TRANSLATION OF APL TO OTHER HIGH-LEVEL
LANGUAGES

Margaret M. Jacobs
A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1975

Full metadata for this item is available in
St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13417

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13417

The code generated corresponding to 2 particular APL routine will not
gb first be very efficient. Hoviever, methods of optimising the generated
code are dlscussed at length in the thesis. A brief comparison is made

|
]
|
i
with other possible methods of conversion, J

There are certain rostrictions oa the types of APL statements sble to be

handled by the translation method. These rassirictions are listed in an

acconpanying appondix.

Throvghout the text, several examples are given of the code which will

he generatsd from parlticular APL statemenls or expressions. Some more
lengthy examples of conversion of APL routines to FURITRAN are provided as

an appendix,

~

TRANSLATION OF API, TO OTHER

HIGH~IEVEL LANGUAGES

MARGARET M. JACOBS

ABSTRECT

The reseexch work reguired to produce this thesis was carried out in
the Department of Computational Seience, Universilty of St. Andrews.

¥inancial assisleuce was provided by the Science Rascarch Council.

The thasis doscribes a method of transiating the computer langunage
APL %o other high-level languages. Particular refersnce is made to
PORIERAN, a lenguage widely availabls to compuier users. ilthcough gaining
in popularity, APL is not at present so readily availeble, end the main ain
of' the trensletion process is to enable the more desirable feaburcs of APL
t0 be at the disposal of a far greater number of users, The translation
process should also speed up the running of routines, since compilation in
gereral leads to grezter efficiency than interpvretive techniagues. Some
inefficiencies of the APL language have besn remcved by the translation
process. The acove rsasons for translating LPL to ofther high-level

languages are discussed in the introduction to the {hesis,

A description of %he method of translation Torms the main part of the
thesis., The APL iunput cofe iz Tirst lexically scanned, a precess whereby
the subsequent phases are greatly simplified. An intermediaie code form
.is produced in which bracketing is used tc group eoperators and operands
together, and to assizn prioriijies to opsrators such that suﬁ~expressiona
will be handled in the corvect oxrder. By scanning the intermediata code
form, informstion is stacked until required later, The irformation is
used to make possible a process of mecro expansion. Each of the above
processes is discussed in the main text of the thesis., The formet of all
information which car or must be supplied at‘ﬁrénslation time ds clearly

oul.lined in the text,

To

MY HUSBAND AND PARENTS

A deseription of a method of translating APL into other

high-level larguages, with particular reference to FORTRAN.

The work for this project was carried out in the Department of
Computationsl Sclence, University of 5t, fndrews, for the degree

of Ph.D. The project commenced on the 10th October, 1971.

|
|

The reasearch for the suvject matter of this thesis has been
carried out by myself, and the thesis has boén composcd by
myself, The thesls has not heen accapted in fulf'iiment of
the requirements of any other degree or professional

qualification.

Morqore M. Tocobs

ACKNOWLEDGEMENTS

I would like to thank Professor A.J. Cole for his excellent
) supervision of my work throughout the ccurse of my studiea in St.

Andrews and for his advice on the preparation of my thesis,

I am extremely grateful to all the members of staff of the John .
Honey Building at the University of St, Andrews for their willing
asgistance and encouragement, and to wmy fellow research studsnts for

|
their helpful comments. |

I also must thank Mrs. V. Butterworth for typing the text of my ?

thesis, and the Science Resexrch Counocil for their financial assistance,

R
|
w

TNYROLUGCTION
Chaptexr
I IHFUT PAASE AND METHOD OF STORAGE ALLOCATION
Ir LEXICAL SCAWIING FIASE
IIT RIGHT~TO~LPT SCAN AND PRCDOUCTICON CF INTERMEDIATE CODE
iv AFT=-T0-RIGHT SCAN, PRODUCTION (7 3TACKED INFORMATEON
AND ORGANISATION O¢ MACRO EXFANSIONS
v THE MACRC METHOD
VI LABELS AND JUMP3
VIT PROCESSING OF INITIAL INFORMATION
VIIX GCODE OPTINISATICH
Appendix
1 SYMBOLS USED FOR INPUT OF APL DURING TESTTNG
2 TABLE (¥ USEFUL INFORMATION FCOR APL DME‘OM
3 LIST CF ¥ACRO INSTRUCTIONS AND THRIR FUNCIIONS
b LIST OF MACRO BODIES _
5 COMPARISOK OF BRACKSTING MEUHCD AND REVIhSH PdLiSH ME13CD
6 RESTRICTIONS
7 EASE CF CONVZRSION TO OTHER LANGUAGES
8 FUNGTION OF GLOBAL VARTABLES (RUN~TIWE)
9 EXLIPLES OF CONVERTED RCUTINES
10 DESCRIFTICN OF FINITE-STATE AUTOMATOW TOR REMOVAL OF

CONTANTS

UNNECESSARY "FIND" CALLS

page

\n

31
59
%

109
154
161

171

INTRODUGTION

The following text describes a method of tramnslation of APL to other
high~level languages. The version of APL able to be translated is that
described in the IBM AFL 36$-0S8 and AYL 36¢-D0S User's Manual, with a fow

restrictions, These restrictions are listed in Appendix 6.

Throughout tho text, the target language is as sun;ed to be FCRTRAN, but
similar teckniques can be applied to translate from APL to ALGOL or to PL/1.
In generating the target language code, only a subset of the permissible
FORTRAN statements has been used. The subset was chosen such that its
members (as far as possible)} have counterparts in ALGOL and FL/1. This
facilitates conversion to either of these languages instead of FORTRAN.

The ease of conversion to ALGOL or to FL/1 is discussed in Appendix 7.

The translatlon was intended in the first place to handle ceonversion
of APL subroutines and functions, but wain programs mey also be translated.
The AFL routines are not intended to remain interactive after conversicn,

but {0 he run under & batch-processing system.

There have previously been some attempts to produce a bhatch-zrocessor
for APL, One such attempt was mad? by H. Van Hedel, who implemented an
AFL batch~processor in PL/1 for the IBW/36f. The only restriction bhe
imposed was that function names and local variable names should be distinct.
(This restriction, among others, has been placed on the. types of’Afi state-

2

ments able to be converted to FORTRAN.) In Van Hedel' the following example

is quoted:

VRe ™ X
R «[HxV
Ve ; F
H
v
Vez
BV
YH

2 € F-A

v

Such an example creates ambiguity in the source text, for H returns differ-

ent values in 61 and G2 .

For an interactive interpreter it is important that each operation is
executed as soon as sufficient information is gathered. For g batch-
processor, as much as possible of the analysis has 1o be done before the

execution takes place.
The sbove example is ambiguous to a compiler, but not to an interpreter.

It is intended that only working routines be converted to other language
Thus, the amount of checking required during conversion is greatly reduced.
can be assumed, for example, that all dimensions are conformeble in matrix

aperations.
The reasons behind the translation (see Sayers5) are as follows:

(i) It is intended to provide a more easily transportable system. There

are at present more FORTRAN compilers than APL interpreters. Since
APL is highly suited to the development of algorithms (Smillie6), it would
be very convenient to be able tc use these algorithms on a larger scele.

This would be possible if the AFL routines wore translated o FORTRAN. { The

S

It

same argument can be applied to the translation of APL to ALGOL or Pg/1.)

To make transport of the converted routines as convenient as possible,
the user is provided with an option to spocify the output medium for the

converted routines.

{ii) A secondary aim was to improve run-time efficiency by using compilation
rather than interpretation, The amount of code to be interpreted is

reduced if the user supplies some information about non-scalar variables.

The more information supplied, the greater the amount of compilation possible.

In many cases, the types and dimensions of variables will uwot change, and

such examples readily lend themselves to the improvement of run~time effié—

iency. The mothod of supplying exira information to improve run-time

efficiency is described in Chapter I,

(iii) It is hoped that code can be optimiszed during the course of trenslaetion
by the removal of some of the inefficiencies of APL. An example of

an inefficient APL expression is

4 4 AsB

where A and B are non-soalar. This is obviously inefficient as all the
elements of A4 and B are suamed, whereas only four summations sre essential.

The method of removing the above inefficiency is outlined in the following text.

In December, 1971, V.L.Moruzzi gave a set of simple rules for translsting
from APL to FCRTRAN by hand. He estimated that mechanical APL/FORTRAN trens-
lations could achieve a 3@-fold reduction in CPU time. This is discussed in

Moruzzij.

At a private meeting, Dr. J.L.Alty of Liverpool University remarked that,
efter visiting various APL installations in the U.5.A. and Canada, he found
APL three to four times faster than.other languages for program development,

but cne Lundred times slower for execution. This result, he stated,

I
emphasized the need for interchangeability between APL and other languages.
The translation from APL to FORTRAK is effected by a series of macro
expansions. The order of expansion of macros is deterwined by the order

of the operatdrs in the AFL source test.,

A system of bracketing was introduced to ensure that all operators
{and hence macro expansions) would be &ssigned the correct priorities. -

Reverse polish technigues could also have been applied during the trens-

lation process. The rival merits of each method are discussed in Appendix 5.

The options available.tc the user are discussed in Chapter I, together
with the method of storage allocation. A‘lexical scan of the APL scurce
text is first carried out to simplify the subsequent processes. The lexical
soanning phase 1is discﬁssed in Chapter II. Brackefs are then introduced
during a right-to-left scan of the code and an intermediate code form is set
up. This is discussed in Chapter III. = Stacking of information to be used
&5 parameters for macros is described in Chapter iV, while the macro method
itself is doélt with in Chapter V. A discussion of labels and jumps is
given in Chapter VI, while Chapter VII dezcribes the pre-optimisation phase,
A process whereby the generated code can be optimised has been devised, Tt

13 described in Chapter VIII.
The APL-FORTRAN translator is written entirely in FORTRAN.

Definitions of the names used in the following text are given in

Appendix 8.

CHAPTER I

INEUT PEASE AND METHOD OF STORAGE ALLOCALTON

APL routines to be converted to FORTRAK are read, line by line, into
a character array LIWE. The routines are preceded by some addiiional
information, Seme of the inforwation providsd is essential to the
conversion method (sez §1.3) , and some can be provided as a user

option (see §1.4) .

Moat of the additional inf'ormetion suppliad relates te the use of
non-scalar varizbles, The conversion routines use a Talriy complicated
method of storage allocation ffor nonm-scalar variables, The method 1s
necessarily complicated as the dynamic storage capability of an APL
interpreter has to be simulated. The storage a}location method is
discussed in de%eil in §1.2 . The subsequent acoessing of non-scalar
variables is neoessarily time-consuming, as interpretive techniquss have
+6 be employed. However, under ceriain circumstanccs, a simpler atorage
allocation method can be employed, which reduces the access time £o2 nonm
scalars conslkderably. The simpler method 1s only possgible if the user

supplies additional information about his non-scalar variables,

A set of APL routines can be converted to FORTRAN during one run of
the conversion program. 4 ealling progran can be supplied with a set of
subroutines cr functionz, but this has limited use in practice as the uszr
of the converted routines may want results for several different parsueter
sets. Only one set of information is éupplied initially for non-scalars,

and this requires some care. Consider the following set of subroutines:

b

V& TN B;

If PN and P are to be translated during & single run of ths
conversion routines, then the types of X in both subroutines must dve
the same. That is, if X 1is declared to be non-scalar at the start,
it will be assumed non-scalar in each subroutine, There i3 no serious
restriction whon X 1is required tec bs scaler in one subroutine and non-
scalar in another, The problem is easily solved by changing the variaple
name X in one or the other of the two routines. No problem would arisae
if X was a global variable, as its type would be the same in both FN

and ¥ .,

Additional information must be supplied for both litersal and numeric

-non=gcalars, All information supplied is printed out. It should be noted

that declarations should be supplied only for those variebles which are non-

scalar at their first ocourrence. Ctherwlse, scalar occurrences of the

-variables would not be recognised as such.

1.1 ZJnput of the APL Source Propram

fhe source program is assumed initizlly to be in APL internal Z-code
form. The program is read in and converted lina by line. TEach line is
stored in turn in the character array LIIE, which is accessed during the

iéxical scanning phase describved ia Chepter IIL.

During testing of the conversion routinés, it wes found simpler to
use an input form more suited to the character set of the IBY P29 card
punches. As far as possible, APL symbolz were roprcsen‘tea by their
counterparts on the keyboard of the IBM @29 card punch, Composite
symbols were used to represent the extrapsous APL symbols. The actusl
representation of the APL character set used during testing is shown in
Appendix 1. The symbols were then converted as required to AFL internal

Z~code form.

Under norsal running conditions, the input would, of course, be in

APL internal Z-code form,

1.2 Metheod of Storage Allocation

. The amount of storage space allocated for an AFL non-scalar variable
can vary dynamically. The facility of dymamic storage allocation is not
available in FORTRAN, For this reason, it was necessary to simulate the
featurs in the FORTRAN code produced. An arbitrary amount of storage
space (represented by array YSTOE’.E) was thus set aside for storage of all
non-scalar varlables, and storage spece is allocated as required for

individual non-scalar variables.

Since storage is allocated dynamically, a methad had to be deviged

of linking together the various blocks of YSTORE assuciated with a particular

non-scalar, It was obviously not advisable to link together individual
locations, as the coat in terms of storege space and access time would have
been prohibitive. Thus the array YSTORE was treated as seperate unlts

of 1¢ locations each. The number 195 w59 chosen as an experiment, but can
be altered if found to restrict the efficiency of the rosultant FORTRAN code,
In praciice, this means that a vector of (a®i@+1) clements, where § < n

will have (n+1)*1¢ locations allocated for it., A compromise had to be

reached between the allocation of unnecessary locations for uon-scalars

and the number of linkege elements required for particular block sizes.

The information required for linking the various. blocks of YSTORE
is held in a separate array Z23T0RE. This array also incorporates a free
space list. Storage is not actually allocated for non~scalars during
olonversion, but the appropriate subroutine calls are generated so that
dynemic allocation can take place as required during run-time of the

converted routines.

To allooate or de-allocate storage for a nan-scalar varisble it is
only necessary to update eniries in the dope vector table DOFES, the
array 2STORE , and the array ZBOND3, which containslimit information

for the dimensions of cach non-scalar.

The functions of these 3 arrays are now discussed in greater detail,

1.2.1 The dope vector table DOFHI

Corresponding to each non~scalsy variable name in an APL routine, a
p-part entry is set up in the array DOFES. The typical form of a dope

vector entry is shown in Diagram 1.2{a) .

Por literal non-scalars no space is set aside in YSTORE, and the
format of the dope vector entry is simplified. The third and fourth

parts are not required. This is again referred to in Chapter II .

The dope vactor entries may change during e subsequent optimisation
phase, This phase will be undergone by the output code if the user
supplies additional information about his non~scalar varisbles. These

changes, connected with simplification of the storage and escessing

mechanisma, ove discussed in §1.4 .

< DOFES _ >
start address no,of last] j = the pointer k
pointer, i, in Y3TCUIE block of nunber of t¢ the
KEY to the (i.e. no.of T3IORE dimensions| array
array Na¥aS| 1st block currentl of' %he .
alliocated) allocated | non-scalar] ZB0NDS
A
| " 4
*
derived
f'rom array
name
k W k+ j-1 .
Y — o a a—m — ¢
entry £or 1 array
f—rr— ZBONDS ——— ¥
4 8 441 Jen+d
1 n
(% %2 :
a single NAMES entry B
— NANES %

*{ type indicator for a non-scalar (numeric) variable is 14
(see Chapter II)

¥2 n = the number of characters in the non-scalar variabls name

*3 these entries will initially be the same

Diagram 1.,2(a) : A typical dope vector table entry.

10

The 6 colums of 2 dops vector entry hold the following information:
(1) A key derived from the non-scalar variable name.

Only the first 3 characters of a non-scalar variable name &re used

to determine the ksy (or the first n characters, if the name has n <3
characters). The averags of the Z-code values of the characters is found,
and a constan® subtracted such ithat the lowest possibhie key will have

value 1.

The key determines the first address in DOPES to be searched when aw

entry is added to the dope vector table, or an existing entry is accessed.

(ii) A pointer to the array NAMES, which holds information relating to

identifier names (see Chapter IT).

{iii) The number of the ZSTORE element associated with the first block of

YSTORE assigned to the non-scalar variabdle,

(iv) The number of the ZITORE element asscciated with tne lasi block of

Y3TORE currently allocated for the non-scalar variable.
{v) The nuwber of dimensions of the non=scalar variable.

(vi) A poinier to the array ZBONDS where informetion relating to the

gurrent upper bounds of the non-gcalar is stored.

An "open hash' tecanigue is used to place entries in the dope vector
table. The firgt address to he accessed in DOPES is given by the "key"
value obtained, Hence the necessity for the lowest possible key to have
v;lue 1. If this addrezs is empty, the lecation is free and is used to
store the dope vector entry. Othervise a new address is calculated and

tested, and the process is repsated unitil & free lesation is found., This

location iz then used to store thes dope velsnr enlry.

11

The method of subsequent address calculation is outlined below. For
g dope vector tatle with n rows, the address is increased by an intéger
m each time, If the address, J, to be searched bacomes greater than
n, then J is set to J - n and the vrocess repeated until 211 locations
of tho table have been accessed, The infegers n and m should be
coprime to ensure that all posiiions of the dope vecior table will be
accessed. In practice, n 1s 64 and m is 3, +this value being prefer-
able o 1 in order to avoid the clustering of entries which might othexwise

result, The open hash technique is described in Hopgood1.

A similar method is used to access previously stored entries in DOPES.
Hoﬁever, in this instance the test is for an entry with a key value egual
to that derived from the non-scalar name. If such an entry is found it
is not necessarily the required dope vector enlry, since keys are not
n?cessarily unigue. (For example, 4 and AA or B end ABC wiil have
identical key values.) For this reason both the key and a pointer to the
array NANES nust be contained in each dope vector entry. When keys match,
the cherscters of the non-scelar variable name and those stored in the
appropriate NAUES entry must be comporad to ensure fthat the ccrrect dope

vector entry has been found.

1.2.2 The array ZSTORE

Blements of ZSTORE can have cne of two forms, depending on whether
the essociated block of YSTCRE 1is a unit in the free space 1list or a block

allocated for a particular necn-scalar.

The sssociation between ZSTORE elements and YSPORE blocks is such that
ZSTORE (i) refers to the block YSTORE (1 + (i~1)™@) to TYSTORE (i*14),

where 1 S i <n, n being the total number of blocks of YSTORE.

12
For an unallocated block, i, of YSTORE, the assoclated Z3TORE

element has value J, where J is
BITYER (a) +the number of the next block of YSTORE on the free space list,

€18 (b) ¢ if i is tho number of the last block of YSTORE on the

free space list.

The form of & ZSCORE element associsted with an allocated block of
YSTORE is showm in Diagram §.2(b) . The usage of the array Z3TORE is

discussed later.

. The method can be extended to cover the case where ZSTORE has more
than 255 elements, that is, there are more than 255 blocks of YSTOHE.
There is room for expansion due to the unused 8 bits at the left-hand

side of each entry.

1.2,3 The srrey ZBONDS

ZBONDS containg the current bounds for each non-scalar varisble
(1iteral and numeric) appearing in an APL routine. It can be updated

dynamically, as can DOPES and ZSTORE.

The sixth colwm of a dope vector entry defines the start of bound
information for the corresponding non-scalar. The number of locations
of ZBONDS assigned to a particular non-scalar is obtainable from the

£ifth column of its dope vector entry.

In addition, a pointer Z3FTR is maintained, which gives the Ffirst
free locetion of ZBOWDS at any stage. This is useful if a new entry has

to be added to ZBONDS.

The Z20MDS extry for an n-dimensional non-scalar with urier bounds

is shovm in Disgram 1.2(c) .

ByaBysenesby

1172

—_——— ZSTORE (m)

th

N is the number of elements in the m~ block of YSTORE

I 1is either

OR

J is elther

. OR

{a) a backward pointer to the previcus bloek of TSTORRE
allocated for the same arxray

{b} @ 1f the mth block is the first block allocated for
the array

{a) a forward pointer to the next block of YSTORE
allocated for the same array

by ¢ if the mﬁh block is the last block allocated for
the array. .

Diagram 1.2(b) : A:"ZSTORE entry for a block not on
the free space list,

33

14

ZBONDS

¥

J is given by the sixth column of the dope vector entry

Diagram 1.2(c) : Shows a typical ZBONDS entry for an
n-dimensional non-scalar veriable.

ZBONDS is maintained in the following way. When a non-scelar

variable is encountered, for example the varizble A in
A e 34 5
an entry is set up in DOPES and ZBOND3.

If A is rodimonsioned such that iis number of dimensions is increased,

for example, in the statement

A — 2 4 P A
then the elements of the 01d ZBONDS entry are set to =1. A new entry is

oreated for 4, starting at position ZEBPIR.

If A is now redimensioned such that i%s number of dimensions is

decreased, the relevant part of the ZBRCHDS entry is updated and the remaining

part set to -1's .,

Yt can be seen that if an APL routine contains a number of redimen-
sioning opsrations, {occurrences of the dyadic "rho" operator), the wastage

of space ia ZBONDS can become considerabla,

A garbage collection mechanism enabling unused space to be retrieved
was thecrefore devised. If there is insufficient space left in ZBONDS feor
a new entry to be cremted, ZBCNDS can be scanned for entries with velue -1,
Such eniries can be removed by shifting subsequent valid entries along the
appropriate number of places to produce more fice space at the end of

ZBONDS, The appropriate dope vector entries must also be updated,

1244 Accessing arrey elements

AFL non-scalar variables are mapped onto the one-dimensional array
YSTORE. Since the size of an APL array can vary dyramically, the array

elements will not necessarily be stored in consecutive blocks of YSTOHHE.

The ZS8TORE elements associated with each block of YSTORE contain
both forward and backward pointers, as described in §1,2.2 , To access
a previgusly stored vector or array element, the following strategy is

required,
{(a) = key is derived from the non-scalayr variable name,

('b) the addressz of the dope vector entry for the non-scalar is determined

(uSing (ﬂ.)):

(c) the first ZSTORY element associated with the nen-scalar is obtained

(using (b)),

(d) the ZSTORE elemeats for the array arc accessed in turn until the

appropriate bleck is found,

16

(e) the index (in YSTORE) of the element to be accessed is found.

For large arrays it can be seen that a large number of ZSTORE
elements may have %o be accessced before the appropriate block of YSTORE

can be located.

An enhancemont of the above method would he fo store the exacti
location (in ¥YSTORZ) of the last element accessed for a given array.

Since consecutive access is moat likely, it would thus be sufficient

simply to move forward or backward from the position of the last element
acceszed. This additicnal informatisn could be incorperated into the

dbpe vector table,

Using the accessing mcthod outlined above, the access time can be
costly for large arrays. However, if the maximum amount of space -
required f'or storage of & nonwgcalar is knowvm in advance, the non-scalar
elements can be stored in consecutive blocks of YSTORE, A much simpler
accessing msthod could hence be used for the non-scalar. The array
mepping csn be used to determine the relative pogition of an elewment in
a non~gcalar. The desired location can thuz be found direstly after

applying steps (a), (b) and (c} ebove, i

The faster method is dependent on more information being supplied
initially by the user. This faclility is provided as a user option and

is discussed in greater detail in §1.4 .

Vecter or array subscripts can themselves be expressions. Thus it

ig not usually possible to locate the exsct positlon in YSTORS of a vector

or array element during conversion. Instead, veeior ox array element
reforences are replaced in the output code by function calls. These
functions provide as a result either the valus of the element being

accessed or its index in YSTORE. It is neceszsary to know the Y3TORE

17
index {(not the value) if an array reference cccurs as the left apgument
of a specification operstor. A number of functions were written to

produce the above eiffect:

(a) TFIND - produces the index in Y3TORE for a numerlc nen-scalar
varlable access

(b) UVFIND =~ »produces the value of a constant vector element as
result

(c) IWFIND ~ produces the value of an intermediate result element

() EVFIND =~ wused for accessing of empty vectors or arrays

(e) LFINP ~ used for sccessing of literal non-scalars

(f) BCFIND- used for acoessing scalars,

_Operands (both scalar and non-zcalar) can be accesgsed in a numbar of
ways (see §1.2.5), and functions (b) to (f) above were written to provide

generallty with the function FIND. This function is described in §1.2.5 .

142.5 The function FIND

The function FIND is applied to the subscripts of the vector or
array referenced., In the case of an entire array access, loovs are set up

to access each of the elements in turn.

Before production of a FIND call, therefore, code is produced to siore
the subscript values or expresszion code in the array ZINDX. The appropriaie
locations of ZINDX are accessed in FIND and a funcitlon applied to these

elcments to produce the required index in YSTORE.

APL allows nesting of subseripted expressions, and care must be taken
to ensurs thet only the required values of 2INDX will be accessed during
one call of FPIND. This is done by meintaining & stack of pointers ZPOINT,

having stack pointer ZPT. Durding any FLVD -call the array ZINDX is

..,
|
;
_:J

18
accessed only from the positions defined by ZPOINT (2PT-~1)+1 to

ZPOINT (ZFT).

The following example serves to illuatrate the type of code produced

corresponding to a subscripted variable.
EXAMPLE 1(a).
Bupposa the APL routine contains a reference to
AfT+1]

where I 4is scalar. Then the generated code is of the form shown below.
Since no attempt was made at optimisation durirg the code generation stage,
the code is not very efficient. However, under certain eircumstances,
optimisation will be possible. This is discussed in greater detail in

Chapter VIII.

% = &

ZB4 ZPOINT (2I1)

ZPT ZFT + 1

It

ZINDX (ZB1 4+ 1) = T +1
ZPOINT (2PT) = ZBf + 1 --- since A is one-~dimensional
CALL STARTS ("‘Nmss’ 71, 22,210}

SALL FIND1 (--- Avgms " o .

The use of Z0is redundant in the above example, bub iz included to
allow for the possibility of non-scaler subscripts, in which case it would

be reguired for looping operations, (see Chepter VIII).

The subroutine STARTS uses the value Ay (the index of A in

AMES
NAMES, an array whose use is discussed im Chapter IT) to provide information

to be used in the call of FINDM. This inrevreation is discussed in

19
Chapter V, §5.2 . The subroutine PIND1 contains a call of the function
FIND discussed previously, The variable Yn contains the walue of the
reguired element A [I + {] . The parameters of the function FIND ars

discussed later.
In generating subroutine calls two posaibilities existed:

1. the subroutine calls could have no global varisbles (for example,
ZPOINT, ZINDX) in the parameter list. COMMON statements would thus
have to be inserted In the subroutine bodies. The same process can

be applied to functions,

2. global variables could be included in the purameter list and all non=~

scalar globals given unit dimensions.

¥ethod 1 1s obviously moxre efficient from the point of view of para-

meter linkage. There are two advantages, however, of Nethed 2,

{a) if the Adimensions of any global non-scalar éequire t0o be altered it
is not necessary to change these in each subroutirne or function
containing a reference to the particular non-scalar;

(b) OCOMMON statements need not be used, and this facilitates conversion

of APL to, for example, ALGCL or PL/1 rather than PORTRAN.

Throughout the entire text Method 1 will be assumed, as this gives

greater raadability of the generated code.

A secsond example showing the usefulness of the ZPOINY stack for nestcéd
subseripts is given below.

EXAMFLE 1(b)

The following code 1s generated corresponding to A [B H C[:D H E] j

waere - &4 ani C are non-scalar; B, D, X are scalar,

20

g

ZB4

2

ZPQINT (ZPT)

4

ZFT = ZFT + 4

ZTDX (ZB1 + 1)

it
w

ZB2

ZPOTNT (ZPT)

ZPT ZFT 4+ 1

1

code
corrosponding
to

CED ;E]

ZINDE (ZB2 + 1) D

n

E

it

ZINDX (2B2 + 2)

CALL STARTS (Cypene ===)

CALL ¥oD1 (--- ¢ —— Y =)

|

t

]

|

|

| ZPOIAT (ZPT) = ZB2 + 2
I

|

I NAVMES
i

2PT = ZrT -1

ZINDX (2B1 4+ 2) = Y
ZPQINT (ZPT) = 4B1 + 2
CALL STARTS (Ay, o ===) : .
CALL FIND1 (== Ayyme —== ¥, -)

ZFr = ZPT - 1

Arrays 4 and C are dlstinguished in the FIND1 calls,

It can be seen that ne information is lost after the C array refereuce
has been handled. Code preduction for the A array reference is resumed

in the normal msnuner.

The stack pointer ZPT is increased when the symbol [1s handled and

is decreased when the symbol] is handled.

The function FIND plays an important part in the handling of certain

4FT. mixed functions. These ars:

(i) the
(ii) the
(1i1) the
(iv) the
(v) the
{vi) the

(vii) the

(viii) tho
(iz} the
(=) the
(xi) the
(xii) the
(xiii) the
{xiv) the
The resascn

21
reverse funqtion
monadic transpose function
reverse function (applied along the first co~ordinate)
ravel funciion
rotate function
dyadic transpose funciion
rotate function (applisd along the first eco-ordinate)
conpress function
expand function
take function
drop funntion
compress function {applied along the first co-ordinate)
expand function (applied along the first co-ordinate)
concatenate funetion,

for grouping these operators together can psrheps best be

explained by example.

Consider the following sxpression:

4 T B4+cC

(whers B

and C are vectors).

Ar, APL interpreter (i.e. ons without an embedded "lock~shezd! facility)

would access all the elements of 3 and € during the '+' operation.

A1

but 4 of these elements would later be discarded when ‘T‘ was dealt wita.

There is thus an inherent inefficiency in the above expression. This

inefficicney can be remecved by applying a diff'erent type of acoessing

techmnique in the function FIITD. To do this it is only recessaxry to zpply

& function to the required-suﬁset of ZIMDA and then use the noimal accessing

method.

22
Considar also (k, where M is a veclor of n elements. To access

the IUll element of ¢%, the cods

ZTNDX (~-~-} = T

is generated, followed by a cell of FIND, However, in this case the
contents of ZINDX (~---) could first be changed to n - I + 1 and the

normal accessing method used.

Similarly, all the functions in the above group can be handled by
altering the values of the appropriate ZIKDX elements and applying the normel
accessing method. The funcuion to be applied to ZINDX {i.e. the relevant
part of it) to produce the desired type of accessing is detemmired by the

first parameter of the FIND call,

In Chepter IV it is described how hracketing can be used to delimit the

gscope of an operator and thus remove inefficiences. Briefly, here
4 T B+ C
is bracketed as (4 T (B+C)).

The scope of 'T"\extenda over the whole of (B 4 C)}. The appropriate
type of accessing can be applied to B and € during the '+' operation to

remove the necessity for accessing all the elements of B end C .

The scope of an operator could not be so easily defined if reverse

polish technigues hed baen used in the translation, {see Appendix 5).

An element of the result of U\ V ocazn be zero., This iz indicaled by
setting the result of the FIND call to n, where n 1s one greater than
the number of elements of YSTORE. Cole is therefore roduced to test the

result of ths FIUD ecall for this coandision.

23

If the ravel operator (monadic comme) is aprlisd to a scalar, then a
vector result is obtained. However, it is neceszary to set up storage in
YS3TORE for the single element result., Such a result is indicated by huving
a negative value returmed from the FIKD call, The value rsturaed is the

negative of the index of the scalar in NAMIZS.

These tests are carried oui immediately after the FIND call. They

are present in each call of FIND1.

The functions UVHIND, IRFIND, EVFIND, LFIND and SCFIND, mentiored
previcusly, werc written lo allow for 21l possible opexand types 1n handling

the 14 listed mixed functions.
The function FIND he.s. the following paramsters:

(i) the first parsaeter is
(a) ¢ i the normal accessing mesthod is to be applied,
(®) 1 - 14, depending on which mixed functicn (of the above group)

is to be handled;

{1i) the sccond parameter is
(a) ¢ for normal accessing or for a monadic mixed function of the
above group ox if' the left operand is scalar (in which case the
third parameter represents s value (not en index in the array

NAMES)).

N.B. NAMES is the character array where the charactsrs comprising ldentifier

nares are stored, It is described in Chapier II.

(b)» the type value (see Chapter II) for the left operand if non-

scalar (in which case the third paramcter is the NAMSS index

for the left opsrand);

. : I @4
(iii) +the third parameter is
I (2) ﬁ for normsl accessing or for a monadic mixed function of

" . the above group

(b) 2 scelar variable name or constant

{c} the KAMES index for the left operand (for dyadic mixed functions

of the above group};

(iv). the fourth parameter is
i (&) = scelar variable name or constand
(b} the NAMES index for the right operand (for dyadic mived

functions of the above group).

The FIND calls produced correspouding to 3 and ¢ in A.T B+ ¢

ere:
FIND (1ﬂ: 4dv ll': Bindex)
end FmD (14, B, &, ©) B]

index N]

.raspectively; where

= the index for B in NAMES =

B ndex BNavEs]
G0, = the index for C in NAMES = O
[

4.3 Essential Initial Information

‘Information which a user must supply with his APL routine(s) falls i

into two categories:

1. The user must specify the output medium for storage of the target

language. This is done by specifying a value for the varieble TCPTZI.

‘The value must be provided in G12 format, Table 1.3(a) shows the

values of IOPION associeted with particular outpui media.

TOFTOY value Output medium
8 line printexr
ki card punch
2 magnetic tape
3 ' magnetic disc

>3 . line printer

TABLE 1.3(3) H Shows TOPTON values and the assoclated
output media.

2. fThe user must supply 2 list of all the variables in his routiue(s)
which are non-scalar at their first occcurrerce, An indicaticn must also
be given of whsther the variables are literal or numeric. The reason for
this requirement is as follows. Suppoze a non-scalar variable name s
used as an AFL function parameter, The type of the variable msy not be
made apparent ingide the function body, The parameter may therefore e
treeted as a scalar (and incorrect code generated) unless the user explic—

itly declares it to be non-zcalar.

The number of non-scalsr variables being declarsd is first provided
in I8 format. This is followed by & list of variable names in the formet

of Diagram 1,3{e). The zero indicates that no additional dimsnsion or

bound information has been supplied. The list is scanned and, corvesponding
40 each non~scelar variabls name encountered, code 1is generated to set up an

entry in the dope vector table DOPES at run-time of the comverted routine(s).

column 26

211

Arrvay name |I B | === blank ~ = = = = =
T\ T - g for numeric variabie
column T 1 for literal variatle
27

Diagrem 1.3{(a) : 3hows esgential dinflormation for non-scalars,

Initially, only one block of space is allocated for each non-sealiar

variable in the above list. This amcunt is dincreascd or decrsased as

required during the running of ithe converted program, At this stage

entries are sedt up in NAMES for all variable names appearing in the above

1ist.

There are two cases in which an entry of the above form should not

be supplied for a non-scalar variable. These are:

(1)

(1)

If additionzl information is supplied, the eniry will have instead
one of the forms described in §1.4 .
If a variable is scalar initially and becomes non-scalar lster, no

entry of the above form should be supplied.

If no further information is provided for non-scalars, a certain amount

of interpretation is essential. For example, to access an array element,

& chain of Z3TORT elements must first be interpreted. If edditional

information is provided for nonwscelars, the alemenis can ve ctored in

-contiguous blocks of YSTORE, thus reducing the amount of Znterpretation »

reqguired.

Obviously, from the point of view of the execution time of ths
converted program, it is better to provide as much additional information

as possible.

1.4 Additicnal Tnput Cotions

As discussed previously, i% is to the usecr's advantage to supply as
much inf'ormation as possible regarding his non-scalar variables. The user
may be able to supply full dimension and bound information for certaln non-
gcalar variables at conversion time., For other nonwscalar variables,
however, he mgy only know the number of dimenaions at this stage. It is
possible that he will be able to supply the bounds for these variables at

run~time of the converted routine(s).

Two additionazl input options are therefore aveilable to ths user, He

can gupply

1. the number of dimensions of a non~scalar variable with bounds for each
dimension to be read in at run-time,
2, the number of dimensions of e non-scalar variable with fixed bounds

for each dimension.

The informaticn corresponding to forms () anda {2) above should be provided

in the format of Diagrams 1.k(a} and 1.4{h) respectively.

-

¥hen bounds and dimensions are specified, these are assumed to be the
maximﬁm bounds for the array during running of the converted routine,
Thus the maximem number of elements of the array is known. The number ol

dinensions and the bounds may d4iffer initislly from these supplied. thus,

CoLumnn cojlunn C O Ll

1 29 27

28

column
8¢

1
Arvay nenmej I -N g blank _____ukﬁ__%

column
21

I = @ for numeric variable
1 for literal variable

N = the number of dimensions of the non-scalﬁr variable

Diagram 1.4(8) : Form of additional inf'ormaticn supplied for a
non-soealar with the number of dimensions

known, but not the bounds,

¢column ¢column column column

i ke | 27 33

column

| 59

Array name | L N b1 b o

blank

21 33

for numeric variable
1 for literal variable

1

i

n

b1,b2,———,bn are the bounds for each dimsnsion

the number of dimensions ¢f' the non-scalar variable

Diagram 1.,4(t) : Form of additional information supplied for a

non-scalar with both dimensions and bounds given.

29

from the initial information code is produced to set up only the first 4

parts of the dope vector entry.

If full information is provided, the non-scalar can be stored in
contiguous blocks of YSTORE, This eliminztes tue need for the time-
consuming access method used in the function IFIND. The allecation of
contiguous blocks of YSUORY could have been arranged at the time when
initiagl information was processed. However, this would involve the
insertion of an extra test in FIND, More time would thus have been
roquired to access non-scalars for which no additional information was
supplied. This is best avolded. A ¢all of the function FIND is there-~
fore produced for all non~scalar references and, where possible, this is

replaced by a simpler eeccessing function as an oplimisation process.

Storage of certsin non-scalars in contiguous blocks of YSTORE is
erranged in a pre-optimisation phése. It is dome first for {hose arrays
with full information given., With the bound information suppliszd =t run-
time of the converted routine(s), (i.e. after optimisation proper), the
same process c¢an bs applied for non~scalars with only partial information

supplied initielly,
Thé following path is therefore taken.,

(1) Read in initial information, process, store until (3ii), set up NAMES
entries and produce code to set up (partial) entries in DOFES.
(i) Convert routine(s) to target lenguage with FIND calls for every non-
secalar reference.
(i1i) Carry out pre-optimisation phase in which storage is arranged in
" oontiguous blocks of YSTORE for those non-scalars with full informe
ation supplied.

{iv) Obtain bound information for the relevant non-scalars, divangn these

non-~gsoalars in contiguous bleocks of YSTORE.

0
(v} Replace TTND calls by simpler accessing function ealls for all
non=sczlars with more then the minimum amount of information
" supplied.
(vi) Optimise the geunerated code.

(vii) Run the converted program.

Stages (iii)} and (v) are discussed in Chapter VII. Stage (vi} is

described in Chapter VIII,

At this stage an entry is set up in NAMES corresponding to sach non-
goalar variable name, and code is generated to produce pertially filled
dope vector entries, The rest of the information supplied is stored

until required during the pre-optimisation phase.
The inf'ormation temporarily stored at this stage ia:

1) the position of the nonwscaler variable name in the laitial list,

(i1) the index of the non-scalar in NAMZH,
(1ii) the dimension and bound information in its original form,

The first stage of the conversion proper is a lexical scanning phase,

which is discussed in Chapier II.

The order of submission of information for the translation routines

is given below.

1. IQPTON value (G412 format)

2, Number of non-socalar variables, N (I6 format)

3, N cards with information as desoribed in §1.3 2nd §1.k .
"4, APL routins(s) to be converted

£, DBlank card, signifying end of input.

CHAPPER IT

LEXTICAL SCAWNING ¥FHASE

An APL routine first undergoss & lexical scan. Bach line of the
routine is processed =5 described below, and the relevant infozmation is

stored temporarily on tape,

This sganning. phase was initially introduced so that niladic function

calls would be recognisable as such during subsequent processing. For

example, consider the following routines:

UR< 4 T B ; X

X< Fat 4

'
t
t
v

VRe«?
;
t
\

During‘procQSSing of function FH, it is not knovm thaet F 1s a2 niladic
funetion. This information only becomes available when the second function
definition is encountered. Since the code generatsd depends on the types
of all idcntifie;e, it is necessary to scan each 2ine in turn before tihe
main lino-by-line vrocessing is carried out. This eliminates errors

resulting from incorrect types being assacinted with identifiers.

The lexical scanning phese s generally useful as it simplifies ths

subsequent processes. In particular, it greatly simplifies the right-to-

32

loft scenning phase, whioh is discussed in detail in Chapter IIT.
The actioas of the lexicel scanning phase may be summarised as follows:

(i) All blank characters are removed.

(ii) When an identifier nams is encounteresd for the first time, an entry
is set up in the character array NAMIS. The form of such entries
for different identifier types is deseribed in §2.2 , Theveafter
all identifisr names are replaced by the appropriate index in the
array NAMES,

(iii} A1l other symbols not comprising idectifier names are replaced by
an integer value. Distinetion is made at this stage between .

monadic and dyadic uses of particulsr symbols.

Ezch line of the APL code is scanned from left to right. Tests are

first made for occurrences of the following symbols:

(i} the lamp-comment symbol

(ii) the 'del' symbol .

The antions carried out on recognition of these symbols are described in

§2.11 and §2.12 respectively.

A test is then made for the occurrence of a symbol which can start an
identifier name. Vhen such a symbol is met, each charactsr in turn of the
identifier name i1s stored temporzrily, After = complste identificr name
has been decoded, the arvay NAMES is accessed. The method of accessing
NAMES 18 also discussed in §2,2 , I no entry already exists in NAMES

for the identifier name, a new entry is added to the end of NAMES.

The procassed APL line is storsd in the character zrray NOLINE.

Corresponding to each identifier nams, a 2-byte entry is added to NOLINE.

33
The entry represents the NANES index for the identifier name, NAWES hes
5¢0% locations and, therefore, two bytes are sufficient to store the index

for any identif'ier name,

A single entry is set up in NAMES corresponding to constant veetors,

for exanple 3 4 5 din
X - 3 L 5
Constant vectox NAUWES entries are discussed more fully in $2.12 .

The handling of other symbols is less straightforwerd. ALl symbols
are distingulshed initlally with the 2id of a symbel table, which is

discussed in §2.1 .

The symbol table is arranged such that all dyadle aperators are
grouped together at one end, and all moradic operators are grouped later,
with symbols which can be either monadic or dyadic appearing betisen.
Letters, diglts and special symhols follow the above three groups. Thus
the address of a symbol in the symbol table can be used to determine the

group to wbich the symbel bhelongs.

AFL operators ars later handlad by the expanzion of macros, as
described in Chapier V. In general there 1s one macro for each operator,
although s few operators (for example, 4, -, X, +, *) are grouped togethen

and dealt wlth using a single macxo cxpansion,

One method of handling sech operator would be to replace the operator
by o macro name and maintain a sel of pointers giving the start address of
sach macro body. 4 more efficient method ls employed here., ETach operator
has an associated macro mumber (not a name)., The macro number is used io
access a table, MCADDR, where the start addresses of the mecro bodies are

stored. Thus, for example, if '4+!' has macro number 21, then MCADDR (24)

34

givea the stert address of the macro body for '+' .

The above method sliminates the nomesgity to store & number of macrs

names in a table,

Operators are replaced in NOLIWE by a t-byte enitry representing the
required meoro number., In faet, the entry gives the negative of the macrc
uumber, so that identifier and oparator eniries can be distinguilshed.

(The second byte of an ldentifier entry may have & 1 in its left-wost
bit position {and thus be negative) but it will always be preccded by a
positive entry, NAMES indices must be <5¢;?3‘¢, which is <215. Thare«

fore the first part of an identifier eniry will be positive,)

Identifier entries are stored in NOLINE with the two paris rTeversed,
the reason being that the right-most (positive) part will be encountered

firat in the subsequent right-to~left scan,

Monadic and dyadic uses of the same operator are detected during this
scan and the appropriate entries are generated in NOLINE, This is basad
largely on the fact that, if' an operator is used in the dysdic sense, it

will be precedsd by an identifier or) or j .

A similar test is used to distinguish %he use of the symbcl '/' in
-ufv (where u is a logical vector) and £/x (where £ is a dyadic
operator), Iwo differeut entries are seft up in NOLINE corresponding teo

'/' in the above expressions. Similarly for the symbol 1A' .

Distinetion is also made betmeen the symbols *[1' ang [usea
for input or ouiput purposes. If these symbols are used for outpub, they
always precede = left speoification arrow, A test is made for this
occurrence. I the test is satisfied, then an entry is set up in NOLINZ

for {01 or 5, but not {or th: left gpecification arrow. Ihmus,

35
e a '

generates enlries in NOLINE for 'E]' and A only. The above expression

is then regarded as the monadic oﬁerétor [} operating on A .

IF the test is not satisfied, then an input use of the symbols ia
intended. A different entry for [] or E] rwould be set up in NOLINE

for this ocase,

Tha symbal '+' dis also used in & variety of circumstances. It can

appear in

() a constant identifier name
(ii) en imner product

(iii} an outer product

The three uses are distinguished at this stage. In the case of ouber
products no entry is placed in NOLINE corresponding to the symbol T-' .
The preceding symbol ‘'o! is sufficient to distinguish the oceurrences of

aﬁ outer product.

-A11 the other symbols are replaced in NOLINE by an entry giving the

negative of the appropriate macro number,

A table of information on APL symbols is given in Appendix 2. The

method of aistirguishing all the APL symbols is discussed in §2,.%1 ,

Several values are stored on tape, together with NOLINE., These are
values which are required in subzequent scenning phases, They include
NOLP?R, which gives tﬁe number of entries in NOLINZ for a particular APL
line. Others are IFNCT, IZXFP and IFNI,-'wﬁbse functions are described

in Chapter ITT,§ 2.1 .

36

2,1 The Symbol Takle and Tts Method of Access

Symbols are First obtained in Z-code form. However, similer sets of

symbols (such as the dysdic operators) cannot be grouped conveniently

according 1o Z-code values, For this reason, a symbol table is maintained

in which convenient sets of symbols are grouped together.

The symbol table 1s & one-dimensional arrey ISYMBY, 15§ characters
in length. It contains the Z-code representations of a8ll the legal

symbols in the AFL language,

:
!

VYhen a symbol is decoded a function is performed om the Z-code wvaluc.
This produces the first address, I, %o be accessed in ISYMBT, If the
decoded symbol value equals ISVMBT (T), then the variable KADDR is set to
I. IOtherwise successive addresses of ISYIBT are accessed, starting from

X ,until there is 2 match. The correct address is then stored in NADDR.

Cperators can be; . -

(i) dyadie
{ii} monndic

(iii) dyedic or monadic .

The group to which a particular operator belongs can be determined

-from the value of NADDR, for example:

(a) NADDR = 1 - 2¢ for purely dyadic opsrators
{o) NADDR = 21 - 38 for operators which cen be either momadic or dyadic
(c) NADDR = 39 ~ 43 for purely monadic operalors

In addition, the following groups can be distinguished:

{a) MADDR = i -~ 52 for delimiters

37

(e} NADDR = 53 - 128 for symbols whioh can start identifier names
(letters, &, é}, digits, decimal point, overbar,

£high minus}, blank and quote)

n

(f) NADDR 121 - 123 for remeining symbols (colon, del and locked del),

Within each of the groups (a) to (f), symbols appear in the symbol table in

inereasing order of Z-code value,

2,2 Ideatifier Names and the NANMES Table

A copy of all identifier names encountered is stored in the array
NAKMES. The identifier nema is theresafter replaced by the appropriate
index in NANZES. The characters comprising identifier names can thus be

re-accessed when required during the code production stage.
Identifiier names must start with characters of the following types:

(i) a letter or s digif -
{ii) a letter understruck
(iii) the characters *At or A

(iv) the charmcters '~-t op |t

If any of these symbols is decoded, successive characters comprising
the ideniifier name are stored in NAME, a 380-byte array. Tor literal
identifiers, the enclosing guotes are first removed and double quotes inside

the string are replaced by single quotes.

The clements of a constant vector are sitored in NAVES with a blank
character separating each element, 4 blank character also terminates

each constant vector.

When the entire identifier has been ¢ecoded, the non-zero characters

in NAME are compared in turn with the relevant parts of each NAMES entry

a8
of the same length and type. This process is repeated until either
{a) =& blank entry is reached in NAWES, or

(b) a match is found between a NAMES entry and the contents of NAME,

The occurrence of (a) signif'ies that this is the first time the
identifier name has appeared in the APL routine, A new entry is then
se% up in NAMES for the identifier. The form of the NANIS entry i; siven
in Diagram 2.2({a). {The type of the blank entry reached should be tested
as an empty litersl vector will have a blank in the relevsnt part of the

NAMES entry.)

The oceurrence of (b) indicates that the identifier name has alraadj
appoared in the routinc. A previous occurrence of the identifier name
is only confirmed if the type of the entry in NAME eguals that of the
entry in NAMHAS,

It can be assumed that all variable nemes start with the permitted

characters, since only working APL routines will be converted.

Table 2.2(b) gives the possible type values for all the identifier

types distinguished.

TYPE OF IDENTIFIZR TYPE
VALUE
Nonw~scalar variable name (numeric) 1
Scalar varisble name or constant ¢
Literal (variable or constant, scalax -
or non-scalar)
Function name _ ' . -2
Empty fector or array ' -3
Label name)
Constant vector . -5

PARLE 2.2(b) : Shows type values for different
types of identifier.

NAMIS

N

- P N Neee sl e e - e -

H
il

the type value associated with the identifier name

=
H

the number of characters in the identifier nanme

These two pleces of information are followed by the aotual
characters comprising the identifier name. T and N are

in decimal ; the characters are in Z-code form.

Diagram 2.2{a} : A typical NAEMES entry.

40

An APL jdentifier name can be from 1 {o 77 charecters long. Using fhe
above method, only (k + 2) charscters are required to store the ldentificr
name, where k 1s the number of characters in the identifier neame. This
avoids 'L'_he wastage of space which would resuli if the meximum number of

characters was allotted for each identif'ier name.

Storage of the number of characters in an identifier name also makes
it pussible fo scan guickly dovn NAWZES to search for a particular ldentifier
name. An identifier name is only stored in NAKES once, regardless of the
number of times it occurs, However, two distinet entlries would be set up
in NAMES for the identifiers A and t'A' . The former would have a type

value of gf or 1, and the latter a type value of -1 .,

Constant vectors reguire no permanert storage in the array YSTOKE.
For such identifiers, the second element, N, of the NAMES entry gives the
number of characters reguired to store both the constant and ifs associated
blenk entries. Constant vectors are again discussed in §2.1¢ . “§2.3 to

§2,10 describe the treatment of different types of identifiers.

2.3 Numeric Variable Wames (Scalar and MNon-scalar)

Diagrams 2,.3(a) and 2.3(b) illusirate the NAMES entries which would
be set up for the non-scalar variable name MARGARET and for the scalar
variebls name JACOBS respectively. Additional eection is taken for the

non-scalar variable name as described in Chapter I,

Certain identifier names are introduced during conversion of an APL
routine, This is necessary, for example, in handling the looping
operations implied by A+E, where either A4 or B {or both) is non-
scalar, The arrangement is such thal integer variable nemes introduced

start with *Z' ; real varisble names siort with 'Y Thus 21, Z2, etc.

P NAMBES >
o 1 8| MIA{R|G|AJR|[E|{T] =---=--
T characters in Zw-code form
type
value
(dacimal)'
number of
characters
{decimal)
Diagram 2.3(&) 3 Shows entry f'or non-scalar variable name
MARGARGET dn NAMES .
¢ NAMES >
e L@ 6| T Al G O] B S, e a
T characters in
Z~code form
type
value
(decimal)
number of
characters
(decimal)

Diagram 2,3(b) Shows entry for scalasr varizble name
JACOBS din NAMES.

a1

42

are used for integer vuriable names; Yl, Y2, etc., for real variable namss,
I

In order to avoid duplication of existing variable names, the following
strategy is employed., Variable names starting with 'Y* or *2' are

altered to start with YY" or 'Y2!' respectively.

N FORTRAN variable names may not start iith A or ‘Qf or with a _
i;£¥;; understruok, AFL variables starting with these characters are
therefore altered to start with 'Y@*, 'Y1', and 'Y2cletter>'
respectivelyf For example, AB would be altersd to YZAB. The nameft

_should be altered to Y1LDEL, say, %o avoid confusion with the generated real

el W

variable name Y1,
It ie slso necessary to shorten long variable names to comply with the
rales laid down by the target language, At the asme time uniqueness of

identifier names must be retained, This is arranged in the following way.

A vector is set aside with one element 10 represent sach letiter of the
alphabet. FEach time a numeric variable name is decoded, amn entry is set up
in the vector. The element corresponding te the initial lettexr of the
identifier name is set to 1. Thus, a:ter scanning the sntire APL routine
(or set of routines) the vector is searched for zero entries. Thaese entries
give letters which have not been used to start identifier names, Such
letters can then be used to start any shortened names. Thers will then be

no confusion with existing names.

In the rare event of there being no zero entries left in the vector,
it ie still possidble to secan NAMES for a combination of 2,3, etc., letters
which have nof been used to start identifier names., The searoh would stop

when a unique combination of letters was found.

The method originally employed for reducing long names is outlined

below. Coneider, for example, the variable name A1234567A ., If it is

%
)
]

et e et et m S s LT

43
known that no identifiers start with 'B', then the neme can be - shortencd

to BA1234 without destroying the uniéuéness eriterion.

All further ocecurrences off A1234567A must be reduced similaxriy,
and thus 'B' has to be associated with the identifier name in some way.

However, the vector element corresponding to '3' must now e szt fo i,

. 80 that no other long names will be shortened to start with 'B';, as

‘this could alsc upset the unigueness eriterion,

This method requires one spare letter for every long name to be
reduced. Thus, if only a few letters are aveilable, these can quickly
become exhausted. A method of aveiding this problem was therefore

gevised.

No reduction of long names cen be done until after the lexical scanning
phase, since spare letters will not be knowm until then. If any one leifer
has not been used to start an identifier neme, then this letter can be used

to start all the shortened names. TFor example, if 'X' is spexe, then

. successive long names con be shortened to X1, ¥2, X3, sto.

. A table is maintained associating each long name with the appropriate

integer. This is done as follows:- If 'X' is spare, and X <o)

" (where {n is any integer) is to replace A1234567A, then locatisn <nd

-of the table will contain the index of A1234567A in NAMES, tries'can

‘be set up in the table as the names are encountered.

This method is still unsatisfactory if no spare letters are availshle,

- Bowever, a far greater number of cases can be handled before it is necessary

to ook for a unique combirdtion of unused letters. The method can e

" made foolproof by reserving a specific letter, say X, to start shortened

- pames ané réplscing each name starting with X by ¥Y3X This refine-

ment has not been done at present, but it could.be incorporated without much

effort.

44
It should &lsc be korne in mind that no non~scalar variable names
are reproduced on the output stream. (Non-scalars are mapped onto
YSTORE.) These can also be used (if not too long) to replace long nares.
The indices of the two names in NAMES would have t6 be associsted. Long

; non-scalar variable nemes need not themselves bs reduced.

2.4 Numeric Constants

The entry set up in NAMES for the constent 3,142 is illustrated in

Diagram 2.4(a).

No restrictions are placed on numeric consiants other than the practical
limitas set by the computer on which the converted routine is to be run. For

example, on an IBM 36¢ machine an integer constant must have a value less

than 231, since the word length of the computer is 32 hits,

L

NAKES

v

Y

L

3 \ . 1 b 2| ~=-=---- J:

T | N

tyre
value
{deoimal) charscters in
Z~code form
number of
charactsrs
(decimal)

Diagram 2.4(2) : Shows NAMES entry for constant 3.142 . |

45

2.5 Literal Constants

These are stored in NAMES with a type value of -1. For example,

the NAMES entry for the literal constant 'AB' 'C! would be as shomn in

Diagren 2.5(a).

NAMES >

nN

R I 7 N T L (S (U

1 R N

type
value

o characters in
(declmaD Zw~code foxm

number of
characters
(decimal)

Diagram 2.5{a} : Showe NAMES entry for the literal
constant 'AB''C? .

The enolosing guotes do not appezr in NAMES and the double quotes

have been replaced by a single quote.

The litersl constant ! (signifying an empty vector) is treated

similarly. The corresponding WAMES entry is illustrated in Diagram

2.5().

46

NAMES

- - - -1 }{ ___________

type

value
(decimal)

b AN
v

—

nunber of
characters
(decimal)

Diagram 2.5(b) : Shows NAMES entry for the literal constant 'f .

2,6 Litera) Varieble Names

If the APL program contains a statement of the foxm
2 ¢ {literal constant >

then Z is a litersl variable name and its NAMES entry has a type value
of ~1 , However, it i1s necessary to distinguish between a literal variable
name 2Z and a literal constant with value 14*. For this reason a two-
dimensional table, LITBLE, is maintained, An entry in LITBLE provides

the following information:

(1) the index (in NAKES) of the literal variable,
{ii) the index (in NAMES) of the litersl constant currently associated with

the literal variable.

LITSLE is acceassed seguentially.

47

Suppose a function has to be applied to a literzl variabls. The
index {in NA¥3S) of the sssociated literal constant can be obtained from
LITBLE. Then the function cen be applied instead to the appropriate

constant to produce the required result.

The following process can we carried out to distinguish between
litcxl'al variapvles and constants., First, teszt for an entry in columm 1
of LITBIE equal to the index of the literal in NAKES. If no entry exists,
the literal is a constart. Otherwiss, it is a literal variable name,
The second column of the LITBLE entry then gives the NAMES index of the

currently assoclated literal constant,

No storage is set aside in YJTORE for literal vectors or arrays.
These are stored in NAMES in row-major ordsr, Entries are set up for
literal non-scslers {at run-time) in the dope vector teble DOFES and in
the array ZBOI\U)S, which contains bound inflormation. The DOPES entry has
two dummy values in columns 3 and 4 (since no storage is required for

literals in YSTORE).
Suppose an APL routine contains a stafement of the form
Z €~ < literal constant 1>
.and later there is a statement of the form
Z « 32,<literal constant 2>,

Then, if <literal constant 2> is not equivalent to ' ', the new constant

essociated with 2 requires a larger NAMES entry. Tt is thus necessary to

{a) create a mew entry in NAMES giving the new value of 2,
(b) update column 2 of the LITBLE entry for 2Z to point to the new
agsociated constant,

{c) update the ZBONDS entry for % .

C =114]-1]-1 —?\—1 1 Z‘X‘Y

NANZS

”~

Diagram 2,6(a) :

w

Shows a possible structure of NAMES
before garbage collection

- -

A

"

Diagrem 2,6(b) :

o

NAMES

Shows the corresponding structure of NAMES
after garbage collection

48

I the above process is repeated a number of fimes, a garbage
gollection mechanism may be needed to retrieve unused space in NAMES.
Entrielas no longer required can be set to -1 . The second byte of
header information (giving the number of characters in tne identifier
name) must, however, be retained. This is reguired so that NAMES will

51111 be scanned properly.

The garbage collection procedare 1ls only carried out if there is
insufficient space left in NAMES to add a new entry. Botries containing
~1's in the character parts can be removed and subsequent valid entries
shifted along., It iz also necessary to updste the NAMES indices for
valid entries which have been shifted along. 3uppose, for example, that
NAMES was set up as shown in Diagram 2.6{a) . Then, afier garbage colle

tion, the structure of Diagram 2,6(b) would be obtained,

A table is maintained to associate the correct NANES index with the
non-scalar XY and all subsequent valid NAMES entries.
2.7 TFunction Names

These are stored in NANES with a type value of -2 , For example,
the NAMES entry for the function name FN would be as shown in Diagram

‘2.7(8) .

NAMES

v

- |2 | 2]F | K e e m— e

Diagram 2.7(a) : Shows NAMES entry for the function
name FN .

49 |

c-

50

The “reatment of function definitions is discussed in §2.12 and
in Chapters III znd IV . Function calls are also discussed in Chapiers

IIT and IV.

2.8 BEmpty Vectors

These are vroduced as a result of expressions such as g, ' !
b

£ <scalar >.

A varieble name whose value is currently an empty vector is stored

in NAMES with a type value of -3 , Suppose an APL routine contains code

I3

of the form
Z — g e (o)
1
r
3
72 — 2,X ' oo (B)

where X is an (m#n) matrix. Then, when (b) is handled, an entry hes
1o be set up for Z in DOPES. The NAVES entry for Z must also be
updated, that is its type value should be changed from -3 tc 1 . These

changes teke place at run-time of the converted routine.

_2.9 Label Names

These are stored in NANES with a type value of =4 ., Each line in an
AFT, routine has an implied label number aﬁsociated with it. Entries are
set up for these implied lebel numbers in NAVES, The method owf associating
a label numbex with every label name is discussed fully in Chapter VI ,
The lebel number is used in the output stream wherever the correspon&ing
label neme epperrs. This process is vequired because FORTRAN allows only

label nuabers, not label names.

51

2.1 Constant Veciors

These are stored in NAMES with a type value of -5 . Thus, for

example, the entry in NAMES for the constant vector

3. 4 2.39

would be as illustrated in Diagram.2.16(a) .

-~

NAMES 4

el | e fe] de] |

T Z-code Z~code Z-code

type

value

{decimal }
number of

characters
(decimal}

Diagram 2,16(a) : Shows NAMES entry for the constant veetor
3.1 b4 2.39

The number of elements of (as distinet Frem characters comprising) a
constant vector can be obtained by applying the function NOUNV +to the

.index of the vector in NAMES.

2,11 Gommentary

VWhen a conment is encountered in an APL routine, a temporary entry is
set up in NAMES. Such antries have a typé velue of =6 . APter production
of the comment line in the target language code, the NAMES entry for the

comment is Y"removed" (by setiiing the relevan:t parts to ~1's) .

52

A new NAMAES entry is set.up each time a comment is encountersd, so
that a comment entry in NAMES can be "removed" when coupletely hendled

without testing for occurrences of' the seme comment elsewhere,

A NAWMES entry for a comment always has the nunher of charagters part
set to 79, i.e. the entire line (except the first chavacter) is regarded
as the operand for the monadic lamp-comment operator. Blanks in & comment

line thus have no significance.

If necessary, garbage collectlon is used to retrieve gpace in NAMES.

fhe method of retrieval is &sscribed in §2.6 .

2.12 Use of the 'DGL' Jymbol

One of the first tests made on an APL input line is for the occurrence

of ‘a 'del'! symbol at the left-~hend end of the line, This can mean;

1. a function definition header statement,
2, a closing 'del' on a line by itself (signifying the end of & function

definition).

For (2), a single entry is set up in NOLINS, This entry represents

the negative of the closing 'del' macro number,

Function heesder statements deserve special mention. Entries are set
up in NAMES for each identifier in a function header statement. The

function or subroutine name has a typs value of ~2 .

If a leocal variable name occurs, the fact that the name is local to

a specific routine is taken into accourt in setting up NAMES eniries.

Yor example, caonsider

YV R ¢— X TK B

The variable ¥ in funciion FN is inaccessible during processing

of function I . A1l referenccs to A in funetion F are taken to mean

the local verighle nams X .

This is simulated in the following way in setting up NAXES entries,

During the lexical scan of function IN, one entry is set up in IMAMES

corresponding to X o+ During the lexical scan of function F, a naw
entry is set up in NAMES for the local variable name X and the previous
oceurrence is "locked". That is, it is inscceszible during the lexiosl

scan of function F .

When the second NAVES antry for X is no longer required (after
complete vrocessing of the second olosing 'del' symbol), tha relevant
parts are set to -1's in preparation for garbege collection, The second
MAMES entry is thus "removed". The first entry for X must then be

Manlocked!.

Locking and unlocking is done as follows. ‘then a local variable name

is encountered, a new entry is sct up in NAMES., 'All previous occurrences
of the identilfier name ars locked by sioring the appropriate MAMES indices

in the array TNLOCS. During a scan of NANES, 5NLOCS is searched if a

54

match is found. I an entry in FNLOCS equals the index for the matching
entry, the search is resumed uniil an unlocked occurrence (ore for which
no entry exists in FVLOCS) is found, If no unlocked entry exists, then

a new entry is added to NAMES.

To unlock an entry again, the corresponding entry in FKLOCS should be

set to zero.

Now considar the exempls,

VR & A FN B; X
t
L}
i
v)
VRBR&E& F Y 5 X
t
1
t
v

During the lexical scan of function FN , an entry is set up in NAMES for
the local varisble X . This entry is "removed" (by setticg the relsvant
parts to ~1's) when the first closing 'del' symbol has been sompletely

procesaged,

Similarly, for the varlable X in function F. After complete
processing of the second closing 'del’ symbol, no entries exist in NAMES

for varisble X . This is in sccordance with the usage of the variable X.

Local variable name indices are stcred as they are met in the array
LOCAL., Thus, the appropriate erntries caen be 'removed" later when they
eve no longor reguired. A second array, LOGS; is maintained to provide

the number of entries to be "removed" et a particular time, For example,

A -

consider

55

VR ¢— 4 ¥N B3 X;Y; 3

VR&- F I;C

(=}

!
v

Then LOCS(1) is zet to 3 and LOCS(2) to 5. The difference hetwean
successive enbtries in LOCS gives the number of local variable names to be

"romoved" after complete processing of a particular closing 'del! symbol.

The locking and unlocking of local variables in this way is similar
in concept to the use of the nrame-list table used in some ALGOL 68

4).

implementations, (see Randell and Russell

A number of other values have to be stored {o be re-azccessed during

the code generation stage, These are:

i) Tor functions only (not subroutines} ths result variablc index and
¥ / v

the arrsy neme index must be retained. These are stored in array

FNIND. Consider the function

VR ¢« A FN B

R4$&— A+BY

where R, & and B are scalar.

Then code of the following form is generated:

56

FUNGIZION =M (4,B) e {2)

R = A+3B eee (B)

N = R een o)

YRITE (6,18%) ¥N veo (d)

193 For¥AT (41X, G 12.6) ees (€)
RETURN ' eas (2)

END | ce (&)

By storing the appropriate varisble neme indices at lexical scan time,

lines (c) and (d) can be preduced at code generation time.

(ii) If a specification arrow is detected in e function header statement,

an indication of this mugt be stored so that the correct code can de

gonerated. TFor example, the code corresponding to

VA Fi B

R<— A+BY
would be of the fomm

SUBROUTINE FK (4,3)

R = A+ 3B
RETURN
END

Tt 1s the absence of the left specification arrow from the funstion header

whioh results in the generation of code different from lines (a) to (g)
abové. The array NEXP is used to retain an indication of the presence
or absence of a left specificatlion errcw until code generation {macro

expanslon) time. Entries on NEXP are:

{2) 1 for function header

(b) & for subroutine headex.

57

Successive NEXP entries are accessed in turn during code gereration,

ensuring that correct code will be produced.
(iii) Now consider a subroutine with non-scalar parametars. For example,

VR BT A

R ¢ A+BYV

where R and A are non-scalar, and B 1is a global scalar. Then the

code generzted iz of the form

SUBROUTTHE FN (ZF, 2ZF2)

¢ Start of loops for array access>
CALL, FINDA (==vm ZF2 wr== Y woes)
Yn+1 = 'Yn + B
CALL SYECS (ZF1, T)

<end of loops for array aceess)

RETURN

D

The suirouiine SPICS hendles the non-scalar specificaticn.

Corresponding to & call of the funetien I, for example
c ™ D ,
code of the following form is gendrated:

2P = cindex

ZF2 = Dindex

N (zF1,282)

P = o
whers Ci‘ndex = NAME3 index for ¢€

H

NAMES index for D

Dindex

58

From the above it can be seen that the position of a parameter in
the persmeter list is Jjaportant. The use of ZF1 or 2ZF2 1s determined
by position in the parameter list. The indices of parametfer names are
stored in the array FKPARM preceded by an integer giving the number of
parameters (@, 1 or 2) .. Thus, at the code production stage, aftexr
lexically scamning a set of routines, the position of specific parameters

in a function oz subroutine hsader can he obtained.

If a user oF the converted subroutine FN, above, wishes to eall FK a0

wlth parametcrs ¢ and D, a8 knowledge of the NAMSS indices for C and
D 1is required. The contents of the array NAMES sre made available to

the user, Care should be taken, however, to snsure that NANES is nof

accidentally over-written. If the user can supply at conversion time a

list of 211 the calls he intends to make of subroutine TN, then these can

be treated as & main program zrd converted to FORTRAN automatically., This

would remove the necessity for the user to access NAMES. Such actioen,

however, will not genersally be possible, ZEntriss are not set up in

NOLINE for left specification arrows, semi-colons or local variables

appearing in a functicn header statement, Thus, for example, corresponding

to B

VR«— A FN B;C;0D i

entries would be set up in NOLINE for ¥V , R, 4, FN and B only. Similarly

for

VFX,

NOLINE would contain entries for & , ¥ and X . i

CHAPIER TIT

RIGHT-TO~LEFT 3CAK AMND PRODUCTION

OF INTERMEDIATE CODE

At this stage the contents of NOLINE, together with certain other
variables, have bean 3tcred on megnetic tape flor each APL line supplisd.
The contents of NOLIWZ, corresponding to cach AFL line,'ara now processed

in turn, The entire process involves:

(i) a right-~to~left scan of ﬁOLINE end production of intermediate code
. in the arrey NCIDE,

(i1) & left-to-right scan of NCCDE with frequent interruptions to expand
macros,

{iii) generation of code using a series of mecro expansions (the order of

the expansions arranged in (ii) ¥,

Stages (i) to (iii) are cerried out for cne lire in entirety bvefore the

next line is considered.

A diseussion of (ii) is deferred until Chapter IV, and of (iii) wntil

Chapter V. This chapter describes stage (i) in detail.

The object of this phase is to separate the APL code into its gomponent
sub-expresaion;. This is done in such ; way that all macro expansions
(corrssponding to specific cperators) will be cerried out in tho correct
order in the subseguent phaze. The.priorities of the APL operators will

therefore be preserved, and code will be generated in the required order.

Since oFL has a right-to-left system of operator rpriorities, this scan

is caerried out starting from the right. Brackeis are intreduced during this

sean in suck a way that the operator prioritiies are preservzd, For ex=uwpls,
A «— B4 C=*D

is transformed to
(4 ¢— (B+ (€*D)))

during the right-to~left sean. In the subseguent left~to-~right scan, thers-
fore, the operators will be applied in the order *, 4, ¢— . The organ-

isation of' the macro expansions is described in Chapter IV,

At this stage the entire APL routine(s) has/have been lexiczlly scannegd,
and the output stored temvorarily. Zach lexically scanned line is then
re-accessed in turn, starting from the right. As each line is processed, an

intermediste code form is set up in the array NCODE of 2€3 charaoters.
The overall process so far is given in the flow-chart of Diasgram 3(a}.

Information may have to be added to either e&d of NCODE during the
right—to-lef¥ scan, due to the insertion of bracketing. Hence, ths production
of intermediate code in NCCDE starts rear the middle and gradually extends
outward. fThe actual starting position is 162, since most information is
added to the left.) Two pointers IFIR and RFIR mark the limits in ezch

direction and these are initially set to 167.

The subroutine baslic to the righit-to-left soan is NOHAR. This stores

the value of ths next characlor in the variable LOHAR.

If LCHAR has a positive value, then it cepresents the left-most part
of an identifier index. Suppose, for example, that the variable X has
index 27 in ¥AMES. Then tac two paris of ike eniry must be raversed vefore

they are placed in the inlermediate code, This is illustratsd in Diegzram

3(b).

61

C=)

v

read line of APL
into array LIEE

w

N

. Lexical scan] E
T of LINE .

l

Store output (NOLINE +
some variables)
temporarily

ast lin
L ¢ Mo of AFL
code?

Yes

~

~

aceess stored
cutput for
line

right-to-
left ascan

production of
intermediste code in
NCODE

processes Lo oe
described later

Disgram 3{a) : Flow-chart of processes dsscribed so far,

62

OUTEUT ¥ROM LEXICAL SCANHING PHASE (NOLINE)

_____ 27 ﬂ - = =

<

NCODE

A

Diagram 3(b) : Shows the process carried out on an operand
’ entry when transferrsd from NOLINE to NCODE.

§ 3.1 doscribes the treztment of 2 few special symbols during the

right-to-left scan, TFunction and subroutine refergnces are discussed

in§3.2 .

. - 63
Operator entries are transferred straight from NOLINE to the inter—
medicte code,
Three distinct types of bracketing are introduced:

1. bracketing of monadic operations,

2., Dbracketing of dyadic operations,

3. bracketing of function calls.

Thus, for example, the expression ; .

I A+ Bx»-FN X

would be bracketed as

(a+ (Bx(-(FNZ))))

Howevar, it can ba seen that the number of)'s on the right-hand side can
be grsat, Hence, a single entry is uwsed to replace a large number of

brackets.

Opening round brackets are represented iz NCODE by the negative of the

macro number for (, Single }'s are represented similarly,

¥acro numbers range from one to ninety-two. However, certain macro

nurbers (including numbers 84 onwards) do not ocorrespond to specific
operators, see Appendices 2 and 3. fight bits are used to represent an

‘operator entry in NOLINE and NGODE. Thus corvesponding to macro numbers

1 to 83, there will be entries in NOLINE ranging from 17% to 255. Ths ﬁ
left-most eight bits.of an operand entry will slways have & in the left-

most blt position, as NAMES has only H@BL bits., No confusion will arisa,

therefore, if multiple closing brackets are represented in NOLINE -and NCODE

by (464 + n), where n is the number of closing brackets (up to a maximum
of 12}, More than 12 closing orackets can be represented by multiple

entries of the form (16@ + n), where n %12 .

64
3,1 A Few Speclal 3ymbols

Speoial care must be taken for some symbola, These ars:
(i) t~:]] (and)
' {i1) 3 1inside =sjuare brackets
{iii1) 3 outside square brackets

(iv) 3 and W , inner and outer produots.

3.0 L,3, (ana) -

3 It ie posaible for a complete sub-expression, or set of sub~sxpressions,
to appear within round or square brackets. Hence, it is necessery to leave
a Tew locations of NCODE empty so that)'a can be inserted if required,

Coneider, for example,
(A+Bx%x0) -5
The abéve expression is bracketed as
{((a+(Bxc)) ~E).
An extira closing bracket has heen inserted here between € and) .

The numbsr of brackets %o be inserted is, of oourse, dependent on the

APL étatement, and space has been left to insert up to 6%12 closing brackets.

.The values of the right and left pointers for NCODE are thus updated

as followss

EUCEROREHIN § k]

RPTR = LPTR - & o o (2)

LPTR = RPIR - o ves (D)

(By altering {(a) 5o RPTR = LFIR - ¥ , space can be lef't to iasert up to

N closing brackets.)
The effect is represented pictorially in Diagram 3.1.1(s).

It is also necessary to store the criginal value of RIPTR to enaple
subsequent ¢losing brackets to be lnserted in the correct place after the

bracketeé excression haas been dealdt with, For example, considexr
L+ (B*C4+ E) -D
The reguired breckelbing is

(a+ ((B* (C+E)) ~D))
Production of brackeling is done in the following order:

(1) Obtain D and then - ., Imsert closing bracket after D for =

(ii) Obtain) . Reset LFTR and RPTR as described above.

(iii) Ovtain £ and then + . Do nol insert) after E as) is

aiready present.

(iv) Obtain C and then % ., Insert ({ for + before C and)

between B and) . (Spaces have been left in NCODE.)

() Obtain B and then (. o meed to insert (for * as (is

already present. Reseit RFTR,

(vi} Obtein 4+ . Insert +(din NCCDE, The { corresponds to
bracketing of the =~ operator and its operands. Mow ingert)
left-most + symbol. MNote that thisz) dis inserted alter D)

not efter %y, since RFTR has been reset to its previous value.

(vii) Obkain A . Now insert (A in MNOOUR for the left-most + .

-

66

LPTR RPTR
N4 l
intermediate
cade
¥ N
LPTR
RPTR
. intermediate o
. code
T -6 M N

Intermediate code will now Further closing brackets
be produced from position may have to be insexted
M-6 downwards, with brackets after position N when
(possibly) inserted in locations the whole braciceted
¥-6 to M-1 oxpression has boen handled.

Shows the ra-positioning of the R
pointers LFTR and RPTR for NCODE ;
when a) is encountered.

Diagram %.1.1(a) :

(vii)

€ T e -l)| -
"""" me
j?TR RPTR
(1) | e mmm-- - yl-10 1) ---l
o
T.
LPTR RPTR
1
(141) | - - - +] B y[-1 » [)] —
TS
L
LPfR
() | -m--- - SRR -] » {){ —-
-1
LE?R RPTR
) ao=t (] BH(] o {4l 2D)_D>“-1
T
LYII,R RPTR
(vi) -4 G B (] e el ED M)t 2 D]
1hg
i
d atsldd sl elsl 2D)-ni)’)r‘

Diagram 3.1.1{b) : Shows stages of production of intermedlaie code
for the expressicn

A+ {B*C+E) - D

67

R T e P o o

68
Diagrem 3.1.1(b) shows the contents of KCCDI for steges (i) to (vii) above,

In fact, & stack of RPTK values has to be mzintainzd to allow for
nesting of brackaeted expressions. 4 value is stacked when) or } is

recognised, and is unstacked when the correspording { or [i3 obtained.

Any locations of NCODE lef't unused ty the above method are sct to 164,
This distinguishes them both from identifier indices (having value <127 in
the lsfi~most half) and the negatives of macro numbers. Such eniries are

ignored in the left-to-right scan of NCCDE.

3.1.2 Semi~-colons inside squars brackets

Semi-~colons are used dnside squars brackets to separate the subscript
eXpressions. Since the subscript preceding a semi-colon can be an expression,
it is again necesgary to leave space for possible insertion of elosing cound

bracksts,

The nunher of semi-colons ercountered in this way has to be sounted so
that the requived number of RPTR values will be unstacked when [is obtained,
The numbsr of values to be unstackad in thls caze is (1 + K), w~here X is

the number of scmi-colons encountered.

Agein & stack of semiweolon counts is meintained %o allow for nesting

of subseripted variables.

3143 Semi-solons outside syuare brackeots

Semi-colonas are uscd oubside squarc brackets to separate the components
q ¥

of a heterogeneous ouiput stetement. Their other use, in function ox aub-
5 2

routine definitions, is discussed in §3,2) , Again i% is necessary

spece in NOODR to the left of the semi-colon to allow)'s 1o b¢ insarted

there. Consider, for exemple,

ts A[n+c]; '18 T wRITLY

The required bracketing is

craf+c)])y s '8 =z rzsULY

\

space reguired for insertion of) .

In this case, however, the righi poirisr is not ressv when znother semi-

colon is cbtalined, as no further brackating is reguired to the right of the

semi-colon, Thus, the stack of RPIR valuss need not be updated. Howsver,

this stack is updeted in the nermal vizy when [end 1 are obvitained,

IS RSN D,C‘, Innzr and guver droducts

The hendling of all these operators iz mueh simplified by the aciion of

the lexical scan.

[] and m have alresdy been distinguished in their uses az input or

output operators. Used for cutput, D and D are now treaited as ordinary

monadic operators,

D and E used for input 2re dracketed es operands, but stored eas

operators, (i.e. a 1-byte negetive enmsry is placed in NC DZ). TFor ezannle,

B« []

is bracketed as (B ('—]) s whercas

[[] e— rrroras

is bracketed ss ((Jrrrorzt) .

Tnner and outer products have zlso been Jeiscted duriang the lexical
scanning phase. Thus, for exasple, A« *X and B ¢, 4+ ¥ are

brasketed as (A4 . ¢ X) and (B o4 ¥) respectively.

70

A3 other multiple uses of symbols have been distinguished during the
lexical scanning prhasze and hance present no problems during the right-—

to~ledt scan.

3.2 Punclion and Subroutine Relzrences

These can be divided into two groups:
(i) function end subroutine definitions
(ii) function end zubroutine calls.
The actions reguired for (i) and (ii) above are discussed in §3.2.1

and §3.2.2 respectively.

3.2.1 Munction and subroutine definitions

If a function oxr subroutine definition is encoundered during the
lexical scanning phase, the varisble IFUNCT is sebt to 1. The value of
this veriable is stored with the othex lexical scan output to be rezccessed
line by line., The values of the variables IEXP and TIE¥NI are also
available. IN4® has value 1 Pfor g function definition headsr statement

and value @ Por a subroutine definition header statement.

IFNT gives the number of variable names encountered in a definition
staterent, excludiag local variables. Thus, for example, IFNT has wvalue

Zfor VA FH B ; ¢ and value & for V Re~ X TX ¥ .

The treactment of local variables in a function or subroutine definition
statement has been described in Chapter IT, § 2.12 . Yocal varigble names
are not present in NOLINE (corresponding %o a header statement), Similarly,

the syibols €— and ; have been removed.

71

Thus, it is only necessary to inserl brackets round the remsinder of
the expressicn. The symbol 'del! used in function or subroutine defin-~

itions is thercvedter ireated as an operator with a variable ruaber of

opersnds, Foxr exsmple,

VA & B FI 3D

is brackseted as
(VL 3 1 €C)

while,

Ve X

is bracketed as

The variable TEXP is tested during expansion of the opening 'dsl!

macro to determine whether the code

FOHCTION « =~ =

or

SURRCULINE - - -

has to be produced.

3.2.2 Function and subroutine calls

v These are treated =2s mulbtiple operands and are bracketed during

production of the intermediate code. For exzmple,

C < A+PN X

72

is braclketed as
(C ¢ (a4 (@uZY))

WMo distinction is made at this slage between function and subrouwtine calls,

3.3 Functisn Bodies znd Tunction Paramctors

Function or subroutine bedies ars treated in the normal way except that
the variahle IDEL dis set to 1 if' 3 closing 'del' is ob¥ained. It does
not appear in the intermcdiate code, dbut is tested when a line has bcen
completely processsed to determine whether the closing '3el' macro has to

be expanded.

It a function paramctexr is itself an expression, the expression is

dealt with in the usuval way. Thus, for example,
(1) (&4B) FN ¢ 1is bracketed as ({(a+B) PN C)
(i1} A Fr B4C is bracketed as { A BN (B+C)) .

Tn the case of (i) it must be remembercd that the number of identifiers
obtained before (A+B) wes 2. This is necessary to keep the bracketing
correct, To organises this, & stack is maintained with valuszs either 4 ox 1,
depending sn'whether the oracketed expression is the left parametesr of a
function ¢sll, The stack is necessary to kandie nesting of bracketed para-

meter expressions. For example,
((@B) T C)YF X,

A similar situation applies for subscripted lefi parzmstors.

|
3.4 An Bxauple

To couplede Chapter ITT, an exemple is given showing the convergion of
‘a line of ASL code to intermediate cods form.
EXANPLY 3.4(a) .

Consider the AFL statement

4 «— 3slcaD*E] 7N X .

The APL line is first read into ths array LIOE and then scanned from left
to right, During the lexical scan, entries are set up in KANZES end NOLIZE

&5 desoribed in Diagram 3.4{a) .
It has been assumed that

(i) B is non-scalar, FN is a function name and all the other variables

are scalar,
(ii) 14+ 19 €128 (making the other yart of the operand entry zero).

The variable NOLPTR now has value 19. The array NOLINE, together
with the values of varizbles NCLPTR, TFUNCT, IEXP and IFNI are now

stored until the entire source inpud has been lexically scamned.

Vhen resccessed later, the array NOLINE is scanned from the right and

the intermediate code shown in Disgram 3.4(b) is gensrated in KCODE.

farmm

In fact the variable names would not be stored sequentially in NaZS

as some of these entries wmust have been encountered previousiy.

A comparison of the bracketing method and the reverse polish method

is given in Appendix 6.

73

G sl ite N e ea b st teine.s S

74

1 NAMSS

&
[\

e B A1 IB[B 1 |C{A|4{D|AIVIE PIN(AHt X} mm

I j l
entry entry entry entry entry entry entry
for A for 3 for C for D for E for FN for X

PN
Vo

NOLIXE

il @ |-31is3] B +62|1i+6| B|-24|349] £ -25ii;12 P {-534xi9 4 En9l 8

NOLPTR

The most significant character of the operand entries in NOLINE;is

at the right.

Diagram 3.4{a) : Shows the entries set up in NANES and NOLINE
for the expression

A ¢— B[CsD*E] BN X

148

—— ey | g i =3 [=64 | B | ie3 | -62 | -64

If . 158

' a6 | -2] -6y | B |9} 25 | B |is12 [162

168

63 B 1isi5 £ 1i#19

+162

Diagram 3.4(b) : Shows the entries set up in NCODE
corresponding to

a¢— Ble] mrx g

CHAPYER TV

LEFT-20-RTGHT SCAN, PRODUCTION CF STACKED

INFORMATION 4D ORGANISATION OF MACRO EXPANSICNI

The object of this phase is to expand a series of maeros, the order

being deicmined by the brackels inserted during the previous scan.

Macros are mainly expanded on recogaition of a eclosing round bracket,
althougn there are a few macros wnich require immediate action. These

immediate action mecros are discussed in detail in §4.3 .

During tzis phase also, some informastion is produced on a stack. The
stack 1s accesgible from.the meero bodies by means of the macyo instruction
> , where <m» is any integer .<_ 509 . <D .accesses the <n>th
position of the stack, starting from the current tase lsvel, The organ-

igation of thz stack is descwibed in 34.1 .

The character array MNCODE contains the intemediaies code produced during
the rvight~to-lef't scan. This code is now scatmed from lefi~to-right and
information felating t0o operands and operators iz stacked in the maoner
described in §4.1 . The pointers RPTR aﬁd LPIR define the positions to be

scoessed during this scan.

The symbols (and) are used to bracket 3 distinet types of

expressions., These aTes

(1) dyadic operator sub-expressions
(11) rmonadic opsrator sub-expressions

(iii) function calls.

As was discussed in Chapter ITT, all operators have baen replzced by
by the negatives of thelr macro numbers and ell operands by the indices of

thedr NAUES entries.

In the cese of (iii) above, the operand indices appear in the same
order as the identifilers were used in the source text. The operands
could, of course, be expressions, in which case they would fall individ-

ually into one of the categories (i) to (iii) above.
Sub~expressions of iypes (i) %o (iii) can be combined in any order.

Groups {i) and (ii) cen be distingushed by examining the mecro
number. Group (iii) is distinguished from the others by the absence of
an operator eatry between the brackets. The organisation of msero

expansions is described in §1.2 .

el Qrganisation of Stacked Information to be Used at

Macro Zxpansgion Time

Information relating to operands and operators is stored on g doudble-

77

ended stack ID3TK, Thaving 500 half-words, Entrics relating to identifiers

are stored at one end of IDSTK and inf'ormation perteining to operators at the

other, This is illustrated in Diagram 4.1(a) .

With the excepiion of operators reguirirg immediate action, an entry
is placed on IDSEK each time an operator or delimiter entry is detected in
the scan of NCODE. Thne entry to be stacked is the macro numbver for the

eperator or delimiter.

When an identifier eniry is recogunised during the left-to~right scan,

the NAMES index for the identifier is atacksd on IDSTE.

In general, there will be nesting of the sub-sxuvressions corrzsponding

78

IDBTR TOFTR
v R
IDENTIFIER CPERATOR
. 3 — ..
INFORNAPION TNF ORMATE G
¢ ipsTK >

TLFIR is stack pointer for the operand end of IDSTK
IQPTR is stack pointer for the operator end of ID3TK

Diagram 4.1(a} : Shows the method of storage of informatioa
on ID3TE.

variable number of

locations containing

. operand information IDLPER = p

P n

index of operand

n m

Diagram h.1(b) Shows a possivle stzck formation for operand

entries in a nssted sub-expression.

to an input APL line. Thus, there m=zy be szeveral sets of operand and
operator information on IDSTK at any time, This causes no confusion for
operators, as it is only'ﬁacessary to stzck 2 new operator eantry when
required, However, confusion can arise in the case of operand entries,

for the following reasons.

Suppose operznd and operator entriss ars siacked as they occur until
a closing round dracket ia Cetected. A series of macros is then expanded,
There is an "operand" macre whick, when expended, will produce the rsguired
code for an operand,'depending on its type vzlue. The index of the
operend from which code is to be generated by the operand macro expansion
has previously been stackod on IDATK, together with some Further information
relating to the operand. Tais information i1s discussed in$ 4.41.1 and may

invelve a variable number of lacations of IDSTK,

If a dyadic operator subesxpression hass been decoded, then expension
of the operator macro is precedsd by two expansions of an opsrand mecro,
one for each operand. For monadic operator sub-expressions there iz one
expansion of an operand macro followed by expension of the appropriate

operator macro. {Bracksted funciion calls are discussed in §4.2 ,)

When cods has been generated for an entirs sub-expression, opsrator
entries are merely unstacked from IDSTX, Operand information is repiacsd
by information for the result, Since the amount of inflormation to¢ be
replaced is variable, confusion can result in the placing of the result
information, This is to be avolded, as the result information will bte
used as operand information during any further sxpansions of the operand

macio. The method of avoidinz suech errors is discussed below.

A pointer IDLPIR js maintzined to =nablzs ooly the xelevant psrt of

the operand informavion to be ac2essed at any time. IDLPIR is initielly

zero. The start of a new nested sub-expression is detested by the presence
of a2a opening brackst in tho intermediate code. The muthod of separating

the new sub~2xpression from the previous one is as follows:
1. the value of IDIPIR iz stacked in the operand part of IDSTK
2, IDLPTR is then updated o the value of ILPIR.

Thﬁs,»if IDSTK (IDLPYR) is accessed later, the previous value of
IDLPYR can be obteined., 4 set of baclward pointers for ID3TK is thus
produced., These pointers define the stazrt of the relevant information
for specific sub=-oxpressions. The appropriate opzrand information is thus
always obtainzble at macro-expension time, The starting position for the

placing of result information is also known.

After a complete sub-cxpression has been dealt wiih, IDLPTR is set to
its previous value (given by IDSTK (IDLPTE)). The stack pointer IDPIR
is first reset to the old valus of IDLFTR and the result information placed
in this posifion. The stack pointsrs are reset and the resuvlt information

stacked in the following order:

1, IDPTR = IDLPIR

2, IDLPTR = ID37K (IDLPLR)

3. IDSTK (IDPTR) = < result information’ .

This is illusirated in Diagrsm 4.1(b) . After dealing with the sub-
expression whose operand information is on top of IDSTE, the pointers IDF™®
and IDLPIR are reset. IDPTR is set ta P, +he valus of IDLPTR, and the
result information is placed in IDSTK. (P} . 'The pointer IDLPIR is reset to
n , given by IDSTK (xprPIR) . Thus opsrand informaetion will continue to be

added from the current base level of the steck (now n) .

A further illustration is glven in §4.6 , where a complete example ic

worked through.

80

81

he1lat Information stacked before the operand macro is expanded

Operands are handled in the following way at macro expansion time,
The NAMES index for the operand is obtained from ID3%K. This index is
used to provide more information relating to the operand. The form of
the information varies for different typas of operands, as discussed below.
All information is placed in consecutive locatlons above the current base

level of IDSTK.

Let.1e1 Scalar opzrands, labnl nameg, niladic function names, numeric

non-scalars, literals and emply vectors

The information stacked for operands belonging to this group is described

in Diagram 4.1.1.1(a) .

IDSTK (IDLPIR + 1) contains the index of the identifier in NAMES. This

enables the identificr neme to be reproduced on the output code.

IDSTK (IDLPIR 4+ 2) contains the type velue for the opsrand. This

enables all the members of the group to be distinguished,

type velue

NAMES index

- ¢——- IDLPTR

Diagraem 4.1.1.1(a) : Shows the form of opsrand information stacked Tar
scalars, labels, niladic functions, numssic non-
scalars, literals and empiy vectors,

he1e1.2 Constant vectors

The information stacked for operands belonging to this group is

illustrated in Diagram L.1.1.2(e) .

IDSTZ (IDLPSR + 1) again contains the index cf the operand in NANES

end IDSTK (IDLFIR + 2) provides the type value,

IDSTK (IDLFIR + 3) contains the number of slements of the operand.
This is the only czse in which the bounds for a non-scalar are knovm &b

this stage.

n

=5
NANES index .
- | ¢— e

n = the number of elements 1n the constant vector.

Diggeam 4.1.1.2(a) : Shows the form of operand information stacked for
constant vectors.

Laele1,3 Intermesdiate results

The simple structure illustrated in Diagram 4.1.7.2{a) is used for

storuge of intermediate result information.

82

The entry -17 descrves specizl mention, For 211 other types of

e intd

a3

operands, a KAMES index is stacked om IDSTE. However, intermedizte resulils

Pl

are not storsd in NANES and they may appezr 2s operands. A negative entry
is used in place of a positive IFANES index to dlstingaish intermediate

resulis from 2ll other operand types,

~i g

IDLPTR

Diagram &a1.1.3{a) : Shows the form of operand information stacked
' for intermediate results.

betelsdy Mongdic function and subroutine references

The information stazcked for such opersnds 1s illustrated in Diagram

hatodlai(a) o

IDSTE (IDLIFTR 4 1) contains the NATES index for the function name.
Succeasive locations contain information for the function varameter, these
entries taking one of the other forms described. (ito vew base levsl

is created between the function name index and the persmeter information,)

information for

function pargmeter

function name index

- &~ IDLPTR

Diagram h.1.1.4{a) : Bhows the form of information stacked for
monadic function and subroutine references.

L.1.1.5 Dyadic Punciion and subroutine references

The information stacked for such operands is illustrated in Diagram

kad.1.5(2)

For operands belonging to this and the preceding group, the stacked

information is used to produce a function or subroutine call,

4.1.1.6 GQuad and Quote-Duad input

This case has been included for generality., Consider the APL statzment

A «— B+

Here the "operands" for 4+ =are T and [j . The[] sycbol ia an indication

that the fight opefand for + is to be obtained at run-time. This i3

85

inf'ormation for

right operand

information for

left operand

fanction name indesx

= —— IDLPTR

Diagram %.1.1.5(a) : Shows the Form of stacked information for
dyadic function and subroutine references.

handled by placing a -2 entry on IDSTK corresponding to [] .

W¥hen the + operator is to be hendled the operands are deeli with
first and the =~2 entry is deizcted. This indicates the presence of
guad input and the eppropriats macro is expanded to read in data. The

data obtained is then used as the right opefand for + .

Similerly, quete-qued input is indicated by placing & ~1 " entry on

the identifier part of INSTX.

1
:
__j
:

86

42 Orgapisation of Macro Expansions

It is necessary to distinguish hetween bracketed sub-expressions and
bracketed function or subroutine calls at macro expansion time. The

following method is used.

For each level of nesting an indication has to bs stored of the presence
or sbsence of an operator vetween brackets. A charaster stack IBITS, with

stack pouinter IBIY, is thercfore maintained.

Since an opening bracket indicates a new level of nesting, IBIY is

ineremented by 1 when { is recognised.

If an operator entry is encountered, IBITS (IBIT) is set to .TRUX, .
Ween a closing round bracket is obtained TI3ITS (IBIT) is tested, If its
value is found to be LTRUE, , a sub-expression dnvolving an operator bas
to be hendled. Otherwlse a function or subroutine refersncs has to be
produced, Af'ter dealing with the bracketed expyression, return is msde to

the previous level of nesting and IBIT is decramented by 1.

¥hen oﬁtput code is being produced, it is accumuleted on an arrsy
MTZMP of 8F characters. If a line of code has been completed, the conients
of NIEYP are transferred to the outputb étream. Intermediate result code
generated at macro-expansion time is stored in the array ITENP. It can
thus be re-obteincd to be used as an operand for the next operator masro ta

be expanded, MTEMP can also be used o sccumulate the next line of code.

ITEP is a character array of LZF bytes, znd it is used Yo store the
code correspending to cach operand. There is & pointer IEPIR, which is
used to chain dows ITEWP to obtain ihe réquired operand. ' Only the last
two operands need to be accessed a2l any stage, asince an APL operator has a

maximum of 2 oparands.

ITEAP (IBPTR) points 1o just before the start of the right-most operand.

This address in turn poinks to Jjust before ine stert of ihe previous operand.

The dats structure used is described pictorially in Disgran 4.2(2) .

IBPTR is thus a pointer for a tackward chain, which enablas the operands
0 be ra-azeecessed when reguired. Using the a&bove method of siorage and
access for operands, iv is imraterial whether the operand is en identilier

or an intermediate resuvlt.

tthon an intermediete result is placed in ITEMP, a —i$ ontry is stacked

on IDSTK.
. T
N operand operand
1 2
IBPTR
€ ITENDP >

Diagram 4,2{a} : Shows the method of storage of intermédiate
results in ITE:P,.

For & sub~cxpression involving en operator, the usual procedurs to he
2

carried out when) is obtained is described below.

1. The appropriate aperand information is stacked as described ind 4.1 .

2. An "operand macro' is expanded. This uszas the stacked information to

roduce the code corresponding to $h: operend a2nd store 1t in ITEHP.
B p a X

88

Use of an opcrand mecre to produce code Tor operends removes the
necesaity to test identifisr types in the operator macros. e
operator macro bodies crc consequently much simpler, Two operand
macros are used, deprending on the operators to be handled. Thess

and other mecros are discussed in Chapter V .
3. Steps 1 and 2 are repeated for s dyadic operator sub-expression.

4. The appropriete operator macro is now expanded. The required operands
can be reproduccd on MTEMP by use of the macro instructions L0 and
RO ., These provide the lef't opererd and right operand respectively.
The compound macro instructions FPL and FR also access the opersnds end

. produce code of the form
¥< integer » = operand .
These are also discussed in Chapter V .

5, The code for the result is stored on ITEHP and the pointers IBIT,

IDLPTR, IDPTR and TCPIR are updatea.
6. A =18 entry is stacked on IDSTK and the left-to-right scam confinues.

For a function or subroutine referencs, only steps 1,2,5 and 6 are

carried out,

At each stage, the current bounds for ths resuli arz stored in the
axray ZCBIIDS, from positions 1 to ZCPTR. 3ince the bounds can be updated
dynamically, code is always produced to update ZCENDS et run-tiime. This
gives the user o cheek on the curxent bounds of ‘his progrem at each stage

during its executlon.

The type of the result may also vary d;yna-;ni::ally (for examole, ir ths

case of %he statement X ¢ [|) .

89

The variable MAPKRER is used to cdenoic the type of the result, The
posgible HARNAR velues are the type walues for the seven typas of oporand

distinguishked.
The uses of the. sywbols [and :1 in expressions such as

(a) & E‘l] and.
® «/04])x

are distinguished in the following wey. In (a), the symbol [is icmed- _

iately preceded by an operand (it conld also be preceded by a closing round

bracket, for example, in (L,*ABG') [1])} . This is not the case for (b).

A variable ILTFY is used to distinguish (a) and (b) . fThis variable
is continually being updated éuring the lefl-to-right scan., It is sct do
1 when an operand index is encountored and reset to £ when an operztor entry
is recognised. Thus the value of ILEFT can be tested when '[’ 1s

obtained to determine its use.
The action recwired for cases (a) and (b) is descrived in§4.3 .

‘For most operators, the left opersnd is handled before tha right
operand, which will ‘herefors be the right-nmost entry in ITEMP when the
operator macro is expanded. There is, however, one notable excepiion tu
this rule. .In the case of the left spscificatiaon operator, the right operend
must be handled first, This is to ensure that the corrsct type and dimension
infermetion will be cssocitated with the lef't coperand. For exawmple, in the

statement
X&e— 3 4 5

the relevant informaztlor for X cannot be obiained uniil the right operand

has besn hardled.

“(iv) the symbols [and | used to specify a co-ordinate value .

90

When an operator sub-expreasion is recognised, TIDSTK (JOMMR) is
tested to determine the operator, If e dyadic operator is present, the

stack position TDSTE (TOPTR + 1) must also be tested. This address will

have value 67 for an ouiter product (is.+ B is bracketed as (Av+3) and

o is stacked before +). For an iamner product, IDSTK (ToPIR + 1) will 3

have value 71 .

This test enables inner and outer products to be handled by the sane

method. -

 Compound operations, such as +/X , present no difficulty as the
symbol /' will be recogﬁised immediately when ID3TX (INPIR) is tested.

The uses of the‘sﬁmbol /v f{also 'f') for reduction and compressicn

- have already been diétinguished during the lexicel scanning phase, end

different macro numbers ussed for each, . %

43 Immedizte Action lMecros .

" A number of APL symbols reguire some immediate action when they are

recognised during the lefi-fo-right scan. These are:

(€3] I-the symbols { and)

F T T

(ii) symboe used in indsxed expressionsviz.[, 7] and ;

(iii) the symbol 5 wused in heterogeneous output expressions

L.,3.1 The symbols (and) ' _ _ 'j

Racoguition of the symbol { during the left-to-right scen indicates

the start of a new level of nesting. The stack pointers IDPIR, IDLFTR

and I3IT (discussed previously) must be updated.

This ection must be carried oul immediately so that informeiion for
the new sub-expression (or function or subrouiine call) can be stacked,

The necessary action is produced by expansisn of macro rumber 6.

Recognition of the symbol)} during the left~to-right scan indicates
that a complete sub-cxpression (or funciion or subroutine call) can now be
dealt witk., More informzfion is stacked on IDSTK correswvonding to the
identifiers aprearing within Erackets. The relevanf coGe can now be
produced on the outiut stream, This process ncrmally involives the expansion
of & serics of mscros. Opersnd code is produced and storeld temporarily in
the array TTEMP. It is then obtained from ITEIP as required when an operetor

macro is being expanded.

IDSTK and BBITS zre then unsiacksd as described previously and the lefi-~

to~right scan continues,

4.3,2 Symbols uséd in indexed expressions

Consider firstly the code producsd corresponding to the AFL staterment
A ¢~ B[I;T46]41

where A, I and J are scalars and 2 1is non~scalar, The code iz of {he

form shown below.

(1) 28 £

[

(ii) 2ZB1 = ZPOINT (ZPT)

(iii) 2ZPT = ZFT 4 14

(iv) zmoz (231 + 1) = I

(v) 2mDY (281 +2) = J46
(vi) zZPCTID (2PT) = ZB1 + 2

a (vii) CALL s:rgaTs (BNA%S -—)

{vii1) c@L PIHDA -(»-w—-BN‘;LES et S
(ix) ZPT = ZPT =

(x) Y . =. Y

(xi) TF (MARKER.NE.) COTO 120

(i) & =

-

(xiii) ©OTO ¢

Yn.-x-1

(civ) 49¢ CALL 5¥ECS (Ayu, T, 40 -)

() - gt CONTINUE

Lines (x) to (xv) are required so that specifications of the following

types rRay Le handled correctly. ' N

(a) scéalar ¢— scalar expressian
(b) vector ¢— non-scalar expression
{e) =scaler ¢~ non-scaler expression (implies type change’

of écalar)‘-

These lines srt obvious candidates for optimization at a later stage, (see
Chapter VIIL, §8.3) « Note that B, . - is used to mean the index for

B in NAMES. The lines of code heve been numbered for eass of reference.

"It can be seen that no reference is made to the non-scalar ‘B in the
code préduced'until after the subscripfs have been handled and the symbol
¢ cbtsined. However, the index for B is stacksd en its recognition,

In order te avoid confusion when dealing with the subscript.expressioms,

|
i

therefore, a new base level is created on IDSTX when ’[' is obtained,
Lines (ii) and (1i1) are slso produced corresponding to the symbol e,

Some immediate actlon is thus reguired for the symbol 'E' -

fhe symbols ';' ard '}' used in indexing serve as delimiters for

the preoceding subscripts., aen either of the above symbols is recognised,

therefors, the code corrosponding to the subscripis can be nproduced. Afterw

the code for a subscript hes teen generated, the svbzeript infomiztica ~en then

be unstacked. Any further subscript information obtained can be stacked in

turn on IP3TK, sterting from the base level set up when 1 was recognised.

Line (iv) is producsd whsn ';' is obtained, while lines {v) to (ix)}
are produced when ']' is recognlsed. I% can be seen that part of the
action required for ';' and ']' is the same. Some additional ection is

required for '}' since it delimits not only a subscript expression, but also

the complete indexed variable.

The code Y<integer> is storsd on ITHUP to be used as & parameter Tox

the 4 macro, the next to be expanded.

Return must be made to the previous vase level when ar indexed exvreszion

has been dealt with. The result 1s an interwmediats expression and the value

~18 is stacgked to indisale this typeo of operand, However, in this case the

value ~12 should overwrite the non-scelax index in ID5T%. ;

Thus, all three symbols, '{‘, s ']‘ s, are handled by sxpansion of

immediate action macros. he astion roguired for sach is outlined below.

The symbol '['

1. Produce code of the form showa in lines (ii) end (iii) above,

2. nerement IT3IT by 1

94

3. Increment IDFTR by 4

4, Set IDSTK (IDPTR) = INLPIR
5. Set IDLPIR = IDPOR
Ihe symbol 1:'

1. Produce code of the form shown in line (iv) above

2. Set IDPIR = IDLPIR

.

1
The gymbol 'U'

1. 43 for step 1 for the symbol '’ ' ' R
2. Az Yor step 2 for the symbol *;!

3, Produce code of the form shown in lines (vi) to (ix} above

Ls Set IBIT = IBIT -1

5. St IDPYR = IDLETR = 1

6. 8ot IDSYK (IDPTR) = ~1¢

7. Set IDLITR = IDSTX (IDLPIR))

The above illustrates the action reguired for a very simple axray sleuent
reference. Tt should be noied that the sub-expression J + & would be
bracketed and dealt with in the usual wey. When the subscript J + & was
handled on recognition of ﬂ ¢, therefore, a <17 eniry would appear on the

stack. Jhe 'code corresponding to J + 6 would thus be obtained from ITZ:P.

The code producsd corresponding to a non-scalsr variable name is descrihed

in detail in Chapter V. It is obviously more complex, as every element of the

non-scalar has to be aocessed.

4.3.3 The symbol ':' used in heterogeneous ouiput exprsssions

~ The constituents of a heterogenecus oulput statement are nandied sepavately

Bach consliiuont is delimited by a semi-colon (or by a blank in the case of

g5

the last constituent).

An incediste actlon macro is expended waem ';' is encountsred, (This
use of ';' is distinguished from its use as a subscript separator in indexed

expressions by the absence of enclosiny square brackets,)

The macro produces a WRITE statement to write out the constituent of the
heterogeneous cuiput statement. A FCRMAT stztemsnt is also praduced. Jon-
stituents can be literal or pumeric and two outpul statements are produced in
each case, The FORMAT statements are such that all parts of a heterogenesous

output statement appcar on one line.

The stack pointers IDLPTR and IDFTR are both reset to § after handling

a constitueni of & heterogesneous outoput statement.

The variable THET is set to 1 whenever a heterogenecus cuipui statement
is detected. Its value is tested at the end of a line, In .this way the

last constituent can be detected and handled correctly.

L4346 The symbols '(’ and J ' used to specify = co-ordinate value

An example of the abovas use of ! D and ’]' is in the statemant
b — +/[1])x

Again & nesw base level is created on IZSTX when '[' is recognisad. This
use of ‘[' ‘is distinguished from its use in indexing by the zresence of an
operator immediately to the left of '[' . Tho varisble ILEFT (mentioned

previously) will have value & in ithis case,

TILEFT has to b= updated within square brackets (so that nested
co-ordinate spesirfications caun be detected). Thus, ILEFT cannot bs used to

distinguish indexing and co-ordinate specifications when ']' is recognised.

$6

For tais purpose another variuble, WCOORD, is uzed. 't is increased by 1
whenever '[' is oblained in co~ordinaie specifications snd code of the form

ZCDFIR = ZCD¥IR + 1

is generated. “he scan then continues in the normal manner until ']' is
obtained., NCOORD is decreased by 1 and, if non-zero, mascro number 13 is

expanded to produce code of the form

I¥ (ZCDPTR.GT.SLIM1L) CALL GVOVER (1k4, & 129)
ZCOORD (ZCDPTR) = <expression inside square braekets >

18¢ CONTINUE

ZCOORD is a stack with pointer ZODPTR in which successive co~ordinate
velues in en expression are storsd, Before stacking another value in
ZCOO0RD, a test is made for overflow, If the test is satisfied, GVOVER is

invoked to print out & warning message.

(The value ZGOORD (ZGDPIR) is tested in the functioun FLID, used to
handle the non-scalar refsrence. The required co-~ordinste value can thus

be obtained.)
A stack is required to handle nesting of co-ordinate specificaticns.
Now consider the example,
¢{1]A+ﬁf2](I—Y+Z)-+B

Then cods of the form

ZGDPYR = ZCDPIR + 1
1
1

ZGOORD {ZGDPTR) = 1
’
t
t

ZCDPTR ZCDPER 4 1

-~

ZCOORD (ZCDPIR) = 2

97

The "scope" of [2] extends over A ~ ¥V + Z . After dealing with this

expressicn, the value 2 must be unstacked from ZCCORD,

Action of this kind is organised by maintainiﬁg a stacik of bracket
counts, The count is increased for (and decreased for) , Thus,
only when the matching) has been dealt with is ZCDFTR decreased. At

this stage, cuvdo of the form

ZCOORD (ZCDPTR) = &

ZCDFTR = ZODPTIR - 1
is generated,

The stacks IDSTK and IBITS are then updated, and the scan continues.’

4.4 Symbols Handled by Production of a 'FIKD' Call with

First Parameter Kon-zero

The APL operators handled by producing = call of the function FIND are
listad in Chepter I, §1.2,5 . (For occurrences of these functions with
(right) perameters not numeric non~scalars, similar techniques are applisd

using other functions. Thess functions are also listed in Chapter I.)

There are 14 APL operators in the above list. The first perameter of
e FIND call has value £ to 14, & indicating the normal accessing method,

and 1 - 14 cne of the methods for a specific operator.

The method of hendling the above operators is as follows. The sub-
seripts for ths required element are set up in consecutive locations of the

srray ZINDX. A functlon is applied to these z2lements to produce the desired

indices for the result,

: . 98
Thus, for example, supposs the (3,2)th element of A 18 required,

where A is a 4x5 array. Then the result is obtained by accessing the
(3,5-2-1)"" = (3,4)*® olement of A& . A simple funotion has been applied
to the second subseript and then the normal accessing wethod (defined by

FIND (@,----) } 4is appiied., The Bame principle is applied to the other

operators in the list.

The pight operand for one of the above operators can be an expression.
All non—scalars in the expression would then have to be accessed in the
manner determined by the operator., Thus, the first parametei value for the
. FIND call has to be retained throughout the scope of the operator, To
allow for nestiﬁg of expressions invelving the above operators, a stack of
first'pafamete: %hlues, IFIND, is maintained. Consider, for example, the
expression’

$lex) + ¥

During thé.right-to-left scan, this expression would be bracketed as

(§{(ex) + 1))
The followipg action is required during the 1ef€«to~right scan,
1. Eeé;g#i;ién of
A new level is produced om IDSTK dy updating IDLPTR and

IDPTRy, i.e. by setting:

IDPTR = IDPIR + 1
IDRTK (IDPTPR) a IDLETR

IDLPTR = IDPTR

2, Recogmition of &

Set IFNPTR = IFNPIR + 1

Set IFIKD (IFKPTR) « .1

3.

4.

5e

6.

7.

Set IOFTR = TIOPIR - 1

Set ID3K (IOPTR) = macro number for ¢
Recognition ;f (

As for 1 above
Recognition of (

As for 1 ahove

Recognition of ©

Set IFNPTR = IFNPIR 4 1

Set IFIND (IFKPIR) = 3

Set IOPTR = IOPTR - 1

Set IDSTK (IOPTR) = macro numosr for &

Recognition of X
Stack the index for X on IDSTK
Recognition of)

Bxamine IDSTK (IOPTR) . Detect msoro number for & .
Bxpand an operand mzcro to vroduce code for X, Tals
involves a call of FIFD having first parsmeter with

value 3 (obtainzd from IFIND stack).
Now set XHENPTR = IFEPIR - 1§ .,

The scope of (O 1s exceeded now end therefore the first
parameter entry (value 3) can be removed, IFIND (IXNPTR)
now has value 1. This is the correct value since the scops

of (has rot yet been exceeced.

100
8. Roecognition of +

Set ITOPTR = IOPTK - 1

Set ID3TK (IOPTR) = macro number for +
9. Recognition of Y

Stack the index for ¥ on IPSTK
19, Recoghitinn of)

Expand operand macro twice to produce code for +
operands and store the code in ITEMP, Then expand
the + macro, which obtains the opcrands from ITEMP

when required.

Expansion of the macro for the right operand results in

production of a FIND call with first parameter value 1.
41. Recognition of)

The intermediate result code required for ¢ hes already
been stored in ITE¥P. The variable IFNPIR is then

decreased by 1.

The resalting expression involving two ISTORE elements would be stored
on ITEMP, IFID (SENPIR) retains its value over the entire range of an
operator, that iz, until the clasing round bracket for the symbol has been

dealt with.

The macro corrasponding tc the above operators only requires to unstack

the top value from IFIND,

The user can speclfy thet an operation of the above type is to te

applizd along the Jth go~ordinate, for example @ fJ_] A .

101

The above method can still bpe applied by simply producing code of thc
form
ZCDPIR = ACDFIR + 1

ZCOORD (4CDPIR) J

1]

whoen [J J is recognised. This is done by & macro expansion, The value
of ZCCOXD (ZCDZTR) is tested in FI¥D to ensure that the operation is

applisd along the required co-ordinate.

There ars & number of dyadic operators in the above group, Thess are

handled in a similar way.

Consider the left-to-right scan for

(¢ pa+B))
where C, 4 and B are ncn-scalar,

When @ is recognised, the value 5 is stacked on IFIND., The index
for € , the left cperand of ¢) ; must now be included in the relevant FIXD

oalls.,

Corresponding to ths above expreasion, code of the following foxm would

be generated.

]
]
3

Start of looping

instructions
1
1
1
ALL FO¥ 5 — i —
<label > CALL FIND1 (3’1’cindex’Ain_dex’ -~= Y ¢integer 1>)

CALL FiD1 (5,1,C.,

index*Pindex — Y <integer 2> =)

1
t
T

The code Y <integer 1> 4 ¥ ¢integer 2> would then be placed on ITZP,

102

A stack is maintained %o allow for nesting of dyadic operators of the

above group. Ihis ensures that the correct NAINS index is inserted es

third paramefer of the FIND call,

The lef't operand of a dyadic operato? of the above group need not be a
numeric non-scalar. Thus a second stack, containing type valuas (to be

used as second parameters in FIND calls) is also maintained.

Bxpressions are not allowed as leit parameters for dyadic operators of
the above group. This avoids the nscessity for meintaining two sets of

ourrent bounds, one for the left ond one for the right operand.

4.5 The Handling of D andgd E:]

The syabols [] and [il used for output are Qery straightforward. For

example, the statement

C] é— THI§ IS AN RX4NPLE)

would be bracketed as

(['mHIs IS AW ExaNELE!),

[:1 and E] used for output can thus be treated as any other monadic

operators,

[:] ang Ej are slightly more complex when they appear in input

gxpressions.

A temporary variable is introduced to storc the values read in when
[:] or m iz encountered. When [:I or m used for input is mei
in the left~to-right scan, the values «2 and -1 respecetively are stacked
on ID3TK. When the next) is encountered and an operand mzcyo is to

be expanded, the value of IDSTK {IDFTR) is tested. If it 1= I = «1

o

I = -2, then mecro aumber (T + 83) is expanded.

to read in the reguired values,

Congider for example
2

A{—-;[j

This is bracketed in NCODE in the form

(a— (,[Dh).

The action required is outlined below.

1a

3.

k.

5-

Recognition of { .

Crsate a nsw.base level on IDSTK
Recognition of 4

Stack the index for A in NAMES on IbSTK
Recognition of ¢—

Set IOFIR = IOPTR = 1

set IpSTK (TOPIR) = macro number for ¢—

Recognition of (
Create a new base level on IDSTE
Recognition of ,

Set IFNPTR = IFNPIR + 1

TFIND (IFNPTR) = &

Reoognition of E]

Stack -2 on operand part of JulPY

103

Thie producss oode

104

7. Recognition of)

Expand macro number 81 to produce code Tor the input operation
requirsd, Store the result veriable in ITHENFP and return to
the previous lavel of IFIND, (The velues resd in are stored
and treated as a vector by applying the function IRFIND {FIND

for intermediste resulté).)
The atacxs ID3TK énd IRIIS are then upéated.
8. Recognition of)
The analysis now proceeds in the usual way.
It is essential always to test for.the symbols [] and [:] used in

place‘of operards, and expend the appropriate macro if' the test is satisfied.

4.6 An Ezample Showinz the Process Carried Out During

the Left-to-Right Scan

‘COnsié,er the lei't-to-right scan applied to
Ae— Blo+Dp*x] PN X

The reader is referred to Diagrams 3.4(a) and 3.4(b) showing the states
of the arrays NAMHS, NOLINE and NCODE corresponding to the above statement.
B is nonw~scalar, FN i3 a function name and all the other variables are

scalar.

Lt the start of the left-~to-rignt scan, the variables IDLPTR, IDPTR and
IBIT are zero, and IOPTR has valus 501 . IDSTK is set to zeros snd the

elements of IBITS ars Falsse. The zction carried out 1s described below.

1. Recognition of -64 (macro rumber for (iz 64)

.8et IDFIR = IDPTR + 1
Set ID3TK (IDPIR) = IDLE
Set IDLFTR = IDFTR
Set I3IT = IBIT + 9

2., Recognitiocn of index for A4

Set JUPPR = IDPUR 4 1

Set IDSTK (IDFIR) = index for A

3. Recognition of «~3 (macro number for <— is 3)

get IOPTR = ICOFIR -~ 1
Set IDSTK (IOPTR) = 3
set IEITS (IBIT) = .TRUE.
4. Recognition off - ~64 .
As for step 1 gbove
S Recognition of index for B
Set IDFPIR = IDPIR + 1
Set IDSTK (IDPTR) = index for B

6. Recognition of -62 (macro number for [is 62)

Produce 2 lines of code as described in §4.3 Also
ereoate & naw base level in IDSTX es described in

step 1 above,
7. ERecognition of =&k

As for step 1 above.

105

8. Recognition of index for G

Set

Set

9. Recognition

JDPTR =

IDSTK (IDPTR)

of =21

IDPIR + 1.

= index for ¢

Set IOFTR = IDETR - 1
Set IDSTK (IOPLR) = 21
Set IBITS (4BIT) = .TRUB.
10. Recognition of €l
As for step 1 above
11. Recognition of index for D
Set IDFTR = IDPIR + 4
Set ID3TK (IDPTR) = index for D

12. Recognition

of =25

I0PiR =

{mzcro number for dyadic

*

(maero numper for dyadic + ds 21)

is 25)

Set TOPIR - 4
Set IDs1X (IOFIR) = 25
Set IBITS (IBIT) = .TRUE.
13. Recognition of index for R
Set IDPYR = IDMIR + 1
Set IDSTK (1DPYR} = index for B

i4. Recognition of ~£5 (macro number for) is 65)

Test IBIYS (IBIT). This has value ,TRUE., indicating e

sub-expression, Test IDSTK (IOFTR), This ' has wvalue 25,

a dyedic operztor macro number, IBSTK (TOPER + 1) has

value 21, and thus an inner or outer product has not teen

]
B

detected.

107

Now handle the operands for ¥ . Produce more information

on IDSTK for © as deseribed in §4.1 . Then expsnd operand

macro end store the code for D. Repeal the above process

for E. ' ;

Now expand the * macro and produce the code {(D**R), which

is pleced on ITEHP (the entries for D and ¥ on ITEMP are

removad).
Then 8et IBIT = IBIT - 1
‘Set IDFIR = IDLPIR

Set IDLPTR = IDSTK (IDLETR)

Set IDSTK (IDPTR) = -8

Jet IOPTR = IOFTR + 1

15. Recognition of ~6§ 5

Using a similar process as for step 14 above, the code

(¢ + (D**®)) 4is stored im ITENP.

16. Recognition of -63 (macro mumber for] is 63)

Produce code as deseribed in §1+.3 .

Then Set IBIT IBIT -~ 1 i i

Set IDPTR IDLPTR - 1

N

Set IDLPIR = IDSTK (IDLPii)

get IDSTK (IDFTR) = -1@

17. Recognition of index for TN

Set IDPIR = IDFIR 4 1

Set IDSIX (IDPIR) = index for 3K f

108
16. Recognition of index Tor X

Set IDPIR = IDFTR + 1

Set IPATK (IDPMR) = index for X
19. Recognition of -65

Test IBITS (IBIT). This has valuwe ,.FiL3E,, indicating a
function or subroutine call. Kore operand informstion is
set up on IDSTK 2nd an operand macro is expznded to handle

the funetion or subreutirve call.

Then Set IBIT = JRIT -1
Set IDPTR = IDLEIR
Set IDLPIR = IDPSTK (IDLESR)
-Set IDSTK (IDFRR) = -0

2¢. Recognition of w65
Carry out a similar process as for step 14 above.

Note that, Por convenience, twa consecutive entries of -85 have twice
been used in place of an entry of +162, This is simply for case of

explanation,

Also, in describing the processes carried out, test for overlap of the
stack pointers IDPIR end IDFTR have been omitted. Slmilarly, an cverilow

test for IBIYS has been omitted.

i
|
N
1
:
I
;
.
B
t
3
:
1

. 10§

CHAPTER V i

THE MACRO MiITHOD

This chapter- describes the method of producing target-language code

using macros. A complete list of macro instructions end their functions

is given in Appendix 3.
[' .

[]-Iacrp bodies are stored on disc. At the time of a macro expansion,
all the necessary parameter information has been stacked on IDSTK, as des- k

cribed in Chapter IV.

The start address for a macro body s obtained from the table MCADDR.
To expand macro number N, for example, the start address is given by
MCADDR (N). Macro bodies are in card. image form and the first line, IV,

of any macro body is given by

IV = <start address> /8F + 1

5% records, starting from the IVth, are then read lutc an array MACHGS.

The first position to be accessed within the starting record is given by
IP = <start address> - (Iv-1)*8§

Thereefter, zach character in turn of the macro body is accessed until ths
end of the macro body is reached. Access is sequential within a maere bedy

unless altered by use of branching instructions. Such Instructions are

described in §5.1.6 . Instructions withian s mecro body are seperated hy i

two blank characters. ALL components of a macro instruction are separated by

1 blenk chdaracter and labelled 1nstruct10ns have 1 blank between : and’ the

— . R e N L

correspond;ng 1nstructlon, (see 3) ol 6)

,,,,, R e eyt R T cay

Eacros are the mesns by which target language code is accumulated on
the array MTIEMP until ready to be transferred to the output medium, The

110
contents of MNIZXP will be transferred to the output mediue

(i) vhen a complete line of code has been produced .

(1i) when & charascter is to be stored on MIEIP and the pointer TEiE

has value 73. (1ines of PCRIRAN code do not oxceed 72-charactersj.

For case (ii) above, a continuation line is produced and the process

is repeated until the line is complete,

There 1s continual interchange between the arrays ITENP and MIEMP,
The function of ITEMP has been aiscussediin Chapter IV, It is a temporary
storage place for operands. The method of' transfer betwsen MTEMP and ITELP
is discussed in §5.1.2 . Transfer of information from IDSTK to MTEWP is
described in §5.1.5 . §5.1 categorises the mecro instructions into a

number of differeat groups.

b1 Groups of Mzcro Instrustions

Al) the maere instructions defined fall into one of the groups listed

telowa

.4, Instructions which access WTEMP.

2, Instructions which fransfer informatlion between YTENP and ITIMP.
3. Instructions which produce lines of code on the output stream.
#. Instructions which produce code on MIEIP.

5. Instructions which transfer information from IDSTK to MTEMP.

6. Branching instructions. .

7. Terminating instructions.

8, ILooping instructions,

- b e e

9. Instructions which update pointers.
12, Instructions which set the values of global variables,
11. Instructions to increment global variables,

12, Instructions to ecalculate expression values and store on MIZuP.

111

§5.1.1 to 8§5.1.12 describe each of the above groups in morse detail,

5.%t«1 Instructlons which access MIEWLP

Target language code can ve placed on MISIP using the mecro instruction
%~~~ TEAT ~m=

This instruction inserts the string --- TEXT ~~~ on MTEMP, starting from
the curreant position of MIEWMP. The pointer TEFR for the array MIENP is

updated as required during the code production stage.
The macro inatruction

&

transfers the contents of MIEMP to the ocutput medium, This instruction is
used when a complete line of code has been accumulated on MTENP. In additien,
there are a number 'of composite macro instructions: These produce lines of
code (first accumulated on MTELHP) on the output mediuwm, HExemples are given

in §5.1.3 .

5.1.2 Instructions which transfer infermation befween HETEMVP and TTI

Let us supvose that an operand macro has been expanded to produce code
for an operand, This is accumulated on MIEIP, Vhen compleie, use of the

macro instruction

causes the code to be transferred from MIELWP to ITZLP. This is done in the
A

following manner. The countents of WMIEMP(7) to MTRUP(TEYFR) are transferred

to locations (IEPIR+1) to ([BFIR + TENPR-6) of ITii?. ITEP({IBPIR+IEIPR-5)

J112

is then set to IBPTR, and IBPTR is updated to (EP’l‘R+TEE.ZPR—5) .

Thus, For example, suppose TEMPK.is 14, IBPTR is { and MTEI.IP(?) to
MTRMP(19)} contain the characters ABCD . After using the § instruction,

the conteants of ITEIP are

£4,8,C,0,1 = =~ = = =
and IBPIR is 6. . o ’

[

‘In addition, MISWP is reset to blank characters and TEMFR is set to 7,
the starting position for most lines of FORTIAN code.
The pointer TEXFR is automatically reset to 7 after clearing WTEWP, This

can be over-ruled using the macro instruction,

T <iﬁteger >

where <integer> ocan be any positive integer i such that 1 LiKL 8g.

This instruction is described in §5.1.11 .

The macro instruction &+ s similar to the S dnstruction, except

"‘t-ha‘u MTEXMP is not cleared after the transfer,

Ths operand macros (referred to above) are described in detail in

§5.2 .

Now fet us suppose that the two operands ABCD and XYZ for a dyadic
6peration have been stored on ITSHP by the asbove method. Suppese that
ITEMP has been set up as showm in Diagram 5.1.2(a), and that IBFIR has value
1e. Then the left operand, ABCD, can be reproduced on }TZJP, whan "'_3;_"=;

requirsd in an operator macro body, by use of the macro instruction

Lo

This instruction transfers the contents of ITEIP (IX+1)} to ITEMP (I¥-1) to

MIEMP, starting from position TENFR. IX and IY are given by

- 113

Y = ITENP (IBPIR)
CIX = ITEMP (IY)
3 ITEMP - N
T
ﬁABCD‘:ii.X‘{Zf]'. ______
I
IBFIR

Diagram 5.1.2(8.) K Shows & possible structurs for
the array ITEMP .

The contents of ITENP are unaltered i:y this ingtruction. However, a
marker, NLEFT, is set to 1 to indicate that two entries are to be removed
from ITEMP after the right operand, X¥YZ, dis accessed, If the entries hed
been placed in TIEMP in reverse order (and thus IREV is set to 1) then the
-variable NLEFT is set to 2. In this case no entries are to bs removed
from ITE?;iP._ The variable NLFT is te.sted when -the macro instruction RO
(see below) is handled, The number of enltries to be removed i;rom ITSEP is

thuz determined.

Thus, if ITBMP has the structure shown in Diagram 5.1.2(a) and the macro
instruetion LO is executed, then KTEHP will have ths structure showm in

Dirgrem 5.1.2(b} ', assuming MTEXP has just been cleared.

The right operand for e dyadic operator can be transferred from ITEI
to NTEMP by use of the macro instruction

RO

This instruetion transfers the contents of ITEP (Te+1) to ITEIP (IBPIK-1)

" to }.lTEi.lP, starting from pos;ition TEFR. IY is as defined previocusly.

o114
!

NLEFT is tested to determine the number of entries to be removed from

NP, Thus,

if WIEFT is @, 1 eniry is removed
if HLEFT is 1, 2 entries are removed

if RLEFY is 2, £ enitries arc removed,

Thus, if the macro instruction RO is now used, the structure of MIENE
would be as given by Disgrem 5.1.2{c) , After usiné this combination of

instructions, ITEMF would be amply and IBPTR would have value 1,

The instruction RO+ 1s similar to RO , except that TIENP remaing

unaltered by the ins<ruction.

N

KIEMP

4

Al B G D% ________

TEMPR

Diagram 5.1.2(b) : Shows the siructure of MTEMP obtained by using
) the LO instruction for an ITEMF configuration
as showm in Diagram 5.1.2(a) .

A third macro instruction 2Rt may be used. This instruction transfers
the right-most entry of ITEVP to MIEMP, but first removes any erclosing

round. brackets. Similarly, thz instructicn R1+ 1s defined.

The composite instructions FL and Pl+ are also dsfined. These

produce code of the form

Y <integer> = < left operand pode)

where <integer)» ds any positive integar and <left operaznd code> 1s

obtained from ITEMP.

115

pa MEENP

~

|14

1

TENPR

The pointer TEMPR has value 4.

Diagram 5.1.2(c) : Shows the structure of NTINMP obtained by using
the instructions LQ and RO for an ITEMP con-~
figuration as shown in Diagram 5.1.2(a) .

HLEFT is set by use of PL, bul is unaltered by use of Pix .

Similar effects can be produced wsing the macro instrustion sequences

%Y <integer> =% LO
and
4Y <iuteger> =% Lo+

respectively (assuming MTEMP had jus® been cleared).

Similarly, the macro instructions FR and FR+ .arve equivalent to the
instruction sequences
%Y Cinteger> =% RO
and

%Y <integer> = % RO+

respactively, aguin assuming that MTBLP had been cleared previously,

5.1.3 ZInstructions which produce lines of code on the outout stream

 The majority of the macro imstructions defined fall Jnte this category.
They are, in fact, composite instructions replacing grouds oi other

instructions, Examples are:

116

This macro instruction produces a number of non-execulable statements
{for example, INTRGER, REAL, IMPLICIY, COWHON, EQUIVALENCE)}. They are

generated after the code for a function header statement.
{i1) 2 <integer)
This macro Insiruction produces code of the form
Z <integer 1> = <integer>

where <integer 1> 1is a positive integer and <integer > iz any integer.

This instruction is of'ten used in conjunction with
(1ii) 2Z+
The macro instruction 2Z+ produces code oi' the form
Z <integer 1> = % <integer 1> + 1
where <dinteger 1> has been prsviously iniroduced by & statement of type

(ii) ebove.

H5e1ad Instiructions which oroduce codc on MTEHP

These instructions are dependent on the current operator being handled,

that is, on the current value of IDSTK (IUPLR). Examples are:
(1) RL
This results in production of one of the forms

LT, JLE LEQ. LGE. LGP, LNE,

on MTEMP, depending on whether IDSTK (IOPIR) has vaiue 6,7,8,9,16 or 11

respectively.

2117

(i1) 40

Tnis results in produetiion of

AKD, (a)
ox

+GR. ()

on MTENP, gepending on the valus of IDSTK (ICPTR). ~For value 4, (a) is
produced; for value 5, (b) is vroduced. These vzlues correspond to the

opsrators A and V respectively.

5¢145 Instructisns which trangfar information from IDSTK to MNISHE
Such instructions involve use of the ? symbol. For example,
? <expresslion>

transfers the value of IDSTX (IDL¥TR + <expressiond) to MIZWP. The valus
-is placed starting from position THFR of MIZZP. Thiz is the method of

obtaining parzmeter information inside macro bodies.

<exprasszion®> 1s terminatad by either a blank or a comma, It may
contain arithmetic expressions whose operunds are integers or any of the

global variuzblaes listed below:

(i) D - gives the current value of <integer> to be used i

expressions of the form

Y <integer> = - = - - =

It is updated as deseribed in §5.1.11 .

(ii) B - glves the currend value of <integer> %o de used in

expressions of the form

ZB <integer> = ZPOINT {ZPT)

(se¢ Chapter 1IV),

118

(iii) S8<integor> - gives the current velue of 83{<intogers) . The

function of arrsy 85 1s desceribed in§5.1.8 .

koting is vead in the XPressions. ketls maj
Bracketing is allowad in the above expressious Brackets be

nested up to 2 maximum of 1% levels deep.

The form 7?7 Cexpression» or ¢ (~-- expression involving ? «-- }

may be used, but ? way oniy be nested to two levels deep.

(4 tronsition matrix is used to accumulzie the exvression value up to
the terminating blank or cemma. The value is then converted to charzcter

fora and transferred to MTEMP,)

Valid examples ere:

(1) 2

This transfers the contents of ID3TX (IDLPIR + &) to MTZE,
(11} 2(1 + (ID - 1) * 3)
This transfers the conteats of IDSIK (IDLFR + 1 + (LD - 1) * 3)

to JTENP.

5.1.6 Branching instructions

Branching macro instructions can de
(i) unconditional

(ii) conditional

For both (i) and (ii) there must be &n associated labelled wacro

ingstruciion. Labelled instructions taks the form

e kol H RPN instrueti
<latel nuaber ¢ <mesree instrueiion»

119

<labzl nucber> is any positive integral velue which i1s unique for a given
maoro hody. The form < macro instruction > represents avy valid macro

instruction.
For case (i), there will be a corresponding statement of the form
= < label number >

Phis siatement will cause 2 bresk in the sequential access of the macro
bodies. The next Znsiruction fo be obeyed will then be <macro ingtruction..

For exemple, consider the following macro body:

When the instruction = {1 is reached, the subseguent insiructions (a)
will not be obeyed. The next instruction to be obeyed will bs that labeli=d

1.

Branching forwards or backwards is handled in the following way. A
2-dimensional *abvle, MNMLTAB, is maintained. For a particular row, the
first entry gives a label guuber vaiuve and the second the pointsr value

{given by variable ICLPTR) for the array MACROS.

_ During the sequential scan of MACROS, if a labelled instruction s
encountersgd, an entry is set up in MLTAB. ‘vhen a brenching instruction is

wet, Lor example

120

MLT4B is seannsd for an entry c¢orresponding 0 n . If an entry exists,
then a backwzrd jusp is made to the corrsct instruction (using tre second

part of the MLTAB entry).

Consilder, for example,

l

®¥hen the instruction

6 is encountered, ILTAB will have an entry of the

foxrm

where n i3 ths value of ICLPTR carzesponding to thz blank after 6 : .
6 .

A jump can thus bes made to the correct point in {the macro body.

If an entry does not exist in MLTAB, *then a forward jump has been
requested. Vhen this occurs, 1IACROS is scenned sesquentially for a labelied
instruction. If a lzbelled instruction is met, 2n entry is sst up in MLT4S.

rocess 18

"

If the labelled instruction obtained is not the recuirsd ore, the
repested until the correct instruction is found, Sequential execution of

macrTo instructions is then resumed from the point reacited.

MLTAB has 1#J rows und is accsssed sequentially, This method allows

nesting of label numbers to any depth. For example,

13 2 ; < macro instruction>

would present no problem,

123

¥LTaB is cleared on exit froo each macro body.

b
e

A number of conditional brarnching instructions have tzen defined.

general these take the forwe
¥ <g.wv.ny» grelational operzior m n

whexe (i) <g.v.n> is o globzl varisble name

{i3) <relational operzier> is vne of EJ LT &3 & &T =
1d3) m ds a positive or negetive inleger
(:‘w) n is & positive integer.

Here the value of the global varizble is compared with 2 . If the tesi
is satisfied, a junp is made 1o tze mscro insiruction lsbeilad n . Qtner-

wise, sequential execution contirues.

Thus, for exanzle, if TDSTY (IDLETR + 4 has value 2 2and the zzecro
¥ 2

insttuct;'.on
IF 21 BQ 2 &4

is executed, then a jump will be made fo ths mecro insiruction latelled X,
If, however, IDSTK (IDLPAR + 1) has value 3, no jump will e meda znd the
instruction following the conditional branen will be executled next,

The allowsble Torms ol the conditional brauch Instruction are ziven in

Appendix 3.

5.%.7 Tereinating instructions

The "uncongitional stop" maero instruciion is

Use of this imstruction causes Jrmediate sxit from the nsoro body,

122

A number of "conditional stop" instructions have hean defiuned., These

take the form

IF <g.v.na> <relational operator> m H

where <€g.v.m, <relational cperator> ond m have the same significance ag

in§ 5.1.6 .
The allowable forms asre egain listed in Appendix 3.
An exanple is
Ir ¥3 LT 4

This instruction means "if pardmeter 3 is less than 4, stop. Otherwise,
continue with sequential execution of maoro instructions'. (Parsmeter 3

is given by IDSTK (IRLPIR + 3) .)

An interesting use of the stop instruction is when preceded by RCM,

The sequence
RCM

sauses execution of a macro to be interrupted while another racro is expandad.

Return is afterwards made to the point in the original macro following 33 «

For example, suppose the macro below is being executed

ROM 25 —

when RCH Ff is reached, there is an immediate exit from the macro body. A
second maoro is expended and then expansion of the above macyo is resumed at

label 2.

123

This facility wes latroduced to allow f'or the APL features of

(1) xreduction
(1i) dnner product

(iii) outer product

The handling of thege features is described in detail in $5.3 and § 5.4 .

5.1.8 Looping inctructions

The instruction
S<integer>,<expression>
is used in conjunction 'with the instruciion
& <integsr>
to produce looping.

Here <intsger> can be from 1 to 14 and <expression> 1s subject %o

the rules laid down in§5.1.5 .

The first instruction stores the value of <expression> (which is
always integral for macro expressions) in S8(Kintegerd), 33 is a
1Z~element ‘integer array. The current value of ICLPYR 1s also stored

in variable ICOLM.
Sequential execution then continues uatil & <iulegor> is met.

This instruction tests the value, ¥, of 83 (<iubeger>). I
N> 1, then 88 {<integer>) is decreazed by 1 and ICBPIR is reset o

the value of ICOLH. If N <1, then seguential execubicn of macro

instructions is resumed.

124

This provides the faclility of executing the same plece of maore code

a varisvle numbar of times, For example, consider the following macro body

31,3

(2)

Here macro instructions (a) wiil be executed 3 times.

5.1.9 Instructions which update stack pointers

A few instructions have bheen defined simply to uwpdate stack pointers.

Examples ars:
(i) s8TX
The effect of executing this instruciion is:

(a) IDPTR is incrcased by 1

(o) =2 test is made for overflow of IDPTR and ICPJR. (If the test is
satisfied, a message is printed out and executicn is terminated.)

(c) IDLPIR is stored in IDSTK (1DFTR) .

(1) IDLPTR is set to IDPTR.
This maero instrustion is uwsed to create a new base level on IDSTK.
(ii) RE

The effect of executing this macro instruction is to.reset the value

of IDFIR tc IDLPTR. This instruotion is used to reset IDFTR after

expanding the maoro for j; used in indexing.

i
i
|
E
:
F
1
i
i
:
i

5.1.14 Instructions which set the values of global variablas

Two examples of mzcro instructions in this group are:
(i) MR <integer>

Yhis macro instruction sets the value of the variable MARK to <integer>,

The value can then be tested using 2 statement of the form
IF MR <relational operator > n
(see §5.1.6) .

Thus, by setting the variable MARK, the path taken during expansion

of & macro can be varied,
(ii) 1 <integer>

‘This macro instruction is used to set the value of the pointer TENFR
to< integer> . Usually, <integer> has value 1 to 6, since the most common
use of the above instruction is to over-ride the setting of TEMFR to 7 after

MTEMP has been cleared.

5.4.11 Imstructions to increment globa_l varizbles

The complete list of such instructions is given in Appendix 3, Examples

ere:
(1) +B
This incrcments the stack pointer IBIT by 1.

{ii) +D

This inerements the variable IND by 1.

126

5¢1+12 Instructions to caleulate expression values and store on NIELP

Besides the types of macro expressions mentionsd previcusly, a tumber

of others have been defined, The most widely used is
£< expression >

where <expresaion®> is as defined in% 5,1.5 . i gives the current value
of IDOLR, the label value. (IDOLR is insremented as reguired itp produce
unigue label nuabers in the gensrated code by use of the macro instruciion

+T).

Suppose, for example, that IDOLR kas value 1. Then £ - L will

produce the label number 107 on MIRKP.

5.2 The Use of Ocerand Macros

Two operand macros have been defined. Their functions are to use the
information stacked in the operand psrt of IDSTK to produce the code for an
operand and stors it on ITEHP. The code for the operator mecros is thus

much simplified, as no type checking need ba done in operator macros,

The first of the operand macres, referred to as the operand-i macro,
merely deterinines the type of the operand being handled and produces the
reguired code. If is discussed in detail in §5.2.1 .. Discussion of the
second loperend mucro, referred to as the opsrand-3 macro, is defarred wniil

§ 562.2 &

BaZs1 Qperanid-A macro

The operand-A macre is listed in Appendiz 4. The mezcro body is
explainzd below. It way be useful at this stage to recall the informetion
stacked on IDSTK for each type of operand. The informztion is desecribed

in Chapter IV_, § 4l o

127

The first reqgquirement is to separate all operand types into groups which
can (at least partially) be hsudled together. Thus, the macre body staris
with a series of tests, the first being for an intermediate result operand.
Such an operand is alresdy present in ITEMP end thus no further action is

required,
The Functions of all macro instructions are listed in Appendix 3.

The test IF F BY i 1 is for a function or subroutine call.,

These are hancdlod after lakel 1.

In cach case, the finel coda produced on MYEXP is transferred to ITEMP

bef'ore exit from the macro body.

If label 3 is reached con executlon of the macro instructions, then the

operand is elther

(i) a sealar

or (i1) a nilsdic function name.

The code for the identifier is transferred from NAHSS to MTBMP (using

the instruetion FW1), sterting from position TEMPR.
Now consider the situvation when label 2 is reachsd,
2; IF %2 EQF 3

This produces a hranch to label 3 for o scalar identifier, Thus, 1f the

above branch is not cxecuted, the identiiier types still to be distinguisheg

ares

(1) literals
(i) constont vectors

(3ii) numeric ron-scalars,

128

Por each of these identificr 1iypes, loops ars scl up so that each element
of the non-scalar may be accessed in tum. Unly the first half of the

loops is produced at this siage; the loops are not completed until either

.

(i) the erd of the line is reached

or (ii) the dimensicnality of the result changes,

The macro instruction SL produces code to start a loop, while the
ingtruction FL generates the required code to end a loop. These are both

defined in Appendix 3,

Non-gcalar accesses result in generation of subroutine czlls, Through-
out this chapter, any subroutines referred to are present in the module

library 3ARUN.

If tho required loop-starts have alrcady been produced by a previous
expansion of the operand-A macro, there iz no need to duplicate them. The
variable WARRER will be non-zargo if the loops have becn started already.

The instruction SL is composite ard generates code of the form

2B <integer> = ZPQINT (ZPT)

ZPT = 2ZPT + 1

CALL STARTS (operand index®>, Z<integeri>, Z<integer 2>, PROED)

ox
ZrM
or
Ze2
ZPQINT (ZPT) = ZB <iateger> + Z<iunteger 2>
Z <integer 3> = 1
<lebel 2> 2 <integer 4> = ZB <intsger> + Z <inisgex 3>
ZINDX (7 <integer 4>) = 1

Z <auteger 3> = Z< integer 3>« 1

129

IF (Z <integar 3> ,LB. 4 <integer 2>) G070 <label 2>

Z <integer 5> = 4B< integer> 4+ 2 <integer 2>
Z <integer 6> = Z <integer 2> - 1
ZSAVE = &

Here < integer i > where 1 < 1< 6 are dilstinct positive integers.

<integer > and < label 2 > are also positive integers.

The values <integer 5, <integer 6 > and (<label 2>+ 1) are stored.
They will be used later when the loops are completed using the FL macyo
instrwetion. The code generated by the FL instruction is gilven in

Appendix 3.

The subroutine STARTS has 1 input parameter T and 3 output parsmeters,

Jd, K and L . I dis the index of the non-gealar in NANKS,

The ouilput parameters have the following significance:

(1) for a numeric non-scaler - |
J = 1the dope vector address
K = +the number of dimensions
L = B if MARKER = @ ; otherwise L =1 .

{i1) for a constant vector

J = the number of elements
K = 1
L = £ 4if MARK:R = # ; otherwise L= -5 .

{(iii) for a literal

J = the number of elements in the associated litsral constant
K = %the number of dimensions
L = & if MARK:R = & ; otherwise L = -1 .

130
These parameters ers used in subseguent subroutbine calls.

At this stage, different subroutines are called for each type of

operand, The possibilities are:

(i) FIND1 (containing 2 c2ll of FIND) for numeric non-scalars
(ii) FIND2 (containing a call of UVFIND) for constani vectors

(iii) FIED3 (containing a call of LFLYD) for literals.

Exemples of tho code produced for easck itype of cperznd are given at

the end of this subsection.
The 3 non-scalar cases ars distinguished in the mecro body. Thus,
IF 22 NE 1 &

separates the nureric non-scalar case from the olhers. A c2ll of FIKD1

is then generated.

The macxo instruction FV provides the first 3 perameters for a FIN

call (as describsd in Chapter I).

Tac instruciion FX generates either

(i) the valuve of the NAMES index for the ncn-scalar
or (ii) 2m
or (ii1) zF2
on MiZHP, dopending on whetnsr the identifier is e function or subroutine

paraneter (see Chapter IV).

% 3 Z% IKD generates 2Z <integer 7> « This ds an output parameter
used to store the T3ITCRE index for the particular nen-scalar glement being

accessed,

%, Y% IED generates an output paremeter where the value of the non-

scelur glement is placed.

131
%, 4% IKD-5 corresponds to parameter K of the 3TARTS call, while !

ZNC corresponds to parameter L .

The other paramciers of FIMD1 are globald variebless, The significance

of all global variszbles is given in Appoendix 8,

Finally, for numeric non-scalars, the value YSTORE (Y <integer 7>)
is stored on ITTMP, Then follows & test for a constanl vector ildentifier.

This takes the form

A call of FIND2 is then generated., FIND2 has the same paraneters as

FIND1 except that the global peremesters ZCOOED and ZCDPIR are omitled.

(These are unnecessazy a5 they are used in speeifying a co-ordinate value

and constant vectors are one-dimensional,)

The value of the constant vector element being accessed is producad

in Y< integer 7> .

For a litersl identifier, a call of.the function FIKD3 1Is generated.
A literal identifior is regarded as an array of elsmenis whose values ere
the charscter values for the elements of the literal. FIND3 produces az s
result thelcharacter value for the literal element in Z <inlteger 7>. ‘he
paraneter Yl<integer 7> is unnacessary and has been omitted from the FIND3

parameler list,

The remaining case to e congldered is thai of Ffunction or subroutine

calls, The macro instruction FA produces the entire code for the call,

except for the list of glebal variebles at the end. These vaviables, though

not alwzys used inside the function or subroutine body, must be inserted to
allow for accesses of any global variables inside the body. (The user ney,

if he wishes, remove those found to be unnecessary on inspectivn of the

132

generated code, oy use the alternaiive method of handling global variables

described in Chapter I, §1.2.5 .)
BRAUPLES

Suppose that IBFTR is originally 1 arnd the opsrznd~A macro is expanded

in turn for the following identifiers:

(1) the scalar A0

{ii) the function call A FN B, where A and 3 are both scaler

(iii) the numeric non-scaler subroutine parameter ¥ (Y is the loft
parameter of a subroutine)

(iv) the literzl constant '1 3 4 5 9°

(v) the label name L1

{vi) the nilsdic function name ¥

{vii) the counstant vector 3.1 2.4 6.7

Then, af'ter the 7 macro expansions, ITIP will have the structure shown in

Diagrauw 5.2.1(a) .

No further cods is generated for (i), (ii), (v) and (vi), but =n entry

is placed in LTARLA (see Chapter VI) for (v).

Assume that IND has value 1 and the label number value iz 198, Assums
also that IN® has value 18, Then corryesponding to case {(iii), the following

cod? would be genarated,

IF (MARKTR.NE.@) GOTO 141

Zn1g 2POTINT (ZPT)

i

U]

ZPT ZPT # 1
CALL sTARWS (271, 21, 42, 2ZNC)

ZPOIHT (ZPL) = ZBIf + 22

Z3 = 1

133

1 18
QA!B!chtha,B)i‘SY3TOR
§ 0
13
E {(2| 7]1) %13 gz ! 71241213 |27 |F |30 ¥ |7 |33 i
label value IBPTR
associated
with L1
{see Chapter VI)
Diagram 5,2,1(a) : Shows the structure of ITEMP if IBETR

the

the
are

the

the

the

the

is initially 1 and the operand-a macro
is expanded in turn for
scalar ABC

function call A F¥ B, where 2 and B
both scalar

numeric non~scalar left subrouvtine parameter Y
literal constant "1 3 45 9'

label name L1

niladic function name F

consgtant wvector 3.1 2.4 6.7

134

102 e = ZB1f + 23

]
-

ZINDE {&4)
Z3 = Z3+ 1

IF {Z3.53.22) GO0 142
z5 ZB1g + 22

26 = 52 ~ 4

1

.

Z8LVE = B
1ﬁ1 CALL ¥iuDy (@,2,8 , AF1,247,%7,22,2KC)
asguning
normal
access
Corresponding o case (iv), similar cade to that produced above is gensrated,

except that the lagt line is
181 GALL FID3 (4,4,8 , &F1i,27,22,24C)

Similarly, for case (vii), code of the above form i3 agaein generated. In

this case, however, the last line has the form

1481 CALL FTD2 (8,0,8 , 21 ,%7,77,22,2K0)

5e242 QOperand-3 pacro

The operynd-B macro is expanded to hendle the opersnds of certzin dyadic

mixed functions, These functions ares

(i) encode
(ii) decode
(iil) member
(iv) dota
(v) outer product

(vi) dmner product

The method of handling thesc functions is discussed in§5,3 .

4 listing of the operand-B mescro is givea in Appendix 4.,

The purvose of the operand-B macro 1s to store the elements of an
operand in TRGWL or YROWR, The arrays YRCGJL and YROUR are used to store
the elements of the lef't snd right opsrand respectively. YROVL has pointer
ZROWHO, which 1s set to the number of elements in %he laf't opszrand, Similarly

YROWR has pointsr ZRCNA,

Gertain other functions are performed by the operand-3 mzcro. These are
determined by the valus of the variable Z¥ARK. fThere are 5 possible values

of ZMARK (@ %o 5) and the corresponding functions are listed belew.

VALER O5 FUNGTION OF OPSRAND-B YACRO

AHMARK
i) ‘tore the N elements of the operand in TROWL and
set ZROVWIO = N
1 As for ZMARK = § . In addition, the current bounds,
ZCBID3, and pointer, CPTR, are updated to the
bounds for the operand,
2 Store the K elsments of the oparand in YRGR and set
ZROWNA = N . Update ZCBNDS and ZCFTR as dascrided for
ZMARK = 1 , Generate a cell of the function INDX.
This funciion is used to produce the result {for the
dyadic iota function {see§ 5.3).
3 Store the I elements for the opersnd in YRGWR and
set ZROWHA = N .
4 - As for ZMARK = 3 . In addition, the current bounds

are updated as required for an inver product, This

is discussed more fully in§ 5.3 .

136

VéﬁUmTOﬂ FUNCTZON OF OPSRAD~B HACRO
i .A:R_l
5 As for ZMARK = 3 , In addition, the current

bounds are updated as required for an outer

rrodauct, This is.discussed more fully in$5.3 .

The operand-B macro carries cut its functions by generzting a number of

stubroutine calls. The ladiwvidual subroutines are preszat in the modulie

library SARUN .

5.3 Handling of Mixed Functions

A numher of mixed functions are handled by generating FIXD calls,

These were discussed in Chapter I.
This section describes the haandling of

(i) functions involving expansion of operand-B macro

{i1) monadic rho

(+) grade-up and grade-down

(vi) deal (dysdic ?)

5e¢3e1 Functions involving expansion of operand~B macro

The encode function

where R is a vector and N is & scalar, is hendled in the following way.

The elsments of R are stored in the array YAUiLl by expanding the

opersnd-B mecro with ZitARK set to 1. The dimersicn of R T N is the

same as the dimension of R .,

The scalar X is then produced on ITENMP by expanding the operand-i

nacro.

The coperands having been dealt with, the encode macro (number 13) is

then expanded, A cz2ll of the subroutine NCOAD is generated, that is
CALL NCOaD (W)

The result of R T N is a vesotor. It is stored in the array ZTswP
from the base level onwards. A series of nonw-scalar result elements may be
piored in ZTEMP and hence & stack of suscessive base levels is required.

The stack ds represented by ZY =zmd has steck pointer ZYPIR,

Non-scalar integer results are stored in ZTZ4P; non-scalar real
results in the array YTEXP, There is 2 similar stsek ZYY, having stack

pointer ZYYFTR, which gives successivs base levels of YTEMP.

A call of the funcition NCOAD is generated to vreoduce the reguired

result for R TK and store it in thz next level of ZTEMP.

The decods function

whore R and X can both be non-scalar, also belongs to this group . The
result of R L X 1is a scalar. Sczlar arguments are extvended to the same

size as the other argument. TFor exanple, both

i9 19 19 18 L+ 1 7 7 6
and 19 -1 7 7 &
is 1776 .

Taking this feature into zccount, the clsments of the left operand are sfhored

138

in YROWL by exponding the operand-B macro wilh ZM4BEK set to £ . The
elaments of the right operand aru then stored in YROWR by expanding the

operaﬁd—ﬁ macro with ZilARK set to 3 .

To produce the desired effect, the decode mecro (number 14) simply
genorates a call of the subroutine DCODE. DCODE accesses YROWL and YRUWR
to produce the zresult N, The parameters for DCODE are N, YROWT, YROWR

and ZCPTH.
The member function
A € B

is another function belonging to this group, A and B can be non-sealar

and A €B has the some dimensions as 4 .

The elsments of the left operand are stored in YROWL by expanding ihe
operand~B macro with ZMARK set to 1. The right operand elements are stored
in YROWR by expanding the operand-B macro with ZMARK set to 3. The result

will thus heve itho szme bounds as the lef't argument.

The member mzcro (number 12) aimply gemeratos o call of the subroutine

MEWDAR to produce the desired resuit in ZTEMP.
The iota function,
A U B

where A end B way both be nen~scalar, is very simply handled by this
method. To produce the reguired result, in ZTEHP, it js only necessayry Ho

do two expansions of the operand-B macro, |

The first expansion, with ZHARK set to @, stores the zlements of the
left opsrand iu YROWL. The second expansion, with ZMADK set to 2, stores

the elements of the right opcrand in IRGWR. In agdition, it sets up bouuds

139

(the result hasving the szme bouwads as the right operand) end generaiss calls
of the f'unction I1¥DX. Thexe dis one call of INDX for escn eiement of the
right operard, DX has pazremeters YRUIL, YROVR and 2, where 4 gives
the vosition in YRGWL of the right opesrand element being considerzd. The
parameters are used to determine the result and store it in successive

locaticns of ZTEHP, starting from the current base level.

The outer nroduct function iz inderesting, The non-scalar operands,

A end B, of
Lo ., B
where f is any scalar dyadie function, are handled 23 follows.

First the left opsrand elements zre stored in YROWEL by expanding the
operand-B macro with ZMARK sst to 1. Bomnds are also produzed in ZCBDS

ag for the left operand 4 .

The operand-B macro is thsn expanded with ZMARK set to 5. The elements
of B are thus stored in YRQWR., In addition, ZCENDS. is updated so that the
bounds for B are stored above ihe beunds for A . Thus, if A is

m-dimensional and B is n-dimensional, ZC3NDS will have {min) elements

and, ZOPER will be set to men .

. .

T i < ZCPTR
B

Z

C

B mt]

S T

j; A

The cuter product macro is then expanded. Since the dyzdic function,

£, can vary, the exccubion of the outer product macro (number 67) is inter-

rupted at a certain point and the macro for f 1z expanded. The appropriatle

elements of YROVL and YRCWR are Tirst stored on ITEXP to be wused by the ¢

maoro. Expansion of the outer product macro is then resumed {rom immediately

after Lhe first exit point.

This can be-bestter understood by considering the code gencrated, This

code is listed below. {The subroutine call
CALL BDNO (Z, 21)
produces in 2 the product of the first 21 elemants of ZCBNDS.)

GALL BDMO (21, ZROWMN4)
CALL BDNO (Z2, ZROWKO)

Z3 = ZYY (ZYYPIR)

o= f .
Z5 = f

188 25 = Z5 + 1
%6 = f

Al %6 = %6+ 1

Zh o= Zhk 4+ A1

At this stege, the entries YROWL (Z5) and YROVR (26) are stored on
ITRNP. Bxecution of the outer produet mecre is then interrupted using the

macro instruction seguence RCM %#%

The opsrands for the £ macro have now besn stored in ITEMP. The f
macro is expanded to produce a rosult in ITEHP, Tor example, if' f
represents 4+ , then the code (YROWL (25) + YROWR (26)) is stored on

ITEMP in place of YROWL (25) and YROWR (z6) .

141

Bxpansion of the outer product maecro is reswned and the following code

is generated.

ITEP (% + 23) = <result code for £ macro with brackets
renoved >
IF (26.17.21) COTO 141
IF (25.17.22) GOTO 40
MARKER = =5
= B
182 27 = a7 + 1

I

The code YIUBNP (27 + %3) is stored in ITEMP to be used as an operand

in the next macro expansion.
The inner product furction
AngB

is handled by a similar method. Here A and B may be non-scaler and

£ and g are any scalar dyadic functions.

The opersndzs A and B arc handled as follows. The elemsnfs of 4
are stored in YROVEL by expanding the operand-B macro with ZNARK set 1o 1.
The bounds for A are algo set up in ZCENDS. The operand-B macre is then
expandad wi%h’ZMARK set to L. The elements of B are thus stored in the
erray YRCYR. ZCIEDS 1s updated 23 requirsd for an inper produst. Thus,
if A is m~dimensiocnal and B is n-dimensional, ZOBEDS will be as illusirsied

below,

The immer product macro employs & similar strategzy to that used in the
outer product macro. In this case there are two scalar dyadic functions fo
be handled, There are thus two interrupbions in the exscution of the innsr

product macre. The inner procuet macro is listed in Appendix /.

RISV N "

T) “Tn T
2 B
C
B m+n-2
N m 2
D A m-1
I —— l_ —
ZCBNDS {m) ZCPTR has value m+n-2

is stored in

ZROWDM to be

used in the

inner product macre body.

5.3,2 Handline of the monadic RHO operator

This simply involves updating the contents of the arrvay ZCRNDS.

For non-scalar result operands, the effect is produced by generating
a call of the subroutine MRIO, For other non-scalar operands, the effect

is produced by generating a call of the subroutine NRHO.

MHEO and NRHO sve contained in the module librery SARUN.

5+3.% Handline of the dyasdic RJ0 operator

The dyadic rho operator is handled by two macro expansions. The firat
generates code to store the left operand elements in the srray ZROW. The
second macro cxpansion generates a number of subroufine calls. These sub-

routines access the elements of ZROW (end the right opersnd)} to produce the

required rosult.

The dyadic rho operator is discusse% in§ 5.5 o

5.3 Handling of the monadic iota overator

T3 handle

143

where N is an integer Z_ﬂ, code iz simply gensrated to store valuss
152,04, in swucesssive positions in the arrey ZTENP, starting from the

current base level,

The variables, MARKER, ZCRYDS and ZCPTR are set accordingly.

5.3.5 Hendling of the grede-up and grade-down functicas

To handle, for example,

4 4

where A is non~scalar, the resuli cannot be determined until all the
elements of 4 are known, Axpansion of the operand~4 macro to handle A
simply produces the start of the loops required for non-scalar accessing.
Cods 1s therofore gensrated to store the elements of A in the array YGRAD

and the loops are then completed.

A call of the subroutine GRAD is then generaéed to produce the reguired
result, The Quick-sort method of sorting (Knuthz)' is used in GRAD to handle

grade-up and grade-down,

5.3,6 Handling of ths dyadic 2 functioz

The operands &4 and B of
A ? B
where A and B are both scalar, are handled by two expansions of the
operand-A macro. The code for A& and B is thus placed in ITELP. Thon
A calls of the functlon QUZRY2 are generated, QUERYZ has paramsiers B and

the array ZBOCL. A random number, N, in the range 1-B 1s first generaisd.

ZBOOL (N) is then set. IF, in a subsey'ent czll of QUERY2, N dis obtained

144

as result, the previous occurrvence of N can be detectved by testing the
value of ZB00L (N) . If ZBOOL (N) is set, then the process is repeated
until & random number is produced which hss not occurred vefore. In this

way, for exomple, N 2 N will produce & permutation of N as wesult.

After A calls of QUERY2, ZBOOL must be wreset in preparation for any

subssquent sexies of oalls.

5.4 Qther Interesting Punctions

This section deals with the operators
(i) specification €—

(ii) reduetion f/ where f is any scalar dyadic function.

S.4.1 Handling oi specification statements

For most furctions, the lef't operand is handled before the right operand.
The specification function is an exception., For specifiication, thz right
operand must be exzmined first so that the correct type and dimension

information can be set up for the left operand. For exauple, consider
A € L

If L dis litersl, then A will be literal also.
If L is numeric, then 4 will be rueric also.
Ir 2ddition, the dope vector entry for A depends on the dope vector entry

for L.

Thus, after handling the right operand, the appropriate information is
stacked for the left operand. The specification macro generates a sub-
routinc ¢zll, the subroutire being determined by the type information

available.

145

After handling a specifiication operation, the index for the left opzrand
is stacked in the appropriaste location of ID3TK. The index is thus avallable
1o be re~used to provide-operand information for the next cperator in multipnle
specification statements. ithen the left operznd is not an expression, no

result code iz placed in I1ENP.
Howeveyr, consider

A4+~ B+R1]) ¢ 3.

Atter hunéling R[ﬁ] &— 3, a ~1@ entry is stacked on IDSTK, This is
consistent with the above method, as the "index" for the left operand

R[1] is ~1#, sinoe R [11 is & vesult. Since —1% vill now be used as
the information for the righ% operand of <+, il is necessary to have the

code corresponding to R [11 stored on ITHENF. |

5.4.2 Handling of reduction

Consgider

£/x

where £ is any scalar dysdic function end X 1s non-scalar. (The method

employed only reguires explanation for the non~scalar case.)

Assume, for sase of explanation, that X 1is s vector of N elements. 4

Then ths result required is

x{1) ¢ x [2] ¢ —— ¢ x{n]. .

The method employed is to sct the varlables CPL and (PR initially to

() +the identity element, ID, for function f , and)

i) x [w)

rospectively.’ OPL and OFR are then stored in ITEMP.

146

Interruption of the reduction macro is then effected using the macro

instructions ROM 3T discussed previously.

The f macro is then expended to produce the result (OPR £ OPL) on

ITEMP, Expansion of' the reduction macro ig then resumed,

OPL is now set to the result on ITEWMP, and OPR to X [N-1] . The

whole process is repeated using the new values of OFL and QPR ,

These steps are carried out N times, the result required being

accunulated in QFL .

The reduction macre is lisied in Appendix 4. For a non~scalar operand,

code of the form listed in Chapter VIII, BExample 8,1.9, is generated.

5«5 Examvles oi Macro Bodles

This chapter ends with three example macro bodies and their explanations.

The examples chosen are:

(i) the macro for +, =, x, /, *
(ii) the macros for dyadic rho

(1ii) the macro for guad input.

5.5,1 The macro for +, =y X, /s *

This macro is reproduced below.
BR L0 0 RO C€B S

The function of BR 1is simply to prdduce { on MTEMP, The left operand

code is then transferred from ITENP to MIENP, {The operand code has

previously been produced on ITELWP by two expensions of the operand-A macrc.)

147

Phe instrustion O produces the code +,-,%,/ or ** on MNIEMP,

depending on the'operator being handled.

RO results in the transfer of the right operand code from ITRXP to

MTENP, (B produoes a closing round bracket) on MTEMP.
Consider, for example,
A * B

where 4 and B are both scalar. Then, 2t this stage in the macro

expansion MTEMP will contain (& ** B},

The contents of MTEWP are now transferred to ITEMP using the § macro

instruction and exit from the macro body is effected using :FF.
Now consider

G+ A*D.,

Suppose A ¥ B has been handled as deseribed above, ITEMP now contains an
entry {A ** B), The code for C is storsd on ITEMP by expanding the
operand—4 macro. The variable IREV 1is set to 1 to indicate that the
operands have beeﬁ sbored in ITHEF in reverse order, IRAV is tested when

L0 and RO are used to determine the order of accesg of the opsrands.

The + macro is now expanded to produce (C + (A**B)) on ITENF.

Brackets are inserted round the resuvli code each time the above mecro is

expanded., It was thus umnscessary to bracket A%*B when RO was executed.
I{ is, however, necessary to rcmove the outer brackets when an expression i

such as € + A*B is used to the right of & specification arrow.

5.5.2 The macros for dyadic HJ0 i

As stated previocusly, dyadic rho is handled by Lwo macro expansiona.

148
These macros are listed in Appandix 4.
The first maero handles the lef't operand, &, of A ’oB .
Three cperand typas ars first distinguished. These are:

{i) scalar
(ii) non-scaler or conatant vector

(iii} result,

Tho first test IF 21 DT & 1 distingwishes case (iii) above. Thus

the cods from label {1 onwards handles a result left operand.

The second test IF 92 WE & 2 distinguishes case (i) above. Thus

case (i) is handled up to label 2 and then case (11) up to label 1.

For ocase (i), the following code is generated:

ZROW(1) = <soalar idemtifier>

ZROWNO 1

1

For oase (ii), the following code is generated:
CALL RHOBKD (< NAMES index>,<typoe valued) .
In RHOBND, the operand elements are stored In ZRO7 and ZROWKO is set,

For case (iii), scalar and non-scalar resulis are distipguished by

testing the value of MARKER. The following code is generated:

IF (MARESR.VE.£) GOTO <label 1> .

ZROV{1) = <result codey

ZROINQ 4

GOTC <label 22>

149

<label 1> ¥ <integerd> = <result coded>
IF (2 <integer 1>,GT.ZLIM2Z) CALL GVCVER (28, & <label 2>)
ZRO¥ (Z <integer 12) = Y <integer>
CALL BDNO (Z < integer 2>,20PTR)
IF (z<inleger 1>..LT.Z<in{;egcr Z>) GO0 <label >
ZROWNO = Z <integer 2>

< label 2> CONIIKUE

Here ZLINZ2# is the upper bound for ZROW, If it is exceeded, GVOVER is
celled to print oul zn error message. GVOVER handles overflow oi all

globel non-scelars,

The oall of BDKC produces the product of the ZCPIR elements of ZCENDS

in Z<integer 22>, This provides a termirating conéition for the loop.

The zight operand can ncw be handled. More operand types are allowsble
heve, Thus the secord macro has a greater number of tests. ~For each

operand type, a different subroutine call is generzated. These subroutines

producse the required result in each case.

The following opsrand types are distinguisnad:

(1) scalar
(31) litersl
(iii)} empiy vector

(iv) numeric non-scalar

(v) constant vector

'I
{vi} result |
[

For each operand type, a call of the subrovtine YREQ is generated. This
produces in the first parameter the product of a2ll the slements of ZROW, From
positions 1 to ZROWIOQ. Thus, for the six cases listed above, the following

code is generateds B

150
(i) Scalar
CALL YRUQ (7 <integer 1>,ZR0N)

Y <iateger 2> = <scalar ideniilier >

C4TL RE02 (Y <integer 2>,%<integer 1>)

Z<integer 3> = ZYY (ZY?.’E’_‘R) produced by instruciion Z3

z<integer &> B ' produced by

<label 1> Z<{integer 4> = .Z2<integer 4>+ 1 .instruction DS

The valuves < integer 4> and<label 1> are stored to be used in findshing

the locps lztler using the PC macro instruction. The code
YIEVP (Z< integer 4>+ % <integer 3>)

is stored in ITCHP {0 be used &s an operand in ths next macro expansion,

(i3) Literal

CALL YRHO (%< integer 1>)

CALL RH05 KEKAWES index>,% < integer 1>)

1

‘% <integer 3> = 3Y (2YPIR)

Z < integer 4> [}

i

< label 13> Zinteger 4k > = Z<integer b3+ 1
]
1
t

An entry ZTRHP. (% <indeger 4>+ Z < integer 3>) is again placed in ITHP.

(iii) Bmpty vector
CALL YRHC (Z < integer 17%) ' 1
KARKZR = =3 ‘

CALL RIIOL

A dusmy entry is stored in ITHME for an empty vector resulti. It is aceezsed

151

during subseguent mecro expansions {this was done for gonerality) but is

dotected by the fact that MARKER has value -3

(iv) MNumeric non-scalar

CALL YREQ (2 < integer 1>)

CALL VECASE (< NAMES index>)
or

Zr1
¥z
CALL RIOL

An entry as for case (i) is placed in ITEMP.

{v) Constant vector

CALL YRHO (Z <integer 1>)

CALL BHO1 (KNAMES index>,Z < integer 1)

Z {integer 3> 2Y (ZYPIR)

Z <integer 4>]

it

<label 1> Z<integer 4> = Zinteger 4>+ 1].

Agein, an entry as for case (i) is placed on ITEWP.

(vi) Result

CALL YRHO (Z<integer 1>) ' |

Y <integer 2> = < result code>

TP (MARKER .NE. #) €OTO <label 1>
CALL RHOZ (Y <integer 2>,%Z <integer 1>)

GOTO <label 2>

152

< label 1> Z<integer 3> = 2Z<integer 3>+ 1

IF (Z<integer 3>.G%. ZLIM 23) CALL GVOVER (25, &<lakel 33)

YTEMP2 (2 <integer 3») = Y {integer 2>

CALL BDNO (2 <integer k>,ZCPIR)

IF (2 <integer 3> .LY. Z <integer 4>) GOTO <label 1>

<label 2> 3 <integer 5> = ZY¥ {ZYYPIR)
[

<label 4 > Z<inseger 6> < ‘ Z2<integer 6> 1

b

2 <integer 6>

]

An entry of the Tom

YTEXP (2 <integer 6>+ Z<integer 5>)

is then stored on ITELP,

5¢6.3 The macro body for cued inout

The quad input macro body is listed in Appendix 4.

To read in numerical daba, the user must first specify the type of the

data. The following types are possidles

(1) enpty vector
(ii) scalar value

(iii) constant vector

The three types are distinguished by first specifying a value for the
variable ZVBID. The values «~i, ¢, n are used for cases (i) to (iii)

regpectively, where n is the nuwber of elements in the constant vector,

The following code is generated:

153

READ 1§02, ZVBND
WRITE (6,1/52) ZVBND
IF (ZVEND.NE.-1) GOTO<label 1>
MARKER = =3
WRLTE (6,1406)
GUTO <label 2 >
<1abei 1> IF (4VBND.NE.@) GOTO <label 3>
MARKSER = @
READ (5,10L) YTER (1)
WRITE {6,1244) YTEM (1)
G0TO < labal 2>
<1abel 3> IF (ZVBND.GT.ZLIM 26) CALL GVOVER (26, &< label 2>)
RBAD (5, 14%) (Y1 EM (zi),z:.L = 1,4VBND)

WRITE (6,186) (YoM (zi), 2, = 1, LVEND)

ZOPTR = 1

ZCBNDS (1) = gZVBND
<label 2>2<i1> = O

2+1> = 2K+ 9

An entry of the form Zi+1>is stored on IIEYP o be re-accessed as veguired.

The FORMAT statements used are Listed in macro number 16 in Apperdix .

They can be altered by the user if required.

Alternatively, the user cen write his omm input subroutines so that

specification of ZVEND is unnecessary.

(Similar specifications of ZV3ND are rcquired for the quote-quad macro

body.)

When guad or quote-gued input is uvsed, the data supplied is printed ouf,

This gives a closer approximatios to the printed page preduced whon theus

instructions are used in APL .

154

CHAFTER VI

LABELS AND JUNMPS

Thie chapter descoribes the handling of APL designational expressions.
The method is much simplified by the presence of the lexical scanning phase.
When the dnput APL code is lexically scanned, ali label names are detected
by the existence of a colon to their right. Entries (having type values
of -4) are set up in NAMES. In addition, entries are set up in a two-
dimensional table, LTABLE. A particular row of LTABLE holds the following

information,

(1) The index for a label neme in NAMAS.
(ii) The corresponding row number for the statement in which the

label ocours.
Eniries arc added to LTABLE sequentially.

Since the lexical scan is completed before ccde generation tiwms, LTABLE
will hold &ll the necessary information for produvction of GGIO =ztatements.
Forward jumps cause no problem because the appropriate label entriss have

previously been set up during the lexical scan.

A1l AFT functions and subroutines heve assumed label numbers. For

example, consider the subroutine

155

The statement -»2 means "transfer control to the 2nd statement in subroutine

F ".

To allow for this possiblility, a count of the number of lines in 8.
function or subroutine is maintained, In fact, there is & stack of Line
counls to handle sets of functlons or subroutines. The line count is
increased as required until the end of a fwuaction or subroutine is recognised.

For each line processed, entries are set up in NANES and LTABLE for the current

line count value. The NAMES entries have type values of -4.

Thus, at code generation stage, the appropriate line numbers are produced
al the start of the code corresponding to each line. For example, statement

2 of subroutine FN would be converted to

in the translated routine; similarly for all n lines in the subroutine,

1
1
This allows for statements of the {fomrm ’ ﬁ
-»n
where n is not known until run-time of the converted routine,

Label numbers used in FORMAT statements and introduced during code

generation have values starting from 10¢, Thus, up to 99 lines mey Te
present in an APL function or subroutine, If more than 29 lines exis?d,

then duplicate labsl numbers will be generated.
Now consider the statement

>N

In general, N may bs ¢

156

(i) a label name

(i1) a scalar varlable neme

(iii) a scalar constant with integral value

{iv) an empty vector

(v} 2 constant vector

{vi) a vector variable nane

(vil) an expression with scalar result
(viii) en expression with empty vector result

(ix) an expression with non~scalar result

Fach case is considered separately. The descriptions are given in §6.1 to
$6.9 respectively. OCases (1) to (ix) are distinguished either by typs value

or by the value of MARKAR.

6 ‘Sta‘bements of the Form '->N', Whers N is s Label Neno

N has a type value of =4, and its NAMES index, I, is given by

IDSTK {IDLPIR+1) .

The entries in the first column of LTABLE are searched sequentially
until an entry is found having value I . If LTABLE (J,1) equals I, then
the required label number 1s given by X = LTABIE {(J,2) . Thus, it is only

necessary to generate code of the fomm

GOTO K

6.2 Statements of the Ferm '>N', Where N is a 3Scalar Varisble Name

N has a type value of ¢, and its NAMES index, I, is given by
INSTK (IDLPTR+4)} « The value of N will not be knowmn until run-time.

Two poséi’bilities may arise:

K
N
3
A

157

(1) 1< N< MAX, where MAX is the nupber of lines in the function or
subroutine, or

_'(2) N <41 or N >WNAX .,

For case (1) code of the form
GOTO <label number >

is required.

Por case (2) the code

RETURN

should be generated.

The above two possibilitles zre catered for by generating code of the

form
27 = N

GOTO 1990

There is & correspending switch

1926 IP (21.LE.W .OR. Z4.GT.MAX) RETURN

goT0 (1,2,3,-—-,MAX), 21

643 Stetements of the Form '+ N' There N disg a Scalar Constant
‘With Ihtegral Value B

As in 6.2, N has 2 type value of £, and its NAMES index, I, is given
by IDSTK(IDLPTR+1) . The value of N is known at code generation stage.
However, distinguishing this czse from that above would involve the introduc- i
tion of & few more macro instructions. In fact, this case is treated sxectly

as that outlined sbove, and code of the form i

21 = N
GOTO 102¢

is again genmsrated.

158

6.4 Statements of the Form '=»N', %hére N i1s an Eaupty Vector

In this case there is a vacuous branch and sequential execution of

" stetements is required. Thus no code is generated.

6.5 BStatements of the Form *-»N', YWhere N is a Constant Vector

N has a typs value of -5 and its NAMES index, I, 1s given by

IDSTK (IDLFTR+1) .

The regquired branch is determined by the first element of the constant
vector. The first element value can be obtained (at run-time) by applying
‘the function FUN %o I with first parameter set to 1 . Thus, tode of

the following form is generated,

21 = FUON {1,I)

GOTO 19e¢

The function FUN 1is present in module library SARUN .

6.6 Statements of the Form *-»N', “Where N 1is 2 Vsctor Variable Rame

N has type value 1 and its NAMES index, I, is given by IDSTK (IDLPTR+1).

The NAMES index for N c¢an be used 1o provide the key and hencs the dope

vector address, J, for the vector N .

In this case the switch at label 168 has to be indexed by the value of
the first element of vector N . This value is given by YSTORE (X4) ,
where X = DOPEs(J,3) , end X& = 10 » (K=1) + 1 . The required result is

produced by generating code of the following form:

CALL- VBT (I,X)

KA 18 = (E-1) + 1

1t

21

YSTORE (1KA)

' GOTO 10829

@iven the index I for the vector N , +the subroutine VSET produces the
rosult K, whers K 1is the number of the first block of YSTORE assocleted

with N, Subroutine VSET dis listed in module library SARUN,

6.7 Statements of the Form '->N', Where N is an Expression
With Scalar Result

In this case MNARKER has value @ and the scalar result code is stored

in ITEMP . The following code is generated

%1 = <scalar result code >

GOTO 1909

6.8 Statements of the Form '-N', Where N is an Fxpression

With Empty Vector Result

Here, MARKER has value -3 and a dummy result variable has been stored

in JTEMP The code

IF (MARKER.FEQ.~3) GOTO < label”

is generated, where

<label> CONTINUE

is the last code line gensrated for a result.

6.9 Statements of the Form '-*N', ‘Where N is an Expression i

With Nou-Scalar Result

This case has been limited to handle only expressions having a MARKER

value of =5 . The index for ‘the non-scalar resalt is set to 1 so that the

First element of the result will be used to determine the branch. For casea
described in 86.7 to §6.9, therefore, the Follcwing code iz generated:

¥ (MARKER,EQ.-3) 30TO <label 4>

IF (MARKER.NE,Q) GOTO <label 2 >
21 = <scalar result code>

GOTO 1980

Z = 1

n

Z1 = < non-scalar resuli code’>
GOT0 100@

CONYTNULR

is the index variable for the non-scalar result.

180

6l

CHAPTER VII

PROCESSIRG OF XINIDTAL INFORMATION

This chapter describes the processing of the initial inflormation supplied
with a set of APL routines., From the initial information, entries of the
folléwing form were stored for numeric ox literal non-scalars. ‘Three

possibilities exist:

(é) if no further iuformation was supplied for the non~scalar, ths following
entries are stored:
1, the position, I, of the non-scalar in the initial list,
2, the dddress, A, of the dope vector entry for the non-scalar,

3. £

(b} if partiel informetion was supplied for the ﬁon—scalar, the following
" entries are stored:
1. the position, I, of the non-scalar in the initial list,
2. the address, A, of the dope vector entry for the nan-scalar,

3. -N, where ¥ ds the number of dimensiocns of the non~scalar;

{c} if-full information was supplied for the non—scalar; the following
entries are stored:
1. the position, I, of the non-sealar in the initial list,
2. the address, 4, of the dope vector entry for the non-scalar,

3. N, where N dis the number of dimensions of the non-scalar,

. .
- . .

aN-t. bN’ where by is the bound for the Nch

dimensicn of the

non-scalar.

4. h1, where by is the bound for the first dimension of the nop-sealar -

162
A1l entries stored are in I6 format.

Initially, one block of space in VYSTORE was set aside for storage off

each nuneric non-scalar for waich no additional information was provided,

The genecrated code may contain calls of a subroutine which gllocates or
de-nllocates storage for & particular non-scalar. This will be the case il
the dyadic 'rho ' function eppears in the original routine. However, before
running the converted routines, the initial information is tsken into account.
Where possible, contiguocus blocks of YSTORE are allocaled for non~scelars.

This is discussed later.

For non-scalars with elements stored in contiguous blocks, a fixed amwunt
of storage has bsen set aside in YSTORRE. This amount ié the maximua amount
of.space required by the non-scalar, Thus, for non-scalars with elements
stored in contiguous blocks, the amount of space allocated should not be
varied dynamically. The dimensions for the non-sealar may, however, vary
dynamically. It is therefore arranged that the gturaga allocation subroutine
hés:no effect for non-scalars stored in econtiguous blocks of Y3TORE. ‘The
current aimensions are updated as roquired throughout the rumning of the

converted routine.

The dope vector table is now updated (using the initial informetion) so
that those non-scalars having elements stored in contliguous blocks can be
datected by examining the table, The table is updated in the following

manner:

(2) For arrays with full information given,the actual atart address, 84,

in YSTORE can be calculated. DOPES (n,3) and DOPES (n,4) are set

to B and SA respectively, where n 1is the address of' the dope vector

entry.

{») TFor arrays with no infammation given, the dope vector entry is unaltersd.

163

(¢) Por arrsys with only partial informstion given, the ncgative of the

pesition of the array in the initisl list is stored in column 3,

For cases (&) and (c¢) a2bove, the fifth column of the dope vector entry
ié filled in at this stege. For (2) the bound inform&tign is stored in arrsy
ZBOKDS, from position ZBPIR onwerds. ZBFTR is then increased as reguired.
For (c) storsge is set aside in ZBONDS for the bound informetion end ZBPIR is
set up as reguired. In this éase the bound inf'ormatien carmot be filled in

until it is obtained at run—time of the converted routine,

Now consider arrays with full or partial additional information supplied.
To z2ceesa the Ith slemenl, relative to the base eddress, the following steps

are sufficient.

1. ~Obtain the start address, S4, Tor the nen-scaler from the dope vector
table,

2, Obtain the actual address, A&, vhich is given by SA+ I . =

Thus the time-~consuming accessing method used in the function FIND caon

be replaced by a much simpler function. A method of optimiging the generated

code by removing unnecessary FIND calls is ocutlined in Cheptsr VIII.
The following types of entxy are thus present in DOFES ot this stage:

(a) Columa 3> @

No additional information has been given, The eccessing method used in

the function FIND is essential,

(o} Column 3 < 4

Partial information has been supplied for the non-scalar, and the DCPES
entry is in an intermediate form. Tt will be couverted to form {¢) usirg

information supplied by the user at run-time of the converted routine. This

164

is discussed in §7.1 . In this cese the generated code contains an

wnnecegsary call of the funciion FIND.

{c) Column 3 = @ and colum 4 £ #

Full informetion has been supplied and the dopa vecicr entry contains
the exact start address for the non-zcalar {In column 4). Again the code

generated contains an wnnecessary cell of the function FIND.

For oxample, suppose that the following information was supplied

initially:
A 2 & b 3
B g &
¢ g -1
D 8 2 19 2
E g -2

Thus, the totel number of blocks of YSTORE required for A is 5, for D is
2, and it is knowm that C dIs 1-dimensional and ¥ 2-Jinensional. No

© further information is given for B .

During processing, the dops vecter entries for A, B, ¢, D &nd E are
altered to the form shown in Diagram 7(a). The corresponding layout of
YSTORE is indicated in Diagram 7{b). It is assumed that ZBFIR has value
1% initially. Dotted lines have been used to indicate that the exact amount

of space for non-scalars C and E is not known at this stags.

The amount of space allocated for B may be updated dynamically iff 3
has been re-dimensioned in the APL routine. The amount of space allocated
for 4, €, D and E, however, will remain constent during execution of the

converted routine.

A’c this stage, start addresses for A .and D are imown exactly, and

n

14

2
13
m th
16

Diagram 7(a)

VN ey

=

—m W O

Diagram 7{b})

Shows DOPES entries for non-scalars 4,B,C,D
after the initial information has been processed.

2 blocks

5 blooks

Shows layout of YSTORE corresponding to
DOPES ertrics as given in Diagram 7(a).

the start addresses for C and E can be calculated immediately before tha

converted APL routine is run.

The genervated code c¢an now be optimised. The optimisation process
{with particular reference to the removal of unnecessary FIND calls) is
described in Chapler VIII, In replacing FIND calls it is assumed that the
exact sta;t address is stored in column four of the DOPES entry for any non-
scalar., This will be the case oven for partially specified non-scalars, as
. the DOFES entries are altered to this foxm immediately before execution of

the converted routines.

The processing of the information supplied at run-time of the converted

routines is discussed in §7.1 .

7.1 Handling of Bounds Information for Purtially Specified

Kumeric Non—scalars

Corresponding to each partially specifiied numeric non—scélar in the
initial list, the following information must be supplied by the user ot zun-

timoe ¢

1. The position, I, of the uon-gcalar in the initial list.
2. The number, N, of dimensions of the non-scalar.

3. N entries containing the bounds for each dimension,

For example, referring to Diagram 7(b), if YSTORE has 5000 locations, then

n= 495 and m = 4931 .

Suppose the information specified at run~time for non~scalars C and E

is as shown below:

) i 3 1| 26! e e e m e m = { for C.

. X 18
o) | s o] ol sl j for B

1:6?
Then the start address of C can bo caloulated as:
493t - (26 4 9) =10 x 18 = H9H
Similarly, the s'l;a,rt_a&d.ress for E ocan be calculated as:
3ol - ((12 xB) 4+ 9)Y =41 x 18 = LBA .
' That is, in general
Sk, = SA ~ {no. of elements + 9) 16 x 18 ,

vhere SA1 is the lowest start address for the fully sﬁecified non-scalars.

For sach line of information obtained, the following process is

carried oub;

The array DOPES is scauned, in particular column 3. Suppose (for

entry i in the dope vector table)

(a) Column 3 > &

This corresponds to & non-scalar for which no additional information
has been provided. HNo action is required. Entry {1+ 1) in DOPES is

now scanned,

(b} Colvmn 3 = &

Examine colwmw 4. If column 4 = &, then the entry is either empiy or

corresponds to a literal non-scalar. Agaln no action is required and entry
{2+ 1) i3 now tested. If column 4 # &, then the entry is for an array
with full information provided initially. The dope vector entry has already
been filled correetly, and the bounds have been set up in ZBONDS, No further

action is required and entry (i + 1) is now tested.

(c) Colum 3 <0

Suppose column 3 = <k , Then the bounds information for the kth non-
scelar in the initial list must now be accessed. Using this information
the exect start address for the nonw-scalar can be calculated, Then DOPES

(i,3) is set to @ and DOPES (i,4) to the start address.

N and

"

Suppose DOPES (i,5)

DoPEs (i,6)

%,

thon the N bound values are stored in ZBONDS, starting from position M .

This is illustrated in Diagram 7.1(a) .

It is assumed al this stage that information is read in in Jincreasing
order of position in the initial list. Thus, for example, the informatiocn

for € appeared hefore the information for E .,

The run-time bound information is supplied in I6 fommat. Thereforo
the first 6 columns of each card could be sceuned and the dats reordered

accordingly.

When the initisl information was first obtained, the sddress, I, of
the dope vecltor entry for each non-scalar was stored. This vealue has not
besn used in updating the entries in thé dope vector table. It is used,
however, in replacing vunecessary FIND calls. The value DOPES (I,2) has
to be'comparea with the fourth parameter of each FIND call recognised. Ir
a match is found, then column 3 has to be tested for 2 value %, indicating
thet the FIND call can be replaced, This is discussed in grester detail in

Chapter VIII.
In conclusion, the entire conversion process is summarised below,

1. PFartially process initial information.

2. Convert APL routines to target language code. This involves:

bOPi

zl

169

£——simmr—— ARONDR >

Diagram 7.1(a)

Shows selting up of entries in ZBOKDS using

columns 5 and 6 of +he DOPE vector table,

AL AR e e

2.1 lexieal scan,
2,2 right-to-left scan and production of imtermediate cnde,
2,3 left-to-right scan and production of parameter information

on & stack,
2.4 macxo cxpansions.
Use initial informatilon to update the dope vector entries as described.
Optimise code, in particular by replacing urnecessary FIND cails by
simpler functions.
Read in bounds for partially specified arrays and gpdate the dope vector
entries.

Run the converted routine.

CHAPLER VIIT

OPTTMISATILION OF CODE

This chapter describes optimisation of the generated code. The main
topic is the replacement of unnecessary "FLNDY calls by simpler functions.
This is discussed in §8.1 and §8.2 . Ia §8.3 other means of optimising

the generated code are described.

It should be emphesised that no ettempt was nade at code generaticn
time to do any optimisation of code, This was reserved for a scan of the
code after gencration, TFor this reason, the generated code is in parts
very inefficient, but can be altured to zive a considerazble increase in

efficiency.

Another factor contributing to the initial iﬁeffioiency of' the gensrated
code is the generalidy demanded by APL . It is this factcr which necessi-
tates the production of a very large amount of code corresponding to only a
simple AVPL expression, One siriking example is provided by the APL

expression +/L, which ia discussed in more detail in $8.71.9 .

In producing the generated code, two courses wore available Tor the
P g &]

handling of global array declarations. These were:

1. +to use the exaot values for all arrsy bound specifications and to plzce

“ the arrays in the CCIHMON ares for each subroutine or funciion;

2. to give all arrays unit dimensions and to place tie arrey nzmes in the
parameter 1ist of every suobrouiine zad function contalning references

" to the arrays.

The first metked is more effisient as parameter linkasge, which can be
a coestly epsration, requires less time and storage space in this case.
Howsver, the second method nas the advantage that less alferations need be
mz2de to the code to change the bound values for some arrays, should th{s
be found nescessary. (6nly the main program and the svbroutine ZINIT, in
which global non-scalars are initiallised, nced be altered using vhe second
mothod,) With this aim in view, the second method was used in generating
the code, but the first method is employed in all the examples given, as it
provides more rezdable code. In addition, it is easier to generate ALGOL
or PL/1 instead of FORIRAN 1f COMMON stafements are not uced, (see

Appendix 7).

8.1 Replacement of Unnecgssary "PIKD" Calls

APL allows great diversity in accesging of non-scalars. Some examples
are given below, illustrating & number of diffsrent types of non-scalar
ac0ess, The code generated is not always very efficient, as this ioherent

. diversity must bs allowed for.

Calls of the function FIND arc contained in subroutines FIND1 and
SFECS. These subroutines, thererfore, must slso be replaced by simpler
functions, where possible. At the same time, s}l the essential information
must be retained (in sebtting up current bounds, for example). TFor this

reagon, calls of the subroutines

1. ZADDR

2, ELFERA

are often generated when a "FIND" call is being raplaced. {The notation
PFIND" is used to mean FIND or FINDt or SPECS .) These subroutines have

the following functicns:

173

1. ZADDR (1, Z3T, ZHUH, ZBOUND)

caleulates (a) the start address Z§7

(b) the nwuber of eloments ZNUK

(c) +he peinter, ZBOUED, to the bound information

for the non-scalar with NAES index I .
2. RELPERM (1, J, X, L, W, 2)

reorders the subscript values in array Z according to tha value of I .

For s FIND or FIND1 cell, the values I, J and K correspond to the first
3 parametcrs. For a SPECS call, I, J and K all have value & . Zz is

a two-~dimensional arrsy, each row giving the subscript values for a particulasr

level‘in nested subscript expressions. L defines the row of 2 +to he

accessed, and W the numbesr of elemenis within the Lth row. ‘fthe current

tounds for a ron-scaler expression are also updated in ELPZRM, in the mzrmer

specified by the value of I ,
The following types o array access are now consldered.

1. Ascessing an element of a f~dimensional array

2. Accessing an element of a 2-~dimensional array

3. Accessiang all the elements of an n-dimensional array

4, Addition of en element of a 1-dimersional array to all the slements of
an n-dimensional earray

5. A nested subscript expression

6. An exprzssion involving non-sealar subscripts

7» Accessing all the elensnts of' a particular column of an array

8, 4n expression involving a constant vector subseript

3. An expression invelving the APL reduetion cperator.

174
EXAVPLE 8.1.1
Gonsider the APL expression
A [I + 11
where I dis scalar 2nd A is non~scalar,

Ihe code generated corresponding to the above expression is of the form

shown below,

w = P

ZB1 = ZPOINT {2P1) 1‘
ZPT = ZFT 4 1 i
2T6DX {ZB1 + 1) = I + 1 i
ZPoIiy (ZFT) = ZB1 + 4 -

ALY, STARIAS (ANAIVEES’ 21, 72, 2KC)

CALL FIND1 (FP4, ¥P2, ¥P3, Ag\.oo, 43, 13, 22, ZNC)

ZPT = ZPT -~ 1

The code Y3 is then stored on ITEMP to be used as parameter for any

further macre expansions.

" The above code merits further discussion. It may be observed that the

variable 2@ is set to ﬁ initially and is not referred to thereafter,
It was included to handle cases where the subscript expression is non=zcalar.

Thus it is redurdant for all scalar subscript expressions, but not for non-

scalar subscript expressions,in which it is used to handle the implicit

looping operations (see EXAMPLES 8.1.6, 8.1.7 and 8.1.8) .

As was discussed in Chepler I, §1.2.5, the subscript expressions are

stored in the array ZINDX . Since nosted subscripis are allowed (see

EXANPLE 8.1.5), it is esgential at any time only to access the current

s

175

level of ZINDX to obtain the subseripl expressions. Hoxr this rezson, the
stack, ZPOIKT, was introduced, and the top-most positions of ZPOINT defire

the section of ZIVDX to be accessed et any time,

The subroutine STARTS simply does some preliminary calculations before

FINDt is executed. The first parameter, A is the NAMES index for

[ANES?
A, (A similar notation will bs used throughout.} FIND1 calculates the
index, 23, In YSTGRE and the wvalue, Y3, for the nonwscalar bsing accessed.
The first three parsmeters determine the type of accessing reguired end the
type value and index (or value, if the type value is B) for the last
operand for dyadic operations. In addition to the normal type of array

accessing, there sre 14 olhsr types, corresponding to certain APL mixed

funetions, These are listed in .Chapter I, §1.2.5 .

EXAMPLE 8.1.2
Consider a similar example
b ¢e— Bx; 346] 41

where B 4s nor-scalar and A, I, J are scalar, Ther: code of the following

form is generated,

2 = @

ZB1 = 2POINT (ZFT)

ZPT = ZPT + 1

ZINDX (ZB1 + 1) = I
2INDX (2B1+2) = J«+ 6

ZPOINT (2P®) = ZB1 4+ 2

CALL STARTS (’BNMES —)

CALL FIND1 (-~ Byoo ~om T3 ===)
ZPT = ZPT =1

A T3+ 1

Il

176

Now consider optimisation of the previous examples. Assume, firstly, that

full informaiion is available for A in EXAMPLE 8.1.1 . Then

"

DOFES (i, , 3)

B

and DoERS (1, » &)

!
1o

where ;A

start address in YSTORY for A . The elements of A are stored in consec-—

ig the address of the dope vector entry for A 'and SA ig the

utive locations of YSTORE, starting frowm position SA .

The cods for A4 [T+7] could thus be replaced by code of the form

Y3 = YSTORE (DOFES (i,4) + (T+41) - 1)
and the forwm Y3 is still suitsble as the next operand.

Now assume that B has full information specified in EXAMPLE 8.1.2 .

Then, if Y3 is set to

YSTORE (S5 + [(346) ~ 1] % b, + 3 = 1)

wvhere B iz a (b1 * b?) array snd SE is the start address in YSTORR

for B, the code Y3 is still equivalent to B [I H J+6} .

The expression for the equivalent Y3TOHE element is obviously deperdent

on the number of dimensions of the original non-scalar, The above code can

be generslised as shown below to handle n-dimensional array accesses.

{a) 1 = #

[0
-~~~
(W

-
—
S
HY

< 18t parametsr expression >

1t

Z(l,n) < nth parameter expression >

CALL ELFZRM (- - -)

22 = n -~ 1

ZPROD = Z{i,n)

177

CALL ZADDR (I,Z37T,ZHUM,ZBOUN)

188 IF (Z2.LE.¢) 5070 1482
'Padn = (ZPROD~1) » ZBOKDS (ZBOUKD + %2+1) + 2(i,22)
Z2 = 42
GOTO 14681

1¢02 ¥3 = YSTORE (28T 4 ZPROD-1)

Here I is the NAMES index for the non-scsler being accessed. It is

aasumed that the i"h neated level ds being dealt with.

If n is 1, then code of the following form is suffieciant,

(8) 21 = B
Z(i,1) = {1st para@eter sxpression
CALL ELDERM (- ~ =)
ZPR0D = 4(i,1)
CALL 2£DDR (I, Z3T,ZNUM,ZB0UKD)

1462 Y3 = YSTORE (28T + 2ZPkOD-1)

Here ZPROD and the labsl 1fF2 cculd have been eliminated. They are used

mexely to provide conformity with case (A4).

in (A), variables Z2 and Y3 have been used, replacing the use of
these names in the original code., It is essential to avoid ambiguity when
introducing variable names. Use of the name ZPROD causes no arbiguity,
az ZPROD would have been replaced by YZPROD, if it had appeared in the APL

text,

The label numbers used must also be distinct.

178

In examples such as those given above, the replaceable code is

gelimited by

ZB< integer > = ZPOINT (ZFT) eor (a)

and ZPT = ZPT =~ 1 e (B)

fhus, after recognising a statement of the form (a), ihe subsequent code

must be scanned for a replaceavle "FIND" call.
In addition, if a statement of the form
ZINDX (~-~) = <expression>

is recogeised, then the ceude for <Lexpressiond> wmust be retained. The

numver, n, of such expressions must also be noted.

To test for a replaceable "FIND' call the following action is required: i

1, Scan column 2 of ihe dope vector table DOPSS for an eniry sgqual to the

fourth parameter of the PIND call.

2. If there is no equal entry, the "FIND" call is necessary and the scan of

of* the generated code should be rasumed.

3. If there is an equal entry, the "FINDY call is unnecessary and may be

I
replaced,) . E

Thers may be nesting of' non~scalar references in APL, and corresysondingly

nesting of the types of statement delimited by forms (a) and (b) above. It

is thus necessary to maintain a count, o, of the "current level of com-

plexity". the value of ¢ should be incremented by 1 whenever a siatement

of form (a) is recognised, snd decremented whenever a stutement of form {(b)

is recognised.

179

The method of transforming the genefated code to 1ts reduced form is
outlined in §$8.,2 .
EXAMPLE 8.1.3
Consider
X e Ta 2
vhers X, ¥ and Z are (p1*b2*———*bn) arrays.

To handle this expression it 1ls necessery o set ﬁp loops, as every
element of the non-scalars is accessed in turs. The codo required for the
looping operations is fairly complex, as it must allow for n~dimensional
arrays, where n is not known at the code generztion stuge, The generated

code is of the following form,

2B

= ZPOINT (ZPT)
2Pl = ZPT + 1
CALL STARTS ,(Yrmms’m’zz"“)
ZPOIN? (2¥T) = ZBY + 22
23 = 1
120 Z4 = ZB1.4 %3

ZINDX (Z4) = 9
23 = 2541

IF (23.LE.22) GOTO 144

25 = ZB1 + 22
26 = 22 -1
_ ZSAVE = f
14 CALL FIND1 (=== Yy me === Y, ===)
CALL FINDY (== Zypypsa == Topq =)

o= T+ Ty

180

CALL SPECS (Xyyyas¥7,27)
ZSAVE = 1
ZINDX (25) = ZINDX (25) + 1

IP (2Tapa {25).18.20BED8 (ZCPIR)) GOTO 1@

142 28 = 26 + 1
143 ZINDX (78 + #B1) = 1
Z8 = %8 + 1

IF (Z8.La.7CPIR) GOTO 143
IF ((2B1 + 26).LE.9) GOTO 106
1. ZINDX (ZB1 + 2Z6) = ZINDX (ZB1 + 26) + 1
IF (DX (ZB1 + 26).LE.ZCBEDS (26)) @oTo 185

IF (26.EQ.1) GOTC 186

ZYDK (D1 +26)}) = 4
26 = 46 =1
GOT0 144
185 Z6 = Z2 -1
GOT0 141
186 ZPT = ZPT - 1
CALL SFHCB

The subroutine 3SPEC3 handles specif'ications for all possible type

" gombinations other than the simple case
¢ scalar> = < scalar)

However, for the case < vector> = < expression», the YSTORE elements
containing < veotor > are not updated immediately. If they vere, provlems

could arise with statements stch as:

Y e 4,¥

181

In this case, the first element (1) of the right-hand side would be stored
in ¥Y(1). Then the next element (Y{i)) of thc ripght-hand side would be
stored in Y(2)}, It can be seen thet Y(1) should not have been updated

before its value wes stored in Y(2),

This problem i3 counteracted in the following way. Bach time SPECS
is ocalled in the loecps, the index of the YSTORE element to be updated,
together with the new value, is stored, Then, on completion of the loops

3

SPECB 1is c2lled, and the appcopriate YSTORE elements are then updated.

The variable ZSAVE is ﬁ the flrst time rouwnd the loops, and is 9
at all other times. Its value is tested in FIND to determine whether the

current bounds are to be updated,

Hoere therc is a group of FIKD calls in one level of complexity. The
relevant lines of code should only be rewoved ocnce, if at 2l1l, If theze
is any one "FIND" call which is not 4o be replaczé, then no lines of code
should be deleted. The relevant "FIWD" calls should still be replaced,

however.,

It is possible to reduce the code very considerably if all the "FIND"
calls in one level of complexity are replacesble, For example, consider

the following case,

(a}) X, ¥ and 2 2ll replaceable

The generaled code may Dbe replaced by:

ZSAVE = ﬂ

'CALL ZADDR (xNAyES,ZST —)

Zn+2 = 28T -1
Z3 = 1
CAXL ZADDR (YNALES,ZST,;-—)

Zm = Z3T - 1

CALL ZADDR (Z

NAMES,ZST,ZNUM,———)

182

Zpe1 = 28T = 1
148 o= & +!1
Y, = LPSRY (2,19 ,X,L) B
Gyt = Zm¢1 +1
Y .4 = LPERM (z“m,I,J,K,L)
o= YT
Zn~|-2 = zn+2 + 1
CALL SPECA (zmz,Y?)
ZSAVE = 1
23 = %3+

IF (23.LE.ZN0M) GOTO 147

CALL SPECB

In SYECH, tho YSTORE element to be aliered (together with the new value)

is stored and the changes wade later by calling SFiCB,

The function LPERM uscs the input parameters I, J, X anda L (the
first 4 parameters of a FIND oall) to caleulatle the index N in Y3TORE for
the required element. The value YSTORE (N) is returnsd. In addition, if

Z8AVE is f, then the current bounds (ZCBWDS) will be updated if necessary.

LPERM need not bs called if a call of SPECS 1s being replaced, as normal
accessing is then reguired in the FIND call. Por the vast mejority of cases,
{here will be normal accessing of non-scalars, and thus LPSHN will bhave no

offect.,

There is still an increase in efficlency if only some of the "FINDY
calls in a group are replaceable, This is not so readily apparent, however,

as all the looping statements are s$ill required.

4 method of transforming the generated cods in the above menner is

discussed in §8.2 .

183
EXAMPLE 8.1.k
Consider
A & B4 [6]

where 4 and B are nw-dimensional arrays, Tn the generated code, the

code éorresponding to C E6] _is produced. first, followed by sn array accass
of tﬁe typs given in EXANPLE 8.1.3 . Thus, where appropriate, the generated
MIIND" c2lls can be rezlaced by code of the form given in EXANFLES 8.4.1 and

8.1.2 &

An exumple of the nusting of subsoript expressions is now given.

EXAVPLE 8.1.5
Consider the APL statement
g e afp;cln]]

where A and O ars non-scalars and ¥, B and D ars scalars. The

code generated for the abova siatemsnt will be of the Corm shown below,

£

i =

ZB1 = ZPUINT (ZPT)

ZPT = ZPy + 1

ZID4 (281 + 1) = B

ZB% = ZPOINT (zPr) , ©ode for the non-scalar access ¢
.! : {zee EXAMPLE 8.1.1)

ZPT = ZPT - 1 __E YnEC[D]

ZNDX (ZB1 + 2) = ¥,

ZPOINT (2P1) = ZB1 4 2

CALL STARTS (Ag, .o -

184

|

CALE FIND1 (-~ Ay ire === T o=) ;
N

|

If € is replacesble, then the corresponding code for CI:D j may be

reduced as desoribed for EXAPLE 8.1.1 .

If A s elso reoplaceable, the following reduction is possidble,

21 = ﬂ
2{(1,4) = B

< reduction of type given for EXAHMPLE 8.1.,1 corresponding to ¢ [p] >

’

%z{1,2 = Y
w2 =y, |
1
1
<remainder of veduciion as for BXAMPIE 8.1.2 corresponding to A [~——-= >
B = Ym1

An example illustrating the handling of veotor subscripls is now gilven.

Von-scalar subscripting is catered for, but the subsecriplt expression must
& 5

be only one-dimensional. The method employcd does not exelude
nwdimensional subscripting (n > 1), but kigher dimension subseripting

has been excluded simply to make the generated code less unwieldly.

EXAMPLE 8.1.6

Corresnonding to the APL statement

B« AlBacp]]

whers E, A, B and C are non-scalar, code of the following form is

generated:

185

Z1 = g ’
ZB1 = zpoInM® (zDT)
ZPT = ZPT + 4

<code similar in form to that generated for BXAMPLE 8,1.1 >

ZB2 = ZPOINT (ZPT) — :
' { as for EXAMPLE 8.1.3
: :
Z34V8 = f S
141 CALL FIHD1 (—-- Byanips " Ypeq ——)
78 = Y (Z¥PUR)
21 = 2441
ZCEAP (%8 + 21) = Yn; , + Yy
Z8AVE = A - “:
" I as for EXANPLE 8.1.3
|
106 ZPF = ZPT - A _"
ZYPIR = ZIPTR + 1
2Y (ZYPIR) = &1
21 = &Y (2YPIR - 1)
z211 = B
187 Z11 = 211 4 4
ZINDX (ZB1 + 1) = ZTRAP (210 + 211)
ZPCINT (2PT) = ZB] 1
CALL STARTS { dypme = = -)
CALL FINDY (- Ayyse == T o ==)
"z = Y,
CALL SPECS { Bymgr D12 ===).
CALL BDNO (Z13,2CPTR)
TF (213.L0.211) GOTO 147
CALL SPaCB '
ZP? = ZPT ~ 4

186

In thls sxample, the variable 2Z1 is not redundant. The subsceript
values are stored in the nexl level of ZTENP, %1 being increrented sach
time round the loeps so that successive evlements of the non~scalar sub-
seript will be stored in successive elements of ZTELP. The appropriate
slemonts of ZTHMP are then stored in tura in the correct location of ZINDX,

and code generation continues in the usual way.
A similar technicue is used in all cages of vector subscripiing.

For the above expressiorn, the generated code can be optimised in a
number of differeal ways, depending on the amount of irformation supplied
for the non-scalars. The sections of code of the forms given for EXAEPL?S
8.1.1, B,1.2 and 8,1.3 can ve optimised, where appropriate, to the forms
described previously. Code Whi;h cannot be placed in one of the above
secltions is 2lways non-replaceable, and also appears in the optimised

version,
The possible transformations of the above code may also be eff'scted
using the method given in §8.2 .
EXANPLE 8.1.7
Consider the AVL statement
B & & [3¢]
where B and A are non-zcalar, and C is scalar.

In this case, as in all caases of voctor subscripting, the generated
code is unwieldy. This is unavoidable, since the implied looping opsrations

mu2t be taken into account.

Code oi' the Tollowing form is generated corresponding to the above

statement,

21 = @

ZB1 = ZPCINT. (ZP1)
ZPT = ZK7 + 1

Z2 = Y (4YPTR)

CALL RDVAL (Amms,zpn.mo,z 3)
188 2t = 21 4 1
ZTEMP (21 4+ Z2) = &t

IF {21.TT0.23) GOTO iZp

ZYPTR = ZYPIR + 1
2y {zype) = 21
2k = ZY (ZYPTR - 1)
ZSAVE =
_ MARKER = =5
181 25 = B
182 25 = 454 14

1l

ZENDX {ZB1 + 1) ZTEHP (2. + 45)

270X (2Bt + 2)

|
Q

ZPOINT (ZFT) = ZB1 4 2

CALL STARTS (""m.mas - - =)

CALL TIND1 (=== Ayyroe === ¥ =)
ZSAVE = i

% o= T

CALL SFCS (Byg,\nas¥6,25)

CALL BDEQ (Z7,ZCPTR)

IF (25.LT.27) COTOQ 142

CALL SPECB

2PT = ZPT - 1

The subroutine BOVAL (I,J,K) has input paramecters I and J, and

output paremeter K, where

187

188
1. T ds the index of the array in NANES
2, J is the dimension number

3. X is the Dound value foxr dimension number J§ .

Again, any statements of a form not found in EXAMFLES 8.1.1, 8.1.2 and

8.1.3 are considered to be irreplaceable. All other sections of code are

reduced, where possible, tov the forms given for the above sxamples.

Thus, if bsth A4 and B are replaceable, the generated code can be

reduced to the form shovwn below.

71 = f

CALL zamDR (B 287, ZMUH, ZBOUKD)

NANES®
Zo,, = 28T -1
Z2 = ZY¥ (2YPSR)

152 z5 25 + 1

¢ reduction of the form given for EXAWPLE 8.1.2 >

LSAVE = 1
Y6 = .'[n
Zl’H- 1 = Zn+ 4+ 1

CALL SPECA (zm1,1f6)
CALL 3DNO (27 ,%ZCPTR)
IF (25.10.27) GOTO 142

GALL SPEC3

At first sight;, it may appear that tha reduced code is even lengthier
than the original, However, all the functions and subroutines referenced

ara much simpler in the reduced version.

g 8,2 describes the method of carrying out the poasible reducitions for

the above example,

189
EXAMPLE 8.1.8
Consider the AFL statement
B ¢<— al3 & 5]

There are implicit looping operations in the above statement. Agein the
subseript values are stored in successive positions in the arrsy ZTE{P, and
loops are set up o srtore the appropriate zTENP elemeants, in turn, in the
cOrrect subscript positionsin ZINDX, The resull is a vector whose three
elements are stored in vector B . The code generated for the above
statement i3 again unwieldy on acocount of the implied loeoning opesrations,
However, considerable reductions are pessible if additional information is

gvailable for A or B or beth., The generated code is of the form shown

below.

1 = F
ZB1 = ZPOINT (ZFT)
ZP? = ZPD 4+ 1
ZR2 = ZPOIT (2PT) B _1
: : as for DXANPIE 8.1.3
Z8AVE = f _

CALL PIRG3 (-— AN&MES -—— Yn)

z7 = ¥ (ZYFIR)
ZA1 = Z1+1
ZIENP (%7 + 21) = Y,
28478 = A B _:
: | as for RXANPLE 8.1.3
26T = ZET - 4 B _1
ZYPTR = ZYFIR + 1
2Y (2YPIR) = 21
ZSAVE =

MARKER

IE
1
in

190

187 39 = p

148 29 = L9+ 1
ZTDE (231 + 1) = Z7EMP (27 + 29)
ZROINT (4PT) = EBY 4 1
CALL STARTS (A, s = = =)
CALL PIRDY (=== Apiyre = Ty ==)
ZSAVE = 1 '
14 = Yn+1
CALL SPHCS (Blmms,&'w, %3)

CALL BDNO (Z11 ,ZCPTR)
1P (Z9.10.211) GOTO 148
" CALL SPLCB

ZPT = ZPT - 1

The subrﬁutine FIMD3 is similar in concept to FIND1, the difference
being that a constaut vector element (obtained #From NAMIS) is produced as
a result instead of an element of YSTORE. Constant vectors (end literals)
may also be accessed in a number off different ways, corresponding te 14 of

the APL mixed fuactions.

Some optimisation of the forms illustrated previously may be possible.

EXAMPLE B.1.9
Gonsider the APL expression
+/A

whers A 15 a numeric non-scalar. Even for such a simple sxpression, &
large amcunt of code must be generated to allow for ell the possible types
of A, If A is a veclor, then & scalar result is obtained; if A is

an n-dimensional array, then an {n=1) dimensional result is obtained.

The number of dimensiocns of
is thus necessary to set up

where n 1is unknown.

For the above reasons,
unwieldy. There is no way

suprlied for non-scalars is

However, once the additional informetion is

possible ‘o make s drastic vreduetion in the

discussed below.

The generated code 7s first described.

1%1

A 1is not known at code generation time. It

loops to handle n~Gimensional array accessing,

the code generated for +/A is extremely
round this since the additional iuformation
not taken into account at code generation time.
considered, it is immediotely

genarated cede. This is

It tekes the form shown

below.
CALL BDINYO (ANAMES,ZbIMS,ZBOUHD)
IF (ZDIMS.NE.1) €OTO 1¢1
ZBL = ZPOINT (ZPT)
ZPT = ZET + 1
ZINDX (ZB1 + 1) = 1
OPL = < identity element for +>
ZPOINT (ZPT) = ZBPl + 1

19¢ %2 = FIWD (1,¢,¢,A§AMES - -}
OPR = YSTORE (Z2)
OPL = OPR + QPL

ZINDX {ZBl1 + 1)

IF (ZINDX {ZB2 + 1).LE.ZBONDS (ZBOUHD))

ZPT = ZPT - 1
MARKER = ¢
23 =

b = 1

ITEMP (23 + 2L)

GOTO 1@2

= ZINDX (ZB1 + 1) + 1

GOTO 1¢¢h

2YY (ZYYPTR)

= OPL

161

195

189

119

1¢2

111

192

7B1 = ZPOINT (ZPT) | _:
: : as for EXAMPLE 8,1.3
ZSAVE = 0 .
CALL BNDSET (1, Ap oo, 1)
g = ¢
IF (ZCOORD (ZCDPTR),EQ. %) ZCOORD (ZCDPTR}) = ZDIMS
ZCD = ZCOORD (7.CDPTR)
71l = ZYY (ZYYPTR)
OPL = < identity element for +>
z12 = FIND (1,68, Ay e =~ =)
OPR = YSTORE (Z12)
OPL = QPR + OPL
ZINDX (CD + ZBL) = ZINDX.(Z2CD + ZBl) + 1

IF (ZINDX (20D + ZBl).LE.ZBOWDS (ZBOUND + %CD - 1)) GOTO 1¢5

Z1¢ = 218 + 1
YTEMP (21¢ + 211} = OPL
|
YSAVE = 1 |
1
i | as for EXAMPLE 8.1.3
1 |
Z8 = 28+ 1 .
IF (Z8.EQ.7ZCD) 28 = 28 -1
GOTO 1¢8
28 = ZDIMS - 1
GOTO 145
ZPT = ZPT - 1

CALYL REDBRD (%CD)

MARKER = -5

zZlh = ¢

711 = LYY (ZYYPTR}
714 = 21k + 1

The code YTEMP (211 + 21L4) is then stored to be used as operand for

133

the next qperator.
Subroutines BDINFQ, BNDSET and REDBND have the following functions:

1. BDINFO provides the nuwber of dimensions, ZDIMS, and the pointer
ZBOUND for the bound values of the non-scalar with NAMES index given

by the first parameter.

2, BNDSET updates the bound information in ZCBNDS using the appropriate

entries in ZBONDS

3. REDBND calculates the appropriate ZCBNDS entries for a reduction of 1

in the number of dimensions.

The value ZCOORD (ZCDPTR) gives the co-ordinate along which the

reduction is to be applied.

For the above example, the first parametef of the FIND call is non-
ZEYo. Thus, if A is replaceanle, the call of ELPERM in the optimised

code is necessary to re-orderithe subscript values appropriately.

If, after the initial information is taken into account, it is known
that A 1is a vector, then by a preliminary analysis of the generated codz,

it can be reduced immediately to the form given below.

ZBl = ZPOINT (ZPT)
L]
1
YTEMP (Z3 + 24) = OPL
192 714 = ¢
211 = 2YY (ZYYPTR)

111 zi4

214 + 1

Thus a considerable reduction of the generated code is possible. The

coda can be further reduced to the form:

194

z(1,1) = 1

OPL = <identity element for +>
199 CALL ELPERM (----—-)

ZPROD = 2(1,1)

CALL ZADDR (ANAMES,ZST,ZNUM,ZBOUND)

%2 = ZST + ZPROD - 1
OPR = CPR + CPL’
2(,1) = 2{1,1) +1

IF {z(1,1).LE.ZBONDE (ZBOUND)) GOTO 1#¢

MARKER = (f
r

< as above >
L]

I£ A 1is an n~dimensional arxray, the code can also be reduced by a
preliwinary analysis. Further reduction is then possible, but there is
no advantage in altering the code so that the subscript values are stored
in Z . rather than ZINDX. A looping of the stbscripts is requiréd anyway
to produce each result element. In this case, the reduced code would bhe

of the form outlined below.

191 2Bl = ZPOINT (ZPT)

OPL = <identity element for +2>
CALL ZaDDR (%MS,ZS‘I‘,ZNUM,ZBOUND)
z = ZST - 1

1¢5 Z. = B+ 1

zZ12 = 3+ ZPERM (1,Z,%, A e)

195

OPR = YSTORE (2l12)

111 Z14 = 214 + 1

Hexe ZPERM is a function which uses the subscript bounds and values to
reorder the subscripts according to the first parameter value. Then for
position Zn , the actual position relative to the base address is
produced as resulf. This simply involves applying the array mapping to the

re-ordered subscript values.

The method outlined in §8.2 may be used to bring about the above

transformations also.

8.2 Method of Optimisation

For a particular level of complexity, the reduction can be carried
out independently of all other levels, flowever, since nesting of levels
is allowed, the current state on entry to the higher level must always be
sfofed._ Thus, return can always be made to the correct state on exit from

the higher level, and no vital information need be lost.

The method is illustrated using a finite state automaton. The state
diagram for this automaton, together with the actlion required for each
state, is given in Appendix 1d. At any time, the current state value and

the statement encountered are ased to provide the next state value.

The state value is initially zero and is updated according to the
statement types encountered during the scan of the generated code. The
stétement types to be recognised during the scan are listed in Teble 1¢(a).
Each statement type has an associated letter which is used for ease of

reference in the state diagram.

Jd
?i
|
]

T

196
puring the scan of the generated code, entries are set up in several

tables, namely:

3. IENTRY

4. CODE

The table DELETE is two-dimensional and is used in the following way:
It is not always possible to determine immediately whether particular lirnes
of code may be deleted or not. For instance, in EXAMPLE 8.1.3, it is only
when the last "FINP" call has been recognised that it is known whether tﬁe
looping instructions are required. The DELETE table is updated during

the scan as indicated below.

There is one entry in DELETE for each line of generated code. Tor a

particular row, the columns have the following significance.

The first colwen gives the level of comwlexity. This is zero at the

start and is updated according to the following c<riterion.
(a) If a statement of the form
ZB < integer > = ZPOINT (ZPT)
1s recognised, then the level number (LEVINO) is increased by 1.
{b) If a statement of the form

ZpT = ZPT - 1

is encountered, then the level number is decreased by 1.
The second column has value

(a} 1 for a line definitely to be deleted

(b) & for a line possibly to be deleted

197

{c} ~1 for a line definitely not to be deleted.

In general, a number of DELETE entries with the second column # will
be created, and these entries will be tupdated to 1 or -1 as the scan

proceeds.

Thus, at the end of the scan, DELETE will have entries with value 1
or -1 in the second columm, and the relevant lines can all be deleted at

the same time,

Replacement of existing lines must also be considered. Again, it
is not known immediately whether replacements will hav e to be made or not.
For this reason, the table CORE is maintained. ¥hen it is known that a
replacement line (or lines) may_have to be produced, the appropriate line(s)
is/are produced, and an entry is set ﬁp in a two-dimensional table CODE.

Each entry in CODE consists of four parts, having the following significance:

{a) the first celumn gives the line number before which the insertion has
to be made. (A replacement is considered to be a deletion followed

by an insertion.)
{b) the second column gives the number of lines to be inserted

{¢} the third column gives an indication of whether or not the replacement

or imsertion has to be made. This column (the insert entry) has value

(1) -1 initially
{ii) # if the insertion is not to be made

{iii) 1l if the insertion is to be made.

Thus «J. entries will be changed to either ¥ or 1 as the scan procceds

and more information becomes available.

{d) the tourth colurn gives a pointer to the actual code to be used in the

replacement or insertion.

- 198

A one-dimensional table NSTATE is also raintained. Thexe is one

row for every level of complexity. Each NSTATE entry records the current
state value on entry té a higher level of complexity. Thus the scan of
the generated code can be resumed correctly on return to the previous level
of complexity. When a level has been scanned to completion, the NSTATE

entry for that level should be set to -1 .

The stack IENTRY is used in updating the DELETE table. IENTRY has
pointer IENPTR, which is @ initially, and is updated as reguired. IENTRY
{IENPTR) is ¢ initially and is updated to 1 or -1, depending on the

types of statement encountered during the scan,

The tables DELETE, CODE and NSTATE have pointers DELPTR, ICDPTR and
NSTPTR, respectively. Each of these pointers has value ¥ initially and

is updated as reguired.

The variable LEVLNO gives the level numbexr at any point, while ISTATE

provides the current state value (within a particular level).

When label nuwrhers are introduced in producing replacement lines of
code, care should be taken to avoid duplicating existing line numbers.
Similarly, if variable names Z <integer)» are introduced, they must not

conflict with existing variable names.

In implementing the finite state automaton, several values regquire to

be stacked at intervals. Reference is made to these values in Appendix 1.

Using this method, no actual replacements or deletions are made during
the scan pf the generated code. The tables DELETE and CODE are later used
to produce the optimised code, On.completion of the scan of the generated
code, the array CODE should be ordered increasingly according to the values
of the first column entries., Then DELETE and CODE can be scanned together

and the necessary alterations made to the generated code,

199
For any type of statement not listed in Table 1¢(a), the action

required is independent of the state value. It is:

1. set DELPTR to DELPTR + 1
2. set DELETE (DELPTR,1} +to LEVLNO

3. set DELETE {DELPTR,2) to -1 .

If, at any state, the next statement type is not given in the state

diagram (see Diagram 1#(b)), then steps 1 to 3 above should be carried out.

Initially, the variables NSTPTR, LEVINC, ISTATE, IENPTR and DELPTR

all have value ¢ .

8.3 Other Means of Optimising the Gererated Code

In general, the generated code will be very inefficient. This can
be seen by examining the sample translations in Appendix 9. Usually,

however, it is a fairly simple matter to correct the inefficiencies.

Some weans of optimising the generated code are discussed in $8.3.1 ,
while § 8.3.2 contains listings of optimised versionz of the subroutines in

Appendix 9,

8.3,1 Discussion of common types of inefficiency and their correction

The types of statement discussed here are:

1., COMMCN statements

2. FORMAT statements

3, CONTINUE statements

4. Statements of the form 2 <{integer >= @ followed by no other
reference to Z <integer>

5. BStatements to reset the values of MARKER and ZCPTR

@. Statements to reset the values of MARKER, ZCPTR, ZYPTR and 2YYPTR

|
|
|
i

200
7. Statements produced corresponding Lo an APL specification statement

8. Statements containing unnecessary variable names or redundant brackets

9. Statements corresponding to -—» statements.

1, When a function or subroutine header statement is translated, it is
not known which global variables will he referred to in the function
or subroutine body, Thus, at this stage, a quplete list of COMMCM
statements must be generated, together with type specification state-
ments for all the global non-scalaxs. If these are not refexred to
in the subsequent cede, the non~executable stateﬁents may be removed.

Several global parameters may be removed also from function or sub-

routine header statements.

JIf this type of optimisation is carried out, then the lowest level
subroutine or function should be reduced first, then the next lowest
level, and so on. This ensures that no. unnecessary global parameters

are thought to be necessary. For example, consider the following code:

SUBROUTINE A (Y1,Y2,¥3,Y4)

B = .Yl + Y2

- CALL C(B,Y3,Y4)
RETURN

END

SUBROUTINE € (X1,X2,X3)
D = 3*X1

RETURN

- END

Here, if A is reduced first, ¥3 and Y4 afe.thought to be necessary,

vhich is an ingorrect assumpticn.

201
A number of FORMAT statements are prcduced 2t the end of each funcotion

or subroutine decoded, Those unnecessary may easily he removed.

at the staxt of each section of code corresponding tc an APL line,

a statewent of the form

< label > CONTINUR

is generated. This allows for statements of the forxm
-—%- < expression>

vhich may occur later. However, in cexrtain cases, <expression >
may only have a finite ronge of values, For example, consider the

statement
—32 XN > @

Here < expression » can only have values ¢ or 2,

It may be possible to eliminate certain statements of the form
< label » CONTINUE

see the exe.mp]tes given in § 8.3.2 .

If square brackets occur on a line, then a statement of the form

Z<integer > = @

is generated. This is done in order that Z <integer > may be used
as a counting variable if the sukscript value is non-scalar. (For

example, consider the variable 21 in EXAMPIE 8.1.7 .)

If the subscript valve is scalar, the statement 2 <{integer>= ¢ is

redundant, and may be removed.

A statement of this type may esasily be detected, as there will be na

further reference to 2 {integer S.

202

After each statement of the form

<label > CONTINUE

the statements

MARKER = @
ZCPIR = @
are also generated. These reset the type of the "expression-so-faxr"

back to scalar. They are necessary in cases where MARKER has been

set to some othexr type value. Congider the code given below:

< n > CONTINUE

MARKER = @
CPTR = &
'
l
< n+l > CONTINUE
MAEKER = §
ZCPTR = @

+

If there are no subroutine or function calls between <n > CONTINUE
and <nt+l > CONTINUE , and the value of MARKER has not been explicitly

changed, then the secondtwo statements

MARKER {a)

]
=

ZCPTR = @ [43)]
are redundant, and may be removed.

If the above conditions are satisfied, except that thexe is a call aof

the subroutine OUT2 between the statements labelled <n» and < n+l >,
thenr the szcondtwo statements (a) and (b} arve still redundant. ouT2 (listed

in module library SARUN) does not altexr the value of MARKER. In general,

Y

,
.5‘|
i

203

checks may be made for unnecessary individual resetting of these variables.

6. If two sequences of statements
MARKER = @&
ZCPTR = @
ZYPTR = 1
ZYYPTR = 1
occuwr, then the secondsequence may be redundant. If any subroutine

is called which updates the above variables, then the statements will
ke necessary. If no such subroutine occurs, and the values have not
been explicitly altered, then the secondseguence is redundant and may
ke removed. In cerxtain cases, only some of the sbove statements

should be removed.
7. For a specification statemant of the form
A ¢ B
where B 1is a non-scalar, code of the form

<initizllisation statements>

CALY, FINDL {--- Buamss ~" Yo o7)
Yn+l = Yn
CALL SPECS (-~ - -}

<code to complete loops >
is generated.
If initiallisation statements have not first been set up, it is

necessary to test the value of MARKER to determine whether an explicit

assignment may be made, or whether a call of SPECS must be generated.

204

In cases where MARKER has previously been set to a specific value,
the test on its value may be removed. For exawple, consider subroutine

SPHERE listed in Appendix 9, SPHERE contains the statements

MARKER = ¢
ZCPTR = @
¥2 = 4 * (3.14159*(R * R))

IF (MARKER.FEQ.-5.0R.MARKER.EQ.~3) GOTO 111

SURFF = Y2
COTO 117

111 CALL SPECS {~ - - -}
CALL SPECR

117 CONTINUE

Hexe the specification part may be reduced to

¥2 = 4 * (3,1459*%(R * R))
SURF = Y2
8. The above code may be further reduced to

. SURF = 4 * 3,14159 * R * R

by eliminating the unnecegsary variable ¥2 and removing some redundant
brackets. Care must be taken when removing brackets to ensure that

they are in fact redundant.
9. To allow for statewents of the form
—y < e¥pression »

where the value of <expression > is not known until exeecution time

of the converted routine, statements of the form

Zl = <expression >

GOTO 1@@@

20%

are generated'(see Chapter 6},

Correspondingly at the end of each subroutine or function, the state-~

ments

199y IF (%1.LE.$.0R.21.GT.n) CONTINUE

goro {1,2,3,~~~,n) %L
‘are generated, where n is the number of lineg in the function,

The above two statements will be unnecessary if no —-> statements

are present in the APL subroutine or function.

8.3,2 Optimised versions of the subroutines SPHERE, BASE and CI

(Listed in Appendix 9)

1. SPHERE may be reduced to the form given below.

SUBROUTIRE SPHERE
IMPLICIVT REAL {(A-Y)
IMPLICIT .INTEGER (Z-2)
Ct*x#% . THE WNEXT 3 STATEMENTS WERE INSERTED BY HAND
COMMCN / CD1/ R
COMMON / CD2 / SURF
COMMON / CD3/ VOL

SURF 4 * 3,14159 * R * R

%

VOL

8

SURF * R/3
CALL LOCREM
RETURN

END

The subroutine TOCREM is called to remove entries from NAMES corxxes-

ponding to local varizble names when thesc arce no lonqey required. It

will have no effect in the above case, but should be called sc¢ that the

appropriate pointer variableos will be updated (see the version of LOCREM

in module ilbrary SARUN) .,

routine calls and these are assumed to be in COMMON within the subroutines.

A comparison of this method with the original {see Appendix 9} is given at

In the next examples, the glokal non-scalars are removed from sub-

the start of Chapter VIII.

2.

128

151

Eubroutine CI

MARKXER

the form given below.

SUBROUTINE CIT
IMPLICIT REAL (A~Y)
IMPLICIT TNRRECER (Z~2}
COMMCN / €351 / MARKER
COMMON / €916 / ZSAVE

COMMON / C726 / ZLIMZE

CALL ouT2 (15,-1)

It

4
ZCPTR = @

READ (5,1%2) ZVBND

CONTINUE
CALL OoUT2 (54,~1)

RBAD (5,1¢2) ZVBND
1

1
3

CONTINUE
CALL OUT2 (87,-1)

READ ({5,1@2) ZVBND
L]

(for compound interest calculation) may be reduced to

207

174 CONTINUE

CALL OUT2 (116,-1)
1

186 CONTINUE
163 FORMAT (1X,Gl2.6)
12 FORMAT {G12)
194 FORMAY (1¢f G12.6)
196 FORMAY (1X,/)
CALL LOCREM
RETUPN
END

"All the subroutines called should be examined for generality. If,

for instance, A handles cases 1, 2, 3 and 4, and it is known that case

3, say, will be applied, then A could be replaced by a simpler function,

thus increasing efficiency.

3. Subroutine BASE produces the xepresentation of a nuwber B to the
base ™. Assuning full information 1s availahle for YZ, an array
in which the result is accumulated, the following reduction in code

is possible;

SUBROUTINE BASE (B,N)
IMPLICIT REAL (A-Y)

IMPLICYY INTEGER (Z~2Z)

COMMON A°351 / MARKER

COMMON A916 / ZSAVE

111

138

CONTINUE - . .
Further optinisation is

Y2 =) .
g obviocusly possible herm.

IF (Y2.NE. GOoro 11l
(£ This is an example showing

HARKER S how full generality nmust

ZCPTR = 9 be catered for in code

GOTQ 112 generation, but that some

- T T calls may be eradicéted by
: analysis of the code.

CONTINUE

Y? = B

¥9 = N

IF (Y7.8E.@) ¥9 = ¥9 -~ BBS (Y7)*AINT (N/ABS(Y7))

R = X9
CON'TTNUE
MARKER = @
ZCPTR = §
ZSAVE = @

CALL %ADBR (1,ZST,ZNUM,ZBOUND)

Zig2 = ZST - 1

2197 = 1

CalL ZADDR (1, %ST,ZNUM,ZEOUND)

z1gl = Z8T - 1

Z11 = Z1Fl 4+ 1

Y17 = LPERM (7Z1£1,14,¢,R,1}
Y18 = Y17

zigz = Zlg2 + 1

CALL SPECA (z1g2,¥12)
Z1gF = TP 4 L
IF (Z1§U.LE.ZNUM) GOTO 138

CALL SP#CE

208

:

209
147 CONTINUE

¥2¢ = N/B

IF (Y28.CE.#) COTO 153

¥2¢ = ABS(Y2l - (1-1F-8))
153 ¥2¢ = AINT (¥2y)
N = ¥2¢

CALL OUT2 (1,1)

723 = §
,
:

172 CONTINUE

1988 IF (Z1,1E,.§.QOR.Z1.GT.2) CONTINUE

GOTO (1,2), 21
CALL LOCREM
RETURN

END

In this example, 21 always has value < 2, Thus, if some analysis
of the code is carried out, the statements starting with that labelled

1¢¢¥ can be updated as shown..

No account has been made of the fact that thse SPECS and FIND1 calls

refer to the same non-gscalar. Further optimisation is possible hexe.

210

CONCLUSICH

It has been shown that it is possible to obtain & translation of an
AFL routine into another high-level languagze. It carmot be denied that
the translated code is inefficient, although it is possible to bring about

a cousiderable incresse in efficiency,

One major factor affeciing the efficiency of the generated code is the
possible presence of unnecessary "TINDM calls, Thesc can be rcmoved by a
nethod based on recognition of specific statement types, as discussed in
Chapter VILI, §8.1 ana §8.2, and in Appendix 16. The removal of "FIND"
calls involves little or ﬂo analysis of tht generated code. However, in
cases where any one of a number of different paths may be taien there each
case must be considered and the generated code soon becomes unwieldy), it
is often possible to eliminate ail but cne of the paths. duch forms of
oplimisstion iuvolve analysis of the genoraied cods, often making use of
additional information for ﬁannscalars vhich was not taken iato account at

s

code genaration time,

The inefficiency of the generated code is excuszble, sincc no attempt
whatsoever was made to optimise code at the time of its generation, I

the two methods outlined abeve, that is

1. replacament of unnecessary "FIWD" calls,

2, analysis of the generated code,

are combined, then the incrsase in efficiency can ba very great.

211

In retrospect, it is thought that even greater efficlency may be
obtained by a pre-analysis of the APL code to be translated. APL conceals
a great many operstions {such sas the testing of veriable types) which mush

be carried ocul expliciily in other high--level lanzuages. For this reason

the generated code must make proviszion for a large numbex of possibilities.
It is probable that the numbor off cases to be handled could be reduced oy

restating the APL problem.

l"..

5.

6.

7.

F.R.A., Hopgood
D, Fnuth

V.L. Moruzzi
B. Randell,
L.J. Russell

M.M. Sayers

K.W. Swillie

H. Van Hedel

.

.-

.

an

212

REFERINCES

"Compiling Techanigues”, 1969,
MacDoneld Computer Monographs 8

"Art of Computer Programming", (Voiluma 3),
Addison-Wesley, April, 1973

TAPL/FORTRAN Translations!,
December, 1971

VATGOL 6@ Tmplementation",
feademic Press, London

"APL to FORIRAWM, Paper presanted at SEAS

~ Confexence in Gothsnburg, Sweden, in September, 1972

PAPT, AND STAYYSYTCS . PROGRA¥S CR INBIGHTYM
Department of Joumputing Scicnuce, Universi‘»‘;." of
Alberta, Bdmonton, Alberta, Canaeda.

"in AFL Batch Processor', Applied lathematical
Pivision, Buropwan Space YTechuology Center,
Noordwijk, Holland.

APPENPIX 1

SYMEOL REPRESENTATION SYMBOL REPRESENTATICHN
/ / - -
\ # x #r
« # D $G
A £ g * *
A\ # K F #H
3 < L #I
5. t L | l
= = N # ¥
> # M p ¥ 0
> > + "

N ! 1
I3 # 0 ¢ # R
. # s 0 ';e U
1 T ? ?
4 v ® ¥ X
+ ©okw ® @c
~A @po <) QI
P QE —3 # E
8 py _
A ek 1 ¥Y
+ + 4 ec
¥ @ ;-1 A QF
[#a . .
1 #B (overbar) ar

i { :

)) v

i H b8

S¥YMBOL REPRESENTALTON SYMBOL REFPERESENTATICN

° # 2 A~ A-%
] QA 0-9 0~9

[e Az A= 2

A ar 1 ' i

APPENDIX 2

TABRLE OF USCFUL INFORMATION ¥OR APL SYMBOLS

SYBaL evMDOL, TABLS VAR NUmEER

P / 1 19 1
u \ 2 20 2
R Al 3 21 3
E A 4 34 s
L vV 5 35 5
Y < 6 36 &
D = 7 a7 7
¥ = 8 38 8
A kd 9 39 9
D
¥ i 1o 40 10
C # 11 a1 11

€ 12 13 12
F 13 50 13
E 14 51 14
R + 15 55 15
A ¥ 16 56 16
T = 17 68 17
o) /- 18 69 18
R i° 74 19
s X 20 75 20

SYMBOL ADDRESS TN %~CODE MACRO
SYMBOL TABLE VALUE NUMEBER
o 2
B + 21 26 21 , 39
0
T - 22 27 22 , 40
u
" % 23 28 23 , 41
g e 24 29 24, 42
A
¥ 25 30 25 , 43
D
I
P f 26 3% 26 , 44
{ 27 32 27 , 45
A
N | 28 33 28 , 46
D
N 29 44 20 , 47
D
Y o 30 a5 30 , 48
A .
D . 31 47 3t , 49
X
¢ t 32 43 32, 50
b 33 43 33, 51
)
P o 34 52 34, 52
B
R ? 35 53 35 , 53
A
T N 36 62 36 , 54
0
R @ 37 67 a7, 55
s
o 38 73 3, 56
~ DYADIC

- MONADIC

23] - o} '
SYMBOL ADDRESS IN Z~CODE MACRC

SYMBOL TARLE VALUER NUMBER
M -> 39 22 57
0
N ~ 40 54 58
, A
D x 31 .63 59
I
c 4 a2 71 60
o ¥ 43 72 61
p .
E [44 14 62
R
A] 45) 15 63
T
o (46 16 64
R _—
8) 47 . 17 65
A
N 3 48 18 66
D i -
° 49 64 67
S
P (] 50 65 68
B
c i 51 56 6%
I
A a 52 o 70 70
I-l S 2)
A-Z 53 - 78 o 86 - 111 '
s
¥ A 79 112
M _
B A-2 80 ~ 105 113 - 138
o} s .
L A 106 139 |
S 0-9 107 - 116 140 - 149 71
CToTT ’ T INNER PRODUCT
. 117 150 |
overbax 1l8 151
blank 119 152 72 ;
HBT. QUYDUT
1 120 183
., 121 154 73
v i 122 1585 74

7 o123 _ 160 75

APPENDIE 3
MACRO [HSTELCTICHS A0 THELIR FUNCTICHS

In the f'ollowing teble the form <« 9 n > is used to represent the value

of TESTK (IDLPLR + n).

For macro instruetiens FL, PG, SL and V, it has been assumed that

IED = 1 and IDOIR = 148 initially, so that

veriables 241,72, ~--- are used

and label numbers 148, 184, ---- are used.
HLCRC
INSTRUCTION FUNCTION

LOPIuS TS TEAT ~-—~ TO 27 "IP STERDING TROY
oo FOSTTFON THFR. A GOVTINUATION LTINS IS CREATED
IF 1\' SCEB3ARY,

& ' TRANSFARS THZ CONTSATS OF MIRUP TO THR OUTEIT
MEDXTA (USER-DEFINED)

SN INCREMSNDS THE PCINT:R IBIT BY 4
+D THCRPERTS THE VARTARLE TED BY 4
4T ..I_I"mj:’,r:?‘u"sm"ﬂm VARLAZLE IDOLE 3Y 4
+1 THCYORIZNTS TPHE VALUZ CF NUM3#R (ORiBR) BY +
< l"‘bZi‘; . USAD TO @E0DUCE GACOUDELTIONAL BRAUCH TO %30 o
* STATIVERT LABELLED < label >

= <label’>

S<integerd,cexpression> 3TOLES 143 VALIUDL expiression IN 83 intager),
U35 PR CCUNTING IN LOCFES

£

CONCATHIATES o= TO TH% LAST ZINTRY I IT:
TEIS CHEATIMG A LONGER ZNERY

& ——— &

MACRO
TWSTRUCTION

FUHCYION

& <intoger™

PECREASES 88 (<intagary) BY 1.
I8 f, BEIWERLIML KEICUTION 00T
BRAKCH TO ATART OF LCOP AN

f<exvrossiony

EVALUATES AN RAPIESSTON (POR SXLIPLE,£ -1) AND
USES Miid VALU® AS 4 LARAL WOMBER, WMICH I3 ”:H'D
O HTEMP, RATORS SLLOWED TH
<expression> AR 4+ AFD - . OFBRANDS MAY BE
IFECHES, 8 <integery org . I8 VALULS OF

85 (cinteger>) AWD FROLR A3 SURSTTIUTAED FOR
S<integery AND £ RESEI C”T‘\HJLY.

EVALUATAS < expression> AND §TOR4S THE VALUS OF
IDSTE (IDLFIR + <expressiond) O HTZHP,
BYPRESATCNS MAY INVOLYE CPaRka:

2 expressiony o { AND), BRACKETS i
MAXINUM OF 16 LEVELS DREUP,
THIRGERS, S<integer>, IKD OR INE, 2's X4Y BE
$USD 10 THC LIVELS DEEP
GENTRATES THZ CGDE
A0 JAND, (FOR A OR M)
.OR. (FOR V CR A)
BB USES A SUBSURIPT COUNE TO PRODUCE THT RUMSER OF
T2 SUBSCRIIT BRING REFIRAVCED JH WIEIP
BD RESETS THZE POLHTE IBP""—i, BGR THE ARERLY T
IBI-’n e TR (IEPIR)
BR GEMIRATES AY CPENING ROUND SRACKTE OF MTE.P
(PRPR) 4D INCRTILINTS TEMER 3Y 1.
CB GBNZRATES 4 CLOSTNG RCUMD BRACEET O MIEHP
(TEFR) AND IMCHELTNTS TEMPR BY 4
GENERATES MON-BXECUTARLE STATS:
s APTNR A FUNCTION OR SUBRCGUTIVA
(SHE SUBKCUTINE CSREC I MODULZ
GENARGTTS CODE OF TRI Foi
DB 234 = f

CALL DREC K ?1>,234,30R003,4C0P0R, Z30UWDS,
ZTORT)

MAGRG
THSTRUCTION

FTUNCTTOW

DS

TH VARTARLE ZIWD £ £, NO BER30T.
OTHERWISE, GEMERATES CODE CF DME FCORM
KARKER = w5
<label 1Y Z<intogery = &
Llatel 29 Z<intezery = 2 integerd«+ 1
Cintegery and <label 27> ARW STOIRED IN ZIND
AWD ZNO RE3PRCUIVALY

L3z

IF VARLEBLE 25D £ @, M0 BFFEcT.
OTHERNISH, GRTARATEI coum OF f:id FORM

< lsbel 1> 4<integer>= 6

< label 2> % <integer> = Z< integer>+ 1
Linteger> and <label 2> £HY STORED i ZIND
AND 250 RESPECVIVRLY

¥a

GUMNERATHES CODR # FUECTICN CALL O M
SPARTING FROU POSITECH TFMFR. (GLODAL
ARB JKSERTED 3TPARLTHLY AT THE 2D, USIE

——- INSTHUCTICN,)

L

GINERATES CODE OF T3 FORM

Z58VE = A .

ZINDX (A<ISAVED) = ZINDX (4<I84VES) + 1

IF (AIEDX (Z<ESAVEY). L2.Z2CRHDS (ZC1TR))
GOTO < JSAVE >

72 = ZCESAVEY 4 1

141 ZIKDE (42) = 4

22 = Z2 4+ 1
16 (2.0 (53<integery + ZGPIR)) $0T0 144

182 ZUIDX (2Blinteger + ZCKSAVEY) =

ZIDA (ZB<integer> + Z<SAVE>) + 1
¥ (ZTRE(GBLinteger> + ZCYSAVE>) JLE.
ZBOUNDS (Z<KSAVEY)) GCTC 1£3%
I (P<E3AVERLE9.1) 3070 184
ZIEDE (E3lintegery + ZCEBAVEY) = 1
ZKKSAVEY = ACESAVE> = 4
*

GOTO 1742

173 ZCKBAVEY = ZUBAVE>- 4 - 1

GOTO <JEAVE ¥

ifh Z¥? = ZPR - 1

TEE VALUZS <I8&VE>», <TSAVE > AlD LKBLVE Y HAVE
PREVICUSLY BZEM STOWEDR USING IMSTRICTION 5D,

* POR REDUCTIOH, THE COD3
- IF (Z<KSAVE>. 85 40D) Z<KSAVED = Z(KSAVE> = 1

MACRO
JH3TRUCTION

FUNCTION

PR <integer>

GENIRATES CODE FOR AN IDEHYZFTZR ON MUWUP. 1EE IDINPIFTZR
HAS THDRK
T0STK (IDLFIR + <integerd) IV NAMAS

Fp

INCRUASES KPR VAIUE BY 4 AKD 3318 TFIND (TEwPRR) 70
1~14., DEPSDIDING ON 19H< OPERATCE CURAEHNTLY BEING HARDLIED

SETS T7I5D (IFNPTR) TO B ML DHORSHERTS IPNPTR 2Y 1

"V

USED IN PRODUCTION OF "FIMD" CALLY TO GENEEATE THI FIRST
3 PAltAMSTER VALU®S CN KTENMP, STARTING FROM PCSITION THEMPR.
FOR HXAOPLE I, J, K

USHED IR PRODUCTION CF "PINDY CALLS TO ¢
AKD THIED PARAMATIRS ON MTEHP, STARTING #R
TEMPR. FOR RAAHPLE

,K
(JSED T REDUCTICN 4ACRO, HARE FIRST PARAMBTIR ALWAYS
EAS VALUR 1).

ThH TiZ SECGND
W PCSTETON

X

U350 IN PRODUCTTICY OF FUNCTION CALLS WOR NON-3CALAW OFIEANDS.
IF Origdl) IS JOT A PARANSTIR, ITS WALMES IND3X IS GEY
OF WTZ:P, STARTING FROL POSTTLION TalFR. OIHAETLISE, O]
FPORM TEFM' OR 'ZE2' IS PRODUCED ON °
THe POSITIQN OF THE OPZIAMD I# 1% PARALY

s

@
, DIPBRDIIG CH
dn LIST.

F <integes>

e,

USSD 70 PRODUCE TUHCTION CALLS FOR DIFFERZNT TYPES AND
KUMBERS 0F PARAMATER3. FOR BXANPLE,

Pl GENERATES FHLIAOE (A<integer>

F5 GIMERATES LIF2,
THUS T4 ¥5 %---)9f JOULD GENERATE A CALL POR 4 SCLLAR
LEFT PARANITER 4ND 4 NOH-3CALAR BICET FARDNITER

4

GIMXRATHES CODE CF THY ORI

CHFURCTICN NAMEY = < RESULY VARIARLE>
WRITE (6,148) TUWICTICN MiMs

1D

GENERATES THE VALUE OF 172 IDENTITY TLINATT FOR AN OFERATCR

W ATENMP, STARTING TROM POSITION T3LPR.

HASEO
TNSTRCGTTON

FUNCTLOR

IF<ay<rel.opy

L BRANCE 70 LABG
I TEST SATISE

L MUK

IFD; OTH

mon SEQUERITAL SX¥OUITON.
<ay HAY BE
(1) 9<expressionS
(ii) ﬁ.
(02878 POR 1OORS SET UP FCR KON-GCALARS)
(1 i) 1\‘
(Uwsws d3HE VALUE OF IRCK)
(iv) I
i VALUS OF Ts4P)
(3808 (4% VALIZ OF MATK)
(vi) i
(2878 TEE VALUE OF
(vii) ® <expression
(2918 THE VALUZ oF 2 (?<expressiond))
{(vidid) ©
(UE3TS THE VALUE OF IDSTZL (Toria))
(ix) 3 dinteger
{UE8ms TiE VALUE CF 88 (Kintagery)
() £
(FEsts THR VALUR OF Nams (91 + 2)
(xi) T
(TIPS 190 15t CHARACTSR 0F THE LaST BNTRY IK Iv8ip)
{(xii} =
(3378 TER VALUZ GF ZMARK)
THE ABOVE SYMAQLS ZEPRESENT THI QUANPITIES SHOWE TN
BROCKBTS
rel.op. AT BE
i BY,KE,GE, 610, LE, LT
m 18 A PCSITIVE Ok NEGATIVE INTIGER
IF <ad> COKDITIONAL 3T0P, 43 ABOVE, BUY a MAY OKLY BE

<ral,opy m &%

(i), (v) gz {xii)

ID<expression:y

REPEESENTS MACRO EXPRESSICH 3TARTING WITH IND.VALUR
(r.]\ IFTEGER) I3 CA LL,UL‘U”‘D tLND STOAED OF MAELP,
STARITHG FRCY POIITION T

T
1
]

IHE¢expressionds

RIFHBSENTS MACRC BAPRBSSION STARTIHG WISH INE, VALUE
(4N TITEGER) IS FLACED OF HIZNP, STARTING RRGH
POSITION TRMFR '

LI

TRANSFTARS A COMMINT FROA NAURD 90 WIEMP AND 3EUS THE
FAKES FNIRY 10 -1's {T0R POASIRLH BARDAST CCLLIECTICN)

M

GENTRATES &% J'J\’J’.‘J:."‘"l—’ (1-8) 0N MIEMP, $TARITING FROM
POSITION THPR. (USED 40 DISTINGUISH KBLAT :ro;:o In
RELATIONAL OPRRATOR wis,c‘?oﬁ

MACRO

Pp————
INSTRUCTION FURCTION
N AS FOR LM, BUT VALUES 6~1 ARE GENERATED
TRANSFERS THE LEFT OPERAND FROM ITEMP TQ MTEMP.
LO NLEFT 1S SET SO THAT ENTRY WILL BE REMOVED FROM
ITEMP LATER,
. AS FOR 1O, BUT NLEFT SET SO THAT ENTRY WILL NOT
BE RFMOVED FROM ITEMP
CHECKS FOR ENTRY IN COLUMN 1 OF LYABLE WITH VALUE
- <71y , WHSN ENTRY IS FOUND, TIE CORRESEONDING

ENTRY IN COLUMK 2 OF LTABLE IS STORED QN MTEMP,
STARZING I'ROM PCSITION TEMFR.

MR< integer >

STORES THE VALUE OF < integery IN MARK

ML - - =

STORES THE VALUE Of THE ENTIRE EXPRESSION ON MTEMP,
STARTING FRCM POSITION TEMPR. MX YWDICATES AN
EXPRESEION STARTING WITH IMAXFN {IMXPTR).

STORES THE VALUE OF NUMSER {(NMER) ON MTEMP,
STARTING FROM POSITICN TEMPR,

NB

INCREMENTS wMBR BY 1

GENERATES CODE
+ OR — OR * OR / OR #*

ON MTEMP, STARTING FROM POSITION TEMPR. THE COLE
DBEPENDS CN THE CURRENT OPERATCR

{+ OR - OR x OR+ OR *)

PC

GENERATES CODE CF THE FOEM

CALL BDNO (Z2,ZCPTR)
Ir (2<27.LT.22) GOTODL B>

< BY ¥$ GIVEN BY ZIND (SET USING D¢ INSTRUCTICK)
AND LBy BY ZNOC

PL

CENERATES CODE OF THT JFORM
Z <integexr> = < left operand)
FOR INTEGERS AND
Y <integer) = < left operand >
FOR REARL VARIBEBILES,

<left operand) IS ORTAINED FRCM ITEMP. NLEFT IS
&ET SO THAT FENTRY WILL BE REMOVED FROM ITEMP LATER.

PL+

AS FOR PL, BUT NLEFT IS SET SO THAT ENTRY WILL
NOT BE REMOVEDR FRCM 1TEMP.

PR

AS FOR PL, BUT <right operand> IS USED INSTEAD

MACRD

INSTRUCTYTON FURCTLON
PR+ AS FOR Pl+4, RUT <richt cperand) IS USED INSTEAD
USED FGR INTERRUPTION OF A MACRO EXPAKSTION. TIIE
VALUES OF IND AWD IDOLR ARE STORED SO THEY MAY BE
RCM USED WHEN ThRE REMPINDER OF THR MACRG IS EXPRNDED
LATER. AN ADDRESS I'OR RETURN TO THE MACRC BODRY
IS ALSO STORED,
RE RESETS THE VALUE OF IDPTR TO IDLPTR
GENERATES CCDE
+EQ., OR (NE, OR ,LT. OR .IE. OR .GT, OR .GE.
RL ON MTEMP, STARTING FROM POSITION T#MPR, THE CODE
GENERATED DEPENDS ON THE CURRENT OPRRATOR
{= OR % OR < OR £ OR > OR » }
TRANSFERS THE RIGHT-MOST ENTRY FRCM ITEMP TO MIEMP.
RO IF NLEI'T IS SEFP, 2 ENTRIES ARE FEMOVED FROM JTEM2;
"OTHERWISE CONLY CONE ENTRY IS REMOYED.
RO+ AS TOR RO, BUT NO SNTRIES ARE REMOVED FROM ITEMP.
R1 TRANSFERS THE RIGHT-MOST ENTRY (WITH ENCLOSING
BRECKETS, IF ANY, BEMOVED) FROM ITEMP TO MTEMP.
R1l+ AS FCR R1, BUT ENTRY IS NOT REMOVED TROM 1ITEMP
RrR2 REMOVES RIGHT-MCST ENYTRY FROM ITEMP
S TRANSFERS CCONTENTS OF MTEMP TO ITEMP. MTEMP IS
CLEARED.
St AS ABOVE, BUT MTEME IS WOT CLEARED.

S <integer ,
< expression

STORES TBE VAIUE OF < expressiony IN
88 (Kinteger>)

GENERATES CODE Of THE FORM

2Bl = 2ZPCQINT (7ZPT)
ZPT = ZPT + 1
CALL STARTS (4?1¥,Z21,%2,ZNC)
ZPOINYT (Z2PT) = ZBl + zZ2
23 = 1
19l 74 = ZBl + 23
ZENDX (23) = 1
23 = 23+ 1
IF (23.1LE.22) GOTO 1@l
25 = ZBl + 22
76 = 22 - 1
ZEAVE = @

{ISAVE> IS SET TO 5, <J5AVE” TO 1@l AND < KSAVE > TC
6 TO BE USED TO GENEFATE THE END OF THE LOOPS LATER

MACRG

FUNCTION
INSTRUCTION UNCTION
1.2 GENERATES CODE CF THE FORM
CALL STARTS { £?17,71,72,2NC)
STR INCREMENTS IDPTR BY 1, STORES 1DLPTR VALUE ON

JIDSTK (IDPTR) AND SETS IDLPTR TO IDPTR.

T integer >

STORES THE VALUE OF{integer>IN TEMPR

GENBRATES CODE COF THE FORM

v CALL VSET (£?1> , 22)
V851 IS PRESENT IN MODULE LIBRARY SARUN
GENERATES CODE CF THE FORM

Zt Z <integer>» = 2 <integer) + 1
WHERE ¢ integer> 1S GIVEN BY THE VALUE OF TND.
GENERATES CODE OF THEZ FORM

<i -
- Z <{integer 1
: IND AND IDCER ARE STORED TH ISUBS (W,1) AND
ISUBS (N,2) RESPLCTIVELY. {N IS THE TNDEX OF TiE
FIRST FMPTY RCW.)} USED FOR SUBSCRIPT LOQOPS.
REPRESENTS 2N EXPRESSION STARTING WITH 2LAaRi.
2B -~ - - -~ EXPRESSION IS LVALUATED AND THE VALUE (A LAREL NUMRER)

IS STORED ON MTHEMP, STARTING FRCOM POSITICHN TEMDR,

we CENERATES THE VALUE OF ZNUM OW MTEME, STARTING FRCM
POSITION TEMPR.
GENERATES CODE OF THE IORM

ZD 24 integery =
AND STORES < intager» IN ZNA

25 PRODUCES THE VALUE OF ZNA ON MTEMP

71 GENERATES THE VALUE OF ZIND (OR IND, IF ZIKD = ¢)
CN MTEMP, STARTING FROM POSITION TEMPR.

7M GENERATES THE VAIUE OF ZMARX ON MTEMP, STARTING
FROM POSITION TEMPR.,
IF JSBPTR = 0, NO EFFECT, OTHERWISE, GENERATES
CODRlE: 01" THE FORM

ZIA> = ZLAY> +]
70 IF (2< AZ» .LT.ZBONDS (34 B))) GOTO <C>

ZPT = ZPT - 1

WHFRE < A> = 1SUBS (W,1)
< B> Z ISUBE (N,1) ~ 1
<Cy» = ISUBE (W,2)
AND N = ISBPTR

MACRO

AL ' \]
INSTRUCTION FURCTION
- CRNERATES CODE OF THE FFORM
zZ < integer> = ZYY {(ZYY PTR ~ 1)
o GENERATES CODE OF THE FORM
. Z< integer> = ZVY {ZVYPTR)
REPRESENTS AM EXPRESSION STARTING WIFRI ZNUMB. TIE
LW - - - EXFRESSION IS EVALUATED AND THE RESULT STORFD IN
MITEMP, STARTING FROM POSITION TEMPR,
7y GENERATES CODE OF THE FORM
1
Z< integex> = ZY (ZYPTR -~ 1)
- GENERATES CODE OF THE FORM

Z <integery = 2Y (ZYPTR)

2< integer)

GENERATES CODE OF TERE FCRM

Z < integexr 1> = <L integer>

STOP

divra 3 A T £ v B D

§

APTRIDIX &4

& List of 8ll the macro bodles used in the APL-FCRTRAN translation

is Included for reference purposes.

A header line has heen included with cach macro body. The hesder lins
gives the macro number, as well as a brief description of the contents or
function of the wacro body, Ths mMecre Processor nover accesses the headsr
lines for the macro bodies, and thus the header lines cculd he omitied.
Omission of the header Jines would signiiticantly reduce Lhe amount off spuce
reguired f'or the macro bodies. The header lines (together with the
surrounding blank lines) heve beer inserted sleply for readebllity of the

RACIro code.

ni

FAIGOAIMI4RNS T = P
T-0GN] A2 Y 2-CGNT 0 RAYSTY ; ViG99 e N

Ud 24 01= % Nk ORU O RIEA 0 I-UNT O LA HER TSI I AES TR L S € SR B
2 L{3YCLS7*IUCLSASSONOBZPANOTYAY L GHE SR ed mtL XD ATULRYEET ATVWOEY O O«
6 CY= 0% K(Z X2 owfz NI Tfe ONY T=0RT X7 cUlIed+WnNe /=uns?7s C+ %

A 2-ONT

Yol 108 I+ ¥

d4d &6 T~ IN €& 46 22 = % Lis. UND O RT0R 0 Zwg O T-0N1 FAI:T T4 0¥
d § 0 3N ¢4 41 L G 17 22 41 T y= ¥ XTsh AND O R7(WNSTRANY i-0ORD 734
Q4+ 24 01 ¥y H{3YOLSTAVOLSACSONGE74ONNOGA*R aANI 27%% & &*h X4 30NA43
. T OIIVOE O+ 9 Ol= % ik Xd otR 0 W Lty GNET AI'e T-OND 0 R7)c0TEBN+WN IS
: ARSZE G+ ¥ ¥4 9 T- 2N 2¢ 4i um = 7 I{ANOIRX*IALOLS7IYGISASONDST *GRNADRAY
. - % €é 'L X4 RIGCUSMI=X ONT #Z% O+ 6 0 17 €2 3] 2 ow= N Q=¥
G %72{(z T-GNI %A% ¥ INd)4I& 07 % dWe 1€ # S CGNI L74& % ¥ Q1=2
NI 22(% €Nd T INs R}dIZX 072 € 0 13 €4 41 ¢ ¢ 3N Z¢ 31 1 0 17 i¢ 37

(i1-9*SaN; 3919 3TCiN4ENTT

S OWNF L7% % L1=3 GNI RZ(T°03°
% 2-0QNI 32% OV 21°03*% 1-0NT Z7131% 9 20=% ONI %% G+ ¥ ¥d ¥ 1d

{S-%TSUN) HO4UAY

. €= IS 0e #H T
¥ o+1¥ z=% 07 T #0¥Y SINNTANCOR 3 I+ H(2W0LSAIUZ34S VIR 2d v A(a .
NNDBA*YI4QDZ * QU002 IS T*XONTZ ¥ 2YOLISACLA7 ANIGIZ#SCNLETZ ¥Ld37*STREDT 42)
5 GNI ZASE X3 21$03d4S NIYOR 1€ 5 % 9+4F & 0L0SY ¥ AONI GA=% 3
AN Zé ST 2 3 I+ 0z 0INS {0"ANCYIWYUVKWILAIZ € 0 IN ¥ JI % ¥d 1T € 1 Té 41

(£70ON3 NGTAVIILIOTdS

W¥+E 37 ¥TidwW31A2 S

VIS p.u G . .
® ONI ;r-ﬁvh;}>wu>>~ N

il
d ¥ XI~YIdAAZ= Mha>%ww ¥ 10={uldAAZIARTY ST -5
% % SUCNUBASEidGR740¥DIIZSGNUBT3N0LSTZ XANTIZ® J:DL AtYIdIT4SONYIZ LaZ INTCd 242
Ad Nwﬁvmmxhauw GNI $Z+% 37 22)dn3iAs +7 =% 37 S 0¥ &y Y I+ Uve
8IUIATAD 17193 {(GWITZYL9°Y14AAZIIIL ¢ 2T+¥ldAAT=UIdAATL 127 §F O34 ® Td 3={(%
GNI ZZ)CGNCEAS ? 1% S+% I+ &EVP*121Y3ADAS T0VD (T1ZWI77419°%8 NI 2723413

{2 0N} TIVD GNTSHET 40 ROTIJDNG0OYS

S ONT %A% T 2(¥1d0S74CUCNIZSONOMZIUALSTAXCNITZAANNGTHASYLADZ ﬁ?mu
Z24i3Z*INI0dZ4E X4 Lt% A3 ZIGNIZAI=L AND ZAF 1-F O+ 7 3% 1 U SNV

U...

(10N} TIvD GNIJAZ 50 NOIL30A0YS

(1é~und MWW TN
:) ¢S ONT ZAR ¥ I-ONI EA=$ GNI 3
_ Al% 2-ONI 2A®19°% T=GNT ZA)3I%3 % 2-Oh] ZA=% ONI 345 G+ ¥ Nd % 1d
J (9ZTON)} WAWIXYH
S 83 O O 07 uB
{(GZ-TZ7SON} PR AL P
% S1-¥1d027=Widdd7i: ¥ 20=(¥1d037)0¥00JZ%
{0Z°ONJ WIVLS A¥OUDZ 40 ONILL3S3W
4T %3ONIINGYE 5§
T¥ 3={uldGD27)0¥C027% % 243 3 1+ ZP¢HTIWIACAD TV (HIWITZ LO°4idG37)4
; _ . (61°GH %¥IVIS GYG09Z 40 9mJLL3S
¥ S CONI %3% 7 Si=k QNI LZ{TTIN*
% Z-ONI 7% OV 3T°3N*z T-ONI S7341% % 20=% ONI 27% QO+ % ¥d ¢ 7d
(2T-LT°SON! YUNSANYK
S ONI 27% % 2(¥1d27UMOVACTIMOMASE ANI 27130800 1Mv0% a+
ivicoNY 300730
S 30z 07 %2+% 17 31)6W31IZ SG 7 EI-VLIAZSMIGATE ¥ %0=(1L4A7
JAZE AZ T Z{GWILZ YLJOZSSONEIZAYIMAZ'AZINOYA'L ONI SAIGYODN 11938 § M4
(ET°0K) 3T0IN3
#0052y 27 &I+% 17 27i1dW3iZe Sq a 21~¥1
dAZ=YLdAZE ® 30=(¥LJAZIAZE AZ % %(¥14AZCA7*dWILZ*YNOUA*IMOEA)YVEWSH 11703
(ZT°ON} ¥39Wdw
9= % 2INIING

2{ULdD7 ¢ SENEDT MG

"a>>\ ARERE Xd ww;s4)
GHY 1YL IT % smu-:m
L7% mmo T R1-¥loAi=didA

YEIdAZ AZ* S ONT &
12 .wvmaMh Lo0¢

J24SINGILFHLAART ALZ L
CNI §AZ C+ 2 O 2N Nm ED

38 2-3 0% Lix 02
I¥YAZ2% A7 I+ I-%

TWidli I+ # 2 SN 7
‘% W7 %)133590 AJ 2
td T 9= % mmOthnuvchmy msj

4 1TvIE 0% au b3
=(#}13dAL7% % {3
PEEN R VU T 4 ¥4
Z3A2% AZ % Z3NNTL

¥IAJAS V3 ANEHJN‘.O.ahc>N~

I-ONT &Zistx 9

I+ ZP4T3¥3A0AS 179D

wwmwo+¢~w
WOMGEZ Y% T4 2Ya
Iwon 2 G- 3N 22 dY

2748 X4 3)Z1740 TWVIR
ux«.-n¢.J

& GONI 27)
1

J+ ¢
31 £ % 19 7 21 :2
*IM0YACE ONI 87°%

A{Z T-ONI ZACLR*Z

,wﬁr.;\.nczch.e.

1 o 47 1e 41

‘NIGZARNST

_hL>Nv>~a PV
woT= 3N 28 dl
:M:>>Nﬁ ? vounzwm>>wu>>Jq S7
7' GNP R4
v &({MO¥WZ*X

1-ai7 27=V17
FIZHMTYASTHD
12 7% C?H

areuidd 1TV

AYLSALET THIVIR
Wal74 %0 0% R’1
X2A+¥E 37 EZ={dldA?
Si+¥EdAZ=Y1dA7R ¥

.xRDx>;43mu>EXP?HH
x4¥31% 0¥ ﬂlﬁzH
m>»~»n:2ccw.wwmqw.mmx uwﬁ
4 RICUZdN
w‘z»cuu.marz
TIWIL ¥
Y o &n= ua>Hue
¥ 65— Ok 24

i WZ &

IS Y ZtuMiY

w«mmchmwymxohm>.Jxox> E.cNa.DwN SONGH

S{IM0OUA*2dALT %2

i uN.; X4 %}LES
23 2 1€ 1240 1IVIE

g 2 In 2 mH ¥ X(SCHNOQZ*NMLIdD7*SONGDZ *2M0YA

L0480 TWOR O+ 2

€ & Xd

B

T-ONT ZAPENTW(L
T-ONI SA=% ONI

an
(%]
[o]
=
-
&7
¥

aNT S71)%57Zd0

R0 G R B -3

uw :N.

AR LZCuLdTT

5008 Wt

OHYE VIS

el A7 IOHUA

wvIy

)

wWILT=VIL SO % ;lewa%uuxgm>wn

¥ & Jid

B1d27*5SaR8D
TASE wT %)
nmo2Cﬂuuz_ruq.mL/:)x.w X4 R)z7d?
‘ L WY aZ)SIuvn

PSR Y

40=3dAl7R

“Y1dAZ=Y1dAZS

JAZS ® 4

-3 3 QLuS

HV NM::
ao::uV.zcy

¥4

¢ 9
¥ INd

'. -d..l)

T ORIAONIING
wwmnﬂxha>

ot dhTe
7% ANT
£dd FIVIE

T 1= 34

§ af={lULldA
03w
(AL LD

PR R VIR A T G

&2+ Z-0OMI &1=%

£ Rtu X

¢t 31 1

(GZ°ONJ

Z-CGNI %A3:S
XA 4+ ¥

(82 GNJ

¥ Z-GN1i

& G+ 7%

(A

1é 31
BNV E3dE
3
Hy-% GNI
Hd ¥ 4

ERTOSEY|

wA=% GNI

¥d ¥ d

A7 V)

L1

i Iy S
ONTI ZAZ 2 % SANTINGO: ¥ I+ ¥ 1-GNI 9iS=r ar] AR F 7
T+ % GI0CY ¥ 30=% OQNl &AY G+ ¥ ¥ 2% 0102 ONT SAYHIL, 7 ud

3.
wy
(]
<
—d
B2
>~
&0
*J
ol
o
0
1
1
54
pa
g
—
>-
b
+

0y "ON: SATIVOIN
#0S ou sex
(6£°GN} + DICVNCK

S AONI
o ¥ 4

| 54
>_
be
-
be
be

Z-0ONI ZAYODW/1Z T-ONI ZAIS0V=Z ONT LAZ Q0+ 7 %

IS

{Le*ON} WHITYEVIO T Ivdnin

7 L7+n 17 2I3cW3LZE SO % FT-ULdAT=ULdAZL % H0=I¥LdAZIAZE A2 % s
CSONGDZ4TI00BZ ULIATCAZ GWILTYS 1-ONT &Z¢% GONI R7IAYSIN0 VIS ¥ ¥d ¥ id

{GE 0N A EN

S ONI %AZ § &ZNNIANGDZ 3 1+ % 202 T1-0M1 QA*% ¢
-ONI ZAYdONTI¥=E ONI 2AE G+ T % 1+% % D109% ¥ &({% M:ozm AL 7-0OWL s
Z LAINONIY=E QNI ZAZ G+ 9 ¥ % 0109 (0°i9°% TI-OND 2ALIE ¥ ¥e ¥V d

(¢ ONT dyIinoy il

¥ (% T-ONT ZA-Z I-0NDI FAIVH
WYSx (I+3 <Z-CGNT ZAIVRWVS/{I+Z 1 a>v<_ Vo=% ONi AT O ¥ ¥d §F d
LCETONY AN3TIOTA3300 WIWONIG

§= 1-F R LiNIJAATPAATOW

BLIASMOEZ G LdIT4SGNTAT“ZaWILAYY ¢-ONT &7*% OaNI Z7)CUHY TOWZY ¥ Dd ¥ T-UNT
“A={% ONI RZIZHW3IALT ¢ (& S*Y T+ SRACZIYTACAS TIVD (SZWTI2719%% Gl
223412 47 G+ -3 £ ¥ & 0i0S: I+ % Z{YISGT*SANGIZ UVIdAAZ*AAT IWILIAMOUZ®
2 T-ONI 37°¢% ONI ZAIZCRY TIW32 7 F % 0409 (2SN EIXYVWISIR® I+ ¥ +kd 30

B0 (% GNI ZAIVANYOS ¥ itk yd
{0 ONY IVINOLIVA
4Sein 97 Liss 17 %
ZYdAWTL TR Sa ? G1=-dLldAZ=%1dArA7% ¥ 2C={UidAT AR A7 ¥ lYidao7saynulZ“didTe
CSANGDZSSONOAT *dRILT HAMAZAAZ T 2& D40 X4 SI0HWN 1IW3% T 4 S 2(m a7 %1
+% iz L2Venldr7% 2S¢ ¥ ST-YIEIdAZ=d1dJAZY k's L0={NLEAZWVAZE A7 % TlUYLdAZYATS
GWILZF¥idADZ0L0DDZ ¥LDT SGNAIZICHEN TIVIE I+ T1-3 § 9+3 % 01092 % 20=¥ld
37% P LE-=dIMYUNY I+ P X 5 QL00(CUINCHMNVEISIE 1+ T ¥4 1 0 19 1o i
{65 0N EVEES
40S gty I %Z+% 17 ZZVAW3LZE SO T YI~ULMAT=WLAZE T &
O={YLCAZIAZE A2 ® 2(¥ld37°CONEIZ ULIdAZSAZdWILZ'E GNI 246100 17¥32 3 %
T+3 % 0LO9% © %0=%¥1d72% ¥ OSE--¥3uvnt ¥ 3 I+ o 0106 (0°3n°Z ONI %Aj41
% 1z % INd %=% ONI 2A% O+ ST 2= % ¥d 2€ T CI- 3N 1& 21 ¢ © 3N 2é 41
(L*CN) WOLVYINID X3AAI
§ S 3tz ONI SAISOVR T %d
(99°ON) 3ONLINIVW
S ONY %A% T+ P %(3 OND SAVINIVER ONI SA% 3 7 2({g-
3T-TJ-2 GNI ZA3SSV=% ONI 3AZ T & & GLOO {(0°39°S ONT ZAY<i4 7 d¥d i+
: (Su°0N) Y603
£ S QNI %AS I+ 7 2(% ONI SA)INTV=3 aNI SAX 5 %
$U8-3T-T342 QORI 2A=2 GNI SAZ 2 3 % 0109 (0°17°% ONI ZAI4I% ¥ de 1+ -
“{y%eON} 9NINTID
S %{% GNI RA)X3% % W4
{€#*ONY TVILINSNOAX3
. 4 S 08 /1%

NI 4

(494797SONY FERavdVNG 05" an
¥ 09
240 07 $74% 17 TTIGRIIZZ SA T OWd § YT-BLdAS=WIGATE W L0={MidAZIATL .
?OIM S=(% J2 %7+% OGN 22)dWILIY T7 AZ Z-F % 3 S "t sis 1y
W3d % TH G=(% 07 27+ M1 LZ10WMOAR § %(& G4F 3% FET1H3AUAD V3 (RT
WITZ®167% ONI 27341% s/ I+ F QO+ I+ % T & DIDG (n°D3" xuzyqzw 1% i+ :01
Gi= 3 2 0100 (4% ¥4 BIONLITTL1'3 ANI B7041% BT £1= % & % Of
¥ €0 2TANTE ONI S738IX BT S 3N Zé d) T 4§ klE 07 8733 17 LZigw
7% SO P BI-YIMAZ=U1JAZSE P SC=(YIGAZIA?E A2 L1 1 DT ww 21 ¥ L (¥1d37'SONE
D74UIdAZIAT GHBLZGVEOA T 161 113 €1 bl= Gz £1 19 53 0 21 %)0VyS 11vdF ¥
SIONTENGIE ¥ 261 14 36T 27 1 3N 2¢ 41 ¥ 0¥ %=(i OHI ,ch<ao>p T oatx
5 29¢BTIIUSACAY IV {2TWITZ°19°% GRI S2)2I% +7 I+ 3 G+ Y+ =11 # 5 %0
=¥INUVAS S ONT SAZ ® TN 2= ONI $Az 4+ TT O 3N Z& 41 0T & 171 te 41
{(19-G9°SCN) NMOC~3AVED* 4N~3GV Y9
¥OS wls QNI $2)HVEGIT P ¥d o ;
(66°GM) KYIH-]
S ONI %2% % 2I=% GN{ %7 (0°U3°% TI-ONT %Z)41% 07 ? Yd
) {RG*ONY 10N
#* % L3IANIINDGZ I-3 % a000T1 0109% ¢ 14 =174 ¥ ol=% 17
£2% ¥ % %0001 0l09% % +1% %=T2% % 3 I+ & 0109 (0*3N-u3INYWWIZI% 7 7
I+ % DL09 {€-*03*¥INYYWISIZ T GT= P %(% GNI SZ)36OLSA=178 A % Ol= %
(% X3 ZTINNS=1ZE & - 3N 22 41 ¢ # P 17 % 0409% € &- 3N 2¢ 31 2 #
P %000 0i09% 307 2 INd & =I12% 2 0 3N Z& 41 1 617 1é 41 # €~ 03 2& 4T
(1s70N) 0109 .
WS (% .ONI %2)907¥4 T Wd
. {SG 0N} WHLTYYO0)
i S (% OGN %ZIIAYINDE 7 ud
) _ (£6 0N 170Y
#0S 83 0¥ Zwx6elviv¢s ¥4

I |
{92°Cn LEAKWED
BOS S (ANCLSARAST WIS ANOLST#
SAONOG7 “¥LdDZ74SONEDZS 2& 2°%% T& 2IZIN0 73903 19 # F NI %7{E€CT9)i{ It
7 INZ &=% ONI $Z% G+ L & % QM1 RACIDTY9)ILINME ¥ TN<d k= ONI O MAk
G+ L 607 DT X 41 9 0 2N Zé 41 T 4 % ZINNTINGDL T Dd ¥ L{uldD74SGNuOT
$¢ GNI ZAITLNO TTIVIR ¥ +¥d 1-3 % 643 % SI0%% 1+ 0T 0% AND &7 (£01¢9)
JLIUME 2 +TY =% ONT %2% O+ € 0TI= ¥ UNI %A {ICT¢9aliuMmys % +1Y 3=
ONI SAZ O+ € €2 U3 A 31 2 T I+ 3 0L09 (0 INuIWRGWI4IZ T 7 LD 1¢ dI
‘ (2L*69489°SON) INGINE SOAO03N3INDYA LI
S #{% G-HM7
97+% 17 ZZSAWILAE SO ¥ T-Y1ldAAZ=NIdAAZY ¥ X0=(ULdAAZIAAZY SZ ¥ ani %
2e G-MZ %={YIdAARTIAATZE m TLSONBOZ4WIdDZ%2 ONI 2ZIGNGA 17902 A+ "% %(2
143 2991NIACAS TIVD (BWITZ*IS°NLdAATZIAIY 2 ST+YLdAAZ=YIdAAZY. ¥ T-3 & 0109
(CNMOYZLT*2 1-MZ 27331% % TI-3 % Q.09 (VNMOWZ"L17°% MZ &Z)4i2 7 1M 9=t
S E-M7 3743 Z~KZ L7IGWILAET £ ADY S (% GNI Z7)UADYAL S (i I~-GNI &
2} MDY A T 31+%k Z~GNI 27=% Z-ONl %2&% +Z I+ 3 07 +ZI 1+ F 071 07 i1
{49°0N} 130Q0%d W41ING
. § 3% 49 .% TY %=t¥ N 1+% 3NI $OZIXQNIZE N+
{997 ONj INTXAANT NI ¢
#% RI=IAVSZE .¢ ¥ 0% $1-1d7=1d7% % 1 03 ¥W 21 ¢ 5 GNI aZe P a{¥1d02
Z5CMO00Z“2UDLSTENANIZAGNATEASLLZ Y INTOdZ 4 SANUEY *H1dDT 4 SOMUDTSINT S T- wrm x7¢3
GNI 27%% 2ZX4 %% A2 2XEINI4 1W0% =7 €= S QNI HA% F . 2{2u0L187 *XONI7SANNG
WAFLA?SINING? *SOREEZ4 L7 4SANAT 2N %% T-ONT %24% GNI %A'y OA1 nw.w %3
%% A4 23ZONIZ 10905 2 §- 3IN T-N 4! .H €= S (% UND SZi3x0iSA% ¥ w{3WO
LSASELAADZ40d0DDZ “IL0LSZAXONTZ*ANNIGASLdZ* INTDLT *SONDBT “WLGDZ SANRIZA THZ % 2-0N
1 $2¢%% GNI %A*% ONI %74% 2%3 2% A3 &,Ho_Ha 1IWE T Y IN I-N 4D g+ 2
1S 2 N 4% 3NI 287={1d71INICdZZ T 1Y &={% N S5+ N+ INI SHZIXONIZX
{(€£9°0N) 1INIVEEHS D

LA A A S I & D
IS=Xa T=-XWeIS &) 3109% % SINNTLINOZ (& X 19177900357 171d41 2001% 714

(GL°ON} 30 INISTTD

€= thd £ O I ¢N d1 4
%¢% INd DI O SN Th AT &% INS 6

00T g= ENd L O 3N N I

N 2N <41 QZ T 03 N 21 23 INd & 2 19 N JT % ANTLNGHUNSA 1 9= K 4 (O
NoUN 3T ZfT1s7% uo €= 32415 i &= qzm Lo0dN N d1 &% ZNd S 0 3N ZN ST
i ENZ T &= 4785 v # 0 S) ¥ L{COWIATUNNTEXSHTIACdRILAFANSZFRINT QYYD
ZEMCUTTAVYEQAYT Nawmm mwﬁmwaouu QUO03ZF 002 4XNONTIZ P 4dZ* LT U7 *GNOGA “CRNCHA Y SONGST !
YIdAAZ CAAZ *YLdAZ AT YLGIL*SONASZ * ENOYATHCHEAS IHOLSAF SR IL A dWI LTS .DN 4% 6 EN
4 4% & 3N gN 3I 02 2 T4 N mH 213 ZN3 2 ¢ l9 N JI & NOILONASX T ¢ DF 1 41

_ {52°0K) 30 SNINIHO

L1 17 21

(el =i :

b4 .&Lﬁ_in\n..rm ;4 2-F SG ¥ wl=

#0005 (% D27 xI+% 17 %7)d A%
NI F7+% S-0ONT RI={UIdAAZYAAZL
m

?
Mwa>>wumwm>>wﬂwwnuhmhm>>ww>>wwmNmm
§ (3 L-F ZWAQIYIACAO TVI (SWITZTL9°YldA
NIIN32R T % mlw % §i0C% ¥ X0=% C~-ON] ¥ AWCAGHIH+EL 9-0NT 2=k 9-0
NI %2% ¥ &1~¥1d3I=% 9»-(GNI %274 1-% ¢ - 01098 ¥ 2V-% H=ONT 22Z=2
H=0NiI &ig 7 w 5 0189 {17037y e~CGNT 223416 I+ ¥ 0§ [+ L QLU (& 5-0NT
JSANGIZ*AT{E w-ANY X7 edn3i7Y¥dIr T I+ v~GNI Z7)€dW3i7=(2 H-0h] %
73Can3iZ% 3 I+ ¥ F X CL09 (¥l&DZCATTEF OND S7)SIv 0 70w Zl={& O&] &%i€
cW3l?2% ¥ I+ 9 LT+% w-ONT 27=% CNI L7IL Q4+ ¥ ﬁww % 0109 ({(¥ldDd731SCHED?
“IE 20N 27081 Y F % 0409 (WaMOuWZiN*% T-mZ 0 RZM4IER Y Td f=-(& 27
I+ BN ZINEWZLIAE & W2¥ & W3M S (s ONI &N~x21«>§ S #{& &-ONI &7
+% T-ONT Z73TM0%A% S x(& 27 FZ+k H-0NT SZ3dW3L1AL ¢ Z-ONI £7+4{d1dI7iSC
N2Zx(1-2 T~CGNI &Z)=&% QN

3

I8 % ET+¥MLdAAZ=YLdANIY ¥ &20

>

I %22% 4d% ~7 3 1+ 07 ¥ 271+ Z-UNI &Z2=X Z-0N

1 §2% +Z I 607 I+ v ¢I-4idd7=23 OAN] 7% G+ (02 % %0=x GMI AZ% 7 ¥
N 0109 (¥1<27-2717% ORI &2331% % AT¥={& GNI £S7)€dwll?% ¥ (% G1+% &v*eC
Y¥3AIAG W3 {B8ZWINZTi9°% QNI 5733 +7 T I+ 07 2-F% ¢ F I GI0OSE ¥ &1
+e 27 BZ={YLIGAATIARZE % Z{% ¥ Y@ IY3ACAS 1TV ID {BRITZTLO0"YLIdAALLS 7

T

STHHILAAZ=YLdAATE 2 T & 018 (WUMCYMZ®"31"% GNT XZi4I8 9 TY ¥=(& 27 2
¥ ONI ZZ¥GW3SIAZ # WO¥ # WOY S Zla QNI Q7ZIYMONAL S B(% ONI X723
Az S 3&¥ 27 zZ+% ONY F7}dWILAL SG ¥ F & Oi09O (0*3NTYLLDZINLIE iy I+

T AT B R EOY T K ed ;
i Z *NLAANZ*ART q»;»\ AL HLEDIES
! # m s: w7k v 2ANAIgND7QuILATARHGLST!
XORIZ FONNOEACLdT 7ESURDEZ*WLd27 ¥ SaNGD YA T UH P S A SN TR A A C
‘R A3 LIeONi3 6 S ONI RAR ﬂ CUIYOLSTHXCRIZEANNCHAS LS7 4 LNINAG7 450
KOAZSYAdIZASONGIZAONT % 6-ONI %72 QNI &A*% QNI L7°%0 X S LF S I

TIWW3E S 6= 2N Zé d1 % & $ GNI JAZ ¥ Z{IUOLISA*ULdUIZ ¢ U7 RRY0ISZ24XUNTY
CORNDYALLdT“EINI0GZ4SONDGZ Y17 STNUDZ#ONTZ 42 9-ONT Z74L ONI wk‘% GhI o L2%%
X4 %*% Ad ZYICGNYJd 3TV3IR T 3N Z¢ 41 G+ = =¥ 1§ 7 G 3NV Il € 0 UH 2
¢ 41 22 # S IN3 =g 2 Z- 1 i < 6= 03 24 4 T 703 3 41 & 017 18 3%

GAf ucohu> ..J»N w

LR
~
&~

1L

{08 0ON) Y-0UNVY2d0

0% 0NCT 0lG9: % IN4 Z=T12% O+

. . Woe %
1627 % Gi09% 2 1- D3 17 31 117 31 # 2 &W¥0L3¥s U 0 03 Xva 51 S1 97

0=¥3NY¥K2 S &7d40% 3 w 3139 {& Z-ONT 27721°% ON +7 %
%=3d0% ¥ HO% S LTdDE S Yaoz YOOT-08T ZASHAGOR T : =740

pd SUSUCLSZNONIZAORNOBAS LT INICEZ*SUNTEZ 52 dI7SCNUTDL S ONTZ 4S8 T-ONT 27*% O

N % ONTI 7% X3 2ZAS n<vrf7Hu Jqduw d+ TS5 # G- 3N Z2é 4T v o8 # ok

¥ #1140k ¥ G =70 ¥ z0=u3aNdvwE § QMI Z% v 41 &=L ON] 7% O+

S &% 17 §I+n 02 >N.o;mh>? SO ¥ ZT-YLldAAZ=MIJAATZ ¥ 0=

; S7 w HUEL4D74SANEDZ4AD71ANACSY IIVIL T4 ¥ 4Td0s{E HlmrH i

i LTI ¥ &I+x Z-GNI ZZ=sy Z-UNI ¥Z% 0% ¥ i ULGY ({I- ‘ :

S ‘{5 mz~ oY NTQuwa NIZIZIZ ¥ LT+(% 3INDI 29272+ quszHNuhw x:m+ou

X e 19 %=7ddx% F ¥Wl¥ § &T5dGr § 2¥dCk ¥ x{% QNI www __hn> Ydls

¥ haauN.crroo *SONCET TWOLSZAXANIZONNGUA HLdOT7 ¢ SARYI? *1dT *INTULT '8 X3 243
Nis=4 dNP B2&% O+ ¥ I+ ¢ (01 &=740% ! % S{uid0o7I0v00C7=00725 ¥
12=(6l4002}3¥0327 (0°83*{4.LdGI7)GWG0Ca7)41 7 ¢ 2 (GUNUY7 *¥1dD

7 27°¢T¢% X 2E1YI3SaONT 1W3E IS Z-F ¥ ¥ % OLGO9F I+ ¥ 27d0={% i
37 %?YdWdirE 170 170 % 20=udNEvRl Y T & 0109 ((ANADE7ISUNGS

% LE7IXANTZYIZTE 7 RT+{{+% SNI 290)XCNIZ=(T+% =SMI . G867 IXCONI

% # HI4 S 0z S Eud40&% v 2{% ANI XZ)IWULSA=¥4GL P w

G ANDZZ *3W0LSZ4XUN NNUEACYECA7*SONYDZ4Ld2 INTGSZ Y Xd A4 &7

T %72% d+ T I« % AN 297={1dZ)iINICCZL F JI &=760% %

I BIZIAANIZE 2 %1 dZ% 0 &{1dZIiNIDdZ=& 3INT 8 % ¥ I+

TINTSWIOI)LIZ 9 ot FSWIQZ4E X9 ZiUSKRICE MW2R ¢ 1 3N 2& J1 E

2 :Z2 ¥ # Wiy S ~ ¥ 4l Z=7d0% S INI Z 9 3IN Z¢ 41 ¥ 0 17 T2 41

{21 0N NOTAONCIY

728G SNIVA ADYLIS Ok SISUIVISAN
#0%F AT+ML4OO7=61dG272

{68 *ON) 33ANIId %IVLS ONGDUN SZividan

(18]
o

(%9 (N3 NIVIS CNiS S3AVGdN

B ¥ &3NNTIINGDL 1I-F 2 (kI &7=0KMONMZE 2d % QNI YA={% 17 22Ind%?

0% Z(z 3 RPICTIYIAGAS TIVD (CTAINZTISCL 1Y e~umHL T o¥d T1-§ % 5 % 0L

Q9% I+ 7 XT=ONMONZE ¢ +IY Z={TiMC¥ZXZ ¢ T & Oi739 {0 3aNTuINUVWIZILE I+ 31

#o% w“m:mN~£HONmummhw>*uXOthamw7c:~5mpauN.mC7cLu.w VIt ¢ LR X4 F)UNG
OHY Iv2% 2 # % I=0NMOY¥ZE ¥ k3 2=(1)M0W7% ¢ 0 3N Z2¢ 31 T 0 L5 fé 31

(€S N Gy D1GVAQ 40 QNYYZ4G L1437 SITINVIL

B00S 24% 17 %7)77% SGP SONSAZ=(TISCRYDZS ¥ S1=Nidl7%
¥ ZAQNGAZ T=2 GNI 2Z4(% ONI LZ)77) {(GQOT49M31iIups ¢ 2lGNgAZ°1=L ONT L7
“{S GNI ZZ)77) (G0T%630v3¥s G+ T £(2 €+3 £9°Z2)Y3ADAD T1IVD {ZZATNZTLi97GNA
AZ¥dIz T 0% Z+F % 0LOS% 0 &IT)7Z (S0T¢G)ZLI¥ma ? Z{1)17¢4601 dvivy ¥ f0=
YIAEBVWE 9 ¥ I+ % 2109 {O-3N*GNEAZIZSIT 1-3 ¥ €43 % 01094 I+ F Lg-=u3dy
YWE ¢ Z{90T*9)3L1IYME ¢ T L 0100 {I-*IN*ONGAZIZi& ¥ XONGAZ*ZNT aQv3us T+

#0S 2{x 17 TIVWALAZ ST ¥ LCONAATZ a‘ngQZGUQ: 7 Maux»zuwv 7 GlUNRAZST="

S OONT Z7°%{% ONI ZZMIW3LA} {(HCT49}3LTYns % (ONEAZFT=2 UNI L7%(2 GN &4}
W3LAY {HOTfCI0V3¥Z O+ I+ ¢ 2{% 2Z+% Nv“omvm1>c>3 ngu nomTMJM._w.ozmbwume

3 0% ¢+3F % D109% % BLUIW3LIA (#0T¢9r3ilumi ¥ {1 W3LlA (¥0T46)av3dd ® 0=

¥INYVHS €2 F I+ & 0409 {C*IN"ONGAZ)I4IL 1-3 ¥ m+m “ hww I+ § 4g-=H3MY

Lh
YWZ 9 Z(90Y¥9IZLTUME © F X DI0S (TI~"3N°GNUAZ)I3IZ % &ONIAZ*ZCT Qv3uwk I+

{13 0N} L0Odni avnd

(€7 "Nk I T Py S U

4R LOMIG W
INYNL3YE T 7 H{972ISEXTMIvHNOZ 0018 €4 64 1 G DI 1 41 % 2w3YJI01 1Iv0L

(1€ 0N} Z T30 CRISOGD

£

LA VAR S
02 60132 ¢l ¢ {9 CIo0T:lvwyld %Cix €1 % (&
H

iviNd04 901X <1 ¥ 2{Tv¥0BlL
i Lyky%02 20Tz €L 9 S{9°ZT94X1;lvwuGs T0T% €U

TI4XY3Ivnedd €018 €
(971°0N) SLY¥wNO3

% QKNI %2
28ZIKONIZE YZ % N M+ A+% T-ONI 2Z=% QNI 37% Jd+ W4

1t
be
=
b5
<4
L2

3N

L]

(260N {S<061) ¢

#00S wlw 27 &7+% %73dWI178
SC ¥ &K0=3AVSIZ® A2 % 37 2I={YidAZIAZZ T FI+BLJAT=%I4AZ% % 5109 |
% ONI ZZLtte 32 Z¥4I% 9 1Y ¥=(% A7 27+% 37 w7 cwalrx =i+% 57
$£Z=% 37 7% F I+ 2 l% ONI %7°: 99 &£°& {I-)é LIIVAOG G+ 77
(160N} {SA0CTY 19%IvuE 3uy SNISDTI
S3
(06 0N} SINZWILIVLIS ITAVINIIXI-NDN SIINANYS
A0S QNI A% % S(SCNOHZ*IWSIS7*XANIZ*CNNOUAY
LEDZASONSIZ4LSZ ¥ INIDEZ4s TN 2°% Ad SIGNT4D3S=% ANI ZA2 T1-F 0+ ¢ 2 02 0
3041 2z903 0 mw 266 93 0 41 31 = IS £ 0 3N ¥ 4Y 32 I I€ ZN O 41 I+
{62 0N} NI43S 50 17v0 S330aQud
’ # 3 v

{88*CN} JWYN INIIOGYENS J¥0:E38 « 1793 S32N60Nc
0% ZT={¥i40I2¥0¥A0CI7%

{L870N) T 01 3RT9YA ASVLS C¥003Z7 Si3S

LI1+%
¢l

+TS=XW

17 %Z)du3

Jd

%
!
A

1
2 T¥ &=

XW41S 5301092

s

¥ S =
’ 54
PR
SE=3AVSZS AZ ® 37 37=(¥idATIAZL ¥ 31+
%7+% 97 %2)0W3ILZE ¢ RT+& 37 I=3 37 &
{SC°ON} 3002 Ldiv¥ISuns §
{9£°GN) 0=<¥393INI>Z 3067 $32
g 00% R17{% T+XW 17?

SINNILNGD (& T+XW S°10717°w0*03 172041 COn

3301S

fiGdug

aex
v dl

APPENDIX 5

COMPARISON OF BRACKETING AND REVERSE POLISH MEYTHODS

Three possible methods are considered:

Method) inveolving two distinet processes

(a} a lexical scan
(h) a right-to-left scan involving both production of reverse polish and

expansion of macros to generate the target-language code.
Method 2 involving three distinct processes :

{(a) a lexical scan
{b} a right-to-left scan in which reverse polish is producced.

{c) a left-to-right scan in which the target language code is generated.
Method 3 involving three distinct processes :

(a) a lexical scan
(b) a right-to-left scan in which a bracketed intermediate code form

is produced

(c} a left-to-right scan in which the target~language code is generated.

A description of the handling of "FIND call" operators is given in the
main text. Using the method described, it is possible to obtain an increase
in efficiency of the target-language code as compared with the original APL
code. Method 3 is most suitable for the handling of these ogerators, for
the reasons given below. (In fact, a great deal of work had becen done cn
Method 3 before Methods 1 and 2 weré congiderad. For expressions not
involwving "FIND call" operators, reverse polish methods would prohably be
slightly more efficient. However, tho ease of hendling of “FIKRD call"

operators justifies the use of Method 3.}

Consider Method 1 applied to expressions such as that given below.
F <« A/B+ (C-D*E4D) ~ C

For both / and +, the index and type valuve for the left operand ({(or
the value and type value, if the type value is @) is required, If this
information is extracted during the lexical scan, then the lexical scan
for this method would necessarily be more complex than the lexical scan

for Method 3, as more tests would be reguired.

For example, the expression involves two "FIND call" operators. The
ahove information is required for each, together with the “"scope" of each

operator, that is, the extent of influence for each operstor.

The required value for the first parameter of the "FIND call" must

also be retained here.

A1l the necessary information could be retained by replacing the

l-byte entries for operators by 3-byte entries, giving

1. the neyative of the operator macro number
2. the value for %he first parameter of the PIND call

3. the index value for the left cperand {to be inserted in the FIND call),

Some weans would have to be devised of distinguishing these entries

from the 2-byte operand entries.

It is better not to store the type value for the left operand of the

FIND call at this stage, as type valucs can vary dynarically.

Tt is difficult to keep a record of the scope of an operator using
Method 1. in the above example, the scope of ' is terminated hy) .

However, in the following exarple,

A/{B + (C*D) + {F'D) + G} - E ,

the scope bf + is termirated by the second }, but the scope of / is
not terminated until the end of the line is recached. This inplies that
a bracket count is necessary for the handling of "FIND call” operators,
but that tests must also be made to detect the occurrence of operators

whose scope extends to the end of the line.

Thus, it can be secen that the lexical scan for this method would be

more complex than that described for Method 3 in the main text.

Method 1 has the advantage that one scan car be eliminated. However,
the lexical scan and the right-to-left scan would both be more complex

than fox Methods 2 and 3.

Now consider Mcthod 2. Using this methed, the first parameter value
and the left operand (for "FIND call" operators) could be retained during

the right-to-left scan, in which the reverse polish notation is generated.

When a "FIND call" operator is detected, it is known that all preceding
operators (eithexr fyxom the right-nost end or from a previous occurrence of a
YFPIND ¢all" operator, with dus regard forx bracketing) lie within the scope

of the operatoxr. ‘For example, in the statement
F «~ A/B + (C-D*T+DB) + C ,

the operators + (first occurreace}, -, *, ¥+, 1lie within the scope of /,
while the opexator + (second occurrence) lies within the scope of + .

The operator + lies outwith the scopes of both / and +

The above information must bhe stored in some form. Thus, the complexity

of the right-to-left scan would not be considerably less for Method 2 than

for Method 3.

The handling of "FIND call" operators is more difficult using Method 2,

because brackets, which are impoxtant to the wmethod, arce discarded during

ek emaime o emtieva

the right-to-left scan, For example, consider the APL expression
A/(B + (C 4+ D)) -E.

If a reverse polish notation is produced during the right-to-left scan,
the operatoxr / is not reached until (B3 + (C + D}) - E has becen handled.
At this stage, the brackets have been discarded, and thus the scope of [/

cannot easily be determined.

Thera is little difference in complexity between the left-to-right

scans of Methods 2 and 3,

Method 3 has been discussed in detail in the main text. There is ho
problem with "FIND call" operators using this method as the necessary infor-
mation can be obtained easily during the left-to-right scan. Uging
Methéd 2, it is not possible £o delay the storage of the required information
until the left-to-right scan, as the brackets present have alxeady becn
disgcarded. Thus, due to the problen posad by the need for a bracket count,
if a reverse polish method is to be used; it would appear that Method 1

is preferakle,

Comparison of Complexity

Lexical Scan Method 3 = HMethod 2 < Method 1

Right~to-Left Scan Method 2 Method 2 << Method 1

left-to-Right Scan Method 3 = Method 2 None for Method 1

APPENDIX &

A list of restrictions on the types of BPL statement zble to

translated is now given. The list is in two parts:

- Important restrictions

B. less important restrictions,
List & is further subh-divided into

{i) those resirictions imposed as a result of the
method of conversion
(1i) those restrictions which could be removed using

the same conversion method.

A, IMPORTANT RESTRICTIONS

(i)
1. TFunction oxr subroutine parameters wast be clther

.

{(a) numeric scalars
or {1} numeric non-scalar variable names

ox {c} literal variable names

The above parawveter types are the only ones possible in a function

or subrxoutine definition header statemant. The type assiqned to

in the header statement determines the code to be generated in the function
or suvbroutine body. Thus, for example, a literal constant cannot be used
as an actual parareter when a literal variable name has baen used in the

header statement. Similarly, if B is a numeric non-scalar variable name,

then the following code would not be handled correctly,

be

parareters

In the above example, looping code would be generated for non-scalar
accessing and this would he incorrect if the variable. B was replaced
by the constant 3.

2. Use of non-scalar or literal parsmeters requires a knowledge of the
storage method used by the conversion routines, For example, consider

the function

VR<CID L

where I is a literal variable name.

To call CTD with parameter 'ABCD', it is necessary to

{a) first assign 'ABCD" {0 a literal variahle name, say .Ll.
{h) set up an entry in MAMES for 'ABCD'.

{c) set up an entry in NAMES for Ll.

{d) set up an entry in LITBIY associating 'BBCD® with Ll.

{c) ecall <CTD _with parameter value equal to the MNAMES index for Li,

3. Function result variables must he numeric scalars. This is due to the

fact at the result value has to be assigned to the function name.

4, Recursive function calls have not been catered for.

5. The left pavameter of a "FIND call" operator cannot be an expression.
This iz due to the method of handling certain mixed functions. the problem
can be avolded by introducing an extra variable name. For example,

(A+B)-$ X cannot be handled, hut

R + 233

R § X
will be translated corxectly.
6. Expressions such as

AfY] =~ Y <« B+C

will not be translated correctly, as immediate action macros are expanded
to handle indexing. Thus, if Y originally has value 4, then &[4]
mot "A[B+¢]) will be altered. This problem can be avoided by splitting

the expression into two parts, that is,

¥ < BiC

A[Yf ~ X

{Multiple assignwents will be handled correctly as long as the left operand

of an assignment is not used in an indexed expression on the same line,)

(ii)
1. At present, no account has been taken of run~time changes in the type

values assoclated with variables. The type values will be updated as

required. Hlowever, the conversion routines use instructions of the form

IR n <rel-op.” wm k

to test the type values.

In fact, the macro bodies should be altered to test the appropriate

NWAMES entries at run-time.

2, Nesting of non-~scalar indices has not been handled, Thus, for example,
A[3 4 5] 1is acceptable, but A[3; B[C ; D ; E}J] where C or P or E
is non-scalar, is not allowed. This restriction has been imposed merely

to avoid production of unwieldy code.

3. The operand for the reduction operator cannot be an expression, This

restriction may be removed by updating the reduction macro (see Appendix 4£).
4. A co~ordinate value may not be specified for the following functions

(a) dyadic rho
(b) monadic comma
(¢) dyadic iota
() grede-up

(e} grade-down

{f} memnbex

5. The variable nsme MARXZER is reserved and should not be used in the
APL source. Thig restricticn may be remcoved by replacing the name MARKER
by, for example, ZMARK in the macro bodies and all t{he run~time rputines con-~

tained in SARUN,

6. Non~scalar variable names may be used as parameters for ¢, but non~

scalayr eXpressions are noit allowed.
7. Locked functions are not handled.
8. 1-indexing is assumed throughout.

9. The functions
-5 o B
-5 © B

-7 o B

L T

user

This

not been defined,.

An exponential series is required to handle these functions. The
may supply the appropriate series to any required degree of accuracy.

involves updating the function RINGN, which is present in module

library SARUN. If no series is provided by the user, a zero value will

be returned. A message is also printed out for the uscr.

B,

IESS IMPCORLANT RESTRICLIONS

This list is zlso divided into two parts. The first list contains

restrictions which apply because the facilities to which they refer are

system-dependeni..

No system commands are dealt with.

No workspace size is defined.

No function editing facilitles are available.
No tracc or S?Op control is allowed.

Any constant will be represented in the output code exactly as it
appearod in the input streanm. Size restrictions will be imposed at

run-time by the system used to rup the converted routine.
I-Beam functions are replaced in the output stream by

IBELM (K)

where X determines the functiom. The body of the function must be

writlen by the usexr, since I-Beam functions are system-~dependent.

3.

7.

10.

1k,

l2.

" A macro body may contain up to 182 labelled statements.

The following size limitations also apply:

A function or subroutine may contain up to 99 lines of code.

In a set of supplied functions or subroutines, there may be up to

64 non-gscalar variable names.

The array NAMES has SPER locations. Therefore, there is a limit to
the number of entries which may be placed there. Garbage collection

of NAMES (by calling subroutine NGARE) may ease the situation .

The intermediate ccde form may occupy up to 20 bytes. L present,

6 spaces are left for insertion of brackets when certain synbols are

racognised. This anmowt may be varied. {See Chaptor JII.) g

A macro body may ccoupy vp to 49900 bytes. |

The label table, LTABLE, may hold up to 1¢¢ entries. A set of

routines should therefore contain no mere than 18¢ lakels.

2 constant vecter (with one hlank ssparating sach element and one

termﬁnating blank) may contain up to 3¢@ characters in all. .

There may be up to 1@ "locked" local variable names at any stage.

{See Chapter I11.)

There may be wup to 16%¥ long names (that is, identifier names having

more than 6 characters) in any set of routines.

Nesting of brackets is allcowed uvp to a maximum of 4f levels deep in

APL expressions.,

Nesiing of indexed expressions is allowed up to a maximum of 5 levels -

deep.

13.

14,

15,

16.

17,

18,

fhe paramctex stack, 1IDSTK, may contain up to 5@F entries.

1¢ locations are set aside for storage of result variable and function
name. This allows up to 5 functions per set of routines, but does not

restrict the number of subroutines,

there may be wp to 1f local variables in a set of routines.

2 maximum of 1¢ routines may be converted at once, assuming conditicn

14 is satisfied.

Festing of "FIKD call” operations is allowed up to a maximum of 1d.

Nesting of bracketed expressions is allowed in macro bodies up ta a

"maximum of 1 levels deep.

R
|
|
!
|
1
i

:
|

R

.

|
-
.|
L
|

APPFRDIX 7

EASE OF CONVERITON TO OTHLR LANGUAGES

The gencrated code was produced in FORTRAK, since that language was most
often available for teating purposes, Had ALGOL or PL/4, for example, been

as readily available, they might equally as well have been used.
Code is gererated in the following ways:

1. T is generaloed as 2 result of macro cxpansions.
2. There i3 s library (SARUN) containing the object medules of subroutinesg

to he included during execution of the converted routines,

All the subreutines and functions contained in 3ARUN were wiitten in

FORTRAN. However, since the object modules are included during execution

of the convertad routines, it is not necessary fo converd these to other

longuages.

Thus it is only necessary ito consider conversion to other langusges
.

of code generaled as a resull of macro expansions, In particular, the
languages ALGOL and P/ are considered., As far as possible, only the
types of FORTRAN stalements heving counterparts in ALGOL and PL/1 were

generated using macroe expanaions, Thus the probiemn of conversiocn to

aither of these two languages instead of FORTKLN is Fairly straightiorsard.
The generated code tzkes itwo forms:

(2} expliciily generated code, using the mucxo instructions

b 1 S ;

{see Chapier V).

(b) implicitly generated code. This is wproduced using composite macio
instrvetions, such as 8L, FL, C3. All the APL-POHIRAN conversion
rovtines are contained in the module librairy SALIG. To convert
implicitly generated code to other languages, the following subroutines

in SALIB requirs to be updated.

ARRBC FAVECT FREC SHEC
CERIC FLOOPS TGODE STPSET
DIHC PATORE HE VREC
POLLAR MKSET RLREC LREC
DIEC NSCALL SLoOR

The subroutines listed above {with the-exceptions AREC, FUREC znd
DOLLAR) all contain LOSICAL * 1 arrays in vhich the code to bz generated
is stored, character by character. Usually, a DO-loop is exsculed to
place suocessive characters in the array HIWMDP, Complete lines of code

are produced in thils way, and then transferred to the oulput mediuwa.

Thus, {o alier implicitly generated code, the LOGFICLL * 1 arrays muss

be updated, and oft;n also the asseociated DU-loops.
The subroutinz ARZC produces
« AD. or <O,
while RLREC produces one of ithe forms
BGe 5, WJIB. , LR, J8T. 5, JGE. , WNE.
Thase suhroutines must also be updated i€ the targel language is not FORTRAN,

DOLLAR i5 used in prodvction of lakel nuubers, (sse L.).

A1 other subroutines in SALIR zre independent of the target~langueg:

and may bz regarded as fixed. Thus tha APL-FOIIRAN conversien involves :

1. fixed subroutires and funclions in SALIB

2. the subroviines listed in (b) adove
5 maoro bodies, contained in the data-set SAMACRBGD.

To convert APL voubinzs to ALGCL or to PL/t, it is necessary to combine

1. above with uvpdated versions of 2. and 3.

Tt is possibie to produce entire librariss for APL-alaO0lL or APL~PL/4

conversion by making changes of the 1types lisicd below. It is then a
simple matter to provide a uszer option by which the target-language is

chosen by the user.

The types of changes to be made taks the Tollowing forms:

1. Non-executable stsatements

1.1 IKPLICIT RBAL (a~Y)
TYPLICTT INTEGER (4-2)

These statements were included {or the ease they sUforded in the

intreduction of non-ambilguous veriabls names,
(a) Conversion to ALGCL

There is no eguivelent ALGOL stalemant type. In ALGOL, 21l variable
namss must ve declared. This luvelves acounulating a list of a3l the variable
names used in a routine sod inserting the complate lint at a latexr stage., A13

’
non~scalar variacles are declarsd in TORIRAK, and their conversian may be

handied as indicated in 1,2 ,

ALY senlar global varizdles should be cxplicitly delfined, together with

all stalar veriables in the original ALPDL rouline. In addition, all scalar

varisbles of the forms
Z<i> s i 4,-—-,N
and B <i> ’ Jo= -l

saould be expliciltly dsclared, At the end of thes woutines, the values

-

N and ¥ ocan be obtained from the vardubles IMD and 1¥E resgectively.

(b) Converaion to PL/1

A similar process to that given dn (a) above must be carrvied oul.

1,2 TNTEGER -
REAL - .-

LOSICAL™ -

The eguivalent ALGOL or PL/4 Fforms should be uscd insiead, (It is nok
necessary to declare all verisble nsmes in PL/1, but it iz better to do so
to avold unnccessary complioaticns.)

.

13 COMMGK =~ ~ ~

These statemernta need not appear at all in the FORTRAM versicn if the
variables concernsd are placed in the parcamcler lists of 1he subroutines

involved, This is referred to at the start of Chapter VIII.
(2) Conversion to ALGOL or PL/Y

If COMMCN statcments ars present, the variable rames concerncd should

be pilaced in ihe approprizte narameier lists.

1oh BOUIVALEHCE =~ - -

These statements were wsed to facilitate chavacter hzudling in FORIRAN,
They are noi directly eguivalent to any ALGOL or PL/1 statement types, but
ihis dozs nol matter as their use can be dispensed with in ALGOL or PL/1 .
(Gharaoter handling 38 easier using these laugua.[.;os.) For example,

inztead of

LOGICAL * 1 W(4),NuiEs (5442)
RQUIVALINCE (1L, 10)
NI o= 193

nanEs (T) = W)
code of the form shown below (illustrated for ALGOL) may be used

PSTRING' NANES (5088)

NANES i_]’] g om AN

In ALGOL, the main progrem (which is partially produced durdng the
conversion of a routine to FORIRANY must be delimited by 'BEGIN' end 'IMDY,

the saquivalent structure in PL/1 is

‘< label> : FROGEDUSE OPTECNS (I-.-,’AIN) 3
and

END <label> ;

A1l changes of the types listsd above may be made by altering the subroutines

CSEEC and DIAC (conteined in SALIR).

2., Subroutine and funclicn definitions

a Ganversion o ALGOL
(=)

The form SUBROUTTE ~ ~ — =

produced in the FOEYRAN version nust be altered to the form
'FROGEDUKE® ~ = = o 3
waile the form
FINCITON ~ = = =
must be altered Lo the form
<type> '"PROCEDUREY = = ~ = 4
RETURN

The form LD after a FORTRAN subroutine or function should bs

replaced by 'BED' 3 .

(b) Conversion to PL/M
the form SUBRCUTINE ~ « = sﬁould.be replaced by
< label > : PROCEDUHE OPTIGNS (--=) ;
vhile the form FUNCTION =~ - = showuld be revlaced by

< label > s < Lype > PAQCHDURE OFIIONS (-—-) ;

+

YRt
Rf':lj\:;‘m in PORDHAN thould be replased by 135 < label >
&S

The statemcnts
The abeove changes may be made by updating macro bodizs Y4 and 31

(contained in the dets set SAMACBECD).

3. READ e
- WRTTE B

PORHAT ~ ~ =

311 I/0 statemenis should be convsrted %o the forms in use al the
particular ALGOL or PL/1 installations where the comvarted roniines ave

to be run.

These altarations mey be made by updating macro numbers 63, &1, 82,

16 and 31.

ko Yebel numbers must be replaced by labsl names in both ALGOL and PL/1 .
For example, #L1%3 could be wsed to replace 149 .

brought shout by uplating the subrovtine DOLLAR (contained in SALIE).

by CGOITINUE and <label number > CCHTINUE

These should be replaced by
in both ALGOL aund P/ .
6. GOTO ~ ~

This should bs replaced by

7+ Conditional statements
For example, the statsment
17 {%.50.7) 6020 148
shculd be replaced by
'Ii‘”.' (X.BR.Y) *THES!
or IF X = Y TH8§ GOTO ZL
The forms e , JLH. , LT
by :_,<=; < ,>,>_—,,-—~\=
8. <LHS> = < RA3>
should be redlaced by

<LH3> ¢+ =
<LHS > -

t
CAA
-!n-c
o &
LB B
[V v

and ZL <label aumber > ;

160790 in ALGOL.

SGOTO' ATNED

188 5

Ta 5 GT. , 8E, , B, , are replacesd

respectively in PL/‘J .

(AL60L)
(PL/1)

This chenge can be

i
i
i
i
|
|
i
J
i

9. CALL - - -
CALL should rot appesr in ALGOL subroutine calls.
10, Label parameters
These are uscd in some FORTRAN subroutines, for example
CALL GVOVER (1, &1)
The appx-t;pz':la.te forms should be used in ALGOL and PL/7 .

1. S8witch statements

Thoese exlst in macro numbers 75 &ndé 33, These macros should te updated

to the forms required by either ALGOL or PL/4 .

!
H
i
!
i
1
il
1

i
El
i
|
i
1

(1

APFENDIX 8

THE FURCTION OF RUN-TLE GLOEAL VARIABLES

A INTECTER VARTABLES

2. ZCBND3

3. 4CPFIR
4., Y
5. ZYPTR
6. vy

7. ZYYPIR

S

8. ZBOKRS
9. ZPUINT
10. 2¢7

1. ZINDX

12, ZBOOL

An array vhers the elemends of non-scalar integer results

are stored

4n array where the current bounds for an
stored

The pointer for array 2CDND3.

An array where successive basae levels of

The pointer for array ZY

An array where successive base levels of

stored.
The pointer for array ZYY

An array vhere the bounds for sll arrays

. consecutively. R

An array whzre suceessive base levels of

are - ‘gtored

The pointer for array ZPCINT,

An array where the swbseript values are storsd dvring arvay

accessesS.

An erray used te indicate pravious occurrencas of a randon

numbzr (used in handling the "deal" funci

expression are

TP are stored.

Y75 (see B) zre

are stored

ZIRDX fsee 1)

ion).

page

137 -

88 .
85 .

1357 .1

137

137

1}7.5

17

143,

17 i

13

14.

15.

164
17.
18,
19
20,
21,
22.
23,
24,

-25.

26,

27

“on

page
ZCOORD An array where co-ordinate values (specified for

mixed functions) are stored i 96
ZCDFIR The pointer for array ZCOORD 96

ZSTORE 4n array containing link information for the blocks

_of YSTORE (=es B}" 8
ZROWNO The pointer for the array YROWL ' . 135
JROVNA The pointer for the array YROWR 135
ZBPTR The pointer to the. next free location of ZBONDS 12
Zﬂ A& name generated when an indexed expression ocours 18
281,ZB2,... Locally generated scalars BT
Z —-- Integer variable names . LO
VARKIR Gives type of result . . 89
DOPES An array for the dope veotor table _ 8
NAMES An array for identifier names HO

ZL An array used to store elements of literals when
quote~guad input is ussd

ZROW An array where the left operand elements are stored

] .
when dyadic "rho" is hendled

ZGRAD An array where the res lt vesctor for "grade-~up"

and "grade-down" is stored

ZDIM An array where the co-ordinate values for a particular '_ ;
row of an array are stored (used in héndling

n~dimensional accessing)

29, Z3UB

30, Z2TEMP3

L.

7'

8,

YTEMP

YSTORE

TROWL

TROVR

Y -

YBQUND

YBOND

IGRAD

YTRMF2

An array where subscript information is stored during

accessing of n~dimensiornal arrays

An array where subscript information is stored

for n-dimensional accessing in inner products

REAL VARTABLES

An erray where the elements of non~scalar real

results are stored -

An array used for storage of all numerie. non-scalar

elements

in array used Tor storage of the left operand

elemsnts far certain mixed functions

An array used for storage of the right operand

elements of certain mixed functions
Real variable names

An array used for auxiliary storage of nonw-scalar

g¢lements

An'array used for auxiliary storage of non-scalar

elements

Ah array used for storage of operand elements for

fgrade-up" and "grade-down'functiong

An array used faor auxiliary storage of dyadic.

Yrho' right operands

page

137

135

135

40

10.

1.

YTEM

XBOUND

. page

An array used to store rumeric information sup?liéd

in response to "quad-input" .

An array used for asuxillary storage of non-scalar

elements

"
10.
11,

12.

13.

™
15.

16.
17
18.
1%,
20,
21.
22,

23.
2k

FNIND

FNLOCSH

FNPARM

IBIT

| IBITS

‘TBPTR
TCLPTR

TCOLM

I_bLPTR
IDOLR
IOPIR
IDSTK

IEXP

IFIND

IFNI

TFNPIR

TFONOT
THAT
ILERT
TOPTON
TOPTR
1REV
ISYMBT

JITEMP

. (2) THE FUNCTION OF TRANSLATION TINE VARTABLES .

An array of variable name indices

"An arrey of "locking' indices

An arrsy of indices of parameter names

The pointer for array IBITS

A charactér stack

The #ointer for arrsy ITEMP

A pointer value from MtTAB

The cﬁrrant valug of ICLPTR, retained when the
ﬁaﬁro instruetion “RCM is used

The pointer for the chain on the stack IDSTK
Current label nunber value -

A pointer for IﬁSTK

A double-anded étéek for operends and operstors

Used to distinguish function and subroutine

definition header statements

A stack of 1st parameter'values for FID calls

Gives the number of variable names in a funetion or
subroutine définition headez stétement

The pointer for stack IFIND <

Used in deéoding function definitions .

Used to denote a'heterogeneoﬁs dutput statement
Used to indicate the presence of [~

Used té indicate the qutput nedium reqpi;ed

A pointer for the stack IDSTK ..

- A marker

The symbol table array of characters

An intermedists result code array

page

55
53
58
86

86

86
119

123
79
126
78
77

70
98

113
36

1
.
i
E

H

39...

. oumie

‘38
. DENPR

2

GiVes ‘Falue of_ nex character

A marker

: -'A pare.meter (0 to: 5)

ST A cha.racf;er axray i'or stora.ge crf m}mt lines-

A 2 d:l.mens:.onal table with. entnes for '

' Il.iteral vam.ables

An a;'rs. of local_ variable name md;e.ces

s ber of entries to be

: An a.rray' ‘of start adﬁresses f.'or macro borhes
T A 2-d:1men :.onal table f‘or macra labels

C A tempomry output array

Contains G.dresa in _’IMBT of' ourrent symbol decoded ’

i Ar\ray used to, dlstmgu sh functlons. and subroutlnes -

A ohar‘a,cter array co‘ntaining 4 processed APL line
'E‘rlvas the numbar o!' antmes .m a particula.r .AI-‘L line -

'-'The r:.ght pointer gor- NCODE N

A 1ooping e.rray for repetltzon of - maeroe 5tatementa .

The poi.nter for amy*HTEMP

L6

15k
109

. 118

TS

M5

60

86
36
37
5%
96
56

52

35

60
123
110

APPENDIX 9

EXAMPLES.OF CONVERTED ROUTINES

Three exarples are given illustrating the conversion of APL to FORTREN

by the method described.

As indicated in Chapter I, itwo possibilities existed for the handling

of glcbal variables during conversion.

1. Global variables could have been inserted in the paramcter list, makineg
parameter linkage a costly operation with regard both to space and

execution time.

2. Global variables could have been inserte¢ in the COMMON list, reducing

the amount of parameter linkage reguired.

Conversion of APL to other languages instead of FORTRAN is made more

difficult if method 2 is used.

Method 1 is used in the sample translations listed below.

In each of the examples listed, a number of non-executable statements
appear. Some of these statements indicate the type and the nunker of

dimensions of the global variables. In additien, the COMMON statements

COMMON/ C7§1 / ZLIML
to

COMMON/ C728 / ZLIM28

‘are present. 'The variables zZLIM1 to ZLIM2S are limit variables for certain

global non—scalars. Their values are set on execution of the converted

routines and they are used to test for overflow of global non—-scalars.

For any routine, it is not known at the start of code production which
of the variables ZLIML to ZLIM28 will be regquired. For this reason the

complete list has to be inserted,

No optimisation of code is attempted at code generation stage, and
thus the code produced is often inefficient. However, signiflcant increases

in efficiency are possible using the methods outlined in Chapter VIIIT.

The resultant FORTRAN code produced is necessarily more wieldy than

the original APL code, as the generality of APL has to be catered for.

EXAMPLE 1

This simple example illustrates the convergsion of a routine which

calculates the surface area and volume of a sphere, given the radius R .,

¥ SPHERE
SURF &~ 4 x 3,14159 x R x R

VOL ¢— SURF X R+ 3 T

The following code is generated corxesponding to the above routine,

SIBROUTINE SPLERE (ZUEKE , YWEME , Y5TORE , YROWT. , YROWR ; ZUBNDS , ZCPTR, 2Y , %
CYPTR,ZYY, ZYYPTR, Z8ONDS , YBOUND,YBOND, ZPOINT,ZPT,ZINDY, ZBOCT,, ZCOORD,
CZCDEYR,2STCKE , 21, YGRAD , ZROW, ZGRAD , ZDIM, ¥TEMP 2 , YTEM , XBOUND, ZTE Mb 3)

IMPLICIT REAL{A-Y)

IMPLICIT INTECER.(7~%)

"RBAL YSWURE (1) ,YTEMP (1)

REAL YTEMP2 (1)

REAL Y'WEM{1}

REAL YGRAD (L)

LOGICATL*1 MCHAC(L)

REAL XBOUND (1)

REAL YEOUND (1)

REAL YROND(1)
" LOCIGAL*1 ZL (1) ,NAMES (5¢@¥) ,ZBCOL (1)
LOGICAL*]), YTYPEL{4)

REAL YROWR(1)

REAL YROWL(1)

INTEGER ZTEMP (1}

INTREGER ZTEMP3 (1)

INTEGER 2Y (1)

INTEGER 2YV{1)

IKTECER ZCENDS (1)

INTEGER ZCOCRD (1)

INTEGER ZINDY{l},ZPQINT {1} ,ZBOUND{1#)
INTEGER ZBONDS (1)

INTEGER INAMES (125¢) , INAME (75)
INTEGER DOPES (64,6) , ZSTCRE (1¢¢)
INTEGER ZROW({1)

IKTEGER ZGRAD{1)

INTEGER ZDIM (1) ,Z5UR (1}
COMMON/ C24/ZBPTR

COMMON/ C62/ZROWNO

COMMON/ C63/ZROWNA

COMMON/ C3/INAMES, INAME ,KEY
COMMOR/ C2/Z8PACE, TADRES, DOPES
COMMON/ C816/%EAVE

COMMCN/ C351/MARKER

COMMOYi/ C7PL/5LIML

COMMON/ C7¢2 /21102

COMMON/ C7¢3/2LIM3

i
|
Rl
|
4

i
1
1
.‘l}
1
|

111

117
2

123

COMMON/ C7¢4/ZLIM4
COMMON/ C7@S/2LIM5
COMMON/ CT7@6/ZLIM6
COMMON/ C797/4L1M7
COMMON/ C738/ZLIME
COMMON/ C7¢2/21.TM9
COMMON/ C71¢/2LIM1g
COMMON/ C711/ZLIMLL
COMMON/ C722/2LIM12
COMMON/ C713/2ELIML3
COMHOW/ C714/ZL1M14
COMMON/ C715/2ZLIML15
COMMON/ C716/ZLIM16
COMMON/ C717/ZLIML7
COMMON/ C718/ZLIM1E
COMMON/ C'719/7LIM19
COMMEN/ C72(/ZLIM2E
COMMON/ C721/21.IM21
COMHMCH,/ C722/ZLIM22
COMMON/ C723/ZLIM23
COMMCN/ C724/71.1M24
COMMCH/ C725/ZLIM25
COMMOI/ C726/2LIM26
COMMON/ C727/2L.IM27
COMMCN/ C728/ZLI1M28B
COMMON/ C79%/2.8TOP
EQUIVALENCE (INAMHS ,NAMES)
EQUIVALENCE (2TYPE ,ZTYPEL)
CONTINULE

MARKER=0

ZCPTR=§

Y2=4% (2.14159% {R*R})
IF (MARKER ,NE.f) GOTO 111
SURC'=Y2

GOTQ 117

CALYL SPECX9,Y¥2,22,2CBNDS,2CPTR,ZBONDS ,ZPOINT , ZPT, YSTOKE , Z2INDX , 25T
CORE , ZCCORD , ZCDPTR , YBOUN)

CALL SPECB

CONTINUE

CONTINUE

MARKE R

Z.CPTR=(}

Y3=SURF* (R/3)

IF (MARKER .NE.@) GOTO 123
VOL=Y3

GOTO 129

CALL SPECS(33,Y3,23,2CRNDS, ZCPTR, ZBONDE , ZPOINT , ZPT, YSTORE , Z.TNDX, 28T

CORE , ZCOGRD , ZCDPTR , YBOUMD)

129
igew

3

11
12
193
1¢a
148
196

CONTINUE
Ir(zl.LE.#,OR.21.GT.3) CONTLNUE
coTo (1,2,3),2]
CONTINUE

FORMAT (1X,G12.6)
F'ORMAT (G12)
FORMAT (1X,T112)
FORMAT (1¢/G12.6)
FORMAT (8¢/A1)
FORMAT (1X, /)
CALL LOCREM
RETURN

END

EXMMPLE 2

This example illustrates the handling of APL impput: and output expressions,

‘ENTER CAPITAL AMOUNT IN DOLLARS'
A<= O

'ENTER' INTEREST IN PERCENT'
I« {3

'ENTER PERIOD IN YEARS'

Y+«— (O

TRESULT IS' ; A x {1+ .0l xI) vy ¥

The following code was generated corresponding to the above xoutine.

SUBROUTINE CXZTEMP,YTEMP,YSTORE, YROWL, YROWR, ZCHNDS , 4CPTR, 2Y , ZYPTR
C,ZYY ,ZYYPTR,ZBONDS , YBOUND , YROKD, ZPOINT, 2BT, ZINDX , 2BG0OL,, ZCO0ORD , ZCDP
CTR,ZSTORE , ZL, YGRAD , ZROW, ZGRAD, ZDIM , Z8UB, YTREMP 2, YIPEM , XBOUND , ZTEMP 3)

IMPLICIT REAL{A~Y)

IMPLICIT INTEGER(%-7)
. REAYL, YSTORE (1) ,VTEMP (1)

REAL YWBEMP2 (1)

KEAL YTEM(L) -«

REAL YGRAD({1)

LOGICAL*] MCHARC (1)

REATL XBOUND(1)

REAL YBGUND (1)

REAL YHBOND({1}

LOGICAL*] 7T,(1) ,NAMES (57¢) ,ZE00%L (1)
LOGICAL*]1 ZTYPEL(4)

REAL YROWR{1}

REAL YROWL().)

INTEGER ZTEMP (1)

INTEGER ZTEXP3(1)

INTEGER Z2Y¥{1)

INTEGER Z¥Y (1)

INTECER ZCBNDS (1)

INTREGER ZCO0RD{1)

INTEGER ZINDYX{1),2POTINT{L) ,ZRBOUND (14)
INTEGER ZBONDS{1)

IMTEGER INAMES {125¢) , INAME (75)
INTEGER DOPES (64,6} ,2510RE (186)
INTEGER ZEOW (1)

INTFCER 2GRAD (1)

INTEGER ZDIM(1),ZSUB{1)

COMMON /C24/23P TR

COMMON /C&2 /ZROWNG

COMMON /C6 3/ 2ROWNA
COMMON /C3/INAMES , INAME , KEY
COMMON /C2/ZSPACE , TADRES, LOPES
COMMCN /CB16/2SAVE
COMMON /C351/MARKER
COMMON /C7@1 /ZLIML
COMMON /C702 /21002
COMMON /C7@3 /2L TM3
COMMON /C704/ZLIM4
COMMON /C7@35 /ZL1H5
COMMON /C796 /ZLIN6
COMMOQE /C7@7/2LIM7
COMMON /C7@%/ZLIMNB
COMMQOK /C709 /ZLIMO
COMMON /C71¢/ZLIM1E
COMMON /C711/ZLIM1L
COMMON /C712/ZLIM12
COMMON /C713/2LIM13
COMMON /C714/%1IM14
COMION /C71.5/2ZLIM15
COMBON /C716/2LIM16
COMMON /C?17/%2L.IK17
COMMON /C718/ZLIM18
COMMON /C719/2LIM19
COMMON /C72§/ZLIM2H
COMMON /C721/2LT¥21
COMMON /C722/2LIM22
COMMON /C723/ZLIM23
COMMON /C724/411M24
COMMON /C725/2LIM25
COMMON /C726 /7T.IM26
COMMON /CT727 /211427
COMMON /C728/21,IM28
COMMON /C799/Z3TCR
EQUIVALENCE (INAVMES ,NAMES)
EQUIVALENCE (ZTYPE, ZTYPEL)
1. CONTIKUR .
MARKER=(
ZCPUR=g
CALL QUT2 (15,-1,ZCBNDS ,ZCPTR, ZBONDS , ZSTORE , ZDIM, ZSUB, YSTORE)
2 CONTINUE
MARKER=§f
ZCPTR=@F
KEAD 1¢2,SVEBND
IF(ZVBND.NE.-1) GOTO 116
WRITE (G, 1¢6}
MARKER=-3
GOTO 12
116 IF(ZVBND.NE.{) GOTO 118
MARKER-@f
READ(S, 1@4) YTEM(L)
WRITE (6,1¢4) YTEM(L)
GOTO 128
118 IF{ZVBNU.GT.ZLIM26) CALL GVOVER(2€,&l12P)
READ({S,1¢4} (YTEM{Z2) ,22=1,ZVBND)
WRITE(6,1F4) (YTEM(Z2),%2=1,ZVEND)
ZCPTR=1.
ZCBNDS (1} =ZVEND
MARKER=~5
128 z3<¢

121

122

128

139

141
143

144

145

151

Z3=73+1

Y4=YTEM{Z3)

IF (MARKER,NE.Z%) GOTO 122

n=v4

GOTC 128

CRLL: SPRCS(S,Y4,%3,%CBEDS, ZCPTR, ZBONDS , POINT, ZPT, YSTORI, ZINDY , ZST
CORE, “COORD, ZCDPTR,, YBOUKD)

CZLL, BDNO({Z5,ZCPTR)}

IF(%3.L4.25) GOTo 121

MARKER=(

ZCP DR fF

ZYRTR=1

ZYYPTR=),

CALl, SPECB

CON'TINUE

CONTINUE

MBERRER=Q

ZCPTR=§f

CALL CUT2(54,-1,ZCBNDS,ZCPTR, BONDS , 25 TORE, “DIM, ZSUB, YSTORE }
CONWINUE

MARKER={3

ZCPTR=§

READ 1¢2, ZVBND

IF {ZVBWND,NE,.~1) GOTO 139 -

WRITE (6, 196)

‘MARKER=~3

GOTO 143

IF (ZVBND.NE. @) GOTC 141

MARI Ref

ReabD (5, 184) YTEM(L)

WRITE {6,1F4) YTEM(l)

COTO 143

IF {(ZVBND. GT. ZT,TM26) CALL GVOVER(2G,&143)
READ(S,1@4) (YTEM(Z6),26=1,ZVEBND)
WRITE {6, 1@4) (Y'9EM(Z6) ,26:-1, 2ZVBND)
ZCPTR~1

ZCBNDS (1) =2V3ND

MARKER=-5

Z7=§

VARSI DS

YH=YTEN (%7)

IV (MARKER.NE. @) GOLO 145

i=Y8

GOTO 151 .
CALL SPECS(8,YB,%7,ZCBNDS,ZCPTR, ZBONDS , ZPOINT , ZPT , YSTORE , ZINDX, 28T
CORE , %COGRD, ZCDPYR, YICUND)

CALL BINO(Z9,ZCP1R)

IF{7Z7.LT.29) GOTC 144

MARKER=%

ZCPTR=(

ZYPTR=1"

ZYYETR=1

CALL SPECE

CONTINUE

CCNTINUE
éAiL‘6JTz(a?,—l,zcsmbs,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,YSTORE)
CONTINUE

MARKE R

ZCPIR=Y

READ 12, ZVEND

162

164

166
67

leg

174

18¢

186
1009

191

193
1484
195
186

IF (ZVBND,NE, -1) GOTO 162
WRITE (G, 166}

MARKER=-13

GOTO 166

1K (ZVEND,NE. @) GOTO 164

MARKER=

READ (5,194} YTEM(1)

WRITE (6, 164) YTEM(1)

GOTO 166

IF{ZVBND.GT.ZLIM26}) CALL GVOVER(26,8166)
READ(S,1@4) (YTEM(218) ,2418=1, ZVBND)
WRITE (6, 14) (YTEM (Z1¥),2)@¢=1, ZVBND)
ZCDP'R=1

ZCBNDS (1) =ZVEND

MARKER=-5

211=¢

211=711+2

Y12=YURM (%11)

IF (MARKER.NE.@) GOTO 168

YY=y12

GOTO 174

CALL $PECS(11,Y12,411,4CBNDS,%CPTR,Z2BCNDS,ZPOINT ,ZPT, YSTORE , ZINDX,
CZSTORE, ZCNORD, ZCDR TR, YBOUNII)

CALL BDNQ({Z13,ZCPTR)

IF(211,LT.%213) GOTO 167

MARKERe=(f

7.LPTR=(

ZYPTR=1

ZYYPTR=1

CALL SPRCR

CONTINUE

CALL CUT2 (116,-1,ZCLNDS,ZCPYR,ZBONDS , Z5TORE , ZDIM, ZSUB , YSTORE}
IF (MARKER.KE.@) GOTO 180
Y14=a% ((I (. 1¥I})**¥Y)

WRITE {6,1#1) Yl&

GULO 186

Y15=A% ((1+{(F.1%1))**YY)

CALL OQUTL1({Y15,ZCBNDE, ZCPTR)
COITINUE

IF{2:.18.F.0R.21.GT.7) CONDINUE
co10(l,2,3%,4,5,6,7),22

FORMAY (1X,G12,6)

FORMAT (G12)

FORMAT (1X, 112)

FORMAT (1PGL2,6)

FORMAT {821}

FORMAT (1X%, /)

CALL LOCREM

RETURN

END

EXAMPLE 3

This example illustrates the bhandling of non-scalar variables, The
routine BASE calculates the representation of a number N to the base B.

N and B are supplied as parameters.

¥ B BASE N

Lo~
Re&— BN
Z4&=R , 2

HN<— {.N= B

> 2xN> PN

fhe following code is generated corregponding to the above routine.

SUBROUTINE BASF (B,Y,21€MP , YTEMP , YSTORE , YROWE, YROWR , ZCBNDS , ZCPPR, ZY
C,ZYPTR,ZYY,ZYYDPTR,ZBONDS , YBOUND , YBOWD , ZPOIKT , ZPT, ZINDX , ZBCQI, , ZCUGOR
CD,ZCDPTR,, 2STORE, 2L, YGRAD, RCW , ZGRAD, 7DIN, ZSUR, YTEMP 2 , YTEM , XBOUND, Z
CFEME 3)

IMPLICIT REAL(A~Y)

IMPLICIT INTEGER(Z-2)

REAL YSTORE (1}, YTEMF (1)

REAL YTEMP2 (1)

REAL YTEM(L) .

REAL YGRAD (1)

LOGICAL*]) MCHUAC (1)

REAL XBOUND (1)

REAL YBOUND (1)

FEAL YROND{1)

LOGICAL*1 2L (1) ,NAMES (5¢§0) , ZBOOL (1)
TOGICAL*1 ZTYI'EL(4)

REAL YROWR{1)

REAL YROWY (1)

INTEGER ZTEME (1)

INTEGER ZTEME3 (1)

INTRGER 2¥ (1)

INTEGER ZYY (1)

INTEGER ZCBNDS (1)

INTEGER ZCCORD (1)

INTEGER ZINDX(1l},ZPOTNT (1) ,ZBOUND (1¢)
INTEGER ZRCNDS({1)

INTEGER INAMES (125¢) , INAME {75)
INTEGER DOPES (64,6} ,2STCRE (1¢7¥)
INTEGER SROW (1)

INTECGER 4GRAD(L)

INTEGER ZDIM{1) ,ZSUR(1}

COMMON /C24/ZBETR

COMMON /C62 /ZROWNO

111

1i2
112

114

COMMON
COMM:ON
COMPMON
COMNON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMO
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMHMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

FQUYVALANCE (TWAMES ,NAMRS)
EQUIVALENCE (ZTYPE , ZTYFEL}

/C63 /ZROWNA

/C3/INBMES , TNAMT , KEY
/C2/ZSPHCE , IADRES ,DOPES

/C916/ZSAVR
/C351/MARKER
/C7@¢1/2LIME
JCIE2 S ELIM2
/CIE3/2LIM3
JCIFEA /7T IMA
/CT%5 /ZLINS
JCHE6 /ZLING
/CTET/ZLIMT
/C7g8/21.0M8
/CI%9 /4LIMO
JC71@ /2 LIM1Y
/C731/2LIM1)
J/C712/2LIM12
/C713/4LTM13
/C714/Z1.IM1.4
/C715/ZLIM15
/C716/Z2LIM16
/C717/ZLIM17
/C718/2LIM1S
/C719/ZLIN1S
JCT26 /ZLIN2Y
/C721/21.IM21
JC722/2LIM22
/C723/Z1,1M23
/C724/ZLIN24
/CT25/2LIN2S
/C726/ZLIM26
/C727/2LIM27
/CT28/2).IM28
/C799/Zs'rop

CONTINUE *
MARKER=§
ZCPTR={F

Y=

IF(Y2.NE. %) GOTO 111
MARKER=~3

ZCRTR=(

GOTO 112

CALL TOTR(Y2,2TFMP ,2Y, ZYPTR,ZCBNDS , ZCPTR)

23=%Y (ZYPTR-1.)
2Y (ZYPTR) =
ZYPUR=ZYPTER~1
MARKER:=~5

24=f

Z4=7441
YS=ZTEMP (74+23)

IF (MARKER,RE.J) GOTO 114

¥Z=¥5
GOTO 12¢

CALL SPECS(1,Y5,24,ZCBNDS, 2ZCPTR,Z2BONDS , 2POINT,ZPT, YSTORE, ZINDX , 28T
CORE , ZCOORD , 4CDPT'R , YBOUND }

CALL BDNO (%6, 2CPTR)

IF(24.1T,.%6) GOTO 113

MARKER=(
ZCPTR=(

12¢

126

132

137

ZYPTR=1

ZYYPTR=1

CALL SPECB

CONTINUE

CONTINUL

MARKE R=@

ZCP TR:=

Y7=8

¥8=N

¥9=Y8

IF (Y7.8E. @) Y9=Y9-ARS {Y7) *AINT (Y8/ABS (¥7))
Y179

IF (MARKTR.NE. @) GOTO 126

R=Y1{f

GOTO 132

CAL]. SPECS(23,Y10,71¢, 2CBNDS,2CPLR, ZBOKDS , ZPOINT, %4PT, YSTORE , ZINDX,
CZSTORE , 4COORD , ZCDPTR, YEOUND)

CALI SEFCB

CONTINUL

CONWINGE

MARKER={

ZCP TR

ZRP=ZPOINT (ZPT)

ZPT=ZPY+1

CALL STBRIS(1,211,212,2NC,ZCPTR,ZCBNDS)
ZROINT (ZPT) =2BF+ %12

Z13=1

714=20¢1213

ZINDX (Z14)=1

213=7%13+1

TP (%13.LE,212) GOTO 138

215=ZB@F+Z12

216=212-1

ZSAVaE={

CRLL FIKD1(14,ff,R,1,217,Y17,%1],2NC, 2CBNDS , ZCPTR, ZBONDS , ZPOINT , ZBT
C ,YBOUND,. 2INDX,%STORE , ZCODRD, ZCDFTR, YSTORE)
¥Y1le=Yy17 *

CALL SPECS(l,Y18,2718,ZCBNDS,ZCPTR,ZBONDS , ZRCINT, ZPT, YSTORE , ZTUDK, 2

. CSTORE , 2CO0RD , ZCDPTR, YROUND)

139
14¢

141

142

143

144

ZSAVE=1

ZINDX {Z15)=ZINDX (Z15)+1
IF(ZINDX (215}, LE,ZCBNDS {ZCPTR) } GOTO 137
219=216+1

ZINDX {Z19+ZB¢)=1

7219=219+1

IF(Z19.LE.ZCPTR) GOTO 14¢
IF((ZBEFHZ16) JLE. @) GOTO 143
ZINDX (ZB@+216)=2ZINDX (¥BF+Z16) +1
IF (ZINDX (ZR@+716)} .15, ZCBRNDS (216)) GOTO 142
Ir(z16.EQ.1) GOTO 143

ZINDX {(ZBF+216)=1

216=236-1

GOTO 141

Z216=2712-1

GUIo 137

ZPI=2ZPT-]

MARKE R=(f

ZCPTR={

CALL SPECBE

CONTINUE

CONTINUE

15¢

MARXER=G

ZCPTR=F

Y200 /8

IF (Y2¢,GE. @) GOLC 15§
Y2¢=ABRS (Y20- (1~1F~8))
Y20=AINT (Y2%)

Y21=Y2f

I (MARKER.NE.@) GOUO 152
Ne=¥21

GOTO 158

CALL SPECS(14,¥21,%21,2CBNDS,2CPTR, 2BCNDS , ZROTINT , ZPT, YSTORE , ZINDX ,

C4ETORE , ZC00RD , ZCDP TR, YBCUKD)

17¢

169
1app

91
192
193
194
195
166

CALL SPECB

CONTTRUE

CONTINUE

MARKT Re= ()

ZCPTR=(

CALL QUT2{1l,1,ZCBNDS,ZCPTR,%BONDS,2STORE , ZDIM, Z8UE, YSTORE)
CONTINUE

222=¢

IF (K, GT, @) z22=1

11 {MARKRER, EQ,~3) GOTOQ 169
IF (MARKER.NE. (1) GOTC 17¢
Z]=2%%22

GOTO Lypg

7221

21=2%322

GOVO 1gPF

CONTINDE
IF(%1.}E.F.0R.Z21,0G0.6) CONTINUE
GOTO(),2,%,4,5,6),21
FORMAT (1X,G12.6)

IORMAT (GL2)

FORMAT (1%, I12)

FORMAT (1¥G12.6}

FPORMAT (8%A1)

FORMAT (13, /} '

CALL IOCREM

RETUEN

ERD

APPENDIX 1Q

This appendix descrikes the finite state automaton which may be
implemented for replacement of unnecessary "WFIND" calls. The method is

ocutlined in Chapter VIII, §8.1 and §8.2 .

Table 1@ (a) gives a list of statement types to be recognised in the
sgan of %the generated code. For ease of reference in the state diagram,

each statement type has an associated letter {(or letters).

The state diagram is represented by Diagram 12 (b).

For statement types not listed in Table 1£{a}, the action required

is outlined in Chapter VIII, §8.2

SUASEMENT TYPE ?iigg;?:f”
7B <integer> = ZPCINT ({(ZPT) A
ZET = ZPT 4+ 1 B
ZXINDX (ZB\< integer > + {integer 1>») = < expression > c
ZPOINT (2PT1) = 2B <integer »+<integer 1> b
CALL, STERYS (= =~ = =} E
CALL FINDL (- - - -} (xeplaceable} F
ZPT = ZPT -~ 1 G
Z < integer> = 1 3¢
<label> Z ¢ integer 1> = EB<integer 2> + Z<integer> I
ZINDX (Z <integer 1») = 1 J
Z<integer> = Z<integer> 4 1 K
IF (2 < integer > .LE.Z <integer 3%)} GOTC < label > L

Z <integer) = ZB<integer 17 + Z {integer 23> M

ASGOCIATED

STATEMENT TYPE

LETTER{S)

%< integer > = %7 Lintegex 1¥ - 1 N
&lapel?> CALL FIRD)L (- ~ -) {replaccable) 4]
CALL SPRECS {~ = - =) (replaceahle) P
2INDX (Z < integexr>) = 2ZINDX (X< integer)) + 1 e}
I¥ (ZINDX (Z¢integer¥) LE,ZCBNDS (ZCPTR)) GOTO £ label™ R
<label> 7% <integer 1> = 2 <Kinteger > + 1 s
<label>» ZINDX (7 <integer > + 2B Lintegexw >} = 1 T

1T (Z< integer>.LBE.ZCPTR) GOWC < label? U
{label> ZINDX (2B 4integer? + Z <{integer 1») = v

2INDX (8 { integexry + 2 <{integexr 1>} + 1
IF (ZINDX {ZB<integexr> + Z<integer 17).1E. -
ZCENDS (Z < integer 1»}) GOTO <label»

IF (%< integerd> (FG.1l) GOTO <labell> X
ZINDX (2B < integexl” + Z Jinteger™>) = 1 Y
% £ integer> = ¥ {integer» =~ 1 Z
GOTO < lahbel > AR
< labeld> Z<inteqe1“> = Z <integery - 1 AR
< label> ZpT = UPT ~ 1. . AC
{label> z {integer»> = PIKD (- - - =) (xeplaceable) AD
ZINDX (ZB <inieger> + 1) = ZINDX (ZB< integer> + 1) + 1 AR
IF (ZINDX (ZB < integer>+1) .LE.ZéONDS (ZBOUKD))} GOTO <lakel > AT
<label> 2ZB <integer » = ZPOINT (ZPT) 20
ZINDX {%CD + ZB <lntegex:»} = ZINDX (ZCD+ZE<integexr>) + 1 Ak
It (ZINDX (2CDHZB<integexs).LE,ZBONDS (ZECUND+ZCD-1)) GOTO <label> AT
IF{2Z5 < integer Z<integer 1y ,LE.@) GOTO <label?’ ;L—‘)'mw o
IF (z<integexy .EQ.ZCD) 7 <integer>» = Zdlintegsry» - 1 ;K B

CALL FINDl (= =~ - =) non-replaceable o

CALL FINDYI {—=-= ZFl -==) A 2L

CALL FIND) ({(~-- ZF2 -~} "

STATEMENT TYFE ASSOCTATED
LEMER(S)
<Zlabel> CALL PIHD1 (- - =) non—-replacesble
<label> CALL FINDA (woe ZF1 wen) " A%
< labely> CALL FINDA {(w—e ZFZ —ow) "
CALL SPESS (- — - =) non~replaceable AN
< lsbel> Z <integer> = FIND(~ -~ ~ =) non-replacenble
< lebel » <expression® = EVEIKD(- - « ~) H
A0
<label> <expression> = SCFIND(~ - - -} "
<expressiony == IRFIND(- - ~ ~) "
OPL = <value> AP

TAULE 10(n) ¢ Statement types to be detected during scan
of generated code.

|
i
]
]
.
j
|
i

to 17
{next pege)

. Pl
to previcus lovel .
- /
7
N7/
(;
/ /
/
4 16
/

to 6¢

{next page)

— 3

Diagram 1@H(v) : Shows state diagrem fox replscemsnt of

unnacesssry "FIND" calls.

- . 2 /G- 5 1
“gP\\;\\ \\y,,a ﬁﬁ*\- [\w
from 57, 58 64/‘ 61 (‘f_/

(previous page

{previcus

. vage)
Diagrem 1P{b} {contd.)

i
|
i
|
-|
|
'i

The following actions are reguired at cach slate represented in the

state diagram.

et
Set
Set
Set
Set
Set
Set
Set

Set

Store the value of DRELPTR in a stack so that the replacement code for

CALL BPACS (-

State 2.
Sot

Set
‘Set

Set

State 3.
Set

Set
Set

Jet

Sot

KSTPIR to NSTPIR + 1

NSTATE (NSTPTR) to ISTATE
ISHATE o 1

LEVLEQ to LEVINO + 1

IENPIR to IENPTR +1

IRNTRY (TENPTR) to §
DELPPR to DELETR + 1

DELETE (DELPTR,1) to LEVINQ

DELETR (DELPIR,2) to ISNTRY (IFPIR)

- - =} may be inserted in the corract place,

ISTATE to 2
DELETR o DELETR + 1
DELETE (DELFIR,1) to LEVINQ

DELETA (PELPIR,2) to TANTRY (IENPIR)

ISTATE to 3

DELP{R to DEZLFIR + 1

DELZE (DELPTR,1) to LEVINO

DELETE (DELPIR,2) to IENTRY (IEKPTR)

ICOFIR to ICDPIR + 1

]

CChu:

a:

(ICDFIR,1) <o DILPTR

2

GODE (ICDPIR,2) to 1
CODBE (LCDFIR,3) to -1

COD®E (ICDPi‘R,h.) te point to code of the form

Y PR

Z{<LEVLNO value> , <imtegerl®) = <expression>

Set ISTATH to 4

Set DELPTR to DELPTR 4 1

Set DELETE (DELPTR,{) to LEVINO

Set DELETR (DELPIR,2) to IEKIRY (IENPIR)

get ICDFPIR to ICDPTIR + 1
A line of code of the fom

ZPOINT(ZPT) = 3B < integer> + < integer1 »
has been recognised.

if <integer 1> dis 1, then the following eniry is set up in CODE

COoE (ICDPIR,1) = DELPTR
cope (ICDPIR,2) = 2
GODE (ICDPIR,3) = =i

CODE (ICHPIR, &)

. CALL FLPERM (- - - -}

a pointer to code of the form indicated below

; SPROD = Z{<LEVLNQ value>,1)

{The parameters of ELPZRM are £illed inm later, if the replacenent i3 to Ye
made, Thus, an indication of the address of Tthe BLPIRM call must be

rotained,)

If ¢integert> is greater than 1, then the following entry is set up

ia COLE.

CODE
GCODZ
CODi
GODE

CALL

“<int

ZPROD

(FoDPTR,1) = DELPIR
(teprPrR,2) = 3
(ICDPIR,3) = -1
(ICDPTR,4) = a pointer io code of the form indicated below.
ELPERY (-~ - ~ -
cger A»> = <integer 1> -1
= Z{+IEVLNG valuer, <integer 1>)

hgain, the parametors of ELPSRM must be filled in later (if necessary).

State 5
Set
Set
Set
Set

ISTATE to 5

DELPTR to DRLFIR +

1

DILETA (DELPIR,1) to LBVLNO

DELETE

If <integer 1> (sec ztate 4) is

elso required

Set

‘Set

Set
Set C

ICDPYR o ICDPIR 4
CODE (ICDFIR,1) to
COoDE (TCDPTR,2) to
CODE (ICDFIR,3) to

ODE (ICDPIR, 4) to

(DELPIR,2)} to IENTRY (JTRNPTR)

greater than 1, the following eotion is

—

DELFTR
5
-1

point to code of the following form

CALL Z4DDR {< value»,Z3%,ZNUM, ZBOUND)

<label> IP (7 <integer A>.LE.1)} GOTO <label 1>

ZYROD

= (ZPROD-1)*ZBONDS (ZBOUKD + Z < intoger 2>~ 1)

Z <integer A> = Z‘/\in‘r'.eger A~

GOT0 2label >

Here <valuel> is the 1st parameter value of the STARTS call,

Por < integer 1> = 1, only the firgh lins of the gbove code is reguired,.

and = corcesponding CUDE entry is set up,
State 6.

A reylaceable FPIND call has been detected at this stage. The DELETE
table (column 1) must be scarned for entries equal in value to LEVLNO, For
any such entry i, DELETE(i,zj is tested. If DELETE(L,2) is M, %hen it
is uvpdated to 1, The sppropriate entries in CODE (column 3) should also

be updated to 1 If they are -1 originally.

Then, Set JISTATE to 6

Set IEWIRY (IENPIR) to 1
'Set DELFIR to DELSTR + 1

8et DELETR (PELFTR,1) to LEVINO
8ol DELETE (DELFTR;2) to 4

Set JICDPIR to ICDPIR 4 1

Set COUDE (ICDPTR,1) %o DILPIR
Set CODE (ICDPTR,2) to 1

S8et CODE (ICDPIR,3) to 1

Set CGODH (ICD'PTR,iq.) to point to code of tke foxm shown below
< label 1> Y <integer B> = YSTORZ(ZST + ZFROD -~ 1)

where <label 1> 1is retained from state 5 and I <integexr B> is the sixth

parameter of the FINDY call,

The parameters for the call of ELPERH can now be inserted.

State 7.
Set DELPTR to DELPTR + 1

Set DEL®T® (DELFTR,1) to LZVLNO

Set DELETE (DRLEIR,2) to IENTRY {(IENFIR)
Set ITEN%RY (IBKPIR) to

Set IBNPIR to IENFTR ~ 1

e m et e .

Set LEVLKO to LEVINO - 1
Set ISTALE to BSTATE (NSTPIR)
Set MSTAVE (NSUPIR) to -1

Set NSTPIR to NSTPIR - 4

State 8.

A non-replaceable ¥IND1 oall has been detected at this stlage. The
BLETR toble (column 1) must be scanned For entries equal in value to
TEVINO., For any such entry i, if D2LETZ(1,2) is 4, then DELETE(4,R2)
is set to -1, The appropriate GODE entries (columm 3) should be updated
to § if they sre -1 originally. The lines of (replacement) code produced
for this level are not required, and the space can be utilised iff reguircd

10 produce morc linea of code.

Then, f
Set TSPATE to 8 :

Set TENTRY (IR¥FTR) to ~1

Set DOELPCR to DELELR + 1 :

.

Set DELETE (DELFIR,1) to LEVING

. Set DELETE (DELPIE,2) fo =1]

States 9-18. |

et IATATR to 9 or 18
Set DELFTR ta DRLPTR + 1
Set DELRTA (DELPTR,1) to IESVINO

Set DELETE (DRLETR,2) to TENTRY (TENETR)

Strie 11.

Set ISTATE to 11
Bet DBLPTR to DELPTR + 1
Set DELETE (DELEYR,1) to LEVIHO

et DELETE (DELPTR,2) to IENTRY (IKNPIR)

Store the value <integer> on & stack for use later (if the loops are

replaceable).
State n {12<n<17)

Set XSTAYE To n

Set DELPTR to DELFTR + 1

|
8ot DELEIE (DEL¥TR,1) to LEVLNO ‘
et DEZLETE (DELPTR,2) to IENTRY (IENDTR) l
: |

|

|

State 18

A replaceable FINDY call has been detected. It is not yet known,
howaver, whether the entire loops can be replaced, Tnis will not becone

apparent until State 24 ls rezched.

set ISTATE to 18

Sct DELFTR to DELPTR + 1

Set DEL=TE (DELFIR, 1} to LEVIKQ

Set DELETE (DELEIR,2) to 1

The <£labal> value in the statement detected saould be stscked for {possitle)
use when statle 24 is reached. Similariy, the wvalue of DELPIR should be
stacked. A count, Cl, of the number of replaceable FIND or FIND? calls

should also be maintained until state 24 is reached.

The followirg CODE entry should be se% ap.

ICPPIR = XCDFIR « 1 |
CODE ICZ)P&n,‘l; = DILFIR :
COLE (ICDPIR,2) = 3 4
GODE (ICDPIR,3) = 1

CODR (ICDP’.& 4) a pointer to code of the form outlined below.
Z <integer > = 1

CALL ZADDR (<valae>,_,S"‘ Ui, ZBOUAD)

% Linteger 1» = Z3T ~ 1

Here < integer > has been retained from state 11, <value> is the fourth

pargmeter of the FIND or ¥FIND1 call, and Z <integexr 1> should be a unique

varizble name.

Z < integer 1> and the sixth paremetexr of the FIND1 call should be

retained.

State 19

The same

ISTATE is set

State 28

Set
Set
Set
Set

Set

action should e carried out es for state 8, excepl that

to 19.

JISTATE
DELPIR

DELETE

ICDPIR

to 28

to DELPTR + 1
(DELPTR,1) %o LEVLNO
(DELPTR,2) to 1

to ICDPIR + 1

CODE (ICDPTR,1) to DELFIR

CODR (ICDPIR,2) to 2

CODE (ICDETR,3)} to 1

COD% (ICDPIR,4) to point to code of the Fform

CALYL ZADDR(s value >, Z8T, 2NN, ZBOUND)
4 <integer 1> = 287 -1

< value> and <intsger 1> have the same significance z2s in state 18. The

same information should be retained here also.

The same sction should he carried out as for state 8, except that

ISTATR iz set

o 21,

If count €2 is non~gero, then the following CODE entry is also sat up.

ISDPTR = ICDPIR + 4

CODE (TCDPTR,4) = the value of DELPTR stacked at state 18
CODE (ICDFTR,2) = 2 x (2

¢obE {ICDTIR,3) = 1

CODE (TCDEIR,4) = a pointer to code of the foxm

Z <jinteger 1> =
CALL SPECA (Z <integer 1%,<variables)

Z4 <integer 1> + 1

The above lines ara repeated C2 {imes, using the velue <integer 12 retained

previously. <value > 1is the left~hand side of the statement preceding the

SPECS call.
ﬁate' n

Set

Set

Set

Sct

State 3

. Set
Set
Set

Set

(25<n<38)

ISTATE
DELFIR
DELETS

DELETE

ISTATE
DELPTR
DELETSE

DELETE

If IENTRY (IENPIR) is

ICDPIR + 1 .

set
Set
Set

Set

COLR (ICDPIR,1)
CODE (TCDPTR,2)
GODE (ICDPIR,3)

CODE (TCDPMR,4)

to n

to DELPIR + 1

(DELPIR,1) to LEVLNO

(DELFTR,2) to IENTRY (1LEKPTR)

to 39

to DELPTR + 1

(DELPTR,1) to LEVINO

(DSLETR,2) to TENTRY (IEIFTR)

~1, proceed to state 7, otherwise set ICDIIR to

4o DELPTR
to 2
to 4

to point to code of the form shown below.

The same action is carrizd out es for state 28, except ISTATE is set
to 22, and CODX (ICDI’l‘R,‘i) is set to the value of DELFTR stzcked at state 1.

Maintain a count, (€2, of the number of replaceable "SPRCS" calls encountered,

Set ISTATE to 23

Set DELPIR to DELPTR + 1

Set DELETE {(DELPTR,1) to LEVLNO

Set DELRLE (DELPTIR,2) to ~d
State 2k

el ISTATE to 24
Set DELPIR to DELFIR 4 1

Set DBELELR (DRLPIR,1) to LEVLNO

et DELETE (DELPIR,2) to IBNTRY (IENFTR)

Jf the counts €1 and ©2 are zero, continue the scan, otherwise set 2ll

the appropriate zero cntries in DELFIE tov 1, update the relevant COUE entrias

.
and set up a new CODB entry as iundicated below.

.

JCPPYR = ICOYIR + A

cone (ICDFPR,1) = the value of DELPYR siacked al state 18

CODE (ICDETR,2) = 2 %= C1
¢opE (ICDPIR,3) = 1
cODE (IGDFLR,4) = a pointer to code of the form shown below,

% Z:i.n‘l:cger 1> = 7 <intgger 1> 4+ 1
Y <integer C> = LPERM (Z <integer 17 ,2CENDS,ZCPIR,X,J,K,E)

The above lines are repeated €1 times, using the values of < integer 1> and
<integer G retained previously. If state 18 was reached, the first

statement ds lavelled < lsbel> , where <label> ie the value stacked at

siate 18.

7 <integer.» = Z 4integer> + 1
IF (2 <integer> JLEZNUX) GOLO < Lebel>

Here < integexr » was retained at state 41 eand < label> at state 18.
Proceed to state 7.
Jtate zbgs“

Set ISTATE to ki

Set DELPTR to DELPIR + 1

Set DRELETRE (DELPIR,1) to LEVLEO

Set DELETE (DELPIR,2) to ~1

Keep note of 2 <intsger C> at start of next line.

State L1
Set IBTATE to 41

Set DELPIR to DELPTR + 1
Set DELETE (DELPIR,1) to LEVLEO
Set DELEUE (D3LPIR,2) to IENTRY (IENETR)
"""" Set ISTATE to 42
Set DILPIR %o DELPIR + 1
.« 8¢t DELETE (DELPIR,1) to LEVIEQ
Set DMLETE (DELPTR,2) to 1

Set TINITRY (TENPLR) to 1

Scan the DELRTE table (coiumn 1) for entries having value LEVLNO. For any
such entry i, if DELET® (i,2) is A, set DELETE (i,2) to 1 and update the

appropriate CODE ernixy,
Set up a new CODE entry as indicated below.

ICDFIR = ICDPIR + 1

CODE (ICDPTR,1) = DELPIR
CODE (ECDPRIR,2) = &4
cop® (ICDPUR,3) = 1

cou® (ICDPIK,4) = & pointer to code of the Porm given below.

<label> CALL BLPERY (w-w)
ZPROD = % (< LEVLEO values,t)
CALL ZADDR (<value,Z8T, ZNUN, ZBOUND)

% < integer> = 28T + ZPROD-Y

Here, <label> is obtained from the statement defected and <value> is the

fourth parameter of the FIND call.
In this caso, the paramelers for EIPERM can be inserted immediately.
< integer> is also obtained from the statement detected.

The action required is that descrided for state 8, exsept that ISTATRE is

set to 43,

State b
Set ISTATE to 44
Set DELPIR to DELPTR + 1
“Set DELEFE (DELPIR,1) 4o LEVLNO

Set DILETE (DELPIR,2) to IEVTRY (TRENPTR)

If TENTRY (ISNPIR) = ~1, proceed to scan next statement, Otherwise set up a

CODE entry of the following form:

JCDPTR = JICDPIR + 1

con® (ICDPIR,4) = DELPTR

CODE (ICDPTR,2) = 1

CODE (ICDPTR,3) =

coD® (ICDETR,4) = o pointer to CODE of the form shovmn below,

Z(<LEVINO velue?,1) = HJ{LIVLNO value>,1) + 1

State 45
Set ISTATE to 45

Sot DELETR to DELFTR + 1
Set UELEYE (DELPIR,1) to LEVLKO

Set DELETE (DELFYR,2) to TENIRY (IENPIR)

Set up & CODE entry of the following form if IENTRY (IENPIR) is not equal

to =1,
ICDPTR = ICDEIR + 1
cop (ICDPIR,1) = DELPIR
CoDE (ICDPER,2) = 1
CODE (ICDPIR,3) = 1

CODE (ICDPIR,4) = a pointer to code of the form shown below.
"IF(Z < LEVING value?,1).Li.2R0NDS (2EQUND)) GOTO <label>

Here <label?” is obtained from the current statement detected,

Stote n (L6sn<56)

Set TSTATE to n

3et DELPIR $o DELFTR + 1
Set DELETE (DELPER,1) to LEVINO

| Set DELETE (DELPIR,2) to -1

For state 45, stack the value of DELFIR so that, if necessary, the replacemsant
: CODE for CALL SPECS (~---) can be inserted at ihe correct point,
'''''' Set ISTATE to 57
Set DAHLPTR to DELPTR + 1
Set TENTRY (IENFIR) to |
Set DELETE (DALFTR,1)} to LEVLNO
Set DELZIE (DHIPIR,2) to 1

Set ICDFTR to JICDPTR + 1

Set COD% (ICDFIR,1) to DELETR

Set CODZ (ICDPIR,2) to &

Set CoDE (I

CDPIR,3) to 1

Set COD# (ICDPLR,L) to point to CODE of the form

CALL %Z4DDR (< valuey,ZST,ZNUN,ZBOUND)

Z <integer A> =
< label> Z¢< integer> =
Z < integer B> =

28T ~ 1

% <integer C> 4 1

7 <integer A> + ZPERA (1,4,0,<value>,aTDZ, ZBCNDS,
% < integer>, ZPOINL, ZET)

Here <value> i3 the fourth parameter of the PIND call, Z <integer A> is a

unique variable neme, < integer> is ined m the current statement (as is
q bl me, < integer > obteined from the current statement (as ic

e :Label‘.’). Z <integer B> i3 enother unigue varieble name and < integer C> was

retained at state 4f .

State 58
Set ISIATRE
Set IERNTRY
Set DELPIR
Set DHRLATE
Set DELIgl?.‘E

State n (59<ng6l)
Set ISTATE
Set DELPIR
Set DBLEYE

8ct DELZSYE

to 58

{IENPIR) to -1

to DELPIR + 1
(DSLPIR,1) to LEVLNO

(DZLETR,2) to =i

to n
to DELFPIR + 1
(DELFTR, 1) to LEVIEO

(DELEFTR,2) to =1

IKDEX Q)" TERMS

o
g

agsociated iiteral conatant
agsumed label number

garbage collection mechanisu
immediate action macro

1ocking and unlocking of identifier
entries in NAMES

open hash technique
operand macro
scope of an operstor

iype volue

Chaptar

4,5

Pags

46

154

90

53

10

19,126

22

38

-
..:I
A
y

i

