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AN EXPERIMENT IN HIGH-LEVEL MICROPROGRAMMING

ABSTRACT

This thesis describes an experiment in developing a true high-level 

microprogramming language for the Burroughs B1700 series of computers.

Available languages for machine description both at a behavioral .level 

and at a microprogramming level are compared and the conclusion drawn 

that none were suitable for our purpose and tl^^*t it was necessary to 

develop a new language which we call SUILVEN.

SUILVEN is a true high-level language with no machine-dependent features.
It permits the exact specification of the size of abstract machine data 
areas (via the BITS declaration) and allows the user to associate structure 
with these data areas (via the TEMPLATE declaration), SUILVEN only 
permits the use of structured control statements (if~then-~else, while-do 
etc,) - the goto statement is not a feature of the language. SUILVEN is

compiled into microcode for the B1700 range of machines. The compiler is 

written in 5N0B0LT and uses a top-down recursive descent analysis technique.

Using abstract machines for PASCAL and the locally developed SALE, SUILVEN 
was compared with other high and low level languages. The conclusions .

drawn from this comparison were as follows:-

(i)

(ii)

(ii.i)

SUILVEN was perfectly adequate for describing simple S-machines 
SUILVEN lacked certain features for describing higher-level machii 
The needs of a machine description language and a microprogram 
implementation language are different and that it is unrealistic
to attempt to combine these in a single language.
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CHAPTER 1

INTRODUCTION

The research project described in this thesis originated from
a dissatisfaction with the current state of programming language 
implementation, coupled with a belief that it was possible to
improve that situation.

In particular, we were unhappy about the discrepancy between the 
machine-level facilities which we regard as necessary for the 
efficient implementation of high-level programming languages, 
and the actual facilities provided by most current machines. 
Therefore, the broad objective of our research was to study 
means of reducing this discrepancy by designing and constructing 
machines specifically geared towards executing high-level 
programming languages.

The material in this introductory chapter is split into three
sections:-

(i) An overview of the general area of research.

(ii) A brief description of our particular research area.

(iii) An outline of the structure of the remainder of the
thesis.
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1.1 The General Area of Research

The development and implementation of high-level programming languages 
is essential to the successful application of computers to the 
solution of user-defined problems. Such languages must offer 
particular problem-solving facilities without imposing a 
severe cost overhead for the provision of these facilities. The 
general area of our research was to study techniques for achieving
this aim.

Programming language implementation has been the subject of much 
research and, indeed, many of the problems associated with 
compilation have been solved. However, the implementation of 
a high-level language on most current computers is still a 
difficult and time-consuming task. Common difficulties arise 
in the implementation of both special-purpose and general-purpose 
programming languages.

These difficulties are largely due to the incompatibility between 
current machine architectures and the machine facilities required 
for the efficient implementation of high-level programming 
languages. In particular:-

(i) Artificial restrictions must be imposed on the high-level 
language to avoid heavy run-time penalties. For example, 
the overhead involved in run-time type checking, input- 
output, and dynamic storage allocation can be severe. Thus, 
powerful programming languages such as EULER, GEDANKEN,
LISP, and SNOBOL become too inefficient for widespread
use.
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(ii) As current machine architectures are rarely oriented 
towards the execution of high-level programming languages, 
compilers must include extensive translation and optimisation 
facilities. The high-level language shields the programmer 
from, the limitations of the machine, and he is often 
unaware of the space/time requirements of his executing 
code. This means that there is often no a priori method
of determining the ’best’ algorithm for solving a problem 
in a high-level language.

(iii) Generally, the machine architecture and instruction sets
of machines marketed by different manufacturers are distinct. 
Hence, the implementation of a high-level language is 
usually ’once-off* and geared to a particular machine. 
Attempts to provide portable compilers can result in 
system inefficiencies or, the re-implementation of a 
compiler may require a programming effort which is almost 
as great as that involved in initially implementing that 
compiler.

The development of high-level languages has demonstrated that 
problem areas may usefully be categorised - numerical programming, 
list processing, text handling, etc, etc. It seems natural to 
develop separate programming languages specifically designed 
for encoding solutions to problems in each area and allow the 
user to tune this problem-oriented machine to his own application. 
Each of these problem-oriented languages should execute efficiently 
on a computer whose primitive operations and data types reflect 
the needs of its high-level language.
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This language-oriented approach to machine design has been adopted 
by the Burroughs Corporation, initially in the B5000 range of 
machines described by Lonergan and King(Ll), and more recently 
in the B5700/6700 machines, described by Organick(Ol). These 
machines are oriented towards the efficient implementation of 
an extended ALGOL60, and include hardware features such as a 
stack, descriptor-based data organisation, and a reverse Polish
instruction set.

However, the implementation of a language-oriented machine as .
a hard-wired unit,imposes restrictions on the implementation of 
programming languages, other than the language for which the machine 
is designed.

For example, the implementation of programming language compilers 
on B5700 computers is fraught with difficulty. Although the stack- 
based architecture suits many high-level languages, the machine 
instructions, data organisation, and conventions used by this 
machine are not necessarily suitable for ■ /other high-level
languages. Adapting compilers to fit this strictly ALGOL-oriented 
organisation. is extremely difficult:.

Because of the restrictions imposed by a hard-wired machine 
geared towards a particular language, it is desirable that a 
language-oriented machine be available for executing each 
programming language. Presently, the only economically viable 
means of providing each language with its own machine is to 
emulate that machine using a computer program. Such a machine 
is known as an abstract machine, a virtual machine, a soft machine,
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or an s-macbine. These terms are used interchangeably throughout
this thesis.

An early use of this language-oriented soft machine approach,
was in the implementation of the Whetstone compiler for ALG0L60, 
described by Randell and Russell(Rl). In this case, code was 
generated for an ALGOL-oriented machine called the Beta machine, 
and this was implemented via an interpreter. The Beta machine 
is an early example of a stack-oriented s-machine with an 
instruction set designed to efficiently implement ALGOL60. In 
particular, instructions for procedure entry and exit, and array 
bound checking are included.

Other implementations of language-oriented s-machines include 
Griswold's SNOBOL machine(G1.,G3), and a machine.'designed for 
text handling applications, described by Poole et al(Pl). Unlike 
the Beta machine, these machines were not implemented via an 
interpreter, but were bootstrapped onto a host machine using 
a macro processor to generate host machine code from the abstract
machine code. ' •

More recent soft machine implementations include the P-code 
machine for PASCAL, which is described by Jensen(Jl), and a 
development of Landin's SECD machine(L2). This machine has 
been designed to efficiently execute a list-processing language 
called SASL, described by Turner(Tl). Both the PASCAL and the 
SASL machine are interpretatively implemented, and are discussed 
in more detail in subsequent chapters of the thesis..

_ ■-_ < ....
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iln designing a language-oriented soft machine there are three 
major factors which must be taken into consideration. These are:-

(i) The ’fit’ between the soft machine and the high-level
language.

(ii) The ’fit’ between the soft machine and the underlying 
hard-wired machine.

(iii) The tools available for designing and implementing the
soft machine.

An s-machine for a high-level language may be designed by 
incorporating instructions in that machine which directly implement 
the primitive operations of the high-level language. Examples , 
of such operations might be procedure entry in ALGOL or record 
referencing in PASCAL. This approach avoids the generation of 
extra code by the compiler, reduces the demands made on the run­
time system,-and produces compact code. Hence the machine/language 

interface has been moved away from the hardware towards the 
programming language, and the- required run-time interface is 
implemented via primitive s-machine operations.

The implementation of s-machines on conventional machines using ’ an 
interpretative system, usually results in machines which run 
significantly slower than conventional machines. However, the 
technique of’ microprogramming, using a machine with writeable 
control store, can partially reduce this overhead. At little cost, 
s-machines may be defined to fit a high-level language and, by
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allowing the control store of the microprogrammable machine to
be shared, different s-machines may be multiprogrammed. A host
'hard* machine may support a number of different s-machines with
each high-level language executing on a machine sympathetic to
its requirements.

The broad objective of this project has been to develop tools
for the design and implementation of s-machines. Up until now,
s-machine design has been specified in an informal manner and, .
if the s-machine is microprogrammed, it has been encoded in a low- •
level language. We do not regard this situation as particularly :
satisfactory, as the implementation of s-machines using this
technique is both time consuming and error prone. The specific aim
of our project, therefore, was to develop tools for the documentation
and implementation of s-machines.

1.2 The Particular Area of Research

The research project described here is a part of a larger research
project at St Andrews University. This project is'investigating
methods of soft machine implementation and has as its ultimate
aim,-the automatic generation of s-machines from some formal
specification.

The underlying microprogrammable machine which we chose to 5
implement these s-machines was a Burroughs' B1726 computer. This
machine, whose architecture is described in chapter 3, is
designed explicitely for the emulation of abstract machines. In
fact, there is no conventional machine code, and all languages <'

■ 1

±r -•;?r '-•J Mb—



-8-

available on the system are implemented by translating them to
an s-machine code and subsequently interpreting that code.

The B1726 is user microprogrammable and has a vertical microinstruction 
format. Control store may be dynamically reloaded, thus permitting 
the multiprogramming of microprograms. However, the most significant 
design feature of the B1700 is its bit-addressable store organisation.

The machine store is addressable • to the single bit with no- arbitrary 
word boundaries and no need for information alignment in store.

Hence, the size of an information cell on this machine may be 
defined by the s-machine programmer and, indeed, may vary, depending 
on the machine instruction being interpreted.

This very flexible storage organisation coupled with the machine 
microprogrammability makes the B1700 eminently suitable for 
the implementation of s-machines. For this reason, the B1726 was 
chosen as the host machine for our project.

When the project was conceived(in 1973), it seemed likely that 
B1700 hardware would be available at St Andrews. Unfortunately, 
due to changed economic circumstances, our hopes were not fulfilled 
and no B1700 hardware became available locally. Naturally, this 
lack of hardware has been a significant.constraint •on our project.

As we were involved in the early stages of the larger research 
project, it was decided that a B1726 simulator should be constructed 
to act as an initial test-bed for microprograms whilst real 
hardware was unavailable. As events transpired, this simulator 
remains the only means of executing B1700 microprograms in
St Andrews.



While the simulator was under construction, we considered the
problems of designing and implementing s-machines.

We came to the conclusion that we should investigate the
possibilities of microprogramming s-machines in a high-level
language. We planned that this language( called SUILVEN ) would 
not only be used for implementing s-machines but would alse serve 
as a vehicle for documenting and desribing s-machine architecture.

The advantages of programming in a high-level language are well known,, 
but most microprograms are written in machine, language. This 
technique is adopted for efficiency reasons - microprograms are 
frequently executed and should be as efficient as possible. Working 
in a research environment, there is no need to produce optimally 
efficient microprograms, and we wished to identify the benefits 
which accrue from high-level microprogramming. At the same time, 
we accepted the need for efficiency, and hoped that high-level 
microprograms would be comparable in efficiency with hand-coded, 
machine-level programs.

In order to investigate the efficacy of high-level microprogramming, 
we decided to compare SUILVEN implementations of two radically ■ 
different s-machines, and to compare these implementations with 
implementations of these s-machines in other programming languages.

The s-machines chosen for this exercise were the P-machine for 
PASCAL(Wl), described by Jensen(Jl), and a development of Landin's 
SECD machine(L2), for the lambda-calculus based language SASL(Tl).
The P-machine is a fairly conventional stack machine, with a reverse
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Polish instruction set. Instructions are included to implement
special PASCAL operations such as set union, intersection, etc.

The SASL machine, on the other hand, is a higher-level machine with 
run-time type checking, a list-based storage organisation, and a 
high-level machine instruction set. As well as the usual reverse 
Polish operations, the SASL machine has a number of special-purpose 
instructions geared towards implementing unusual features of SASL.

To summarise therefore, the particular aims of this research project
were as follows:-

(i) To program a simulator for the B1726 system at the 
microprogramming level. This simulator was to be. implemented 
on our local IBM S/360 computer.

(ii) To design and implement a high-level microprogramming 
language for the B1700 range of computers. This language

. . .should also be suitable *for describing s-machine architecture.

(iii) To evaluate the utility of this high-level language by 
comparing s-machine implementations in this language with 
the same machine implementations encoded in other
programming languages.

* "i i ‘ ~i -ri .1 - ; ilfn
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1,3 The Structure of the Thiesis

The remaining chapters oO this thesis are devoted to a survey of
the background to our particular research topic and to describing 
the research which we have undertaken.

Chapter 2 concentrates on the background to the design and
implementation of SUILVEN. The chapter is split into four
distinct sections:-

(i) A survzey of HigH—level machine description, languaess.

(ii) Aiexamination of the design philosophy behind the B17Q0

range oO computers.

(iii) A descnipfcionof microprogramming languages for the B170S.

(iv) A survey of current microprogramming languages for other
user-microprogrammable machines. ?

Chapter 3 is a description oO a B1726 simulator which was encoded in *
ALGOLW. We also describe the implementation oO a compiler Oor
MIL, the standard B1770 microprogramming language. These programs

$
simulate the microprogramming , environment on the•B1700 and provide
a means oO implementing s-machines in a low-level programming
language. .

Chapter 4 is a description oO the programming language SUILVEN. 
SUILVEN has a static storage allocation scheme, permits the exact 
speciOication oO the size and structure oO s-machine data areas, 
and allows the user to define procedures. The language conlrol 
statements are simple andstxuctuired - ths goto stee^ee^ is

not included.

;

I
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Chapter 5 describes the implementation of the SUILVEN compiler.
This compiler, written in SN0B0L4, is one-pass, uses a top-down 
recursive descent parsing technique, and generates a mnemonic 
form o# B1700 microcode.

Chapter 6 is comprised of a general discussion of interpreter
structure and a comparison of implementations of the PASCAL and 
SASL s-machines. The SUILVEN implementations arc compared with 
implementations in PASCAL, PL360, BCPL, and MIL.

Chapter 7, the concluding chapter, discusses how well the project 
achieved its objectives and possible improvements which could be 
made to our system. We finally conclude that a separation of 
the functions of machine description and machine implementation 
is a better approach than that we adopted and suggest further research 
topics in this field. •

There are a number of appendices which contain material rather too 
detailed to be included in the body of the thesis. These are:-

(i) A reference manual for SUILVEN. .

(ii) A description of the B1700 microarchitecture.

(iii) Program listings of the PASCAL and SASL s-machines, plus 
test results from executing these machines.

(iv) A description of the notation used to describe 
algorithms throughout this thesis.



CHAPTER 2

BACKGROUND. MATERIAL

This chapter consists of a survey and review of background
material relevant to the research work described in this thesis.

Currently, virtually all work on microprogramming and abstract 
machine design has been of an engineering nature. Little or no 
theoretical background exists and the approach taken by research ' 

workers is to approach systems design on an 'ad hoc' basis. The 
resultant system is then tested and evaluated.

While this is a practical approach, it results in the building of 
special, one-off, systems. As a result, research in this field . 
can only use these systems as a guide rather than as building blocks
for further work;.

This lack of theoretical background may be attributed to a number
of factors:-

(i) Technological developments of system components has been . 

extremely rapid. This new technology offers orders of 
magnitude improvements in speed and storage capacity. As a 
result, previously impractical systems may now be implemented 
and existing systems operate both more quickly and more 
cheaply. There has been little need to analyse and develop 
systems in order to produce improvements and little general 
knowledge of machine design has emerged.
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(ii) Up until fairly recently, computer design was the province
of the electronics engineer. The prime aim was to extract 
maximum hardware performance and little attention was paid 
to the requirements of the machine software.

(iii) Very little experimental work has been done regarding
machine design for software systems. This is primarily 
due to the difficulty and expense of carrying out such 
research. To do so realistically,requires normal computer 
users to use an experimental system. Naturally they are 
reluctant to do so,and hence the machine designer must ,
postulate a design on the basis of his own experience.

This lack of general knowledge is regrettable, but we cannot honestly 
envisage the situation changing in the near future. Paradoxically, 
because computing is so expensive, it is not possible to conduct 
some experiments which might ultimately reduce computing costs.
To do so can result in an unacceptable increase in the immediate cost
to the user.

The background material covered in this chapter is basically a 
study of existing microprogramming and machine description languages. 
In addition, as the B1700 computer is central to our project, we 
present an overview of the machine design and microprogramming 
languages developed for that machine.



“15~

(i)
This material is presented in four distinct sections:-

(i) Machine Description Languages
(ii) The Design of the B1700
(iii)
(iv)

Microprogramming the B1700
Microprogramming Languages for other Machines

2.1 Machine Description Languages

This section of the survey describes the uses of machine description 
languages, identifies various types of machine description languages, 
and briefly surveys several languages which have been used to describe 
machine architecture. In general, these languages have been used to
describe 'hard* machines but the section concludes with a discussion 
on the description of soft machines.

Machine description languages were originally developed by digital 
engineers and their prime function is to document and hence 
communicate a machine design. A computer system may be described at 
a number of different levels and machine description languages .have 
been designed to describe each of these levels. The levels in a 
system are:-

(i) The Algorithmic Level

This level is the logical description of the machine 
architecture. That is, it provides a definition of the 
machine data areas which are visible to an executing
program and describes the instructions which operate on
these data areas.
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(ii) The Configuration Level

This level, often called the PMS( Processor, Memory,
Switch ) level, defines 'the interconnection between the 
various units in the system such as store modules, arithmetic 
function boxes, etc.

(iii) The Register Transfer Level

A machine description at this level describes how information 
is ' transferred between the system registers. This information 
flow executes machine instructions. The register transfer 
level is the level at which microprograms operate.

Below these levels there are, of course, levels concerned with 
machine electronics but these are not generally considered the 
province of the ...computer scientist.

The work covered in this dissertation is concerned with levels
(i) and (iii), that is, the algorithmic level and the register 
transfer level. Register transfer level languages are discussed
in sections 2.3 and 2.4.

Languages covered in this section have all been used to describe
machine architecture. In general they have been specifically 
designed for this purpose although APL, the first language
discussed, is a more general purpose language.



2.1.1 APL

The form of the language APL, designed by Iverson(Il) is now well
known. The language is primarily suited to vector manipulation
as it has special purpose operators for working with arrays.

Iverson(I2) maintains that APL may be used for describing digital 
systems both at an algorithmic and at a register transfer level.
Indeed, he has used it to describe the architecture of the S/360 
range of computers(I3). Iverson has categorised APL as a universal, 
concise, precise, systematic language which is easy to learn, 
to remember, and to use. -

Be that as it may, we do not consider APL to be a particularly.'
good machine description language for the following reasons:-

(i) The lack of declarations makes the description of machine 
data areas almost impossible.

(ii) The APL character set is not widely available. .

(iii) The syntax of APL is unnatural and rebarbative, primarily

because of its right to, left expression evaluation. APL 
programs, although concise, tend to be unstructured and unreadable

2.1.2 AHPL

AHPL( A Hardware Programming Language ) is a development of
APL by Hill(Hl). He designed the language specifically to describe
the design of digital systems.

The primary addition to APL is the introduction of declarations

into the language, to permit the description of machine data areas.
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For example:-

REGISTERS A(4),B(4),C(4)

This would define 3 4-bit registers A, B, and C,

However, there is no means of assigning any structure to these
registers. The language, apart from its declarative facilities, 
has similiar operations to APL and consequently shares APL's
disadvantages.

2.1.3_ SPP-ALGOL

The language SFD-ALGOL, developed by Parnas(P2), was an early 
attempt to design a machine description language based on
ALGOL 60.

SFD -ALGOL is essentially oriented towards describing ’hard*
machines with the language extensions including declarations
specifying which procedure parameters are input and■output parameters, 
and * time blocks*. The inclusion of input/output declarations 
allows a procedure to be regarded as a ’black box* accepting 
certain inputs and producing certain outputs. Time blocks 
specify which operations- are carried out during a single system 
clock pulse.

Parnas did not introduce facilities into SFD-ALGOL for specifying 
the width or the structure of machine data areas and this is a
serious drawback to its use as a machine description language.
In general, the language is more suited to describing the operation
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of a particular hardware component rather than describing the 
overall behaviour of a system.

2.1.4 APDL

APDL( Algorithmic Processor Description Language ) is a development
of SFD-ALGOL. The language was designed by Darringer(Dl).

For providing a behavioural system description, the language is a 
considerable improvement over SFD-Algol. Darringer has introduced 
a new type into ALGOL called a binary register type. Using this the 
width of data areas may be specffidd. For example:-

(i) REGISTER ACC <0:23>

(ii) BINARY REGISTER aRRAYY MM10RY [l:nopages,:U28<<0:31>

(i) above specifies that ACC is a 24-bit register while (ii) 
specifies that MEMORY is an array of 32-bit words split into pages. 
Each page contains 128 words. APDL also allows the user to 
associate some structure with declared registers by declaring 
subregisters. For example

BINARY SUBREGISTER FLAGS <1:2> = ACC "<<:]>

This associates the name FLAGS with the first two bits of ACC.

The time blocks and input/output declarations from SFD-ALGOL have 
been retained in APDL as have the control constructs of ALGOL 6<.
As an example of APDL, a short segment of a program describing 

a minicomputer is shown below. The reader may assume that names 
used in the program have been previously declared.
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cycle: time begin
IR■ := MEMORY [ MADR ' : MADR := MADE * 1
go, INSTRUCTION [ IR <2> + 1]
end

cla: . time begin
ACC := MEMORY [ IADR ]

.go, „t£ out
end

add: time begin
ACC := ACC + MEMORY [ IADR ]
go to out
end

stop: print (0)

An Example of an APDL Program.

The above program shows how APDL describes instruction fetching, 
the load accumulator instructionC cla ) and the add instruction.

2.1.5 ISP

ISP, designed by Bell and Newell(Bl) is another machine description 
language with an ALGOL-like structure.
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Tbe language contains a number of features which make it a
reasonably good machine description language.

(i) ' A means of specifying the width of machine data areas, plus
facilities for ascribing structure to these areas.

(ii) A powerful conditional construct, similiar to the guarded 
statement command recently proposed by Dijkstra(D4). This
.conditional statement is very useful for selecting statements 
for execution using the' instruction op code.

(iii) The usual logical and arithmetic operations plus a feature 
for specifying which operations may be executed in parallel.

The examples below, taken from the ISP description of the PDP-8
computer, illustrate the language

INSTRUCTION EE6KT^^\IR <0:11>

This sets up"- 12—bit rreister ccrlee IR, which acts as an
instruction register.

OPERATION ' CODE \0P <0:3> IR<0:2>

This specifies that the first three bits of IR may be regarded as 
the instruction op code.

( OP = 0 => AC ;= AC A MP [ EA ] )

This statement illustrates the'form of the ISP conditional
sScSemtnt.
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Translated into the more familiar ALGOL this statement isi-

if OP - 0 then
AC := AC and MP C EA 3

These ISP conditional statements may be combined in .a list as
shown below

( OP = 0 => si )
( OP = 1 =>: s2 )

•
• •

( OP = 15 «> sl6 )

Effectively, a guarded statement list has been built with only
the ISP statement preceded by a condition which is true being
executed.

ISP, like the other languages described above, has been 
developed by digital engineers for describing 'hard* machines. 
These machines tend to have a simpler structure than language 
oriented soft machines, as ’hard* machines usually lack higher 
level machine operations. Although both APDL and ISP could be 
used for abstract machine descriptions their hardware oriented 
features would make such descriptions rather clumsy.
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2.1.6 MDL

MDL( Machine Description Language ) is the only language referenced 
in the literature which is specifically designed for describing
abstract machines. It was designed by Wortman(W2) for describing 
the architecture of • a PL/1 machine.

MDL, whose syntax is based on PL/1, is a high-level language 
whose features include ( procedures, if-then-else statements, _ 

while-loops, and case statements. Language declarations allow the 
width and structure of data areas to be specified exactly.

To illustrate ' MDL, the MDL code describing the .PL/1 machine 
instruction CATENATE is shown below. The meaning of 'the MDL code
should be obvious to the reader familiar with high-level languages,

. CATENATE
local p,q

" procedure catenate uses a data stack called dss 

with stack pointer dsp„ ds Is struotured Into 

fields with the operand value held In field v 

and Its length held In a subfield of v called a "

" force types to chan type^ sur operand lengths ■ 

and obtain space for result " •

force__type (dnar, dsp, dsp-1 ) 
q.- ds[dsp].v.a + dsEdsp-l].v.a
p ■” string space(q) ,



" copy operands to string store and create 

descriptor for result n

move(dsEdsp~13.v,p) 
move(ds[dsp3.v,p+ds[dsp“l3.v.a) 
dsCdsp-U.v <- (q,p)
popds

An Example of an MDL Description

We considered using MDL as a vehicle for our experiments but
finally rejected it because of language features such as compound 
statements being bracketed by indentation. Such features cause 
compilation problems as can certain aspects of the PL/1 based
language syntax.
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2.2 The Design of the B17Q0

As the B1700 series of computers was chosen as the implementation
vehicle for our project, it is appropriate to present an overview

. . \ •­of the design of that machine. " ‘

The B1700 architecture is a radical departure from conventional • . 
machine architectures as it is designed solely to support the 
emulation of language oriented abstract machines. The design 
philosophy is expounded in a series of papers by Wilner(W3,W4,W5) 
and the design is fully documented in the B1700 System Reference 
Manual(B2).

The fundamental design tenet of the B1700 is flexibility. This 
has been achieved by leaving certain machine features to be 
specified by the implementor of the abstract machine rather than 
by the hardware designers. These features are:-

(i) The size of the basic memory cell
(ii) The machine instruction set

Generally these features are fixed by the hardware engineers 
and this immediately imposes certain machine constraints.
These are:-

(i) By fixing the machine cell size, operand precision is
defined, In order to circumvent this, clumsy high-level 
language constructs such as double precision type variables
must be introduced.
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(ii) The implementation of languages which require unorthodox 
storage organisations( such as LISP or SNOBOL ) is often
awkward on conventional machines. The natural store
organisation of such languages must be forced onto the 
rigid underlying store structure. This naturally results 
in losses, both in store utilisation and in execution speed.

(iii) Machine, instruction sets are usually designed as 
'general purpose' instruction sets. This usually means 
that they are not particularly suited to the support of any 
high-level language. The machine support requirements of 
different programming systems differ radically and it is 
impossible to accomodate all of them using a general purpose
instruction set.

The B1700 has a bit addressable store where cell sizes may be 
defined by the s-machine implementor. S-machine instruction sets 
are implemented via microprograms held in an overlayable control 
store. Separate instruction sets may be defined to support each 
programming system on the machine and these may execute concurrently 
by multiprogramming microprograms in control store.

The freedom made available by the variable memory cell size and 
definable instruction set offers economic advantages in:-

(i) Store Utilisation

(ii) Program Execution Speed

(iii) System Performance Evaluation
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Wilner suggests that the extra .computation required tq accomodate 
this flexibility is more than compensated by the above advantages. 
Each js considered in more detail below.

• 2.2.1 Store Utilisation

The ppoblem of minimising memory usage is one which has existed 
throughout the history of computing. Whilst'the introduction of 
virtual memory systems has largely solved the problem as far as the 
user is concerned, the use of memory must now be managed by 'the

I .
system. Optimum utilisation requires program working sets to be 
minimised. By physically reducing the store requirements of a 
program,more usable information can be stored per memory page.
Hence the number of pages in the program working set may be reduced.

The representation of information in systems with a fixed memory 
cell size has a high degree of redundancy. Program data must be
fitted to the machine cell size and situations where truth values
are stored in 8 bits and small integers in 24 bits are not uncommon. 
Such situations need not arise on the B1700 as data may be stored 
in the appropriate number of bits required to hold that information. 
For example, truth values would be represented by a single bit. As 
a result, the number of bits required to encode a given amount of 
data can be significantly reduced in a bit addressable machine.

Compaction may also be achieved in the storage of s-machine code 
by utilising frequency encoding techniques . with instruction 
op codes. These techniques, suggested by Huffman(H2) involve
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There are two primary contributions to this increase in speed:-

(i)

(ii)

Language oriented abstract machine instructions can have 
a higher semantic content than general purpose machine 
instructions. This means that a single language oriented 
instruction may replace a number of general purpose machine
instruct!ons.

As language oriented machine instructions reflect High-— 
level language operations, there are fewer instructions to 
execute when compared with the same high-level program 
compiled into a general purpose instruction set.

Implementing language oriented abstract machine interpreters via 
a microprogram removes the traditional disadvantage of interpretative 
implementation, that is, the significant decrease in execution 
speed in an interpreted system. Wilner estimates that microprogrammed 
interpreters are about 10 times faster than the same interpreters 
coded in a high-level language.

When a suite of programs was executed on a B1700 and on an IBM S/3 
computer of similiar power, the B1700 executed the programs in 
about half the time taken by the S/3 machine. This illustrates 
the gain in speed possible with a language oriented machine.

2.2.3 System Performance Analysis

The need for an analysis of program performance is becoming more 
important as high-level languages displace machine qpdes for 
general programming. Knuth(Kl) has shown that most programs spend 
about 90% of their execution time in relatively short code sections, i

I®
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For optimum performance it is important to identify and 'tune*
these sections of code.

Up till now, system performance analysis has been mostly intuitive 
rather than based on quantitative measurements. This is partially
due to the fact that performance analysis can perturb a system to 
such an extent that the validity of measurements is in doubt.
Even if this is not the case, performance measurements usually 
result in significant systems overhead.

A solution to this measurement problem is to build the measurement 
tools into the machine hardware, thus avoiding any perturbation of 
the software performance. This is the approach used on the B1700,

Special purpose monitoring instructions, suitable for gathering 
information on the performance of executing programs can be
included in each s-machine. Wilner estimates that this adds no
more than to program execution time. It is likely that this
slight overhead can be compensated for by software tuning using 
the results of the system monitoring.

2.2.4 The B1700 - A Summary

The design of the B1700 computer is a, significant advance over 
most current machine architectures. The machine is designed 
solely for the implementation of soft machine interpreters and 
exhibits more flexibility than is usual in computer architectures.
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This flexibility is attained by:-

(i) Microprogramming
The B1700 has no fixed instruction set and different machine
instruction sets may be implemented for each s-machine.

(ii) Bit AcldiressabXe Store
An arbitrary store cell size is not imposed on the s-anachine 
programmer. He may design his' s-machine to use the most 
suitable store cell size.

As' a result of 'this flexibility, more efficient use may be made of 
the machine store, program execution times may be reduced, and 
system measurement facilities may be included in each s-machine.
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2,3 Microprogramming the B1700 .

This section surveys microprogramming languages which have been 
developed or proposed for the B1700 computer series. Three 
languages, each of which may be regarded as a high-level assembler 
language, are discussed. These languages are:-

(i) MIL
Burroughs proprietary language developed for microprogramming
the B1700.

(ii) BML
A register transfer language whose syntax is based on ALGOL..

(iii) MPL1700
A higher-level language than either BML or MIL but still 
oriented towards the B1700. .

The features of each of these languages will be discussed in turn , 
with the section concluding with a comparison of MIL, BML, and
MPL1700.

Before describing these languages however, we provide a brief 
exposition of the B1700 micro-architecture. This should enable 
a reader without detailed machine knowledge to understand examples 
used in the text. A fuller description of the micro-architecture 
can be found in Appendix 2 and the definitive description in 
the B1700 Systems Reference Manual(B2). .
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2.3,1 The B1700 Micro-architecture

The B1700 has a fairly complex micro-architecture. The machine 
has a total of 59 registers accessible to an executing microprogram, 
a 32 element address stack, and a scratchpad of 16 48-bit registers. 
The scratchpad may also be considered as 32 24-bit registers.
Of the 59 registers, there are 4 general -purpose registers called 
X, Y,.T, and L. These are 24-bit registers. The remaining registers 
are dedicated to special purposes. These are:-

(i) Store Addressing
FA and FB, which may be concatenated to form the F register.

(ii) Condition Registers .

XYCN, XYST, FLCN, BICN, and INCN. These hold information
about the relative states of the X, Y, and F registers and 
also may act as interrupt registers.

(iii) Result Registers
These hold the results of functions of X and Y computed by

■ ■ a 24-bit -function box.

(iv) Microinstruction Addressing 
Registers A, M, and MBR.

(v) Control Register .
Register C holds information about the kind of data( binary, 
decimal, etc ) currently in use.

(vi) Base and Limit Registers
Registers BR and LR
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The address stack is used when calling micro-routines,with the 
top of ' this stack held in a register called TAS. The scratchpad
is used for the storage of temporary information and for implementing 
s-machine registers.

The B1700 is a vertically microprogrammed machine. This means that 
each microinstruction specifies a single machine operation. 
Horizontally microprogrammed machines, like some models of the 
S/360 series, have wider microinstructions in which several 
operations to be executed in parallel may be specified.

Each B1700 microinstruction is 16 bits wide and there are 36
instructions in the microinstruction set. As the majority of
computations involve either the general purpose registers or
the F register, there are a number of microinstructions for operating
on these registers. For example:-

(i) Shift/Rotate Instructions
Either the X, Y, or T registers may be shifted or rotated 
as can the concatenated register XY.

(ii) Memory Transfer Instructions
These cause data to be moved to and from memory using the 
general purpose registers. The memory address is specified
in FA and the number of bits to be transferred in FB.

(iii) F Register Instructions
These instructions change the memory address and/or the
field length.
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In addition, microinstructions exist to transfer data between 
registers and between registers and the scratchpad. • There are 
instructions for conditional and unconditional branching, call
instructions and a special instruction., permitting control store
to be reloaded dynamically. ’ f

2.3.2 MIL

The language MIL( Micro Implementation Language ) is a language, 
developed ' by Burroughs, to microprogram the B1700. It is
fundamentally an assembly language with the majority of MIL
statements translated into a single microinstruction. However, 
there are a number of higher-level facilities in MIL;-

(i) Macros
The user may define simple string replacements or more 
complex macros which may have parameters.

(ii) Conditional Statements .
If-then-else conditional statements are a feature of MIL.

(iii) Block Structure
A limited form of block structure is allowed which defines 
compound statements and the scope of macro names.

The syntax of MIL is based on English rather than algebraic notation 
It has some affinity with COBOL as each MIL statement starts with 
a reserved verb and ’noise’ words are permitted within statements. 
The language is illustrated by example below,and is fully defined 

in the appropriate Burrough’s•reference manual(B3).
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Some examples of MIL statements are:-

(i) DEFINE BASE_REG = SIA

This associates the name BASEJREG with the scratchpad location
< SIA, Subsequent references to BASEJREG will cause it to be

replaced by the string "SIA”.

(ii) MACRO ADD(A, B, C) = .
MOVE A TO X
MOVE B TO Y
MOVE SUM TO C$

This defines a macro called ADD with formal parameters 
A, B, and C. The actual parameters would be registers or 
scratchpad locations.

(iii) READ 8 BITS TO X INC FA

This statement transfers data from memory to the X register. 
Eight bits are transferred and the memory address register
FA is incremented by 8.

(iv) IF XYCN(3) THEN
BEGIN

SHIFT X LEFT BY 3 BITS
COUNT FA DOWN BY 8

END ELSE
CALL JUMPOVER ’

'/ This example illustrates the IF statemnt, and the SHIFT,
COUNT, and CALL statements. Bit 3 of register XYCN is

■ tested. If it is on, the X register is shifted left and
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register FA is decremented by 8. If the tested bit is off,
a call is made to the micro-routine JUMPOVER.

2.3.3 BML .

BML is a - register transfer language for the B1700, designed by
De Witt et al(D2). The motivation for its implementation was that,
when introduced, MIL was 'company confidential* and MIL programs 
could not be published.

The language is slightly lower level than MIL, but its syntax is 
more consistent, as it is based on an algebraic notation. To illustrate 
BML, the examples below; display BML commands along with their MIL
equivalents. •

(i) MIL

READ 8 BITS TO X INC FA

BML ’

X::= MEMC8,FA+3 .

Memory references in BML are made via the reserved word 
MEM. The bracketed symbols include the parameters of the
instruction.

(ii) MIL
IF X > Y THEN

CALL XCREATER -
ELBE BEGIN

MOVE Y TO X
LIT 0 TO Y •
SHIFT T RIGHT BY 5 BITS

END



BML
IF X > Y GO TO LAB

CALL XGREATER
GO TO LABI

LAB: X := Y
, Y := 0
T := SHL T(5)

LAB! '

Notice that BML does not have a compound statement facility
or an if-then-else statement. This necessitates the use of 
labels and go to statements to implement simple conditionals

BML has no macro facilities and lacks MIL’s limited block structure 
Apart from a slightly neater syntax( at least for non-COBOL 
programmers ) it appears to offer no advantages over MIL,

2.3.4 MPLI700

MPLI700 is a BI700 microprogramming language designed as part of 
the microprogramming research project at iSt Andrews University.The
language is described by Fisher et al(FI).

MPL1700 is a machine dependent language but at a higher level than 
both MIL and BML. The language has high-level control statements 
such as repeat-until, if-then-else, case-of, etc. There is a 
simple macro facility, variables may be declared•and structure may
be ascribed to these variables.
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An example.of this latter-facility is;-

structure listelem = ( car(16),cdr(16) )

This indicates that a list element is a 32-bit quantity.
The first 16 bits are referred to as 'car* and the second
16 *cdr*. .

Similiarly arrays of structures may be defined:-

array 26 structure list = ( car(16),cdr(16) )

This defines an array of 26 structures which may subsequently 
be associated with some name.

Structures are associated with names as follows:-

list baseregs •

This specifies that the variable baseregs should be considered 
of type list.

Individual elements of the structure may be accessed via the 
associated name:- ,

baseregs(7).cdr
This accesses the second 16 bits of the 8th element of
baseregs.
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-MPL1700 statements are register transfer statements allowing both 
right and left assignment. Some examples are given below:-

(i) T := S1A => LR

This specifies that the contents of S1A be moved to T
and also to LR

(ii) iT L < 10 then
• { if T = 4 then T := 0 else T := 1 }

An MPL1700 conditional statement whose meaning should be
fairly evident.

(iii) while T < 10 do
T T + a + 5

Similiarly, an MPL1700 loop with a fairly obvious meaning.

MPL1700 is an interesting attempt to raise the level of 
microprogramming languages although it is difficult to envisage 
the language implementation producing microcode as efficient as 
that possible using a lower-level language. This, however, can 
only be demonstrated when the language implementation is complete
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2.4 Microprogramming Languages for Other Machines

In this section, we examine a number of other microprogramming 
languages which have been developed to microprogram various
computers.

Recent trends in microprogramming language design have been away 
from the complex, difficult to read, micro-assemblers towards 
higher-level, more readable languages. Generally, however, 
commercially developed languages are still fairly low-level - 
the level being approximately that of MIL.

In a university environment, some research work has been carried 
out in developing a high-level microprogramming language for an 
Interdata 3 computer. This language, based on PL/1 is described
in section 2.4.3 below.

Firstly, we examine two microprogramming languages which illustrate 
the trend towards higher-level microprogramming. These languages
are:-

(i) The Datasaab FCPU microprogramming language.

(ii) The MLP-900 microprogramming language.

2.4.1 The Datasaab FCPU Microprogramming Language

The microprogramming language for the Datasaab FCPU( Flexible 
Central Processing Unit ) has been described by Lawson and 
Blomberg(L3). It was designed to facilitate writing and reading 
microprograms, as it was anticipated that more microcode would
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be written for the FCPU than for previous medium-scale machines.

The language has simple block structures allowing local and global 
declarations, do-loops, and a case statement. In spite of this, the 
language is still a low-level language as the FCPU machine registers 
may be directly accessed. The example below provides an illustration
of the form of the language.

/* Emulation of Datasaab D23 processor */

D230P: DO CASE (8)
OPOO: . DO

END

• ’
OP07: DO /* Add instruction */

AR = ADD (AR, AUTFR,0)
SS-S-INty = AU-OVERFLOW
FUTFR = AR
WRITE(ACR.l,FUTFR.O,LEFT) LENGTH (24)
VLS-I-IND = AU-SIGN
START(TARGET,D230P)

END
END

An Example, of the Datasaab FCPU Microprogramming Language
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The case switch is made on the basis of a register value with
the number of possible cases indicated by the bracketed figure
following the reserved word CASE.

According to Lawson, the use of this language has improved initial 
program construction and subsequent debugging, as well as
simplifying microprogram maintenance.

2.4.2 The MLP-900 Microprogramming Language

The MLP-900 was a fairly early(1970) user-microprogrammable machine. 
The machine design is described by Lawson and Smith(L4) and its 
microprogramming language by Oestricher(O2).

This microprogramming language, called GPM, is a register transfer 
language but it has high-level control statements and a means 
of writing simple arithmetic expressions.Some examples of GPM 
statements are given below:-

F1 + ( F1 AND F2 ) OR ( F3 AND F4 )

This is a register assignment statement assigning the 
value of the logical expression to register F1.

DO
FO + F1 + F2 .
IF FO > F4 BREAK

END

This Is a GPM loop. Notice that the DO-END pair delimit
an unbounded loop with loop exit made via the BREAK statement.
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Other control statements in GPM include an if-then-else statement 
and a case statement. Unfortunately, Oestreicher’s paper on GPM 
is rather brief and it has not been possible to obtain fuller
information about the language.

2.4.3 MPL - A Machine Independent Microprogramming Language

MPL is a ’machine independent:’ microprogramming language developed 
by Eckhouse(El) for the Interdata 3 computer. Its syntax is based 
on PL/1. Eckhouse has also surveyed a number of other
microprogrammable machines and maintains that reasonably efficient 
implementations of MPL could be devised for them.

MPL has facilities for declaring data area names and for defining 
the width of these data areas. There is no mechanism for ascribing 
structure to the data areas. The language facilities include 
procedures, expressions, and control statements such as if-then-else, 
do-while, and go to. Some examples of MDL statements and
declarations are;-

(i) DCL ( R0,R1,R2 ) BIT(12)

This declares three 12-bit registers R1,R2, and R3.

(ii) R0//R1 = R0//R1 + 2

This specifies that registers RO and R1 are to be concatenated
and that the contents of the concatenated register are to be 

- - •- ' increased by 2. The concatenation operator is //.
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(iii) IF CARRY THEN GO TO RXFORM

This tests'the logical variable CARRY. If true, control
is transferred to the label RXFORM. CARRY is declared 
as an EVENT type which may be mapped onto the particular 
bit in the underlying machine which detects carries.

Eckhouse has implemented MPL using a three phase system. Firstly, 
the language is translated into a machine independent intermediate 
code. Eckhouse claims that this code may be mapped onto a number 
of different microprogrammable machines. This intermediate code 
is translated by phases 2 and 3 of the compiler into Interdata 3 
microcode.

The system appears to be successful but, as the author admits, the 
Interdata machine has a very simple microinstruction set and 
micro-architecture. As MPL was designed to produce emulators for 
'hard* machines no information on its suitability for the building 
of language oriented soft machines is available. Unfortunately 
there appears to have been no further work done with MPL since 
Eckhouse*s thesis and, as a result, language evaluation is
a difficult task.
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2.5 Summary

This chapter has covered background material which is relevant
to our project. Much of the research in this field has taken
place on an * ad hoc* basis. With the exception of Wortman*s MDL 
and, to a lesser extent, Eckhouse’s MPL little direct contribution
was made to our work by previous research. Four distinct'topics
have been covered:-

(i) Machine Description Languages

(ii) The Design of the B1700 Computer

(iii) Microprogramming the B1700

’• (iv) Other Microprogramming Languages

Section (i) reviewed a number of machine description languages.
Most of these are designed as ’hard* machine description languages 
and are not particularly suitable for the description of s-machines.
One s-machine description language, based on PL/1, is described. .

Section (ii) examined the design of the B1700 and how that machine 
is designed to support s-machine interpreters. The B1700 has a 
store which is bit adressable and may be user microprogrammed. The
microinstruction set has been designed as a general purpose instruction 
set for constructing a variety of s-machine interpreters. The 
flexibility offered by these features has advantages in memory 
utilisation and increased program execution speed.
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The remainder of the chapter is devoted to a study of microprogramming 
languages. Firstly, three microprogramming languages for the B1700 
are described. These are all machine dependent languages with some 
high-level language features. Of these languages, MIL and BML •are 
basically assembly codes but MPL1700 adopts a somewhat higher 
approach to microprogramming the B1700.

Finally, we examined microprogramming languages available for other 
machines. These exhibited a definite trend towards a higher level 
and the final microprogramming language studied, MPL.,, appears to 
be a true high-level language. Unfortunately,development of MPL 
does not appear to have continued beyond the stage of investigating 
its feasability.

From our survey of background work on machine description and 
microprogramming languages a number of conclusions can be drawn.
These are:-

(i) The trend in microprogramming appears to be towards higher- 
level languages which are machine dependent. PL/l appears 
to be the dominant language influencing the syntax- of 
these microprogramming languages.

(ii) Machine description languages have been designed primarily 
by digital engineers for describing current hardware. With
the exception of Wortman’s MDL( again PL/1 based ) these 
machine description languages are not particularly suitable 
for the description of more complex, language - oriented soft
machines.
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(iii) Apart from Eckhouse’s pioneering MPL there seems to have 
been no attempts made to develop a true high-level 
microprogramming language. Indeed, a recent conference 
discussion, chaired by Lawson(L5) regarded the prospect 
with horror because of possible inefficiencies.

Our survey of background material convinced us that investigating 
the possibilities of a combined microprogramming and s-machine 
description language was a useful aim.

Note added in preparation

A very recent publication by Dewitt(D6) describes a proposed 
high-level microprogramming language which is, in many respects, 
similiar to ours. Special attention has been taken over the
problem of generating efficient microcode, but the language 
implementation is not yet complete.
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CHAPTER 3

SIMULATING THE B1700 SYSTEM

This chapter is a description and evaluation of a simulation
package for the B1700 micro-computer system. This simulation
system is comprised of two programs:- ■

(i) A hardware simulator.

(ii) A compiler for MIL, Burroughs microprogramming 

language.

The simulation system is described in a number of sections:-

(i) A simulator description. This presents an overview of the
hardware simulator and describes the simulation of the B1700
arithmetic unit and memory management system.

(ii) Simulator extensions.This describes a number of facilities 
which we have added to the simulator for simplifying
the collection of diagnostic information.

(iii) The MIL compiler. This section is an overview of the 
system used to compile MIL and a description of an 
intermediate machine code used in the compilation.

(iv) A review and evaluation of the system. After presenting 
examples of system output, the performance of both the 
simulator and the MIL compiler is described. Defects and
possible system improvements are discussed.
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However, before covering this material, it is apposite to examine 
the reasons why this part of the project was undertaken.

As explained in Chapter 1, the work described here is part of a
larger research project investigating the construction of s-machines. 
This larger project was initially based on the B1700 computer. The 
author of this thesis was involved at an early stage of the project 
before any hardware became available. The decision to build 
a B1700 simulator was taken at this stage, for two reasons:-

(i) It would provide an opportunity for the author and others 
working on the project to familiarise themselves with the 
B1700 micro-hardware. This was important in view of the 
projected development of our research towards a high-level 
microprogramming language.

(ii) A simulation system would allow microprograms to be constructed, 
tested, and evaluated without recourse to (unavailable)
BI700 hardware. The debugging and evaluation advantages •
of a simulation system compared to a hardware system are well
known.

Accordingly, the system described below was built and, in general,
has satisfied our initial aims. The implementation of the
simulation system unquestionably provided in-depth knowledge of 
the machine hardware which has been essential for later parts of 
the project.
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The system has been used to develop and test microprograms but, 
unfortunately, system considerations dictate that it executes 
under a batch operating system. As interaction with the system 
is impossible, its use as a debugging tool is necessarily limited.

3.1 An Overview of the Hardware Simulator Program

In this section, we present an overview of the hardware
simulation system. The general structure of the program is 
described along with the simulation of memory addressing and the 
arithmetic and logical function box. For a fuller description 
of the simulator, the reader is referred to the document by 
Sommerville(Sl) which provides a complete description. The BI 700 
micro-architecture is described in Appendix 2 and, more fully, 
in the BI700 System Reference Manual(B2).

3.1.1 The Structure of the Simulator Program

The BI700 simulator is implemented in ALGOLW and runs on an 
IBM S/360 computer. The program interprets BI700 microinstructions, 
and, therefore, has the usual interpreter structure. That is, the 
main program consists of a loop, fetching and decoding each 
microinstruction and then switching to the appropriate code to 
interpret that instruction.
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The main simulator algorithm is shown belowi-

while simulating do 
' {

fetch and decode instruction
case

op code = 1: REGISTER MOVE
op code = 2: SCRATCHPAD MOVE

. •
• -
op code = 0004: NORMALISE

endcase
else , error

} •

The Structure of the B1700 Simulator

Programming the simulator presented few problems as each 
microinstruction has a clearly defined function with no 
intra-instruction parallelism. However, the simulation of the 
arithmetic unit and its associated parallelism is of interest 
as is the simulation of the B1700 memory addressing scheme.
These are described in more detail below.



3.1.2 Simulating the Arithmetic and Logical Unit

The arithmetic and logic unit of the B1700 is a hardware module 
which accepts as input the general purpose registers X and T, along 
with the control register C, The output from this unit consists 
of various arithmetic and logical functions of X and Y, such as 
sum, difference, logical and, etc. These functions are
automatically computed in parallel whenever the contents of X,
Y, or C is changed. The C register provides information about the 
type and length of the operands in X and Y,

Obviously, in a serial program such as the B1700 simulator, it is 
impossible to simulate factually the parallel operation of this 
unit. A different approach, producing the same result, was 
therefore adopted. ■

It is clear that the recomputation of all arithmetic and logical
functions whenever X, Y, or C is changed is unnecessary. The X 
and Y registers may be used for purposes not requiring ALU results 
and, when such results are required, generally only one function 
is needed. This fact is used in the technique adopted to
simulate the ALU.

When a microinstruction calls for an ALU function result( these are 
held in special purpose registers ), this call is detected and 
an ALGOLW function is called. This function computes the appropriate 
arithmetic or logical function required using the X, Y, and C 
registers. Thus ' the operation of the ALU may be simulated without 
parallelism and without unnecessary computation being carried out.
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3.1.3 Simulating the B1700 Memory Management System

In a B1700 processor, all memory operations are channelled
through a hardware module known as the memory control unit(MCU).
The function of this unit is to provide memory bit ■ addressability 
for the ■ executing microprogram. Memory is, in fact, organised
in bytes and the MCU must resolve the difference between the bit 
address used by the microprogram and the actual byte address.

Main store on the B1700 is addressed by a 30-bit address, divided
into three fields.

(i) Bits 0-23
The absolute bit address in memory

(ii) Bits 24-28
The number of bits required( 0-24 )

(iii) Bit 29
A direction bit indicating whether the address refers to the 
top or bottom bit of the element being fetched.

The MCU fetches the byte addressed by the most significant 21 
address bits plus three bytes above or below it in memory, depending
on the field direction bit. The appropriate number of bits are 
then selected from this group of four bytes.
The simulation of the MCU is carried out by an ALGOLW procedure
called MEMORY CONTROL.



-.55*

MEMORYjCONTROL takes three parameters

(i) The general purpose register used as a source or 
destination register for the • data transferred from memory.

(ii) The number of bits to be fetched from memory.

(iii) The operation to be executed( read, write, or swap ).

Notice that a field direction is not specified. This is unnecessary 
as the address register FA is modified at an earlier stage in the 
simulation if the field direction is negative. Register FA, 
therefore, always refers to the most significant bit of the 
element in store. The algorithm describing the procedure 
MEMORY_CONTROL is shown below

MEMORY_CONTROL

% Parameters are: a general purpose register
% : the number of bits to be fetched from store
% : the operation to be executed
% Local variables: MIR, MIR2

Compute byte address from FA 
MIR•: = Fetch 4 bytes from store
Compute bit address using least significant 3-bits in FA 
ifoperation = read then

{ .
Transfer appropriate number of bits from MIR to 
specified general purpose register

} .
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else
if operation - write then

{
Enter appropriate number of bits into MIR from
general purpose register 
Rewrite MIR to memory

}
else

{
% Swap operation
MIR2 : = MIR
Perform write operation
MIR := MIR2
Transfer appropriate number of bits to general
purpose register .

}

END MEMORYjCONTROL

The Algorithm used in the Simulation of the B1700
Memory Control Unit
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3.2 Extensions made to the B170Q Simulator

A simulator program designed for debugging and program evaluation 
should contain facilities over and above those provided by the 
bare machine hardware. These facilities should allow diagnostic 
information to be collected and should gather information on the 
performance of the machine. Accordingly, additional microinstructions 
have been added to the B1700 simulator instruction repertoire and 
system measurement routines have been designed for the simulator.
These are described below.

3.2.1 Additional Simulator Microinstructions

Microinstructions have been added to the simulator to perform the 
following functions

(i) To dump the contents of specified storage areas to the 
line printer

(ii) To provide simple read and write input/output operations

These added microinstructions permit the programmer to display
the contents of B1700 storage areas during the testing and
debugging phase of microprogram development;
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Dump Microinstructions

These instructions may be included anywhere in a microprogram and 
allow the following operations to be carried out:-

(i) Dump memory

(ii) IDx^mp main, memory between the base and limit registers

(iii) Dump alt regiseem , the scracchad, , and the stack

(iv) Dump the mccaint adresst stack

(v) Dump hit scrathhadd

(vi) Dimpp tilt sinrrat p^psi, and addrsst regisSris

The provision of these operations considerably simplified the testing 
of the simulator and the development of microprograms. Until the 
I/o operations described below were implemented the dump 
instructions were the only means of output from the machine.

Input/Output Microinstructions

Input/output on the B1700 is normally descriptor based and requires 

a considerable amount of operating system antsrveiSion. It was not 
thought appropriate to include such a general purpose system in our
simulator.

Thus, a very simple I/O scheme was devised primarily to simplify 
microprogram SsiSiig. Two additional instructions were added to
the maceoai.iSeutSaoi set.
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These instructions are:-

(i) A read instruction

(ii) A write instruction

When using these instructions, the microprogrammer specifies the 
number of bytes to be input or output, the store address of the 
information to be transferred and a peripheral device number. This 
information must be loaded into general purpose machine registers.
The read and write microinstructions extract this information from
the appropriate registers and carry out the data transfer.

3.2.2 System Measurement

The simple provision of facilities for system measurement and 
performance evaluation is a significant advantage offered by 
a simulation system compared to a ’hard’ system. Facilities of 
this type which have been designed for inclusion in the BI700
simulator are:-

(i) A means of counting the number of accesses to each machine 
register?

(ii) A means of counting the number of accesses made at a 
particular store address.

(iii) A count of the number of times each instruction in the
microinstruction set is used.
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To date, only the latter facility has been implemented. With the
information obtained from the microinstruction count the simulator
calculates the total time( in B1700 clock cycles ) taken for
program execution.

The implementation of the location access count features in the 
simulator is a straightforward process. A simulator directive

COUNT <parameter list>

specifying the locations and registers to be monitored could
be introduced. This facility would enable the user to optimise
his use of registers and store.

3.3 A Translator for MIL

This section of the thesis discusses the reasons for implementing 
an MIL compiler, and gives a brief over-view of the structure of 
that program. For a fuller description of the techniques used 
in compiling ' MIL, the reader is referred to Sommerville(S2).

The language MIL.is a low-level microprogramming language which 
has been used to implement all the manufacturer supplied' 

microprograms implemented on the B1700. The language is briefly 
described in chapter 2 of this thesis and definitively in the 
appropriate Burroughs reference manual(B3). Fundamentally, it is 
an assembler language with a COBOL-like syntactic structure. That is, 
an English-like rather than an algebraic syntax notation is used.
MIL statements generally have a one-to-one correspondence with 
B1700 microinstructions.
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However, the language has a number of high-level features:-

(i)

(ii)

(iii)

Foggi'animer defined macros

An if-se conditional statement

At limited fornn of block sfcrrucfcim where macro

names may be localised

The implementation of a compiler for MIL is therefore more complicated 
than the construction of a simple assembler. However, the work 
involved is in no way comparable with implementing a compiler for 
a high-level language.

The decision to undertake the implementation of an MIL compiler 
was made for the following reasonss-

(i) The B1700 simulator was in the final stages of implementation 
. and a means of writing test microprograms was required.

Previously, a very simple assembler had been used to write 
such SssS programs but using this was a tedious and error- 
prone procedure. This assembler language was later modified 
to become IML, the code generated by the MIL compiler.

(ii) As part of our larger research project, is was decided
to implement various s-machines as B1700 microprograms. A 
language was required for writing tCsie matronrogrami.

(aia) The construction of an MIL compiler would provide
experience in using various translation techniques. It was 
envisaged SCiS this would be useful at a later stage of 
this project.
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3.3.1 The Translation Program

The system which was implemented to compile MIL to microcode is a 
two-pass system. The first pass accepts MIL statements as input 
and generates an intermediate code called IML. This is translated 
to binary microcode by the second pass.

There were two reasons for adopting this two-pass organisation:-

(i) The syntax of MIL is such that SN0B0L4, with its powerful 
pattern matching facilities, is a very suitable language 
to use in the translation of MIL. However, it is not 
particularly suitable for the generation of binary code 
strings.

(ii) A translator for IML could be easily produced by modifying 
an already existing program. The construction of the second 
pass of the MIL translation system was therefore a simple 
operation.

SNOBOL4 is a very suitable language for processing MIL statements 
because of its ability to handle MIL’s English-like syntax. Most 
MIL statements contain ’noise’ words such as BY, TO, FROM, etc 
whose function is merely to act as separators. SNOBOL’s pattern 
matching features simplify the recognition and removal of such
words.

A feature of MIL is the alternative notations allowed for various 
constructs, especially the conditional statement. For example, a
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simple test for equality of machine registers X and Y may be 
expressed in four different ways:-

(i) IT* X « Y THEN

(ii) IF X EQL Y THEN

(iii) II* XYCN(2) THEN

(iv) IF XYCN(2) TRUE THEN

Naturally, such a plethora of notations causes compilation problems. 
However, SNOBOL's pattern matching features may be used to convert 
all alternative notations to that shown in (iv) above before 
any syntactic or semantic analysis. Notation (iv) is the most 
general form of the conditional statement.

The removal of 'noise* words and the simplification of alternative 
notations is carried out by the scanning procedure in the MIL 
compiler. This procedure also deals with the expansion of macros 
using the well known input stack technique.

After this preprocessing, the translation of MIL statements is 
essentially the same as that carried out in a conventional assembler, 
The first word of each statement uniquely identifies the
microinstruction to be generated.
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The basic translation algorithm is shown below

C0MPILEJ1IL

initialise compiler 
while compiling do

' {

Abstract first word of MIL statement
case

word =? "MOVE” : REGISTER MOVE INSTRUCTION
word « "LIT” : LITERAL MOVE INSTRUCTION

word = "SHIFT" : SHIFT OPERATION
endcase

else error
}

END COMPILEJ4IL

The Basic Translation Algorithm used in the MIL Compiler

Having identified the statement to be translated, it is checked 
for semantic and syntactic errors. If it is free of errors, the
statement is converted to its IML form. This conversion is 
straightforward as IML expects register names, literals, etc to be 
used rather than some more concise notation. The intermediate 
language IML is described briefly below.
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3.3.2 Intermediate Machine Language

Intermediate Machine Language is a very simple assembly language 
for the BI700 system. It was originally devised to ease the
testing of the B1700 hardware simulator, but ii now used as the 
code generated by both the the MIL compiler and the SUILVEN 
compiler( described in Chapter 5 ).

There is a one-to-one correspondance between binary microcode and 
IML instructions. Each IML instruction has the form:-

<op code>C,<register list>3C,<variant list>3 '

where enclosure in square brackets indicates that the enclosed 
elements are optional depending on the individual instruction.
The op code is a numeric( not mnemonic ) code defining the 
instruction, with the register'list being a list of register 
names. The variant list is a list of numbers representing 
possible variants for each instruction. IML has no labels - 
all jumps are encoded as numeric displacements.

To illustrate the language, some examples of IML instructions along 
with their MIL equivalents are shown below.

IML

(i) 1,X,Y

(ii) 12i 15

(iii) 8,FL,H18

MIL

MOVE X, TO Y

GOTO BABEL

MOVE HEX 18 TO FL
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3.3.2 Ii■Serms<iiats MaotiinLe Language

Intermediate Machine Language is a very simple assembly language 
for she BI700 system. IS was ogaganllly dsvaisd So ease she 
SssSang of she B1700 hardware simulator, but is now used as she 
code generated by bosh the the MIL compiler and she SUILVEN 
compile! described in Chapter 5 ).

There is a one-So-one toreeipomdance between binary mateocods and 
IML amstructaoni. Each IML anssrucsiom has she form:-

<op code>C,<eegasSsr lisS>3E,<varianS list>]

where enclosure in square brackets indicates that the enclosed 
elements are optional depending on she individual instruction.
The op code is a numericC nos mnemonic ) code defining she 
instruction, with she register list being a list of register 
names. The vaeaamS list is a list of numbers representing 
possible variants for each instruction. IML has no labels - 
all jumps are encoded as numeric displacements.

To illustrate she language, some examples of IML instructions along 
wish their MIL equivalents are shown below,

IML MIL ---

(i) 1,X,Y MOVE I TO Y

(ii) 12,15 GOTO LABEL

(iii) 8,FB,H18 MOVE, HEX 18 TO FL
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3.4 The Output Produced by the Simulation System

In this section, an example of the output produced when a microprogram 
is compiled and executed on our system is presented. The example 
consists of a micro-routine to convert numbers input from EBCDIC 
representation to their appropriate numeric equivalent. This is
a•commonly required operation in any high-level language. In the 
example below, appropriately placed DUMP microinstructions show the 
changing values of the simulator registers.
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43 - .. EXIT
44 NONNUMB MOVE. 1 TO X
45

<46
POPSTACK Y
CALL ERROR '

^7 EXIT
48 .

f49 ERROR ROUTINE IS NOT
? 50 ’ * TO INDICATE AN ERROR

51
T52 ERROR MOVE 999 TO Y

53 DUMP REGISTERS
<54 EXIT
' 55

56 ★ THIS-IS THE START OF
; 57
<5.8 START LIT 0 TO X
i.59 LIT 5 TO L

60 CRDIN
761 • CLEAR Y

62 CALL GETINTEGER
<63 DUMP MAINREGS

* PUT ERROR CODE IN X
* CLEAR STACK

IMPLEMENTED.IT MERELY MOVES 999 TO Y 
HAS OCCURRED AND DUMPS THE REGISTERS

THE PROGRAM

* SET UP I/O INSTR.
* X HAS ADDRESS,L THE
* NO OF CHARS READ 

■ * SET Y TO ZERO
* CONVERT TO BINARY

5

F

IMPLEMENTED.IT


ST ANDREWS UNIVERSITY 61726 PROCESSOR SIWI&T-10N ~

CONTROL STORE DUMP
■ -

—

0 #00000005 • #0000C022 #000010Al #00000403 ------ #000010E0
6 #0000lBA4 #00008018 #00000423 #000011A8 #00008800

12 #00008140 #00004CCl #0000C00A #000081EF #00004CAl
18 #000081FQ #0000l8E3 #00001BA0 #OOOOFOl4 #000013Al
24 #0000D00E #00000008 #00001BAO #00001BA4 ' #00008001
30 #OOOOEC01 #0000lBA4 #00009100 #000003E7 #00000004
36 #00000000 #00008305 #00000600 #00000320 #0000F022
42 #0000FFFF

DUMP OF MAIN PROCESSOR REGISTERS **********

GENERAL PURPOSE REGISTERS X = #00000040 Y » #00000040
L = #00000003 T = #00030016

ADDRESS 'REGISTERS FA = #00000020 FB “ #FBFBFBFB
INSTRUCTION REGISTERS M = #00000008 A = #0000001A
BASE/LIMIT REGISTERS , BR = #00000000 LR = #00000000
TOP ELEMENT OF ,ASTACK TAS * #00000355 ■

DUMP OF MAIN PROCESSOR REGISTERS **********

GENERAL PURPOSE REGISTERS X = #00000355 Y = #00000040
L = #00000003 I ’» T = #00030018

ADDRESS REGISTERS FA = #00000020 FB = #FBF8FBFB
INSTRUCTION REGISTERS M = #00000008 A = #0000002A
BASE/LIMIT REGISTERS BR = #00000000 LR = #00000000
TOP ELEMENT OF ,ASTACK TAS = #00000000 1

#000010EO 
#00007108 
#0000C00A / 
#000010EB 
#000016Al 
#00001BA4 
#00000008

iO' VO " I

7 l



MICRO-INSTRUCTION

HALT
OVERLAY
NORMALISE
CASS CONTROL
BIAS
STORE F
LOAD F
SET CYF
SWAP MEMORY
CLEAR REGISTERS 
SHIFT/ROTATE X OR Y 
SHIFT/ROTATE X AND Y 
COUNT FA/FL 
EXCHANGE DOUBLE WORD 
SCRATCHPAD RELATE FA 
MONITOR
REGISTER MOVE
SCRATCHPAD MOVE 
FOUR.BIT MANIPULATE 
BIT TEST BRANCH 
SKIP WHEN
READ/WRITE
MOVE 3 BIT LITERAL 
MOVE 24 BIT LITERAL 
SHIFT/ROTATE T REGISTER 
EXTRACT FROM T REGISTER 
BRANCH
CALL
DUMP REGISTERS
DUMP CONTROL
MULTIPLY
DIVIDE
DUMP MAIN REGISTERS
DUMP STACK
DUMP SCRATCHPAD
COREDUMP
I/O READ
I/O WRITE



i

NO OF EXECUTIONS

i
oi



NO OF CLOCK CYCLES 36

**##* END OF SIMULATION— ALL MICRO INSTRUCTIONS PROCESSED *****

i
!

I
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3.5 An Evaluation of the Simulation System

This section of the system description presents some figures
regarding the speeds of the B1700 simulator and the MIL compiler.
It also examines defects in the overall system and suggests how these 
defects might be remedied.

3.5.1 The Performance of the System

The figures presented below have been gathered by executing
microprograms of various sizes on the simulation system. •

Average number of microinstructions
executed per second on the B1700 1000
hardware simulator

Theoretical number of microinstructions
executed on a real B1700 processor 6 % 10*

The great discrepancy in execution speeds is to be expected for '

two reasons:-

(i) Interpretative execution of machine instructions is
always much slower than hardware execution of the same
instructions

■r

J
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(ii) The semiconductor technology used in the construction
of the B1726 store is much more modern than that used in 
the IBM S/360/44. Hence the B1700 is inherently a faster 
machine than the 360. Therefore, even if microinstructions 
were executed at hardware speed, the discepancy between the
B1700 and the 360 would still exist.

The MIL compiler has been evaluated in a similiar fashion by 
compiling a number of microprograms. These were also compiled 
using Burroughs's MIL compiler on a B1726 with 48k bytes of store.

Average number of MIL statements
translated per minute by the S/360 160
version of the MIL compiler

Average number of MIL statements .
translated per minute by the B1726 50
MIL compiler

Notice that, in this case, the combined SN0B0L4/ALG0LW system 
is about 3 times faster than the MIL compiler on the B1700. This 
is due to the fact that the comparison was made using a B1700 
with only 48k bytes of store. This was the only machine available. 
48k bytes is an inadequate amount of store to run the B1700 
efficiently and thrashing is a serious problem. In fact, most of 
the compilation time on the B1700 is spent transferring segments
from disk.
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3,5.2 Defects and Improvements

Naturally the system as it stands contains a number of defects. 
However, it must be borne in mind that the simulation system was
constructed as part of a research project where it was important
to produce a usable system in the shortest possible time.

Of the failings of the hardware simulator, the most serious is 
that it is merely a hardware simulator. No attempt is made to 
simulate the actions of the B1700 operating system(MCP).

The MCP interacts to a significant extent with microprograms
executing on a B1700. The lack of this interaction is a serious 
drawback, when the simulator is used to test microprograms which 
are subsequently to run on a real machine. This was recognised 
when the simulator was being programmed but no' operating system 
simulation was included for the following reasons:-

(i) The details of the interaction of the MCP and an
executing microprogram are shrouded in mystery. Documentation
is almost non-existent and to discover the extent of the
interaction would have involved much study of the source 
code listing of the MCP,

(ii) When the simulator was under construction, it appeared 
that the inclusion of any operating system simulation
would significantly degrade the program performance.



In retrospect, it is probably possible to modify the simulator 
program so that it may mimic the responses of the MCP when a call 
is made to the operating system by a microprogram. If such a 
feature were included,simulator tested microprograms would be' 
more compatible with those for a real machine.

Other, lesser, incompatibilities of the simulator are a result 
of the fact that the simulator must run under a batch operating 
system. These incompatibilities are:-

(i) Microprogram loading, normally carried out via a cassette, 
may not be simulated.

(ii) The machine panel display may not be simulated.

(iii) External interrupts to executing s-machines are not 
possible.

We see no way of rectifying these defects apart from running the
simulator on a dedicated machine.

The MIL compiler suffers from surprisingly few incompatibilities 
and defects considering the time taken to implement the system,' 
roughly two months. The need to implement the system quickly 
was directly responsible for those drawbacks which exist in the 
MIL compiler. These drawbacks are:~

(i) The compiler does not optimise the generated microcode.

(ii) The error messages produced by the compiler are not 
particularly informative and error recovery is poor.

As our system is a research tool, we do not consider time spent
rectifying these defects to be justifiable.
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3,6 Summary and . Conclusions

This chapter has described and evaluated a simulation of the
microprogramming environment of the B1700, The system was designed
to familiarise the author with this environment and to enable
the testing of B1700 microprograms.

Two distinct programs make up the simulation system:-

(i) A hardware simulator. This program is encoded in ALGOLW
and interprets B1700 microinstructions. A number of additions
have been made to the simulator to aid the debugging and
testing of microprograms.

(ii) A compiler for Burrough's microprogramming language MIL.
This compiler is encoded as a two-pass system. The first pass
converts MIL statements to an intermediate representation with 
the second pass converting this representation to binary
microcode.

It is fair to say that the system, as it stands, has met our 
expectations and serves a useful purpose as a tool in our research
project.

Constructing the system indubitably provided extremely useful 
background information on the B1700 microprogramming environment. 
Although it is far from ideal for microprogram testing, the simulator 
is adequate for this purpose, and for programs encoded -in MIL the 
conversion to a real machine is fairly trivial. This.is due to 
the fact that the B1700 MIL compiler generates the machine interface
information and it is transparent to the programmer.
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Although the overall system performance could he improved, we do not 
consider that time spent on this improvement would be justified. As 
the system is essentially a research tool, a production standard 
system is unneccessary and we believe that the time necessary to 
attain such a standard may be better employed on other projects.
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CHAPTER 4

THE PROGRAMMING LANGUAGE SUILVEN

The programming language SUILVEN is a high-level language
designed for describing and implementing abstract machine-
interpreters. In this chapter, the design of the language and 
the factors which influenced that design are described.

A SUILVEN program'is compiled into microcode for the B1700
computer. As discussed previously, the purpose of designing and 
implementing SUILVEN was to investigate the possibilities of 
high-level microprogramming.

At the outset of the project, we were aware of the proliferation 
of programming languages currently in use, and hesitated to add yet 
another language to that ever increasing pool. However, for the 
reasons below, we found it desirable to design a new language, 
rather than produce a compiler for an existing language. The 
.reasoning behind this decision is:-

(i) Apart from Wortman’s MDL(W2), .which is.' a highrlevel 
s-machine description language, machine description 
languages appear to be designed for ’hard* rather than 
soft machine description. As a result, they contain 
features such as timing facilities which are inappropriate in 
an s-machine description language. In addition, we considered 
the control constructs in these languages to be inadequate 

for producing well-structured programs. ‘ ' .
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(ii) Wortman’s MDL, designed solely for describing s-machines 
is not easily compiled into microcode. The language is 
informal in nature which is, of course, acceptable in a 
description language but not suitable for a language which 
is to be compiled.

It was therefore decided- to design a programming language for
s-machine description which may be compiled to microcode. The 
language, loosely based on MDL, was to be such that a compiler 
could be produced fairly easily and, as a result, language design 
and implementation proceeded together for a time. However, before 
describing this language, subsequently named SUILVEN, some general 
aspects of programming language design are considered.

4.1 Programming Language Design

In designing a high-level programming language there are a number 
of trade-offs which must be made between efficiency, convenience, 
and reliability. Up until recently, efficiency was generally regarded 
as the most important of these factors. However, Dijkstra and 
others(D3,D5) have suggested that convenience and reliability are 
now more important than efficiency. This is due to the ’ increasing 
discrepancy between the cost of software and the cost of hardware.
The cost of writing and maintaining a programming system is now 
much greater than the cost of the hardware running that system and 
any programming language features or programming techniques which 

decrease software costs are desirable.
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General programming language features which are concerned with 
efficiency, convenience and reliability are:-

(i) Storage Allocation Strategies

(ii) Language Control Construcss

These topics are discussed below.

4.1.1 Storage Allocation

High-level language storage allocation schemes fall into two 
categories:-

(i) Compile-time(static) storgee allocation

(ii) Run-ii-me(<170^^ ) storgge allocation

The former scheme allocates absolute addresses to vaoiabils at 
compile time, whilst the latter aiiocaal( relative addresses at 
compile-time. These are converted at run-Stml to absolute machine
addresses.

Dynamic storage allocation is the method adopted by programming 
languages such as ALGOL60. It has several advantages over a 
static allocation scheme, viz:-

(i) Recursion may be implemented in a clean and straightforward
manner.

(ii) Dynamic arrays may be included as a feature of the 
programming language.

(iii) Storage may be shared as local variable storage may be
allocated and de-allocated
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However, the penalty for these advantages is a reduction in_program 
execution speed,as run-time intervention by the programming system 
is needed to handle storage allocation. This penalty is avoided 
with a static allocation system, although at a cost of a more 
inflexible system for the user.

4.1.2 Program Control Constructs

The control constructs available in a programming language
significantly affect the convenience of programming in that language 
and the readability of programs written in that language. If the 
flow of control during program execution matches the static 
representation of the program, understanding and debugging the 
program is considerably simplified.

The control statement GO TO was first condemned by Dijkstra(D3) and 
shown to be unnecessary by Bohm and Jacopini(B4). The statement 
has been condemned because of • its power to transfer control to 
anywhere within a program. The execution sequence of a program ' 
with GO TO statements is not necessarily "top-to-bottom” and, 
as a consequence, predicting the behaviour of such a program is 
often difficult. As well as this, the inclusion of GO TO statements 
render ineffective recently developed techniques for proving the 
correctness of a program, These techniques rely on flow of 
control in a program being sequential, with each loop having only 
one entrance and exit.
Although it is possible to construct a program using only if-then-else 
and while statements, to do so may necessitate an increase in the 
length of the program. Hence developments of these statements such
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as repeat-until and case statements may be introduced. These 
facilitate the programming of certain control paths without 
destroying the essential "top-to-bottom" program execution flow,

4.2 Influences on the Design of SUILVEN

In this section, the design criteria on which SUILVEN is based are 
described, along with some general comments on design decisions 
which were made at an early stage of the project.

The design criteria which we established for SUILVEN we.re:-

(i) The language should be a high-level language which should 
not contain features dependent on the architecture of a 
particular computer.

(ii) The language should be such that an accurate and readable 
machine description may be specified.

(iii) The microcode generated by the SUILVEN compiler should 
execute reasonably efficiently.

(iv) The compiler for SUILVEN should be fairly simple to construct.

Inevitably, with such criteria, conflicts arose and compromises 
had to be made between conflicting demands. In particular, the 
need for microcode efficiency often conflicted with features 
which would have improved the power of SUILVEN as a machine 
description language.

When such conflicts arose, we generally chose the most efficient
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method of solution. Current microprogramming practice emphasises 
efficiency and, if a high-level language is to be accepted by
present users, the code produced must be comparable with machine 
language in efficiency.

The most significant influence this had on the design of SUILVEN 
was the adoption of a static rather than a dynamic storage 
allocation scheme. We believe that a dynamic allocation scheme 
is not only more general but is also aesthetically preferable 
to a static scheme. However, the loss of efficiency with such a 
scheme and our anticipation that features such as recursion and 
dynamic arrays would not be necessary in implementing s-machines 
caused a static allocation scheme to be adopted for SUILVEN.

Other design decisions made at an early stage werei-

(i) , Only sequential control constructs such as if-then-else
and while-do should be included in the language.

(ii) SUILVEN variables should not be typed.

The reasoning behind the former decision has been discussed 
previously in this chapter. We wholeheartedly agree with the 
opinion that uncontrolled branching in a program is undesirable and 
only a simple set of control constructs have been included in
SUILVEN.

The decision not to include typed variables is perhaps more 
controversial. The inclusion of types permits the detection of 
a number of programming errors at compile-time. Whilst languages 
such as ALGOL60 have basic types such as integer and boolean, 
Wirth's PASCAL(Wl) has carried typing further and allows



the user to define his own types

However, for certain applications, the typing of language variables 
is a distinct disadvantage. If a number of different operations
such as real addition, integer multiplication, and logical oring 
are to be carried out on a storage area( a typical example is a stack), 
typing that storage area Is inconvenient. Either type transfer 
functions have to built into the language( as in ALGOLW ), or
such an area must be represented as a PASGAL-type tagged record.

We anticipated; that situations where different kinds of operation 
are carried out on a data area are common in s-machines, and 
subsequent experiment has shown this to be true. Hence a decision 
was made to exclude types from SUILVEN.

Individual features of SUILVEN are described in some detail below 
in an informal manner. The reader is referred to Appendix 1 for 
a more formal description of the language. As well as describing 
language features, we also discuss, where appropriate, the reasoning 
behind the inclusion of certain features in the language.

4.3 The Structure of a SUILVEN Program

A SUILVEN program consists of a sequence of declarations, followed 
by a sequence of SUILVEN statements. A program is terminated by
the reserved word ENDPROGRAM.

SUILVEN declarations include data declarations, structure declarations
and procedure declarations. They allow the user to specify and 
ascribe structure to machine data areas and to give names to 
machine operations.
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SUILVEN statements include assignments, control statements, and 
procedure calls. They specify operations to be executed using the
s-machine data areas.

4,4 SUILVEN Declarations .

The declaration part of a SUILVEN program has a threefold purpose;-

(i) To allow the user to define names referring to data areas
and sections of SUILVEN code.

(ii) To provide information about these data areas and code sections 
which the compiler may use in generating microcode,

(iii) To provide a description of the size and structure of •
the data areas in the s-machine described by the SUILVEN
program.

In order to fulffl these purposes, there are five kinds of
declaration alllwee ti e SUILVEN program. The ossiflS t declarations
are;-

(i) Macot declarhlfoes

(ii) DDt:t. tars declarations

(iii) Structure declarations

(iv) Hat ecllclhlfoes

(v) ^cve^st ant lunhlfoe declarations

These different declarations are covered in turn below.



4.4.1 Macro Declarations

SUILVEN macro declarations are designed to offer facilities for
a limited degree of textual replacement within a program. If 
carefully used, this can improve the readability and ease the 
maintenance of a program.

A macro is declared:-

MACRO *<string>* = *<string>*

and specifies that each occurrence of the string to the left of the 
equals sign is to be replaced by ' the string to the right of the
equals sign. Notice that only simple substitution is allowed
and that it is not possible to pass parameters to a macro.

Macros were included in SUILVEN to allow the naming of constants 
and the naming of frequently used code segments. For the■former 
purpose the present construct is quite adequate.

However, after using SUILVEN, we now believe that the naming of 
constants and the naming of code segments should be separate. For 
the latter purpose, it is desirable that parameter passing should 
be permitted and any future development of SUILVEN will include 
this extension to the language.

4.4.2 Data Area Declarations

SUILVEN data area declarations permit the programmer to name and 
to specify the size of data areas in the abstract machine which he 
is constructing. The width of each data area is specified exactly
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as a number of bits rather than as multiples of some arbitrary 
cell size,such as a byte.

The declaration setting up these data areas may take the forms

(i) BXTS(<width>) <identifier list>

(ii) BITS(<width>) ARRAY(<size>) <identifier list>

Declaration (i) above, sets up scalar data elements of the
specified width, whereas declaration (ii) sets up vectors of 
data elements. Examples of each type of declaration are:-

(i) BITS(24) AREG,BREG

This defines two data areas called AREG and BREG each 24 bits wide,

(ii) BITS(32) ARRAY(512) STACK

This defines a data area called STACK, which is a vector of
512 elements each 32 bits wide.

The flexibility allowed in defining the sizes of variables means 
that the data architecture of an abstract machine may be exactly 
specified. Space is conserved by eliminating the need to accomodate 
registers of varying widths in arbitrarily sized storage cells. 
Similiarly, machine store and storage areas such as stacks may be 
defined to accomodate data to any precision.

This flexible means of defining data areas is a significant 
contributor to the descriptive power of SUILVEN and to the 
efficient implementation of abstract machines.
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4.4.3 Structure Declarations

Declarations are provided in SUILVEN vzhich allow the programmer
to define the form of a data structure and to declare that a
machine data area should be associated with that structure.

This is accomplished by means of a TEMPLATE declaration
which defines a template describing the data structure. This 
template may be assigned to a data area Via a DEFINE declaration.

A TEMPLATE declaration has the following syntax:-

TEMPLATE <identifier> = <identifier>(<number>)
L,<identifier>(<number>)J

■ r-i* «The starred square brackets LJ indicate that the elements enclosed 
in these brackets may be repeated zero or more times.

A TEMPLATE declaration defines the name of a template consisting
of one or more fields of a specified size. For example:-

TEMPLATE LIST_ELEMENT = GC(1),HE/AX24) TATB(12)

This specifies that the template names LIST_ELEMENT may be
regarded as having the following fields:-

(i) A 1—bit field named GC

(ii) A 24-bit field named HEAD

(iii) A 12 hit field nmned TAIL
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Templates do not, themselves, define any data areas but merely 
define a pattern which may be subsequently assigned to a data area. 
This is accomplished using a DEFINE declaration. This has the form:

DEFINE <template name> : <identifier list>

This specifies that the variables named in the identifier list 
take the structure defined by the named template.

Not only may scalar variables be structured in this way, but also 
a template may be assigned to a vector. In this case, each element 
of the array is considered to be of the structure defined by the 
template.

The utility of these declarations is illustrated by the example 
declaration sequence shown below:-

BITS(48) AREG,BREG 
BITS(48) ARRAY(512) STACK
TEMPLATE B5700J70RD = FLAG(l) ,SIGNM(1) ,SIGNC(1) ,MANTISSA(6) , 

CHAR(39)
DEFINE B5700_WORD : AREG, BREG, STACK

The above declarations state that the variables AREG, BREG, and 
STACK are to be considered as structured data areas, having the 
structure defined by the TEMPLATE declaration. Notice that the
declared width of the data areas and the total number of bits
declared as components of template fields should be the same.
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This type of data structuring was included in SUILVEN as it is 
often necessary to consider a machine register as being composed 
of several fields. The example above defines the structure of the 
stack and the stack registers in a Burrough's B5700 computer. 
Similiarly, the template for an IBM S/360 program status word
would be:-

TEMPLATE PSW = SYSMASK(8),PROT_KEY(4), AMWP(4) .INTERRUPT(16), 
ILC(2),CC(2),PROGMASK(4),ADDRESS(24)

Allowing the user to name the fields within a data area and to
access these fields via the names rather than via shift and mask 
operations reduces the chances of errors occurring when using 
these fields. In addition, this extra level of abstraction makes 
for clearer.more readable abstract machine descriptions.

4.4.4 Flag Declarations

The SUILVEN flag declaration facility permits the user to define
names which are single-bit logical elements. The need for this 
type of declaration in a high-level microprogramming language
arises for two reasons:-

(i) Within the underlying ’hard' machine on which SUILVEN
is implemented there are a number of single-bit flip-flops 
which detect various interrupt conditions. As it is

. necessary that the soft machine tests these conditions, a 
means of so doing must be introduced into the abstract 
machine programming language. In SUILVEN. these interrupt 
flip-flops may be accessed via predeclared flags.

2, , .... ,
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(ii) As well as 'hard' interrupts, the soft machine programmer
must be able to define flip-flops which can be used to 
mark soft machine interrupts such as a stack overflow.
BITS variables are somewhat clumsy for this function, hence, 
flag type variables were introduced into SUILVEN.

A FLAG declaration has the syntax

FLAG <identifier list>

This merely declares the names of flags which may be accessed using 
special flag operations which allow flags to be tested and set.
These operations are discussed in section 4,5,2, which deals with 
SUILVEN logical expressions and in section 4,6.1 which covers 
assignments,

4,4.5 Proeedirre Declarra-ixans

The advantages of including a facility in a programming language
which allows code sections to be named and subsequently activated 
are well known. Procedures allow code to be shared and ‘ programs 
to be structured as a set of logically distinct modules.

Procedures in SUILVEN may be of two kinds

(i) Proper procedures, identffied by the reserved word 
PROCEDURE. These procedures are simply named sections 
of code which may or may not have parameters.

(ii) Function procures,, identffied by the reserved word 
FUNCTION. A function always returns a value and is
called as a primary element of an arithmetic expression.
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Parameters, in the form of BITS variables, may be passed to 
a SUILVEN procedure and must be declared as formal parameters 
in the procedure heading. The syntax of procedure declarations 
is rather lengthy and, as the concept is familiar, procedure
headings are illustrated by example below:-

(i) FlftJCTION POPSTACK()

(ii) PROCEDURE PUSH(BXTS(4) TAG; BITS(24) VAL)

Declaration (i) above declares a function procedure called 
POPSTACK, POPSTACK has no formal parameters. Declaration (ii), 
on the other hand, defines a proper procedure. This is named 
PUSH and has two formal parameters - a 4-bit variable called
TAG and a 24-bit variable called VAL,

The body of a SUILVEN procedure consists of local variable
declarations, if required, and statements comprising the code 
of the procedure. A procedure declaration is terminated by the
reserved word END.

The value returned from a function procedure is indicated by
following end with an arithmetic expression, where appropriate.
For example:-

END = <expression>

The value of that arithmetic expression constitutes the value 
returned by the function.
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4.4.6 Local Declarations .

Within a SUILVEN procedure, it is possible to declare names 
which are local to 'that procedure. The declarations which may
be used to establish local names are:-

(i) Macro declarations

(ii) Data area declaraiions

(iii) Structure declarhtions

(iv) Flag declarant^s

It is not possible to declare procedures which are local to other 
procedures. This is in keeping with our design decision to use 
a static rather than a dynamic storage allocation scheme in SUILVEN

The form of the local declarations for macros, bits variables, and 
flags is identical to that of the global variable declarations 
described above. However, local structure declarations have 
an additional facility( the REDIMENSICN declaration ) which is 
only meaningful within procedures. The structure of data areas 
may be reallocated within a procedure using locally or globally 
defined templates. This structure modification is covered in more
detail below?.

4.4.7, Redefining the Structure of Data Areas

It is often desirable to modify the structure of a data area 
depending on the operation acting on that area. For example, the 
top element of a stack may be of integer type for an ADD operation 
yet may take the form of a string descriptor for a CCNCATENATE 
operation.
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Within a procedure, structured BITS variables may have their 
structure redefined using a template which is declared either 
locally or globally. Naturally, locally declared variables 
may also be structured using a local or global template.

The example below illustrates the operation and utility of this
feature; • - Consider a global variable defined as follows:-

BITS(32) REGISTER

For integer arithmetic operations, it may be convenient to 
regard this register as being made up of a sign bit plus an 
integer. Hence within the procedure which performs integer 
arithmetic there might be the following structure declarations:-

TEMPLATE INTEGER = SIGNJ3IT(((,NUMB(31)
DEFINE INTEGER ; REGISTER

For other operations such as as conversion from character to 
integer it may be convenient to regard this register as being 
composed of four 8-bit characters. Therefore, within a procedure 
which executes character operations the declarations below
might be used:-

TEMPLATE CHARS = Cl(8),C2(8)sC3(8),C4(8)
DEFINE CHARS : REGISTER

This ability to locally redefine the structure of variables 
contributes significantly to the clarity of machine descriptions. 
In addition, the possibility of error when operating on data areas 
is reduced, as ■ these areas may be structured according to the 
function operating on them.
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4.4.8 The REDIMENSION Declaration

A fairly common feature shared by a number of machines is to 
have a range of widths for machine instructions. For example, 
the IBM S/360 series has certain instructions 2 bytes wide, 
others 4 bytes wide and a third category 6 bytes wide. Where 
Huffman encoding techniques, as described in chapter 2, are used 
it is necessary to utilise instructions of differing widths.
Hence, an s-machine implementation language requires some facility 
to handle differing width instructions.

The SUILVEN REDIMENSION declaration is a declaration which
enables the user to redefine his basic cell size in any array. 
Naturally, by so doing the number of elements in the array is 
also changed. The syntax of the REDIMENSION declaration is:-

REDIMENSION <array name>(<cell size>,<number of cells>) 
C,<array name>(<cell size>,cnumber of cells>)]

The declaration specifies that the named arrays should be 
redimensioned according to the bracketed specifications.

The REDIMENSION declaration enables the soft machine store to
be modified in such a way that, irrespective of the width of 
the instruction, the instruction may be fetched from store 
in a single operation rather than in a loop. This is perhaps 
best illustrated using examples.
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Example 1

The IBM S/360 series of computers has a byte oriented store. There 
are four basic types of machine instruction and three different
instruction widths - 2 bytes,'4 bytes, and 6 bytes. The
REDIMENSION declaration can be illustrated using two of these 
instruction types:-

(i) The RR type instruhtion, whoee op code occupee' caee byee 
and whose parameters occupy one byte,

(ii) Thp RX typ5 inhttuhtion , whse, op coep o'ccppesp on, byee 
and whose parameters occupy three bytes.

The 360 machine store may be declared as a BITS array

BITS(8) ARRAY(stiresize) STORE

The procedure for handling RR type instructions would not
need to ^dimension STORE as the instruction parameters are 
contained in a single byte. For example:-

BITS(8) PARAMETERS

PARAMETERS := STORE(.POINTER.)

However, the procedure processing RX type instructions must 
fetch three bytes from STORE to obtain instruction parameters 
and would therefore ^dimension STORE to the appropriate
format
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BITS(24) PARAMETERS 
REDIMENSION STORE^siz^)

PARAMETERS := STOEE(.POINTER.)

As the store has been ^dimensioned, the assignment statement 
which fetches one cell of the array takes 24 bits from STORE
rather than 8 bits.

Example 2

To illustrate how the REDIMENSION statement can be used to handle
the situation where Huffman encoding techniques are used to optimise 
the use of store, we present the example below. Machine codes 
are encoded in a number of bits inversely proportional to the 
frequency of instruction occurrence.

Consider the situation where op codes may be encoded in either 
3, 7, or 10 bits. Instruction parameters may also be encoded 
in a varying number of bits. The machine store may be , defined 
as an array of single, bits:-

BITS(l) ARRAY(storreize) STORE

•Defining the machine store in this way allows maximum flexibility 
when the store is to be regarded as cells of varying size.
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Within the procedure which fetches instructions having 3-bit
op codes, STORE might be redimensioned:-

REDIMENSION STORE(3,size2)

Three instruction bits are always fetched by the instruction
decoder and an escape op code signifies whether further bits are 
tp be fetched to make up a 7-bit or a 10-bit code.

The procedure which builds 7-bit opcodes requires 4 additional 
bits. Store might therefore be redimensioned:-

REDIMENSION STORE(4,size3)

Similiarly, the procedure which builds 10 bit codes requires 7 
additional bits, and it might redimension store

REDIMENSION STORE(7,size4)

The REDIMENSION declaration, therefore, provides SUILVEN with
a feature allowing the flexible structuring of abstract machine 
data areas. By using this statement to alter the dimensions of 
an array, the efficiency of the generated s-machine is increased.
This is due to a reduction in the number of store fetch operations 
required when transferring instructions from store into a register.

Obviously, the REDIMENSION declaration is logically unnecessary but 
this is a construct which was introduced into SUILVEN in order
to increase the efficiency of the generated microcode. As
instruction fetching is probably the most frequent s-machine operation 
we consider the inclusion of the REDIMENSION declaration in SUILVEN
to be justified by this potential increase in efficiency
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4.5 Expressions in SUILVEN

Before going on to describe the range of SUILVEN statements, it 
is apposite to describe the form of arithmetic and logical 
expressions in the language.

As in most high-level languages the expression is the basic element 
in many language statements. Procedure parameters, the right hand 
side of assignments, and so on are all represented by expressions. 
There are two types of expressions in SUILVEN:-

(i) Bits expressions, which are evaluated to produce a bitstring 
representing some s-machine data type e.g. an integer.

(ii) Logical expressions, which are evaluated to produce a 
truth value, true or false.

4.5.1 Bits Expressions

SUILVEN bits expressions consist of a sequence of one or more primary 
quantities possibly separated by operators. The syntax for. 
expressions is fairly simple:-

•k<bits expression> : := <primary>C<operatorxprimary>]

<primary> ::= <simple variable> | <function designator:* |
<array element>| <field of structured variable:* |
<constant>

<operator> :: = + I - I * | / | REM | SHL | SHR I & I XOR
J <or>

<or> | where | is not a metasymbol
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Bits expressions are evaluated on a strict left-to-right basis. 
Bracketing is not allowed and no one operator takes precedence
over another.

This very simple method of expression evaluation, rather than 
the more usual precedence based system, was again a feature of 
SUILVEN which was promoted for efficiency reasons. The B1700 
arithmetic unit is a simple module with no provision for the 
storage of intermediate results. Therefore, in order to avoid 
introducing a clumsy scheme for storing intermediate results, it 
was decided to use a system of expression evaluation which did 
not produce intermediate results.

Io practice, there seems to be little or no need for the
evaluation of complicated arithmetic expressions within an
s-machine interpreter program. Hence, a simple left-to-right 
expression evaluation scheme as in SUILVEN causes few practical 
problems for the s-machioe implementor.

The operands in ao expression need not all be the same width.
Before evaluation all operands in ao expression are automatically 
right justified and left padded with zeros to the size of the
widest operand.

Notice that a result of SUILVEN's lack of typing , is that ' arithmetic, 
shift aod logical operations may be intermixed within an 
expression.



-101-

4.5.2 Logical Expressions

SUILVEN logical expressions are used in control statements and 
are evaluated to yield a value which is either true or false. The 
form of logical expression syntax is:-

<logical expression> ::=<logical primary>E<connective>
<logical primary>3

<logical primary> ::= <condition>|<flag test>

<condition> : := <bits expressionxrelationxbits expression>

<flag test> :TRUE( flag name ) | FALSE( flag name )

<connective> AND | OR

<relation> ::= = I * I > I < I >= I <=

Logical expressions allow the comparison of bits expressions using 
the relational operators which have their usual meanings. The 
connectives AND and OR allow a number of different tests to be
carried out in the same expression. For examplei-

A = B AND C = D OR P = Q

Flag tests, which may also be used as logical primaries, allow 
the SUILVEN programmer to test the value of a flag variable. The
tests have their obvious meaning.
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4«6 SUILVEN Statements

This section of this chapter on SUILVEN covers the possible 
statements available to the SUILVEN programmer. These statements
fall into three distinct classes:-

(i) Assignment statements

(ii) Procedure calls

(iii) Control statements

Statements may be combined into compound statements by enclosing 
them in tagged brackets £( and £). The sections below deal with 
each type of SUILVEN statement.

4.6.1 The Assignment Statement

The SUILVEN assignment statement is similiar in syntax and semantics 
to the assignment statement in most other high-level ALGOL-like 
languages. Its syntax is:-

<LHS> := <bits expression>

where the left hand side may be a simple variable, a field of a 
structured variable or an indexed variable. Examples of each
of these are:-

(i) A B

A simple variable assignment

(ii) STORE(.POINTER.) := AREGISTER

An assignment to an indexed variable
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(iii) LISTR.HEAD := A + B

An assignment to the field(HEAD) of a structured variable .

Flag assignment is carried out via a different mechanism. Two 
. standard procedures SET(<flag>) and UNSET(<flag>) are used to

assign values of true and false to flag variables.

4.6.2 Procedure Calls

Like the assignment statement, the syntax and semantics of 
SUILVEN procedure calls is similiar to that of other high-level 
languages. A procedure is called by writing the name of the 
procedure followed by a bracketed list of actual parameters( if any ). 

The syntax of procedure calls is defined:-

<procedure call> <procedure name>(<actual parameter list>)

The actual parameters are evaluated and their values are passed 
to the procedure. Parameter passing by value is the only method 
possible in SUILVEN. The decision to allow only the values of 
parameters to be passed to procedures was taken for a number of
reasons:-

(i) Safety - there is no way in which the values of global
machine data areas may be accidently modified within a 
procedure.

(ii) Clarity - to modffy a global variable is mustbe
to by name.

(iii) Efficiency - after parameter values have been copied no
further overheads are incurred.
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Some examples of procedure calls are;-

(i) GET_EEW_VLUEES))

This is a call of the procedure GET_NEW_VALUES which does
not take any parameters.

(ii) PUSHSTACK(TIEGG + SREG)

The procedure PUSHSTVCK which has one parameter is called. The
expression TREG + SREG is evaluated and its value passed to
PUSHSTVCK.

4.6.3 SUILVEN Control Statements

Vs discussed earlier in this chapter( section 4.1.2 ), recent
computer science developments have suggested that the use of certain
control constructs such as the if-then-else statement and the
while statement produces more understandable and more reliable
programs than the use of conditional and unconditional go to
statements. This has influenced the design of the control constructs 
included in SUILVEE with the result that only structured control 
statements have been included in the language.

Necessary control statements in a programming language are the
if-then-else and while-do statements. However, for reasons of
efficiency and convenience other control statements have also
been included in SUILVEE. These not only include extensions of
basic control constructs but also statements which allow the
user to directly exit from a procedure and to abort the program.
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The set of control statements available in SUILVEN is composed of:

(i) An if-then-else statement

(ii) A while-do statement

(iii) A case statement

(iv) A repeat-until-do statement

(v) An exit statement

(vi) A stop statement

The If and While Statements

These statements are the well known control statements available
in many current high-level languages such as PASCAL and ALGOLW.
Their use is illustrated by exampl^:-

Examples of If Statements

(i) UF A = B .ANd C > D THEN
£(

X := ' Y; P := Q;
£)

(ii) IF X = 0 THEN
£(

SET (ANY_INTERRUPT ); SET(DIVZERO);
£)

ELSE
PUSHSTACK(Y/X) >
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Examples of While Statements

(i) IWHILE LIST(.POINT...TAIL = NIL DO

POINT ;« LIST(.POINT.).TAIL;

(ii) WILE A <= STACKSIZE DO

£(

STACK(.A.) := 0; A := A + 1;
£)

4.6,5 The Case Statement

The SUILVEN case statement is derived from the case , statement of 
ALGOLW and selects a statement for execution depending on the 
value of some arithmetic expression. The form of the statement is

CASE <bits expression>•OF
<statement list>

ENDCASE

The arithmetic expression is evaluated and the statement whose 
position in the list corresponds to that value is selected for
execution.

In a language for implementing s-machines, this type of statement 
is especially useful for selecting an execution sequence on the 
basis of an instruction op code.



-107-

For example

CASE OP CODE OF
PUSH(A + B) ;
PUSH(A - B);
PUSH(A * B);

"ADD"
"SUB"
"MUL"

ENDCASE;

With this type of case statement, the statement selected for 
execution has an implicit dependance on the value of the expression 
used in the case statement. This may be compared with the type of
case statement where the relation; --between - the -.case - expression aiid 
the statement executed is explicitely stated;as in PASCAL. Another 
alternative form of case statement is the guarded command set 
recently proposed by Dijkstra(D4).

These types of case statement are safer as they are not susceptible 
to errors made by the programmer in the ordering of the statement 
list. This we were aware of when designing the SUILVEN case 
statement but efficiency reasons again governed our choice of 
statement. The simpler type of case statement used in SUILVEN 
can be compiled to more efficient microcode, both in terms of 1 
space and execution speed.

In practice, the main function of the case statement in s-machine 
implementations is to select a statement for execution on the 
basis of an instruction op code. As these op codes are generally
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sequential, without gaps in the op code sequence, the SUILVEN 
case statement is not seen to be significantly disadvantageous.

4.6.6 The Repeat-Until-Do Statement

The repeat-until-do statement, a modified form of the familiar 
repeat-until statement, permits the test for loop termination 
to be placed anywhere within a loop.

The syntax of this statement is:-

<repeat statements- ::- REPEAT <statement> UNTIL <condition>
"DO '<statement>

The first statement is executed and the condition tested. If this 
condition is false, the second statement is executed. This process 
is repeated until the condition is true,when the loop terminates.
As either statement may be a null statement this arrangement 
allows the loop termination test to be positioned at the start, 
in the middle, or at the end of the loop.

This type of construct obviates the necessity of using boolean 
variables or go to statements within a loop in order that the 
test for exit may be made after some other statement in the loop.

A common situation where this occurs is when data is being fetched 
and processed,with the loop terminating when all data has been
consumed. The examples below compare programs where this is
handled using boolean variables and where the repeat-until-do
statement is used
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Using Boolean Variables

SET(NOTFINISHED)
WHILE TRUE(NOTFINISHED) DO

£(
GETJDATA();
IF TRUE(ENDJDATA) THEN 

UNSET(NOTFINISHED)
ELSE

PROCESSJDAITA) •
£) ■

Using the Repeat Statement

REPEAT . ’
GET_DATA()

UNTIL
TRUE (ENDjDATA)

DO
PROCESSjDATA() s

Clearly the repeat statement is more natural and concise. It 
also has the advantage that more efficient code may be generated 
as only one rather than two tests need be made on each loop
execution.
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4.6.7 The Exit and Stop. Statements

The exit and stop statements respectively allow the programmer
to leave a procedure or to terminate.the program. . They are
represented by the reserved words EXIT and STOP.

The inclusion of an exit statement allows the return from a procedure 
if some exceptional condition is encountered. Naturally, this may 
be achieved using nested if-then-else statements but an explicit
exit is often clearer and more efficient.

A stop statement was introduced into the language as it is often 
necessary to terminate the program on the detection of an 
unrecoverable error. Again, a possibly complex sequence of 
if-then-else statements can be avoided without loss of clarity.

4 . 7 Using SUILVEN to Describe an IBM S/360 Computer-'

Perhaps the best way to illustrate a programming language is to 
present an example of a familiar problem in that language. The 
example below shows part of the SUILVEN description of a machine 
in the IBM S/360 range, whose architecture is well known. Naturally, 
a complete description would be very lengthy and, as a result, only 
the data area description and descriptions of representative
instructions are shown below.

An IBM S/360 computer has a -'general purpose' architecture. Its 
store is made up of 8-bit bytes grouped into 4-byte words, it 
has 16 general purpose registers with program control information
stored in a program status word. It has a comprehensive instruction
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set which includes register-register, register-store, and
store-store instructions. A full description of the machine
may be found in the appropriate IBM reference manual(14).

The example below describes the machine data areas, the Add Register 
instruction( an RR instruction ), the Compare instruction( an RX 
instruction ), and the Move Character instruction( an SS instruction ) 
All 360 op codes occupy one byte and the instruction descriptions 
below assume this has been identified. For clarity, comments in 
the machine description are included in italic type, although
this is not a feature of SUILVEN.

11 This is an example program in SUILVEN describing part of 

an IBM S/360 computer. Data areas visible and invisible to 

the machine language programmer are described along with 

the operation of instructions representative of each 

instruction type.

Firstly3 describe the machine data areas accessible to the 

programmer n

BITS(32) ARRAY(16) REGISTERS;
BITS(8) ARRAY(STORESIZE) STORE;
BITS(6 4) PROGRAM-STATUS—WORD;

" Define the structure of the PSW and assign‘it "

TEMPLATE PSW = SYSMASK(8), PR0TKEY(4), AMWPC(4), INTCODE(16), 
ILC(2), CC(2), PR0GMASK(4), ADDRESS(24);

DEFINE PSW : PROGRAM_STATUS_WORD;
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" Now define some internal registers used by the machine

in instruction execution " .

BITS(4) SR, DR, IR;
BITS(12) DISP, DISP2;
BITS(8) OPCODE, SSLEN;

" Define some utility procedures. These are procedures used 

by a number of instructions to perform tasks which are common\
to each lt

PROCEDURE GETJRR_PARAME TERS;

" Fetches the parameters for an RR type instruction. The 

source register is left in SR and the destination

register in DR "

BITS(8) P;
TEMPLATE RR = DR(4), SR(4);
DEFINE RR : P;

" Fetch instruction parameter into P, Assume that the 

ADDRESS field of the PSW points to this "

P := SUORE(.PROGRAM_SUAUUSjWORD.ADDRESS. ) ;
PROGRAMJSTATUSjWORD.ADDRESS := PROGRAMsSTUTUS>_SWORD. ADDRESS + 1
SR := P.SR; dr := P.DR;

END;
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PROCEDURE GET_RX_PARAMETERS; '

" Fetches the parameters for an RX type instruction. The 

destination register is left in DR, the index register in

. IRS the base register in SR and the displacement in DISP.

As the parameters for an RX instruction occupy 24 bits

• ' STORE is redimensioned so that all 24 hits may be fetched

in a single instruction "

REDIMENSION STORE (24,STORESIZE2);
TEMPLATE RX = DR(4),IR(4),BR(4),DISP(12);
BITS(24) P, SP;
DEFINE RX.: P;

" SP is a pointer into the redimensioned store area. Compute

its value from the _ PSW ADDRESS field rt

SP := PROGRAMJSTATUSJTORD.ADDRESS / 3;
PROGRAM_STATUSJWORD.ADDRESS := PROGRAM_STATUSJTORD.ADDRESS + 3;
P := STORE(.SP.);
DR ; = P.DR; IR := P.IR; SR := P.BR; DISP := P.DISP;

END;

PROCEDURE GET_SS_PARAMETERS;

" As for above procedures but for SS type instructions. The 

number of bytes involved in the instruction is in SSLEN,

the base registers are DR and SR, and the displacements are

in DISP and DISP2, Store is again redimensioned, this time 

to a cell size of 40 "
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BITS (40) P; BITS (24) SP;
TEMPLATE SS = LEN(8), BRI(4),DISP1(12), BR2(4), DISP2(12);
DEFINE SS : P;
REDIMENSION STORE(40,ST0RESIZE3);

n Compute value of store pointer(SP) from PSW ADDRESS field ”

SP := PROGRAM_STATUS_WORD.ADDRESS / 5;
PROGRAM_STATUS_WORD.ADDRESS := PROGRAMJ>TATUS__WORD.ADDRESS + 5;
P := STORE(.SP.);
SSLEN := P.LEN; SR := P.BR1; DISP := P.DISP1;
DR := P.BR2; DISP2 := P.DISP2;

END;

PROCEDURE ADD_REGISTER:

" This is an RR instruction which adds the values in the 

specified registers. The condition code field of the 

PSW is set by this instruction "

GET_RR_PARAMETERS;
REGISTERS(.DR.) := REGISTERS(.DR.) + REGISTERS(.SR. );

" Assume the existence of a flag variable OELOW which is set 

if integer overflow occurs. OELOW would be an internal 

machine flip-flop associated with the adder "

IF TRUE (OFLO.W) THEN
PROGRAM STATUS WORD.CC := 3

ELSE
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IF REGISUERS(.DR.) > 0 THEN
PROGRAM_SUATUS_WORD,CC :« 2

ELSE
IF REGISUERS(.DR.) = 0 THEN

PROGRAM_STATUS_WORD.CC : = 0
ELSE

PROGRAM_SUAUUS_WORD.CC ;= 1;
END;

PROCEDURE COMPARE;

" Compare is an EX type instruction which compares the 

value in a register with a value held in store. The 

condition code field of the PSW is set on the basis of 

this comparison.

A temporary register TEMP is used in this instruction 

to hold the value of the operand in store. This avoids 

unnecessary store fetches "

BITS(32) TEMP;
GETJRX_PARAMETERS;

IF IR = 0 THEN
TEMP := SUORE(.REGISUERS(.SR.) + DISP.)

ELSE
TEMP := SUORE(.REGISTERS(.SR.) + REGISTERS(.IR.) + DISP.) 

• IF REGISTERS(.DR.) TEMP THEN
PROGRAM STATUS WORD.CC := 2

ELSE
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IF REGISTERS(.DR.) = TEMP THEN 
PROGRAM_CTATUS_JWORD.CC : = 0

ELSE
PROGRAMJ3TATUSJTORD : = 1;

END;

PROCEDURE MOVIJJHARACTERS >

" This is an example of an SS type instruction. The function

■ of the instruction is to move a specified number of

characters(bytes) from one location in store to another 

The instruction uses some temporary registers to hold 

intermediate addresses and lengths, "

BITS(24) ADDR, ADDR2; BITS(8) COUNTER;
get__ss__parameters >
COUNTER ;= 0;
ADDR ;= REGISTERS(.SR.) + DISP;
ADDR2 := REGISTERS(.DR.) + DISR2;
REPEAT

STORE(.ADDRl.) : = STORE(.ADDR2.)
UNTIL

COUNTER = SSLEN - 1
DO

£( ADDR := ADDR + 1;
ADDR2 := ADDR2 + 1;
COUNTER := COUNTER + 1; £)

END;
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The above description gives some idea how SUILVEN may be used to
describe a computer such as the IBM S/360. However, it must be 
borne in mind that this is a description of a 'hard* machine.
SUILVEN is designed primarily for the description of language- 
oriented soft machines and is therefore not ideal for describing 
machines like the S/360.

4.8 Summary and Conclusions

This chapter has provided a description of the design of a
programming language called SUILVEN. This language is intended 
for the description and implementation of language-oriented soft
machines. .

SUILVEN contains powerful data description features enabling the 
user to express the full range of data organisations which might 
occur in abstract machines. These data description facilities include 
declarations for defining the width of data areas and declarations 
for assigning structure to these areas.

The statements of SUILVEN are made up of assignments, procedure 
calls and control statements. Only a limited but adequate set. 
of control constructs have been provided and the go to statement 
has been completely excluded from SUILVEN. Uo facilitate loop
exit a repeat-until-do statement has been included in the language. 
This statement permits the test for loop exit to be placed at the 
beginning, the middle, or the end of the loop.
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The reader will have noticed that no input/output statements 
have been described in this chapter. No such statements are
defined in SUILVEN. This was a deliberate decision made for the
following reasons:-

(i) We were unsure of the I/G requirements of s-machines. The
s-machines which were studied all carried out I/O via calls 
to the underlying operating system.

(ii) SUILVEN wss originally intended to produce mcerprrogaams
which would run on our B1700 simulator. As this had 
minimal I/O facilities it was decided to postpone the 
decision on which I/O facilities were to be included
in SUILVEN.

Simple input/output has now been implemented as standard procedures 
in the language. These are described in the following chapter 
which covers the implementation of SUILVEN.

SUILVEN has now been used to implement a number of different 
abstract machines. Using these implementations, the language 
design has been evaluated as a description language and as an 
implementation language. A full description of this evaluation 
is given in chapter 7 and it is summarised below.

In general terms, the design criteria for SUILVEN which were 
established in section 4.2 have been fulfilled. The language 
is a high-level machine description language without machine 
dependent features. It is, however, oriented towards the B1700 
computer series. The SUILVEN compiler was reasonably easy to 
implement.
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It is in criterion (iii), i.e. that the microcode generated
from a SUILVEN program be efficient, that SUILVEN is not as
satisfactory as may be desired. Compromises have been made to 
make the language more efficient, but there are still serious 
inefficiencies in the microcode generated for certain constructs.

We now believe that the requirements of a machine description
language and a high-level microprogramming language are different, 
and that the inefficiencies of SUILVEN are a consequence of attempting
to combine these functions. This will be discussed in more detail
in chapter 7.
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CHAPTER . 5

THE IMPLEMENTATION OF SUILVEN

This chapter describes the implementation of a compiler for
SUILVEN. The SUILVEN compiler is programmed in SN0B0L4 and uses 
a top-down recursive descent syntax analysis technique,to parse 
SUILVEN statements. The intermediate form of B1700 microcode, 
which is described in chapter 3, is generated by the compiler.

Compiler construction has been well documented by authors such 
as Randell and Russell(Rl) and Gries(G2). Therefore, a full 
description of the compilation of each language feature is not 
given here. Instead, the design decisions involved in the 
implementation of the compiler 'are discussed, along with an 
overview of the compilation process. The implementation of 
SUILVEN’s data description features is described in some detail 
as these constructs are not available in other programming 
languages and hence their compilation is not widely documented.

The chapter concludes with a discussion of the problems involved 
in optimising SUILVEN code and presents some information on the
performance of the SUILVEN compiler.

5.1 Compiler Design

The'overall structure of a compiler program is well known. It 
consists of a number of modules performing different functions
associated with the translation process.
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These functions can be categorised as follows:-

(i) Lexical analysis

(ii) Syntatiic and semaniic analyiss

(iii) Code generation

In addition to these essential modules, the compiler may include 
a module designed to optimise the generated code.

Compilers may make one or more passes through the source code being 
translated. In a single-pass compiler, all the above functions are 
carried out in a single pass through the code being compiled, whereas 
in a multi-pass compiler, several passes are made through the code. 
Each of these passes often corresponds to one of the above functions 
with an intermediate form of the source code being generated by each
pass.

The lexical analysis phase of a compiler is generally straightforward 
and consists merely of identifying tokens from the input source code. 
These tokens may be entered in a symbol table, if appropriate, and 
a numeric code representing the token passed to the syntax
analysis phase of the compiler.

The generation of compiled code is still essentially , an cd hoe 

process. Although intermediate code forms such as reverse Polish 
notation or triples may be produced, the generation of code is still 
largely dependent on the intimate machine knowledge of the compiler
writer.
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Syntax analysis, however, is much less of an ad hoc process
and a good deal of research has been carried out in this field, 
investigating different analysis techniques.'. Fundamentally, a
programming language syntax may be analysed in either a top-down 
or a bottom-up manner.

Using bottom-up techniques, the source string is reduced until the 
goal symbol of the language grammar is attained. The reduction of 
phrases in the language depends on the precedence of language 
symbols, and syntax analysis methods depending on simple precedence, 
operator precedence, and 'mixed-strategy precedence(W6,F2,Ml) have 
been developed.

Top-down syntax analysis methods depend on starting with the 
goal symbol of the language grammar and deriving the source string
from this.

Probably the most straightforward technique of top-down analysis 
is the method of recursive descent. This method represents each 
non-terminal symbol in the language grammar by a recursive 
procedure which checks the syntax of that particular non-terminal,
A syntax tree is therefore constructed implicitely by a sequence 
of procedure calls.
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As an example of the simplicity and elegance of the recursive 
descent analysis technique, the example below presents a 
procedure called WHILE^JSTATEMENT. This procedure parses the 
non-terminal <while statement> in a language grammar.

while_stauemenu
BEGIN

CONDITIONALjEXPRESSION
NEXT_SYMBOL
CHECK("DO")
next_symbol
STATEMENT

END

When a recursive descent analysis technique is used, only one 
or two symbols are required from the input stream at any one time. 
Semantic analysis and code generation are generally intermixed 
with syntax analysis. Recursive descent compilers, therefore, are 
basically one-pass compilers, although extra passes may be included 
to optimise the generated code.

Recursive descent compilers are simple to construct, efficient, 
and easy to understand. However, the class of languages
compilable via this technique is restricted by the following
conditions:-

(i) All names used in a program must be declared before
they are used in program statements.
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(is) The language grammar must he LL(1). This' means that
parsing decisions can be made on the basis oo the 
current symbol from the input stream which is available 
to the compiler.

These requirements are not usually disadvantageous, especially 
in the situation where the language design and compiler 
construction proceed in parallel. Simple language modifications 
are then possible in order that the language be made compilable 
using a recursive descent technique. Under special circumstances, 
it may no d bd fossIH' td modffd thd langaggd and , in this case, 
it is oavhadgao d t d chluat ’ yy tooing d hemd in order tn make 
a parsing decision. Such circumstances are rare and do not 
impose significant compiler overhead.

5.2 Thee Compiler PrograimsingLanguage

The choice of a language in which to program a system is one which 
has to be made at an early stage of the system design. Features 
available in a programming language can simplify certain 
implementation techniques, whereas the lack of particular features 
can render some techniques completely impractical.

There were a number of programming languages available to us.
These fell into three clObgordes:-

(i) Lovr-level languagesl S/360 Assembbed, PL360 )

(ii) General-purpose highi level languages! FORTRAN, ALGOL,,
SN0B0L4, BCPL )

(iii) Special-purpose compiler writing llaguages( XPL )
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The decision which language to use for writing the SUILVEN 
compiler was governed by a number of factors:-

(i) The suitability of the language for compiler writhi..
This is primarily governed by the data types and structures 
available in the language. .

(ii) The cost of using a particular language processor on our 
system. Different language processors require differing 
amounts of system resources such as disk files and machine 
store. As program turnround time is a function of the 
system resources utilised it was to our advantage to 
minimise resource consumption.

Notice that the efficiency of the compiler for SUILVEN is not 
of great importance as the language is a research tool,with the 
compiler used by relatively few people.

Although the low-level language and FORTRAN compilers consumed 
the least amount of system resources they were immediately 
rejected as compiler writing tools, because of their unsuitability 
for this application. Our choice of programming language was
therefore narrowed to four alternatives:-

(i) XPL

(ii) ALGOLW

(iii) SN0B0L4

(iv)
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XPL(Ml), a PL/1 based language, is part of a translator writing 
system which includes an automatic precedence table generator and
a syntax analyser. This syntax analyser uses a bottom-up mixed- 
strategy precedence analysis technique.

These features aid the production of a compiler and preliminary 
experiments were carried out with XPL, Unfortunately, these 
indicated that the system resources required by the language 
processorC 4 disk files, 200K bytes of store ) would make the 
production of a large program impractical. XPL was therefore 
rejected as a compiler writing tool.

For similiar reasons, BCPL was rejected as the compiler programming 
language. Not only did the BCPL compiler require a large amount of 
system resources but the language also suffered from an unreliable 
implementation. .

Neither ALGOLW or SN0B0L4 suffered from ' this disadvantage. Both 
these languages had efficient and reliable implementations and 
neither consumed an excessive amount of system resources. Our 
choice, therefore, was dependent on the suitability of each language 
for compiler construction. Finally, we choose SN0B0L4 as the 
compiler programming language for the following reasons:-

(i) SNOBOL's inbuilt data types and data structuring features
are significantly more powerful than those of ALGOLW. SNOBOL 
has a primitive data type called TABLE, which can be regarded 
as an associatively addressed array, and a facility for the 
user to define his own structured data types. The combination 
of these features makes the construction and use of compiler 
tables a relatively trivial task.
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(ii) SNOBOL*s powefful string manrpuilattiori and pattern, matching 
features considerably simplify the production of some parts
of the compiler, such as the lexical analyser and the code
generator.

(iii) Our ALGOLW implementation imposed restrictions on the 
maximum number of possible record types. We anticipated 
that this might cause problems when implementing a compiler.

SN0B0L4 undoubtedly suffers in comparison with ALGOLW inasmuch as 
it lacks structured control constructs and, in that little compile­
time checking is carried out by the SN0B0L4 compiler. In spite of 
this, because of its data structures and superior string manipulation 
facilities, SN0B0L4 was chosen as the language for the SUILVEN 
compile!?.

5.3 Thee (PoTni^:^l^^rr

This section of the thesis presents a brief overview of the SUILVEN 
compiler and displays, in diagrammatic form, the structure of that
program.

Having chosen SN0B0L4 as the compiler programming language it was 
decided to utilise a top-down recursive descent syntax analysis 
technique to parse SUILVEN statements. This decision was made for 
the reasons discussed in section 5.1, viz, recursive descent 
compilers are simple to construct, efficient, and easy to understand.
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There are three basic parts to the SUILVEN compiler:

(S)

(is)

The scanner or lexical analyser

The syntactic and semlaOsi analyser

CSSS) The code generator

The scanner and the code • generator are relatively simple procedures 
called by the analysis section as required. Their functions are to 
return the next symbol from the input stream and output
microinstructions respectively. Microinstructions are not output 
Sn binary form but in the dntermeOiaOg form, IML, described in 
chaper 3. ■

The syntactic and semantic analyser comprises the major part of 
the compiler. Its functions are to build the compiler tables from 
information supplied by SUILVEN dbclaratStns, to check the syntax 
and semantics of SUILVEN statements, and to translate these
statements into microcode.

This part of the compiler was constructed Sn a top-down fashion 
and has a hierarchical structure. This•structure is displayed below 
Sn a simplified form in figure 5.1. The nodes of the tree illustrating 
the program are procedure names whose function is, hopefully,
obvious.
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The rbmlsaSag sections of this chapter 0gsirSbb the implementation 
of SUILVEN’s data description features and, very briefly, the 
translation of SUILVEN statements. The chapter concludes with 
sections which discuss code optimisation and the performance of 
the SUILVEN compiler,

5,4 The Implementation of SUILVEN’s Data Dgscrdption Features

In this section, we discuss in some detail the implementation of 
SUILVEN’s data description declarations. These features are covered 
Sn some detail as they are the features of SUILVEN which distinguish 
the language from other high-level languages.

The implementation of SUILVEN declaration requires a number of 
tables to be built by the compiler to hold information about 
dgcllrgd names. The major tables used Sn the compiler are:-

(S) A symbol table

(is) A template table

(SSS) A procedure table

The itructure and functions of each of
below.

these tables Ss described

The implementation of all these tables in SN0B0L4 Ss greatly 
simplified by SNOBOL’s associative addressing feature and data
definition facilities. This latter feature allows the itructure
of a table entry to be defined using a DATA declaration. Any 
table entry can therefore be made by specifying the table name, 
the name to be entered, and a list of attributes.

»I
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For example:-

SYMBOLS<'STACK’> = SYMBOLENTRY(24,ARRAYTYPE,50,2000,0,NIL)

This would enter the name STACK into the table SYMBOLS along
with the attributes of STACK which are specified in brackets. 
SYMBOLENTRY is the name given to the structured type representing
an entry in the symbol table.

5.4.1 The Symbol Table

The symbol table is the main compiler table. It holds information 
concerning the data areas declared using the BITS declaration, with
each entry structured into six fields as follows:-

(i) LBN

Holds the width, in bits, of a variable if it is a scalar 
variable or the width of each array element if an array 
type variable.

(ii) TYPE

Specifies whether the symbol table entry is a scalar, a 
flag, or an array.

(iii) SIZE

If the entry is an array, specifies the number of elements
in the array.

(iv) ADDRESS

This field hoisi the btl addresi in machine store ol the 
declared variable if a BITS variable, or, if a FLAG variable, 
the bit in the L register representing that flag.
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(v) SADD

This field specifies whether a variable is in a fast 
scratchpad register or in store. This is discussed in
more detail in section 5.7 which covers microcode
optimisation.

(vi) TEMP

If a BITS variable is structured, this field points 
to the appropriate structure in the template table.

The -examples below illustrate typical symbol table entries for a 
sequence of declarations.

Declarations .

BITS(24) AREG,BREG;

BITS(24) ARRAY (512) STACK;

FLAG AFULL, BFULL;

Symbol Table Entries

Assume that the first - bit address allocated is address 2000.

AREG 24, S, 0, 2000, 0, NULL

BREG 24, S, 0, 2024, 0, NULL

STACK 24, A, 512, 2048, 0, NULL

AFULL 1, F, 0, 0, 0, NULL

BFULL 1, F, 0, 1, 0, NULL
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5.4.2 The Template Table '

The template table is a table which holds the form of each template 
declared in the . program. For each template, a linked list is 
constructed with each element in the list holding information
about one field of the template. It'.is necessary to use a list 
organisation for this table, as a template may have any number of
fields.

Each element in the linked list is divided into four fields:-

(i) NAE
The name of the template field.

(ii) LENGTH
The width of the template field in bits.

(iii) OFFSET
The displacement of the field in bits from the beginning 
of the template structure.

(iv) NEXT .
A pointer to the next field of the,templatt.

Figure 5.2, ' below,'illustrates the structure of the template 
table for typical declarations.

Declarations

TEMPLATE LIST « GC(1),TAG(4),H3EAD(2O), TAIL(20);

TEMPLATE STACKSTRUG = TAG(4), DATA(20);
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LIST

STACKSTRUG

TAG 4 1

HEAD 20 TAIL 20 29

> TAG 4 0 » DATA 20 4

\ GC 1 0

E

FIGURE 5.2

THE STRUCTURE OF THE TEMPLATE TABLE

A DEFINE declaration causes a template to be associated with a 
declared program data area. This association is accomplished by 
linking the appropriate entries in the symbol table and the template 
table using the TEMP field of the symbol table entry.

Figure 5.3 below illustrates this linking for the following DEFINE
declaration:-

DEFINE STACKSTRUG : AREG, BREG, STACK;

FIGURE 5.3

RELATING A NAME TO A STRUCTURE
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5.4.3 Local Declarations

An important contibution to the power of SUILVEN’s data description 
facilities is provided by the ability to define names local to a 
procedure.

As there are only two levels of scope( local and global ) in
SUILVEN, local declarations are set up in essentially separate 
tables. If the local declaration pertains exclusively to locally 
defined names, the declarations are handled as the global declarations
described above.

Recall, however, that it is possible to locally redefine the structure 
of global data areas either by using a TEMPLATE or by a REDIMENSION 

statement. This situation is handled by taking a copy of the 
appropriate global table entry in the local table and associating 
the locally declared attributes with this copy. The example 
below illustrates the process. z

The global declarations set up 32-bit variables structured as two
16-bit fields

BITS(32) ARRAY(250) STORE;

BITS(32) REGISTER;

TEMPLATE HALFWORDS = HW1(16), HW2(16);

DEFINE HALFWORDS : STORE, REGISTER;
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Assume that a particular function requires 8-bit variables. The
procedure implementing that function could have the declarations

TEMPLATE BYTES = Bl(8), B2(8), B3(8), B(4);

DEFINE BYTES : REGISTER;

REDIMENSION STORE (8,1000);

The organisation of the local and global compiler tables after 
this sequence of declarations has been processed is shown in 
figure 5.4 below. -

STORE 32 • 1 250 L.
Glohats j--->REGISTER 32 0

STORE 8 1 1000
Locals

--------------------REGISTER 32 0

HALFWORDS —

BYTES —>

FIGURE 5.4

TABLE ORGANISATION AFTER STRUCTURE REDEFINITION

Naturally, when compiling a SUILVEN procedure, the local table 
is searched before the global table and this table is re-initialised
at the beginning of each procedure header.
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5.4.4 The Procedure Table

Information pertaining to SUILVEN procedure declarations is stored 
in a separate table called PROCEDUKE__DiCTIONARY. Each entry in 
this table is structured into five fields as follows:-

(i) NOFORMALS
i The number of formal parameters,

(ii) PTYPE
Indicates whether the procedure is a function or a proper
procedure.

(Hi) PADDR
The control store address of the Oaose microinstruction
in the procedure.

(iv) 'FADDR
The address of the Oaose formal parameter.

(v) FPLEN
A pointer to a linked list holding the width of each
formal parameter.

Unlike fixed word length systems, it is not enough to hold the
number of formal parameters and the address of the first parameter
Because of the possibility o1 forma1 araametrrs Vaning difeerent 
widths, it is necessary to ssvv fte wianr of aach. his1 is 
accomplished using a linked list.
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Again, the structure of an entry in the procedure dictionary is 
best illustrated by example. Consider the procedure head;-

PROCEDURE ADDN0DE(BITS(1) GC; BITS(4) TAG;
BITS(24) HEAD,TAIL );

Figure 5,5 below shows the form of the entry in PROCEDUFESJ3ICTIONARY
for this declaration.

ADDNODE 4 0 50 5860 —

PROCEDURE DICTIONARY

1 —> 4 —> 24 — V I1 
■,
l—1 24

FIGURE ' 5.5

AN ENTRY IN PROCEDURE DICTIONARY

5.5 Compiling SUILVEN Statements

The compilation of language statements such as assignment, procedure 
calls, and control statements is admirably documented by authors 
such as Gries(G2),and Randell and Russell(Rl). The general 
techniques described therin have been followed in the implementation 
of the SUILVEN compiler.

A repetition of the description of how to compile such language 
statements would be tedious, especially as these techniques are 
well known. We therefore confine ourselves to a brief description 
of the compiler procedure STATEMENTS which is the main procedure 
used in the compilation of SUILVEN statements.
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SUILVEN control statements may all be identified without lookahead 
by the reserved word beginning the statement. Assignment statements 
and procedure calls are distinguished using a single symbol 
lokkahead. If the next symbol is a left parenthesis the compiler 
assumes the statement is a procedure call, otherwise the statement 
is taken as an assignment statement. This is the only example 
of compiler lookahead used.

The structure of the procedure STATEMENTS is shown belox^:-

case SYMBOL of

"IF” : IFJSTATEMENT;
"WHILE" : WHILE_STATEMENT;

• »

endcase
else

if LOOKAHEAD = "(" then 
PROCEDURE__CALL

else
ASSIGNMENT;

Very few problems were encountered in compiling SUILVEN statements. 
Those difficulties which arose were caused by the fact that the BI 700 
micro-architecture is unsympathetic to the needs of a high-level 
language, principally because of the lack of provision for
the storage of intermediate results in expression evaluation.



Adapting SUILVEN to the B1700 micro-architecture has resulted in 
inefficiencies in the machine code generated for certain high-level
constructs, notably:-

(i) Function designators used in expressions.

(ii) Conditional expressions.

(iii) Subscripted variables.

All these constructs require the use of some intermediate storage
area. In fact, extra code is generated to move these intermediate
results to and from the BI700 address stack which is used for 
temporary storage of results. Inefficiencies and optimisation will 
be discussed in more detail in section 5.7.

5.6 SUILVEN Input/Output FTeahures

The reader will have observed from the previous chapter that 
SUILVEN input and output statements are not defined as part of 
the language. As the I/O requirements of the s-machines which 
we have implemented have been minimal, only simple standard 
procedures have been included in SUILVEN to provide an I/O facility.

The SUILVEN I/O procedures require the programmer to use two 
I/O buffers called INPUT_BUFFER and OUTPUT_BUFFER. Associated 
with each of these buffers is a pointer respectively named INPOINT 
and OUTPOINT. These variables are automatically predeclared in 
all SUILVEN programs and may be accessed like all other variables 
declared in a SUILVEN program.
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There are five I/O functions which operate either on INPUT_JUFFER 
or OUTPUT_BUFFER.

(i) READ) •
Reads a card image from the input . stream.into INPUT__BUFFER

(ii) WRITE ,
Writes OUTPUTJBUFFER to the line printer in character form

(iii) PUT(<expression>)
Evaluates the given expression, converts the result to 
characters and moves these characters to OUTPUT'BUFFER.

(iv) PUTSTRING^strin^)
Moves the specified string to OUTPUT_BUFFER.

(v) CLEAR.;
Sets all characters in OUTPUT_BUFFER to blank:.

These simple I/O statements have been adequate for the testing and 
evaluation of those s-machines which have been implemented in
SUILVEN.

The use of I/O statements for s-machine evaluation significantly
degrades s-machine performance. This is due to the fact that 
characters may only be moved singly to OUTPUTjBUFFER. The reader 
will realise the effect of this on machine performance when 
diagnostic strings are output. .
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Naturally, should a language like SUILVEN be used in a production 
rather than a research environment, the language input/output 
facilities would have to be improved. We envisage that this is 
best achieved using a descriptor based system but, considering 
the present usage of SUILVEN, we feel the standard procedure 
I/O system is adequate,

5.7 Code Optimisation

The traditional requirement of microprograms is.that they be -as • 

efficient as possible. All sorts of programming * tricks’ are 
used to increase the speed and reduce the size of microprograms.

We believe that this view is destined to change, as it is now 
changing with regard to high-level languages. As technological 
developments increase the speed and decrease the cost of fast 
access store, microprograms will have a wider application, and 
reliability and easy maintenance rather than efficiency will be 
the prime concern of the microprogranmier.

At present, however, if a high-level microprogramming language is 
to be at all credible, the generated microcode must be comparable 
in efficiency with hand-written code. We have, therefore, given 
a good deal of thought to optimising the code output by the SUILVEN 
compiler, although no automatic optimisation techniques have yet 
been implemented.

This section of the thesis discusses some of the problems of
optimising B1700 microcode and the techniques we have used to 
optimise the code. These techniques are all reliant on programmer 
intervention by the s-machine implementor.
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5.7.1 Microcode Inefficiencies

The generation of optimal microcode from a high-level language 
program is hampered by a number of factors:-

(i) Micro-architecture is not designed to sutppoirt High-—jLeve 1 
languages. Consequently, problems arise in generating 
efficient code for some high-level constructs such as 
arithmetic expressions

(ii) Microprogrammable machines usually have a number of 
general purpose registers. There is a very significant 
difference in execution speed between register-register 
and register-store instructions. Typically, register- 
register operations are 5 times faster than register- 
store operations and,'as a result, it is obviously 
beneficial to optimise the use of registers. If 
attempted automatically, this is a non-trivial problem.

(iii) There is usually no multiply microinstruction available 
on microprogrammable machines. The implementation of 
arrays where the user may define his word size in bits 
and access the array as an array of words requires • a 
multiplication. For example, if the array A was composed 
of 32-bit words, the bit address of the nth element is 
computed:-

BASE(A) + 32 * (n-1)

This essential multiplication introduces very significant
microprogram overhead as it must be executed using a
sequence of microinstructions.
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The solution to these problems, in the long run, requires the 
modifications of micro-architectures so that they support high- 
level languages more efficiently. In our implementation of 
SUILVEN, the above problems have resulted in some serious 
inefficiencies in the microcode generated by the compiler.
Hence, some attempts have been made to eliminate redundant 
microinstructions and to minimise the number of register-store
data transfers.

5.7.2 Minimising Register-Store Data Transfers

The B1700 has a group of fast storage registers known as the 
scratchpad registers. Normally, variables declared in a SUILVEN 
program are allocated addresses in the machine store, but it 
is obviously desirable to utilise the scratchpad registers for 
the storage of frequently accessed variables.

As the compiler cannot know in advance which variables will be 
most used, compiler directives have been introduced which allow 
the user to specify which program variables are to be stored 
in the scratchpad. We assume that the s-machine programmer 
has some intuitive notion of how frequently each variable 
in his program is accessed. The compiler directives are:-

(i) SCRATCHPAD <list of variable names>
This specifies that the named variables should be 
allocated to scratchpad registers.
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(ii) CCPYSCCATCH <list of variable names>
This causes code to be generated which will copy the 
specified variables from store into a scratchpad register

(iii) CLEARSCRATCH <list of variable names> -
• This causes code to be generated which will copy the

specified variables from the scratchpad to store, thus 
freeing their scratchpad locations for subsequent use.

As all variables always have a location reserved for them in 
store it is permissable to transfer a variable to the scratchpad 
on entry to a routine which uses that variable frequently. It 
may be returned to store on exit from that routine.

The performance improvement obtained by retaining variables in 
the scratchpad rather than in store is clearly demonstrated by
the example below.

Example

This example compares the generated microinstructions from a
SUILVEN assignment statement when the operands are in store, and
when they are in the scratchpad.

Consider the assignment:-

A := A + B

The microinstructions generated when both A and B are in store
are shown overleaf.
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Microinstruction . Number of machine cycles

FA:=Address (A) 2
X:«READ 5
FA:=Address(B) 2
Y:=READ 5 .
X:=SUM • 1
FA:=Address(A) 2
WRITE (X^) 6

Total number of microinstructions generated = 7

Total number of machine cycles used = 23

This may be compared with the microinstructions generated for the 
same assignment statement when both A and B have been allocated 
scratchpad locations.

Microinstruction Number of machine cycles

X:=Scratchpad(A) 1 .
Y:=Scratchpad(B) 1
X:=SUM 1
Scratchpad(A):=X 1

Total number of microinstructions = 4
Total number of machine cycles used = 4

This represents a reduction of about 50% in the number of 
microinstructions but, because of the elimination of store- 
register data transfers, an execution time improvement of about
500% is achieved
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The reader will recall that a field named SPAD exists in the symbol
table entry for each declared name. This field is used to hold 
the scratchpad location of that variable, should it have been
assigned by the programmer. '

The ability to retain variables in'the scratchpad can also 
significantly reduce the number of array accesses made when a 
stack is implemented in SUILVEN. It is obviously impossible 
to retain all stack elements in fast ' scratchpad registers, but 
the top few stack elements may be kept in the scratchpad rather 
than in store. If this is done, very few store accesses need 
be made when the stack is used for computation. .

We have carried out a number of simulations to determine the
optimum number of registers needed as top stack registers. Our
results are tabulated below:-

Number of stack registers Average % of store transfers

0 100

2 11
4 3
6 2

TABLE 5.1

STACK REGISTERS -AND PERCENTAGE OF STORE ACCESSES
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Naturally,- thj.s_ method of stack makes, .£
complex stack manipulation routines. The more elements retained 
in registers, the more complicated become the stack push and pop 
procedures. In the s-machines which we have implemented, two 
stack registers have been used. We estimate that the overhead 
involved in the more complex stack routines does not justify 
the decrease in store accesses which would result from using 
more stack top registers. Typically, the execution speed of 
a stack machine is increased by about 30% by using two stack top 
registers.

5.7.3 Eliminating Redundant Microinstructions

This section of the thesis describes how redundant microinstructions 
are necessarily generated by the SUILVEN compiler, how they may 
be eliminated, and the improvement possible by so doing. No 
automatic techniques have been developed to remove these 
instructions but aids have been provided to assist hand optimisation.

Redundant microinstructions occur most commonly in two constructs 
translated by the SUILVEN compiler:

(i) oonitiional exreessions

(ii) Demai^s 1 oi structuedl aam aeass

In the former case, the redundancy is a direct result of the
generality of SUILVEN conditional expressions. Recall that such
an expression has the form:-

<expression> <relation> <expression>
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Expressions are • always .evaluated into -a- • B1700 register .called, .the. ■ ■
X register and comparisons are made using this register and the 
Y register. Therefore, the code generation sequence for a
conditional expression is:-

X := <left side>
Save X on address stack
X := <right side>
Y := top of stack
Compare

If, as is most common, each side of the conditional expression is 
a simple variable, this code sequence may be reduced to:-

X := <left side>
Y := <right side>
Compare

Two redundant microinstructions may be eliminated.

When working with structured data areas, it is common to manipulate 
more ' than one field of a particular structure. The SUILVEN
compiler treats each field separately and generates code to 
compute the field address in each case.

However, the B1700 has an automatic address updating feature which 
increments or decrements the store address register in parallel 
with the store access operation. When judiciously used, this 
can make a significant contribution to microcode efficiency.
This is illustrated by the example overleaf:-
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Example

The variables A is structured into twTo fields called HEAD and TAIL,
Consider the following assignment statements

A.TAIL : = B;
A.HEAD := C;

Assuming B and C are held in the scratchpad and A in store, the code 
generated by the SUILVEN compiler is:-

X := Scratchpad(B)
FA : = Address(A.TAIL)
WRITE(X)
X := Scratchpad(C)
FA := Address(A.HEAD)
WRITE (X^)

If the automatic address updating feature in the B1700 is used, 
the second assignment to FA may be eliminated:-

X := Scratchpad(B)
FA := Address(d,TAI.L)
WRITE(X) DEC FA
X := Scratchpad(C)
WRITE(X)

Obviously, this is most beneficial when operating on structured
array elements, as the need to recompute the array index is
eliminated. This reduces the number of microinstructions and
significantly increases -program execution speed.
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It is very difficult for the SUILVEN compiler to generate code which 
uses the address updating feature of the BI700. The code to evaluate 
an expression operand is generated before consuming the next operand 
from the input stream. Hence, there is no way of knowing whether 
operands are adjacent in store and of using the address updater 
accordingly.

To remove the redundancies in conditional expressions and to utilise 
address updating, the machine code generated by the SUILVEN 
compiler may be hand optimised.

This approach is not usually adopted with high-level languages as 
the code generated by the compiler is not usually geared towards 
the human reader. An additional problem with hand optimisation 
is that the displacement in branch instructions must be modified 
when instructions are deleted. This is a tedious and error prone 
task. We have developed facilities to simplify the hand 
optimisation of the generated code. These are:-

(i) The microcode- generated by the SUILVEN compiler for each 
language statement may be listed adjacent to the statement. 
This code listing is in an easily readable mnemonic form.

(ii) A special purpose editor has been written which enables 
the generated microcode to be modified. This editor takes 
care of changes in branch displacements when instructions 
are added or deleted. Clearly, the consistent control 
structure of SUILVEN, and the lack of undisciplined 
branching in a SUILVEN program simplifies the construction
of such an editing program.
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The hand optimisation of an s-machine whose size is about 2000 
microinstructions can be accomplished fairly quickly. We estimate 
that approximately 95% of redundant microinstructions can be 
eliminated if two optimising passes are made through the object code.

To give some indication of the effectiveness of hand optimisation, 
the histograms below show the number of microinstructions in an 
s-machine before and after optimisation. The programs used to 
gather this information were:-

(i) An s-machine for a lamda-calculus language(SASL)

(ii) A general purpose stack machine for PASCAL

(iii) A simple stack machine(SIMPS), developed initially as a
vehicle to test the SUILVEN compiler. .

Both (i) and (ii) above are described in detail in chapter 6.

FIGURE 5.6

SIZE COMPARISON OF OPTIMISED AND UNOPTIMISED S-MACHINES
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The approximate reduction in the number of microinstructions
for each s-machine is as follows:-

... SASL machine 20%

PASCAL machine 15%

SIMPS machine 14%

The discrepancy between the figures for the SASL machine and the 
figures for the other s-machines may be accounted for. The SASL 
machine is a higher level machine than the comparitively simple 
stack machines. As a result, the program emulating that machine 
contains relatively more conditional expressions and operations 
on structured data areas. As microinstruction redundancy is most 
obvious in these contracts, their optimisation results in a 
relatively greater reduction in the size of the SASL machine.
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5.8 The Lineprinter Output Produced lay the SUILVEN Compiler

The format of the lineprinter output from a compiler is often 
a feature which is neglected by the compiler writer. However, 
as this output is the sole means of communication between the 
compiler and the programmer, we believe that much care should be
taken over its design.

A good listing contains much more than a printout of the source 
text. It must establish a co-ordinate system within the program 
by which program elements may be identified, both for human 
communication and for association with compiler error messages.

Accordingly, the listing produced by the SUILVEN compiler is 
distinguished by the following features

(i) aI infonaative "heading providing infonnation about 
the compiler and compiler options.

(ii) SUILVEN statement numbrrs and crdd sequence numbers.

(iii) ft e ss wtthen e prcedduee : tee pooedduee amet
is printed by the rtateuenn.

As the full width of the linepriatcr carriage is used to provide 
this hnfrrmanhra, it is not possible to give examples of the 
compiler output here and still retain neatness. However, Appendix 
3 consists of SUILVEN program listings where the output format 
may be examined.
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5.9 Statistics concerning the SUILVEN Compiler

The evaluation of a compiler is only meaningful when it is
compared with similiar compilers. For example, Witchman(WS) 
has compared a number of ALGOL compilers, and Wortman(W9) a 
number of PL/1 compilers. As no other SUILVEN compiler exists, 
it is impossible to evaluate the compiler objectively. However, 
some figures concerning details of the compiler implementation 
are given below?.

Approximate Compilation Rate

Store Occupied by the Compiler

Store Occupied by the Compiler 
plus the SPITBOL system

Compiler Development Time

300 SUILVEN statements
_per minute

75K Dyess

140K yyess

9 mottss

Unquestionably, the compilation rate could be increased and the 
store requirements decreased had a language other than SN0B0L4 
been used to implement the compiler. However, this would probably 
have resulted in an increase in compiler development time. As 
SUILVEN is a research tool, rapid compiler development took 
priority over the construction of a fast/compact system.
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5.10 Summary

In this chapter, the development of a compiler for the high-level 
microprogramming language SUILVEN has been described. Emphasis 
has been placed on discussion of design decisions, compilation 
of SUILVEN’s data description features, and the optimisation
of the microcode generated by the compiler. Because the techniques 
are well known, the compilation of SUILVEN statements is only
discussed briefly.

We believe that the construction of the SUILVEN compiler has been
a successful part of our research project. Improvements could 
be made in the compiler error recovery strategy and, possibly,. 

some automatic code.optimisation could be attempted. However,
as SUILVEN is a research tool,designed for a limited purpose, 
it is arguable whether the cost of implementing such improvements 
is justified.
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CHAPTER 6

THE . IMPLEMENTATION OF ABSTRACT MACHINES

In this chapter,'the implementation of interpreters for two
non-trivial abstract machines is discussed. These abstract
machines are:-

(i) A stack machine used to implement PASCAL.

(ii) A 1ist—oriented machine used to implement SASL, a 
locally developed lambda-calculus programming language.

SUILVEN implementations of these machines have been programmed by 
the author of this thesis. These implementations are compared 
with other implementations in both high-level and low-level 
programming languages. In particular:-

(i) With tire PASCAL stack machine programmed in PASCAL
and in PL360.

(ii) With the SASL machine programed in BCPL and MIL.

This chapter, therefore, begins with some general discussion 
concerning the characteristics of s-machine interpreters. This
is followed by a description of the PASCAL s-machine. The various 
implementations of that machine are then compared paying particular 
attention to the descriptive power of the languages used to 
implement the interpreters.
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The final 'sections of the chapter provide a corresponding description 
of the SASL machine and its implementation. The chapter concludes 
with a general evaluation of SUILVEN as a machine description 
and imple^ltoya.tioo language.

The implementation of the PASCAL and SASL s-machines occupied 
some months. As will become clear later, these machines have a 
radically different structure, with the PASCAL machine being a 
fairly simple stack machine of a conventional design. The SASL 
machine, on the other hand, is a true high-level machine which 
utilises high-semantic content instructions, a list-oriented store, 
and a tagged data architecture.

SUILVEN was therefore . tested using significantly different s-machines 
These machine implementations provided insights.into both the good 
and the bad features of the language design.

6.1 Abstract Machine Interpreters

The structure of abstract machine interpreters mimics the instruction 
fetch-decode-execute sequence on ’hard* machines.

The main interpreter loop checks for interrupts, handles them if
necessary, fetches and identifies a machine instruction, and
executes the appropriate sequence of operations to interpret that
instruction, A skeleton of a typical interpreter is shown
overleaf in figure 6.1.
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INTERPRETER
INITIALISE
while . interpreting do

' {

if cny_ianeurdpt then
HANDLE__INTERRUPT

FETCH_INSTRUCTION
case hnstruothoa op code of

•
Code to execute each machine instruction

• •• ■•
endcase

else
ERROR

}
END INTERPRETER

FIGURE 6.1

THE SKELETON STRUCTURE OF AN S-MACHINE INTERPRETER

This structure, with a greater or lesser degree of enhancement 
depending on the machine being implemented, is fundamental to 
all s-machine hancrpucters, Clearly, SUILVEN has the necessary 
control facilities to implement such a structure.
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6.2' The PASCAL Machine •

The architectural features of an abstract machine for PASCAL(WT) are
described in this section. We assume that the reader has some
knowledge of the general features of that language. The machine 
was designed by Jensen(Jl) as part of a project to provide a 
portable implementation of PASCAL.

As PASCAL is a block-structured language, it is natural that the 
PASCAL machine( subsequently referred to as the P-machine ) should 
be a stack machine. To support PASCAL*s record structures, a heap 
is also an integeral part of_the machine architecture. The 
diagram below illustrates the machine organisation:-

HP-------- >

Sp--------- >

PC-T —

HEAP

I
T

STACK

CONSTANTS

MACHINE CODE

HP Heap pointer

SP Stack pointer

PC Program counter

FIGURE 6.2

THE ORGANISATION OF THE PASCAL S-MACHINE
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It should be noted that the heap is not a true heap but is organised 
on a LIFO basis. The machine has no mechanism for garbage collection.

A P-machine instruction is split into three fields:-

(i) The op code

(ii) Thee P field

(iii) Tlee Q field

The P and Q fields are not used in all instructions but, for
convenience, a consistent instruction format has been used. The 
instruction set consists mostly of instructions such as ADD, MULTIPLY, 
EQ, GRT, etc which operate on the stack. In addition, • there are a 
number of instructions which have an address as a parameter. These 
are used for loading data onto the stack and storing information 
from the stack. There are some instructions which are specifically 
oriented towards features of PASCAL. These instructions include
operations such as:-

(i) inn Tetss fos tet membshship

(ii) INT Set intersetiion. operator

(iii) ODD lets if the top of the stack is odd

Naturally, instructions for array bound checking, procedure entry 
and procedure exit are included in the machine instruction set.

The P-machine can therefore be summarised as a typical stack 
machine, not dissimiliar to Randell and Russell’s Beta machin^Rl). 
The machine has been deliberately organised in this simple 
manner so that it may be more portable.
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6.3 Implementing the P-machine in SUILVEN

The SUILVEN implementation of the P-machine is described here 
with a listing of the program displayed in appendix 3.

The organisation of the data areas in the P-machine is exceptionally
simple and is easily described using two SUILVEN BITS declarations

BITS(WORD_SIZE) ARRAY(STORE_SIZE) STORE;

BITS (WORD_SIZE) STACKPOINTER,HEAPPOINTER,PROGRAMCOUlNra:R:

A number of other variables are declared which act as hnneracl
machine registers. These include variables to hold a machine 
instruction, an op code register and an interrupt ueghsneu.

The implementation of many of the stack machine instructions is 
correspondingly simple. Most instructions are executed by either 
one or two SUILVEN statements. For example

Add Integer : PUSH(POP)) + POP)))

Load Address : PUSH(BASE(P) + Q)

Branch false : IF POP)t = 0 THEN
PROGRAMCOUNTER : = Q

An hnnbresning point which emerged from the implementation of the
P-machine was that there was little need for local BITS variables.
Those which were used, could easily have been replaced by global 
variables, without causing any problems or confusing the program
structure.
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However, use was made of locally declared templates in routines
which interpreted real and integer arithmetic operations. For 
example, the template for a real number is declared:­

. TEMPLATE REAL = CHAR(7), SIGN(l), MANTISSA(16)

whereas that for an integer is:-

TEMPLATE INTEGER = SIGN(l), NUMB(23)

The positioning of the sign bit to the right rather than to the 
left of the mantissa in a real number is forced on the s-machine 
implementor by the operation of the B1700 arithmetic unit.

SUILVEN was found to be an adequate language for implementing
the PASCAL machine. Apart from real operations, which often 
present implementation problems, SUILVEN easily implemented and 
described the data areas and operations of the abstract machine.

I
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6,3.1 Implementation Data for the SUILVEN P-machine

Table 6.1 below summarises miscellaneous items of quantitative 
information concerning the SUILVEN implementation of the P-machine,

Number of SUILVEN statements 570

Number of microinstimetions 2342
generated by the SUILVEN compiler

Number of microinstructions 22010
after hand optimisation

Implementation time 6 weeks

TABLE 6.1

P-MACHINE INTERPRETER INFORMATION

The number of microinstructions after hand optimisation is 2010 
and this figure represents 32160 bits of information. This may 
be compared with the 28K-32K bits figure specified by NUnerC!^) 
as the size of a typical s-machine programmed in MIL. Such a 
machine, although slightly more complicated than the P-machine, 
is of the same order of complexity.

Therefore, it appears that encoding a fairly low-level s-machine 
in SUILVEN involves only a slight overhead in terms of numbers 
of mscrosntybucyioos compared to a hand coded machine. We suspect
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however, that a hand coded machine operates more efficiently
because better use is made of fast registers and store accesses
are mhnhmhrcd.

Notice that figures are not given for the execution speed of the 
P-machine. It has not been possible to collect coIuparinhve 
information crncerahng the machine speed as an MIL version
of the machine is not available to us.

6.4 A Comparison of P-machine Implementations

In this sectim, the SUILVEN implementation of the P-machine 
is compared with other P-machine interpreters encoded in PASCAL 
and PL360. Naturally, as microcode is not generated by the PASCAL 
and PL360 crmphleur, it is not possible to give an objective
comparison of the haneuprettus. Rather comparisons are made
on three bases

(i) TTh number of statements in each interpreter

(ii) TTh readability of each interpreter listing

(WwO Tth suitablity of each language as an MDL

6.4.1 SUILVEN ad PASCAL

The P-machine interpreter used for this comparison is the defhahnhie 
version of the hnterpuener supplied by the P-machine designers. The 
designers claim/Jl) that the interpreter constitutes an adequate 
description of the P-machine and provide only minimal extra
documentation about the machine.
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When comparing this program with the SUILVEN version of the interpreter,
the reader must bear in mind that some operations, such as set
operations and real arithmetic operations, are implemented in ,
PASCAL using themselves. For example, the set operation INN is
encoded

SP := SP - 1;
STO1RE(.SP.).VB := STORE(.SP.).VI IN STORE(.SP+1.).VS; 
STORE(.SP.).STYPE ;= BOOL;

While this is a simple way of implementing the instruction, it has 
the disadvantage, as far as machine description is concerned, of 
giving no indication of how sets and set operations are implemented 
as bitstrings.

In spite of PASCAL’s advantage in this respect, the sizes of the 
PASCAL and SUILVEN P-machine interpreters are roughly comparable.

This may be explained by the fact that PASCAL has a very strict 
type discipline which is not particularly appropriate in the 
implementation of interpreters. The type discipline necessitates that 
the P-machine stack is implemented as a tagged structure, with 
the tag indicating the type of operand on the stack. This is '' 
illustrated in the example above. Naturally, extra code is needed 
to accomodate this tagging and this increases the overall size of
the interpreter.



As would be expected, the implementation of simple machine instructions 
such as ADI( Add Integer ) and UJP( Unconditional Jump ) is siminar 
in PASCAL and in SUILVEN. For example

Add Inyegeb(ADI)

PASCAL
SP := SP - 1;
STORE(.SP.).VI := STORE(.SP.).VI + STORE(.SP+1).VI;

, SUILVEN
PUSH(POP0 + POP(>)

Because of the particular implementation of the P-machine stack, 
using stack top • registers, the SUILVEN add instruction is implemented 
as procedure calls to push and pop routines rather than as a direct 
stack manipulation.

In terms of readability, both the PASCAL and SUILVEN P-machine 
interpreters are reasonably clear and easy to understand. Readability 
is significantly affected by programming style, and it is our opinion 
that the style displayed in the PASCAL interpreter program leaves 
a great deal to be desired. In particular, we deplore the use of
one and two character identifiers and the lack of comments in the
program.

Disregarding this however, we believe that the SUILVEN interpreter 
is slightly easier to understand than the PASCAL interpreter. This is 
due to the fact that a reader not completely familiar with PASCAL 
may find the tagged stack architecture fathtr confusing, with the 
rigid type discipline concealing rather than displaying the salient

features of the P-machine.
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Our general opinion of the merits of SUILVEN and PASCAL as machine ■ 
description languages is that they are comparable. While SUILVEN,s 
data description features allow the machine data areas to be more 
exactly specified, PASCAL*s higher level operators can be ■ used 
to provide an extra level of abstraction. -- ■ " -
c.; ■ r . - '* :

6.4.2 SUILVEN and PL360

This section consists of a brief comparison of P-machine interpreters 
encoded in SUILVEN and PL360. The PL360 version was locally 
programmed to bootstrap PASCAL onto an IBM S/360 computer.

PL360, designed by WirthCW?), is a machine oriented programming 
language for the IBM S/360-370 range of computers. It superimposes 
high-level language features such as procedures, control statements, 
and expressions onto the S/360 assembly code. These high-level 
features make PL360 much easier to use and understand than
assembly code.

Nevertheless, PL360 still remains c low-level language as is 
reflected in the comparison of the sizes of the SUILVEN and PL360 
P-machine interpreters. In spite of the availability of real 
arithmetic features( the real arithmetic package is a large part 
of the SUILVEN interpreter ), the PL360 hnnerpueteu has about 
5 times as many statements as the SUILVEN interpreter.

Because of PL360*s excellent control structures, the interpreter 
description is surprisingly clear. The well structured nature 
of the hnnerpreteu means that machine language is introduced at 
a fairly low level. However, the SUILVEN version of the hnnerpuenbu
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provides a more readable and understandable description of the 
P-machine, This is to be expected as SUILVEN as a much higher
level language than PL360.

SUILVEN’s power as an interpreter programming language is illustrated 
by the time taken to encode each interpreter. Encoding the P-machine 
in SUILVEN occupied about 6 weeks, whereas programming the interpreter
in PL360 took about 5 months.

6,5 The SASL Machine

This part of the thesis describes the design of an abstract machine 
for a list processing language called SASL. This machine, based 
on Landin’s SECD macCine(L2), is defined and described by Turner(T2) 
and Nelson(Nl), As SASL is not widely known, a vefyzbrief . -

overview of the language is given below.

SASL is a descriptive language, defined by Turner(Tl). Fundamentally, 
it is a convenient notation for expressing the lambda calculus.
The language has no goto statement, no assignment statement:, and 
no explicit iteration features. Loops are programmed using 
recursion. A SASL program is an expression and its outcome 
is to print the value of that expression.

SASL is intended for list processing and recognises four basic types 
of object - integers, characters, truthvalues, and lists. Types 
are not checked at compile time but at run time by the SASL machine 
interpreter. As the language is based on the lambda calculus, 
functions may be treated as any other object and may be arguments
to other functions and function results.
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Eyen from the very brief description^ above, it is obvious that ■ 
SASL is unlike most conventional programming languages such as 
PASCAL. Their s-machines, correspondingly, have completely different
architectures. •

The SASL machine is based around a list area and a stack. The
s-machine code and data are held in the list area, with a register 
called the C register pointing to the next machine instruction 
to be executed. Another register, called the E register, is the 
environment register. That is, the E register points to the list 
of data items accessable to the program at any one time. This 
organisation is diagrammed below in figure 6,4.

STACK
“I
t

< ---------- c register
LIST AREA

< ---------- e register

FIGURE 6.4

THE ORGANISATION OF THE SASL MACHINE
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The elements in the list constitute both luactWae instructi-ons and
data. Each element is structured hnnr four fields

(i) A tag bit, used in garbage collection

(ii) A field specifying the type of the element

(wwi.) A field holding the value of the list element

(iv) A prwencr to the following element

The stack is more simply structured into a type field and a value
field.

The hnsnrucnion set of the SASL machine is made up of two kinds
of inrtruonhons:-

(i) Fairly simple stack instructions appropriate, for a
list processing environment. These hnstuucnhonr include 
ADD, EQ, GEQ, HEAD, TAIL, etc, etc. ,

(ii) Instruchrons whOth hvve one parameeer and which generally 
perform more complex operations than the simple stack
instructions.

These latter wesnrdonhons are more interesting than the simple 
stack instructions. They include instructions to update the 
program envhrrament list, hnsnrucnhoar to handle recursive 
declarations, and instructions to manipulate functions. The 
combination of these instructions with the stack operations 
results in a simple, elegant, and powerful abstract machine.
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6.6 Implementing the SASL Machine in SUILVEN - •

This section deals with the SUILVEN implementation of the SASL
machine. This was a more complex and difficult program to
construct than the P-machine interpreter. A complete listing
of the SUILVEN version of the SASL machine interpreter is available
in appendix 3.

The main data areas of the SASL machine are defined using BITS
declarations:-

BITS(STACK_WIDTH) ARRAY (STACK_SIZE) STACK;

BITSCLISTjWIDTH) ARRAY (LIST_SIZE) LIST;

BITS (VORD__SIZE) CREG , EREG;

The stack and list areas are structured using the following
template declarations:-

TEMPLATE STACKSTRUCTURE = TAG(TAG__SIZE) , DATA(WORD_SIZE) ; 
TEMPLATE LISTSTRUCTURE = GC(1), TAG(TAG_SIZE), HEAD(WORDJSIZE),

TAIL(WORD_SIZE);

In order to minimise the number of store accesses, scratchpad
registers are used to hold the top stack elements with the stack 
push and the stack pop routines programmed accordingly.

The overall structure of the stack machine is- that described
in section 6.1. That is, the program consists of a while loop
fetching an instruction, checking for interrupts, then executing 
that instruction. The SASL machine.interpretation loop is a little
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tlobt complex than the simple loop in section 6,1, as it includes 
provision for run-time type checking of instruction operands.

The implementation of many of the SASL machine instructions in 
SUILVEN is fairly straightforward. Like the PASCAL machine, most 
instructions can be interpreted by a few SUILVEN statements. In 
the examples below, it may be assumed that run-time type checking
has been carried out when the instruction is fetched from the list
area.

Instruction HEAD

" The top of the stack is a pointer to a tist. Replace 

this pointer with the element at the head of the list.

The top of stack data element is held in a register 

called TORS "

PUSH(LIST(.TOPS.).TAG, LIST(.TOPS.).HEAD);

Notice that the stack push procedure takes two parameters - the 
tag holding the data type and the data value.

Instruction ADD

y Adds ■the top stack elements "

PUSH(INTEGERJTYPE, TOPS + SECS);



-174-

Inrtuuetirn COMMA. • •

" This instruction appends an item onto a list. The

item to he appended is in the second top stack element 

and a pointer to the list is on top of the stack. A 

pointer to the new list is pushed onto the stack "

TR : = GET^A.JNEW-LIST-CELLO;
LCST(.TR.).TACL := TOPS;
LIST(.TR.),TAG ;= POINTER_TYPE;
LCSh(.hR.).HEAD := SECS;

PUSHShACK(POCNhERJhYPE, TR);

The implementation of some of the more complex SASL machine
instructhras, notably those handling declarations, was more
difficult. The inrnruotioar which deal with SASL declarations
are as follows:-

(i) I^^C^L <name>

Removes the top item from the stack and makes a new entry
in the environment list, associating ^amo with the value
taken from the stack.

(ii) IE2OGUJE'ss ■■.icuO-

Makes a new entry in the cavwurautet list associating ^namo 
with the unknown value GUESS. This is used when dccahag
with recursive declarations where the item to be associated
with ^amo is undefined.
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(iii) TIEKNOT <name> ’

The environment contains <name> associated with the value
"GUESS". This instruction pops the stack and overwrites 
GUESS with the value popped from the stack.

As <name> in each of these instructions may'.be ■ the name of a list 
type entity, which may itself be composed of lists, the ■ reader will 
appreciate that the most natural implementation of these instructions 
uses recursion. Unfortunately, such a facility is not inherent in 
SUILVEN, and the programmer must use the SASL machine stack to
save and restore local variables when recursive routines are to
be implemented.

All three of the above instructions are concerned with modifying the 
environment list in some way. In order to minimise the number 
of recursive procedures, the approach which we have adopted in 
implementing these instructions is to flatten all lists, thus 
ensuring that the instructions may be interpreted in an iterative 
manner. List flattening means that each list component which is 
itself a list is replaced by the actual elements of that list, 
resulting in a final list which is strictly linear.

The instructions DECL, DECLGUESS, and TIEKNOT all call the .
recursive procedure FLATTEN to accomplish this list flattening.
The examples overleaf illustrate this ■procedure and the procedure 
DECL which implements the DECL and DECLGUESS instructions.



-176-

PROCEDURE FLATTEN(BITS(WORD_SIZE) L1,LAST); . ,

" The effect of this procedure is to flatten the list pointed 
at by Ll, i,e, all list elements.which are lists ore replaced 

by the actual list components, FLATTEN may be called recursively, 

and if so, LAST points to the element immediately preceding 

the element whose value is LI, LAST is used when replacing 

the list descriptor by the list components. The recursion 

level is held in the global variable RECLEVEL "

if LIST(.L1.).TAG = POINTERjTYPE then 
£(
" List element is a list - chain it onto previous list 

pointed to by LAST, "
PUSHSTACK(POINTER_TYPE,LI);
L!:=LIST(.L1.).HEAD;
LIST(.LAST.).TAIL:=LI;
RECLEVEL:=RE CLEVEL+1; •

£)

ELSE
IF LIST(.L1.) = NIL THEN

£(

" If processing subsidiary list chain its last element 

onto the next elernnt in higher level list.. Restore P 

from the stack and reduce RECLEVEL, If RECLEVEL is 

0 we are at end of main list so exit "
IF RECLEVEL > 0 then

£(



RECLEVEL:=RECLEVEL~1; - •

FCLLJ(OOSTACK_REGCSTERSO ;
LAST:=L1; UNSET(OOPSF);
L1^LISTC.TOPS_DATA.).TAIL;
LIST(.LAST.);TAIL;=L1;
£)

ELSE
" End of highest level list so exit "

EXIT

£)

ELSE
" Element is not a list so no flattening required..

Move on to next element "
£( ' .

LAST:=L1; Ll:=LCST(.LI.(.hACL;

£);

" Now call FLATTEN reoursively. Unless the pointer 

LI has been stacked this is not really a recursive call 

but is merely a dump back to the beginning of the procedure 

to repeat the operation sequence on the next list element " 
FLATTEN (L^LAST); ’

END "FLATTEN" ;
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PROCEDURE DECLO; • ■

" This procedure processes SASL declarations. If the declaration

is recursive* the value to he associated with the given name is 

not known when the declaration is processed so the unknown value 

GUESS is filled in, A DECLGUESS operation is identified by the 

setting of a global 'flag called GUESS_PLAG, The instruction 

parameter points to the list of names to be added to the 

environment and * if a DECL instruction* the top of the stack 

points to the associated value list "

BITS(WORDsSIZE) OP;
OP:«NIL;
PUSHSTACK(GETJ?ARAMETERO ) ;
FLATTEN ( TOPS_DATA, OP) ; ,
IF UNSET (GUESS__FLAG) THEN

FLATTEN (SECSJ>ATA, OP) ;
REPEAT

£(
ADD_NAME_A.ND_VALUEjTO_ENVIRON^IENT () ;
TOPS_DATA:=IIST(. TOPSJDATA. ) . TAIL;
IF UNSET(GUESS_sFLAG) THEN

SECSjDATA: =LIST(. SECSJDATA. ) . TAIL;
UNTIL

TOPSjDATA = NIL 
DO ;

END "DECI" ;
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6.6.1 • Data on - -the SASL Machine Implementation

The table below summarises miscellaneous items of quantitative 
information about the SUILVEN program which interprets the
SASL machine.

Number of SUILVEN statements 520

Number of microinstructions 1895
generated by the SUILVEN compiler

Number of microinstructions 1480
after hand optimisation

Implementation time 10 weeks

TABLE 6.2

SASL-MACHINE INTERPRETER INFORMATION

Notice that the decrease in the number of microinstructions after
optimisation is greater than that achieved with the P-machine.
This is a direct result of the more frequent use of operations
on structured data elements in the SASL machine. The code 
generated by the compiler for sequences of these operations
contains redundant microinstructions and removal of these
results in a significant decrease in the size of the s-machine.

Notice also that the size of the SASL s-machine after optimisation
is about 24k bits. This is significantly smaller than the average
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s-machine size quoted by Wilner(30K bits). To account for this, 
decrease in size, we can only conjecture that the design of most 
s-machines contains inherent redundancies, such as different 
load instructions for loading different types of data. The 
generality and elegance of the SASL machine design appears to 
have eliminated these redundancies resulting in a more compact 
interpreter.

6.7 A Comparison of SASL-Machine Implements at ions

As well as the SUILVEN implementation of the SASL-machine, 
implementations exist which have'been programmed in BCPL and 
MIL. In this section, the SUILVEN version of the SASL-machine 
is compared with these other interpreters.

SUILVEN and BCPL are compared as s-machine programming languages
using the same bases of comparison as were used with PASCAL: -

(i) The rnmnber of statements in each version of the 
interpreter.

(ii) The readability of the interpreter.

(SSS) The suitability of each language as a machine description
language.

However, as MIL is the B1700 micro-assembler, the SUILVEN version
and the MIL version of the SASL-machine are not compared as 
machine descriptions. Instead, a comparison Ss made between the
microcode generated by the SUILVEN compiler and the MIL
program.



6.7.1 SUILVEN and BCPL ' ■

The programming-languages BCPI and SUILVEN display some similiarity 
inasmuch as neither language requires the types of variables 
to be declared. Hence, the awkwardness of PASCAL’s strict type 
discipline is not a feature of BCPL programs used to implement 
interpreters. .

As a result, the SUILVEN and BCPI code which interprets the simpler 
stack operations of the SASL machine is very similiar. For example

Instruction ADD

SUILVEN
CHECKjEYPE S_ON_STACK (INTEGER_TYPE ) ;
PUSH(INTEGER_TYPE,TOPS+SECS);

BCPI
A :« NUMBER(A) ;
B := NUMBER(B);
PUSHN(A+B); •

The BCPL function NUMBER checks that the type of its parameter 
is a number and the procedure PUSHN pushes a number onto the
stack.

However, in spite of the similiarity of the implementation of the 
simpler SASI-machine instructions, the BCPI interpreter contains 
around 350 statements - significantly fewer than the SUILVEN
interpreter which is about 520 statements long.
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ThCs difference is attributable to two factors:- •

(i) More use of procedures for code sharing is made in the
BCPL program. The SUILVEN interpreter uses similiar 
in-line code in many places and this could be replaced by 
a procedure call. This programming style of using in-line 
code rather than procedures was adopted to avoid the -
inevitable overhead associated with calling and returning 
from a procedure. .

(ii) BCPL has a very widevariety of control constructs, including 
recursion. As a result, the coding of the more complex
SASL-machine instructions is more concise in BCPL than
in SUILVEN.

In spite of the fact that the BCPL version of the interpreter 
is more concise, we consider that it is less readable and 
understandable than the equivalent SUILVEN program. In short, the 
SUILVEN program is a better description of the SASL machine.

This difference in readability is attributable to two factors:-

(i) CCPf hss ns ooh^^cS ors cxccII- spccffyinf ths szze
of data areas or for ascribing structure to these areas.
Fields within words must be referenced via shifts and 
logical operations such as AND and OR.

(CC) hes atcCUcuhtf rogrhamyins syyes o f hlis Cdf SALL
interpreter utilises many of BCPL's wide range of control 

statements. We believe ChaS'this detracts from program 
readability as some BCPL control statements such as UNLESS 
and TEST we find opaque.
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In comparing the inherent suitabl^y of SUILVEN and BCPL as .
machine description languages, rather than merely their utility 
for describing the SASL-machine, two'salient factors emerge;-

(i) SUILVEN is a superior language for describing the 
s-machine data areas because of its declarations which
allow the user to exactly specify the size and structure ■

of these areas.

(ii) BCPL is a better language for describing complex s-machine 
insnructions( as is PASCAL ), primarily because recursion 
is a feature of the language. It must be emphasised, 
however:, that BCPL’s plethora of control constructs may 
be abused, producing opaque and unreadable programs.

In summary, therefore, if properly used, BCPL ■ can probably 
provide a clearer description of abstract machine architecture 
than SUILVEN, assuming that the BCPL description is supplemented 
with further information specifying the exact structure of
the s-machine data areas. It also assumes that control
constructs are used in a disciplined manner - something
which is forced on the SUILVEN programmer,

6.7.2 SUILVEN and MIL

In this section, the SUILVEN version of the SASL-machine is 
compared with the corresponding interpreter encoded in MIL.

Unfortunately, the implementation of this MIL s-machine was 
delayed by difficulties in implementing the SASL-machine 
instructions to handle declarations. By the time these 
difficulties had been resolved, the machine around which our
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more general project was based, had changed from the B1700 to 
the PDR'/11, and the MIL implementation of the SASL~mautine was
never properly ShsShi. However, the program'cs htseiScally
complete and, by extrapolation, conclusions regarding its
performance have been drawn.

As MIL is almost at the level of an assembly language, it is not 
intended to provide a behavioural description of an s-machine.
Our comparison of MIL and SUILVEN Cs not, therefore, a comparison 
of the languages as MDL’s. Rather, the microcode generated 
by the SUILVEN .ccmpilhr Cs compared with the MIL program. Table 
6.3 below summarises some information about the corresponding 
interpreters.

SUILVEN MIL

Number of micrncitStuutcnis 1890 1320

Number of mcurniitstuusinit
after hand npscmctascni 1480 1320

Mean number of mccrnCistrucCcnns
per ASAP-mactcih instruction 46 40

Time taken to execute example
progtam(uynuk cycles) 6240 300(0 (estimate)

Time taken to implement
interpreter 10 weeks 7 months +

TABLE 6.3

A COMPARISON OF MIL AND SUILVEN INTERPRETERS



Notice that, after hand optimisation, the number of microinstructions 
in each version of the interpreter is roughly comparable. Notice 
also that the execution time of the SUILVEN encoded interpreter 
differs considerably from the estimated time taken by the MIL 
program. The SASL program used for making this comparison 
was the following short program: -

rec sumlist (x,y) be. 
y = () -> x; 
x + sumlist y

in
}

sumlist(1,2,3,4,5,6,7,8,9,10)

This program adds lists of numbers - in this case its answer
would be 55.

The program was translated to SASL-machine code and executed 
on our BI700 simulator. The program execution time was estimated 
for the MIL interpreter by examining which machine instructions 
were used and then hand simulating the action of the interpreter.

The large discrepancy in execution times may be explained by the 
fact that the MIL program makes better use of registers and the 
machine scratchpad. Therefore, far fewer store transfers need 
take place and the execution time is correspondingly decreased.

For constructing microprograms, SUILVEN’s chief advantage is 
that a working program may be achieved fairly quickly. Although 
we cannot claim our SUILVEN interpreter to be completely debugged, 
its implementation time compares very favourably with the time 
needed to program an interpreter in a low-level language.
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6.8 Summary and Conclusions

This chapter has described the programming, in SUILVEN, of
two s-machine interpreters. These SUILVEN implementations have
been compared with corresponding interpreter implementations 
in both high and low-level languages. The machines which were 
implemented are:-

(i) A stack-oriented s-machine for PASCAL

(ii) A list oriented s-machine for SASL .

These machines have completely different architectures. Because 
of this, we reasoned that each machine would test different features 
of SUILVEN, hence providing a balanced language evaluation.

SUILVEN is an adequate language for describing and evaluating the 
PASCAL machine. However, because it lacks recursion, its 
description of some SASL machine instructions is a little unnatural.

It is an excellent language for the description of sMmachine 
data areas - indeed this is probably the best designed feature 
of SUILVEN. Its facility for exactly specifying the width of 
dat areas and its flexible structure assignment, provide a
clear and readable description of s-machine data organisation.
For describing complex recursive machine instructions, the language 
is inadequate, but it is suitable for describing simpler
s-machine operations.
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The code generated by the SUILVEN compiler for a typical
interpreter seems to contain about 20-25% more microinstructions 
than the corresponding MIL encoded program. This figure may be 
significantly reduced by hand optimisation of the generated microcode. 
The run-time efficiency of a SUILVEN interpreter is much less 
than that of an interpreter encoded in machine code. This is 
primarily due to the difficulty of generating microcode which 
will optimally utilise the fast machine registers.

A full evaluation of SUILVEN and possible improvements in the 
language, is the subject of the following chapter.
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CHAPTER 7

CONCLUSIONS

In this final thesis chapter, we critically examine the work
which we have done in the course of the project, and suggest 
improvements which could be made. We draw a number of conclusions 
from the research work we have undertaken and put forward some 
suggestions for further work in this research area.

However, before discussing the above in detail, let us consider 
our research in the context of the more general research project 
discussed in chapter 1.

The research which we undertook was part of a larger research 
project investigating techniques for the construction of abstract 
machines. As part of this, in parallel with our project, there 
were a number of other projects investigating machine-dependent 
microprogramming languages, and language-oriented abstract machines.

When the general project was initially conceived, it was decided 
to base the system • implementation on the B1700 range of computers, 
for • the reasons discussed in chapter 1. As we were involved in 
the early stages of the project, it was natural that out own
research should be biased towards this machine.

As economic circumstances changed, the possibility of acquiring 
a B1700 computer receded. Dedicated hardware was considered
essential to the success of the main research project, and a
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decision was made to acquire an alternative,cheaper machine - 
a PDP/11.

By this time, we were committed to our B1700 based project and we 
decided to continue our research towards some sort of conclusion.
Unfortunately, the change in machine from the B1700 meant that
some of the support we had hoped for 'was redirected towards the 
alternative machine. In particular, the MIL version of the SASL 
machine was never completely operational and a MIL version 
of the PASCAL machine was never even started. Had these programs 
been available, we believe that we could have better evaluated the
work we have done. '

In an attempt to evaluate the success of the project, we shall 
examine how well we achieved the aims of the research, as set 
out in chapter 1. To recap, the aims of our project were:-

(i) To construct a simulator for the B1726 system at the 
microprogramming level. The simulator was to be implemented 
on an IBM 360/44 computer.

(ii) To design and implement a high-level microprogramming 
language for the B1700 range of machines. Not only 
should this language be compilable into B1700 microcode, 
but also,a program listing should constitute a clear 
description of the implemented abstract machine
architecture.
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(iii) To evaluate the utility of this microprogramming
language by comparing s-machine implementations in
this language with the same machine implementations
in other programming languages.

After considering our success in achieving the above aims, we 
draw a number of more general conclusions concerning the way in 
which we approached the problem. We then suggest an alternative 
approach, which, in the light of experience, we now believe would 
have been better and speculate upon future research work in the 
field of language-oriented machine implementation.

In the sections below, we consider aims (i) - (iii) in turn 
and critically evaluate the work done towards these aims. Where 
appropriate, we indicate shortcomings in our design and methods, 
and suggest modifications*to alleviate these shortcomings,

7.1 The B1726 Simulation

This section of the project involved constructing a simulator 
for the B1726 computer and a compiler for the standard machine 
microprogramming language, MIL. These programs were written in 
ALGOLW and SN0B0L4 respectively, according to the specification
laid out in the appropriate Burrough's reference manuals.

The MIL compiler which we developed, performs satisfactorily 
and the processor simulator is an accurate simulation of the 
micro-architecture af the B1726 computer.
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Unfortunately, the simulator which we developed is not an
exact replica of the B1726 system as seen by a microprogram 
executing on that machine. On the real machine, executing 
microprograms are given considerable support by the machine 
operating system and it did not prove possible to simulate this 
support. There were two reasons for this:-

(i) We anticipated tHat simulating the operating system 
actions would impose unacceptable overheads - in the 
time taken to simulate a microprogram execution. We
also believed that the size of the simulator would
be significantly increased.

(ii) The documentaiion which •was available to us concerning 
the role of the operating system was incomplete and 
imprecise. To fully understand that role would have 
involved a good deal of work, studying the^ou^e code 
listing of the operating system. We did not consider 
the results important enough to justify this work:.

As discussed in chapter 3, which describes the simulation programs,
the simulation of a machine such as the B1700 under a batch
environment poses problems. Features such as external interrupts, 
console communication, and user interaction cannot be properly
simulated.

In spite of these drawbacks, we believe that there were a number 
of benefits gained from undertaking this part of the project.
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These benefits were:-

t . J(i) The construction of the simulator in the initial 
stages of the project ensured that we acquired an 
intimate knowledge of the micro-architecture of the
B1700. This knowledge proved invaluable when implementing 
the SUILVEN compiler.

(ii) The simulator can act as a test bed for locally written
. microprograms. Using the simulator, it is possible to

test much of the logic of these programs, and their 
subsequent implementation on a real B1700 merely involves 
modification of input/output and interrupt handling 
routines.

In general, we consider that the exercise of constructing the 
simulation system was worthwhile, but that such a system is, 
in no way, an adequate substitute for a- real machine.

7.2 SUIIVESN ass a Medline 1^^^and Implementation barrguajge

The high-level language SUILVEN was designed to serve a dual
purpose:-

(i) To describe the architecture, of abstract mcchines

(ii) To implement abstract macbirae inteirpirets as 
on the B1700 computer.



We shall evaluate how well SUILVEN meets these design aims and
shall examine shortcomings in the design of the language. These
became apparent when SUILVEN was used 'to implement s-machines for
SASL and PASCAL.

The description of an abstract machine must contain a complete 
specification of the data areas of that machine, both in terms 

of their width(in bits) and their structure. The data description 
facilities offered by SUILVEN, that is, the BITS declaration, the 
TEMPLATE and DEFINE declarations, and the REDIMENSION declaration, 
ensure that an accurate description of data areas is possible.
Not only may the width of a data area be precisely specified, but 
also the structure of that area may be varied depending on the 
instruction operating on it.

However, as well as defining the size and structure of machine 
data areas, we have now reached the conclusion that an abstract 
machine description language ought to give some indication 
how these are to be mapped onto the data areas of the underlying 
machine. For example, when implementing a stack machine, the 
stack pointer will be frequently accessed, and should be 
retained in a fast access register. When the variable STACK_POINTER 
is declared in the program, it should be possible to specify this. 
For example:-

BITS(24) REGISTER STACK POINTER;
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This would declare that the variable STACK_POINTER should be
stored in a machine register.

Similiarly, in order that conditions such as interrupts, overflow, 
etc may be specified, a description language should have a declaration 
setting up single bit boolean flags. Naturally, there must also 
be operators to manipulate these objects.

r~'

Whilst SUILVEN has a flag declaration, the register declaration 
is implemented by means of a compiler directive. We now believe 
that this is an essential part of machine specification, rather 
than a compiler feature, and ought to be included in a machine
description language.

Apart from this single exception, we are satisfied with SUILVEN’s 
data description features, and . have found them to be both convenient 
and adequate for describing abstract machine data areas.

As well as providing a description of machine data areas, a •
description language must also specify the operation of the
machine instructions. It is this description which is mapped
onto the microcode of the underlying machine.

The operators presently provided in SUILVEN were found to be
adequate for describing and implementing the PASCAL s-machine. ■ 
However, the more complex SASL machine, some of whose instructions 
are at a higher level than PASCAL machine instructions, highlighted
significant gaps in the operation repertoire provided by SUILVEN.
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The features lacking in the language were concerned with the
manipulation of structured data areas and with the implementation
of highly recursive, high-level , machine instructions.

7.2.1 . Structured Data Operations

The lack of provision of operations which deal with structured data 
areas as a whole, rather than field by field, caused some 
inconvenience in describing and implementing the SASL s-machine.
The following example, taken from that machine description, 
illustrates how three separate statements must be made to assign
values to the fields of a structured data area:-

LIST(.NEWCELL.).TAIL : = TOPS_pATA;
LIST(.NEWCELL.).TAG := SECSJTAG;
LIST(.NEWCELL.).HEAD := SECSJATA;

The code generated for these rather repetetive assignment statements 
is inefficient, as the address of each field is completely recomputed 
for'each assignment. The B1700 has an automatic address-increment 
feature which updates the memory address register in parallel with 
a memory fetch. Therefore, as well as simplifying machine description, 
operations on structured data areas would provide enough information 
for the compiler to use this facility^
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There are two possible ways of including this feature in a machine
description language:-

Simultaneous Assignment .

An assignment statement which may be used to assign to all fields 
of a structured data area should be a feature of a machine description 
language. For example, the assignments above could be encoded:-

LIST (.NEWCELL.) : 0, SECSJTAG, SECSJDATA, TOPSJDATA;

A list element is structured into four fields and the expressions
on the right side of the assignment are assigned to each field
in turn,

A WITH Statement •

This statement would be used for operations on more than one,
but not all fields of a structured variable. The suggested construct 
is based on the PASCAL WITH statement, designed for working with • 
records. This allows the user to specify the name of a structure ■ 
and, in the succeeding block, to refer directly to -the fields 
of that structure rather than prefix these names with the structure 
name. For example:-

WITH LIST(.NC2.) DO
£(

TAG := LIST(.TOPSjDATA.).TAG;
HEAD := SECSJDATA;

£)

-n/' ______



-197-

This would specify that assignments be made to the TAG and HEAD 
fields of LIST(.NC2.). We anticipate that efficient microcode, 
using auto-address updating, could be generated for this construct;,

7.2.2 Recursive Machine. Instructions

Some of the machine instructions of the SASL machine are best
described and implemented recursively. In particular, the 
instructions for altering the environment list fall into this
category.

The present SUILVEN implementation of procedures was not designed 
to allow recursion. Although a procedure may call itself, by 
virtue of the fact that an entry is made in the appropriate 
compiler table when a procedure heading is processed, the saving 
and restoring of local variables must be handled by the SUILVEN 
programmer. Mutual recursion is not possible, as names must be 
declared before use. These restrictions added to the complexity 
of the SASL machine description and circumventing them introduced 
redundancies in the generated microcode.

Unfortunately, it is not possible to make a relatively simple 
modification to SUILVEN which would permit recursion and
mutual recursion. For efficiency.reasons, we are convinced that 
s-machine storage allocation should be static, whereas the 
implementation of recursion requires a dynamic storage allocation
scheme.
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We see no way to resolve this dilemma, apart from separating 
the machine description from the machine implementation. A' machine 
description language should allow recursive descriptions where 
this is natural, yet an implementation language should not.
This is discussed in more detail in section 7.4, which deals 
with our recommendations regarding the description and
implementation of abstract machines.

To sum up, therefore, SUILVEN has shown itself to be a suitable 
vehicle for describing the data areas of abstract machines. We 
believe that it .is superior to other machine description languages 
and general purpose programming languages for this function.

The operations provided by SUILVEN are adequate for describing 
machine instructions with low semantic content, such as are used 
in the PASCAL machine. However?, because of the lack of recursion 
and the lack of structured data operations, SUILVEN is not 
completely satisfactory for describing higher level machines 
such as the SASL machine. Whilst operations could be added to the 
language which would operate on structured data areas, it is 
not possible to add recursion without introducing a dynamic 
storage allocation strategy. We believe this would compromise 
efficiency to such an extent as to be unjustifiable.

■•V V ■ "•3» \.-.V fn,;''t..
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7.3 Comparison.of Abstract Machines

The third aim of our project, was to construct abstract machines 
using SUILVEN and compare them with the same s-machines implemented 
using other programming languages. As explained in the introduction 
to this chapter, some problems were encountered in achieving this 
aim, due to the change in machine of the more general research 
project:.

As discussed in the previous chapter, s-machines were programmed 
in SUILVEN for implementations of PASCAL and of SASL. These 
s-machines were compared with similiar machines programmed in both 
low and high-level languages. Our conclusions on these comparisons 
are discussed fully in chapter 6, with the main points summarised
below

(i) SUILVEN is a better language than both PASCAL and BCPL for 
describing the data organisation of abstract machines.
BCPL’s lack of structured data types and, conversely, 
PASCAL’s very strict type discipline meant that structured 
data areas and areas of variable type (such as a stack) 
were described in an unnatural fashion in both PASCAL
and BCPL.

(ii) For the fairly low-level PASCAL machine, the SUILVEN and 
PASCAL descriptions of the machine instructions were 
almost equivalent both in size and in clarity. PASCAL’s
operations such as set operators made for conciseness in
describing their own implementation but gave no indication



how they were to be implemented.

BCPL was better than SUILVEN for describing the operation of 
the higher-level SASL machine. This was a result of 
SUILVEN*s lack of structured data operations and recursion.

(iii) Microprogrammed s-machines generated by the SUILVEN compiler 
appear to contain about 25% more microinstructions than the 
equivalent hand-coded programs. This figure may be reduced 
by hand-optimising the generated microcode. Because of the 
difficulty of optimising the usage of the B1700 scratchpad, 
SUILVEN programs execute at about half the speed of 
hand-coded programs.

This execution time may be significantly reduced if the 
microcode generated by the compiler is hand-optimised. We 

estimate that execution speeds may be doubled by dint of 
relatively simple hand-optimisation.

We believe that constructing abstract machines in SUILVEN 
and hand-optimising these machines can be achieved in a 
significantly shorter time than constructing the same 
machines in a low-level language.

The above conclusions show that SUILVEN s-machines are less efficient 
than machines programmed in a low-level language. They also show 
that SUILVEN is not completely satisfactory as a vehicle for 
describing machine architecture. As a result, we no longer 
believe that our approach of developing a compromise'machine 
description/implementation language is viable.
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7.4 General Conclusions .

In this section of the thesis, we attempt to draw a number of
general conclusions derived from our work on tools for the
implementation of abstract machines. These conclusions reflect 
our belief that the project was - worthwhile, and that the problem 
of efficiently implementing and documenting abstract machines 
is by no means solved. As discussed below, we believe that an 
alternative approach involving separate machine description and 
implementation languages may be more fruitful.

We have derived four general conclusions from our work:-

(i) The B1726 simulator which we produced is, to a limited
extent, successful but,because of three main factors, 
is not an adequate substitute for a real machine. These
factors - are;-

(a) The system i( slow, .

(b) The simulator lacks an oeraailng system.

(c) The user cannot interact with the simulation.

We believe that a research project such as ours cannot 
be satisfactorily undertaken without a real, dedicated 
machine. This machine must be user microprogrammable.
In the forseeable future, microprogramming will be the 
most cost-effective technique of implementing abstract 
machines and, as micro-architecture is significantly 
different from standard Von Neumann or high-level machine 
architectures, research into abstract machine design 
and construction should be carried out on a microprogrammable
machine.
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(ii) SUILVEN is a reasonable tool for implementing abstract 
machines in a research environment. In this type of 
situation, although the generated microcode is less 
efficient than that encoded by hand, SUILVEN's advantages, 
viz programs may be produced quickly and easily modified, 
justify its use. Using a high-level microprogramming 
language means that different s-machine designs may be 
constructed and evaluated without undue programming cost.

Because of its inefficiencies, SUILVEN is not suitable 
for use in a production environment.

(iii) As a machine description language, SUILVEN is adequate 
for describing the architecture of low-level abstract 
machines. In particular, its features for describing 
machine data areas are superior to those in other machine 
description or general purpose languages which we have
examined.

The language is not completely adequate for describing 
machines with high-level operations, particularly if these 
are recursive operations or operations on structured data 
areas. SUILVEN lacks constructs to describe such operations.

(iv) From the above, we conclude that, if microprogrammed 
s-machines are to be widely implemented and used, there
must be a change of strategy. It appears that the requirements 
of a machine description and a machine implementation 
language are different. A machine description language
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must express, with the utmost clarity, the structure of
the machine data areas and operations whereas, machine
implementation languages must permit the user to have control 
over the microcode•generated by the compiler. •

We believe, therefore, that developments in machine 
description languages and machine implementation languages 
must proceed in parallel. Future MDL’s will be high-level 
languages with rigidly enforced conventions which will 
force the user to produce clear and readable documentation. 
Possibly they will be translatable into other high-level 
languages so that a machine simulator may be produced from 
the machine description.

Machine implementation languages, on the other hand, will 
be higher-level machine-oriented languages in the manner 
of Wirth's PL360(W7). These will retain much of the 
convenience of high-level microprogramming yet give the 
programmer full control over the microinstructions 
generated by the compiler.

In the light of these conclusions, we recommend that the
continuing development of SUILVEN be abandoned and that future 
developments proceed using separate machine description and
implementation languages. Should this approach be adopted,
we believe that flexibility can be retained yet microcode,
efficient enough to meet engineering and economic requirements,
might be produced.
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7.5 Future Research

In the near future(5~10 years) we envisage that developments
in this field will proceed - using high-level description .
languages and machine oriented microprogramming languages.
With our present expertise, such languages may be fairly easily 
implemented, although problems of generating absolutely optimal 
code must be overcome before such an approach will completely 
satisfy assembly language adherents.

We also believe that there is potential for considerable automation 
in the construction of s-machine interpreters. It appears that 
all interpreters have the same fundamental structure and, for 
many applications, this may be programmed automatically. We 
envisage a system being constructed which will enable the user 
to tailor this general purpose interpreter structure to his 
own needs. Indeed, the author of this dissertation is presently 
designing and constructing an interactive system for this 
purpose(S3).

Developments in machine oriented languages and design automation 
appear to be the most fruitful avenues of research in the near 
future. On a longer term basis we forsee other developments 
occurring. These are detailed overleaf.
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(i) Machine independent microprogramming languages which are 
optimally efficient will become possible. Such languages

• require micro-architectures designed for their support but 
we believe that, as microprogramming becomes more 
widespread, these architectures will evolve. There is 
a need for research into micro-architectures needed to
support high-level microprogramming languages,

(ii) In conjunction with the development of microprogramming 
techniques, we forsee the s-machine level becoming 
obsolete. High-level languages will be directly executed. 
Some research towards this end has been described by 
Laliotis(L6) who discusses the architecture of the SYMBOL 
computer. There is considerable potential for research
in this field which will involve a high level of cooperation 
between digital engineers and software engineers.

We do not envisage microprogramming being eclipsed as an
implementation tool in the near future. It will not be replaced 
until an automatic machine construction technique has evolved, 
which has greater convenience, economy and flexibility.
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1.0 INTRODUCTION.

This manual is a definitive description of the programming language 
SUILVEN, a high-level microprogramming language for the B1700 series 
of computers. The language was based on a soft machine description 
language, described by Sommerville (1) and its design pholosophy and 
implementation are also described by that author (2). We assume the 
reader has some knowledge of programming language terminology.

2.0 NOTATION

The notation used to describe the syntax of SUILVEN is an extended form 
of BNF. The symbols <»>, :: = , and | have their usual meanings but we 
have extended BNF by introducing a starred square bracket construct, E 3 . 
The enclosure of an element in starred square brackets means that an 
occurrence of that element may be repeated zero or more times.

3.0 BASIC SYMBOLS

A SUILVEN program;consists of a sequence of identifiers, constants and 
special symbols. These are syntactically defined below:

<identifier> ::= <letter> E<idsymb>3*
<idsymb> ::= <letter> | <digit> | _

<letter> • • A — Z
<digit> :6 — 9

<identifier list>::= <identifier> [, <identifier> 3
<constant> ::= <number>|<binconst>|<hexconst>
<binconst> :% <bindigit>
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<hexconst>

<bindigit>

<hexdigit> ..

<nunxber>

<special symbol>

<char symbol>

<or>

■Preserved word>

<string>

<chars>

<char>

<blank>

;;= # <hexdigit>

:;= 0 | 1 . . . •

;:= 0 — 9. | A — F

;; = <digit> [<digit>]

'::= -Preserved word> j <char symbol>
::= I ( I )T(. I .) | := |

: . > | < | = | >= | <= |-,= | -. | & |
.<or> I : I ; I ' I + I -| * | / I £( I £)

::= | where | is not a metasymbo.L

::= REM | SHL | SHR | XOR | MACRO | BITS]
ARRAY | TEMPLATE | DEFINE | FLAG|
PROCEDURE | FUNCTION | IF | &HEN | ELSE,
WHILE | DO | REPEAT | UNTIL | CASE|

I !
OF | ’ENDCASE |:|eND | TRUE | '.?ALSEi 
SET | UNSET | 'IEAD | WRITE |/NULL|.
EXIT | STOP | REDIMENSION|
ENDPROGRAM •

: T<chars>’

::= <chars> C<char>3*

::= <letter>-| <digit> | <blank> | , | „ j ( J ) |
+ |-»|*.|/|>|<|ss|“|&| «*> I : I 
5 I % I # I @ I $ I £

:A space

■ ..
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4.0 PROGRAM STRUCTURE

A SUILVEN program can be considered as consisting of three logical 
sections. Firstly, a set of declarations establishing the names of 
variables, structures, macros etc, secondly a set of procedure 
declarations and finally a main program consisting of one or more 
SUILVEN statements. A program' is terminated by the reserved word
ENDPROGRAM.

Syntax '.

<SUILVEN program> :<declaration part>
. <procedure declaration part>

<statement part>' ENDPROGRAM

5.0 DECLARATIONS

The declaration part of a SUILVEN program consists of a series of 
declarations of macros, bits variables, structures, and flags.

Syntax . . • ... .

<declaration part> :<decIaration>[^declaration'

<declaration> : :== <macro declaration]
<bits decla.ration> j 
<template declaration>|
<define declaration |

<flag declaration

>* ...j,.- (i. f - A -

i1"/- -J
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5.1 MACROS

Macro declarations define equivalent strings of characters.

■1
S
J'1
1

Syntax

<macro declaration :MACRO <string> = <string>

Semantics

Each occurrence of the string defined on the left side of the equals 
sign above is replaced by its corresponding right side throughout the 
SUILVEN program.

5.2 BITS DECLARATIONS

I
1

Bits declarations in a SUILVEN program name storage areas.

Syntax

<bits declaration • •“ <simple bits declaration | <bits array declaration

<simple bits declaration: := BITS (<number>) identifier list>

<bits array declaration> ::= BITS (<number>) ARRAY (<number>) 
identifier list>

Semantics

Bits declarations associate a name with a machine storage area of a 
specified width. The number specified after the reserved word BITS 
specifies the width of that area. In an array declaration, the number 
following the reserved word ARRAY specifies the number of elements in 
the array. The first element of the array is considered to be element 1,

• *r -»• »’’V 1 ,<• m >»«v k . ’ •>* -i |»* »l * *»??•$•»»' <’ *■»»♦ ‘t •

3 ?A-.- /i1 •’ i .* vs - itj .S
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5.3 TEMPLATE DECLARATIONS '

Template declarations serve to define a structure, and associate a
name with that structure.

Syntax

<template declarations- ::= TEMPLATE <identifier> =
<field> E,<field>]*

<field> ::= <identifier> (<number>)

Semantics .

A TEMPLATE declaration associates the name on the left side of the equals
sign above with a sequence of one or more fields. A field consists of a 
name followed by a bracketed number, which specifies the width of that
field in bits.

5.4 DEFINE . DECLARATIONS

Define declarations serve to associate a data area with a structure.

Syntax

<define deplaration> DEFINE <identifier>:<identifier list>

Semantics

The identifier on .the left side of the colon should be a previously 
declared template name and the identifier list should consist of names 
of previously declared data areas. The define declaration specifies that
each of these data areas should be considered to have the structure
defined by the template name. Notice that the width in bits of the data 
areas should be equal to the cumulative widths of the template fields.

i. _______
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5.5 ILAG)JECLaRATIONS3

Flag declarations establish names to be associated with > logical variables.

Syntax . .

<flag declaration> :: = FLAG <identifier list>

Semantics ' / '

Each identifier in the identifier list is considered to be a logical,
1-bit variables which■may take the truthvalues TRUE or FALSE,

6.0 PROCEnuREEjECLARATIONSs

Procedure and function declarations establish names which are associated
with SUILVEN declarations and statements.

Syntax

<procedure declaration> <function declaration>|mproper procedure
• • . . declaration>

<function declaration :FUNCTION <procedure header><pooedduee-bd<3y>

<proper procedure declaration:^ PROCEDURE procedure headerxprocedure body

procedure header> ::= <ideniffier> (ffornaal parmeetrr lit>>)

<formal parameter list> ::= <bits declaration> [;<bits declaration]
| <empty>

procedure body> :: = <loea.l declaration part>
• - ' • ' ■ " ■ '• <statement part>

END <result part>

<local declaration part> : := <empty> | <loca> declaration:) E;<loeal
declaration]*

<local declaration : : = ^eclrraiooni | ^edimensoon dealrraibon>

V. '■
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<redimension declaration>::= REDIMENSION ■ <redimension- • list>

<redimension list>

<redimension>

::= <redimension> E,<redimension>]*

<identifier> (<number>, <number>)

<result part> <empty> |=<expression>

Semantics '

A procedure declaration associates a name with a sequence of SUILVEN 
declarations and statements. Procedures may be either function procedures
or proper procedures. Function procedures always return a bitstring
as a result, this■bitstring being specified as the expression in• the result
part above. ,

Both function procedures and proper procedures may have zero or more formal 
parameters. A formal parameter is a bits variable which may be referred 
to within the procedure. Its scope is local to that procedure i.e. it 
may only be referred to within the procedure body. An initialisation is 
associated with each formal parameter each time a procedure is activated.

The local variables declared within a procedure establish names which are 
only in scope within the procedure. These names may be used in an identical 
fashion to global names, in ' SUILVEN statements.

The REDIMENSION declaration is only • meaningful within procedures and it 
serves to restructure a global array. The array name is specified followed 
by a bracketed pair of integer constants. The first of these specifies a 
new length for the array and the second the width of each element in the 
new array. Notice that the product length and width should be less than 
or equal to the product length and width in the global array declaration.
The array specifications revert to their global specifications on exit 
from a procedure where the array is • redimensioned.
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7.0 ■ SUILVEN STATEMENTS

This section describes executable SUILVEN statements of which there •

are three basic types - assignments, procedure calls and control
statements.

Syntax

<statement part> : : = <statement> [;<statement>]I
<statement> ; : = <fssgnment> | <procedure call> (

. ' <control statement> | <compound statement>

7.1 EXPRESSIONS■■' ..

The expression is a basic part of most other SUILVEN statements. It
may be evaluated to return a bitstring.

<expression> 
<signed var>

<var>

<function designator>

<actual parameter list>

<expression list>

<unary ope?ator>

<indexed var>

<structured element>

<array index>

operator

JL: :== <signed var> [<operator> <signed var>]
::« <unary operator> <var>

::= <identifier> | <constant> j <function designator> J 
<indexed var> | <array index>

<name>(<actual parameter list>)

<empty> | <expression list>

<expression> [, <expression>]

:<empty> | n

*

;?= <structured element> , <idenfifier>

s: = <identifier> I <array index>

::== <identifier> („<expression>„)

: : + |-|+-|/|&| <or>ISHL|SHR|X0R|lEM|

pii.,'
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Semantics '

An expression consists of a series of one or more elements which may 
be evaluated to produce a result which is a bitstring.

Each element in the expression is evaluated on a left to right basis 
and operators, where they are included, are applied on the same basis.
No operator takes precedence over another.

The basic components of an expression may be the name of a bits variable, 
an element of an array, a field of a structured bits variable or array 
element or a function designator which specifies that the named function
be evaluated.

The operators +, -, and *, have their usual meanings, / is an integer 
division operator and REM is the remainder operator. The shift operators 
SHL and SHR shift the bits of their left hand operand either to the left 
or the the right by the number of bits specified in their right hand 
operand. The operator & is a logical AND, J is a logical inclusive OR 
and XOR is 4 logical exclusive OR operator.

A. expression, may be negated by preceding it by the unary operator “> .

7.2 LOGICAL EXPRESSIONS

Logical expressions are a basic constituent of SUILVEN control statements

<logical expression>

<relation>

<logical connective>

<relation operator>

?i= <relation> [<logical connective> <relation>3

::= <expression> <relation operator> <expression>

AND | OR

1 = <=

> ■>.**.- •.■•i’?/-'^4'-, ■
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Semantics ' '• ...••• ....
. ■ ■ ' , • ' ■ . ■ ' ; . : ‘ O'

A ' logical expression is evaluated to produce a truthvalue, TRUE or
FALSE. It consists of one or more relations, which themselves are
evaluated 'to 'truthvalues, connected by the logical connectives AND
or OR. AND has its • obvious meaning, OR is an inclusive OR.

A relation is a comparison of two expressions. This comparison returns
a truthvalue and may be made on the basis of equality (“), inequality
( 1 =), greater than (>), greater than of equals (>=), less than (<),
or less than/equal's (<=).

7.3 THE ASSIGNMENT STATEMENT ' .

The SUILVEN assignment statement has the same form as pertains in most
other high-level languages.

Syntax • : . . .'■■■■' • •

<assignment> :: = <lhvar>:= <expression>

<lhvar> . := <identifier> | <array index> | <structured element>

Semantics ..... • ...

The semantics of the assignment statement are well known. The expression
to the right of the composite symbol := is evaluated and that value is
assigned. t$ the element on the left•of :=.

7.4 PROCEDURE CALLS

Again SUILVEN procedure calls are similar to procedure calls in other
high-level languages.
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Syntax

<procedure call> . ::= <identifier>(<actual parameter list>).

Semantics

When a procedure call is encountered, the parameters if any,are evaluated.
That value is then used to initialise the procedure formal parameters,
Call by value is the only parameter passing mode available in SUILVEN,

After initialising the formal parameters, control is transferred to the 
code in the named procedure which is then executed. After execution, 
control is returned to the SUILVEN statement following the procedure call.

7,5 CONTROL STATEMENTS .

SUILVEN.has a simple, sparse but adequate set of control statements.

Syntax

control statement = <if statement t>|
<while statement>j 
<repeat statement>|

. • <exit statement>|
* <stop statement>|

<case statement>

7-5.1 THE IF STATEMENT

This is the familiar two armed conditional which is available in most
high-level ' programming languages,

A-V/ ■■ /, }.. :.A 5-yj.'a>*.\•»- Vtfe it W£ SixJ
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Syntax • '

<if statement> :« <if clause> <simple statement>
<if clause> <simple statement> ELSE <statement>

<if clause> :IF <logical expression> THEN
<simple statement> :Any SUILVEN statement apart from an IF statement

Semantics

The logical expression following IF is evaluated. If it is true, the
simple statement following THEN is executed and after execution control 
is transferred to•the next SUILVEN statement in the program.

If the result of the logical expression is false, and there is no ELSE 
part, control is transferred directly to the next SUILVEN statement in 
the program. If there is an ELSE part, the code following ELSE is
executed and control then is transferred to the next program statement.

7.5.2 THE WHILE STATEMENT

This is the familiar looping construct.

Syntax

<while statement> ::== WILE < 1'ogical expiress±OT>> DO <statemen>>

Semantics • ■

The logical expression following WHILE is evaluated. It it is true, 
the statement following DO is executed. The ' execution sequence then loops 
so that the logical expression is ^gain evaluated. Again, if true the 

statement following DO is executed .• This sequence continues until the 
logical expression becomes false, whence control is transferred to the 
next SUILVEN statement in the program.

i-HW. r'.W’vk'-,,
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7.5.3 THE REPEAT STATEMENT .

The repeat statement is designed so that the test for loop exit may be 
placed anywhere within the loop.

Syntax

<repeat statement> ::= REPEAT <statement> UNTIL <logical expression>
DO <statement>

Semantics

The statement following REPEAT is executed. The logical expression 
following UNTIL is then evaluated and, if false, the statement following 
DO is executed. Control then returns to the statement following REPEAT 
and the process continues until the logical expression is true. Control
is then transferred to the next SUILVEN statement.

Either statement in the repeat statement may be null (represented by the 
reserved wprk NULL), hence allowing the test for loop exit to be placed 
at the beginning, in the middle or at the end of a loop,

7.5.4 THE EXIT STATEMENT

This statement permits the programmer to specify immediate return from a 
procedure.

Syntax

<exit statement> EXIT <result> ‘

Semantics

If a result is specified it is evaluated. Control is then transferred to the 
statement immediately following the., call of the procedure containing the
exit statement.

■;;a, cv'hrij- -Thd-W..
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7.5.5 THE STOP STATEMENT

This statement permits the progratmner to abort his program.

Syntax

<stop statement> ::= STOP

Semantics

Causes immediate program termination.

7.5.6 THE CASE STATEMENT

This statement allows the programmer to select one of s number of

alternatives for execution.

Syntax

<case statement> ::= CASE <expression> OF <statement list>
ENDCASE

<statement list> ::= <statement> E;<statement>]

Semantics

The expression following the word CASE is evaluated. The statements in
the statement list can be considered as being implicitely numbered fro-m 
1 to n, where there are n statements in the list. The statement whose 
implicit number corresponds to the expression value is executed. Control 
is then transferred to the next SUILVEN statement in the program.

Should the expression value be <1 or >n, where there are n statements in 
the list, the action of the case statement is undefined.

Ax LA r Ai-.
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8.0 STANDARDLPROCEDURES

All input/output and flag operations'in SUILVEN is carried out using 
standard procedures.

8.1 INPUT/OUTPUT

SUILVEN has a primitive set if I/O functions which allow the system to 
accept card input and produce line printer output. These functions ' are:-

(i) . BEAD ( )
Reads a card image from the input stream into a predeclared buffer
called INPUT_BUFFER. Associated with this buffer is a pointer 
called INPUT_POINTER. .

(ii) WRITE ( )
Writes a line image to the printer of a predeclared buffer called
OUTPUT_BUFFER. Associated with this buffer is a pointer called 
OUTPUT_POINTER, After output, OUTPUT_BUFFER is cleared to blanks.

(iii) PUT (<expression>)
Evaluates the expression, converts the result to EBCDIC and moves
this result to INPUTJBUFFER. (.INPUT_POINTER.)

(iv) PUTSTRING (<string>)
Moves the • specified string to INPUTJBUFFER (.INPUTJO INTER.)

.»i ■* re »/,• a .___ ___ . _ _ . j_ __  __ __ _’ .___
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8.2 OBEEAVTXQNS < ,

There are four primitive procedures for operating on flag type' variables:

(i) ' SET (<fl.ag name)
Sets specified flag to frue

(ii) . UNSSET . (fflgg' nmee>)
Sets specified:flag'to.false . .

J
(iii) TRUE (<flag namee)

Returns value true if flag is set, else false .

(iv) FALSE (<flag name)) ’
Returns value true 'if flag is unset, else false.

9.0 COMPOUND STATEMENTS’ .

Any group of SUILVEN statements may be converted to a compound statement
by.enclosing the statements in compound brackets £( and £).

10.0 USING SUILVEN

SUILVEN is available on the IBM 370/168 at the University of Cambridge. 
It may be accessed via a dial-up terminal using the following Phoenix
commands :.- . , . . .

SET your user parameters

C ISIO.P: SUILVEN IF » <input source file namee,
OF = <output spool filee,
OC = <output code filee

tint nn-1
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The microcode generated by the SUILVEN compiler : • may be executed on a 
B1700 simulator using the following Phoenix command:--

C ISIO.P: B1700SIM IC = <input code file>,
OF = ,<output spool file>
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INTRODUCTION
- - .1 1.1. 1 IT- T - T^-r--,,,,

This document describes the micro-architecture of the B1700.
Section 1 is a description of the machine registers and their 
function, section 2 describes how store is addressed, and
section 3 covers the B1700 micro-instruction set.

1. THE MICRO-ARCHITECTURE OF THE B1700

The micro-architecture of the B1700 that is, the machine 
architecture as seen by the microprogrammer is fully documented 
in the Burroughs B1700 Systems Reference Manual, with a short 
description of the B1726 processor micro-architecture given
below.

The B1726 processor ' consists of a main store, a high speed
microprogram control store and a series of control and 
combinatorial units and registers, interconnected by one main
data bus as shown in figure 1,
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1.1 THE GENERAL.PURPOSE REGISTERS '

X, Y,'L and T are the general purpose registers for the B1726 
processor. They are 24 bits wide and are "active" as data is 
transferred to and from main memory using these registers. The 
X and Y registers serve as inputs to the 24 bit function box,
T is connected to shift/rotate logic and L in used by the I/O 
functions. Both L and T may be treated as a group of six 4 bit 
registers. ’ -

1 * 2 THE FIELD DEFINITION REGISTER , '

The field definition register (F) specifies the lengths and 
addresses of data fields in main memory which are to be transferred 
to or from one of the general purpose registers. The F register 
is 48 bits wide and is functionally divided into two 24 bit 
portions (FA and FB). FA specifies the main memory address and 

FB holds length information.

1.3 THE SCRATCHPAD .

This is an array of 16 registers which may be addressed as 16 
48-bit words (SO - S16) or as 32 24-bit words (S0A-S16B). In 
general, they are used for the storage of frequently accessed 
information. SO is treated slightly differently as decision 
making logic acts on the contents of SOB and FB determining 
whether SOB is greater than, less than or equal to FB, This 
can be used for, say, loop termination. .

A
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1.4 THIS CONTROL REGISTER ' •

The control register (C) is actually a collection of independent
registers used by the interrupt system and the combinatorial 
section of the processor.

1.5 THE INPUT/OUTPUT REGISTERS ' .

• The I/O registers (INCN, DATA, CMND, U) are used by the I/O system 
of the processor for recording interrupts (INCN), loading micro­
programs (U) and transferring data to and from the I/O controllers 
(DATA and CMND). .

1‘6 THE BASE AND LIMIT REGISTERS

These registers (BR and LR) can be used for main memory protection 
and for base relative addressing. The processor addressing logic
checks if the address in FA falls within their bounds.

1.7 THE A STACK

This is a pushdown store 24 bits wide. It has 32 elements and is 
designed for use as a micro routine linkage stack. It may also 
be used for temporary data storage. One appalling feature of its 
implementation is that it wraps around rather than gives an
overflow message when the stack is full. ,,
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1.8 THE MICRO REGISTERS • ‘ '

The micro registers (M, A, MBR, TOPM and M-STRING) are registers ' :
used ..in the addressing and execution of micro instructions, A 
contains the address of the next micro instruction and M the
current micro instruction. MBR .and TOPM are used to address micro
instructions held in main store and M-STRING is used for error
diagnosis. .

There are other processor registers but these are inherent parts
of the control and combinatorial logic and are described along
with the control sections.

\

a
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1.9 THE, ARITHMETIC AND COMBINATORIAL SECTION

This section is composed of a 24-bit arithmetic unit and a 24 bit 
combinatorial unit. It.has as data inputs the contents of the 
X and Y registers as well as the CYF, CPL and CPU sections of the 
C register. When one of the input registers is changed this 
section immediately generates a series of results. These results

- r

are held in the special purposes register which are those shown . 

in the left hand column in Fig. 2.

CYF CPU CPL“T”

Functions of

24-BIT XY FUNCTION BOX

X and/or Y

BINARY, 4-BITSUM X + y
cmpx NOT X COMPLEMENT
CMPY NOT Y • COMPLEMENT
XANY X • Y AND
XEOY X © Y EXCLUSIVE OR
MSKX X MASKED CONTROLLED BY CPL
MSKY Y MASKED CONTROLLED BY CPL
XORY X + Y OR

DIFF X “ Y BINARY, 4-BIT, 8-BIT

The length of 
in CPL.

functions is controlled by the value

XYST

XYCN

BICN

CYL
CYD

1
FIG. 2



“ 7 -

1.1° SUM REGISTER

This register is the sum.of the contents of the X and Y register 
plus 'CYF which may hold a carry b:Ltt of of more than 24
bits are being used, ’Tie oif CPU governs whetHer* the operands
are regarded as binary, four-bit decimal or eight-bit decimal.

1.11 DIFF ' REGISTER '

This register holds the difference of the X and Y registers. Again 
operands may be regarded as binary, four-bit decimal or eight-bit
decimal.

1.12 (A^NY?Y^^(^RY,OYOY) REGISTERS

These hold the result of the appropriate logical function AND/OR/YOR 
of the Y and Y registers.

1.13 COMPLEMENT XcCOMPIPNE NT Y (CMPY, CPffY) REGISTERS •

These hold the one’s complement of tire appropriate regiseer X or Y,

'1.14 MASKED X, ' MASKED Y (MSKY, MSKY). REGISTERS

The mask of the contents of register Y or Y is produced and placed in
MSKY or MSKY. The value of COL determines the number of bits masked.
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1.15 BINARY CONDITION (BICN) REGISTER ‘ ■

This register holds carry and borrow/ conditions when operating with
quantities greeter than 24 bits. -

1.16 X/Y CONDITIONS (XYCN) REGISTER

This register holds information on the relative states of X end Y 
for example X = Y end so on.

1.17 X//Y STATES (XYST) REGISTER

This register holds information on the state of X and Y (are they 
greater than zero) end also has a bit which is set by any interrupt,

1.18 THE FOUR-BIT FUNCTION , BOX

This is an arithmetic and combinatorial function box designed for
use with four-bit operands. Its iie is governed by the Four-Bit 
Manipulate microinstruction but has as possible results most of the 
functions between two operands such as AND/OR/XOR etc.
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2. STORE ADDRESSING IN THE BI700

2.1 ' MICRO-INSTRUCTION_ ADDRESSING

Micro Instructions for the B1700 are-16 bits in length and are
held either in fast control store or in main store. Control
store size is either 1024 or 2048 16 bit words. Three registers 
are used for micro-instruction addressing - A, TOPM and MBR.
The addressing mechanism operates as follows;

The A-register points at the next micro-instruction 
to be fetched, TOPM points to the top of the control 
memory in the system and MBR contains the base 
address in main store above which micro instructions 
are stored.

When a micro-instruction is to'be fetched the value 
in A is compared with TOPM. If it'is less than 
TOPM, the micro-instruction at address A in the 
control store is fetched otherwise the micro­
instruction at address (A*16) + MBR in main store 
is fetched. Micro-instructions are held in the 
M register.

2.2 MAIN-MEMORY ADDRESSING .

Main memory is connected to the memory control unit which resolves 
the addressing conflict between bit oriented data accesses and the
physical byte orientation of main memory.

k- cy. □... l. ..........sfe
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The main store is addressed by a 24 bit absolute address, a 1 bit • 
field direction indicator and a 5-bit field length value which may 
vary from 0 to 24. The field direction bit indicates whether the 
memory operation is to be forward or re.verse.

The memory control unit ((MGU) resolves the bit/byte addressing 
conflict by fetching the byte addressed by the most significant_

21 bits in the address and the three bytes above or below it 
depending on the field direction indicator. Parity is checked 
at this stage.

Next the MCU sorts out the actual bits to be transferred from the
least signficant 3 bits of the address, the field direction indicator 
and the field length.

Data is always transferred 24 bits in parallel to and from main 
memory. Any operation calling for less than 24 bits has leading
zeroes supplied by the MCU. .
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3. The B1700 MICROINSTRUCTION SET

Microinstructions for the B1700 are 16 bits wide and are transferred
from control store or main store into the M register. The full 
instruction set is described' below. '

REGISTER MOVE

<op code = l>,<Source Register>,<Destination Register>

This microinstruction is used for arithmetic operations by moving 
the result from a pseudo operation register'.

SCRATCHPAD MOVE

<op code " 2>,<Source or Destination Register>,<D>,<Scratchpad Address>

D indicates direction
0 - to scratchpad • .
1 - from scratchpad

Scratchpad address indicates the left or rightmost 24 bits of a scratch 
pad register.

FOUR BIT MANIPULATE

<op code * 3>,<Register to be manipulated>,<Operation>,<Literal>

Operations include skip the next microinstruction if there is a carry 
or borrow in addition or subtraction.

RELATIVE BRANCH IF BIT TEST FALSE OR TRUE

<op code « 4 or 5>,<Register to be tested>,<B>,<S>,<Literal>

B specifies the bit in the register to be tested. If ' the S bit is one 
go to the next microinstruction. Literal is the number to be added to 
the CSAR if the tested bit meets the condition.

sr;i-R' J < r " : f It -



- 12 -

SKIP. WHEN . .

<op code = 6>,<Register to be tested>,<Variant>,<Mask>

Variant specifies condition to be tested for skip to occur. The 
mask .field masks the four bit register selected.

READ OR WRITE MEMORY

<op code = 7>,<RW>,<Variant>,<Register>,<FD>,<Memory field length>

RW indicates read or write. Variant specifies incrementing or 
decrementing FA and FL. Register is X, Y, T, or L, FD - field 
direction forward or backward.

MOVE 8 BIT LITERAL .

<op code = 8>,<Destination register>,<Eight bit literal>

MOVE 24 BIT LITERAL .

<op code = 9>,<Destination register>,<Eight most significant bits of literal>

Sixteen least significant bits of literal are in next control store word.

SHIFT T LEFT .

<op code = 10>,<Destination register>,<EC>,<Shift count>

EC - end off or circular.

EXTRACT FROM T REGISTER ' i

<op code = 11>,<Starting bit number>,<Register>,<Number of bits>

Take the specified number of bits starting at the specified bit position
and assign them to the destination register: X, Y, T, L.
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BRANCH•RELATIVE FORWARD OR BACKWARD

<op code « 12 or 13>,<Address>

Branch to the address formed by adding (subtracting) the specified 
address to (from) the current address.

CALL RELATIVE FORWARD OR BACKWARD

<op code - 14 or 15>,< Address?

Push the next address onto the A stack and then perform a branch 
as described above. ,

SWAP MEMORY WITH REGISTER

<op code = 02>,<Register>,<Memory field length>

Swap the specified number of bits in main memory with those in the 
specified register (X, Y, T, L) in the indicated Field Direction.

CLEAR REGISTER

<op code = 03>,<Register mask>

Set the register indicated to zero. The 8 bits represent the 
L, T, Y, X, FA, FL, FU, and CP registers.

SHIFT X OR Y

<op code = 04>,<EC>,<LR>,<XY>,<Shift count>

EC - end off or circular
LR - left or right
XY - X or Y register
If shift count is zero, get shift count from CPU register.
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SHIFT X AND Y

<op code « 05>,<EC>,<LR>,<Shift count>

Concatenate X and Y and shift.

INCREMENT/DECREMENT FA AND. FL

<op code = 06>,<Variant>,<Literal>

Increment and decrement the FA and FL registers by the specified 
literal according to operation in variant.

EXCHANGE SCRATCHPAD

<op code 07>,<Scratchpad source>,<Scratchpad destination>

Move the F register to the 48 bit scratchpad destination register 
and move the scratchpad source register to the F register.

INCREMENT/DECREMENT FA REGISTER

<op code = 08>,<ID>,<Scratchpad register>

Increment (or decrement depending on the ID field) the FA register 
with the contents of the specified scratch pad register.

BIAS

<op code = 003>,<Variant>,<TEST>

Set the CPL register depending on the contents of the FU register 
specified by the variant. If the test bit is one and CPL is not
zero, skip the next microinstruction.
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STORE F IN SCRATCHPAD

<op code - 004 >, Scratchpad register>

F is stored in specified scratchpad register.

LOAD F FROM SCRATCHPAD

<op code - 005>,Scratchpad register>

F is loaded from specified scratchpad register.
• (

SET CARRY FLIP FLOP

<op code = 006>»<Variant>

Set the carry flip flop to one if carry- from ALU or borrow
from ALU depending on variant.

HALT

<op code - 0001>

Causes machine to halt with the contents of the M register displayed 
on machine panel.

OVERLAY CONTROL STORE

<op code = 0002>,

Write data from main memory into control store. FA register specifies 
main memory address. L register specifies control store address.
FL register specifies number of bits to transfer.

NORMALIZE

<op code = 0003>

Shift the X register left until the bit specified by the CPL register 
is one or until the number of bits shifted is the number in the FL register.



'APPENDIX’ 3

'EXAMPLES



The material in this appendix is made up of four program listings:

(1) A listing of the SUILVEN code plus generated microcode for a 
simple s~machine called SIMPS. This is included to illustrate 
the format of the output produced by the SUILVEN compiler.

(2) A listing of the SUILVEN code implementing the SASL s-machine.

(3) A listing of the output produced by the B1700 simulator when 
executing a SASL program to sum the elements of a list.

(4) A listing of the SUILVEN code implementing the PASCAL s-machine.

The code given here and the examples given in the body of the thesis 
may not exactly correspond. This is due to the fact that both the 
SASL and the PASCAL machines were re-implemented and opportunity 
was taken to improve them. The re-implementation was necessary 
because the author of the thesis left St Andrews University and 
had no access to the machine there. The programs which were written 
were supposedly portable but, as usual, this portabilty turned out 
to be mythical and an inordinate amount of effort was involved 
in transporting the various programs.

The PASCAL machine implementation was only developed to the stage
where the salient features of SUILVEN are illustrated and not to 
the stage where PASCAL programs actually run on the machine. As we
had decided to abandon the development of SUILVEN, we did not feel that
the effort of completely implementing the PASCAL machine was justified.
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it I
It j FUNCTION GF ^PARAMETER* H
13 j T:=STOREC-CQDEPGINTER®5?

IS | C00EPOINTERs=CQDEPOINTER+1?

IS i END = t;

IS i
IS I FUNCTION PGPSTACKO?
13 | STACK.POINTER:=STACK POINTER-!?

2D 1 END=STACK<.STACK POINTER. 5?



!
1
1

20
21
22 get.paraketer

9: CODE X:=S15A
10s CODE Y: = 16
11: CODE X: = X* Y
12: CODE Y:=6304
13: CODE FA:=SUM
14: CODE READ(X.»> 16,0 >
15: CODE S14B:=X

ii 23 get-parameter
16: CODE X:=S15A
17: CODE Y:=l
18: CODE X:=SUM
19: CODE S15A:=X

1 24 GET.PARA METER
20: CODE X:=S14B
21: CODE A:=TAS

1 25
1 26
1 27 POPSTACK

22: CODE X:=S15B

23: CODE Y:=l
24: CODE X: = DIFF
25: CODE S15B:=X

1 28 POPS TACK
26: CODE X:=S15B
27: CODE Y: = 16
28: CODE X:=X*Y
29: CODE Y:=3104
30: CODE FA: = SUM
31: CODE READCX,16,0>
32: CODE A:=TAS

1 29



Z1) 1
COMPILER

PROCEDURE PUSHSTACKCBSTSC16) P; )Z 
DIRECTIVE «,scratchcrpy p

2? 1 STACKC.STACK.POINTER.>:=PJ

24 1 STACK.POINTER: = Sr ACK.PO INTER-e-i;

2S | IF STACK POINTER > 200 THEN

.24 I 
27 |

$ ( ___  . _____
WRITESTRI NG (• STACK OVERFLOW



? 30

33: CODE EA: = 14368
34: CODE REAO( X, 16,0 >
35: CODE S14A:=X

1 31 PUSHSTACK
36: CODE X:=S158
37: CODE Y:=16
38: CODE X:=X*Y
39: CODE Y:=3104
40: CODE TAS: = SUM
41 : CODE X:=S14A
42: CODE FA:=TAS
43: CODE WRITE(X,16,0)

1 32 PUSKSTACK
44: CODE X:=S15B
45: CODE Y:=l
46 : CODE X:=SUM
47: CODE S15B:=X

1 33 PUSHSTACK
48: CODE X:=S15B
49: CODE TAS:=X
50 : CODE X:=200
51: CODE Y:=X
52: CODE X:=TAS
53: CODE 8T8T(XYCN,0,1 )

1 34 PUSHSTACK
JOB ZAPPED •) ; i 35 PUSHSTACK

55: CODE X :=S1 B
56: CODE Y: = 33
57: CODE S1B:=SUM
53: CODE SHIFT(X,L3)
59: CODE Y:=1080
60: COOE FA:=SUM
61: CODE X:=H404040
62: COOE WRITE(X,24,1)
63: CODE X: = H40E2E3
64: CODE W RITE (X,2 4, 1 >



23 ] writeo;

2Q |
3^ i END?

3D j
?r\ 5

£}

oon^rniior » n*nzx



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92

w*
93

CODE X: = HC1C3D2
CODE WRITE(X,24,1)
CODE X:=H40D6E5
CODE WRITE(X»24r1)
CODE X: = HC509C6
CODE W RI TE (X ,2 4, i )
CODE X: = H0 30 6e6
CODE WRITE(X>24, 1)
CODE X:=H406D6D
CODE WRITE (Xf24f1)
CODE X:=H4 0D10 6
CODE ViRITECX'24, 1)
CODE Xs=HC240E9
CODE WRITE(X,24r 1)
CODE X: = HC1D7d7
CODE WRITE(X,24,i)
CODE X: = HC5C440
CODE WRITE(Xr24, l)

1 36 PUSHSTACK
CODE X: = 1080
CODE L:=120
CODE Ys = l
CODE S1B:=Y
CODE WRITE
CODE X:=H404040
CODE FA: = 1080
CODE FL:=960
CODE WRI TE(X*24* 3)
CODE BTBTCFLCN'O,- 2)

j
i

37 PUSHSTACK
38 PUSHSTACK

CODE JUMP:=+38 AT 54
CODE As=TAS

1 39



'>'t } 
i 3? f

f R'jvuuunc LUrtlM ft
PUSHSTACK( STORE G6ET.PARAMETER( 5, )>;

34 ] end;

34 |
34 j
36 |

COMPILER 
3? 1

PROCEDURE LOADCOz
3ITSC16) temp;

DIRECTIVE »*»SCRATCH TEMP
TEMP:=GET_PARAHETERO;

3^ ! PUSHSTACKCTEMP)J

40 I END ;



!
1

40
41 LOAD

94: CODE CALLRC86)
95: CODE Y: = 16
96: CODE X:=X*Y
97 : CODE Y:=6304
93': CODE F A: = SUM
99: CODE READCX*16^0)

ICO: CODE F A: = 14368
101: COOE WRITE(X,16,0)
102: CODE CALLRC70)

?1 42 LOAD
103: CODE A:=TAS

] 43
i 44
I 45 LOADC

1 46 LOADC
104: CODE C ALLRC96)
105: CODE SI4A:=X

1 47 LOADC
106: CODE X :=Sl4A
107: CODE F A:=14368
103: CODE W RITE CX * 16, 0)
109: CODE CALLR<77)

1 48 LOADC



5
40 | PROCEDURE STOREO?
4? j STGREf . GET_PA RA METERC ) - ) :=PGPSTAC K( )?

44 j ENO;

44 |
44 | PROCEDURE AOOO?
46 1 T:=P9PSTACK() * POPSTACKO;

4B j PUSHSTACK'CT )?

4$ | eno;

43 J
43 j PROCEDURE SUBO;
51 | P USHSTA CK < POP ST AC KO - POPSTACKO)?



110s CODE A: = TAS
4 9
50
51 STORE

1 11 2 CODE C ALLRC103)
112: CODE Y:=16'
1 132 CODE X:=X*Y
114: CODE Y: = 6304
1 15: CODE TAS:=SUH
116: CODE CALLRC95)
117: CODE FA:=TAS
118 : CODE WRI TECX,16?0)

119: CODE A:=TAS
52 STORE

53
54
55 ADD

120: CODE C ALLRC99)
121 2 CODE TAS: = X
122: CODE C ALLRC101 )
123: CODE Y:=X
124: CODE X:=TAS
125: CODE X:-SUM
126: CODE S14B:=X

127 : CODE X:=S148
128: CODE FA:=14368
129: CODE W RI TE (X >1 6r 0 >
130: CODE C ALLRC98)

1 31: CODE A:=TAS

132: CODE C ALLRClll )
1 33 : CODE TAS: = X
134: CODE CALLRC113 )
135: CODE Y: = X
1 36: CODE X:=TAS
137: CODE X:=DIFF
138: CODE F A: = 14368
139-1-xaci- WRITE (XH6.-0)

5 6 ADD

57 ADD •

58
59
60 SUB

•1 40 = CO OE C ALL RCl oaO ;
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5S
PROCEDURE PRINT (5/ 

WRi TESTRINGC’ THE RESULT IS



M C_

142
143
144
145
146
147
148
149
150
151
152
153

CODE
CODE
CODE
CODE
CODE
CODE
COOE
CODE
COOE
CODE
CODE
CODE

I 63
| 64 PRINT

X:=SIB
Yi=21
S1B: = SUH
SHIFTCX»L3)
Y 1 = 1080
FA:=SOM
X s=H404040
WRITE<Xf24x1)
X :=H404040
WRITE(Xj»24r 1)
X: = H40E3C8
WRITECX*24*1)
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156: 
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7S \
7> 5 " THIS IS THE MAIM PROGRAM w
7S I

233: CODE BRBC34)
****** CODE JUMP: =+27 AT 211

239 : CODE A:=TAS
85
86 
87

?s j INITIALISE! 5

77 1 MAINLQQPO;

78 j
73 | ENO PROG RAM

2 40 : CODE CALLRC240 )

241 : CODE CALLR(39>

2 42: CODE HALT

| 88

1 89

1 90
| 91

.-**** ** ************************************************ *** **********

1MPILATION COMPLETE NO Of ERRORS = 0



SUILVEN COMPILER — ST ANDREWS UNIVERSITY-- VERSION 24/8/75
SOURCE LANGUAGE : SNOB 0L4( SPIT80L) TARGET MACHINE : IBM 360/370
OPTIONS : ON = LIST- OF^ = C ODE* COPY ?DUMP

TODAY IS 21 APRIL 77

” kk -kk kk kk kk kk k k * *■ «•* kit kk kk k k kk kk kk kk ii k k k k it k kk **• kk kitkkkkkkkkkkkkkkkkkkk j 1
2

THIS IS THE SUILVEN CODE FOR THE SASL S.MACHINE WHICH WAS DESIGNED j 3
AT ST ANDREWS UNIVERSITY FOR THE LIST PROCESSING LANGUAGE SASL. j 4
THE SASL MACHINE HAS A TAGGED ARCHITECTURE »WITH TYPE ' j 5
CHECKING CARRIED OUT AT RUN TIME | 6

I ‘ 7
PROGRAMMER : IAN SOMMERVILLE — 5T ANDREWS UNIVERSITY -- 23/8/75 J 8

1 9
IN ADDITION TO THE MACHINE STACK , THE SASL MACHINE HAS A J 10
LIST STORAGE AREA , USED FOR BOTH PROGRAM AND DATA , AND TWO j 11
SPECIAL PURPOSE REGISTERS CALLED CREG AND EREG . CREG POINTS TO f 12
THE NEXT MACHINE INSTRUCTION TO BE EXECUTED OR TO THE PARAMETER j 13

OF THE CURRENT I NS TRUC TI ON IF IT HAS ONE) ANO EREG POINTS TO j . 14
THE CURRENT PROGRAM ENVIRONMENT - j 15
THERE ARE THREE TYPES OF MACHINE INSTRUCTIONS 1 16
1) THOSE WHICH TAKE TWO OPERANDS FROM THE STACK AND PUT ONE 1 17

OPERAND BASK ON THE STACK f 18
25 .THOSE WHICH TAKE ONE OPERAND FROM THE STACK AND PUT ONE BACK I 19

ONTO THE STACK | 20
3) THOSE WHICH HAVE A PARAMETER . THESE HAY OR MAY NOT ALSO ! 21

MANIPULATE THE STACK j 22
I 23 
I 24



, j 12 5i j "
y: t I THE SASL OP COOES “0LL3W 1 26
■» i j J 27

t I
]

I 28
I* i 29
i i ! OP CODE = 1 3 IV INTEGER DIVIDE | 30
(' i Ii OP CODE = 2 mod MODULUS I 31
I

t j OP CODE = 3 3 LUS INTEGER ADDITION 3 32
i i OP CODE = 4 MINUS INTEGER SUBTRACTION j 33
i li OP CODE = 5 MULT INTEGER MULTIPLICATION 1 34

x 1I OP CODE = 6 G RT TEST GREATER THAN ! 35
i {

]
OP CODE = 7 GEO TEST GREATER THAN OR EQUALS j 36

i 0 p CODE = 3 LTH TEST LESS THAN 1 37
«I I OP CO DE = 9 LEG TEST LESS THAN OR EQUALS i 38
1 I OP CODE = 10 ANO LOGICAL AND i 39
1u 1 OP CODE = 11 OR LOGI CAL OR j 40
t J OP CODE = 12 COMMA ADDS ELEMENT r0 A LIST 1 41
1 i OP CODE = 13 A PP LY APPLIES A SASL FUNCT ION ! 42
1 !i OP CODE = 14 HEAD GETS HEAD OF LIST 1 43
1 ! OP CODE = 15 TAIL GETS TAIL OF LIST | 44

1 ‘ 1 3 OP CODE = 16 TLG TEST LOGICAL TYPE 1 45
I 1 OP CODE = 17 TCH TEST CHARACTER TYPE I 4 6 J

i' 1 OP CODE = 18 TP TEST POINTER TYPE i 47
I I OP CODE = 19 TF TEST FUNCTION TYPE 48
I I

1
OP CODE = 20 TDIG TEST DIGIT 49 "J

L 1 OP CODE - 21 TLE T TEST LETTER i 50
r 1 5

i
OP CODE = 22 0IG VAL GET DIGIT! IN CHAR FORM 5 VALUE 1 51 ■/,

I OP CODE = 23 MEG NEGATIVE TOP OF STACK I 52 -i

1 i OP CODE = 24 POSITIVE TOP OF STACK ! 53
F 1 i OP CODE = 25 NOT TOP logical NOT f 54
tie L i OP CODE = 26 FORK CODE BRANCH I 55
j». • 1 lj OP CODE = 27 TEG TESTS FOR EQUALITY I 56
g. 1JL 1 OP CODE = 28 NED TESTS FOR INEQUALITY 3 57
j*' 1 } OP CODE = 29 OECL PROCESSES SASL D EC LA RA TI ONS ( NO N RECURSIVE) 1 58 • .i
£k- 1 1 OP CODE = 30 3ECG PROCESSES RECURSIVE SASL DECLARATIONS 1 59

{ ! OP CODE = 31 K NO I FILLS IN ENVIRONMENT LIST 1 60
E; 1 j OP CODE = 32 BLOCK BLOCK ENTRY 1 61
B-- 1 j 1 62

j *• * if ** ************** ****** **•** ****** ********** ** ****** ** ** **** ** ** ** *** 3 63



i i MA CRO •INTEGER.T YPE* = ’ 1’ ? MACRO ’LOG ICAL.TYPE* — » 2*; ! 65
3 j MA CRO ’CHAR.TYPE » - ♦ 3»; MACRO « GUESS.TYPE* = *4 ’ ? 1 66
s I MA CR 0 ’FUNCTION. TYPE * = *5’? MACRO * POINTER.TYPE » = *6 ’? 1 67
•7 J i 68
7 i MA CRO •LTRUE’ = ’ 1 ’ ? MACRO *LFALSE» = *0’ ? 1 69
3 j I 70
* ! MA CRO •NIL’ = ’0 ’? - i 71

13 j 1 72
13 j MA CRO •STACK.SI2 F ■* = » 25 0’ ? MACRO ’STACK.WIDTH’ = 32 4»? 1 73
1? j MA CRO 'LIST.SIZE » - ’3000’? MACRO ’LIST.WIDTH* = • 45 *? 1 74
14 I MA CR 0 ’TAG.S IZE’ - 1 4*; MACRO *W CRO. SIZE’ = ’20’ ? 1 75
IS 1 1 76
15 1 i 77
is i macro ?s AVE.VALUES .OF. POINTERS’ = * STACK!.STACK.POINTER.5 .DATA: =PL1 ? 1 78
17 1 STACK C. STACK. PQ INTER+1. ). DA TA: = PL2? 1 79
17 1 STACK .POINTERS STACK. POINTER* 2? ’? 1 80
17 ! 1 81
17 2 MACRO ’ RESTQRE.VA LUES .OF. POINTERS’ = 1 82
n | • STA CK.POINTER:=S TA CK.P QI NT ER-2 ? I 83
is 1 PL1 : = S T A CKC. ST AC K. POINTER. ). DATA ? 1 84
18 i PL 2 :=S TACK C. ST AC K.PO INTER+1.).DATA? *? 1 85
n I 
13 i 
n I 
n i 

1
n 1 
n 1 
p 1 
i- i 
23 j 
23 j 
23 |
23 j 
23 j 
23 j 
23 I 
23 j
QMPILER DIRECTIVE ...PAGE

MACRO SAVE.MACHINE.STATE ’ = ’ SECS,TAG : = PQ INTER.TY PE ?
SECS,3 A TA: =CREG? S TA CK C . ST ACK . PC IN TER- )-TA G: =PGI NT £R.TYPE?
ST AC K{ . STACK.?01 NTER.) -DAT A: =E REG?
STACK.PG IN TER: = STACK .POINTER+1? ’?

MACRO ’RESTORE.MACHINE.ST ATE* = ’ST ACK.POIN TER:=STACK.POINTER”1?
E REG: = STACK <- ST ACK.POINTER. 3. DATA?
C REG: = SECS.OATA?
SECS.T AG:=?OPS.TAG?
SEC S.3A TA: = T0PS.3 AT A?
UNSEKTOPSF)?
8 ;

86
87
88
89
90
91
92
93
94
95
96
97
98
99 

100 
101 
102



29 j 
29 ]
29 j 31 TS ( S TA CK .WID TT ) ARRAY (STACK.SIZE) STACK?
21 j BITSCL 1ST.WIDTH) A RR A Y ( LI ST.S IZE ) LIST?
2’ j SI TS (WORD.SI ZE > EREG*CRZG?

DEFINE THE MACHINE ARCHITECTURE USING BITS DECLARATIONS j 103 
104 

j 105
J 106 

107

23 I 
23 j

< 23 |
23 j
21 i
23 I 
21 j

; •'
23 |
23 J 
23 |
23 j 
23 I 
23 j 
23 j 
23 |
23 |
24 j 

' 25 1
25 j 
25 J

C OH FILER

n NOW DEFINE 
BUT NOT

SOME OTHER 
VISIBLE TO

STORAGE AREAS USED SY THE SA SL MACHINE j
THE SASL PROGRAM |

»T

THESE DATA AREAS ARE: J
FREE. SPACE 1ST USED TO RECORD WHICH LIST CELLS ARE j

AVAILABLE FOR USE j
STACK.P9 INTER OBVIOUS J
OP.CODE THE CURRENT INSTRUCTION QP.CCDE j
LIST.POINTER POINTER INTO LIST AREA I
FSLP” POINTER INTO FREE SPACE LIST
TOPS. TAGrTGPS. DATA, SECS. TAG,SECS. DATA THESE ARE FILLED BY THE j

POPSTACK INSTRUCTIONS AND ARE USED WHEN WE WISH TO OPERATE J
ON THE TOP STACK ELEMENTS !

INTERRUPT TYPE HOLDS THE TYPE GF INTERRUPT WHICH HAS OCCURRED j
I

BI TS ( WORD.SI ZE ) ARRAY ( L I ST.S 12 E ) • F REE.SP AC E. LI ST ? j
31 TS (WORD. SI ZE ) STAC K.PQIN TER*QP .CODE,LI ST.POI NT ER rFSLP> TOPS.OAT A, SECS.DATA|

>TGPS.TAG* SECS .T AG* I NTER RUPT.TYPE* RE CL EV EL? j

108
109
110 
111 
112
113
114
115
116
117
118
119
120 
121 
122
123
124
125
126
127
128

DIRECTIVE ---PAGE



2^ i 
2s j 
2> J 
25 j 
25 ! 
27 ] 
27 j 
20 j 
23 j 
25 j 
?9 J

" DEFINE THE STACK AND LIST AREA STRUCTURES USING TEMPLATE | 129
DECLARATIONS AND ASSIGN THESE TO STACK AND LIST . | 130

” j 131
TEMPLATE STACK.STRUCTUBE = TAG(TAG.SIZE)>DAT A(UQRD.S IZE); j 132
DEFINE STACK.STRUCTORE: STACK? “ j 133

| 134
TEMPLATE LIST.STRUCTURE = GUI), n A BIT USED SY THE GARBAGE COLLECTOR” j 135

TAGCTAG SIZE),KEADC fcORD.SIZE),TAILCWORD.SIZE); j 136
DEFINE LIST..STRUCTURE : LIST ; ‘ ~ " j 137

j 133 
| 139

COMPILER DIRECTIVE ...SCRATCH C RE G, ER EG , STACK .P CI NT ER,L IS T_ FO INTE R, FS LP > OP.CO DE
COMPILER DIRECTIVE ...SCRATCH TOPS.TAG,TOPS.DAT A,$ECS.TAG ,SECS.DA TA 

29 j | 140
29 | " DEFINE THE MACHINE INTERRUPT FLAGS 1 141
29 j 142
29 j FLAG S T A C K . 0 VE RF LO W, IN V A LID. T Y PE , DI V ZERO, FUNCTION. COMPARISON, GUESS .FLAG, 1 143
30 j FIRST.E NTRY,ENO PROG? j 144
30 ! FLAG | 145
si i DE CL FLA G , J 146
3t i SECSF, 147
31 ! topsf; 148
7* 1 j 14 9
31 | • | 150

COMPILER DIRECTIVE ...PAGE



PROCEDURE HANDLE IN TE RR UP TS < 3 ;
WRITESTR INGC’INTERRUPT ’ H WRITE NUMBER(I NTERRUPT
WRITESTR ING(* JOB ZAPPED *********** 5;
WRITEC 5;

HALT;
end;

TYPE); I
I 
I

PROCEDURE E ILL.TOPS TACK.REG ISTERS ( )/
IE FALSE CTOP 5E 3 THEN

S(
IE EALSECSECSE3 THEN

S{
TG?S.TA5:=STACK C . ST AC POINTER. 3. TAG; 
TQPS_DATA:= S TA CK < • ST ACK-PQ INTER* 3* DATA; 
STACK.PQINTER:=STACK POINTER-1?

1

s 3 
E
S(

5 3

TOPS.TAG: = SECS.tag;
TOPS.DAT A: =S ECS.DATA;

SECS .T AG : = ST ACKC *S TACK.POI NTER . KT AG ;
SECS.DAT A: = STACK(. STACK.POINTER. 3. DATA; 
SETT TGPSr3? SET(SECSF);
STAC K.PO INTE R: =S TACK.POI NTER-1 ;

S )
end;

I

\
I
1

PROCEDURE IN IT IA LI SE -S ASL .M ACH INE ( 3 ?
STACK.?01NTER: = 0; LIST_PQIN TER:=1;
unsetc secseb unset c topse );
CREG:=l; EREG:=i;
CQDESASECLIST 3;

eno;

15 1
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

HA NDLE_INTERRUPTS 
HANDteZlNTERRUPTS 

HANDLE.INTERRUPTS 
HA NOLE.I NTERRUPTS 
HANDLE.INTERRUPTS

ElLL.T OP STACK.REGISTEF 
ElLL.TOP STACK.REGISTEF 
FILL.TOP STACK.REG I STEF 
FILL.TOP STACK.REGI STEF 
FI LL .T OP ST A CK. RE GI ST EE 
FILL. TOP STACK. REGI STEF 
FILL.TOP STACK.REGISTEF 
FILL.TOPSTACK.REGISTEF 
FILL.TOP STACK. REGI STEF 
FI LL.TOPST ACK. REGI STEF 
FILL.TOPSTACK.REGISTEF 
FILL.TOP ST ACK. REG I STEF 
FI LlZt OP ST ACK. RE GIST EC 
FILL.TOPSTACK.REGI STEF 
FI LL.TOPST ACK. REGI STEF 
FILL.TOPSTACK.REGISTEF 
FI LL.TOPST ACK. REGI STEF 
FI LL.TOPST ACK. REG I STEF 
FILL.TOPSTACK.REGISTEF

INITIALISE.SASL.MA CHK 
INITIALISERS ASL. MACH IF 
IN IT IA LISE. SASL. MACHU 
INITIALISE. SASL. MA CHIT 
INITIALISE. SASL. MACHU



70 j 
79 j 
7? I

PROCEDURE P USHSTACK (B IT SC TA G. SI ZE ) TAG? 8 ITS ( h'0 RD _$ IZE ) DATA?)/
J 191
j 192
J 193 PUSHSTACK

7? i " PUSHES AN ELEMENT ONTO THE SASL MACHINE STACK j 194 PUSHSTACK
77 s 195 PUSHSTACK
77 j IF FALSE(TGPSF) THEN j 196 PUSHSTACK
74 1 SC 197 PUSHSTACK
75 I IF FALSECSECSF) THEN j 198 PUSHSTACK

74 j SC j 199 PUSHSTACK

7? ! SECS-TAG: = TAG? SEKSECSF)? 200 PUSHSTACK
7*? j SECS.DAT A: =DATA? | 201 PUSHSTACK
39 j S ) j 20 2 PUSHSTACK
81 j ELSE 203 PUSHSTACK
31 j s c j 20 4 PUSHSTACK
s? j TOPS.TAG:=TAG?. SETCTOPSF)? J 20 5 PUSHSTACK
84 j TOPsZdATA:=9ATA5 j 206 PUSHSTACK
8S j S ) J 207 PUSHSTACK
84 j S5 j 208 PUSHSTACK

s7 i ELSE 209 PUSHSTACK
87 i IF STACK.PG INTER > STACK.SIZE THEN j 210 PUSHSTACK
33 j sc J 211 PUSHSTACK
89 ! SETCANY.INTERRUPT); j 212 PUSHSTACK
99 | INTE RR UP T. TV PE s = 1? J 213 PUSHSTACK
91 i S5 214 PUSHSTACK
97 | ELSE j 215 PUSHSTACK
9° 1 SC j 216 PUSHSTACK
93 j STACKC-STACK.POINTER- ):=SEC S.TAG SHL WGRD.SIZE j DATA; j 217 PUSHSTACK
94 j SECS_TAG:=TOP S.TAGJ SECS.D AT A: = TOPS. DATA; j 218 PUSHSTACK
94 I TOPS.TAG:=T AG? TO PS.DAT A:=DAT A? } 219 PUSHSTACK
97 j STACK-POI NTER :=STACK_POINTER * 1? 1 220 PUSHSTACK
99 ! S) J 221 PUSHSTACK

109 j END? ” PUSHSTACK " } 222 PUSHSTACK
ICO j | 22 3
10*9 ] j 224
COMPILER DIRECTIVE .--PACE



1 00 
100 
100 
100 
100 
100 
100
100 
100 
1 00 
100
100
107

" HERE ARE SOME UTILITY PROCEDURES

« THE GARBAGE COLLECTION PROCEDURES
GARBAGE COLLECTION IS DOME WHEN THE FREE SPACE LIST IS EMPTY 
WHEN THIS OCCURS THE GARBAGE COLLECTOR IS AUTOMATICALLY CALLED 
THE METHOD USED IS TO CHAIN THROUGH THE LIST AREA USING CREG / EREG * 
AND ALL THE POINTER TYPE ELEMENTS ON THE STACK -

EACH CELL WHICH IS ACCESSIBLECPOINTED TD) IS TAGGED 1CTHE GC BIT)
WHEN THIS MARKING IS COMPLETE WE SCAN THROUGH THE WHOLE LIST AREA 
COLLECTING UNMARKED CELLS AND ADDING THEM TO THE FREE SPACE LIST

r»
PROCEDURE MARKJ.ISTC8I TSCWORD.SIZE) R; )?

102 ! DOES THE LIST MARKING
107 i
107 REPEAT
104 >1 LI ST (. R. )-GC := 1 *

..105 J UNTIL R=NIL. DO ______ _____________ _ ••• ...
105 I R:=LIST(.R.).T AIL;
106 15 END:
106 j
106 j
1 06 i PROCEDURE GARBAGE-COLLECT*H
103 i
1 03 I BITS( WORD-SIZE) TP;
C O^PILER DIRECTIVE ...SCRATCH TP
107 ti MARK-LI ST (CREG 5 ; MARK
11? 1 TP:=i;
1 15 1 ’ WHILE TP< = STACK-PQI NTER DO
114 J IF STACK(.TP.)»TAG=POINTER-TYPE THEN

; 1 15 1 MARK-LI ST(STACK(.TP.).DATA);
1 16 i TP:=i; FSLP:=i;
1 13 1 WHILE TP<=L IST-SI ZE 00
1 17 I IF L 15 TC .TP, ). GC=O THEN
120 J (
121 } FREE-SPACE-LISTC.FSLP. ): = tp;
125 i $ )
126 1i ELSE
1 24 ! LISTC.TP. ).GC:=O;

* a 2»S

HARK-LI ST (EREG) ;

FSLP:=FSLP+i;

| 225
| 226 
j 227
j 228

22 9 
j 230

231 
| 232

233
234
235
236
237
238
239
240
241 

j 24 2 
j 24 3 
| 244
| 245
| 246

247
248 

j 249

| 250
251 

j 252

253 
| 254
| 255
J 256 
j 257 
j 258 
j 259
j 260 

| 261
262 

| 263

MARK-LIST 
MARK-LIST 
MARK „L 1ST 
MA RKJ.IST 
MARK-LIST 
MA RK-LIST 
MA RK-LIST 
MARK-LIST

GARBAGE COLLECT 
GARBAGE. COLLECT

GARBAGE-COLLEC T 
GARB AGE-COLLEC T 
GARBAGE-COLLEC T 
GARBAGE-COLLECT 
GARBAGE-COLLEC T 
C-ARBAGE-COLLEC T 
GARBAC-E-COLLEC T 
GA RB AGE-COLLEC T 
GARBAGE-COLLECT 
GARBAGE-COLLECT 
GARBAGE-COLLEC T 
GARBAGE-COLLECT 
GARBAGE-COLLECT 
GARBAGE-COLLECT



1 25 ] FUNCTION GET.NEW.CELLS ); J 265 
j 266 GET.NEW.CELL

127 i " THIS FUNCTION RETURNS THE ADDRESS OF A FREE LIST CELL WHEN CALLED FOR J 267 GET. NEW. CELL
127 1 IF THERE ARE NONE AVAILABLE IN THE FREE SPACE LIST IT CALLS THE » 268 getZnewZcell
127 j GARBAGE COLLECTOR TO LOCK FOR SOME | 269 GE T.NEW.CELL
127 j j 270 GE T.Nt W. CELL
127 J IF LI ST.POINTER=FSLP THEN I 271 GE T.NE W.CELL
1 77 i - - j G ARBAGE.COLLECT() | 272 GET.NEW.CELL
130 J ELSE j 27 3 GET. NEW. CELL
1 30 j L1ST.POINTER:=L15T.POINTERS 1/ | 274 GElZ NEW.CELL
13i i END = FREE. SPACE. LISTS .LIST. POINTER. 35 | 27 5 get.NEW.CELL
1 31 < j 276
131 j FUNCTION GET.PARAMETERS); I 277
133 i | 278 get.parameter
133 j " GETS THE NEXT ITEM FROM LIST POINTED TO BY CREG AND UPDATES CREG " | 279 GET.PARA METER
1 33 j | 280 GET.PARA METER
1 33 | 21 TS (WORD.SIZE ) TEMP? j 231 get.parameter
COMPILER DIRECTIVE ...SCRATCH TEMP
134 | TEMP: = L1ST(.CREG. ).HEAO; CREG: =LISTS •CREG.).TAIL; | 282 get.parameter
137 { END = temp; 1 2,8 3 GET.PARAMETER
137 j J 284
137 | 1 28 5
137 | j 286

COMPILER DIRECTIVE ...PAGE



.137 
13? 
13? 
13? 
1 3? 
13? 
1 41 
145 
145 
1 44 
145 
143

| PROCEDURE CHECK.!YPE(8 ITSCTAG.SI2E) TYPE?);
i

" CHECKS THAT THE TYPE OF TOPS.TAG IS THE SAME AS ITS PARAMETER 
J IF IT IS’NT THE INTERRUPT BIT INVALID TYPE IS SET
I
j IF TOPS .TAG - = TYPE THEN
j $< SEtFaNY.INTERRUPT )? SETCINVALID.!YPE); INTERRUPT.TYPE : = 21
j end;

287
288 CHECK
289 CHECK'
290 CHECK
291 CHECK
292 CHECK
29 3 CHECK
294 CHECK
295
296
297
298 CHECK. 

J 29 9 CHECK
1 300 CHECK,
j 301 CHECK,

302 CHECK, 
j 30 3 CHECK,

304 CHECK.
| 30 5 CHECK

30 6 CHECK 
j 30 7 CHECK 

J 308
| 309

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES
TYPES

$ )

i PROCEDURE CHECK. TYPES (3 ITSC TAG. SIZE > TYPE?)?

148 1 13 CHECKS THAT THE TYPES OF TOPS AND SECS CONFORM
148 j THE TYPE SPECIFIED
148 j
148 j IF TOPS.TAG ■»= TYPE DR SECS.TAG -= TYPE THEN
150 j SC
151 | SET CANY.INTERRUPT >; SET CINV At ID.TYPE)?
153 | I NTERRUPT.T YPE: =2?
154 j $>
155 | END " CHECK TYPES” ?
155 i
155 |
COMPILER DIRECTIVE ...PAGE



15S | « THE INSTRUCTION PROCEDURES tf 1 310
1 55 j • 311

- 155 j PROCEDURE CO MM AO 5 j 312
; 157 j 313 COMMA
; 15? ! ” THE TOP STACK ELEMENT IS A LIST. GET A NEW LIST CELL AND INSERT 314 COMMA

1 57 ‘ j ‘ TOPS .DATA AND SECS.DATA INTO THE TAIL AND HEAD RESPECT IVELY | 315 COMMA
157 j THIS CORRESPONDS TO THE COMM AC,) OPERATOR IN SASL FOR MAKING LISTS " | 316 COMMA

• 157 | j 317 COMMA
r 157 j 31 TS (WORD.SIZE 3 NEWCELL; j 318 COMMA
.. COMPILER DIRECTIVE ...SCRATCH NEWCELL

158 j CHECK.! YPE { PO IN TER. TYPE 3 3 j 319 COMMA
1 6D | NEWCELL: = GET.NEW.CELL (); j 320 COMMA
16i J L 1ST( .NEWCELL .3 . TAIL: =TOPS.DATA? j 321 COMMA
16? j LIST (.NEWCELL. 3. TAG : = SECS. TAG t j 32 2 COMMA

; 163 j LIST(.NEWCELL.)-HEAD:=SECS.DATA; 32 3 COMMA
» 1 64 J PUSHSTACK (POI NTER „TYPE> NEWCELL) ; 324 COMMA

1 65 j end; { 32 5 COMMA
165 J 1 326

r 165 j _ PROCEDURE APPLYC >; j 327
167 j ! 328 APPLY1 67 j ” THE SECOND STACK ELEMENT IS OF TYPE FUNCTION , THE TOP ELEMENT IS | 329 APPLY
1 67 | ITS ARGUEMENT-remove the top element CHANGE CREG AND EREG TO 330 APPLY
1 67 i POINT TO THE FUNCTION, SAVING OLD VALUES ON THE STACK AND PUT j 331 APPLY

" 167 | THE ARGUE.MENT SACK ON THE STACK 1 33 2 APPLY
167 j 333 APPLY- 167 j 3 IT SC WORD.SIZE) LP? I 334 APPLY- 168 j IF SECS.TAG -> = FUNCTION.TYPE THEN | 335 APPLY
170 | SC SETC-ANY.INTERRUPT); SETC INVALI D.TY PE 33 EXIT; S) 336 APPLY
175 1 ELSE 337 APPLY
1^5 I S( 338 APPLY

l 176 i LP: = $ECS.DATA ; j 339 APPLY
u 177 j SAVE. MACH INE. ST ATE | 34 0 APPLY
** 18? j CREG:=L IS T( .LP. ). HEAD; 341 APPLY

183 J ER£G:=LIST( .LP. 3.TAIL; i 342 APPLY
184 j S3 343 APPLY
135 | eno; 344 APPLY
185 j | 345
185 j 1 346

L 185 j I 347
m 185 j • 348
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f 1 ss i! « THE NEXT 3 PROCEDURES ARE CONCERNED WITH THE TEST EQUALS INSTRUCTION j 349
185 t

S WHICH CAM TEST ANYTHING > INCLUDING LISTS F CR EQUALITY. FUNCTION ARE 1 350
7 135 i

i EXCEPTED.TRYING TO TEST FUNCTION EQUALITY CAUSES AN INTERRUPT 1 351 '•
r las j THE FUNCTION COMPARE TESTS THE TOP STACK VALUES FOR ABSOLUTE EQUALITY | 352
; 1 85 i» BUT IF THEY ARE LISTS THE RECURSIVE PROCEDURE COMPARE-LISTS IS CALLED 1 353

185 j WHICH CHAINS DOWN THE LISTS TESTING EACH ELEMENT IN TURN J 354
185 JJ j, 35 5

: 185 { | 356
r 135 !2 I 357

1 85 1a PROCEDURE TEST„FOR.EQUALITY C); j 358
187 i | 35 9 TEST-FQR-EGUALITY

v 18? 1 n TESTS THE TOP 2 STACK ELEMENTS FOR EQUALITY .IF THEY ARE NOT 360 TEST.FOR-EQUAL ITY -
i s7 I LISTS. SECS J) AT A CONTAINS THE RESULT OF THE TEST J 361 TEST-FOR.EQUALITY

; 187 1 362 TEST-FOR-EDUAL ITY 5
1 8? t

s IF TOPS_TAG=" UNCTION-TYPE OR SE CS-T AG =FUN CT IO N. TY PE THEN j 363 TEST-FQR-EQUAL IT Y '
is'? i sc | 364 TE ST-F0R-EQUA1. ITY I

; 19Q Ii SET CANY-INTERRUPT); 1 NT ERRUPT-TY PE:=4? j 365 TEST-FOR-EOUALITY
* 19? I S) | 366 TEST.FQR-EQUAL ITY
/ 193 i ELSE 367 TEST-FOR-EQUALITY j

195 I IF TOPS-TAG = SECS-TAG THEN 368 TEST-FOR.EQUALITY
194 i SC | 369 TE ST^FOR-lQUAL IT Y
195 i IF TOPS-DATA = SECS-DATA THEN 1 370 TEST-FOR-EQUALITY '
195 i SEC S-DATA : = LTRUE j 371 TE ST-.FOR-EQUAL ITY •
19? J ELSE | 372 TEST-FOR-EQUALITY

• I 97 e1 SEC S-DA TA : = LFALSE; j 37 3 TEST.FOR.EQU AL ITY ;
> 193 1J S) | 374 TEST-FOR_EQUALITY

190 j SECS-TAG: =LQS ICAL-TYPE? | 375 TEST-FOR-EQUAL ITY
;* 2 00 i END? * TEST-FOR-EQUALITY * ’ 37 6 TEST-FQR-EQUAL ITY

I,

&



209 ! PROCEDURE COMPARE.LISTSC); | 379
2 0* I | 380 COMPARE.LISTS
20? j ” RECURSIVE PROCEDURE COMPARING ALL THE ELEMENTS Or A LIST " 331 COMPARE.LISTS
202 j j 332 COMP ARE.LISTS

2 0? J 9ITSCU0R0.S IZE) PL1/PL2? j 38 3 COMPARE.LISTS
•203 1 REPEAT j 384 COMP AReZlISTS
2 0 S j sc I 38 5 COMPARE.LISTS
20‘S i PL1 : = TOPS.DAT A; PL 2:=SECS.DATA; j 386 COMP ARE.LISTS
2 03 j TQ?S_TA G: = LIST(-PL1-).TAG; TGPS.QAT A:= LIS T(.PLI.).HEA 0; j 387 COMPARE.LISTS
219 j SECS.TAG:=L1STC,PL2«S »TAG; S EC$. 0 A TA : = LI ST C- PL2. ). HE AD ; j 388 COMPARE.LISTS
2i* i PL1 :=LI STC. PL1. ). TAIL; P L2 : = LI ST (. PL 2. 5- TA IL ; I 389 COMPARE.LISTS
214 | IP TOPS.TAG .= POINTER .TYPE AND SECS.TAG = POINTER.TYPE THEN j 390 COMPARE.LISTS
2 IS j SC j 391 COMPARE.LISTS

216 j SAVE.VALUES.OF.POINTERS j 392 COMPARE.LISTS
21"> j COMPARE-LI STSC); j 393 COMPARE.LISTS

2 20 i RESTORE.VALUES.OF.POINTERS 394 COMPARE.LISTS
223 j $) | 395 COMPARE.LISTS
224 j ELSE | 396 COMPARE.LISTS
224 |. TE ST .FOR.E QUAL IT YC >; j 397 COMPARE.LISTS
2 25 i S) j 398 COMPARE LISTS
2 26 ’ UNTIL 399 COMPARE.LISTS
225 { PL 1 ='4 IL AND PL2=NIL AND SECS. TAG=LOGI CA L. TY PE OR SECS.OATA= j 40 0 COMPARE.LISTS
2 26 j LPALSE DO NULL; J 401 COMPARE.LISTS
2 2* j end; w cohpare.lists j 402 COMPARE LISTS
22? j i 40 3
2 2? | ! 404
22? | | 405
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2 9? j " iHL NEXT LU! J h INSTRUCTION PROCEDURES ARE FOR THOSE INSTRUCTIONS J 509
29? j WHICH HAVE A PARAMETER j 510
292 J 511
29? j PROCEDURE LOADFNO; ] 512
294 i j 513 LOADFN

2 94 | * PARAMETER IS A POINTER TO CODE- CREATE A FUNCTION WITH THIS AS | 514 LOADFN
294 j THE FUNCTION CODE AND EREG POINTING TO IT’S ENVIRONMENT i 515 LOADFN
2 94 j PUSH A POINTER TO THIS FUNCTION ONTO THE STACK j 516 LOADFN

2 94 j j 51? LOADFN

2 94 j 3 ITSC WORD.SIZE) NEWCELL? j 518 LOADFN
: COMPILER DIRECTIVE------SCRATCH NEWCZLL
r 2 9S 1 N EW CELL : = GE T_NE ?< CE LL < ) ; J 519 LOADFN

2 97 <
i L IS T{- NEWCELL, 2- - TAG : = F U NC Tl ON _T YP E7 j 520 LO ADEN

’■ 2 9? i LISTC- NEWCELL-)-HEA0:=GET_PARAMETERC)? j 521 LOADFN
293 fJ

i
LISTC.NEWCELL,).T AIL:=EREGz | 522 LOADFN

■ 30? P US HS T A CK ( F UNC T13 N_ TY p£ > \] EW CELL ) ; j 523 LOADFN
3 01 j end; 524 LOADFN

; 3 01 1 525
301 i PROCEDURE SLOCKC); | 526
30? J

4 | 527 BLOCK
30? 1 " AN UNCONDITIONAL BRANCH , BUT SAVING THE MA CHINE STATE " 528 BLOCK

; 3 0? ! " PARAMETER GIVES NEW VALUE OF CREG w 529 BLOCK
? 30? 1 | 5 30 BLOCK
r 30? 1 SAVE MACHINE STATE j 531 BLOCK
■/ 3 03 1 CREG: =L ISTC .CREG. KHEADJ j 532 BLOCK
? 310 j EN D; J 533 8L OCK
~ 310 I J 534
i 31? I PROCEDURE RETURN (); | 535

3 1? i w IF STACK HAS ONE ELEMENT WE ARE FINISHED OTHERWISE j 556 RETURN
3 l7 1 TOP STACK IS THE RESULT OF A FUNCTION > RES TORE MACHINE STATE 537 RE TURN

f 3 I9 I THEN PUSH RESULT BACK ONTO THE STACK Tf | 538 RE TURN
31? J | 539 return

> 31? I 3 ITSCTAG.SIZE) Tl? BITSCWORD.SIZE) 12; I 540 RETURN
f 314 ] IF STACK.POINTER=O AND FALSE(TOPSF) THEN | 54 1 return
> 314 I SE ICENDPROG) I 542 return
; 317 r ELSE I 543 RETURN

3 I7 i RESTORE.MACH INE.STATE 544 return
32? j eno; j 545 return

e 3 23 i J 546
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323 | 
325 j

3 25 |
3 25 j 
325 j 

3 27 j 
3 2* {
3 23 I 
32* j 
3 3* j 
3 3* |
3 3* | 
33* j 
3 35 |
3 3* I 
COMPILE 
331 j 
3 34 j 
3 35 j 
3 36 | 
333 1 
3 35 j 
3 45 j 
34* j
341 j
342 | 
342 I

PROCEDURE HEADCONSTC );

” PARAMETER IS A CONSTANT -- PUSH IT ONTO~THE STACK " J
I

PUSHSTACK<LIST(»CREG- 3 • TAG/LI ST(•CREG. ) *H EA D)/_______ ___ 1
CREG:=L 1ST C .CREG. 3.TAIL; I

'end; !
I

PROCEDURE LOOKUP (); I

" THIS PROCEDURE SEARCHES THE ENVIRONMENT FOR A NAME THE SAME AS ITS J
PARAMETER- WHEN FOUND PUSH VALUE ASSOCIATED WITH THIS NAME ONTO THE |

STACK

BITSC WORD-SIZE) T1*T2*T3,T4;
R DIRECTIVE ..-SCRATCH T1,T2,T3,T4

T1:-EREG; T2 : = GET_PARAMETERO?
RE PE AT

S(
T3:=L1ST(-Tl.).HE AO; T42 = LI ST(.Tl.).T A It;
T 1 :. = L IS T( .T 4- ).TAIL;

S3
UNTIL T2 = T3 DO

null;
PUSHSTACK CL IST(-T4-)- T AG * LI ST(.T4-).HEAD);

end;

I

547
548 HEAOCQNST

549 HEAOCONST
550 HEAOCONST
551 HEAOCONST
55 2 HEAOCONST
553 HEAOCONST
554
555
55 6 LOOKUP 
557 LOOKUP 
55 8 LOOKUP
559 LOOKUP
560 LOCKUP
561 LOOKUP

562 LOOKUP
563 LOOKUP
564 LOOKUP
565 LOOKUP
566 LOOKUP
567 LOGKUP
568 LOOKUP
569 LOOKUP
570 LOOKUP
571 LOGKUP
572



w. I 
3 44 j 
344 |
344 i 
3 44 •
344 j 
3 44 I
compiler
344 j 
3 43 j 
3 40 j 
3 50 j 
351 I 
351 j 
351 j 
351 1 
35’ |
353 j
354 j
355 |
355 j
356 |
35? j 
353 1 
3 50 |
350 j 
350 5

PROCEDURE ADD.NAME AND VALUE TO EN VI RQNMEN TC 3; j
I

" THIS PROCEDURE ADDS A NAME AND A VALUE TO THE FRONT OF THE j
ENVIRONMENT LIST . SECS.DATA POINTS TO THE NAME AND TCPS.OATA j

POINTS TO THE VALUE “ « j
1

3ITSCWORD.SIZE) NC1>NC2; j
DIRECTIVE ...SCRATCH MCl,NC2

NCI :=GET.NEW.CELL (3 ; NC2:=GET.NEW.CELLC 35 1
LIS TC.NCI.3.TAG: = LIST C.SECS.DAT A.3.TAG; j
LIST(.NCI•3-HEAD:=L1ST(.SECS_DATA.3.HE AD; j
LIST(.NC1.3.TAIL:=NC2; j

I
* IF NOT A GUESS TYPE ENTER VALUE ELSE SET TAG TO GUESS TYPE " j

I
If FALSEC GUESS. FLAG 3 THEN j

S( J
LISTC .NC2.3.T AG: = LIST (.TOPS.DAT A. 3. TAG; j
LISTC-NC2.) .HEA D : =L IS TC . TOP S„DAT A. 3 «H EA D5 j

$) J
ELSE • 1

LISTC.NC2- ). TAG: =G'JESS.TYPE? I
L ISTC . NC2. 3 .TAIL: =E REG; j
ereg: = nci; •
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4 24 I
424 j
425 j 
4 25 |
427 j 
4 2" j 
423 j 
423 j
4 2? j EM3 

4 2? I 
4 2? j

ELSE
IF TAG = LOGICAL.TYPE THEN 

IF DATA = 0 THEN
WRITESTRINGC MFALSE# ’> 

ELSE
WRITESTR INGC *#TRUE£* 3

ELSE
WRI TEST RIMS C’ #FUNCTION# » 3? 

" PR IN TELE KENT "J

42? | 
4 2? 1 
4 31 j 

4 31 | 
4 32 j 
4 34 | 
4 35 1 
4 34 | 
4 S'7 j 
433 i 
4 3? | 
4 40 } 
4 41 j 
4 41 j 
4 4° j 
4 43 | 
443 j 
4 44 j 
44S j 
4 45 j 
445 j

PROCEDURE PRINTRESULTO?

81 TS CW OR O.S I ZE 3 TJ
IF TOPS.TAG = POINTER. TYPE THEM

S (
FLATTENC T^TOPS.DATA);
REPEA T

S-C
PRINTELEME NT CLISTC.TOPS.DATA.).TAG^LIST< 
TQPSJDAT A:=LISTC.TOPS.DATA.).TAIL/

S)
UNTIL

TOP S.DA TA = N I. DO NULL?
S 3

ELSE
PRINTELEMENTC TO PS .T AG TOP S. DA TA 3 ?

WRI TEC 3;
END ” PRINTRESULT «;

4 45 I
COMPILER DIRECTIVE ...PAGE



1 715 PRINTELEMENT
i 716 PR INTELEMENT

• j1 717 printelement
1 718 printelement
1 719 PR INTELEMENT
I 720 PRINTELEMENT
I 721 PR INTELEMENT
I 722 printelement
1
1
1
I
1

723
724
725
726
727

printelement

I 728 PRINTRESULT
i 729 PRINTRESULT
i 730 PR INTRESULT
i 73 1 PRINTRESULT
ii 732 PRINTRESULT
i 733 PR INTRESULT
ii 734 PR INTRESULT

TGPS_QA TA.) .TAIL) ; I 735 PR INTRESULT
1 736 PR INTRESULT
1 737 PR INTRESULT
1 738 PRINTRESULT
1 739 PRINTRESULT
I
i

740 PRINTRESULT
741 PRINTRESULT

I 742 PRINTRESULT
i! 74 3 PRINTRESULT
i
1
!

744
745
746

PRINTRESULT

1 747



■' ryf

$

,4
4S

 1 
PR

O
C

ED
U

R
E KA

IN
LO

G
PO

; 
| 

74
8

a a 
CD CD 
o CD

a a 
CD CD 
o o 
3 3 
z z

a. a 
o o
o o
a 3.j
z: z
94 3

A <C

a
a
o
3
z
94
d
X

a a 
CD CD 
o o 
3 -j 
z z
91 ,
d dC

a a 
CD CD

a
CD
o
a
z
94
■X
X

a
o
CD
—i
Z
3
d
C

a a 
o o 
CD O 
3 nJ
z z
94 94

a cl- 
CD O 
o o

a
CD
O
34
Z
94
d
C

ao
CD
3
z
1—4
d
C

a
CD
o
3
Z
94
■I
C

CD
.j
z
3
d
C

CD
3
z*
3
d
C.

3
z
4-4
d
C.

3
z
94
d
a

nJ
Z
9-4
d
CC

z
9-4
<
C_

94
d
X-

<C
C

d
CC

■X
CC X C C

o O r- a A d At NO 3~ CC o o t—4 CJ A tt A A 3. OO
tt LA A LA A A A A A3 A3 A A A a A a NO VO A a
3, a- 3- a 3- 3- 3- 3- 3- 3- a <3- 3- 3 3- 3- 3- 3. 3- 3-

a
CD
CD
U
z
3
d
C

a q 
CD CD 
O CD

3 
z z

a a 
a cd 
CD CD 
3 3 
z z
3 3

a
CD
CD
3
z
3
d
C

a
CD
CD
nJ
z
94
d
X

a
CD
o
3
z
3
d
5U

a a 
CD CD 
CD CD 
3 3 
z z
3 3
d dt
C a-

a a a 
cd o CD 
CD CD CD

a a a.
CD
CD
3
Z
9-1
d
CC

a
CD
CD
3
z
3
d
a

a a t 
CD CD / 
CD CD. : 
3 3/ -

CD
CD
-J
Z
3

d
C

o
CD
3
Z
3

d
a

3
z
3
d
C

3 3
z
3
d
C

z
94
d
CC

z
94
d
C

z -
9-4
d i a

94
d
DC

3
d
C

d
C

d
z

C- O «-« CL 9D tf A <5 3 CO CN O t-4 a A tt A NO
£

3 S
NO 3 3 3 3 3 3 3 3 3 3 o OO OO CO CO A A CO 5
ft- 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3:

I

t
* *
* *
# *
* o X
* W LJ X
* a. DC X
* a X
* o CD X «•»
* a LJ X **»
* a X 3
* A a X A
* 94 CD X 3
* CD X a
* se CD X C
* o CD X C
* d X cx
* 3 LJ X LU
* W A > X 3
* Z d X Z
* 9/ LU X X 9-4
* a X X «
* O 3 A X LU
* d 3 X nJ
X Z 7 a X CD
X p.- 2D X A
X A LU a X d
X A a X X
X 3.J LJ X
X A A 3 X
X d 3 z X
X A 3 X
X CD X
X WJ CD a X
-X X a 3 X zc
X 3 a X U.J
X Q CD X -t- 3
* a z Z X p- 97 3
X o LJ d * 94 A
X a 7 X 4K 94 a. a A.
■X nJ X 9, P" UJ UJ LU
■X W! ,.J 3- X O a. 3 3 X C
X Cc. 94 >-L X «c =D Lj) A LU 3
•X o 3 * nJ a 2D 94 X
X CD O X L- CD a: d CD 3 O
X ai o LU X 3 O LU a UJ 3
X O UJ UJ X 3 k d CC
X CD X Z X 3 z 0. 1 ,-4 V
•X a <.) X LJ CD 94 « he
X a 3 X X A CD « Li V LJ
X LU C) X z L >„ UJ d 3
X a Lu 3 X CD a A CD 3 IU a
X LJ C X 0 d II CD 0
X » UJ 3C X Z-' 3 «« C. CD «
•X 9_| CC X UJ UJ UJ CD o.J a
•X ex. d A X 3 D> CD p— CD
X cd Z X • <7 UJ a o a
X A CD X CD A 3 CD 3.l 0 w U/
* UJ Z" 91 X d-C _J 1 A 3
X a O 3 X d a a 9^1 a
•X p~ i~i CD C X L- a 3 CD a. 94
X 3 C UJ X 9"
X m o CC X X UJ «■»
X 91 CD 3 3 X CD U W
X a A X d j—j
X A 3 z w X 3-J CD
X 9/ A f-4 3J X L. cs;
X X Z O X
X 3 94 OC z X
X CJ A. X
5 A Lu C X

l
I

I
J •■

• Pj
d'

-7 ► « »7 • 7 I «, 17
■X d d d d d
k** CD p- 3 P"
<C « d d d d
CD A CD CD CD CD

1 a 1 « z « «
A CD A A LU LlJ Z z A A
a P— a Cl. X X UJ LU Li LJ
CD CD CD 3 3 X X LU LU
i— X 3 Pn 3 3 A A

»x UJ d d
97 3 a 'P « 3 P— sC d ex! 7—
LU LU d d 3 3
d. a d d d d CD 0 d d d d
>- >• P-™ p. 9*- 3 « « CD CD 3 P--
3 3 d d d d A A « d d

« « CD CD CD CD a a A A CD a
ac nJ i » I I CD a a a « «
UJ d A A A A 3 3 CD CD A A
CD Li LJ CD: Li O 3 • 7 I’­ -7 0. 0_
LU 9« LU LUI LJ LU A • 7 ii *7 rv /*> CD CD
3 CD a A a' A) A A r-7 V CD ll LD 3 k—
Z CD CD II Hi II II d CD CD d V *C II II
94 _J »»< 4 4 »♦ 3 d •< d d _J 3.1 44 »» !=■'
3 7-> LU d <c: d d d 3 3 nJ 3 a d Cu d d
A A CD 3 p- 3 3 CD a d a d 3 3 p— )— I—
LU LU CD d d d d 13 CD J" Q sc d w d d
a a O CD CD CD CD A SC « SC «

A
P— CD p. CD CD ■:c

>- « 1 « ) O k*- A 3 UJ « L)J ! ■:
9. l— a A A A A UJ tu Li UJ LJ A A </) PD A bJ "

« 1 CD CD Li Li Li A CO LU A LU Li 3 O OO
y: yc UJ LU W Ll A A Ll UJ Ii) d ?
(. ) CD LU A A A A a A A A c>
LU W A j 3 C Ls CD .
X X d I 1-4 3 a z !

CD
LU

CD O 1

i
3 LU

A 1 j

3 1
LU I

1

j

f f f. f Is- f- n ft ft f<o 3 ft.- K* i/-. %r t- A~
d d d V --<• vt <f vf d -t d la A Li*» A A IA LA LA IA
d d -V- --t d d d vt d vt "■t-At, d V d d vt d d d

3

4 
I

0 C O 0 * P" * tt IA A ft Cft. O r^n fC.' A d LA A 5
A A 'C O A A *O •0 A A A A [•3. /Jn f- r- f. ft-' J

d .'J- 'tf Tt- d-d d vt st d -st d -.t d
. I , 3.S - L4



0_ 0- CL. 0.. U U U U 0. U O. U o.. o 0- U U CL U U U U U U a. U 0— 0_ U U 0. U U o. U a. a.
a o o C5 o o o C3 o a a O CD CD o o o ad CD CD o o CD O a o CD CD CD CD 0D CD CD CD CD CD UO CD o O o C5 o CD o a o o O O o o o o CD CD o o O CD o CD CD CD CD CD CD CD CD CD CD CD o3 ,,J 3 3 3 3 -J 3 3 . j 3 3 3 3 3 3 3 -J 3 3 3 3 ,3 3 a 3 3 3 3 3 3 3 3 3 3 3 3Z z z — z z z — — — — z —■ — — — — z Z z z — — z — — — — — z z z z_ — — z z1-4 93 1-4 94 94 94 9-3 9-3 9-3 94 94 ►4 94 93 94 9-3 93 94 9-1 93 93 93 93 93 94 94 93 94 94 93 94 94 9t 94 94 94 9-4
■< 3 3 3 3 3 3 3 3 3 3 3 3 3 3 < 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 V 3
U z U a — _ — — z: 02 U — UU — U — U —; — — — — o. — — — — XL — QL — — — —

AD O' o 3-.! OJ A -f m a 3 AD Cf— O «j-4 U A <r AD CD 3 A Cf o t-4 Cj1 A -J AD od 3 C Cf— O k CJ A; vt
C) 00 Ci f Ci Cf c- CJ J C- Cf Cf o o o O O O O O o o —4 4- U-4 k k e-4 yU 3- r—4 CU CU UU CJ CM
3 3 3 3 3 3 3 3 3 3 3 3 AD A C A 00 A) AD a; AD AD AD AD A0 AD A0 AO AD AD A0 A0 00 ad AD AD AD

g

• 7

K
k94
A

U
—o
9—
3

•7 *7 rv 99 LU
X”* LU O 3

W LL O- g t
a •7 Q.
>• O- 3 
3 LU 3 J

I a 1 z • 7
_J >" o^^ O 9^0

n 3 k w 94
Ul O I J-— 3 >-
CL >~4 OC z CD • 7 k-
5~ t A'D 3 93 Z • 9 49 ► 4
3 O X CD CD ik /A V.4 ,U

«s 1 Qu 3 0 0- U C5 3 — >~ 3
Ul 3 ■ O A>> •.4 S4 94 k CD

UJ A0 Z. 3 4( UJ UJ LU LU -r* C2 94 OJ
Z %D 3 LU CD 4 r4 CU a a 0_ UJ UJ a 3 Ul
W a 3 XQ 94 4 k >- >~ >- 1— J-— 0 3 1
X k U. I— CJ 4 9— k 9- 3 9- 9- =) 02
3 J 3 CD 4 Z l l 1 1 1 UJ LU ♦7 0 O o

il II o 3 " 4 UJ \0 se hC xx a 3 CM LU Uu
k • • • 4 k H X LU O 0 CD AD 1 I 7 V • X » 7 » 1
O 3 a »« <7 LU ►— O 4 7 • 7 3 3 3 3 a a 3 k xs ! CC 3
3 k k A OJ "1 CC a (-»» • 9 9- k- k ■ 3 0 0 <C A •V.J . s o CO
3 3 d-X 3 Ll. W r- C U rv» AD AD A) ! 1 ;> a A a. rv LU a Ui
l.L a o Uj! 3 AJ XX CU i 3 > U 1 l ! 1 P„ k H-- 0 JO CQ 9/ • 7 O t 3
9- 1 3 J CL­ a z C k*«« p— 9- 1— p—U 94 k-9 -U a.. f. se LU O k
74 A/D AD OD AD CD 1/5 V o y a. 3 AD A A5 CD CJ o LA CD U' AD {J A
LU O CD O O 3 z o U_ UJ LU U u LU LU 99 99 LU UJ 0 C3 3 f IU w
a UJ UJ ! LU k a LU LU o <c X k” 9* 9* 3 a 0 f-c Z — z Lu CD Q. fi AD
q A A 0.. 9-. VH O A Q CD
k Ul |-9 JU k A 3 Z

A A «C CJ o LU UJ
u. 3 Lu Z 02 I AD
94 LU f4 CO LU U 9" k 3

bO LU AD
A
_1
LU

I
t

O-
CD

O A
Ll

W 3 Ul
d-C A
OD 3

LU
AD
O
-J

•I

4
4r
4
4
4
*
4
4

I
i

I

I

6

NO ft- ce A O O 31 f- ft* f^ fv" A f*” v+ A ' ! A >A ft O” "• CD V>-4 f, ■ ft- vf A1 -f 3- A e C C- 3 k’ f— A' vf
f— 1- f3 3- f. CO A A CA A AD CA A AD CQ A AC (« 00 CO C — O CO C C O C Co 0 C C.•O C CC C O

.f vt vf vt •t vf 3" vt vt vt •3 vf vf -j- Vt ■f vf vf V* vf vf vf A vf uj- vf vf Vf A\ Al IN UQ A) A AD



5 OS < TQPS_DATA:= -'TQPS^DATA; *■' j 825 MAINLOOP
505 j 5) 826 MAINLOOP
50? ] OECLCj; "NOT GUESS” j 827 MAINLOOP
5 03 I SC SETCGUESS_FLAG); j 828 MAINLOOP
510 i OECLC ); S) " GUESS" 829 MAINLOOP
51? j < NQTO; j 830 MAINLOOP

513 ] BLOCK o; j 831 MAINLOOP
5 14 { enocase; j 832 MAINLOOP
514 j S) j 833 MAINLOOP
51S j eno; | 834 MAINLOOP
515 | MAINLOOPC); | 335
51? | PRINTRESULTC X •J f j 836
513 1 ENDPRO GRAM i 837

<r *-ir*if*******5r*<ri.Sr*******fr* *********** *************-Jr ****** ********** -If* * if ** if * *ir **

COMPILATION COMPLETE — NO OF ERRORS = 0

1357 MICROINSTRUCTIONS WERE GENERATED



- 07 00 SIMULATOR V.2(V»l ST ANDREWS) U NIVL k SHY

***** 1531 MICROINSTRUCTIONS GENERATEO *****

***** S'PROGRAM load from file #s,phdg *****

MM LOAO[R CDHMENTS I####- -

TKE SASL program to- sum the elements of a LISTc given on rage 185 )
WAS TRANSLATED by HAND TO mAchInL COgE SUITAblL FOR IhL SASL S-MACHINE.

■ THIS CCOF IS shown•BELOy

■ 1 BLOCK 15 . ■
2
3 declguess sumlist. .

- 4 DECL LIST
-5 LOG.NIL ............................
■ 6 tl list *■ - *'■

7 E0 . . •
-B FORK 9,10 ■ ' - • _ - ’ '

-- 9 HD LIST FOLLOWED, BY NIL POINTER TO INDICATE end OF FUNCTION
F - 0C HD LIST -
-11 Tl. LIST '
- 1 0 LOAOFN SUPLIST
:13 APPLY
nl4 PLUS " FOLLOWED 8Y NIL POINTER TO INDICATE end OF FUNCTION «
- 15 LDADFK SUMLIST
-16 TiEKN'C-T SUYLlST

17 LCC 1
ie LOG 2
1 9 COMMA • - . - . : .
2G LUC -3 ............... - ■ ----  "

-21 COMMA ... . ... ■ 0
• 22 LDC 4 ‘ ------- *-* ■ — --- *- _ . —-  .
• 2 0 CO M0 0 - - . - ................ . ■ * -
- 24 LDC 5 ' ■ -

25 COMMA ...................... ... - . -- . • • • - •
- 2 6 LDC 6 - -’-- - - ....... — • - • -
-- 27 COM 00 . • ... -
-28 LDC 7 •• - '' ----- --------------- - ..................- - - .

29 COMMA .
-30 LDC 8 ’ --'=- - -...... ■ -
-31 COMMA - -

32 LDC - - • • • •
33 COMMA r- _ • - ■. -. ■ : .. • - ---. ... -.
34 LDC 10

- - ■ .-. . . - • • - . i - . .. —.



R 1 7 0 0 S I M U I, A T f) H V , 2 C V • t ST A N U H E W S ) university o

35 COMMA
3C LUC NyL
3 f COMMA
38 LOADFN SUMLIST
39 apply ” follned by nil poinier ”

***** 00000039 S-INSTRUCTIONS LOADED *****
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nl/00 s I HULATON V.2(V*I ST ANDREWS) UNIVERSITY ' Oj

***** execution ***** '
55 . .... ;S

*** STATISTICAL SUMMARY' HAS WEEN' SUPPRESSED ***

-“-I

NC OF CLOCK CYCLES 6 357 ....

***** END OF SIMULATION-- ALL MICRO INSTRUCTIONS PROCESSED **

* * ******************* *-*■*' * **************************** * * * ** * * * * * * * * * ******** .
* * ***************** * T * * * ■ * ************************************************** '*(
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SUILVEN COMPILER -- ST ANDREWS UNIVERSITY-” VERSION 24/8/75
SOURCE LANGUAGE s SNG3GL4<SPITBGL) TARGET MACHINE : IBM 360/370
OPTIONS : GN = LIST. OFF = CODE? COPY?DUMP

TODAY IS 03 MAY 77

1
i1
1
I
I

n •&* *ir •****■ * it fc * *• * ** hie hie hh h h hh hh hie hh hh h h hh hh hh hh ** ** ie h hh hh hh hh h h hh hh hh I
1
2
7

THIS IS THE SUILVEN CODE FDR THE PASCAL S MACHINE DESIGNED BY
I
1

5

4
1 W IR TH ET AL AT ZURICH - this machine was written inaccordance WI TH 5
I THE PASCA L P COMPILER IMPLEMENTATION NOTES SUPPLIED BY MIRTH 6
ii
i

PROGRAMMER : IAN S3MMERVILLE — ST ANDREWS UNIVERSITY -- 23/8/75 1
1

7
8

i
1
i

THE GP CODES FOR the P MACHINE INSTRUCTIONS FOLLOW
1
!
i

9
10 
11 
12

«
3 OP CODE = 1 AND BOOLEAN AND

1
1

i OP CODE = 2 I OR BOOLEAN INCLUSIVE OR 1 13
I GP CODE = 3 DIF SET DIFFERENCE 1 14
i OP CODE = 4 I NT SET INTERSECTION 1 15
I 0 P CODE = 5 * I NN TEST SET MEMBERSHIP I 16
i OP CODE = 6 UNI SET UNION 1 17
I OP CODE = 7 ADI INTEGER ADDITION I 18
j GP CODE = 8 SBI INTEGER SUBTRACTION I 19
I GP CODE = 9 MPI INTEGER MULTIPLICATION 1t 20
i GP CODE = 10 MOD MODULUS 1 21
I OP CODE = 11 D VI INTEGER DIVISION 1 22
1
I GP CODE = 12 ADR REAL ADDITION I 23
1 GP CODE = 13 SBR REAL SUBTRACTION I 24
I GP CODE = 14 MPR REAL MULTIPLICATION I 25
I GP CODE = 15 DVR REAL DIVISION 1 ' 26f OP CODE = 16 E QU TEST EQUAL ITY 1 27
i OP CODE = 17 NEO TEST NOT EQUAL j 28

i
DP CODE = 18 SEQ TEST GREATER THAN OR EQUAL J 29
0 P CODE = 19 GRT TEST GREATER THAN I 30

i
i

OP CODE = 20 LEO TEST LESS THAN OR EQUALS 1 31
GP CODE = 21 LES TEST LESS THAN 1 32

i GP CODE = 22 MOV COPY ARRAYS I 33
I OP CODE = 23 IXA COMPUTE INDEXED ADDRESS 1 34
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K UJ
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52 UJ •c a tC 02 UJ tC
1—4 02 CJ «C o 02 52

z- 02 <c 00 C' ■ v-t CD
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o CD tC k- 00 tC u_ lt 52

UJ UJ >2 UJ o CD uJ v-t l.
lj Id 02 _j 02 23 02 UJ CD
=D 2D O CD UJ 52 cd tC tC 3> k— k-
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2» 2> tC k- -CC CD UJ Lj : UJ k- UJ

CD k- UJ CD k- k- k— 02 UJ 00 00 02
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C" o ♦H CJ kD -t 1C \O fs- 00 CN O »«t CJ 3 •4-
CP 3 NO 3 3 ND kC 3 kO 3 N3 -J- -U- «D -f -tC

II It It tt II tt tt tt tt ii tt tt tt It tt tt

LU UJ LU LU UJ LU LU LU UJ UJ UJ LU LU LU UJ LU
CD CD CD o CD O CD CD CD CD CD Q) Q CD a O
O CD CD o O CD O CD CD CD O O CD O CD CD
CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
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>1 i 
s 1 
4 3 
s I 
7 i 
’ I

l-n |
1? ?
14 j 
H 3 
is i 
16 |
*7 i 
i7 3 
2*1 |
20 i
21 3
22 |
24 I
24 j
OMPILER
ompiler
25 I
DM FILER

MACRO *WQRD.S I ZE’ = « 24 * ?
MACRO ’P.SIZE5 = ’4«? MACRO ’G.SIZE’ = ’14*;
MACRO ’STACK.WIDTH*=*24*;
MACRO * TOPSTORE’= 96G00’; MACRO » 0 P.SI ZE 9 = » S 3 ?
MACRO ’LTRUE' = ’ !• ; MACRO ’LFALSE* = 50 5;
MACRO ’MAXSTR’ = *0*;
MACRO ’UMQEF9 = MFFFFFF9; MACRO ’ LA RGIN T’ = ’ #E FFFFFE ’/ 
MACRO ’INPUTADR5 = ?0«; MACRO «PRDADR« = » 0» ?

SITSt WORD.SIZE) ARRAY (TOPSTQRE) STORE;
S ITSC WORD.SIZE) ARRAY (64) INST.COUNT J
3 IT SC WO RD.SIZE) STACKP,HEAPP* TO PS * SECS* ACC* ACC2 *DAT A.SEG.PNT* 

C INSTRREG*PROGC*1NTERRUPT.TYPE*
BITSCP.SIZE) P; SITSCG SIZE) Q* BITS COP. SI ZE ) op.ccde;

J 75 
3 76
I 77 
1 78
j 79 
j 80 
I 81 
j 82 
| 83
3 84
I 85 
| 86

FLAG UNINIT IA USED. VALUE* STACK. GFLOW* VA LUE. OU T. OF .R ANGE *E ND PROG ;
FLAG VAL.T00.3IG;
TEMPLATE REALNO = C HA RC 5} , S IG NC 1 > * MAN Tl SS A08 );
TEMPLATE INI = SIGN Cl )* NUMBC23) ;

FLAG ANY.INTERRUPT* TOP"ULL*SECFULL*
DIRECT IVE ...SCRATCH STACKP*KEAPP* TOPS*SECS* ACC*ACC2*DATA.SEG.PNT *PROGC 
DIRECTIVE ...SCRATCH CINSTRREG*IN TERR UPT.TYPE

DIRECTIVE ...PAGE

I 89 
j 90 
| 91
| 92
3 93
| 94

I 95



PROCEDURE PUSHO?

” HIS PROCEDURE IS USED TO PUSH A VALUE ONTO THE STACK. THE VALUE 
TO BE PUSHED IS ALWAY5 HELD IN THE REGISTER AC C. IT IS IMPLEMENTED 
THIS WAV RATHER THAN PASSED AS A PARAMETER E OR EFFICIENCY REASONS 
PUSH IS ONE GE THE MOST FREQ UENTLY ' U SED ROUTINES IN THE MACHINE 
AND AS PARAMETER PASSING IS RELATIVELY INEFFICIENT IT IS AVOIDED

IF TRUEC TOPFULL) THEN 
SC

STORE(.STACK?-): = SECS? 
SECS: =TOPS;
STACKP:=STACKP + 1? 
TOPS:-ACC?

$}
ELSE

IF TRUE(SECFULL) THEN 
SC TOPS:=ACC;

ELSE
sc

eno;
SECS:=ACC? 
PUSH ”

SETC TOPFULL);

SETC SECFULL)?

S )

S 3

FUNCTION POPO?

" RETURNS THE TOP ELEMENT FROM THE STACK

IF TRUECTOP’ULL) THEN 
S (

UNSETCTOPFULL)? EXIT = TOPS?
S )

ELSE
IF TRUE CSECFULL ) THEN 

SC
UNSETC SECFULL) ? EXIT = SECS?

S 3 
ELSE

STACKP:=STACKP - 1?
= STORFC-STACKP- 3 Jfmd

1
1

96
97 PUSH

i 98 PUSH
1 99 PUSH
i 100 PUSH
1 101 PUSH
fi 102 PUSH
1 103 PUSH
i 10 4 PUSH
1 105 PUSH
1 106 PUSH
1 107 PUSH
1 108 PUSHij 109 PUSH
1 110 PUSH
1 111 PUSH
1 112 PUSH
1 113 PUSH
1 114 PUSH
I 115 PUSH
1 116 PUSH
I
I
i
I
1

117
118
119
120 
121 POP

1 122 POP
1 123 POP
I 124 POP
1 125 POP
I 126 POP
I 127 POP
I 128 POP
1 129 POP
J 130 POP
1 131 POP
I 132 POP
1 133 POP
i 134 POP
i 135 POP



PROCEDURE TESTCBITSC2) ACTION,’);

FLAG irueresult? UNSET(TRUERESULT)?
CASE ACTION OF

-*=" IF ACC = ACC2 THEN SE TCTRUE RE SULT )?
«>=* IF ACC >= ACC2 THEN SETCTRUERESULT)?
"<=" IF ACC <= ACC2 THEN SET CT RUERES UL T) ?

END CASE?
IF FALSEC TRUERESULT ) THEN 

ACC : = O
ELSE

ACC:=1?
END " TEST ” ?

PROCEDURE HANDLE.INTERRUPTC 5?

" INTERRUPTS ARE NORMALLY HANDLED BY GISMO. THIS IS A 
ROUTINE WHICH MERELY STOPS PROCESSING *

WR ITES TRINGC ’ INTERRUPT - JOB ZAPPED ’ )?
WRITEC)? HALT?

END ” HANDLE-INTERRUPT "?

FUNCTION NORMAL ISEC BI TSCWQRD-SI ZE"> T? )?

" RETURNS THE PARAMETER T IN NORMALISED FORM "

BITSC1) S3? BITSC4) SHIFTS? BITSC5)TB 
TEMPLATE RTOP = CHARC5)»SIGNC1 ),TQPC3)»MANTTCl5) / 
DEFINE RTOP : T?
S3: = T.SIGN? SHIFTS:=0? T1: = T-CHAR?
WHILE T.TOP =0 DO

s c
T := T SHL 3? SHI FTS:=SHIFTS + 1?
IF SB = 1 THEN

Tl:=Tl*i

136
137
138
139 TEST
140 TEST
141 TEST
142 TEST
143 TEST
14 4 TE S T
145 TEST
146 TEST
147 TEST
148 TEST
149 TEST
150 TEST
151 TEST
152 '
153
154 HANDLE-INTERRUPT
155 HANDLE-INTERRUPT
156 HANDLE-INTERRUPT
157 HANDLE-INTERRUPT
158 HA NDLE.INTERRUPT
159 HANDLE-INTERRUPT
160 HANDLE-INTERRUPT
161
162
163
164 NORMALISE
165 NORMALISE
166 NORMALISE
167 NORMALISE
168 NORMALISE
169 NORMALISE
170 NORMALISE
171 NORMALISE
172 NORMALISE 
17 5 NORMALISE
174 NORMALISE
175 NORMALISE



L Lit
Tl: = Tl - i?
IF SHI-'TS = 6 THEN

exit = o;
S )

t.sigm:=sb; t.ckar?=ti;

end = t;

FUNCTION CVSCSITSU 3S;B ITSC 183 M; 3;

" CONVERTS MANTISSA FART OF A REAL TO BINARY "

BITSC24) OUTPUT,MULT;
DEFINE I NT - OUTPUT;
OUTPUT : = M & Xlll? M:=M SHR 3;
MULT :=8;
REPEAT 

$ (.
OUTPUT:=M & X 111 * MULT -3- OUTPUT;

M: = M SHR'3? MU_T:=MULT * 10?
S)

UNTIL
M = 0 DO null;

IF S = 1 THEN
S (

OUTPUT: = -’OUTPUT + 15 
OUTPUT.SIGNs=i;

S3
END = OUTPUT?

"UNCTION C0NVERT.T3.BIN ARYC BITS < WORD_SIZE 3 W; 3 ;

* CONVERTS octal CHARACTERS TO BINARY EQUIVALENT "

DEFINE REALNO : W;
3ITSC24) OUTPUT,SHIFT?



If6 NORMALISE
177 NORMALISE
178 NORMALISE
179 NORMALISE
180 NORMALISE
181 NORMALISE
182 NORMALISE
18 3 NORMALISE
184
185
186
187 CVB
188 CVB
189 CVB

| 190 CVB
j 191 CVB

192 CV8 
j 193 CVB 
j 194 CVB

195 CVB
196 CVB

| 197 CVB
| 198 CVB
| 199 CVB
J 200 CVS 
| 201 CVB
| 20 2 CVB
J 203 CVB 
| 20 4 CVB
I 20 5 CVB 
j 206 CVB 
| 20 7
| 20 8
j 20 9
| 210
j 211 CONVERT. TO.BIN ARY 
j 212 CONVERT_T0_8 INARY 
j 213 CONVERT.TO.BIN ARY 
J 214 CONVERT. TO. 8 IN ARY 
1 215 CONVERT-TQ.BIN ARY



8ITSC24) CHAR?
DEFINE I NT : OUTPUT?
IF W.CHAR <= 16 THEN

SC
EXIT = 0?

S)
ELSE 

s c
OUTPUT2=CV8CW. SI GN, W. MANTISSA) ? 
SHIFT 2= CHAR-16 * 3?
IF OUTPUT-SIGN = 1 THEN

OUTPUT. NUMB: =-»OUTP UT .NUMB+1? 
OUTPUT. NUM8:=3UTPUT. NUMB SHL SHIFT?

5 )
END = OUTPUT " CON VERT_TQ_SI NARY " ?

FUNCTION CONV.TO.OCTALCBITS(HORD.SIZE) A?)?

" CONVERTS BINARY TO OCTAL ”

SITSC24) NUM3/0IG? BITSC5) SHIFTS? 
DEFINE I NT : A?

MUM8:=0? SHIFTS : = 0?
IF A,SIGN=1 THEN

SC
A. N'JMS : = *»A.NUM8* 1?
A.SIGN:=O?

S)
REPEAT 

s c
0IG2=A REM 8? A: = A/8?
NUM82=DIG SHL SHIFTS | NUMB?
SHIFTS: = SH IF IS + 3?

S )
UNTIL

SHIFTS = 18 DO NULL?
ENO = NUMB " CONVERT TO OCTAL " ?



j 216 CONVERT.TO.BINARY
217 CONVERT TO BINARY 

j 218 CONVERT.TO.BIN ARY 
| 219 CONVERT.TO.BINARY
| 220 CONVERSIONS IN ARY
| 221 CONVERT.TO.BINARY

222 CONVERT.TQ.3 INARY 
j 223 CONVERT.TO.BINARY 
j 224 CONVERT. TO.SINAR Y 
j 225 CONVERT. TO.BIN ARY 

| 226 CONVERT.ToZbINARY
j 227 CONVERT. TO.BINARY

228 CONVERT.TO.BIN ARY 
| 229 CONVERT.TO.BIN ARY
J 230 CONVERT.TO.BINARY 
| 231
| 232
j 233
| 234 CO NV.TO.OCTAL

235 CO NV.TO.OCTAL 
j 236 CONV.TO.OCTAL 
j 237 CONV.TO.OCTAL 
| 238 CONV.TO.OCTAL
| 239 CO NV.TO.OCTAL
j 240 CQNV.TQ.OCTAL 
j 241 CONV.TO.OCTAL 
j 24 2 CO NV.TO. OCTAL

243 CONV.TO.OCTAL 
j 244 CONV.TO.OCTAL 

j 245 CONV.TO.OCTAL 
| 246 CO NV.TO.OCTAL
j 247 CONV.TO.OCTAL 
j 248 CONV.TO.OCTAL 
j 249 CONV.TO.OCTAL 
j 250 CONV.TO.OCTAL

251 CONV.TO.OCTAL 
j 252 CONV.TO.OCTAL 

| 253 CONV TO OCTAL
| 254
I



PROCEDURE PROPAGATE_CARRY_IF..N£C£SSARY<8ITS(WORD_SI2E3 A; 3

» PROPAGATES CARRY DIGIT ”

SITSC5) S? 8ITSC24) Z5 8ITSC4) DO;
DEFINE REALNO : ACC2T

SHR 18 '«= 0 T HEN

IF A a 7 > 4 THEN
SC

S: = 33
OD:=A SHR 3 £ 7 ■** 1J
WHILE OD > 7 DO

SC
Z:=7 SHL s; A: = A & -z;

S : = S*3; QO: = A SHR s &
$)

A5 = A SHR 3;
ACC2. CH AR: = ACC2-CHAR+1;

S)
S3

ACC2. HAN’T I5SA :=A? 
END ” PROPAGATE CARRY

PROCEDURE EQUAL ISE.CHAR AC TERISTICSC )J

« EQUALISES THE CHARACTERISTICS GF ACC AND ACC2 BEFORE 
OPERATION "

DEFINE REALNO : ACC?ACC2;

IF ACC. CHAR > ACC2.CHAR THEN 
SC

WHILE ACC.CHAR+ACC2.CHAR > 0 DO 
SC

ACC2.MANTI SSA:=ACC2. MANTISSA SHR 3?
ACC2„CKARx=ACC2.CHAR + 1?

S)



I
I
I
I

AN ARITHMETIC I
I
i

I
I
I
i

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
27 3
274
275
276
277
278
279
280
28 1
282
28 3
284
235
286
287
288
289
290
291
292
29 3
294
295

PROP AG ATE.CARRY.IF.NECE 
PROP AGAlE.CARRY.IF.NECC 
PROP AG ATE.CARRY. IF.NECE 
PR OP AG ATE.CARRY. IF.NECE 
PROP AG ATE. CARRY. IF.NECE 
PROP AG ATE.CARRY.IF.NECE 
PROP AG ATE.CARRY.IF.NECE 
PR OP AG ATE. CARRY. IF. NECE 
PR OP AG ATE.CARRY_ IF.NEC! 
PR OP AG ATE.CARRY. IF.NECE 
PR OP AG ATE.CARRY.IF.NECE 
PROP AG ATE. CARRY. IF.NE.Ci 
PROP AG ATE.CARR Y.IF.NEC1 
PROP AG ATE.CARRY. IF.NEC? 
PROP AG ATE.CARR Y. IF.NEC? 
PR OP AG ATE.CARRY. IF.NEC! 
PR OP AG ATE. CARR Y. IF.NEC! 
PROP AG ATE.CARR Y. IF.NEC! 
PROP AG AT E. CARRY. IF.NEC! 
PROP AG ATE. CARR Y. IF.NEC! 
PR OP AG A T E. C A RR Y. IF _NEC; 
PR OP AG ATE.CARRY. IF.NEC

EQUALISE.CHARACTERISTI 
EQUALISE.CHARACTER ISTI 
EQUALISE.CHARACTER ISTI 
EQUALISE.CHARACTERISTI 
EQUALISE.CHARACTERISTI 
EQUALISE.CHA RACIERISTI 
EQUALISE.CHARACTERISTI 
EQUALISE.CHARACTERISTI 
EQUALISE.CHARACTERISTI 
EQUALISE.CHARACTER ISTI 
EQUALISE.CHA RACIERISTI 
EQUALISE.CHA RACIERISTI 
EQUALISE.CHARACTERISTI 
FQUALISF CHARA CTER ISTI



WHILE ACC2-CHAR - ACC. CHAR > 0 00 
S(

ACC.MANYISSA:=ACC. MANTISSA SHR 3; 
ACC.CKAR:=ACC.CHAR*i;

S)
END ” EQUALISE.CHARACTERISTICS - ;

PROCEDURE TRUNCATEO;

DEFINE REALN0:ACC;
3ITSC4) QIGZ;
IF ACC.CHAR <= 16 THEN

ACC.MANTI5SA: = O 
ELSE

SC
IF ACC.CHAR < 22 THEN 

SC
DIGZ:=22-ACC. CHAR *3;
ACC := ACC SHR OIGZ SHL OIGZ;

S )
ACC := CONVERT. TO .3 IN ARY C ACC);

5 5
ENO " TRUNCATE " ;

FUNCTION FLGATC BITSCWQRD.SIZE) INPUT;);

« F LAOIS AN INTEGER "

BITS<WGRO.SIZE) OUTPUT; BITSC3) DIGIT; BXTSC5) 
FLAG NEGSIGN;
DEFINE INTsINPUT;
DEFINE REALNO : OUTPUT;
IF INPUT .SI GN = 1 THEN

SC
INPUT - NUMB : = -»! NP UT .NUMB + 1?
SETC NEGSI3 N);
INPUT.SIGN:=0;

shifts;

I 296 EQUALISE.
! 297 EQUALISE,
I 298 EQUALISE
I 299 EQUALISE.
1 300 EQUALISE,
1 30 i EQUALISE.
j 302 EQUALISE.
1 30 3
1 304
1 30 5
1 30 6 TRUNCATE
j 307 TRUNCATE
I 30 8 TRUNCATE
I 309 TRUNCATE
1 310 TRUNCATE
j 311 TRUNCATE
1 312 TRUNCATE
J 313 TRUNCATE
1 314 TRUNCATE
i 315 TRUNCATE
I 316 TRUNCATE
I 317 TRUNCATE
1 318 TRUNCATE
I 319 TRUNCATE
I 320 TRUNCATE
1 321
I 322
I 323
J 324 FLQA T
1 325 FLOAT
1 326 FLOAT
1 327 FLOAT
1 328 FLOAT
I 329 FLOAT
1 330 FLOAT
f 331 FLOAT
1 332 FLOAT
I 333 FLOAT
I 334 FLOAT
1 335 FLOAT

.CHARACTER ISTI 

.CHARACTER ISTI 

.ckaracteristi 

.CHARACTERISTI 

.CHARACTER ISTI 

.CHARA CT ER ISTI 
CHARACTERISTI



S'7 j £5 1 336 FLOAT
33

a1 337 FLOAT
33 j REPEAT 1 338 FLOAT
34 i SC J 339 FLOAT
35 j DIGiT:=INPUT REM 8? INPUT := INPUT/8? 1 340 FLOAT
33 I OUTPUTs=DIGIT SHL SHIP ts j output; 1 341 FLOAT
33 j SHIFTS : = SHIFTS * 3; 1 342 FLOAT
3 <5 ] IF SHIFTS > 15 THEN I 343 FLOAT
49 5 £( - 1 344 FLOAT
41 ’ SETC VAL. TOO. BIG) ; . setcany.interrupt ); I 345 FLOAT
43 | EXIT = 0? 1 346 FLOAT
44 i s)

1 s)
1 347 FLOAT

45 1 348 FLOAT
44 f UNTIL INPUT = 0 DO NULL;

| IF TRUECNEGSIGN) THEN
i 349 float

47 i 350 FLOAT
43 j OUTPUT.SIGN:=i; i 351 FLOAT

,4° | OUTPUT. CHAR:=SHIFTS/3 16; I 352 FLOAT

59 j END = OUTPUT; I 35 3 FLOAT
59 1 I 354
59 I 1 355
59 j PROCEDURE ADORE ALC); I 356
52 1 1 357 ADDREAL
57 | BITSC24) a; DEFINE I NT : a; DEFINE REALNO • ACC/ACC2; 1 358 ADDREAL
55 j FLAG NEGSIGN; 1 359 ADDREAL
55 j EQUALISE. CHARACTERISTIC SC ); I 360 ADDREAL
53 J ft: = CV3< ACC. SIGN^ACC. MANTI SS A ) + C VB C ACC 2 • SI GN * ACC 2. WANT ISSAH 1 361 ADDREAL
59 | IF A. SIGN = 1 THEN 1 362 ADDREAL
69 | SET (NEGSIGN >; J 363 ADDREAL
61 ACC2:=C0NV.T0.DCTALCA); I 364 ADDREAL
6? I PRDPAGATE.CARRY.IF.NECESSARYC A); 1 365 ADDREAL
63 | IF TRUECNEGSIGN) THEN 1 366 ADDREAL
64 | ACC2. SI GN2 = 1? I 367 ADDREAL
65 •j UNSETCTOPFULL); 1 368 ADDREAL
65 ! 1 369 ADDREAL
65 j ENO * ADDREAL

1
i 37 0 ADDREAL

65 I 371
64 j PROCEDURE SUBREALO; I 372
63 1 1 373 SU8REAL
63 ’ BITSC24) A; DEFINE REALNO : ACC>ACC2; DEFINE INT : A; i 374 SUBREAL
73 FLAG NEGSIGN; 1 375 SUBREAL
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! 576 P.C0DE. INTERPRETER
’’LOO’* S C 577 P.CGDE.INTERPRETER

ACC: = STOREO SASECP) ♦ q . 578 P.CODE.INTERPRETER
IF ACC = UNDEF THEN 579 P.CODE.INTERPRETER

SC 580 P-CODE. INTERPRETER
SETCANY INTERRUPT); SET CU NI M Tl AL IS ED_V AL UE >; 581 P.CODE.INTERPRETER

S3 582 P_CODE.INTERPRETER
ELSE 583 P.CODE.INTERPRETER

pusho; 584 pZcqdeZinterpreter
5 ) 535 P.CODE.INTERPRETER

586 P.CODE.INTERPRETER
"LO Q” sc 587 pZcodeZinterpreter

ACC: = STOREC-QO; 588 P.CODE.1NTERPRETER
IF ACC = UNDEF THEN 589 pZcode.interpr eter

SC 590 P.CODE.INTERPRETER
setcany_interrupt3 ; SETC UNINIT IA LI SED.VA LUE) ; 591 pZcODE.I NTERPRETER

S) 592 P.CODE.INTERPRETER
ELSE 593 P CODE INTERPRETER

pusho; 594 P.CODE.INTERPRETER
$ ) 595 P.CODE.INTERPRETER

596 P.CODE.INTERPRETER
"LAD* sc 597 p.code.interpreter

ACC:=8ASECP3 + q; pusho; | 598 p.cooeZinterpreter
S ) 599 P.CODE .INTERPRETER

”LAOW sc 600 pZcqdeZinterpreter
ACC:= g; pusho; 601 P.CODE.INTERPRETER

S ) 60 2 p.code.interpreter
"LDC" 60 3 p.codeZinterpreter

"LOCIw sc 604 P.CODE.INTERPRETER
ACC: = ST0RE C- Q. >; push o ; [ 60 5 P.CODE.INTERPRETER

$ 3 | 606 P.CODE.INTERPRETER
"LC A" SC 60 7 P.CODE.INTERPRETER

acc? = q; pusho; 608 P.CODE.INTERPRETER
s 3 60 9 P.CODE. I NTERPRETER

”STRW STORE C. 3ASECP3 * Q . > := pgpo; 610 P.CODE.INTERPRETER
w SRQ" STOREC.G. ): = POPO; 611 P.CODE.INTERPRETER
"STGW sc 612 P_CODE.INTERPRETER

ACC: = P0PC }; ACC2:= pop c); 613 p’codeZinterpreter
S ) 614 P.CODE.INTERPRETER

J 615 P.CODE.INTERPRETER



” I NO”

ms r

"CUP"

n r \s 7 n

n OTHER MISCELLANEOUS MACHINE INSTRUCTIONS - | 616 P.CODE.INTERPRETER
617 P.CODE.INTERPRETER

sc j 618 P.CODE.INTERPRETER
ACC: = POP() + O; 619 P.CODE.INTERPRETER
IF STOREC.ACC.) ~ UNDEF THEN j 620 P.CODE.INTERPRETER

sc j 621 P.CODE.INTERPRETER
SETCANY.INTERRUPT); 1 622 P.CODE. INTERPRETER
SET CUMIN I TIALIS ED.V ALUE); 623 P.CODE.INTERPRETER

S ) 624 P.CODE.INTERPRETER
EL SE | 625 P.CODE.INTERPRETER

SC ACC: =5TQRE <• ACC. ); PUSHO; S) | 626 P.CODE.INTERPRETER
S3 j 627 P.CODE.INTERPRETER

• j 628 P.CODE.I NTERPRETER
SC 629 P.CODE.INTERPRETER

acc:=undef; pusho; j 630 P.CODE.INTERPRETER
ACC:=8 ASEC P) PUSHO; ? 631 P.CODE.INTERPRETER
acc:=data.seg.pnt; pusho; 1 632 P.CODE.INTERPRETER
acc:=undef; pusho; | 633 P.CODE.INTERPRETER

S } } 634 P.CODE.INTERPRETER
sc J 635 P.CODE.INTERPRETER

data.seg.pnt:=stackp - p - 3; 636 P.CODE.INTERPRETER
S TO RE C . D ATA.SEG.P NT «- 3.): = PRGGC; j 637 P.CODE. INTERPRETER
PRQGC 2 = Q; j 638-P.CODE.INTERPRETER

$) j 639 P.CODE.INTERPRETER
sc | 640 P.CODE.INTERPRETER

ACC2: = D ATA. SEG.PN T + 0? j 641 P.CODE.INTERPRETER
IF ACC2 > HEAPP THEN ] 642 P.COOE_lNTERPRETFR

SC { 643 P.CODE.INTERPRETER
SET CANY. I NTERRUPT); SE TC ST AC K. GF LO W ) / j 644 P.CODE.INTERPRETER

S )
j 645 P.CODE.INTERPRETER

IF STACKP < INPUTADR THEN | 646 P.CODE.INTERPRETER
stackps=prdaor; | 647 P CODE.INTERPRETER

ACC: = STACKP * l;
j 648 P.CODE. INTERPRETER

ViHiLE ACC <= ACC2 DO | 649 P.CODE.INTERPRETER
STQREC-ACC.):=UNDEF; 650 P.CODE.INTERPRETER

STACKP: = ACC2;
j 651 P.CODE.INTERPRETER

S ) j 652 P.CODE.INTERPRETER
s c j 653 P.CODE.INTERPRETER

IF P = 0 THEN j 654 P CODE.INTERPRETER
STACKP:=DATA.SEG.PNT - 1. . J 655 P.CODE.INTERPRETER



5 00 | ELSE | 656 P-CODE-INTERPRETER
5 00 j STACKP:=DATA_SEG_PNT? i« 657 p.codeZinterpreter
5 01. j P3GGC: =STORE(.DATA-SEG-PNT + 3.5? i 658 P-CODE- INTERPRETER
5 0? 1 OATA-SEG-PNT :=STOREC.DAT A_ SEGMENT + 2.)? 1 659 P-CODE-INTERPRETER
5 08 i S) J 660 P-CODE-I NTERPRETER
504 ji WC S P” STANDARD-PROCEDURE!)? 1 661 P. CODE-INTERPRETER
5 05 ? "CHK" IF STQREC •STACKP. ) < STORE!•Q~1•) OR I 662 p’code~interpreter
5 04 i STQREC-STACKP. 3 > STOREC-Q.) THEN ! 66 3 pZcqdeZinterpreter
504 3 sc I 664 P-CQDE-iNTERPRETER
5 07 ?I SETC ANY-I NTERRUPT 3 ? - • 665 pZcqdeZinterpreter
508 Ii SETC VALUE-OUT-OF-RANGE)? 1 666 P.COOE.INTERPRETER
5 0? j S3 1 667 P-CODE-INTERPRETER
510 1 "EOF” EOF (3 ? 1 668 P-CODE-INTERPRETER
5 it J WUJP” PROGC:=Q? 1 669 P-CODE-INTERPRETER
51’ I "X JPW PROGC : = POPC 3 < Q? 1 670 pZcodeZinterpreter
515 J "FJP" IF P3PC 3 = LFALSE THEN i 671 P-CODE-INTERPRETER
514 I PROGC:=Q? 1 672 P-CODE-INTERPRETER
515 J "STP" SET CENQPR0G3? 1 673 P-CODE-INTERPRETER
514 tj emdcase; 1 674 pZcqdeZinterpreter
515 1 $) I 675 P-CODE-INTERPRETER
517 j 1 676 P-CODE-INTERPRETER
5 I7 j

1
$) J 677 P-CQDE-INTERPRETER

5 18 END " P-CODE-INTERPRETER " ? i 678 P-CODcZlNTERPRETER

518 1 1 67 9
518 I tT * * * 4t * it ** * " P-CODE-INTERPRETER C 3? ” ********** " I 680
5 20 ! END PROG RAM? -1 681

r* ** * * ***44 *k it ************ ****************** ****** ** ** ** it*

COMPILATION COMPLETE — NO OF ERRORS = 0

1585 MICROINSTRUCTIONS WERE GENERATED
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The material in this appendix is made up of four program listings

(1) A listing of the SUILVEN code plus generated microcode for a 
simple s~machine called SIMPS. This is included to illustrate 
the format of the output produced by the SUILVEN compiler.

(2) A listing of the SUILVEN code implementing the SASL s-machine.

(3) A listing of the output produced by the BI700 simulator when 
executing a SASL program to sum the elements of a list.

(4) A listing of the SUILVEN code implementing the PASCAL s-machine.

The code given here and the examples given in the body of the thesis
Imay not exactly correspond. This is due to the fact that both the 

SASL and the PASCAL machines were re-implemented and opportunity 
was taken to improve them. The re-implementation was necessary 
because the author of the thesis left St Andrews University and 
had no access to the machine there. The programs which were written 
were supposedly portable but, as usual, this portabilty turned out 
to be mythical and an inordinate amount of effort was involved 
in transporting the various programs.

The PASCAL machine implementation was only developed to the stage 
where the salient features of SUILVEN are illustrated and not to 
the stage where PASCAL programs actually run on the machine. As we 
had decided to abandon the development of SUILVEN, we did not feel that 
the effort of completely implementing the PASCAL machine was justified.
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1. INTRODUCTION

This document lays down a set of guidelines (rather than a rigid 
notation) for the description of algorithms. A language for 
describing algorithms is presented along with notes on the format' 
of an algorithms description. ‘ Some examples illustrate the use 
of the language.

The notation described below has been adopted as the standard 
algorithm description notation of the Department of Computer 
Science, Heriot-Watt University. It should be used by all staff 
and students who produce descriptions of algorithms.

2. ALGORITHM DESCRIPTION

The production of algorithm descriptions is necessary at two 
stages in the development of a software system

(i) Before the program is written to communicate 
the method of problem solving to the programmer.

(ii) After the program has been written to communicate 
the problem solving techniques actually used.

If the programmer participates at the design stage of a program 
a personal, informal algorithm description may be used. However, 
the language described below should be used whenever it is necessary 
to communicate an algorithm design to someone else. This is 
necessary when several individuals are working as a programming 
team and when a completed program is documented. ‘

In describing the algorithms used in a computer program a conflict 
arises. The higher-level an algorithm description the more readable 
and understandable it is. However, as the description progresses 
to higher and higher levels the correspondence between the
description and the program -text becomes more nebulous. It is' 
necessary to establish some kind of compromise which is at a much 
higher level than a programming language, yet still exhibits typical 
program features such as sequencing.

The language described in section 3 allows a measure of flexibility 
in algorithm description. Although sequencing is - defined, operations 
may be expressed formally or informally as programming language 
statements or as English text.
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3. . A LANGUAGE FOR THE DESCRIPTION OF ALGORITHMS

The language description below is expressed in a slightly extended 
BNF, The enclosure of an element in starred square brackets- [ 3* 
indicates that that element may be repeated zero or more•times.
Hopefully the language semantics are fairly, obvious from the 
syntactic description.

• <algorithm description> ::= <algorithm name> <body> END- <algorithm name> 
<body> ::= <statement> C<statement>3* ’ •

<statement> ;: = <If>|<While>|<Do>|<Select>|<name>|<text>|<compound>
<If> ::= <If clause> <statement>|<If clause> <statement> ELSE <statement> 

<If clause> ::= IF <condition> THEN
<While> : := WHILE <condition> DO <statement>

' <Do> : : = DO <statement> UNTIL <condition> ' •

<Select> ::= SELECT <guarded statement list> .ENDSELECT ELSE <statement> 
<guarded statement list> <guarded 6tatement> C<guarded statements*
<guarded statement> ::= <condition> : <statement>
<compound> ::= {<body>} .
<name> ::= <identifier> . .
<condition> ::= <boolean expression>|<text>

<text> ;:= Any English phvase or sentence >

Any text preceded by a % is regarded as a comment.

The above statements should be familiar apart from, possibly, the 
select statement. The example in section 4 illustrates the use of 
the select statement. Informal English descriptions may be used 
as a condition or as a statement where this is appropriate.

4. • . • THE FORMAT OF ALGORITHM DESCRIPTIONS

It is desirable that algorithm descriptions should comply with a 
fairly rigidformat. Some suggestions as to whatthis format 
should be are set out below/. ,

(i) The algorithm name should be on a line by itself 
as should the END declaration

(ii) The algorithm body should be indented within the 
name and the END declaration.
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The examples below describe typical algorithms which might be 
used in a top-down recursive descent parser for an ALGOL-like 
programming language. • •

IFCOMhAND • '• .
% Parses if statements '
NEXTSYMBOL • .
CONDITION • . ' . '
IF Symbol X "THEN" THEN •

ERROR • ("Then , necessary")
ELSE .. '

{ ' ' ' .
NEXTSYMBOL
IF' Symbol = "IF" THEN

ERROR ("If forbidden here") . .
ELSE

STATEMENT
n? Symbol = "ELSE" THEN.

; . { •

NEXTSYMBOL
STATEMENT . '

}
}

END IFCOMHAND
STATEMENT '

SELECT ' . ’
Symbol = "IF":IFCOMMAND
Symbol = "WHILE":WHILECOMMAND

• *
Symbol = identifier:{

I Name := Symbol
NEXTSYMBOL 
£F Symbol = "(" THEN

• FROCEDURECALL (Name)
ELSE

ASSIGNMENT (Name)
‘ }

ENDSELECT
ELSE

ERROR ("Bad symbol") .
NEXTSYMBOL

END STATEMENT • , . ' ’ •
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(iii) Each statement should begin on a. separate line. •.

(iv) Statements which are part of a control statement 
should be indented.

(v) Names of other algorithms should be in block 
capitals, names of variables should be .lower­
case letters or script and reserved words should 
be underlined.

(vi) When describing all the algorithms in a program, 
the main program should be described first 
followed by the algorithms of the procedures 
which it calls etc. etc.

(vii) The curly brackets {}, may be replaced by any 
other pair of bracketing symbols at the 
discretion of the user.
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Notice the use of the select statement in this example. The 
condition for selecting a statement for execution must be 
explicitly stated. This can be translated either into an 
ALGOL case statement or into nested IF statements.


