERELY STOPS PROCESSING *

WR ITES TRINGC ’ INTERRUPT - JOB ZAPPED ’)?
WRITEC)? HALT?

END ” HANDLE-INTERRUPT "?

FUNCTION NORMAL ISEC BI TSCWQRD-SI ZE"> T?)?

" RETURNS THE PARAMETER T IN NORMALISED FORM "

BITSC1) S3? BITSC4) SHIFTS? BITSC5)TB
TEMPLATE RTOP = CHARC5)»SIGNC1),TQPC3)»MANTTCl5) /
DEFINE RTOP : T?
S3: = T.SIGN? SHIFTS:=0? T1: = T-CHAR?
WHILE T.TOP =0 DO

s c
T := T SHL 3? SHI FTS:=SHIFTS + 1?
IF SB = 1 THEN

Tl:=Tl*i

136
137
138
139 TEST
140 TEST
141 TEST
142 TEST
143 TEST
14 4 TE S T
145 TEST
146 TEST
147 TEST
148 TEST
149 TEST
150 TEST
151 TEST
152 '
153
154 HANDLE-INTERRUPT
155 HANDLE-INTERRUPT
156 HANDLE-INTERRUPT
157 HANDLE-INTERRUPT
158 HA NDLE.INTERRUPT
159 HANDLE-INTERRUPT
160 HANDLE-INTERRUPT
161
162
163
164 NORMALISE
165 NORMALISE
166 NORMALISE
167 NORMALISE
168 NORMALISE
169 NORMALISE
170 NORMALISE
171 NORMALISE
172 NORMALISE
17 5 NORMALISE
174 NORMALISE
175 NORMALISE

L Lit
Tl: = Tl - i?
IF SHI-'TS = 6 THEN

exit = o;
S)

t.sigm:=sb; t.ckar?=ti;

end = t;

FUNCTION CVSCSITSU 3S;B ITSC 183 M; 3;

" CONVERTS MANTISSA FART OF A REAL TO BINARY "

BITSC24) OUTPUT,MULT;
DEFINE I NT - OUTPUT;
OUTPUT : = M & Xlll? M:=M SHR 3;
MULT :=8;
REPEAT

$ (.
OUTPUT:=M & X 111 * MULT -3- OUTPUT;

M: = M SHR'3? MU_T:=MULT * 10?
S)

UNTIL
M = 0 DO null;

IF S = 1 THEN
S (

OUTPUT: = -’OUTPUT + 15
OUTPUT.SIGNs=i;

S3
END = OUTPUT?

"UNCTION C0NVERT.T3.BIN ARYC BITS < WORD_SIZE 3 W; 3 ;

* CONVERTS octal CHARACTERS TO BINARY EQUIVALENT "

DEFINE REALNO : W;
3ITSC24) OUTPUT,SHIFT?

If6 NORMALISE
177 NORMALISE
178 NORMALISE
179 NORMALISE
180 NORMALISE
181 NORMALISE
182 NORMALISE
18 3 NORMALISE
184
185
186
187 CVB
188 CVB
189 CVB

| 190 CVB
j 191 CVB

192 CV8
j 193 CVB
j 194 CVB

195 CVB
196 CVB

| 197 CVB
| 198 CVB
| 199 CVB
J 200 CVS
| 201 CVB
| 20 2 CVB
J 203 CVB
| 20 4 CVB
I 20 5 CVB
j 206 CVB
| 20 7
| 20 8
j 20 9
| 210
j 211 CONVERT. TO.BIN ARY
j 212 CONVERT_T0_8 INARY
j 213 CONVERT.TO.BIN ARY
J 214 CONVERT. TO. 8 IN ARY
1 215 CONVERT-TQ.BIN ARY

8ITSC24) CHAR?
DEFINE I NT : OUTPUT?
IF W.CHAR <= 16 THEN

SC
EXIT = 0?

S)
ELSE

s c
OUTPUT2=CV8CW. SI GN, W. MANTISSA) ?
SHIFT 2= CHAR-16 * 3?
IF OUTPUT-SIGN = 1 THEN

OUTPUT. NUMB: =-»OUTP UT .NUMB+1?
OUTPUT. NUM8:=3UTPUT. NUMB SHL SHIFT?

5)
END = OUTPUT " CON VERT_TQ_SI NARY " ?

FUNCTION CONV.TO.OCTALCBITS(HORD.SIZE) A?)?

" CONVERTS BINARY TO OCTAL ”

SITSC24) NUM3/0IG? BITSC5) SHIFTS?
DEFINE I NT : A?

MUM8:=0? SHIFTS : = 0?
IF A,SIGN=1 THEN

SC
A. N'JMS : = *»A.NUM8* 1?
A.SIGN:=O?

S)
REPEAT

s c
0IG2=A REM 8? A: = A/8?
NUM82=DIG SHL SHIFTS | NUMB?
SHIFTS: = SH IF IS + 3?

S)
UNTIL

SHIFTS = 18 DO NULL?
ENO = NUMB " CONVERT TO OCTAL " ?

j 216 CONVERT.TO.BINARY
217 CONVERT TO BINARY

j 218 CONVERT.TO.BIN ARY
| 219 CONVERT.TO.BINARY
| 220 CONVERSIONS IN ARY
| 221 CONVERT.TO.BINARY

222 CONVERT.TQ.3 INARY
j 223 CONVERT.TO.BINARY
j 224 CONVERT. TO.SINAR Y
j 225 CONVERT. TO.BIN ARY

| 226 CONVERT.ToZbINARY
j 227 CONVERT. TO.BINARY

228 CONVERT.TO.BIN ARY
| 229 CONVERT.TO.BIN ARY
J 230 CONVERT.TO.BINARY
| 231
| 232
j 233
| 234 CO NV.TO.OCTAL

235 CO NV.TO.OCTAL
j 236 CONV.TO.OCTAL
j 237 CONV.TO.OCTAL
| 238 CONV.TO.OCTAL
| 239 CO NV.TO.OCTAL
j 240 CQNV.TQ.OCTAL
j 241 CONV.TO.OCTAL
j 24 2 CO NV.TO. OCTAL

243 CONV.TO.OCTAL
j 244 CONV.TO.OCTAL

j 245 CONV.TO.OCTAL
| 246 CO NV.TO.OCTAL
j 247 CONV.TO.OCTAL
j 248 CONV.TO.OCTAL
j 249 CONV.TO.OCTAL
j 250 CONV.TO.OCTAL

251 CONV.TO.OCTAL
j 252 CONV.TO.OCTAL

| 253 CONV TO OCTAL
| 254
I

PROCEDURE PROPAGATE_CARRY_IF..N£C£SSARY<8ITS(WORD_SI2E3 A; 3

» PROPAGATES CARRY DIGIT ”

SITSC5) S? 8ITSC24) Z5 8ITSC4) DO;
DEFINE REALNO : ACC2T

SHR 18 '«= 0 T HEN

IF A a 7 > 4 THEN
SC

S: = 33
OD:=A SHR 3 £ 7 ■** 1J
WHILE OD > 7 DO

SC
Z:=7 SHL s; A: = A & -z;

S : = S*3; QO: = A SHR s &
$)

A5 = A SHR 3;
ACC2. CH AR: = ACC2-CHAR+1;

S)
S3

ACC2. HAN’T I5SA :=A?
END ” PROPAGATE CARRY

PROCEDURE EQUAL ISE.CHAR AC TERISTICSC)J

« EQUALISES THE CHARACTERISTICS GF ACC AND ACC2 BEFORE
OPERATION "

DEFINE REALNO : ACC?ACC2;

IF ACC. CHAR > ACC2.CHAR THEN
SC

WHILE ACC.CHAR+ACC2.CHAR > 0 DO
SC

ACC2.MANTI SSA:=ACC2. MANTISSA SHR 3?
ACC2„CKARx=ACC2.CHAR + 1?

S)

I
I
I
I

AN ARITHMETIC I
I
i

I
I
I
i

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
27 3
274
275
276
277
278
279
280
28 1
282
28 3
284
235
286
287
288
289
290
291
292
29 3
294
295

PROP AG ATE.CARRY.IF.NECE
PROP AGAlE.CARRY.IF.NECC
PROP AG ATE.CARRY. IF.NECE
PR OP AG ATE.CARRY. IF.NECE
PROP AG ATE. CARRY. IF.NECE
PROP AG ATE.CARRY.IF.NECE
PROP AG ATE.CARRY.IF.NECE
PR OP AG ATE. CARRY. IF. NECE
PR OP AG ATE.CARRY_ IF.NEC!
PR OP AG ATE.CARRY. IF.NECE
PR OP AG ATE.CARRY.IF.NECE
PROP AG ATE. CARRY. IF.NE.Ci
PROP AG ATE.CARR Y.IF.NEC1
PROP AG ATE.CARRY. IF.NEC?
PROP AG ATE.CARR Y. IF.NEC?
PR OP AG ATE.CARRY. IF.NEC!
PR OP AG ATE. CARR Y. IF.NEC!
PROP AG ATE.CARR Y. IF.NEC!
PROP AG AT E. CARRY. IF.NEC!
PROP AG ATE. CARR Y. IF.NEC!
PR OP AG A T E. C A RR Y. IF _NEC;
PR OP AG ATE.CARRY. IF.NEC

EQUALISE.CHARACTERISTI
EQUALISE.CHARACTER ISTI
EQUALISE.CHARACTER ISTI
EQUALISE.CHARACTERISTI
EQUALISE.CHARACTERISTI
EQUALISE.CHA RACIERISTI
EQUALISE.CHARACTERISTI
EQUALISE.CHARACTERISTI
EQUALISE.CHARACTERISTI
EQUALISE.CHARACTER ISTI
EQUALISE.CHA RACIERISTI
EQUALISE.CHA RACIERISTI
EQUALISE.CHARACTERISTI
FQUALISF CHARA CTER ISTI

WHILE ACC2-CHAR - ACC. CHAR > 0 00
S(

ACC.MANYISSA:=ACC. MANTISSA SHR 3;
ACC.CKAR:=ACC.CHAR*i;

S)
END ” EQUALISE.CHARACTERISTICS - ;

PROCEDURE TRUNCATEO;

DEFINE REALN0:ACC;
3ITSC4) QIGZ;
IF ACC.CHAR <= 16 THEN

ACC.MANTI5SA: = O
ELSE

SC
IF ACC.CHAR < 22 THEN

SC
DIGZ:=22-ACC. CHAR *3;
ACC := ACC SHR OIGZ SHL OIGZ;

S)
ACC := CONVERT. TO .3 IN ARY C ACC);

5 5
ENO " TRUNCATE " ;

FUNCTION FLGATC BITSCWQRD.SIZE) INPUT;);

« F LAOIS AN INTEGER "

BITS<WGRO.SIZE) OUTPUT; BITSC3) DIGIT; BXTSC5)
FLAG NEGSIGN;
DEFINE INTsINPUT;
DEFINE REALNO : OUTPUT;
IF INPUT .SI GN = 1 THEN

SC
INPUT - NUMB : = -»! NP UT .NUMB + 1?
SETC NEGSI3 N);
INPUT.SIGN:=0;

shifts;

I 296 EQUALISE.
! 297 EQUALISE,
I 298 EQUALISE
I 299 EQUALISE.
1 300 EQUALISE,
1 30 i EQUALISE.
j 302 EQUALISE.
1 30 3
1 304
1 30 5
1 30 6 TRUNCATE
j 307 TRUNCATE
I 30 8 TRUNCATE
I 309 TRUNCATE
1 310 TRUNCATE
j 311 TRUNCATE
1 312 TRUNCATE
J 313 TRUNCATE
1 314 TRUNCATE
i 315 TRUNCATE
I 316 TRUNCATE
I 317 TRUNCATE
1 318 TRUNCATE
I 319 TRUNCATE
I 320 TRUNCATE
1 321
I 322
I 323
J 324 FLQA T
1 325 FLOAT
1 326 FLOAT
1 327 FLOAT
1 328 FLOAT
I 329 FLOAT
1 330 FLOAT
f 331 FLOAT
1 332 FLOAT
I 333 FLOAT
I 334 FLOAT
1 335 FLOAT

.CHARACTER ISTI

.CHARACTER ISTI

.ckaracteristi

.CHARACTERISTI

.CHARACTER ISTI

.CHARA CT ER ISTI
CHARACTERISTI

S'7 j £5 1 336 FLOAT
33

a1 337 FLOAT
33 j REPEAT 1 338 FLOAT
34 i SC J 339 FLOAT
35 j DIGiT:=INPUT REM 8? INPUT := INPUT/8? 1 340 FLOAT
33 I OUTPUTs=DIGIT SHL SHIP ts j output; 1 341 FLOAT
33 j SHIFTS : = SHIFTS * 3; 1 342 FLOAT
3 <5] IF SHIFTS > 15 THEN I 343 FLOAT
49 5 £(- 1 344 FLOAT
41 ’ SETC VAL. TOO. BIG) ; . setcany.interrupt); I 345 FLOAT
43 | EXIT = 0? 1 346 FLOAT
44 i s)

1 s)
1 347 FLOAT

45 1 348 FLOAT
44 f UNTIL INPUT = 0 DO NULL;

| IF TRUECNEGSIGN) THEN
i 349 float

47 i 350 FLOAT
43 j OUTPUT.SIGN:=i; i 351 FLOAT

,4° | OUTPUT. CHAR:=SHIFTS/3 16; I 352 FLOAT

59 j END = OUTPUT; I 35 3 FLOAT
59 1 I 354
59 I 1 355
59 j PROCEDURE ADORE ALC); I 356
52 1 1 357 ADDREAL
57 | BITSC24) a; DEFINE I NT : a; DEFINE REALNO • ACC/ACC2; 1 358 ADDREAL
55 j FLAG NEGSIGN; 1 359 ADDREAL
55 j EQUALISE. CHARACTERISTIC SC); I 360 ADDREAL
53 J ft: = CV3< ACC. SIGN^ACC. MANTI SS A) + C VB C ACC 2 • SI GN * ACC 2. WANT ISSAH 1 361 ADDREAL
59 | IF A. SIGN = 1 THEN 1 362 ADDREAL
69 | SET (NEGSIGN >; J 363 ADDREAL
61 ACC2:=C0NV.T0.DCTALCA); I 364 ADDREAL
6? I PRDPAGATE.CARRY.IF.NECESSARYC A); 1 365 ADDREAL
63 | IF TRUECNEGSIGN) THEN 1 366 ADDREAL
64 | ACC2. SI GN2 = 1? I 367 ADDREAL
65 •j UNSETCTOPFULL); 1 368 ADDREAL
65 ! 1 369 ADDREAL
65 j ENO * ADDREAL

1
i 37 0 ADDREAL

65 I 371
64 j PROCEDURE SUBREALO; I 372
63 1 1 373 SU8REAL
63 ’ BITSC24) A; DEFINE REALNO : ACC>ACC2; DEFINE INT : A; i 374 SUBREAL
73 FLAG NEGSIGN; 1 375 SUBREAL

X X X X X X
X X X X X a X X X X X X X X** X X X X X a a a a a a ’

u -J «.J -J 3.J U a a a a a— a '
«c c «C ■c *X <c •cC w n a a a a a a a a >-4 a a a t-4 a a a cc X2 02 02 cc 02 3
lu u» u W LU UJ u W 02 02 CC CtZ cc 02 CC 02 02 02 02 02 cc cc 02 02 02 02 02 <c «C -a ■< «< S< >

cc 02 022 CK 02 02 cc cc -X <C «c <c <c <£ SC <£ «C «C <t c •CC <x *C -%c «C «t -ac -1 _J —J u U ■ i
CO CO CO CO CO co rn 00 a P*» a a a a a a a—* a a a a a a a a a a «c «ec *sC «C «C ** z’
XD XD ZD XD ZD ZD ZD XD 22 z zz X X z z Z z z z z z z z z z z z u UJ UJ UJ u W 1
VJ A A A A A A A a a a k-4 a a a a a a a a a a a a a a a 02 cc 02 02 02 02 ,

SO |S 00 O O CM A St A O rs. 00 O O a (Ml A S* A nO a A Ck O a CM A -t A SC I- co Ck O a CM A st A
rs (- In r- CO 00 CO O 00 A CO A A A O CS O O O Ck Ck Ck Ck o O © © © O © O © o © a a a a a a I
A A CO A ■sf sf •sf sf •N -t St St st st -t J

«x
A
A

X
<

(M
O
O

A
z
d
a-i
A

$
CM
O

E

A
Z
c

cj
z
X
u.

4"

Ui

ur
d
z.
«C 02

I
U.
o;
J

QJ
O

I
W|
Q)

<C,2>l
»**!
a'
UJ.
A

w
z
a
X
CJ
«c
X

«c
o
0
<S
a.
LU
02

CJ X
CJ LU

O 4A + <c X 1
st a a r a

a A CJ ♦ A
A 1C CM CJ II CJ rsj
> 02 Sr* sC «> CJ a-
O 022 LU f CJ «C aj

a— 0 CJ \ QJ)
+ a qJ II «t a»» 02*

» A 02 «C «* z CK,
a a «C Q> CJ X P'I 1Q
<c • A «. CJ LU CD a}
A 0_ 02 rs • A «c X 02 z.
A3 o LU a-t CM a -c a
a O Sr4 CJ qJ 1
a a UJ z CJ 022 pW CJ a--
z IK st a C'J «X LU V CJ xi
st a s^ Z3 a-i I X II <c <c-
X sac Z A a A o a W * a>> ’

t a UJ P— CJ X r> CJ
u; qJ T“ a-i X II a CD qJ CJ LU
© z <C a CO b*4 H a-t sC SO A
<c LU p| sr <c 0-. »» Z A 2» II

X CJ a X a LtJ d 4 « 44
Z2 a- CC C? «s • »- P- 02 CJ 03' V4 CJ CJ CJ I
CO • s * d *'4 a «S a U LU LU A CJ CJ CJ U
a rs co a II qJ £ X CJ a- CD * <c < <c Li 1 W
A Z a A 4* _J «C Z UJ CJ A

• II C'3 i d z X5 qJ a - A t-4 a Ci_ CJ Q_ Q.
03 a Q> U d U •eC z X Z O <C t-4 a-4 W
CJ Z A Z z a X LU a 02 LU a
<c CJ O C3 sr A o 02 CD p» a. u. Sr/

a LU CJ UJ » a„ A UJ Li- <c UJ O P4 te>
CQ A II ID CM U ZD 02 CC qJ 32
>» it S.Z »• C2 OJ a A X5 UJ Q_ a LU
O ■c. a CM a O UJ Q Cl 0U Q. A
II UJ W A') e LU l.U W «£ k S

Lu A CJ u. Z CJ t a O CJ a a ■
<C a*H •st a*4 ZJ co CJ A ©

z 02 c A I
U A E t

A

» A
rs UJ
W A

sC
CJ
C3
Z

- LU

4A
rS

U
C3

A
Z
o
a
a
*<2
02
LU
CL
CD

CJ

AJ

9*4
VI
«<
A
A
a
a

z
•«
x

A
a
9-4

Z

Q. UJ d
•J1

CD ac a-i j
X A 11

a a- «.
st a rs 4 A i1
a 02 A CM 1
A> cc sr CJ 1
a— 02 CJ ♦ A-
a qJ CC <2 a:
A •c 02 A CJ.
a UJ CJ CJ C-J.
X 02 o sC
a II sR QT

» A a Uil UJ
s 02 X qJ 44

a- <c a
X qJ UJ qJ qJ
a ■c A 02 «t 'sat
an LU a LU 0
02 02 02 Ul a: 0
«C CD p* q
a UJ Q_ IIC UJ Z’
z— 02 02 qJ n
V— CD UJ 0. fi

O Q. su Q. c
K LU UJ LU c

CJ E a O <a
CD 3"i
Z 02

i|

LU Q_ I

C1 e u” <" N A' c c c r r r c c I' r r k" -r cr cj »-< c.■ a a s±
is. r- a- o- a a- o- a a co co oo a oo co oo co co a a a co o o o Ck o-

. . ,. t..Ai A I Ai.r-1 fti.'M is I (\J fs) CM CM CM CM CM CJ CM OJ CU3 CM CM CM CM CM CU

A a (3- a rr O' cr e r © © a c oo oooooooo © O <
CM CM OMCM CU CM CM A ; A 1 A Aj;

wce
=>
o
w
o
o
02
o.

X X X X X X x X X X X X X X 1
h— U* f~ K— P- (w p* P- P- o- p- p- P- O
K-4 04 04 H*i 04 04 4-4 >*■ 04 04 04 04 4-4 CCo 02 3 3 3 3 02 3 02 e e 00 3 e "N■ :£ o- 2< N «2 -2 2 C «c -2 2 «2 -2 0—J ™J — —J -1 _J —I —I —J —J —J «j -J W W UJ UJ Ui J W LU UJ W WJ WJ z2• O« «c -c C «N -2 2C «t «c ■o «c <c -t A A A A A A A A A A A A U, <c
UJ • LJ UJ UJ 1 L UL UJ UJ UJ L UJ L UJ LJ «t «C «c < «X < < <c «x «< «t O p.0 02 02. 02 3 (X 02 3 02 2 02 3 02 e X CQ D ca A ac 00 a rn rn 00 O W A

o k- A o o r-4 NJ A <4- in NO N- A o o «-4 NJ A Nt un o N~ A o o »-4 NJ A Nt A O Cn 00 o O 0-4 (Ja 9-4 a) M C\ j) N CQ NJ J ov j M CJ (fC OA A A mA A o AA M Nt Nt N * nN Nt *t sf- Nt M A A A
-t '4' Nt Nt Nt Nt st Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt Nt 2f Nt Nt Nt Nt Nt Nt Nt st Nt

c
> A
—J a-

zs
—J t j
UJ X
5» CD
W W
.J A

a- <0
a»
•<

a- a
z
UJ Lu
3 c
<
UJ OZ
A W

m
«c a.
p- 35
«c z
Q

UJ
OJ p­
3 ' <<

IK

S3
CU

1

»*>
NJdO*C
UJA

• n
<pn

“■ nj
rs CJ
O U O «c «n vr

»<k

>~'4 9*4 w a* o
Z O • *4 »< II a «e rs 11
UJ <2 • • <2 CC • • 8
X X Ss* w o oJ UJ Z
p. 02 ol .. J c ol O- 4- c X

O <Q <C o. II «2 P4 a-
st Z U. Ul UJ «fc. • SS A) II • • CJ A

II O 02 OZ oJ oJ g »• CJ X 4 02
II « 4 O CQ .J oJ W Ol CJ X CJ • N
V CM CC. O x> X :d O O QJ o O W o)

O Qj <c A TrZ Z2 «C «a •X V- «2 A <c
O- 03 «C UJ
co «c W J, 0::

A CD
O- «CQ £ C & K R S E C Z E
V4 O 3 O .2 a: a a- CD CJ O' UJ

Ai co 0- ■> c ol oJ OZ CQ A.
<C A X o Z o O- a- ZJ
E 6 E z E c E E E OJ

st A a k cz e A aJ N' A- Nt A -JN <"
O O 05 O O o —I o^ a4 C ' ■' 9-4 <* d c. ;
Ai JAL A-A -AL.AL A A A A-5 AL A' . Ai' a;

J
»
D
zn

•O
N4
A-

QD

UJ
A
*<
A

ZZ
O
Cm

CJ
zz
zo
u

CC
Lu CL
O O

OZ
52 cu
cj a
<c -<
c
A W

X 8
Ui C
X
L— zZ

ss $
z a A:
O o A

UJA O OZ
A X Q
UJ on
3 z; •<
O c-«
O •< C—
«£ X QJ

O tu
UJ QZ
20 >- oz
■< ma
CO QJ

A
LJ 04 UJ
XXX
p— p—

A A Q
2» UJ S*
ar cd 04
=) cj o.
p—
U 1 P* O
02 04 p-

8

‘•’WT’I- a»v»;r? 4WK4MN «?WW •

CJ
U
AJ

I

a«

Q
It

OZ
c
Q
<0
00 a-i • «4

+
02 04
d W »N
CJ OZ

• N «< X 8
rr m (D
O • UJ JJ
o vr O O

W OJ ZO
ra 02 * fc, 3 CJ

O CJ •—4 cu LJ
—N O a- J J CJ
OJ A oJ Q O
NJ O II J» 3 OZ.
a 4 4* oJ «•» <C 0-
A A 02 II 04 O 1

OJ *« 04 ZZ Ci
O> X 03 Lu «a: 02
02 Z* <0 G * J a— <Z.
O X A3 X 02 UJ t A a
2S CJ zz
vr LU rs CD W 3 tu sc
AJ A -2 co c; QZ Pa
O' W CQ CQ X UJ ZD A
a a X Q O
rn X: II., W 8 LJ 8O O

m a q O CJ
ZZ 02 Z QZ Z.’
UJ J UJ Cl UJ

o f\ a st A A^'A’CAC'O o

O/ira

30 az 3 3 OZ 3 az OZ OZ X 3 cc 3 3 oz 3 3 3 3 30 3 3 oz az X 3 az
WJ LU LU LU LU UJ LJ LU LU UJ LJ LU LJ UJ IjJ LU LU Uj LJ LJ LU LU W LU LU UJ Wi
L- »... a- d C- L— C— L- a- C-. a. a— a— p- a- C— a- C- a- a- L- C— C~ L— P" a • L-
UJ LU LU UJ LU wj LU UJ LU LU LU lU UJ LU LJ LJ tu LU LU UJ LU LJ LU LU LJ LU LU
oe 3 3 az 3 3 3 cc 3 3 az 3 az 3 u: 3 30 3Z 3 3 3 3 3 IE 30 30 3
3 3 3 C- 3 ;x 3 3 3 3 3. X 3 3 3. 0. 3u 3 3. Q- LU 3 3 3. 3 3_ 3
oz 3 3 cc CC az CC oz az az oz oz 3 c: 3 3 OZ 30 o: 31' LU 33 oz 3'. 3 30 az
w; LU LU Lu LJ W LJ UJ LU LU W I LU LU LU tu LU UJ LJ LU LU JJ LU LU LU LU LU LU
L a. (w t— C— p- C_ C- L- a-. a a- C- a’« a- a- L- C- o- C- a- h— C~ a- a- C
z ZZ Z z ZZ. zz Z zz z z Z X z z zr z z z z z- Z zo z z z z z
C CM d d L4 as a-J P4 »—« a-4 C4 a-, L~t C"t C~1 a4 a4 c-< ►~t C -i C-4 u a-4 a-, P4 k* as

« « « I • « « » f « « « » f j t t > 1 « I K « 1 i 1 1

UJ LU UJ UJ Lu! LU W LU LJ LU LJ LU cu LU LU LU Lj LU LU UJ LU UJ LU LU LU LU UJ
Q C o o Q C C O C O' C CO CO Q Q O C) C o Q C O O Q CO CO o
C C o o, o o C o CD O C C3 d C O o o o o O C CJ C C CO o o

> > J» » D» 5» D> 0> 0» U d d d d o CJ CJ CJ tu d CJ CJ d d CJ o CJ d tu tu t^J CJ tu CJ o o
Q O a O O co CD C C' 1 I 1 t « f « « « t « « I « I t « « « « « « «
CJ Z x 3C C. C. DC C Z 3 3 3 d. 3 3 3 a_ 3 3 3. 3 3 3 3 3. 03 3L. 3~ 3 3 3 d. :u 3 3 3

A si A SO k- aa CN o d CJ A st A SO rs co O" C a4 CJ A sj- A A k* A C C —4 CJ AO st A C ks A CO O H CJ AO st A
A A A A A A A so so so NO so SO so so so SO k- k- k- k- ks k- k- k- k- C- OO co oo CO AO CO AJ A A OO O- O O o C.k
st sr s| «!• st st -f -I- -u st st sf St <r st st sR st st sf sr sf st sf st sf st sf ** sf st sr st st st st st sf st st st si st

UJu
A

IC
ax
o

X
U
*C
dA
UJX

4k3*d
WJ3cea
Az
dw
It

XC
oz
U-»

O
z
««
cew
3
O

WJZ
oZZD

CDO4
CJ
u>CD
*€
t

Wce
o
J--A

II

w
3
LU
d
LU
3

Cl.
O
O

w
N
a-4
A

J
3
SX
3

Z
LU
C:

A
C
w
u

/•> ♦ *-
C» c*^
3,. w
C P­
3 3..
az c
LU CC

»*.
L">

*
d
C3
C3
3
3

»
• s

1,1 d

<c

A
O R
LU
UJ
z

CJ
Z CJ

z
LU
X

ce
3 W
O d 3 Aa"d
o w z 3
«CC
OZ <X
UJ
3 z:
O d

az a
UJ L4XL d
o z z o «C X

L» R A O o oz
UJ u
u : o
z u oz
Z A LU
O UJ a<
d 3 CJ
d X 04
d A 3 X Z U.
3 LU UJ
a-
a a ta
z d z

dI
»♦ 3 z 3 •k o d 3 3 oe ♦ *. CO «C k- L- A i

3 CO O C3 CA Z IjJ do 4 d O a-4 A •». 3 C •,« LJ d tr LU L4 a- L~ A « a— a rs a-« UJ i
«s O- C“ a- a. 3 1 z A C) z* CTJI t) p. V u « 3O’ z z «c o 3 on L-4 tt CC ^4 LU CO z 0_ a CJ CJ
Z co oS d a- a- o z - «« CO CJ cc 3 d LU O 3 CJ z
CO oo 4 I UJ tl A • a az •fC LU CC OZ tt az L- CO 3 «=c CJ d
o o CJ o- Ul az Z rs 3 ax _J 31 3 44 a- A a- CD tl d «t
CJ o z O a. d d LJ O LU Q az II LU A z t-4 CJ «♦ J LU

CU co o CC A CJ CC z CD ZZ az 44 O z d l d d O CJ 1
rs O CJ o CJ LU Z »* O LU az «c P^L CJ O L-4 3 3 CJ C C- z
LU «c d I a- aH a- a~ ax d X A d CJ c^> It O CD <C d z LU
kJ V 9 It 3 z 3 A A W ZZ o 1 tt C-4 3 A L-4 X •j

**» d ax • • d z ax A U. d oz 3 44 3 j
o A o- LU o- LJ a-4 LJ U L-4 CJ 3 O O R C*4 R
O» f z oc z »a az W 3 A «e ■j
CO O CD CO co zo z d <C 3 •I
X 3 © O o* o t O <C LJ CO i

CO It U A> d LU <c -J X LU U a* •j
UJ 3: • • >- CJ X 3 as ro _J to i
3 a- LU o CD X 3 co o 3
CO A z _U rs % az LJ LU CJ X J
CO o CO as A A 3 R O O 3 e t
LU a-» o X S

'A ..J
LJ co (U 3K j.1
CD
CC
n.

R

W
N

A

Oz
w

f,. k‘ s* s+ a k er O c ok • k k* k , k . j> •* st «t A n cr o Q o f - kc K st A k k k k k A o < cc c ejLT) tri kbA), A A M~M<A1 -st -4: St St .«-t-~st I'StvaLt^st^t st'-st -t St sk.St. A AAA A A A A A A A >A A A A A A AX

cz oz QZ OZ QZ a: OZ a: OZ OZ CZ OZ- QZ QZ CZ O Z OZ OZ CZ OZ CC CZ OZ OZ QZ CK CC CK CK OZ Or. CK zz; OZ OZ CZ CC QZ OZ Q2
UJ U UJ W W O.J OJ OJ OJ OJ LU OJ CJ CJ a! OJ CJ LU CJ CJ OJ Cl cu cu 0J OZ ■. ' ;.. j CJ UJ Cd L.U CJ CJ cz o 1 LU L.J W ad
o- a- P— o* a- P— o- P* a- V— p" a i~- *'"* a *- c— a-. o- L — O- -- c— a- P- a. P— a- a- a- c~ a- a- 0“ L — a- L.. c— a
UJ w UJ UJ OJ OJ 0J aj OJ OJ OJ L-i CJ LU CJ CJ c.; w UJ I u O.i CJ OJ U.I CJ UJ CJ CJ Lu’ OJ OJ o. 0.1 LC Ld OJ OJ CJ CJ CJ
cc oz oz az OZ QZ OZ OZ OZ cz QZ -r CC OZ CK LL OZ CC OZ O' OZ OZ QZ cc QZ CK OZ az CK •CO OZ OZ QZ CK CZ c QZ OZ OZ QK
o. 0. 0- a. a. CL 0- a. 0. 0- Li. a. LL Q_ o_ a. a. CL Cl C- 0- 0- 0. 0. C- c, Ol O. OL c. 0- LC ac A LL C- LL c. 0- 0~
oc cc OZ OZ cz Cc oz OZ OZ cc Q2 QZ cz OZ OZ OZ o: OZ LiZ cz OZ oz CK OZ CC CK OZ QZ CK CLZ QZ QZ OZ OZ CZ QZ o ljz QZ 02
UJ UJ LU UU UJ OJ cu OJ OJ OJ CJ CJ Cu CJ W cd CJ CJ CJ CJ Ld CJ CJ CJ UJ OJ OJ OJ Ol OJ CJ LZ Ci j CJ ad CC LU OZ c«z UJ
o- a— P- a- O- O- c~ a-. c~ a- c— o- a— * '■ a* o- O- P* O'- o- o- a O - a- a* P- a- *■— a- a- O" a- L- a- L . a- a- c p- c-
Z zu z z Z Z 2Z z z LU z~ z Z z JZ z Z Z Z z A z zr z Z.- z~ z :z zz z X z z z z z” zZ o zc'
o-t a< at at a-t o-t o-t o-t c-t a-t a-t 04 a-t c-< a pt a-t a-l a-t a-t as C-. at a-t a-t at C (LU a-t >—t a-t L'-i c-i ;** a-t * ■ at a-t CM a-t

J I J 1 i J J J 1 J i J f I J I I 1 J J J J J J J J « J J I J J I J I i J J 1 J
jJ UJ UJ UJ UJ OJ OJ OJ OJ CJ Lw CJ ■J OJ W Oul CJ .J OJ CJ 0J CJ CJ OJ ad CJ CJ CJ cu L»- CJ OJ ad CJ CJ CJ OJ OJ OJ
O QD o 0.3 cn Q CD OD OZ O OJ o: Q Q A OZ O Cj O O O Cj Q Q O o QZ O O O O CD O O O] Ol O O O Q.
O' O o O CD O O O CD A O o CJ CD O OJ A O 0.5 CJ CJ O CD CJ CJ CJ O O O O O O.J CD O’ o- CJ OZ O O a
o OJ <j CJ (J CJ CJ C OJ CJ CJ Cj CJ CJ CJ CJ CJ CJ CJ CJ CJ C J CJ CJ CJ CJ CJ CJ QJ OZ CJ CJ CJ CJ CJ CJ CJ

J J j J i J J J I I J 1 I J J 1 I I J 1 I I I 1 J J 1 1 J « J • I 1 J I J J I »
a. 0_ C. CL o_ a. CL a. CL CL CU CL LL ... CL­ a. a. LL O- 0- o_ LL CL C- o_ LL. CL c. C. Ol c_ OL LL OL 0.. C- LU CL 0- !L

no In O0 O O a ‘ CJ A st A •O N- OO A OD a-t CJ A st A OD N- A O O <C CJ A st A O N. 00 O' O 9*4 QJ A st A
O' O' O' CN O O O O O O ■o O O O c-t c ■ at rd ♦vt * L-i 9 cJ NJJ CJ CJ CJ 0V CJ OJ QJ CJ CJ A A A A A A
«t st st st A A A A A A A A A A A A A-i A AS O' A A At A A A A A A A A A A A>. At A A A A At

y)

»s-
LJ
X

A
z:CDo

•V
(Jo«3
r
ii
»♦
CJo

AD H Cu
Z A a
o 0 CJ Z
a-t CJ O t x QZk** ♦ X «X CJ < 04 CN A OJ

QJ QJ Al . O ♦ X a- »N • X tN d • X zz c.
QZ — QJ CJ Z. CJ CJ e<$ CN <2 CN CN NC O CN o a
CJ CJ QJ CD •X CJ »*, O OZ U CJ CJ «N O 04
a. <c 0 04 CJ CJ OJ Ol o UJ O QJ O J O’* • *. • X »« uJ

0 CD QZ -2’ QJ D> AJ •< 3 NC «x c X <C rs rs rs «e
z O o<5 <0 O QJ 0Z J O OJ QZ taO CM A st 32 <*x

UJ cu cz X U <2 P* <t —.... 4 f ¥ QZ X. JJ •w o ▼-4
X x UJ cj CJ CJ CJ ci 0 CZ 3 X X X V4
p— a- Q •< Q> CJ o._ (J CJ OZ II U CJ LJ QJ QJ U C5 O O c~ a N a

CD CJ <0 SC CD CJ CJ X ♦ « (I O O o O J0 tu o 04 04 rs A
st N- CJ 0-1 «£ «c A) CJ 9* «c OJ ■: 2«‘ •NC <2 ... J QZ Cc CC CC o U.l
CJ rV A J CO Il II a- I! II CJ O 51 c I II n II ii -r - «C -2 <2 z2- sr c

o_ o «• 0 • • • • 9— -lQ OJ U) I. zd OJ «J —J _J J o
V Q- V O oJ QJ QJ A QJ CJ A < O 04 O QJ O •O O 3 -C «c -C ^C CJ A w

Ol QJ CJ CJ QJ C_ _J O t_ CD ro o t r W OJ OJ 31 O J W
OJ 0 CJ e <2 e «Q «2 a-t J s •N -a «« «C R QZ OZ CC QtZ S:
O CJ A
O II CD <C
O O QJ

CJ
j

J CJ
X QJ
CD CJ

«c

J.
C-J

LL
CD

Cu
4A

t 5 8 B 8 £ £ t C e e f t t £ £ £
Q C3Z O. a z a-t V-l a-t a-t O c-t CZ 3 QZ =) C
Z’ O at z; Z Z CD OC L CD >• CD CD c X» O OJ■- a O pi aa =) C A X 27 <C A X o w Zt t S £ t k £ e £ £ £ £ f £ f £ £

o o »-■ N-' k «t »4- »r st ir vT -r v *r n o“ c cc t~ c cu c c a st tr an. n n r- <“■ *■ — o-' n4
a >o„>o 'O<* (>.!>■; fs r> N- ix-.is- i>; N*.fx w oo % % A

j t - . ' ’

az. 02 02 QZ OZ 02 02 02 OZ 02 OZ OZ QZ CZ 02 QZ QZ OZ OZ 02 QZ QZ QZ Q2 a: Q2 ca CZ QZ OZ QZ OZ QZ Q2 OZ 02 OC QZ OZ 02 ■:=:
UJ QU QJ QU UJ W QJ UJ QU QJ QJ QJ QJ QJ UJ QJ QJ QJ QJ QJ UJ QJ QJ QJ QJ QJ UJ CU QJ UJ QJ UJ QU W W QJ UJ W UJ WU
p- a— p. P~ a— P«- a-' p- P- a— a a** a p- a— 0" a- a— C~ a— a~ a P— a~ a» a- C-a a- P" a- a- a— a. a« a- ►-* P— a- a» ■
QJ QJ W QJ CU W Ul Ul W UJ QJ QJ QU Ul QJ QJ QJ QJ QJ QJ UJ QJ QJ QJ QJ QJ CU QJ QJ UJ UJ QJ QJ UJ UJ UJ UJ QJ UJ QJ ’
02 02 02 02 02 02 CtZ 02 02 QZ CZ 02 oz 02 02 Q2 02 02 Q2 QZ 02 QZ or QZ Qa QZ QZ QZ QZ QZ Q2 QZ Q2 Q2 Q2 QZ. OZ 02 QC 02
0_ 0- Cl Cl Cl Q, 0-. Q- a. U- Q~ Ou U- U- o. CL U_ U- Q. O. CL­ U. Q. Q- Q- Q- CU CU Q- Q- U- CU QU U- Q_ Q, Q- QL Q- Q- *
02 02 02 02 Qa 02 02 02 02 02 QZ or 02 02 QZ 02 U2 02 OZ CZ OT 02 QZ Q2 OZ OZ q: OZ QC Q2 Q2 OZ oc QZ CC OZ 02 QZ 02 OZ ; •
UJ QJ QJ QJ QJ QJ QJ UJ QJ QJ QJ QJ QJ W QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ UJ UJ QJ CJ QU QJ QJ UJ QJ CU UJ QJ QJ QJ QJ W -j
a— c- a P- a* p» I— a- a— a— a— U- p- a c- C— a a- a c— a- c- a- a~ K— a— a- a- U P- a- c_ P- a-* C- a- a- a— a— 0” a
zz Z zz z zz Z Z z 22 z z z z z z Z z z z z z z z Z z z z z z Z z z Z z z z zz z z z ■
as as P-4 as PS ps PS ps a-s CS P-S as C-S PS as as »—< as at a-s PS P*4 U-l as a< a a as as as as as C-4 as as P4 a-s as as PS ;

I I I I I I I I I I f I i I I | i I I I I I I I I I I i I 1 1 1 I I I I i t f I'?
QJ QJ UJ QJ QJ QJ QJ W QJ UJ W W W U QJ W W QJ QJ QJ QJ W UJ QJ Ul QJ .Ul QJ UJ QJ QU QJ UJ UJ QJ UJ QU UJ QJ W '•
O 00 Q O O 03 Q 0 co 0 CJ C3 Q co 03 0 co 00 00 G 03 0 O Q 03 co O Q CO Q 00 Q 0 O 03 CO Q CO 03 Q il
O O O Q a 03 00 CJ G 03 a 00 03 0 G 03 03 03 00 CQ CJ 03 CC 03 03 03 03 03 C3 03 CJ CD 00 03 03 Cj 03 0 03 03
CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ 0J CC CJ CJ cj 4

I 1 I I I I I I I I t I i I i I I I I I I I I I I 1 I I i I I I i I I I I I I I
Cl Ou a. Cl a. 0, U- U_ U- U_ U. o. QL Q- U. Q_ Q- Ci­ CU U_ Q_ Q_ Q- U. Q- Q. Q- O- Q_ U. Q. Q_ CU Q- Q- CU Ql. Q-

a A 0 O pS CM a st A 0 a- A O O a*4 QJ a st A sO IN 00 O 0 CM a «s A •O fN 00 0 O •H QJ a -t A
a a a> a st St sf st sf It st Sit st st A Ak A A A A A A A A 0 03 •O so sO NO 03 sO 0 U- fs. N. fN k- k- .
Al A v

I t

z o
■

o o j

<c OZ 1
W 0 3
a» z ,»

rs VH a*
VJ 02 •< I

y. Ul 03 ac
Ql -J i
O UJ 0
X , • CJ

«A >• P4
• N O 3 k2 0 ■"!
o CO z o OC 1
o o 1

r K a A 1
r X A Z fi j
H ti A3 O 03 ■j
•* •t Z as UJ as A
CJ O X X a f A
O CJ as QI a f CJ Oj
<c <2 a» 1 5C p-«j

CJ A Q. kZ Q2 CJ al
O Z d CJ a •Q O-f
02 CO cC A a zj
a »« PS CU a Z A QZ;
A CJ a CJ A PS P-;
z CJ CJ a UJ At

C 03 CD A X 2Z
- <c co z a Z) a f

A a O «• ♦ s z C3
UC -a A aS CJ • s CM c p - : z lu

»»v O Z a »s »s *s • K is. • A CJ rs »a> 02 C3 d 02
rs rs U I CJ ai z •S sa ■rs rs ■rs *K 23 < O 0 O CJ •sC CD
A CM z CJ l.Q LA sc P- A rs O rs pS W CJ n* Ul P
Vi U •cC « 03 ZT~ C2> rs a VU s* ss uM i- S cc -< CQ 1 «£ a— ks A
a U.J a QU d :x: u X X X Vi X 02 X 02 «C Ars rs A A qJ •x X __J ■< a- 0 a a- xn a- j A X a CJ CJ X p— Q CU

3 PO CJ CJ IlI CJ LiJ k >—4 «r i—s VH a- V-S CJ p. V*4 CJ CJ A P! CJ J Qk
4U Vi P a..— CJ s* -0 CK r CK CZ QZ V-l 0 «2 CM 02 •< • s =) Qf U-

P- 5,.JC A n QV LqJ i I •C it <2 «C L.C £02 ■< I I II C0 «C l I I I UJ Q. • •s a CJA UC as *w s « O X »» qJ s» qJ qJ .3 sC sQ «» <« »• »J A uJ CO C
CJ CJ X CJ z a CJ <2S co ■< <c <iC P* -< O J CJ >p ■ft CJ is i <2 IK ki «t U- a-,
p a -sr U O O 0 U 0 QJ lj Ul 2: UJ CJ O UJ 0 CJ cj CD X UJ CD 03 c

CA I4 s 0 aC s <2 02 «c O CQ 02 C‘4 V2 4-0 <c I4 p «c < a Z C O Z » 4
z Z) Ul
UJ n U- 5C C— 03 f

CD «c
Z UJ

A
as •jC
W UJ B a-» CJ .1

a m
qJ

W

-J

j

8 R B 2 a 8 S £ s E a 8 K s s £ K R - fO a O A 25 •4: QC P'S P~ a CJ 1—4 02 QJ A as 02 04 CJ
CJ QC CJ tu 0 X CD A co C-J ...! 02 03 DO Z O O O' 20 LU
(3 d 3.J cJ X a« Z Z z Q-„ Qu a 'U <£ A A A 03 COa - a K a R g s & £ R 8 a R a k a £ t f

A N e* k; %r a \T 00. p\ 0'a • Sr- • fsM ■,

»r k- cr ct er et e c* a k> v a k or o 0 a* o; k k1 < o • a st vt s s st a a '
0 0 ,0 0 0 0 0 OOO Oo 00 Oo p4 pS a q«S H i« «H pS pS ;f

aaS• AoA-1 at• 'OicyjC:st ■ st a <t s- -it- ■■#, st. st ■;*•'*’. C ’’* —■* '■* "t-** *t st -4- st stu

! 576 P.C0DE. INTERPRETER
’’LOO’* S C 577 P.CGDE.INTERPRETER

ACC: = STOREO SASECP) ♦ q . 578 P.CODE.INTERPRETER
IF ACC = UNDEF THEN 579 P.CODE.INTERPRETER

SC 580 P-CODE. INTERPRETER
SETCANY INTERRUPT); SET CU NI M Tl AL IS ED_V AL UE >; 581 P.CODE.INTERPRETER

S3 582 P_CODE.INTERPRETER
ELSE 583 P.CODE.INTERPRETER

pusho; 584 pZcqdeZinterpreter
5) 535 P.CODE.INTERPRETER

586 P.CODE.INTERPRETER
"LO Q” sc 587 pZcodeZinterpreter

ACC: = STOREC-QO; 588 P.CODE.1NTERPRETER
IF ACC = UNDEF THEN 589 pZcode.interpr eter

SC 590 P.CODE.INTERPRETER
setcany_interrupt3 ; SETC UNINIT IA LI SED.VA LUE) ; 591 pZcODE.I NTERPRETER

S) 592 P.CODE.INTERPRETER
ELSE 593 P CODE INTERPRETER

pusho; 594 P.CODE.INTERPRETER
$) 595 P.CODE.INTERPRETER

596 P.CODE.INTERPRETER
"LAD* sc 597 p.code.interpreter

ACC:=8ASECP3 + q; pusho; | 598 p.cooeZinterpreter
S) 599 P.CODE .INTERPRETER

”LAOW sc 600 pZcqdeZinterpreter
ACC:= g; pusho; 601 P.CODE.INTERPRETER

S) 60 2 p.code.interpreter
"LDC" 60 3 p.codeZinterpreter

"LOCIw sc 604 P.CODE.INTERPRETER
ACC: = ST0RE C- Q. >; push o ; [60 5 P.CODE.INTERPRETER

$ 3 | 606 P.CODE.INTERPRETER
"LC A" SC 60 7 P.CODE.INTERPRETER

acc? = q; pusho; 608 P.CODE.INTERPRETER
s 3 60 9 P.CODE. I NTERPRETER

”STRW STORE C. 3ASECP3 * Q . > := pgpo; 610 P.CODE.INTERPRETER
w SRQ" STOREC.G.): = POPO; 611 P.CODE.INTERPRETER
"STGW sc 612 P_CODE.INTERPRETER

ACC: = P0PC }; ACC2:= pop c); 613 p’codeZinterpreter
S) 614 P.CODE.INTERPRETER

J 615 P.CODE.INTERPRETER

” I NO”

ms r

"CUP"

n r \s 7 n

n OTHER MISCELLANEOUS MACHINE INSTRUCTIONS - | 616 P.CODE.INTERPRETER
617 P.CODE.INTERPRETER

sc j 618 P.CODE.INTERPRETER
ACC: = POP() + O; 619 P.CODE.INTERPRETER
IF STOREC.ACC.) ~ UNDEF THEN j 620 P.CODE.INTERPRETER

sc j 621 P.CODE.INTERPRETER
SETCANY.INTERRUPT); 1 622 P.CODE. INTERPRETER
SET CUMIN I TIALIS ED.V ALUE); 623 P.CODE.INTERPRETER

S) 624 P.CODE.INTERPRETER
EL SE | 625 P.CODE.INTERPRETER

SC ACC: =5TQRE <• ACC.); PUSHO; S) | 626 P.CODE.INTERPRETER
S3 j 627 P.CODE.INTERPRETER

• j 628 P.CODE.I NTERPRETER
SC 629 P.CODE.INTERPRETER

acc:=undef; pusho; j 630 P.CODE.INTERPRETER
ACC:=8 ASEC P) PUSHO; ? 631 P.CODE.INTERPRETER
acc:=data.seg.pnt; pusho; 1 632 P.CODE.INTERPRETER
acc:=undef; pusho; | 633 P.CODE.INTERPRETER

S } } 634 P.CODE.INTERPRETER
sc J 635 P.CODE.INTERPRETER

data.seg.pnt:=stackp - p - 3; 636 P.CODE.INTERPRETER
S TO RE C . D ATA.SEG.P NT «- 3.): = PRGGC; j 637 P.CODE. INTERPRETER
PRQGC 2 = Q; j 638-P.CODE.INTERPRETER

$) j 639 P.CODE.INTERPRETER
sc | 640 P.CODE.INTERPRETER

ACC2: = D ATA. SEG.PN T + 0? j 641 P.CODE.INTERPRETER
IF ACC2 > HEAPP THEN] 642 P.COOE_lNTERPRETFR

SC { 643 P.CODE.INTERPRETER
SET CANY. I NTERRUPT); SE TC ST AC K. GF LO W) / j 644 P.CODE.INTERPRETER

S)
j 645 P.CODE.INTERPRETER

IF STACKP < INPUTADR THEN | 646 P.CODE.INTERPRETER
stackps=prdaor; | 647 P CODE.INTERPRETER

ACC: = STACKP * l;
j 648 P.CODE. INTERPRETER

ViHiLE ACC <= ACC2 DO | 649 P.CODE.INTERPRETER
STQREC-ACC.):=UNDEF; 650 P.CODE.INTERPRETER

STACKP: = ACC2;
j 651 P.CODE.INTERPRETER

S) j 652 P.CODE.INTERPRETER
s c j 653 P.CODE.INTERPRETER

IF P = 0 THEN j 654 P CODE.INTERPRETER
STACKP:=DATA.SEG.PNT - 1. . J 655 P.CODE.INTERPRETER

5 00 | ELSE | 656 P-CODE-INTERPRETER
5 00 j STACKP:=DATA_SEG_PNT? i« 657 p.codeZinterpreter
5 01. j P3GGC: =STORE(.DATA-SEG-PNT + 3.5? i 658 P-CODE- INTERPRETER
5 0? 1 OATA-SEG-PNT :=STOREC.DAT A_ SEGMENT + 2.)? 1 659 P-CODE-INTERPRETER
5 08 i S) J 660 P-CODE-I NTERPRETER
504 ji WC S P” STANDARD-PROCEDURE!)? 1 661 P. CODE-INTERPRETER
5 05 ? "CHK" IF STQREC •STACKP.) < STORE!•Q~1•) OR I 662 p’code~interpreter
5 04 i STQREC-STACKP. 3 > STOREC-Q.) THEN ! 66 3 pZcqdeZinterpreter
504 3 sc I 664 P-CQDE-iNTERPRETER
5 07 ?I SETC ANY-I NTERRUPT 3 ? - • 665 pZcqdeZinterpreter
508 Ii SETC VALUE-OUT-OF-RANGE)? 1 666 P.COOE.INTERPRETER
5 0? j S3 1 667 P-CODE-INTERPRETER
510 1 "EOF” EOF (3 ? 1 668 P-CODE-INTERPRETER
5 it J WUJP” PROGC:=Q? 1 669 P-CODE-INTERPRETER
51’ I "X JPW PROGC : = POPC 3 < Q? 1 670 pZcodeZinterpreter
515 J "FJP" IF P3PC 3 = LFALSE THEN i 671 P-CODE-INTERPRETER
514 I PROGC:=Q? 1 672 P-CODE-INTERPRETER
515 J "STP" SET CENQPR0G3? 1 673 P-CODE-INTERPRETER
514 tj emdcase; 1 674 pZcqdeZinterpreter
515 1 $) I 675 P-CODE-INTERPRETER
517 j 1 676 P-CODE-INTERPRETER
5 I7 j

1
$) J 677 P-CQDE-INTERPRETER

5 18 END " P-CODE-INTERPRETER " ? i 678 P-CODcZlNTERPRETER

518 1 1 67 9
518 I tT * * * 4t * it ** * " P-CODE-INTERPRETER C 3? ” ********** " I 680
5 20 ! END PROG RAM? -1 681

r* ** * * ***44 *k it ************ ****************** ****** ** ** ** it*

COMPILATION COMPLETE — NO OF ERRORS = 0

1585 MICROINSTRUCTIONS WERE GENERATED

APPENDIX . 4

AN ALGORITHM DESCRIPTION LANGUAGE

7 •■■'

HERIOT-WATT UNIVERSITY
D.S. 5/76/5 !

DEPARTMENT OF COMPUTER SCIENCE

THE DESCRIPTION OF ALGORITHMS

l

i

I. SOMMERVILLE OCTOBER, 1976.

The material in this appendix is made up of four program listings

(1) A listing of the SUILVEN code plus generated microcode for a
simple s~machine called SIMPS. This is included to illustrate
the format of the output produced by the SUILVEN compiler.

(2) A listing of the SUILVEN code implementing the SASL s-machine.

(3) A listing of the output produced by the BI700 simulator when
executing a SASL program to sum the elements of a list.

(4) A listing of the SUILVEN code implementing the PASCAL s-machine.

The code given here and the examples given in the body of the thesis
Imay not exactly correspond. This is due to the fact that both the

SASL and the PASCAL machines were re-implemented and opportunity
was taken to improve them. The re-implementation was necessary
because the author of the thesis left St Andrews University and
had no access to the machine there. The programs which were written
were supposedly portable but, as usual, this portabilty turned out
to be mythical and an inordinate amount of effort was involved
in transporting the various programs.

The PASCAL machine implementation was only developed to the stage
where the salient features of SUILVEN are illustrated and not to
the stage where PASCAL programs actually run on the machine. As we
had decided to abandon the development of SUILVEN, we did not feel that
the effort of completely implementing the PASCAL machine was justified.

APPENDIX• 3

'EXAMPLES

1.

1. INTRODUCTION

This document lays down a set of guidelines (rather than a rigid
notation) for the description of algorithms. A language for
describing algorithms is presented along with notes on the format'
of an algorithms description. ‘ Some examples illustrate the use
of the language.

The notation described below has been adopted as the standard
algorithm description notation of the Department of Computer
Science, Heriot-Watt University. It should be used by all staff
and students who produce descriptions of algorithms.

2. ALGORITHM DESCRIPTION

The production of algorithm descriptions is necessary at two
stages in the development of a software system

(i) Before the program is written to communicate
the method of problem solving to the programmer.

(ii) After the program has been written to communicate
the problem solving techniques actually used.

If the programmer participates at the design stage of a program
a personal, informal algorithm description may be used. However,
the language described below should be used whenever it is necessary
to communicate an algorithm design to someone else. This is
necessary when several individuals are working as a programming
team and when a completed program is documented. ‘

In describing the algorithms used in a computer program a conflict
arises. The higher-level an algorithm description the more readable
and understandable it is. However, as the description progresses
to higher and higher levels the correspondence between the
description and the program -text becomes more nebulous. It is'
necessary to establish some kind of compromise which is at a much
higher level than a programming language, yet still exhibits typical
program features such as sequencing.

The language described in section 3 allows a measure of flexibility
in algorithm description. Although sequencing is - defined, operations
may be expressed formally or informally as programming language
statements or as English text.

2.

3. . A LANGUAGE FOR THE DESCRIPTION OF ALGORITHMS

The language description below is expressed in a slightly extended
BNF, The enclosure of an element in starred square brackets- [3*
indicates that that element may be repeated zero or more•times.
Hopefully the language semantics are fairly, obvious from the
syntactic description.

• <algorithm description> ::= <algorithm name> <body> END- <algorithm name>
<body> ::= <statement> C<statement>3* ’ •

<statement> ;: = <If>|<While>|<Do>|<Select>|<name>|<text>|<compound>
<If> ::= <If clause> <statement>|<If clause> <statement> ELSE <statement>

<If clause> ::= IF <condition> THEN
<While> : := WHILE <condition> DO <statement>

' <Do> : : = DO <statement> UNTIL <condition> ' •

<Select> ::= SELECT <guarded statement list> .ENDSELECT ELSE <statement>
<guarded statement list> <guarded 6tatement> C<guarded statements*
<guarded statement> ::= <condition> : <statement>
<compound> ::= {<body>} .
<name> ::= <identifier> . .
<condition> ::= <boolean expression>|<text>

<text> ;:= Any English phvase or sentence >

Any text preceded by a % is regarded as a comment.

The above statements should be familiar apart from, possibly, the
select statement. The example in section 4 illustrates the use of
the select statement. Informal English descriptions may be used
as a condition or as a statement where this is appropriate.

4. • . • THE FORMAT OF ALGORITHM DESCRIPTIONS

It is desirable that algorithm descriptions should comply with a
fairly rigidformat. Some suggestions as to whatthis format
should be are set out below/. ,

(i) The algorithm name should be on a line by itself
as should the END declaration

(ii) The algorithm body should be indented within the
name and the END declaration.

5 EXAMPLES

The examples below describe typical algorithms which might be
used in a top-down recursive descent parser for an ALGOL-like
programming language. • •

IFCOMhAND • '• .
% Parses if statements '
NEXTSYMBOL • .
CONDITION • . ' . '
IF Symbol X "THEN" THEN •

ERROR • ("Then , necessary")
ELSE .. '

{ ' ' ' .
NEXTSYMBOL
IF' Symbol = "IF" THEN

ERROR ("If forbidden here") . .
ELSE

STATEMENT
n? Symbol = "ELSE" THEN.

; . { •

NEXTSYMBOL
STATEMENT . '

}
}

END IFCOMHAND
STATEMENT '

SELECT ' . ’
Symbol = "IF":IFCOMMAND
Symbol = "WHILE":WHILECOMMAND

• *
Symbol = identifier:{

I Name := Symbol
NEXTSYMBOL
£F Symbol = "(" THEN

• FROCEDURECALL (Name)
ELSE

ASSIGNMENT (Name)
‘ }

ENDSELECT
ELSE

ERROR ("Bad symbol") .
NEXTSYMBOL

END STATEMENT • , . ' ’ •

3

(iii) Each statement should begin on a. separate line. •.

(iv) Statements which are part of a control statement
should be indented.

(v) Names of other algorithms should be in block
capitals, names of variables should be .lower­
case letters or script and reserved words should
be underlined.

(vi) When describing all the algorithms in a program,
the main program should be described first
followed by the algorithms of the procedures
which it calls etc. etc.

(vii) The curly brackets {}, may be replaced by any
other pair of bracketing symbols at the
discretion of the user.

5

Notice the use of the select statement in this example. The
condition for selecting a statement for execution must be
explicitly stated. This can be translated either into an
ALGOL case statement or into nested IF statements.

