TRANSLATION OF APL TO OTHER HIGH-LEVEL

 LANGUAGESMargaret M. Jacobs

A Thesis Submitted for the Degree of PhD at the University of St Andrews

1975

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/13417

This item is protected by original copyright

The eode generated corresponding to e particular APL routine winl not at first be very efficient. However, methons of optimisjng the generated code are discussed at length in the thesis. A brief comparison is mado with other possible methods of conversion.

There are certain rostrictions on the types or APL statements able to be handled by the translation metnod. These restrictions are listod in un acoompenying appondix.

Throughout the text, seversl examples are given of the code which will. be generated from purtioular Ald statements or expressions. Some moxe lengthy examples of conversion of APL routinet to FOinfaN are providud as an appendix.

TRANSLATION OF APL TO OTHER
 FIIGH-LEVEL I.ANGUAGES

MARGARET M. JACOBS

$$
x^{w} b^{x^{\prime}}
$$

Whe research work reuuired to probnce this thesis mas carried out in the Department of Computational Soience, University of St. Andrews. Minancial assistecice was provided by the Soionce Rasoarch Council.

The thasis doscribes a method of translating the eomputer language APL to other high-level languages. Particular referonce is made to HOMFLAN, a language wideny aveilabls to computer users: Mlthough gaining in popularity, APL is not at present so readily availeble, and the mein Ein of' the transiation process is to enable the more desirable featurcs of Alp to be at the disposal of a far greater number of users, The translation process should also speed up the runnin̄̈ of routines, since compilation in general leads to greater efficiency than intergretive techniones. Some Inerficiencies of the APL language have dean removed by the translation process. The aicove reasons for translating spJ to other high-level languages are discussed in the introduction to the thesis.

A description of the methoa of trarslation forms the mein part oí the thesis. The APL input code is first lexioally soaned, a process whereby the subsequent phases are greatly simplified. An intermediate coāe form is produced in which bracketing is used to group operators and operands together, and to assign priorikies to operators such that sub-expressiona will be handed in the correct order By scanning the intermediate oode form, informetion is stacked until required later. The information is used to make possiblo a process of mero expansion. Dech of the above processes is disoussed in the main text of the thesis. The formet of all information which car or must be supplied at translation time is chearly out, lined in the text.

MY Hisbband and parentic

A deseription of a method of translating APL into other high-level langugges, with particular reference to FORIXAN.

The work for this project was cormied out in the Dopartraent of Computationel Science, University of St. Andrews, for the degree of Ph. D. The project commenced on the 10th Octobex, 1971.

Ihe research for the suoject matter of this thesis has been carried out by myself, and the thesis has boen composed by myself. Ihe thesis has not been accepted in fulf'ilntont of the requirements of any other degree or protessional qualification.

I would like to thank Professor A.J. Cole for his excellent supervision of my work throughout the course of my sturies in St. Andrews and for his advice on the preparation of my thesis.

I am extremely grateful to sll the members of staff of the John Honey Building at the University of St. Andrew for their willing assistance and encouragement, and to my fellow reserch studants for their helpful comments.

I also must thank Mrs. V. Butterworth for typing the text of my thesis, and the Science Reseerch Council for their fingncial gssistance.
page
INf1RODUCTION 1
Chapter
I. INPUP PGASE AND METHOD OF STORAGR ALLOCATION 5
II LRXICAL SCANHING PHASE 37
III RIGHTMTOMIDPT SCAN AND PRCDUCTION OR INTERMEDLATE CODE 59
IV LDFTT-TO-RIGHT SCAN, PRODUCTHON OB STACKED INFODMATHON 76
AND ORGANLSATION OP LAGRO EXPANSIONS
V THB MACRO ZREHOD 109
VI LABELS AND JUMPS 154
VII RROCESSING OT INITLAL IMPORMARION 161
VIII CODE OPNTYISATICN 171
Appendix
1 SYNBOLS USED FOR INYJT OF APL DURING TESTTIN2 TABLA OR USEEUL INFORMATION FOR APL OPRRATORS3 LIST O VACRO INSMETCTIONS AND THEIR FUNGTIONS
4 LIST OF MACRO BODIES

6 RABSTRICRIONS7 EASE OE CONVIRSTON HO OTHEX LANGUAGS
8 FUNCTION OF GLOBAL VARTABLES (RUN-THEE)
9 EXAMPLES OT CONVIRTSD RCUTINES
10 DESGRIFPION OF FINITE-STATE AUTOMATOW FOR REPOVAL OFUNNECESSARY "FIND" GALLS

INTRODUCITON

The following text describes a method of translation of APL to other high-level languages. The version of APL able to be translated is that described in the IBM AFL 36 0 -OS and AFt 36ϕ-DOS User's Manual, with a fow restrictions, These restrictions are listed in Appendix 6.

Throughout the text, the target langutge is assumed to be FORPRAN, but similar techniques can be applied to translate from APL to ALGOL or to EL/A. In generating the target language code, only a subset of the permissible FORTRAN statements has been used. The subset wes chosen such that its members (as far as possible) have counterparts in ALGOL and FL/1. This facilitates conversion to either of these languages instead of Fortran. The ease or conversion to ALGOL or to $\mathrm{FI} / 1$ is discussed in Appendix 7.

The translation was intended in the first place to handle conversion of APL subroutines ard functions, but main programs mey also be translated. The Ard routines are not intended to remain interactive after conversion, but to be run under a batch-processing system.

There have previously been some attempts to produce a batch-processor for APL. One such attempt was made by H. Van Hedel, who implemented an AFL batch processor in PL/1 for the TBM/36D. The only restriction he imposed was that function names and local variable names should be distinct. (This restriction, among others, has been placed on the types of AFL statements able to be converted to FORTRAN.) In Van Hedel ${ }^{7}$ the following example is quoted:
$\nabla R \leftarrow F 1 X$
$R \leftarrow T \nabla$
VG1; FI
H
∇
$\nabla \mathrm{H} 2$
$H \nabla$
$\nabla \mathrm{H}$
$\mathrm{Z} \leftarrow \mathrm{F} 1-\mathrm{A}$
∇

Such an example creates ambiguity in the source text, for H returns different values in G 1 and G2.

For an interactive interpreter it is important that each operation is executed as soon as sufficient information is gathered. For a batchprocessor, as much as possible of the analysis has to be done before the execution takes place.

The above example is ambiguous to a compiler, but not to an interpreter.

It is intended that only working routines be convorted to other languages. Thus, the amount of cheoking required during conversion is Ereatly reduced. It can be assumed, for example, that all dimensions are conformable in matrix operetions.

The reasons behind the translation (see Sayers ${ }^{5}$) are as follows:
(i) It is intended to provide a more easily transportable system. There are at present more FORTRAN compilers than API interpreters. Since APL is highly suited to the development of algorithms (Smillie ${ }^{6}$), it would be vexy convenient to be able to use these algorithns on a larger scale. This would be possible if the AFin rutines mete translatea to FORTEAN. (The
same argument oan be appliad to the translation of APL to ALGOL or PL/1.)

To make transport of the converted routines as convenient as possible, the user is provided with an option to specify the output medium for the converted routines.
(ii) A secondary aim was to improve run-time efficiency by using compilation rather than interpretation. The amount of code to be interpreted is reduced if the user supplies some information about non-scalar variabies. The more information supplied, the greatex the amount of compilation possible. In many aases, the types and dimensions of variables wi.ll not change, and such examples readily lend themselves to the improvement of run-time efficiency. The method of supplying extra information to improve run-tine efficịency is described in Chapter I.
(iii) It is hoped that code can be optimised during the course of transletion by the removal of some of the inefficiencies of APL. An example of an inefficient APL expression is

$4 \uparrow A+B$

where A and B are non-soalar. This is obviously inefficient as all the elements of A and B are sumed, whereas only four sumations are essential. The method of removing the above inefficiency is outlined in the following text.

In December, 1971, V.L.Moruzzi gave a set of simple rules for translisting from APL to FOATRAN by hand. He estimated that mechanical APL/PORTRAN trenslations could achieve a 3ϕ-fold reduction in CPJ time. This is discussed in Morvezi ${ }^{3}$.

At a private meeting, Dr. J.L.Alty of Liverpool University remarked that, efter visiting various APL installations in the C.S.A. and Canada, he found APL tisree to forar times faster than other languages for progrem dovelopment, but cne hundred times slower for execution. This result, he stated,
emphesized the need for interchangeability betreen APL and other languages.

The translation from APL to FORTRAN is effectod by a series of macro expansions. The order of expension of macros is deterwined by the order of the operators in the AFL source test.

A system of bracketing was introduced to ensure that all operators (and hence macro expansions) would be assigned the correct priorities. Reverse polish techniques could also have been applied during the trenslation process. The rival merits of each method are discussed in Appendix 5.

The options available to the user are discussed in Chapter I, together with the method of atorage allocation. A lexical scan of the APL scurce text is first carried out to simplify the subsequent procestes. The lories? soaming phase is discussed in Chapter II. Brackets are then introduced durdnc a right-to-left som or the code and an intermeciate code form is set up. This is discussed in Chapter III. StackIng of information to be used as parameters for macros is described in Chapter IV, while the macro method Itself is doalt with in Chapter V. A discussion of labels and jumps is given in Chapter VI, while Chapter VII describes the pre-optimisation phase. A process whereby the generated code can be optimised has been devised. It is described in Chapter VIII.
\therefore The APL-FORTRAN translator is written entirely in FORTRAN.

Definitions of the names used in the following text are given in Appendix 8.

CHAPIETR I

INFUT FFASE AMD MBTHOD OF STORACE AITOCAITON

APL routines to be converied to FORTRAN are redd, line by line, into a character array LINE. The routines are preceded by some adaitional infornation. Some or the infornation provided is essential to the conversion method (see §1.3), and some can bo provided as a user option (see §1.4).

Host of the additional informetion supplied relates to tho use of non-scaigr variebles. The conversion routines use a Pariy complicated method of storage allocation for non-scalar variables. The method is necessarily complicated as the dynanic storage capability of an APL interpreter has to be simulated. The storage allocation method is aiscussed in deteil in §1.2. The subsequent accessing of non-scalar variables is nebessarily time-consuming, as interprotive techniruss have to be employed. However, under certain circumstancos, a simpler ztorage allocation method an be employed, which reduces the access time for norm scalars conslderably. The simpler method is only possible if the user supplios addtitional information about his non-scalar variables.

A set of AFL routines can be converted to Folirkiv during one mun of the conversion program. A calling program can be supplied with a set of subroutines on functions, but this has limited use in practice as the user of the converted routines may want rebults for several different parsieter sets. Only one set of information is supplied initially for nori-sealars, and this requires some care. Consider the following set of subroutines:

If FN and F are to be translated during a single run of the conversion routines, then the types of X in both subroutines must be the same. That is, if X is declared to be non-scalar at the start, it will be assumed non-sealar in each subroutine. There i.s no serious restriction whon X is required to be scaler in one subroutine and nonscalar in onother. The problem is easily solved by chanding the variade name X in one or the other of the two routines. No problem would arise if X wes a global variable, as its type pould be the same in both FN and F.

Adaitional information must be supplied for both literal and numeric non-scslars. All information supplied is printeā out. It shoula be noted that declarations should be supplied only for those varicbles whish are nonscalar at their first ocourrence. Otherwise, scalar ocourmences of the variables would not be recognised as such.

1.1 Jnput of the APL Source Prouram

The souroe program is assumed initially to be in AFt internal z-code form. The program is read in and converted lina by line. Tach line is stored in turn in the oharacter array LINE, which is accessed during the Lexical scaning phase described in Chepter II.

During testing of the conversion routines, it wes found simpler to use an input form more suited to the character set of the IBM 029 oard punches. As far as possible, APL symbola were roprosented by their counterparts on the keyboard of the IBH $\phi 29$ card punch. Composite symbols were used to represent the extraneous AFL symbols. The actual representation of the APL character set used during westing is shown in Appendix 1. The symbols were ther converted as required to APL internal Z-code form.

Under normal ruming conditions, the input would, of course, be in APL internal z code form.

1.2 Method of Storage Allocation

The amount of storage space allocated for an AFL nonmscalar variable can vary dynamically. The facility of dymamic storage allocation is not available in FORTRAN. For this reason, it was necessary to simulate the feature in the FORIRAN code produced. An arbitrary amount of storage space (represented by array YSTotw) was thus set aside for storage of all non-scelar varlables, and storage spane is allocated as required for jndtutidual non-scalar variables.

Since storage is allocated dymamically, a method had to be devised of linking together the various blocks of YSNORE associated with a particular non-scalar. It was obviously not advisable to link together individ:as locations, as the cost in teres of storafe space and access time woule have been prohibitive. Thus the array YSTORJ was treated as seperate unita of 1ϕ locations each. The number $\dagger \phi$. $\%$ ch chosen as an experiment, but can be altered if found to restrict the efficiency of the resultant FORPRAif code. In practice, this means that a vector of ($n * 1 \phi+1$) elements, where $\phi \leq n$ will have $\{n+1$)*1 \dagger locations allocated for it. A compromise had to be
reached between the allooation of unnecessary locations for non-scalars and the number of linkage elements required for particular block sizes.

The information required for linking the various blocks of YSTORE is held in a separate array $2 S T O R S$. This array also incorporates a free space list. Storage is not actually allocated for nonwscalars during oonversion, but the appropriate subroutine calls are generated so that dynemic allocation can take place as required during run-tine of the converted routines.

To allooate or de-allocate storage for a non-scalar variable it is only necessary to update entries in the dope vector table DORES, the array $Z S T O E E$, and the array ZBONDS, which containslimit iniornation for the dimensions of oach non-scalar.

The functions of these 3 arrays are now disoussed in greater detail.

1.2.1 The dope vector table DOPAS

Corresponding to each non-scalar variable name in an APL routine, a 6-part entry is set up in the array DOPRS. The typical form of a dope vector entry is shown in Diagrem 1.2(a).

For literal non-scalars no space is set aside in YSTORE, and the format of the dope vector entry is simplified. The third and fourth parts are not required. This is agoin referred to in Chapter II .

The dope vector entries may change during a subsequent optimisation phase. This phase will be undergone by the output code if the user supplies edditionsl information about his non-scalar variables. These changes, connected with simplification ot the storage and ecoessing meohanisma, eve discussod in $\$ 1.4$.

NAMES

\xrightarrow{C}
*1 type indicator for a non-malar (numenic) variable is 1 (see Chapter II)
*2 $n=$ the number of characters in the non-scalar variable name
*3 these entries will initially be the same

The 6 columns of a dope vector entry hold the following information:
(i) A key derived from the non-scalar variable nane.

Only the first 3 characters of a non-scalar variable name are used to determine the key (or the first n charactexs, if' the name has $n<3$ characters). The average of the 2-code values of the characters is found, and a constant subtracted such that the lowest possible key will have value 1.

The key dotermines the first addcess in DOFES to be searched when an entry is added to the dope vector table, or an existing entry is accessed.
(ii) A pointer to the array NAMES, which holas infomation relating to identifier names (see Chapter II).
(iii) The number of the ZSTORE element Essociated with the first block of YSTORE assigned to the non-scalar variable.
(iv) The number of the ZSTORE element associeted with tine last block of YSTORE Gureently allocated for the non-scalar variable.
(v) The number of dimensions of the non-scalar variable.
(vi) A pointer to the array ZBONDS where information relating to the current upper bounds of the non-scalar is stored.

An "open hash" technique is used to place entries in the dope vector table. The first address to be accessed in DOPSS is given by the "key" value obtained. Hence the necessity for tire lowest possible key to have value 1. If this adders is empty, the location is free and is used to store the dope vector entry. Otherwise a now address is calculated and tested, and the process is repested until a free location is found. This location is then used to store the dope vecior entry.

The method of subsequent address caloulation iss outlined below. For a dope vector table with n rons, the address is increased by an integer II each time. If the address, j, to be searched becomes greater than n, then j is set to $j-n$ and the process repeated until sll locations of the table have been accessed. The integers n and m should be coprime to ensure that all positions of the dope vector table will be accessed. In practice, n is 64 and m is 3 , this valuo being preferable to 1 in order to avoid the clustering of entries which might otherwise result, The open hash technique is described in Hopgood ${ }^{1}$.

A similar method is used to access previously stored entries in DOPAS. Fowever, in this instance the test is for on entry with a key value equal to that derived from the non-scalar name. If such an entry is found it is not necessarily the required dope vector entry, since koys are not necessarily unique. (For example, A and $A A$ or B end $A B C$ wisl have ideatical key values.) For this reason both the key and a pointer to the array NAMES rust be contained in eaoh dope vector entry. Then keys match, the cheracters of the non-scalar variable name and those stored in the appropriate NADUS entry must be compered to ensure that the acrroct dope vector entry has been found.

1.2.2 The array ZSTOEP

Elements of 2STORS can have one of two forms, depending on whether the essociated block of XSrORS is a unit in the free space list or a block allocated for a particular non-scalar.

The association between ZSHORE eleinents and YSrort blocks is such that ZSTORE (i) refers to the block YSTORE ($1+(i-1)$ *- ϕ) to YSTORE ($i * 1 \phi$), where $1 \leq i \leq n$, n being the total number of blocks of XSI'CRE.

For an unallocated block, i, of ISTORE, the associated ZSTORE element has value d, where j is

EITHMR (a) the number of the next block of YSTORE on the free space list, OR (b) if i is tho number of the last block of YSTORE on the free space list.

The form of a ZSTORE element associated with an allocated block of YSTORE is shown in Diagram j. $2(b)$. The usage of the array Zalope is discussed later.

The method can be extended to cover the case where ZSTORE has more than 255 elements, that is, there are more than 255 blocks of YSTORE. There i.s room for expansion due to the unused 8 bits at the leftmand side of each entry.

1.2 .3 The srray $2 B O N D S$

ZBONDS contains the current bounds for each non-scalar variable (literal and nameric) appearing in an APE routine. It can be updated dynamically, as can DOFES and ZSTONE.

The sixth colun of a dope vector entry defines the start of bound information for the corresponding non-scalar. The number of locations of ZBONDS assigned to a particular non-scalar is obtainable from the fif'th column of its dope vector entry.

In addition, a pojnter ZBFPR is maintained, which gives the İirst free iocetion of ZBONDS at any stage. This is useful it a new entry has to be added to ZBDNDS.

The FWOMDS extry for an n-dimensiomai non-scalar with uper bounds $b_{1}, b_{2}, \ldots, b_{n}$ is shown in Diagram 1.2(c).

N is the number of elements in the $\mathrm{m}^{\text {th }}$ block of YSTORE
x is either
(a) a backward pointer to the previous block of YSTORE allocated for the same array

OR (b) \varnothing if the $m^{\text {th }}$ block is the first block allocated for the array
J is either
(a) a forward pointer to the next block of YSTOFE allocated for the same array

OR (b) \varnothing if the $m^{\text {th }}$ block is the last block allocated for
the array.

Diagram $1.2(b)$: Ai 2STORE entry for a block not on the free space list.

\mathbf{j} is given by the sixth column of the dope vector entry Diagram 1.2(c): Shows a typical ZBONDS entry for an n-dimensional non-scalar variable.

ZBONDS is maintained in the following way. When a non-scelar variable is encountered, for exsmple the variable. A in
$A \longleftarrow 345$
an entry is set up in DOFES and ZBONDA.

If A is rodimonsioned such that its number of dimensions is inereased, for example, in the atatement

$$
\mathrm{A} \longleftarrow 24 \mathrm{P} \mathrm{~A},
$$

then the elements of the old ZBOMDS entry are set to $\mathbf{- 1}$. A new entry is oreated for A, starting at position ZBPMR.

If A is now redimensioned such that its number of dimensions is decreased, the relevent part of the ZBCNDS entry is updated and the romaining part set to -1's. .

It can be seen that if an APL routine contains a number of redimensionsing operations, (occurrences of the dyadic "rho" operator), the westage of space \ddagger \#̈bontis can become considerable.

A garbage collection mechanism enabling unused space to be retrieved was thereforo devised. If there is insurficient space left in ZBONDS for a new entry to be created, ZBCNDS can be scomed for entries with velue -1, Such entries can be removed by shifting subsequent velid entries along the appropriate number of places to produce more flee space at the end of ZBONDS, The appropriate dope vector entries must also be updated.

1.2 .4 Accessing arxay elements

AFL non-scalar variables are mappea onto the one-dimensional array YSTORA. Since the size of an APL array can vary dymmically, the amay elements will not necessarily be stored in consectitive blocks of YSTOFE.

The ZSTORE elements associated with each block of YTORE contain both forward and backurard pointers, as described in $\$ 1.2 .2$. To acoess a previously etorea vector or array flement, the following strategy is required,
(a) a key is derived from the non-scalax variable name,
(b) the addrese of tho dope vector entry for the non-soalar is datomined (using (a)),
(c) the first ZSTOR element associated weth the non-scalax in obtained (usin色 (b)) ,
(a) the ZSTOR elements for the array are accessed in turm until the appropriate block is round,
(e) the index (in YSTORE) of the element to be accessed is found.

For large arrays it can be seen that a large number of asTOFS elements may have to be accessod before the appropriate block of ystons can be located.

An enhancemont of the above method would be to store the exact location (in YSTORZ) of the last element accessed for a given array. Since consecutive access is most lively, it would thus be sufficient simply to move forward or backmerd from the position of the last element accossed. This additional information could be incorporated into the dope vector table.

Using tine accessing method outlined above, the access time can be costly for large arrays. However, if the maximun amount of space required for storage of a nonwscalar is knowm in advance, the nonmscalar elements can be stored in consecutive blocks of YSTORE. A much simpler accessing method could hence be used for the non-scalar. The array mapping con be used to detemaine the relative position of an element in a non-soalar. The desired location car thus be found direstly aftex applyinc steps (a), (b) and (c) ebove.

The faster method is depeadent on more infomation being supplied. initially by the user. This facility is provided as a user option and is discussed in greater detail in 51.4 .

Vector or array subscripts can themselves be expressions. Thus it is not usually possible to locate the exsct position in YSTORS of a vector or array elenent during conversion. Instaad, vector or array elemest reforences are replaced in the output code by function calls. These functions provide as a result either the value os the element being accessed or its index in YSTORE. It is necessary to know the YSTORE
index (not the value) if an array reference ocours as the left axcument of a specification operator. A number of functions were written to produce the above effeot:
(a) FIND - produces the index in YSTOZS for a numeric non-scalar variable access
(b) TVFIND - produces the value of a constant vector element as result
(o) JPGIMD (~ praduces the value of an intermediate result element.
(d) EVFIND - used for accessing of empty vectors or arrays
(6) IFIND - used for sceessing of literal non-scalars
(f) SCPTND - used for acoossing scaiars.

Operands (both scalar and non-scalar) can be accessed in a number of ways (see $\oint 1.2 .5$), and functions (b) to (f) above were written to provide generality with the function FIND. This function is desoribed in §1.2.5.

1.2.5 The function FIND

The furction FIND is applied to the subscripts of the vector or array referenced. In the case of an entire array access, loops are set up to access each of the elements in turn.

Before production of a FIND call, therefore, code is produced to store the subseript values or expression code in the array zINDX. The approprisie locations of ZINDX are accessed in FIND and a function applied to these elcments to produce the required index in YSTORE.

API allows nesting of subscripted expressions, and care must be taikei to ensure thet only the required values of 2 INDX will be accessed during one call of FTPD. This is done by maintaining a stack of pointers ZPOINT, biving stack pointer ZPT. During any PIND call the array ZINDX is
accessed only from the positions defined by ZPOINE (ZPT-1)+1 to ZPOINT (ZFT).

The following example serves to illustrate the type of code produced corresponding to a subscripted variable.

EXAMELE 1 (a).

Suppose the APL routine contains a reference to
A. $[I+1]$
where I is soalar. Then the generatad code is of the form shom below. Since no atterapt was made at optimisation during the code generation stage, the code is not very efficient. However, under certain circumstances, optimisation will be possible. This is discussed in greater detail ir Chapter VIII.

$$
\begin{aligned}
& 2 \phi=\varnothing \\
& \text { ZBA }=\text { ZPOINT (} \mathrm{ZFF} \text {) } \\
& Z P T=Z P T+1 \\
& 2 \operatorname{INDX}\left(2 B_{1}+1\right)=I+1 \\
& \text { ZPOINT (ZFT) }=\text { ZB1 }+1 \text {--- since } A \text { is one-dimensional. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CALI FIND1 (--- ANAMS }--Y_{n}-\cdots \text {) }
\end{aligned}
$$

The use of $z \phi$ is redundant in the above example, but is included to allow for the possibility of nonnscalur subscripts, in which ase it vould be required for looping operations, (see Chapter VIII).

The subroutine STARTS uses the value ANADS (whe index of A in NAMES, an array whose use is diecussed in Chapter IJ) to provide information to be used in the call of FIND1. This iniocmation i.s discussed in

Chapter $V, \$ 5.2$. The subroutine FTND1 contains a oall of the function FIND discussed previously. The variable Y_{n} contains the value of the required elenent $A[I+1]$. The paraneters of the function FTND ar: discussed later.

In generating subroutina calls two posaitilities existed:

1. the subroutine calls could have no global variables (for example, ZPOINT, ZNDX) in the parameter list. CONDON statements mould thus have to be inserted in the subroutine bodies. The same process can be appli.ed to functions,
2. global variables covid be included in the paramoter list and all nonsoalar globals given unit aimensions.

Kethod 1 is obviously more efficient from the point of view of parameter linkage. There are two advantages, however, of hethod 2,
(a) if the dinensions of any global non-scalar require to be altered it is not necessary to change these in each subroutine or function containing a reference to the particular non-scalar;
(b) COHRON statements need not be used, and this facilitates conversion of AFL to, for example, $A G G O L$ or PL $/ 1$ rather than FORMRAN.

Throughout the entire text Mathod 1 will be assumed, as this gives greater roedability of the generated code.

A second example shoming the usefulness of the ZFOINTM stack for nestica subscript:s is givon below.

EXAMFLE 1 (b)

Tre following code is genereted coxresponding to $A[B ; C[D ; E]]$ where \dot{A} and C are non-scalar; B, D, E are scalar.

```
            \(2 \phi=\varnothing\)
            \(2 \mathrm{ZB1}=\mathrm{ZPOTNT}(\mathrm{ZPT})\)
            ZFT \(=\mathrm{ZFT}+1\)
            \(\operatorname{ZINDX}(2 \mathrm{~B} 1+1)=B\)
    code
corresponding
to
ITNDX \((Z E 2+1)=D\)
\(C[D ; E] \quad \mid \operatorname{Zn} \operatorname{ton} X(Z B 2+2)=E\)
                \(\mathrm{ZB} 2=\mathrm{ZPOINT}(\mathrm{ZPT})\)
                    ZPI \(=2\) PFI +1
                        ZPOTNT ( ZPT ) \(=\mathrm{ZB2}+2\)
                        call starts ( \(\mathrm{C}_{\text {Names }}--\cdots\) )
CALL YITD1 (--- \(\mathrm{C}_{\text {NAMISS }}-\mathrm{Y}_{\mathrm{n}}-\cdots\) )
\(\mathrm{ZPT}=\mathrm{ZFT}-1\)
\(2 \operatorname{INDX}(Z B 1+2)=Y_{n}\)
ZPOINT \((\mathrm{ZPT})=231+2\)
```



```
CALE FITND ( \(--A_{\text {NAMES }}--y_{n+1}-\cdots\) )
\(\mathrm{ZPTI}=\mathrm{ZPT}-1\)
```

Arrays A and C are distinguished in the fing calls.

It can be seen that no information is lost arter the C array reference has been handled. Code production for the A array reference is resumed in the normal manner.

The stack pointer ZPT is increased when the symbol [is hanized and 1s decreased when the symbol] is handiled.

The function FIND plays an important part in the handiing of certain AFT. mixe, functions. These are:
(i) the reverse function
(ii) the monadic transpose function
(iii) the reverse function (applied along the first comordinete)
(iv) the ravel function
(v) the rotate function
(vi) the dyadic transpose function
(vii) the rotate function (applied along the first comordinate)
(viii) the compress function
(ix) the expand function
(x) the take function
(xi.) the drop function
(xii) the compress function (applied along the firgt co-ordinate)
(xiii) the expend function (applied along the first co-ordinate)
(xiv) the concatenate function.

The reason for grouping these operators together can perhaps best be explained by example.

Conslder the following expression:

$$
4 \uparrow B+C
$$

(where B and C are veators).

An APL interpreter (i.e. one without an embedded "look-ahead" iacility) would access all the elements of 3 and C during the ' + ' operation. All but 4 of these elements would later be discarded when $i \uparrow$, gas dealt with. There is thus an inherent inefficiency in the above exprossion. This inefficicnoy can be remered by applyine a different type of acoessing technique in the function FIrD. To do this i.t is only necessary to apply a function to the required subset of ZminX and then use the nomal accessing method.

Considar also ϕ, where M is a vector of n elements. To acooss the $I^{\text {th }}$ element of $\phi i n$, the code

$$
\operatorname{ZINDX}(-\cdots-\infty)=I
$$

Is generateil, followed by a call of FDVD. However, in this oase the contents of $\operatorname{zINDX}(-\cdots)$ could first be changed to $n-I+1$ and the normal accessing method used.

Similarly, all the functions in the above group can be handled by altering the ralues of the appropriate zHiDX elements and applying the normel accessing method. The funcrion to be applied to ZIIDX (i.e, the relevant part of it) to produce the desired type or accessing is detomined by the first parameter of the FInD call.

In Chapter IV it is described how bracketing can be used to delimit tho soopo of an operetor and thus remove inefficiences. Briefly, here

$$
4 \uparrow B+C
$$

is bracketed as ($4 \uparrow(\mathrm{I}+\mathrm{C})$).
The scope of ' \uparrow 'extenas over the whole of $(B+C)$, The appropriate type or socessing can be applied to B and C during the ' + ' operation to remove the necessity for accessing all the olements of B and C.

The scope of an operator could not be so easily defined if reverse polish techniques hed boen used in the translation, (see Appendix 5).

An element of the result of $U \backslash V$ can be zero. This is indicatod uy setting the result of the FIND dall to n, where n is one greater than the number of elements of YSTOIR. Code is therofore produced to test the result of the FIND call for this condition.

If the ravel. operator (monediso comai) is applisô to a soalar, then a vector result is obtained. However, it is necessery to set up storage in YSTOZ: for the single element result. Such a result is incicated by having a negative value retumed from the FIDD oall. The velue roturmed is the negative of the index of the scalar in NAMES.

Thesc tests are carriod out immediately after the FIND call. They are present in eech call of Findy.

The functions UWHD, IRFIND, EVFIND, LFRND and SCFIND, mentioned previously, were written to allow for all possible operand types in hendling the 14 listed mixed functions.

The function Fild hes the following paramaters:
(i) the first paremeter is
(a) \varnothing if the normal secessing method is to be appliea,
(b) 1-14, depending on which mixed function (of tixe above group) is to be haniled;
(ii) the second paraneter is
(a) for normal accessing or for a monadic mired function of the above group ox if the left operand is scalar (in which case the third parameter represents a value (not on index in the armay NAMS)).
N.E. NAMBS is the character array where the characters comprising identifier names are stored. It is dessribed in Chapter II.
(b) the type value (see Chapter II) for the left operand if nonm scalar (in which case the third parameter is the Naws index for the left operand);
(iii) the third parameter is
(a) for nomel accessing or for a monadic mixed function of the above group
(b) a scelar variable name or constant
(o) the NAmS index for the left operand for dyadic mjxed functions of the above group);
(iv) the fourth parameter is
(a) a scelar variable name or constant
(b) the NaimS index for the right operand (for dyadic mixed functions of the above group).

The FIMD calls produced corresponding to B and C in $4 \uparrow B+C$ ere:

$$
\operatorname{FIND}\left(1 \phi, \phi, 4, B_{\text {index }}\right)
$$

and FIND $\left(1 \not D, \phi, 4, C_{\text {index }}\right)$
xespectively, where

$$
\begin{aligned}
& \mathrm{B}_{\text {index }}=\text { the index for } B \text { in NAMES }=B_{\text {NAMAS }} \\
& C_{\text {index }}=\text { the index for } G \text { in NAMES }=C_{\text {NAMES }}
\end{aligned}
$$

1.3 Essontial Initial Information

Information which a user must supply π fith his APH routine (s) falls into two categories:

1. The user must specify the output mediun for storage of the target language. This is done by specifying a value for the variedia IOPTNA. The value must be provided in G12 format. Table 1.3 (a) shons the values of TOPMON associated path particular output media.

IOPTON value	Output medium
ϕ	IIne printer
1	card punch
2	magnetic tape
3	magnetic disc
3	

TABLE $1.3(a)$: Shows IOPION values and the associated output media.
2. The user must supply a list of all the varienbles in his routine (s) which are non-scalar at their first occurreree. An indication must also be given of whether the variables are literal or numeric. The reason for this requirement is as follows. Suppose a nonmsalar variabie neme is uaed as an AFL function parameter. The type of the variable mey not be made apparent inside the function body. The parameter may thorefore be treated as a scalar (and incorrect code generated) unless the user explicitly declares it to be non-sealar.

The number of non-scalar variables being declared is first provided in to format. This is followed by a list of variable names in the formet of Diagram 1.3(a). The zero indicates that no adiditional dimension or bound information has been supplied. The list is scanned and, corresponding to each non-scelar variable name encountered, code is genergted to set up an entry in the dope vector table DoFss at run-time of the converted routine(s).

Initielly, only one block of space is allocated for eecli non-scaiar variable in the above Iist. This amount is increased or deoreased as required during the running of the converted program. At this stage entries are set up ir NAtris for all variable nomes appearing in the above list.

There are two cases in which an entry of the above form should not be supplied for a non-scalar variable. These are:
(i) If additional information is supplied, the entry will have instead one of the forms described in $\$ 1.4$.
(ii) If a variable is soalar initially and bocomes non-scalar later, no entry of the above form should be swpplind.

If no further finformation is provided for non-sociars, a certain amount of interpretation is essential. For example, to access am array element, 5 chain of $Z S T O P$ elements must first be inverpreted. If cicitionct information is provided for nonwsoalars, the olements can be stored in
contiguous blocks of ISTORY, thus reducing the amount of interpretation required.

Obviously, from the point of view of the execution time of the converted progren, it is better to provide as much additional information as possible.

1.4 Additional Input Ootions

As discussed previously, it is to the uscr's advantage to supply as much information as possible regarding his non-scalar variables. The user may be able to supply full dimension and bound information for certain nonscalar variables at conversion time. For other nonmscalar variables, however, he may only know the number of dinensions at this stage. It is possible that he will be able to supply the bounds for these variables at run-time of the converted routine (s).

Two adational input options are therefore available to the user. He can supply

1. the number of dimensions of a non-scalar variable with bounds for each dimension to be read in at run-time,
2. the number of dimensions of a ron-soalax variable with fixed bounds for each dinension.

The information corresponding to forms (1) and (2) above shouli be provided in the format of Diagrams 1.4 (a) and $1.4(\mathrm{~b})$ respectively.

When bounds and dimensions are spocified, these are assuned to be the maximuim bounds for the axray during running of tine converted routine. Thus the maximum number of elements of the artay is known. The number on dimensions and the bounds may differ initially from those suppiied. dhus,

Diagram 1.4(a) : Form of additional information supplied for a non-soalar with the number of dimensions know, but not the bounds.

$$
\begin{aligned}
I
\end{aligned}=\not \begin{aligned}
& \text { for numeric variable } \\
& 1
\end{aligned} \text { for literal variable }
$$

$$
N=\text { the number of dimensions of the non-sealar variable }
$$

$$
b_{1}, b_{2},---, b_{n} \text { are the bounds for each dimension }
$$

Diagram 1.4(b) : Forin of additional information supplied for a non-scalar with both dimensions and bounds given.
from the initial information code is produced to set up only the first 4 parts of the dope vector entry.

If full information is provided, the non-scalar can be stored in contiguous blooks of YSTORE. This eliminetes tine need for the timeconswang access method usod in the function FIND. The allocation of contiguous blocks of YSriORM could have been arranged at the time when initial information was processed. However, this would involve the insertion of an extra test in FIMD, More time would thus have been required to access non-scalars for which no additional information was supplied. This is best avoldea. A call of the function FIND is therefore produced for all non-scalar references and, where possible, this is replaced by a simpler eccessing function as an optimisation process.

Storage or certain non-scalars in contiguous blocks of YSTOR is arranged in a premoptimisation phase. It is done first for those arrays With full information given. With the bound iaformation supplied at runtime of the converted routine(s), (i.e. after optimisation proper), the same process can be applied for non-scalars with only partial information supplied initielly.

The following path is therefore taken.
(i) Read in initial infomation, process, store until (iii), set up Natits entries and produce code to set up (partial) entries in Dopsis.
(ii) Convert routins(s) to target language with FIND calls for every nonscalar reference.
(iii) Carry out pre-optimisation phase in which storage is arranged in contiguous blocks of YSTORE for those non-scalars with full information supplied.
(iv) Obtain bound information for the relevant non-scalars, A:zange these non-soalars in contiguous blocks of YSTORE.
(v) Replace ZIND calls by simpler sceessing function calls for all nonmscatars with more then the minimum amount of information supplied.
(vi) Optimise the gornerated code.
(vii) Run the converted progran.

Stages (iii) and (v) are discussed in Chapter VII. Stage (vi) is described in Chapter VIII.

At this stage an entry is set up in NAMES corresponding to each nonsoalar variable name, and code is generated to produce pertially filled dope vector entries. The rest of the infomation supplied is stored until required during the pre-optimisation phase.

The information temporarily stored at this stage is:
(i) the position of the nonwscalar variable name in the initial list,
(ii) the index of the non-scalar in NAMSA,
(iii) the dimension ana bound information in its original form.

The first stage of the conversion proper is a lexical scaming phase, which is discussed in Chapter II.

The order of submission of information for the translation routines is given belorm.

1. IOFTON value (G12 format)
2. Number of non-soalar variables, N (I6 format)
3. N cards with information as desoribed in $\$ 1.3$ and $\$ 1.4$.
4. APL routine(s) to be converted
5. Blank card, signifying end or input.

CHAPMER II

LEXTCAL SCANGNG RHESES

An AFL routine first undergoss a lexical. scan. Fiack line of the routine is processed as described beloy, and the relevent infonmation is stored temporarily on tape.

This scanning phase was inftially introduced so that niladic function calls would be recognisable as such during subsequent processing. For example, consider the following routines:

During processing of function $F N$, it is not knom that F is a niladic function. This information only becomes available when the second function definition is encountered. Since the coade generate⿴ depenas on the types of all idontifions, it is nocessaxy to scan eech inne in turn before the main lintobyine processing is carried out. This elininates errors resulting from incorrect types being associated with identifiers.

The lexical scaming phese is genemply useftul as it simplifies the subsequent processes. In particular, it greatly simplifies the rightomon
laft scanning phase, whioh is discusseß in detail in Chapter III.

The actions of the lexicel scanning phase may be summarised as follows:
(i) All blank oharaoters are removed.
(ii) Then an identifier name is encountered for the first time, an entry is set up in the character array NMRS. The form of such entries for different identifier types is desoribed in $\$ 2.2$. Thereafter all identif'ier names are replaceo by the appropriate index in the array NAUESS.
(iii) All other symbols not comprisirg ideatifier names are replaced by an integer value. Distinction is mado at this stage botyeen monadic and dyadic uses of particular symbols.

Bach line of the APL code is scanned from left to right. Tests are first made for ocourrences of the following symbols:
(i) the lamp-comment symbol
(ii) the 'del' symbol.

The antions carried out on recognition of these symbols are described in §2.11 and §2.12 respectively.

A test is then made for the oocurrence of a symbol which can start an identifier name. When such a symbol is met, each charactar in turn of the identifier name is stored temporerily. After a complota identificr name has been decoded, the array NABLS is accessed. The method of accessing NAMES is also discussed in $\$ 2.2$. If no entry already exists in NAms for the identifier nome, a new entry is added to the end of Nams.

The processed APE line is stored in the character array NOLINE. Correspondins to each identirier name, a 2-byte entry is added to NOLINE.

The entry represents the NACHS index for the identifier name. NALGS hes 5008 locations and, therefore; two bytea are surficient to store the index for any identif'ier name.

A single entry is set up in NARiES corresponding to constant veotors, for example 345 in

$$
x \leftarrow 345
$$

Constant vectox NAliES entries are disoussed more fully in $\$ 2.1 \varnothing$.

The handing of other symbols is less straightforward. All symbols are distinguished initially with the aid of a symbol table, which is discussed in §2.1.

The symbol table is arranged such that all dyadic operators are grouped together at one end, and all monadic operators are grouped later, with symbols which can be either monadio or dyadic appearing between. Letters, digits and special symbols follow the adove three groups. Thus the address of a symbol fn the symbol table can be used to determine the group to whioh the symbel belangs.

AFS operators are later hendlad by the expansion of macros, as described in Chapter V. In general there is one macro for each operator, although a fer operators (for example, t, $-, x, \div, *$) are grouped togethan and dealt with using a single macro expansion.

One method of handing each operator would be to roplace the operator by a macro name and maintain a set of pointars giving the start address of aach macro body. A more efficient mechod is employed here. Each operator has an associated macro numbor (not a name). The macro mumer is used to access a table, MCADDR, where the start adoresses of the mocro bodies are stored. Thus, for example, if ' + ' has macro number 21, then MCADDR (21)
gives the start aderess of the macro body for ' + ' .

The above method eliminates the nocessity to store a number of macro names in a table.

Operators are replaced in NOLNE by a t-byto entry representing the required nacro number. In fact, the entry gives the negative of the macro mumber, so that identifier and oparator entries can be distinguished. (The second byte of an identifier entry may have a 1 in its leftraost; bit position fand thus be nogative) but it will always be precoded by a positive entry. NAMES indices must be $<5 \phi \phi \phi$, whion is $<2^{15}$. Therew fore the first part of an identifior ont;ry will be positivo.)

Identifior entries are stored in MOLIME with the iwo paris reversea, the reason being that the right-most (positive) part will be encounvered first in the subsequent right-to-lef't scan.

Monadic and dyadic uses of the same operator are detected during this scan and the appropriate entries are generated in NOLINE. This is based largely on the fact that, iff an operator is used in the dypdic sense, it will be preceded by an identifior or) or].

A similar test is used to distinguish the use of the symbcl $1 /$, in u / v (where u is a logical vector) and f / x (where f is a dyadic, operator). Nwo different entries are set up in NOLNE corresponding to '/' in the above expressions. Similarly for the symbol 'f'.

Distinction is also made betmeen the symbols ' \square ' ana ' \square, used for input or output purposes. It these symbals are used for output, they always precede e left specification arrow, A test is made for this occurrence. In the test is satisfied, then an entry is set up in NOLIN for ' \square ' or ' \square, but not ior the left specification arrow. Ineus,
$\square \leqslant A$
generates entries in NOLTME for ' $[$ ' and A onily. the above expression is then regarded as the monadic operator \square operating on A.

If the test is not satisfied, then an input use of the symbols is intended. A different entry for \square or $\square \square$ would be set up in NOLIVE for this oase.

The symbol '.' is also used in a variety of circumstances. It can appear in
(i) a constant identifier name
(ii) an inner product (iii) an outer product The three uses are distinguished at this stage. In the case of outer products no entry is placed in NOLINE corresponding to the symbol ${ }^{\prime} .1$. The preceding symbol ${ }^{1} o^{\prime}$ is surficient to distingtish the occurrence of an outer product.

All the other symbols are replaced in NOLINS by an entry giving the negative of the appropriate macro number.

A table of information on APL symbols is given in Apponaix 2. The method of distirguishing all the AFL sjmbois is discussed in §2.t.

Several values are stored on tape, together with NOLINE. These are values which are required in subzequent scanning phases. They inciude NOLPTR, which gives the number of entries in NOLINE for a partioular APL line. Others are TFWNCT, IEXP and IFNI, whose functions are described In Chapter III, \$2.1.

2.1 The Symbol Table and Its Method of hocess

Symbols are first obtained in Z-code form. However, similar sets of synbols (such as the dyadic operators) camot be grouped conveniently according to z-oode values. For this reason, a symbol table is maintained in which convenient sets of symbols are grouped together.

The syabol table is a one-dimensional array ISMBBT, $16 \not \varnothing$ characters in length. It contains the z-code representations of all the legal symbols in the APL language.

When a symbol is decoded a function is performed on the z-code value. This produces the first address, I, to be accessed in ISNABI. If the decoded symbol value equals ISNOBT (I), then the variable NADDR is sot to I. Othernise successive addresses of ISMCBr are accessed, starting from I, until there is a match. The correct address is then stored in NADDR.

Operators oan be:
(i) dyadic
(ii) monedic
(iii) dyadic or monadic .

The group to which a particular operator belongs can be determinod from the value of NADDR, for example:
(a) $N A D D R=1-2 \phi$ for purely dyadic operators
(b) NADDR = 21-38 for operators which can be either monadic or dyadic
(c) $N A D D R=39-43$ for purely monadic oporatiors

In addition, the following groups can be distinguished:
(d) NADDR $=44-52$ for delimiter:
(e) $N \angle D D R=53-128$ for symbols whioh can start identifier names (Ietters, Δ, Δ, digits, decimal point, overbar, (hilgh minust, blank and quote)
(f) $\mathrm{NADDR}=121-123$ for remaining symbols (colon, del and locked del). Within each of the groups (a) to (f), symbola appear in the synbol table in increasing order of z-code value.

2.2 Idontifier Names and the NAMS Table

A copy of all identifier names encountered is stored in the array NAMES. The identifier nemo is thereafter replaced by the appropriate index in Nades. The characters comprising identifier names cen thus be re-acessed when requirad during the code production stage.

Identifier names must start with characters of the following types:
(i) a latter or a digit
(ii) a letter understruck
(iii.) the charaoters ${ }^{\prime} \Delta 1$ or \quad ' Δ '
(iv) the charactors ${ }^{1-1}$ or ' ' '

If any of these symbols is decoded, successive characters oomprising the identifier name are stored in NASE, a 300-byte array. Por literal identifiers, the enclosing quotes are first removed and double quotes inside the string are replaced by aingle quotes.

The elements of a constant vector are stored in NA:ME with a blank character separating each element. A blank character also terminates each constant vector.

When the entire identifiter has been decoded, the non-zero charecters in NAME are compared in turn with the relevan'd parts of each NAMES entry
of the same length and type. This process is repeated until either
(a) a blank entry ia reached in NATHA, or
(b) a match is found between a NASES entry and the contents of NANS.

The occurrence of' (a) signif'ies that this is the first time the identifier name has appeared in the APL routine. A new entry is then set up in NAMES for the identifier. The form of the NAXS entry is givon in Diagram 2.2(a). (The type of the blank entry reached shoula be tested as an empty literal vector will have a blank in the relevent port of the NAMBS entry.)

The ocourrence of (b) indicates that the identifier name has already appoarod in the routinc. A previous occurrence of the identifier name is only confirmed if the type of the entry in NAME equals that of the entry in Nands.

It can be assumed that all variable names start with the permitted characters, since only working APL routines will be converted.

Table 2.2(b) gives the possible type values for all the identifier types distinguished.

TYEA OF TDENTIFIGR	TYPD Valius
Non-scalar variable name (numeric)	1
Scalar variable name or constant	ϕ
Literal (variable or constant, scalar or non-scalar)	-1
Function name	-2
Empty vector or array	-3
Label name	-4
Constant vector	-5

TABLE $2.2(\mathrm{~b})$; Shows type values for difiomont types of identitiler.

$T=$ the type valua associated with the identifier name $N=$ the number of characters in the identifier name

These two pleces of information are followed by the aotual characters comprising the identifier name. T and N are in dectral ; the characters are in Z-code form.

Diagram 2.2(a) : A typical NAMES entry.

An APL identifier name can be from 1 to 77 charecters long. Using the above method, only ($k+2$) charscters are required to store the identificr name, where k is the number of characters in the identifier neme. Wris avoids the wastage on space which would result if the maximum number of characters was allotted for each identif'ier name.

Storage of the number of cheracters in an identifier namo also makes it possible to scan quickly down NGRES to search for a particular identifier name. An identifier name is only stored in NAMES once, regardless of the number of times it ocours. However, two distinct entries would be set up in NAMES for the identifiers A and 'A'. The former would have a type value of \varnothing or 1 , and the latter a type value of -1 .

Constant vectors require no permanent storage in the array YSTORE. For such identifiers, the second element, N, of the NAMSS entry gives the number of characters required to store both the constant and its associated blenk entries. Constant vectors are again discussed in $\$ 2.1 \varnothing$. $\$ 2.3$ to \$2.10 describe the treatiment of different types of identifiers.

2.3 Numeric Variable Names (Scalar and Non-scalar)

Diagrams 2.3(a) and 2.3(b) illustrate the NAMS entries which would be set up for the non-scalar variable name MAGARET and for the soslar varieble neme JACOBS respectively. Additional action is taken for the non-scalar variable name as described in Chapter I.

Certain identifier nanes are introduced during conversion of an API routine. This is necessary, for example, in handing the looping operations implied by $A+B$, where either A or B (or both) is nonscalar. The arrangement is such that integer variable names introduced start with ' Kl^{\prime}; real veriable names start with ' Y '. Thus $Z 1$, $Z 2$, etc.

Diagram 2.3(a) : Shows entry for non-scalar variable name MARGARRT in NAMES. .

Diagram 2.3(b) : Shows ontry for scalar variable name
JACOBS in NALES.
are used for integer variable names; Yl, Y2, etc., for real variable names.

In order to avoid duplication of existing variable names, the following etrategy is omployed. Variable names sterting with 'Y' or 'Z' are *". altered to start with 'YY' or 'YZ' respectively.

FORTRAN variable names may not start with $\Delta \Delta$ or ' Δ ' or with a Ietter understruok. APL variables starting with these characters are therefore altered to start with 'Y申', 'Yl', and 'Y2<letter>' respectively. For example, $A B$ would be altered to $Y 2 A B$. The name Δ should be altered to ILDBL , say, to avoid confusion with the generated real variable name $Y l$.

It is also necessary to shorten long variable names to comply with the rules laid down by the target language. At the same time uniqueness of identifier names mast be retained. This is arranged in the following way.

A vector is set aside with one element to represent each letter of the alphabet. Each time a numeric variable name ia decoded, an entry is set up in the vector. The element corresponding to the initial letter of the Identifier name is set to 1 . Thus, after scanning the entire apl routine (or set of routines) the vector is searched for zero entries. These entries give letters which have not been used to start identifier names. Such letters can then be used to start any shortened names. There will then be no confusion with existing names.

In the rare event of there being no zero entries left in the vector, it ie still possible to scan NAMBS for a combination of 2,3 , etc., letters Which have not been used to start identifier names. The searoh would atop Then a unique combination of lettexs was found.

The method originally omployed for reducing long nemes is outlined below. Consider, for example, the variable name A1234567A. If it is
known that no identifiers start, with ${ }^{\prime} B^{\prime}$, then the name can be shortened to BA12j4 without destroying the miqueness oriterion.

All further occurrences of A1234567A must be reduced similaxiy, and thus 'B' has to be associated with the identifier name in sone way. However, the vector element corresponding to ' 3 ' mast now be set to 1 , so that no other long names will be shortened to start with ' B ', as this could also upset the uniqueness oriterion.

This method requires one spare letter for every long name to be reduced. Thus, if only a few letters are available, these can quickiy become exhausted. A method of avoiding this problem was therefore devised.

No reduction of long names cen be done until after the lexical scenning phase, since spare letters will not be known until then. If any one letter has not been used to start an identifier name, then this letter can be used to start all the shortened names. For example, jf^{\prime} ' X ' is spare, then successive long names can be shortened to $X 1, X_{2}, \mathrm{X} 3$, eto.

A table is maintained associating each long name with the appropriate integer, This is done as follows:m If ' I ' is spare, and $\mathrm{X}\langle\mathrm{n}\rangle$ (where $\langle n\rangle$ is any integer) is to replace A1234567A, then location $\langle n\rangle$ of the table will contain the index of A1234567A in NAOMS. Entries can be set up in the table as the names are encountered.

This method is still unsatisfactory if no spare letters are avails.ble. However, a far greater number of cases cen be handled beforo it is necessary to look for a unique combination of unused letters. The method ann be made foolproof by reserving a specific letter, say x, to start shortened names anc replacing each name starting with X by $Y 3 X$.... . This reftnement has not been done at present, but it could.be incorporated without much effort.

It should alsc be loorne in mind that no non-scaler variable names are reproduced on the output stream. (Non-scalars are mapped orito YSTORE.) These can also be used (if not too long) to replace long natse. The indices of the two names in NHMES would have to be associated. Long non-scalar variable names need not themselves be reduced.

2.4 Numeric Constants

The entry set up in NMMS for the constant 3.142 is illustrated in Diagram 2.4(a).

No restrictions are placed on numeric constants other than the practical limits set by the computer on phich the converted routine is to be run. For example, on an IBM $36 \emptyset$ machine an integer constant must have a value less than 2^{31}, since the word length of the computer is 32 bits.

Diagram 2.4(a) : Shows NAMBS entry for constant 3.142 .

2.5 Literal Constants

These are stored in NAPES with a type value of -1 . For example, the NATH entry for the literal constant 'AB' 'C' would be as shom in Diagram 2.5(a).

Diagram 2.5(a) : Showa NAMES entry for the literal constant 'AB'C'.

The enclosing quotes do not appeer in Nowis and the double quotes have been replaced by a single quote.

The literal constant " (signifying an empty vector) is treated similarly. The corresponding Waviss entry is illustrated in Jiagram 2.5(b).

Diagram 2.5(b) : Shows NAMES entry for the literal constant ' ${ }^{\prime}$

2.6 Literal Variable Names

If the APL progran contains a statement of the foxm
$z \leftarrow$ 〈literal constant〉
then Z is a literal variable name and its Names entry hes a type value of m. However, it is necessary to distinguish between a literal variable name Z and a literal constant with value 'Z'. For this reason a twodimensional table, LITBLE, is maintained. An entry in ITTBLE provides the following information:
(i) the incex (in NAHES) of the literal variable,
(ii) the index (in NAMES) of the literal constant currently associated with the literal variable.

LIHNLI is accessed sequentially.

Suppose a function has to be applied to a literal variable. The index (in NASAS) of the associated literal constant can be obtained from LITBIB. Then the iunction can be applisd instes to the appropriate constant to produce the required result.

The following process can be carried out to aistinguish between literal varisibles and constants. First, test for an entry in colum 1 of LITBIF equal to the index of the literal in NATBS. If no entry exists, the literal is a constant. Otherwisa, it is a literal variable name, The second column of the LTrBLis entry then gives the NAMES index of the currently associated literal constant.

No storage is set aside in YsTORS for liter'al vectors or arrays. These are stored in NABES in row-major order, Entries are set up for literel non-scslers (at run-time) in the dope vector teble DOPES and in the array ZBOND, which contains bound information. The DOPBS entry has two dunny values in columns 3 and 4 (since no storage is required for literals in YSTORE).

Suppose an AFL routine contajns a statement of the form $z \ll$ literal constant 1\rangle
and later there is a statement of the form
$z \leftarrow \quad$ Z, <li.teral constant $2>$.

Then, if <literal constant 2> is not equivalent to ' ', the new oonstant essociated with Z requires a larger NAMR entry. If is thus necessary to
(a) create a new entry in Narss giving the new value of 2 ,
(b) update column 2 of the LITBLE entry for z to point to the nov associated constant,
(c) update the ZBOFDS entry for Z.

Diagram 2.6(a) : Shows a possible structure of NAMES before garbage collection

Diagran 2.6(b): Shows the corresponding structure of NANES after garbage collection

If the above process is repoated a number of times, a garbage collection mechanism may be needed to retrieve unused space in NANES. Entries no longer required can be set to -1 . The second byte of hesder information (giving the number of characters in the identifier name) must, however, be retained. this is required so that NAuES will still be scanned properly.

Itre garbage collection procedure is only carried out if there is Insufficient space left in NAMES to add a new entry. Entries containing -1's in the character parts can be removed and subsequent valid entries shifted along. It is also necessary to update the NAMBS indices for valid entries which have been shifted along. Suppose, for example, that NAiES was set up as shown in Diagran 2.6(a) . Then, afiver garbage collection, the structure of Diagram 2.6(b) would be obtained.

A table is maintained to associate the correct NAMSS index with the non-scalar XY and all subsequent valid NAifit entries.

2.7 Function Names

These are stored in NAMS with a type value of -2 . For example, the NANES entry for the function name FN would be as shown in Diagram 2.7(a).

Diagram 2.7(a) : Shows NaMSS entry for the function name $F N$.

The treatment of function definitions is discussed in $\$ 2.12$ and in Chapters III end IV . Function calls are also discussed in Chapters III and IV.

2.8 Empty Vectors

These are produced as a result of expressions such aa $\mid \varnothing$, ' ', $\rho\langle$ scalar \rangle.

A variable nare whose value is currently an empty vector is stored in NANBS with a type value of -3 . Suppose an API routine contains code of the form

z	\leftarrow	χ
\vdots		
\vdots		
z	\leftarrow	z, x

(e)
(b)

Where X is an (ran) matrix. Then, when (b) is handled, an ontry has to bo set up for z in DOPES. The NAVAS ontry for Z must also be updated, that is, its type value should be changed from -3 to 1 . These changes take place at run-time of the converted routine.

2.9 Lisbel Names

These are stored in NANES with a type value of -4 . Each line in an AFL routine has an implied label nunber associated with it. Entries are set up for these implied label numbers in NAMEA. The method of associating a label nundex with every label name is discussed folly in Charter VI , The lebel number is used in the output stream wherever the corresponding label name appers. This process is required beoause FoRTRAN allows only label numbers, not label names.
2.10 Constant Vectors

These are stored in NARES with a type vilue of -5. Thus, for example, the entry in NAMBS for the constant vector

$$
3.142 .39
$$

would be as illustratod in Diacram 2.16(A) .

Diagrami 2.16(a): Shows WMES entry for the constant vector 3.142 .39

The number of elements of (as distinct from oharacters comprising) a constant vector can be obtained by applying the function NOJNV to the index of the vector in NAMES.

2.11 Commentary

When a comment is encountered in an APL routing, a temporary entry is set up in NAMES. Such antries have a type velue of m. After production of the comment line in the target language code, the NAMES entry for the comment is "removed" (by setting the relevant parts to -11 s) .

A new NaNS entry is set.up each time a comment is encountered, so that a comment entry in NAMSS can be "removed" when completely hanaled without testing for occurrences of the some cocment elsewhere.

A Nhusis entry for a comment always has the number of characters part set to 79 , i.e, the entire line (except the first character) is regarded as the operand for the monadic lamp-coment operator. Blanks in a comment line thus have no significance.

If necessary, garbage collection is used to retrieve space in NAMES. The method of retrieval is described in $\$ 2.6$.

2.12 Use of the ${ }^{1}$ DiL 1 Symbol

One of the first tests made on an APL input line is for the ocourrence of a 'del' symbol at the left-hend ond of the line. This can mean:

1. a function doPinition header statement,
2. a closing 'del' on a line by itself (signifying the end of a function definition).

For (2), a single entry is set up in NOLINS. This entry represents the negrtive of the closing 'del' macro number.

Function header statements deserve special mention. Entries are set up in NAMS for each identifier in a function header statement. The function or subroutine name has a type value of $\mathbf{- 2}$.

If a local variable name occurs, the fact that the name is locel to a speciffic routine is taken into accourt in setting up NAsIES entries. For example, consider

The variable X in function $F N$ is inaccessible during processing of function F. All referenocs to X in Punction F are taken to man the Local variable name X.

This is simulated in the following way in setting up NASTS entries. During the lexical scan of function FN, one entry is set up in MANES corresponding to X. During the lexical scan of function F, a naw entry is set up in NAMES for the loosl varisble neme X and the previous occurrence is "locked". That is, it is inaccessible during the lexiocl saan of function F.

When the second NAWS antry for X is no longer required (after complete processing of tae second olosing 'del' symbol), the relevant parts are set to -t's in preparation for garbage collection. The second NASES entry is thus "removed". The first entry for X must then be "unlocked".

Locking and unlocking is done as follows. Then a local variable name is encomtered, a new entry is set up in NATS. All previous ocourrences of the identifier name are locked by storing the appropriate NMHE indices in the axray $7 N L O C S$. During a scan of NATM, GNLOCS is searched if a
match is found. If an entry in FNLOCS equals the index for the matching entry, the search is resuned until an unlocked occurrence (one for which no entry exists in $\begin{gathered}\text { nirLOCS }) ~ i s ~ s o u n d . ~ I f ~ n o ~ u n i l o c k e d ~ e n t r y ~ e x i s t s, ~ t h o n ~\end{gathered}$ a new entry is addec to NASS.

To unlock an entry again, the oorresponaing entry in FNLOCS should be set to zero.

Now consider the exempla,

During the lexical scan of function FN, an entry is set up in NAMES for the local variable X. This entry is "removed" (by settirg the relevant parts to -1's) when the first alosing 'del' symbol has been pormpletely procesad.

Stmilarly, for the variable X in function F. After complete processing of the second closing 'del' Bymbol, no entries exist in NAMES for variable X. This is in accordance with the usage of the variable X.

Lrocal variable name indices are stored as they aro met in the array LOCAI. Thus, the appropriate entries aen be "removed" later when they ere no longor required. A seoond array, LOCS, is maintained to provide the number of entries to be "removed" at a particular time. For example, consjider

Then LOCS (1) is set to 3 and $\operatorname{LOCS}(2)$ to 5 . The differenoe between successive entries in LOCS gives the number of local variable names to be "removed" after complete processing of a particular closing 'del' symbol.

The locking and wlocking of local variables in this way is similar in concept to the use of the name-list table used in some ALGOL 6ϕ implementations, (see Randell and Fussell ${ }^{4}$).

A number of other values have to be stored to be re-accessed during the code generation stage. These awe:
(i) For functions only (not subroutines) the result variable index and the array name index must be refained. These are stored in array FNIND. Consider the function

where R, A and B are scalar. Then code of the following form is generated:

EUNCTION $\mathrm{FN}(\mathrm{A}, \mathrm{B})$... (a)
$R=A+B$	\ldots (b)
$\mathrm{FN}=\mathrm{R}$	\ldots (c)
YRITE $(6,170)$ FTN	\ldots... ${ }^{\text {a }}$)
100 FOH:AT (ix, G 12.6)	\ldots. ${ }^{(e)}$
RTiTURN	\ldots (${ }^{\text {a }}$
刲D	... (g)

By storing the appropriate variable neme indices at lexical scan time, lines (c) and (d) can be produced at code generation time.
(ii) If a specification arrov is detected in a function header statement, an indication of this nust be stored so that the corroct sode an be generated. For example, the code oorresponding to

∇A FN B

$$
R \longleftarrow A+B \nabla
$$

would be of the form

SUBROUMITE FIN (A,B)
$R=A+B$
REITURN
FIND

It is the absence of the left specification arrow fram the function header whioh results in the generation of code different from lines (a) to (g) above. The array NEXP is used to rotair an indication or the presence or absence of a left specification errch until code generation (macro expansion) time. Sntries on NEXP are:
(a) 1 for function header
(b) \varnothing for subroutine header.

Successive NRXP entries are accessed in turn during code generabion, ensuring that correct code will be produced.
(iii) Now consider a subroutine with non-scalar parameters. For example, ∇R IN A
$\mathrm{R} \longleftarrow \mathrm{A}+\mathrm{B} \nabla$
whero R and A are non-scalar, and B is a global scalar. Then the code generated is of the form

RETUTH
IND

The subroutine spics hendles the non-scaler specification. Corresponding to a call of the furction IN, for example

$$
C F N D,
$$

code of the following form is senerated:

$$
\begin{aligned}
\mathrm{ZF1} & =\mathrm{c}_{\text {index }} \\
\mathrm{ZF2} & =\mathrm{D}_{\text {index }}
\end{aligned}
$$

$$
\mathrm{FN}(\mathrm{ZF} 1, \mathrm{ZH} 2)
$$

where

$$
\begin{aligned}
& C_{\text {index }}=N A B S \text { index for } C \\
& D_{\text {index }}=N A M S \text { index for } D
\end{aligned}
$$

> SUBROUTRNE FN (ZF1, ZF2)
> 〈Start of loops for array access>
> OSLL FMND1 ($-\cdots$ ZF2 $\cdots Y_{n} \cdots$)
> $Y_{n+1}=Y_{n}+B$
> CALL SYECS ($\mathrm{ZFP1}, \mathrm{Y}_{\mathrm{n}+1} \cdots \cdots$)
> <end of loops for axray access>

From the above it can be seen that the position or a paraineter in the parameter list is important. The uso of ZF1 or ZF2 is determined by position in the parameter list. The indices of parameter nanes are stored in the array FNPADA preceded by an integer eivine the number of parameters ($(\varnothing, 1$ or 2) .. Thus, at the code production stage, arter lexically soanning a set or routines, the position of specifio parameters in a function or subroutine header can be obtained.

If a user or the converted subroutine $7 N$, above, wishes to call wr with parametors C and D, a knowledge of the NANFS indices for C and D is required. The contents of the array NARDS are made available to the user. Care should be taken, however, to ensure that NAdis is not, accidentally over-written. If the user can supply at conversion time a list of all the calls he intends to make of subroutine FN, then the se can be treated as a main program and converted to FORTRAN automatically. This would remove the necessity for the user to access NDMES. Such aotion, however, will not generally be possible. Entries are not set up in NOLINE for left spacification arrows, semi-colons or local variables appoaring fin a function header statement. Thus, for example, corrosponding to

$$
\nabla \mathrm{R} \leftarrow \mathrm{~A} \text { FN } \mathrm{B} ; \mathrm{C} ; \mathrm{D}
$$

entries would be set up in NOLINE for $\nabla, \mathbb{R}, A, F N$ and B only, Similarly for

$$
\nabla \mathrm{FX},
$$

NOIINS would contain entries for ∇, F and X.

CHAPPGR III

RTGHT-TO-TNPT SCAN: AMD IRODUCTION
 OR INTREREDIATE CODE

At this stage the contents of NOLINE, togetiner with certain other variakles, have bean atored on magnetic tape for each APL line supplied. The contonts of NOLJNE, corresponding to each APL line, are now processed in turn. The entire process involves:
(i) a right-tomleft sean of NOLNN End production of intermediate coile in the arrey NOODE,
(ii) a Ieft-to-right scan of NCODE with frequent iatermaptions to expand macros,
(iii) generation of code using a series of mecro expansions (the order of the expansions arranged in (ii)).

Stages (i) to (iii) are cerried out for one line in entirety berore the next line is considered.

A discussion of (ii) is deferred until Chapter IV, and of (jii) untint Chapter V. This chapter describes stage (i) in detail.

The object of this phase is to separate the APL code into its component sub-expressions. This is done in such a way that all macro expensions (corresponding to specisic operators) will be carried out in tho correct order in the subsequent phase. The priorities of the dFI operators will therefore be preserved, and code will be generated in the required order.

Since ari has a right-to-lsft syaten of operator priorities, tilis scan is carried out starting frow the right. Eraokets are introduced during this
saan in suck a way that the operator prioritios are preservel. For expaple,

$$
A \longleftarrow B+C * D
$$

is transformed to

$$
(A \leftarrow(B+(C * D)))
$$

during the risht-to-left soan. In the subsequent leftotorizht soan, therofore, the operators will be applied in the order *, + , \longleftarrow. The organisation of the macro expansions is described in Chapter IV.

At this stage the entire AFL routine (s) hes/have boen lexically scanned, and the output stored temporarily. Nach lexically scenned line is then re-accessed in turn, starting from the right. As each line is processed, an intermediate code form is set up in the array NCODF of 2% charaters.

The overall process so fax is given in the flow-chart of Diagram 3 (a).

Information may have to be added to either end of NCODE during the right-to-lefty scan, due to the insertion of bracketing. Hence, the production of intermediate code in NCCDE starts near tie middle and gradually extend. outward. (The actual starting position is $16 \varnothing$, , sinco most information is added to the left.) Two pointers IPPCR and RFPR mark the limits in each direction anc these are initially set to 16%.

The subroutine basio to the right-to-left soan is NCHAR. This stores the value of the next charactor in the variable ICHAR.

If LCHAR has a positive value, thon it represents tive lert-most part of en identifier index. Suppose, for example, that the variable \bar{X} has index 27 in Nangs. Then tio tyo parts of the entry must be reversed before they are placed in the intermediate oode, Tris is illustratea in Diagrana 3 (b).

Diagram 3(a) : Hlow-chart of processes described so far.

OUTHUT FROA LGKICAL SCANING PHASE (MOLTNE)

Diagran 3(b) : Shows the process carried out on an operand entry when traniaferred from NOLDRS to NCODE.
§ 3.1 doscribos the treatrent of a fers special aymbols during the right-to-Ieff scan. Function and subroutine rofergnees are disoussed. in §3.2.

Operator entries are transferred straight from NOLINE to the intermediate code.

Three distinct types of bracketing are introduced:

1. bracketing of monadic operations,
2. bracketing of dyadic operations,
3. bracketing of function calls.

Thus, for example, the expression

$$
A+B *-P N X
$$

Would be bracketed as

$$
(A+(B *(-(F N X))))
$$

Howevar, it can be seen that the number of j's on the rightwhand side can be gragt. Hence, a single entry is used to replace a large number of brackets.

Opening round brackets are represented in NCODE by the negative of the maano number for (. Single)'s are represented similariy,
facro numbers range from one to ninety-two. However, certain macro numbers (including numbers 84 onwards) do not oorrespond to specifie operators, see Appendices 2 and 3. Eight bits are used to represent an operator entry in NOLINE and NGODE. Thus corresponding to macro numbers 1 to 83, there will be entries in NOLINE ranging from 173 to 255. The left-most eight bits of an operand entry will always have \varnothing in the leftmost bit position, as NANES has only 50006 bits. No confusion will arisa, therefore, if multiple closing brackets are represented in NOLINE and NCODG by $(160+n)$, where n is the number of closing brackets (up to a maximum of 12). More than 12 closing orackets can be represented by multiple entries of the form $(16 \varnothing+n)$, where $n \leq 12$.

Special care must be taken for some symbols. These are:
(i) $[],,($ and $)$
(ii) ; inside square brackets
(iii) 3 outside square brackets
(iv) 1$]$ and 0 , inner and outer products.

$3.1 .1[],,($ and $)$

It is possible for a complete sub-expression, or set of sub-日xpressions, to appear within round or square brackets. Hence, it is necessary to leave a fem locations of NCODE empty so that)'s can be inserted if required. Consider, for example,

$$
(A+B * C)-E
$$

The above expression is bracketed as

$$
((A+(B * C))-E) .
$$

An extra closing bracket has been inserted here between C and).

The number of brackets to be inserted is, of course, dependent on the APL statement, and space has been left to insert up to $6 * 12$ closing brackets.

The values of the right and left pointers for $N C O D E$ are thus updated as follows:

$$
\text { RPTR }=I P T R-6
$$

$\mathrm{LPTR}=\mathrm{RPPR}$
(By altering (a) to $\mathrm{KPTR}=\mathrm{LFTR}-\mathrm{N}$, apace can be Left to insert up to N Closing brackets.)

The effect is represented pictorially in Diagram 3.1.1(a).

It is also necessary to store the original value of RPTR to enable subsequent closing brackets to be inserted in the correct place after the bracketed expression has been dealt with. For example, consider

$$
A+(B * C+D)-D
$$

The required bracketing is

$$
(A+((B *(C+E))-D))
$$

Production of bracketing is done in the following order:
(i) Obtain D and then . . Insert closing bracket miter D for . .
(iii) Obtain) . Reset LIFIA and RPR as descríbed above.
(iii) Obtain E and then + . Do not insert) artery E as) is already present.
(iv) Obtain 6 and then * Insert (for + beĩore c and) between E and) (Spaces have been left in NCODE.)
(v) Obtain B and then (. No need to insert (for * as (is already present. Reset RPMR.
(vi) Obtain + Insert + (in Acis. The (corresponds to bracketing of the * operator and its operands. Now insert) for Ieft-most + symbol. Note that this) is insertederter D) and not after r^{F}, since RFIR has been reset to its previous value.
(viii) Obtain A. Now insert (A in MCOD for the left-niost + .

Interitediate code will now be produced Iron posititon M-6 downwards, with brackets (possibly) inserted in locations

Further elosing brackets may have to be inserted after position N when the whol.e bracketed $M-6$ to $M-1$

> Diagram 3.1.t(a): Shows the repositioning of the pointers IFTR and RPTH for NCOBa when a) is encountered.

Diagram 3.1.1(b) : Shows stages of production of intermedtate code for the expression

$$
A+(B * C+E)-D
$$

Diagran 3.1.1(b) shows the contents of MCOS for stages (i) to (vii) adove.

In fact, a stack of aErfe raluas has to be mesintained to allow for nesting of braoketea expressions. A value is stacked ohen) or $]$ is recognised, and is unstackea when the corresponding (or $[$ is obtained.

Any locations of NCODE lett unused $\mathrm{b}_{\bar{y}}$ the above method are set to $1 \in \mathbb{K}$. This distinguishes them both from identirjer indices (having value <127 in the lefimost hale) and the negatives ô macro numbers. Such entries gre ignored jin the left-towright scan of NCODE.

3.1.2 Semi-colons insjde square braciets

Semi-colons axe used inside square brackets to separate the subscript expressions. Since the subscript preceding a somi-colon cen be an expression, it is again necessary to leave space for possiblo insertion of clozing rourla bracksts.

The rumber of ssiri-colons encountered in this way has to be counted so that the required number of PPR values will be unstacked when $[$ is obtaineA. The number of values to be unstacked in this case is $(1+\pi)$, where X is the number of somi-colons enoountered.

Agein a stack of somiwcolon bounts is maintained to allow for nestine of subscripted variadies.

3.1.3 Semi-colons outside suure brackots

Semi-colons are used outzide square brackets to separate the componexts of a heterogeneous output statement. (Ineir other use, in function or subroutine deanitions, is disoussed in §3.2) , Again it is negessary to leave space in NOOD to the left of the semi-colon to allon)'s to be instrited there. Consider, for example,

$$
\mathrm{C}+\mathrm{A}[3+0] ; \text { 'IS 'j "Cs }
$$

The required bracketing is

$$
\begin{aligned}
& \text { space required for insertion of }) \text {. }
\end{aligned}
$$

In this sase, however, the rich' poirien is not reset man another semicolon is obtained, as no further bracketing is reglaze to the right of we semi-colon. Thus, the stack of rani values need not be upgraded. However, this stack is updeteă in the normal way when [and $]$ are obtained.
$3.1 .4 \square, \square$, Inner and outer orocupts

The handing of all, these operations is much simplified by the action of the lexical scan.
\square and [J have already been distinguished in their uses an input or output operators. Used for output: \square and \square are no f treated as ordinary monadic operators.
[] and [T used for input are bracketed as operands, but stored. as operators, (ie. a 1-byte negative entry is places in rooms). For example,

$$
B \longleftarrow \square
$$

is bracketed as $(B \leftarrow \square)$, whereas

Inner and outer products have also been detected during the lexical scanning phase. Thus, for example, $A \rightarrow A^{*} X$ and $B o .+Y$ are bracketed as $(A+\ldots X)$ and (Bot) respective ny.
43. other multiple uses of symbols have been distinguished during the lexical sconniag phase and hence present no problems during the rightto les't scan.

3.2 Function and Subortine Rererences

These can bo aivided into tryo groups:
(i) function and subroutine definitions
(ii) Âunction and subroutine calls.

The actions required for (i) and (i) above are discussed in $\$ 3.2 .1$ and §3.2.2 respectively.

3.2.1 Function and zubroatine definitions

If a function or subroutine definition is encouncexed during the lexical scanning phase, the variable IWHOT is set to 1 . The value on this variable is stored with the other lexical scan output to be reecoessed line by line. The values of the varjeoles live and InN are also gvailable. Twze has value 1 for a function definition header statemert and value \varnothing for a subroutine definition header statement.

IFNI gives the number of variable names encountered in a dufinition statement, excluding local variables. Thua, for example, Tris has value 3 for $\nabla \&$ FN $B ; C$ and value 4 for $\nabla R \leftarrow X P X Y$.

The treatment of looal variables in a function or subroutine definition statement has been described in Chapter II, §2.12. Local variable nomes are not present in MOLME (corresponding to a header statonent). Simularly, the synabo..s ↔- and ; have been removed.

Tuus, it is oniy necessary to insertl brackets round the romainder of the expression. The symbol 'del' used jinfunction or subroutine definitions is therunter freated as an operator with a variable mumber of operends, for examplo,

$$
\nabla A \leftarrow B \text { F } \quad \mathrm{B} ; \mathrm{D}
$$

is bracketod as

$$
\left(\begin{array}{llll}
\nabla A & B & \text { IN } & C
\end{array}\right)
$$

while,

$$
\nabla x \quad x
$$

is bracketed as

$$
(\nabla F \quad x)
$$

The varigble TExp is tested during expansion of the oponing 'del' macro to determine whethor the oode

FRISTION - -
or

STBliOtrinit - - -
has to be jroduced.
3.2.2 Function and subrout ine calls

These are txeated es multiple operands and are bracicetad during production of the intermediate code. For example,
$0 \longleftarrow A+F N X$
is bracketed as

$$
(C \leftarrow(A+(\operatorname{HN} X))
$$

No distinction is made at this stage between function and subroutine calls.

3.3 Function Boaides and Puntion Paremotors

Function or subroutine bodies are treased an the normal way except that the variabie MEL is set to 1 iff a closing 'del' is obtained. It does not appear in the intermediate code, but is tested when a. ling has been completely processed to determine whether the closing 'del' macro has to be expanded.

If a function parameter is jitself an expression, the expression is dealt with in the usual may. Thus, for example,
(i) ($A+B$) FiN C is bracketed as ($(A+B)$ PNC)
(ii) A FMM B+C is bracketed as (A $F N(B+C)$).

In the case of (i) it must be rememberci that the number ot identifiers obtained before $(A+B)$ was 2. This is necessary to keep the bracketing correct. To organise this, estack is maintained with velues either of 1 , depending on whether the bracketed expression is the left pargater of a function call. The stack is necessary to kandle nesting of brackoted parameter expressions. For example,

$$
((A+B) F N C) F X
$$

A similar situation applies for subseripted left pararnctor;

3.4 An Rxamp?e

To conplete Chapter IJI, an example is given showing the conversion of a Inne of ArL code to intermediate code form.

EXAMPL 3.4 (a) .

Consider the AFJ statersent

$$
A \longleftarrow B\left[C+D^{x} E\right] \text { IN } X \text {. }
$$

The APL line is first read into the array LITS end then scanned from left to right. During the lexical scan, entries are set up in NAMB and NoLIS as described in Diagrarn 3.4(a).

It has been assumed that
(i) B is non-scalar, FN is a function name and all the other vaxiables are scalar,
(ii) i $+19<128$ (making the other part of the operand entry zero).

The variable NOLFTR now has velue 19. The array NOLINT, together Fith the values of variables NOLPPR; IFUNCT, IEXP and FINY are now stored until the entire source input has been lexically scanned.

When reaceessed later, the array NOLINE is soanned from the right ard the intermediate code shom in Diagram 3.4 (b) is generated in NCODE.

In fact the variable names vould not be stored sequentiaily in Niws as some of these entries must have been encountered previously.

A comparison of the bracketing gethod and the reverso polish method is given in Appendix 6.

The most signdficant charecter of the oparand entries in NoLINE is at the right.

Diagram $3.4(a): S h o w s ~ t h e ~ e n t r i e s ~ s e t ~ u p ~ i n ~ N A M E S ~ a n d ~ N O L I N E ~$ $A \longleftarrow B[C+D * E] \quad F N X$

176

Diagram 3.4(b): $\begin{gathered}\text { Shows the entries set up in NCODE } \\ \text { corresponding to }\end{gathered}$
$A \longleftarrow B[G+D * E]$ $N X$

CIIAPJPER IV

The object of this phase is to expand a series of macros, the order being detamined by the brackets inserted during tho previous scan.

Macros are mainly expanded on recognition of a closing round bracket, although there are a fen macros winch require imnediate action. These immediate action macros are discussed in detail in $\xi_{4.3}$.

During this phase also, some information is produced on a stack. The stack is accessible froin the macro bodies by means of the macro instruction ? $\langle n\rangle$, where $\langle n\rangle$ is any intcger $\leq 5 \varnothing \not \subset$. ? $\langle n\rangle$ accosses the 〈 $n\rangle$ th position of the stack, staxting Irom the current base level. The organisation of the stack is described in \$4.1.

The character array NCODE contains the intemediate code produced furing the right-to-left scan. This coむe is now scanned from leftitomight and information relating to operands and operators is stacked in the manner described in $\{4.1$. The pointers RPTR and LPTR define the positions to be accessed during this scen.

The symbols (and) are used to bracket 3 djstinct types of expressions. These are:
(i) ayvadic operator subomexressions
(ii) monadic operator sukwexpressions
(iiii) function ceills.

As was discussed in Chapter III, all operators have been repleced by by the negatives of their macro numbers and all operands by the indices of their NAES entries.

In the case of (iii) above, the operand indicos appear in the same order as the identifiters were used in the source text. The operands could, of course, be expressions, in which case tiey would fall individually into one of the categories (i) to (jiii) above.

Subwexpressions of types (i) to (iii) can be combined in any order.

Groups (i) and (ii) can be distingushed by examining the necro number. Group (iii) is distinguished from the others by the absence of an operator entry between the brackets. The organisation of miscro oxpansions is described in \$1.2.

4.1 Organisation of Stacked Information to be Used at
 Macro Expansion Time

Information relating to operands and operators is storea on a doubleended stack IDSIK, having 506 half-words. Entrics relating to identifiers are stored at one end of IDS'ck and information pertaining to opewators at the other. This is illustrated in Diadram 4.1(a).

With the exception of operators requiring imnadiate action, an entry is placed on IDS'R each time an operator or delimiter entry i.s detected in the scan of $\mathbb{N C O D E}$. The entry to be stacked is the maoro numor for the operator or delimiter.

When an identifier entry is recognised duriag the left-to-right seen, the MABS index for the identifior is stacked on TDSTK.

In general, there will be nesting of the sub-axuressions oorrasponding

IIPN'R is stack pointer for the operand end of IDSTK IOPTR i.s stack pointer for the operator end of IDSTK

Diagram 4.1(a) : Shows the method of storage of information on IDSTK.

Diagran 4.1(b) : Shows a possible steck formation for operand entries in a nested sub-expresstion.
to an input APL line. Thus, there may be several sets of operand and operator informetion on IDSTK at any time. This eauses no confusion for operators, as it is only necessary to stacin a new operator entry when required. However, confusion can arise in the case of operand entries, for the following reasons.

Suppose operand and operator entries are stacked as they occur until a closing round pracket is àetected. A series of macros is then expanded. There is an "oporand" macro which, when expanded, will produce the required coode for an operand, depending on its type velua. The index of the operend fror which code is to be generated by the operand.macro expension has previously been stackud on "IJsrix, together fith sone further information relating to the operand, This information is discussed in §4.1.1 and may involve a variable number of locations of IDSTK.

If a dyadic operator submexpression has been decoded, then expension of the operator macro is preceded by two expansions or an operand macro, one for each operand. For monadic operator sub-expressions there is one expansion of an operand macro followed by expansion of the appropriate operator macro. (Breketed function calls are discussed in \&4.2 .)

When code has been generated for an entire sub-expression, operator entries are merely unstacked from IDSTX. Operend information is replaced by fnformation for the result. Since the amount of iniomation to be repleged is variable, confusion can result in the placing of the result information. This is to be avoided, as the result information will be used as opsrand information during any further expansions of the operand macro. The methot of avoiding such errors is discussed below.

A pointer IDLPRR i.s maintained to snab?e only the relevant pert of the operand information to be scoessed st any time. IDLPPr is initislly
zero. The start of a new nested sub-axpression is detocted by the presence of an openjing bracket in tho intermediate cocie. The methoa of separating the new sub-expression from the previous one is as follows:

1. the value of IDIFPR is stacked in the operand part of IDSTK
2. IDIPPTR is then updated to the value of IDPIR.

Thus, if IDSTK (IDLPR) is accessed later, the previous value of IDLPIR can be obtained. A set of backard pointers for TDSTK is thus produced. These pointers define the start of tie relevant information for specific sub-oxpressions. The appropriate oparand information is thus always obtaineble at macro-expersion time. The starting position for the placing of result information is also known.

After a complete submexpression has been dealt with, IDLPiR is set to its previous value (given by IDSTK (IDLPTE)). The stack pointer IDPMT is first reset to the old value of IDLiFTR and the result information placed in this position. The stack pointers are reset and the rasult informetion stacked in the following order:

1. $\operatorname{IDPTR}=\operatorname{IDLPIR}$

2. IDSIK $($ IDPIM $)=\langle$ result infomation>.

This is illustrated in Diagram 4.1(b) . Aeter dealing with the suboxpression whose operand information is on top of IDSTK, the pointers IDPR and CDLPPR are reset. $I D X D R$ is set to P, the valus of IDHPTR, and the result information is placed in IDSTK (P) . IThe pointer IDIFPR is reset to n, given by IDSTK (IDLPIR). Thus operand information will continue to be aded from the ourrent base level of the steck (now n).

A further illustration is given in $\$ 4.6$, where a complete example is workea. through.

4.1.1 Infornation stacked before the operand macro is expanded

Operands are handled in the following way at macro expansion time. The NAMES index for the operand is obtained from IDSrk. This index is used to provide more information relating to the operend. The fom of the information varies for different typos of operands, as discussed below. All information is placed in consecutive locaiions above the current base level of IDSTK.

4.1.1.1 Scalar operands, labol names, niladic function names, numeric non-scelars, literals and empty vectors

The information stacked for operands belonging to this group is described in Diagram 4.1.1.1(a).

IDSTK (IDIPCR + 1) contains the index of the identifier in NAMES. This ensbles the identificr name to be reproduced on the output code.

IDSIK (IDIPIR + 2) contains the type value for the operand. This enables all the members of the group to be distinguished.

Diagram 4.1.1.t(a) : Shows the form of operand information stackad an scalars, labels, niladic functions, numsitic nonscalars, literals and empty veotors.

4.1.1.2 Constant vectors

The information stackea for openands belonging to this group i.s illustratea in Diagran 4.1.1.2(s).

IDSTX (IDLPTR + 1) again contains the index of the operara in NNALS and IDSTK (IDLFIR + 2) provides the type value.

IDSTK (IDLEPR + 3) contains the number of elements of the operant. This is the only oaso in which the bounds for a non-scalar are known at this stage.

$\mathbf{n}=$ the number of elements in the constant vector.

Diagran 4.1.1.2(a) : Shows the form of oporand information stacked for constant vectors.

4.1.1.3 Intermediate results

The sinple structure illustrated in Diagran 4.1.1.3(a) is used for storage of intermediate result infomation.
'Whe entry $-1 \not y$ descrves special mention. For all other types of operazis, a NHmS irdex is stacked on JDSTr. However, indormediste results are not stored in Natis and they may appear as operands. A negative entry is used in place of a positivo linch index to distinguish intermediate rosults from all other operand types.

IDLPRR

Diagram $4.1 .1 .3(a):$ Shows the form of operand intormation stacked for intermediate results.

4.1.1.4 Monedic function and subroutine refexences

The information steoked for such operends is illustrated irs Diagram 4.1.1.4(a).

IDSTK (IDLIMR + 1) contains the Mares index for the function name. Successive looations contain information for the function parameter, these entries taking one of the otiner forms described. (ivo sew base level is crested between the function name index and the paraneter information.)

> Diagram 4.1.1.4(a) : Shows the forn of intornation stacked for monadic function and subroutine references.

4.1.1.5 Dyadic function and subroutine references

The information stackod for such operanas is illustrated in Diagran 4.1.1.5(a).

For operands belonging to this and the preoeding group, the stacked information is used to parduce a fanction or subroutine call.

4.1.1.6 Suad and Ruote-Ruad inout

This case hes been included for gererality. Consicer the AfL statement

$$
\mathrm{A} \longleftarrow \mathrm{~B}+\square
$$

Kere the "opsrands" for s are \bar{i} and \square. The \square symbot in an indication that the rigit operand for + is to be obtained at runtime. This in

Diagram tr.1.1.5(a) : Shows the form of stacked information for
hancled by placing a -2 entry on IDSTK corresponding to [].

When the + operator is to be hendled the oporands are dealt with first and the -2 entry is detacted. Ihis indicates the presence of quad input and the appropriate macro is expanded to read in data. The data obtained is then used as the right operend for + .

Similerly, quote-qued input is indicated by placing a -1 entry on the identificer part of EMSTK.

4.2 Organisation of Yagro Exeansions

It is necessary to distinguish between bracketed sub-expressions and bracketed function or subroutine calls at macro expansion time. The following method is used.

For each level of nesting an indieation has to be stored of the presence or absence of an operator detweon brackets. A character stack TBITS, with stack pointor IBIrl, is therefore maintained.

Since an opening brackot indicates a new level of nosting, IBIN is incremented by 1 when (is recognised.

If an operator entry is oncountered, IBTTS (IEIT) is set to .TRUN. . Wen a closing round bracket is obtained I3ITS (TSIT) is tested. If its value is found to be .TRUX, a submexpression involving an operator has to be handled. Othervise a function or subroutine reference has to be produced. After dealing with the oracketed expression, return is made to the previous level of nesting and IBIT is decremented by 1.

When output code is being procuced, it is acoumuleted on an array $M T M \mathbb{P}$ of 80 characters. If a line of code has been completed, the contents of MIEAP are transferred to the output stream. Intemediata resuat code generated at macro-expansion time is stored in the array lrcup. It can thus be remobtainod to be used as an operend for the neat operator macro to be expanded. MTAMP can also be used to accurulate the next line of code.

ITEA is a character array of $4 \not 00$ bytes, end i.t is used to store the code corresponding to each operand. There is a pointer TBPTR, which is used to chain dow ITwiP to obtain the requared operand. only the last two operands need to be accessed at ariy stage, since an APL operator has a maximum of 2 oparands.

ITMM (IBPMR) pointis to just beiore the start of the rightmost operarid. j'nis address in turn points to just befone tine stert of the mevious operand. The data structure used is described pictorjaily in Diagran $4.2(\mathrm{e})$.

IBPRX is thus a pointer sor a bactuard chajn, which enablas tho operants to be ra-secessed when required, Using the above method of storage anc access for opershos, it is jomaterial whether the operand is mil sdentifiex or an intermediate result.

Whon an intermediate result is placed in Trixp, a -10 ontry is stacked on IDSTK.

Diagram 4.2(a) : Shows the metrod of storage of intermediate results in IMFiIP.

For a submexpression involving an operstor, the ususi proceaure to be carried out when) is obta $\ddagger n e d$ is described below.

1. The apromiate operand information js steckeđ as described in §̧ 4 . 1 .
2. An "operend maoro" is expended. This uses the stacked information to produce the cole correspondins to ths operend nad store it in InMP.

Use of an operand mecre to produce code for oporands removes the necesaity to test identifiser types in the operator mecros. Hine operator mecro bodies aro consequently much simpler. Tho operand macros are used, depending on the operators to be hendled. These and other macros are discussed in Chapter V .
3. Steps 1 and 2 are repeated for a dyadic operator sub-expression.
4. The appropriate operstor macro is now expended. The required operands can be reprozuod on hTher by use of the macro instructions LO and RO . These provide the left operand and right operand respectively. The conpourà macro instructions FL and FR also access the operends and produce code of the form

$$
\mathrm{Y}\langle\text { integer }\rangle=\text { operand. }
$$

These are also discussed in Chapter V .
5. The code for the result is stored on ITMAP and the pointers IBIT, IDLPTR, IDPIR anci IOPMR are upāated.
6. A - $1 \varnothing$ entry is stackea on IDSTK and the left-toright sean continues.

For a function or subroutine reference, only steps 1,2,5 and 6 are oarrisd out.

At each stane, the current bound for the result are stored in the array ZCBNDS, from positions 1 to $2 C P T R$. Sincs the bounds can be updated dymaically, code is always produced to update ZCENDS at run-time. Ihis gives the user a check on the curment bounds of his progran at each stage during its execution.

The type of the result may also vaxy dynamieally (for exarole, ir the case of the statement

$$
\mathrm{x} \longleftarrow \square) .
$$

The variable MiPFAR is used to denoto the type of the result. The possible hanark values are the type values for the seven typas of opexand distinguisked.

The uses of the symbol.s [and] in expressions suci as
(a) $A[1] \quad$ and
(b) $+/[1] x$
are distinguished in the folloring way. In (a), the symbol [is inmed- . iately preceded by an oyerand (it could also be preceded by a closing round bracket, for example, in ($M,{ }^{\prime} \mathrm{MBC} C^{\prime}$) [1]) . This is not the case for (b).

A variable ILREC is used to distinguish (a) and (b) . This variable is continuelly being updated auring the left-to-right scen. It is sot to 1 when an operand index is encountered and reset to $\not D$ when an operator ontry is recognised. Thus the value ot ILFET can be tested when $\quad[1$ is obtained to deternine its use.

The action required for cases (a) and (b) is desortioed in §4.3.

For most operators, the left operand is handled before the right opexund, which will therefore be the richt-nost entry in ITwiP when the operator macro is expanced. There is, however, one notable exception to this rule. In the case on the left specification operator, the right operand must be handled first. This is to ensure that the correct type and dimension informetion will be associated with the lef ${ }^{2}$ operand. For exemple, in the statement

$$
x \longleftarrow 345
$$

the relevant jnfomstion for X cannot be cotained untill the right oferand has beer handed.

縕en an operator sub-expreasion is recognised, IDSIK (IOMR) is tested to determine the oparator, If a dyadio operator is present, the stack position TDSIK (IGPMR + 1) aust also be tested. This address will heve value 67 ror an outer product ($40 .+B$ is bracketed as ($A \circ+3$) and - in stacked berore +). For an inner product, IDSTK (IoPR + 1) will have value 71 .

This test enables inner and outer products to be handled by the sane method.

Gompound operations, such as $+/ \chi$, present no difficulty as the symbol $\%$ will be recognised imediately when IDBTK (IOMR) is testein. The uses of the symbol $1 / 1$. (also $1 / 1$) r'or reduction and compression heve already been distinguished during the lexicel scanring phase, ena different macro numbers used for each.

4.3 Immediate Action Nacros

A number of APL symbols reguire some Immediate action when thaty are recognised during the lofit-to-right sestr. These ara:
(i) the symbols (and)
(i.i) symbols used in indexed expressions viz $[$, $]$ and ;
(iii) the symbol ; used in heterogeneous output expressions
(i.v) the symbols [and used to specify a co-ordinate value .
4.3.1 The symbols (and)

Recognition of the syinbol (during the laft-to-right scan indieates the stari of a neri level of nesting. The stack pointers IDPTR, TDLFR and IBXT (discussed previously) must be updated.

This action must be worried out immediately so that Enformedion for the new subuexpression (or function or subroutine call) can be stacked. The necessary action is produced by expansion of macro number 64.

Recognition of the symbol (during the lest-toright scan indicates that a complete sub-cxpession (or function or subroutine cant) can now be dealt with, More information is stacked on IDSTK corresponding to the identifiers appearing within brackets. The relevant node can now be produced on the output stream. This process normally involves the expansion of e series of meoros. Operand code is produced and stone j temporarily in the array JMJMP, It is then obtained from ITPMP as required when an operator macro is being expanded.

TDSTK and BITTS are then unstacked as described previously and the lefttomright scan continues.

4.3.2 Symbols used in indexed expressions

Consider firstly the code produced corresponding to the API statement

$$
A \leqslant B[I ; J+6]+1
$$

where A, I and J are scalars and B is nonmscalar, The code is of the form shoran below.
(i) $2 d=\phi$
(ii) $\mathrm{ZB1}=\mathrm{ZPOIMT}(2 \mathrm{PP})$
(iii) $\quad 8 \mathrm{PM}=3 F T+1$
(iv) $Z[N D X(Z B 1+1)=T$
(v) $2 \operatorname{TrD} 2(201+2)=2+6$
(vi) $\quad 3 P C T r T(Z P i) \quad=\quad \mathrm{ZBI}+2$

```
(vi̇) CALL STAPTS ( \(\mathrm{B}_{\text {NA垲S }}--\) )
```



```
(ix) \(\quad Z P T=2 P T-1\)
(x) \(\quad Y_{n+1}=Y_{n}\)
(xi) IF (HAKKR.NE. © ) GOTO 100
(xii) A \(A \quad Y_{n+1}\)
(xiii) GOTO 181
(xiv) \(1 \not \subset Q\). CALL \(\operatorname{SEDCS}\left(A_{\text {NALSS }}, Y_{n+1},--\cdots\right)\)
(xv) 181 CONTINUE
```

Lines (x) to (xv) are required so that specifications of the following types may be handled correctly.
(a) scalar \longleftarrow scalar expression
(b) vector \longleftarrow non-scalar expression
(c) scalar \leftarrow non-scalar expression (implies type change of scalar)

These lines are obvious candidates for optimisation at a later stage, (see Chapter VIII, §8.3). Note that $F_{\text {index }}$ is used to mean the index for 3 in NAisS. The lines of code heve been numbered for eass of reference.

It can be seen that no reference is made to the non-scaler 3 in the code produced until after the subscripts have been handled and the symbol 1] obtained. However, the index for B is staokia on its recognition. In order to avoid confusion wen dealing with the subscript expressions,
therefore, a new base level is oreated on DOSTK phen : $[$ is obtained. Lines (ii) and (i.ii) are elso produced corresponding to the symbol. '['. . Some immediate action is thus required for the symbol ' [

The symbols ';' and ']. used in indexing serve as delimiters for the preaeding subsoripts. Wan either oi the above symbols is recogaised, therefore, the codo corrosponiting to the subscnipts can be produced. getar the code for a subscript hes been generated, the subecript infomation san then be unstacked. Any further subscript information obtained oen be stacked in turn on IDSTK, stertiag frrom the base level set up when ' $[1$ was recognised.

Line (iv) is produced when ';' is obtained, while linos (v) to (ix) are produced when i] is recognised. It can be soen that part of the action required for ${ }^{\prime}$;' and 1 ' ${ }^{\prime}$ is the same. Soms additional nction is required for ']' since it aelimits not only a subscript expression, but also the complete indexed veriable.

The code Y <integer> is stored on Ingif to be usod as a parameter for the + macro, the next to be oxpanded.

Return must be made to the previous base level when an indexed expression has been deal.t yith. The result is on intermediate expression and the value -10 is stagked to indioate this typo of oporand. However, in this cose the value $-1 \varnothing$ should overwrite the non-scelar inder in IDSTK.

Thus, all three symbols, $[$ ', ';', ']', are aonaled by expansion of farmeditate action macros. The action required for sach is outhined below. The symbol $+[$,

1. Produce code of the form shomin in lines (ii) and (iii) sbove,
2. Increment TMIT by 1
3. Increment IDPTR by 1

4: Set IDSTK (IEPTR) = MDLPMR
5. Set MDHPCR = IDPTTR

The symbol ':'

1. Produce code of the form shown in line (iv) above
2. Sot IDPR $=$ MIIPTR

The synbol 1]

1: As for step 1 for the syrabol ' i '
2. As for atep 2 for the symbol ${ }^{\prime} ;{ }^{\prime}$
3. Produce code of the form shown in lines (vi) to (ix) above
4. Set IBTT $=$ IBII -1
5. Set IDPMR $=\operatorname{IDLFPR}-1$
6. Sot IDSTIK (IDPPR) $=-1 \phi$
7. Set IDLIPR = IDSTK (IDLPIR)

The above illustrates the sction required for a very simple array slement reference. It should be noted that the sub-expression $J+6$ would be bracketed and dealt with in the usual way. When the subscript $J+6$ was handled on recognition of \quad i]: , therefore, a -1ø entry prould appear on the stack. The code corresponding to $J+6$ would thus be obtained from ITBiP.

The code produced corresponding to a non-scaler variable name is described In detail in Chapter V. . It is obviously more complex, as every element of the non-scalar has to be aocessed.

4.3.3 The swmol ${ }^{1}$;' used in haterozeneous output expressjons

The oonstituents or a hoterogcneus output statement are nandied separately then constituont is delimited by a sani-colon (or by a blank in the case of
the last constituent).

An ianediate action macro is oxperied when ';', i.s encountered. (This use of ';' is distinguished fron its use as a subscript separator in indexed expressions by the absence of enclosires square brackets.)

The macro produces a WRIR statement to write out the constituent of the heterogeneous output statement. A Fiozudr statement is olso produced. Donstituents can be literal or numeric ar.a two output stavements ere produced in each case. The FORMA statements are such that all parts of a heterogeneous output statement appoar on ono line.

The stack pointers DDLPRR and $\overline{1 D F R R}$ are both reset to ϕ after hanaling a constituent of a heterogeneous output statement.

The variable HHER is set to 1 wienever a heterogenecus oudput statement is detected. Its value is tested at the end of a line. In this way the last constituent can be detected and handled correctly.
4.3.4 The syinbols $[$, and $:]$, used to specify eco-ordinate value

An example of the abova use of $\quad\left[\begin{array}{lll}1 & \text { and } & 1\end{array}\right]$ ' is in the statement

$$
A \longleftarrow+/[1] \bar{x}
$$

Again a new base level is created on ISSA when ' [' is recognised. This use of ' [1 is distinguished from its use in indaxing by the presence of an operator immediately to the left of $+[1$. Tho varisble ILAFT (mentioned previously) will have value \varnothing in tinis case.

ILKFT has to be updateci within square breokets (so that nestea co-ordinate specirioations can be detected). Thus, LIET camot be used to distinguish irdexing and co-ordingte speciricstions when 1] is recognised.

For this purpose another varimble, NCOORD, is used. lit is increased by 1 whenever $1[$ is obtained in co-ordinate speaifications gnd oode of the form ZCDFPR $=\operatorname{ZCDPR}+1$
is generated. whe sean then continues in the normal manner until i]t is obtained. NCOORD is decreased by 1 and, if non-zero, msero number 19 is expanded to produce code of the form

IF (ZGDETR.GM. $2 \pm I M 14$) CALL, GVOVER (14, \& 108) ZCOORD (ZCDPRR) $=$ <expression inside square breckets>
$4 \varnothing$ CONTSNUE

ZCOORD is a stack with pointer ZODPTh in which successive co-ordinate values in en expression are stored. Before stacking another value in ZCOORD, a test is made for overflow. If the testi is satisfied, gVOVRR is invoked to print out a warning message.
(The value ZGOORD (ZGDPIR) is tested in the function FLUD, used to handle the non-3ealar reference. The required co-ordinate value can thus be obtained.)

A stack is required to handle nesting of co-ordinate specifications.

Now consider the example,

$$
\phi[1] A+\rho[2](X-Y+Z)+B
$$

Then cods of the form

Tha"scope" of [2] extends over $X \rightarrow Y+Z$. After dealing with this expression, the value 2 must be unstacked from ZCOORD.

Action of this kind is organised by maintaining a stack of bracket counts. The count is increaseã for (and decreased for), Thus, only when the matching) has been dealt with is ZCDFTR decressed. At this stage, codo of the form

```
ZCOORD (ZGDEPR) = \varnothing
ZCDFPR = ZCDPTR - 1
```

is generated.

The stacks IDSTK and IBITS are then updated, and the sean continues.

4.4 Symbols Handled by Proauction of a ${ }^{\prime}$ FRED' Call with
 First Paremeter hon-zero

The APL operators handled by producing a cell of the function FIND are listad in Chapter I, §1.2.5. (For occurrences of these functions with (right) parameters not numeric nonmscalars, similar techniques are appliad using other functions. These functions are also listed in Chapter I.)

There are 14 APL operators in the above list. The first parameter of a. FIND call has value ℓ to 14 , indicating the normel accessing method, and 1-14 one of the methods for a specific operator.

The method of handing the above operators is as follovts. The subscripts for the required element are set up in consecutive locations of the array ZINDX. A function is applied to these elements to produce the desised indices for the result.

Thus, for example, suppose the $(3,2)^{\text {th }}$ element of ϕA is required, Where A is a 4×5 array. Then the result is obtained by accessing the $(3,5-2-1)^{\text {th }} \equiv(3,4)^{\text {th }}$ element of A. A simple function has been applied to the second subscript and then the nomal accessing method (defined by FIND ($\varnothing,--\infty$) is appiled. The bame principle is applied to the other operators in the list.

The right operand for one of the above operators oan be an expression. All non-scalars in the expresaion would then have to be aocessed in the manner determined by the operator. Thus, the first parameter value for the FIND call has to be retained throughout the scope of the operator. To allow for nesting of expressions involving the above operatora, a stack of first parameter values, IFIND, is maintained. Consider, for example, the expression

$$
\phi(e x)+Y
$$

Daring the right-to-left acan, this expression would be bracketed as

$$
(\phi((\theta X)+Y))
$$

The following action is required during the left-to-right scan.

1. Reoognition of

A new level is produced on IDSTK by updating IDLPTR and IDPTR, i.e. by setting:

IDPTR - IDPTG + 1
IDSTK (IDPTR) a IDLPTR
IDLPTR = IDPTR
2. Recognition of ϕ

```
Set INNPTR = IFNPTR +1
    Set IFIND (IFNPTR) =. 1
```

Set IOPTR = IOPRR-1
Set IDS'K (IOPMR) = macro number for ϕ
3. Recogrition of (

As for 1 above
4. Kecognition of (

As for 1 ghove
5. Reoognition of Θ

Sot IFNPTR $=$ IFNPPR +1
Set IeTND (ITISPR) $=3$
Set TOPPR $=$ IOPTR -1
Set TDSTK (IOPTR) = macro number for θ
6. Recognition of X

Stack the index for X on IDSTK
7. Recognition of)

Examine IDStik (IOPIR) . Detect mano number for Θ.
Fxpand an operand macro to produce code for X, Tais
involves a call of FITD having first parameter with
value 3 (obtained from IFIFD stack).

Now set THMPTR $=$ EFYPIR - 1 .

The scope of Θ is exceeded nos and therefore the first
parametor entry (value 3) cen be removed, IFRD (IMiFIn)
now has value 1. This is the oorreet vaiue since the scope
of ϕ has not jet been exceezod.
8. Recognition of +

```
Set TOPTR = IOPMR - 1
Set IDSTK (IOXiR) = macro nusber for +
```

9. Kecognition of Y

Stack the index for Y on IDSTK
16. Recognition of)

Expand operand macro twice to produce code for + operands and store the code in ITMMP. Then expand the + macro, which obtains the oporands from TTzidP when required.

Expansion of the macro f'or the right operand results in production of a FIND call with first paremeter value 1.
11. Recognition of)

The intermediate result code required for $\$$ has already been stored in ITEPP. The variable IFAPIR is then decreased by 1.

The rebalting expression involving two YSTORA elements mould be stored on ITEMP. IFHD (AFsPrR) retains its value over the entire range of an operator, that i.s, until the closing round bracket for the symbol has boen deallt with.

The macro corrasponding to the above operators only requires to unstack the top value from TPIND.

The user can spocify thet an operation of the above typo is to be applied along the $J^{\text {th }}$ co-ordinate, for example $\phi[J] A$.

Ihe abovo method can stild be applied dy simply producing code of tho form

$$
\begin{aligned}
& \mathrm{ZCDPPR}=\mathrm{ZCDPTR}+1 \\
& \mathrm{ZCOORD}(2 C D P I R)=\mathrm{J})
\end{aligned}
$$

when [J] is recosnised. This is done by a macro expansion, The vaiue of $Z C C O N D$ ($\angle C D E T R$) is tested in $F R D$ to ensure that the operation is applied along the required courdinate.

There are a number of dyadic operators in the above group. These are handled in a similar way.

Consider the leftuto-right sean for

$$
(C \phi(A+B))
$$

where C, A and B are non-scalar.

When ϕ is recognised, the value 5 is stacked on IPRND. The iniex for G, the left operand of ϕ, must now be included in the relevant fidid oalls.

Gorresponding to the above expression, code of the following foxn mould be generated.

$$
\begin{gathered}
\text { Start of looping } \\
\text { instructions }
\end{gathered}
$$

;

CALL FIMDH ($5,1, c_{\text {index }}, 3_{\text {index }}, \cdots Y<$ integer $2>--$)
;

The code Y 〈integer 1$\rangle+Y$ <intecer 2> poula then be placed on Ir马u.

A stack is maintained to allow for nesting of dyadic operators of the above group. Lhis ensures that the correct Nabris index is inserted as third parameter or the FIND call.

The left operand of a dyadic operator of the above group need not be a numeric non-scular. Thus a second stack, containing type valuas (to be used as second parameters in FIND calls) is also maintained.

Expressions are not allowed as lef̊t parameters for zyadic operators of the above group. This avoids the necessity for maintaining two sets of ourrent bounds, one for the left and one for the right operand.

4.5 The Handing of $\square]$ and $[1$

The symbols \square and \square used for output are very straightorward. For exanaple, the statement

De - 'THTS IS AN RXGAPLE'

would be bracketed as
([]] 'MHIS IS AN EXARPLE').
and \square used for output can thus be treated as any other monadic operators.
\square and \square^{\top} are slightly wore complex when they appoar in input oxpressions.

A temporazy variable jis introduced to storc the values read in when \square or \square. is encountered. Then \square or $\square]$ used for input is met in the leftotomight scan, the values -2 and -1 reapectively are stacked on IDSTK. When the noxt) i.s encountered and an operand macro is to be expanded, the value of IDSIK (IDPIR) is tested. If i.ti is $I=-1$
on $I=-2$, then macro number $(I+83)$ is expanded. This produces oode to read in tha raquired values.

> Consider for example,

$$
A \longleftarrow, \square
$$

This is brecketed in NCODE in the form

$$
(A \leftarrow(, \square)) .
$$

The action required is outlined below.

1. Recognition of
```
Create a nsw base level on DSTK
```

2. Recognition or A

Stack the index for A in NAMES on IDSTK
3. Recognition of \leftarrow

Set TOPIR = IOPTR - 1
Set IDSTK (TOPIR $=$ macro number for \leftarrow.
4. Recognition of (

Greata a new base level on IDSTK
5. Necognition of ,

$$
\begin{array}{ll}
\text { Set } \quad \text { IFNPRR }=\text { IFHFSR }+1 \\
& \text { IFIND }(\text { IFNPTR })=4 .
\end{array}
$$

6. Reoognition of \square
7. Rocognition of)

> Expand nacro number 81 to produce code for the input operation
> required. Store the resurt variable in IMMP and return to the previous level of IFDI. (The values read in are stored and treated as a vector by applying the function IRFIND (FIND for intermediate results).)

The stacks IDSTK and IRIPS are then updated.
8. Recognition of)

The analysis now proceeds in the usual way.

It is essential always to test for the symbols \square and $[$ used in place of operards, and expand the appropriate macro if the tast is satisfied.

4.6 An Example Showing the Process Carried Out During
 the Left-to-Right Sean

Consioer the left-to-right soan applied to

$$
A \leftarrow B[C+D * E] F N X
$$

The reader is referred to Diagrams 3.4 (a) and 3.4(b) showing the states of the arrays NDMA, MOLDNS and NCODE corresponding to the above staterent. B is nonwsalar, $F N$ is a function name and all the other variables are scaler.

At the start of the left-to-rignt scan, the variebles IDJFTR, IDPTR and TBIT are zero, and LOPTR has value 501. IDSTK is set to zeros and the elements of IBITS are false. The action carried out is described below.

1. Recognition of -64 (macro number for (is 64)

$$
\begin{aligned}
& \text { Set IDPDR }=\text { IDPPR }+1 \\
& \text { Set IDSTK (IDPIR) }=\text { IDLPLR } \\
& \text { Set IDIPIR }=\text { IDFTR } \\
& \text { Set IBIT }=I B I T+1
\end{aligned}
$$

2. Recognition of index for A

Set IMPR $=$ MPPR +1 .
Set IDSIK (IDPPR) = index for A
3. Recognition of -3 (macro number for \longleftarrow is 3)

Set IOPTR $=$ IOPIR -1
Set IDSTK (IOPIR) $=3$
Set IBITS (IEIT) $=$.TRIE.
4. Recognition or -64

As for step 1 above
5. Recognition of index for B

```
Set IDPITR = TDPPR + 1
Set IDSTK (IDPTR) = index for B
```

6. Recognition of -62 (nacro number for $[$ is 62)

Froduce 2 lines of code as described in $\oint_{4} 4.3$. Also
create a naw base level in ILSTK es described in
step 1 above,
7. Recognition of -64

As for step 1 above.
8. Recognition of index for C

```
Set IDPTR = mDPRR + 1.
Set IDSTK (DDFRR) = index for 0
```

9. Recognition of -21 (macro number for ayadic + is 21)

Set TOPTR $=$ TDPTR - 1
Set IDSTK (IOPIR) $=21$
Set IBIM (IBIT) $=$.TRUX.
10. Recognition of -64

As for step 1 above
11. Recognition of index for D

Set IDFPR $=$ IDPIR +1
Set IDSTK (IDFPR) = index for D
12. Recognition of -25 (macro number for dyadic * is 25)

Set IOPiR $=$ IOPIR - 1
Set IDSIE (JOLRR) $=25$
Set IBITS (IBIT) $=$.TRUE.
13. Recognition of index for \mathbb{B}

Set IDPNR $=$ IDINR +1
Set IDSTK (lDPIR) = index for E
14. Recognition of -65 (macro number for) is 65)

Test IBIIS (IBIT) * ...This hes value . TRUE., indicating a sub-expression, Test DSTK (10rar), This has velue 25,
a dyadic operator macto number, TDSTK (IOFRR + 1) has value 21, ard thus an inner or outer product has not been detected.

Now handle the operands for * Produce more information on JifSTK for D as deseribed in $\$ 4.1$. Then expand operand macro ard store tine code for D. Repeat the above process for E .

Now expand the * macro and produce ting code ($\mathrm{D} * * \mathrm{~A}$), which is pleced on ITEMP (the entries for D and \mathbb{A} or ITEMP are removed).

```
Then Set IEIT = IBIT - 1
Set IDFPR = TDLPIR
Set IDLPTR = IDSTK (DHPTR)
Set IDS'IK (IDPIR) = -1D
Set IOPTR = IOFTR +1
```

15. Recognition of -65

Using a similar process as for step 14 above, the code ($C+\left(D^{*} * 2\right)$) is stored in InMP.
16. Recognition of $\mathbf{- 6 3}$ (macro number for] is 63)

Produce code as described in $\$ 4.3$.

Then Set IBIT = IBITT-1
Set IDFPR $=$ IDLPTR -1
Set IDLFIR = IDSTK (TDLFiH)
Set DSTK (IDFRR) $=-1 \varnothing$
17. Recognition of index for $F N$

Set IDP1R $=$ MPM'R +1
Set IDSNK (IDFRR) = index for FN
18. Recognition of incex for X

Set $I D P T R=1 D P T R+1$
Set ILSTK (IDPMR) = index for X
19. Reoognition of -65

Test JBITS (IBIT). This has value . FAISA., indicating a function or subroutine call. Nore operand information is set up on TDSTK ani an oparand macro is expended to hanole the function or subrcutine call.

Then	Set	IBIT	$=$	IBIT -
	Set	IDPTR	=	IDLPTR
	Set	IDSELR	$=$	IDStik
	Set	IDSTK	ITP)

2ф. Recognition of -65

Carry out a similar process as for step 14 above.

Note that, for convenience, two consecutive entries of -65 have twice keen used in place of an entry of +162 . This is simply for ease of explanation.

Also, in describing the processes carried out, test for overlep of the stack pointers JUPNR and IOFTR have been omitited. Similarly, an cverílow test for IBIES has been omitted.

CHAFTFR V

THE BACRO NETHOD

This chapter describes the method of producing target-language code using macros. A complete list of macro instructions and their functions is given in Appendix 3.
'Macro bodies are stored on disc. At the tine of a macro expansion, all the necessary parameter information has been stacked on IDSTK, as doscribed in Chapter IV.

The start address for a macro body is obtained from the tajle wCADDR. To expand macro number N, for example, the start address is given by MCADDR (N). Macro bodies are in card image form and the first line, IV, of any macro body is given by

$$
I V=\langle s \operatorname{tar} t \text { address }\rangle / 8 \phi+1
$$

50 records, starting from the $I V^{\text {th }}$, are then read ixato an array hetceos. The first position to be accessed within the atarting record is given by

$$
I P=\langle s t a r t \text { address }\rangle-(I V-1) * S \phi
$$

Thereafter, each character in turn of the macro body is accessel until the end of the macro body is reached. Access is sequential within a macro boay unless altered by use of branching instructions. Such instructions are described in §5.1.6 : Instructions within m mecro body are seperated by two blank characters. All components of a macro instruction are separeted by 1 blank character and labelled instructions have 1 blank between : and the corresponding instruction, (see $\$ 5.1 .6$).

Hacros are the means by which target language code is accumulated on the array MTERP until ready to be transferred to the output medium. The
contents of MTEP will be transferred to the output medium
(i) when a complete line of code has been produced
(ii) when a character is to be stored on MrwP and the pointer mphr has value 73. (lines of fordran code do not oxceed 72 characters).

For case (ii) above, a continuation line is produced and the process is repeated until the line is complete.

There is continual interchange between the arrays ITMiP and MTHPD. The function of ITPMP has been discussed in Chapter IV. It is a temporary storage place for operands. The method of transier betreen NTE:TP and ITES is discussed in §5.1.2. Transfer of information from IDSTK to MTEliP is described in $\$ 5.1 .5$. $\$ 5.1$ eategorises the macro instructions into a number of different groups.

5.1 Groups of Macro Instruetions

All the macro instructions defined fall into one of the groups listed below.

1. Instructions which acoess MTBMP.
2. Instructions which transfer information between UTELP and ITMAP.
3. Instructions which produce lines of code on the output stream.
4. Instructions which produce code on MTHiP.
5. Instructions which transfer information from IDSTK to MTEMP.
6. Branching instructions.
7. Terminating instructions.
8. Looping instructions,
9. Instructions which update pointers.
10. Instructions which set the values of globel variables.
11. Instructions to inerement global variables.
12. Instructions to calculate expression values and store on MTLiP.
§5.1.1 to $\$ 5.1 .12$ describe each or the above groups in more detail.

5.1.1 Instruotions which access MIEP

Targot langage code can ve placed on mixp using the mero instruction

$$
\% \text {--- TEXT }-\infty \text { 花 }
$$

This instruction inserts the string -u- TPEXP --m on MPMP, starting from
 updated as required during the code production stage.

The macro instruction

$\&$

transfers the contents of $M T 3$ mp the output medium. This instruction is used when a complete line of code has been accumulated on MTap. In acaition, there are a number of composite macro instructions. These produce lines of code (first accumulatod on MTriP) on the output mediun. Sxemplos are given in §5.1.3.

5.1.2 Instructions which transier infornation betreen icmpe and ITP

Let us suppose that an operand macro has been expanded to produce code for an operand. This is accumplated on NTHAP. When complate, use of the macro instruction
$\$$
causes the code to be transferred from Mrgip to IrdiP. This is done in the

Is thom set to mPPTR, and IBPRR is updated to (IBPIR+TMMPR 5) .

Thus, for example, sutpose TEPTK is $1 \not 0$, DBPiR is 1 and hTinP (7) to MSAMP(10) contain the charactors AEOD. After using the S instructior, the oontents of ITPMP are

$$
\mathscr{A} ; A, B, C, D, 1 \cdots \cdots \cdots
$$

and IBPMR is 6.

In addition, JTNMP is reset to blank characters and TEAFR is set to 7 , the starting position for most lines of FONXHAN code. The pointer TEYPR is automatically reset to 7 after olearing $4 T E H P$, This can be over-ruled using the macro instruction,

T<integer>

where 〈integer> can be any positive integer i such that $1 \leq i \leq 8$. This instruction is described in §5.1.11.

The macro instruotion S_{t} is similar to the S instruction, except that MTEAP is not cleared after the transfer.

The operand macros (referred to above) are described in detail in §5.2.

Now fet us suppose that the two operands $A B C D$ and $X Y Z$ for a dyadic operation have been stored on ISBriP by the above method. Suppose that IMEMP has been set up as shom in Diagram 5.1.2(a), and that IBPIS has value 10. Then the left operand, $A B C D$, can be reproduced on $H T E N P$, when requirad in an operator macro body, by use of the macro instruation

LO

This instmuction transfers the contents of ITRUP (IX +1) to IMZMP (IY-1) to YIGMP, starting from position TESPR. IX and IY are given by

```
IY = IMEMP (DPME
IX = ITEMP (TY)
```


$$
\begin{gathered}
\text { Diagram } 5.1 .2(\mathrm{a}): \begin{array}{c}
\text { Shows a possible structure for } \\
\text { the array ITEAP }
\end{array}
\end{gathered}
$$

The contents of ITASP are unaltered by this instruction. However, a marker, NLEFT, is set to 1 to indicate that two entries are to be removed. from JremP aiter the right operand, XYZ, is accessed, If the entries hed been placed in ITHR in reverse order (and thus IFdV is set to 1) then the variable NLFFT is set to 2. In this case no entries are to be removed from ITEXP. The variable NLHTH is tested when the macro instruction Ro (see below) is handled. The number of entries to be removed from ITwP is thus detemmined.

Thus, if IrEuP has the structure shom in Diagram 5.1.2(a) and the macro Instruction 50 is executed, then NHWP will have the structure shown in Diagnam 5.1.2(b), assuming hTESP has just been cleared.

The right operand for a dyaḍic operator can be transferred from FiwiP to KTHAP by use of the macro instruction

This instrontion transfers the contents of InEw (IY +1) to ITEMP (IEPTE-1) to MTHiP, starting from position TWAPR. IY is as defined previousty.

NLEFrI is tested to detomane the number of entries to be removed from Thm: Thus,
if NAEFT is $\varnothing, \quad 1$ entry is removed.
in NLERT is 1 , 2 entries are removed
if NLEFT js 2 , $\not \subset$ eniries are removed.

Thus, if the macro instruction 20 is now used, the structure of mrimp would be as given by Disgram $5.1 .2(\mathrm{c})$. Miter using this combination of instructions, liphiv wolid be omply and IEFPR would have vialue 1.

The instruction ROH is similar to RO, except that InEPM remains unaltered by the instruction.

Diagram 5.1.2(b) : Shows the structure of MTEMP obtained by using the Lo instruction for an ITEMF configuration as showat in Diagram 5.1.2(a).

A third macro instruction $\Omega 1$ may be used. This instruction transfers the right-most entry of $I I^{\prime} \mathrm{ENP}$ to MryP, but first removes any erciosing round brackets. Similarly, the instruction R1+ is defined.

The composite instructions FJ and PL+ are also defined. These produce code of the form

$$
Y\langle\text { integer }\rangle=\langle\text { left operand oode> }
$$

```
where <irifeger> is any positive integer ana <left operand sode> is
``` obtained from Itrdx.


The pointer Twapr has value \(1 t^{2}\).

Diagram 5.1.2(0) : Shous the structure of MTMMR obtained by using the instructions \(L 0\) and ro for an InghP configuration as shom in Diagram 5.1.2(a) .

NLEET is set by use or fl, but is unaltered by use of PIr .

Similar ef'fects can be produced usirg the macro instruotion sequences
\[
\% Y\langle\text { integer }\rangle=\% \quad \text { Lo }
\]
and
\[
\text { \#Y } \mathrm{Y} \text { jnteger }\rangle=\% \quad \mathrm{~L},+
\]
respectively (assuming hremp had jusit been cleared).

Similarly, the macro instruotions \(P R\) and \(P R+\) are equivalent to the instruction sequences
\[
\text { \%Y <integer> }=\% \quad \text { RO }
\]
and
\[
\% Y\langle\text { integer }\rangle=\% \quad \text { rot }
\]
respectively, agsin assuming that KTDIF had been cleared previously.

\subsection*{5.1.3 Instruetions which produce lines of oode on the outout streath}

The majority of the wacro instruntions defined felly inte this oategory. They are, in fact, omposite instructions replacing groups pif other instructions. Examples are:

\section*{(i) CS}

This macro instruction produces a number of non-executable statements (ror example, nHPGGER, REAL, IMPLICIP, COMON, ERITVAJINCE). They are generated after the code for a function header statement.
(ii) \(Z\langle\) integer〉

Hhis macro instruction produces code of the form
```

Z<integer 1> = <integer>

```
where <integer \(1>\) is a positive intoger and <integer> is any integor. This instruction is of ten used in conjunction with
(iii) \(\mathrm{Z}+\)

The macro instruction \(Z+\) produces code of' the form
\[
\text { Z〈integer } 1\rangle=z\langle\text { intoger } 1\rangle+1
\]
where <integer 1> has been proviously introduced by a statement of type (ii) above.

\subsection*{5.1.4 Instructions which produce code on Mrwip}

These instructions are dependent on the ourrent operator being hand ed, thet is, on the current value of IDSTK (ITFFIR). Examples are:
(i) BL

This results in production of one of the forms .LT. .LE .ER. .GE .GT. .NE. on MTBMP, depending on whether IDSTK (IOPTR) has vaiue 6,7,8,9, \(1 \phi\) or 11 respectively.
(ii) AO

Tris results in production of

> . AND.
(a)
or
.OR.
(b)
on WTETP, Depending on the value of IDSTK (IOPDR). For value 4, (a) is produced; for value 5, (b) is produced. These values corcespond to the operators \(\wedge\) and \(\vee\) respectively.
5.1.5 Instructions which trensfor infozmation from IDSTK to lignar

Such instructions jnvolve use of the ? synbol. For exanaple, ? <expression>
transfers the ve?ue of IDSTK (IDLIPR + <expression>) to MTATMP. The value is placed starting from position TAMER of MISF. This is the method of obtaining paraneter information inside macro bodies.
<expression> is terminated by either a blank or a coma. It may contain arithmetic expressions whose opersnds are integers or any of the global varisbles listed below:
(i) IND - gives the current value of 〈integer> to be used in expressions of the form
```

                                    Y<integer> = - - - - -
    ```

It is updated as described in \(\$ 5.1 .11\).
(ii) INE - gives the current value of 〈integer> to be used in expressions of the form

ZB <integer> \(=\) ZPOLNT (ZPT)
(see Chapter IV).
(iii) \(S\langle\) integor〉 - gives the ourrent velue of \(\operatorname{SS}\) (<intoger>) . The sunction ot arrey \(S S\) is described in \(\$ 5.1 .8\).

Brackotiríg is alloved in the above expresshons. Brackets may be nested up to a maximun of 18 levels deep.

The form ?? <expression> or ? (w- expression involving ? ..-) may be used, but ? may oniy be nested to two levels deep.
(A transition metrix is used to accumatate the expression value up to the terminating blank or coma. The value is then converted to character fona and transferred to MTEMP.)

Valid examples are:
(i) 34

This transfers the contents of DaTK (DLPIR + 4) to MTGiP,
(ii) \(?(1+(\operatorname{IND}-1) * 3)\)

This transfers the conteats of IDSIK (IDLPIR + \(1+(\mathrm{SND}-1) * 3\)) to NTEMP.

\subsection*{5.1.6 Branching instructions}

Branching macro instructions can be
(i) unconditional
(ii) conditional

For both (i) and (ii) there must be an associatea labedid macro instruction. Labelled instructions take the fom
<label number>: <medre instruction>
<labal number> is any positive integral value wiaich is unique for al given maso boày. The form <macro instruction> represents any valj.d. macro instruction.

For case (i), there will be a corresponding statement of the form \(=\langle\) 2abel number \(\rangle\)

This statement will cause a break in the sequential access of the macro bodies. The next ansinnction to be obeyed will then be <nacro instruction>. For exemple, consider the following macro body:

When the instruction \(=1\) is reached, the subsequent instructions (a) will not be obeyed. The next instruction to be obeyed will be that labellad 1.

Branching forwards or backwards is handed in the following way, A 2-dimensional table, \(N L T A B\), is maintained. For a particular roy, the f'irst entry gives a label andoer vasue and the second the pointer value (given by variable ICLPRR) f'or the array MACROS.

During the sequential scan of MinCROS, ift a labelled instruation js
 met, for example
\[
=n,
\]

Mink is scanned for an entry eorrespondine to \(n\). Tf an entry exists, then a backwera jump is made to the correct instruction (using tine second part of the MLAB entry).

Consider, for exemple,

When the instruction \(=6\) is encountered, \(\operatorname{sil} T A B\) will have an entry of the form
\(6 \quad n\)
where \(n\) is the value of ICLPRR corresponding to the blank arter 6 : . A jump can thus be mada to the correct point in the macro body.

If an entry does not exist in MLTAB, then a forward jump has been requested. Then this ocours, PACROS is scanned sequentially for a labelied instruction. If a labelled instruction is met, an entry is set up in mirse. If the labelled instruction obtained is not the reguired one, the process is repeated until the correct instruction is round. Sequential execution of \({ }^{2}\) macro instructions is then resumed fron the point reachect.

MLTAB has \(1 \varnothing \varnothing\) rows and is accessed sequentially. This method allows nesting of label rumbers to any depth. For example,
\(1: 2\) : <macro instruction>
would present no problem.

Milis is cleared on exit frod eacn sacro body.

A number of conciational bxarchinct instrutctions have tean des̃jned. In eeneral these taxe the form
\[
\text { J. }\langle\boldsymbol{H}, \mathrm{v}, \mathrm{n}\rangle\langle r e l a t i o n a \bar{l} \text { operator〉 m n }
\]
where (i) \(\langle g . v . n\rangle\) is a slots farisble name

(init) m, j.s a positive on regetive integer
(iv) \(n\) is a positive integer.

Here the value of tine global varisole is compered with 3 . If tho test js satisfied, a jump is made to tie 前oro instmuction lsiocilad n , otinerwise, sequential execution contirues.

Thus, for example, if JDSTK (IDLEA +1) has value 2 and the maero instruction

\section*{IR ? EQ 24}

Is exeouted, then a jump will be made to tho mecro instmotion lacelled i. If, hovever, Ijoik (IDLPra + 1) has value 3 , no jump will se mado swi the instruction following the conditionel brercin will be executed next,

Ihe allowiote forms of the conditional brakeh instruction are given in Appendis 3.

\subsection*{5.1.7 Terminetins instructions}

The "uncongitional stop" maro insivnokion is
\#

Use of this instruetion causes inmsdiate trit from the meoro body.

A number of＂condjtionel stop＂inatructions have been defined，These take the form

\author{
표 〈g．v．n．〉＜relational operator＞m \＃
}
where＜g．v．n＞，＜relational operator＞and m have the same significance as in §5．1．6．

The allowable forms are egain listed in Appendix 3.

An example is

\section*{IF 33 IT 4 扵}

This instruction means＂tf paremeter 3 is less then \(4 . y\) stop．Othervise， continue rith sequential execution of maro instructions＂．（Parameter 3 is given by \(\operatorname{IDSTK}(\Pi \mathrm{HFRR}+3)\) ．）

An interesting use of the stop instruotion is when preceded by Rom． The sequence

\section*{RGM \＃}
ouses exeoution of a macro to be intermpted while another macro is expanded． Return is afterwards made to the point in the original macro folloting 抹．

For example，suppose the macro below is being oxecuted

when RCM \(\#\) is reached，there is an immdiate exit from the macro body．A second maom is expanded and then expansion of the above macho is resumed at labsl 2.

This facility was introduced to allow for the APL features of
(i) reduction
(ii) inner product
(iii) outer product

The handing of these features is deseribed in detail in \(\$ 5.3\) and \(\S 5.4\).

\subsection*{5.1.8 Looping instructions}

The instruction

S<integer>, <expression>
is used in conjunction with the instruction
```

\&<integer>

```
to proc̃uce looping.

Here <Intager> can be from 1 to 10 and <expression> is subject to the rules laid domin in §5.1.5.

The first instruction stores the value of <expression> (which is alway integral for macro expressions) in \(S S(\langle i n t e g e r\rangle\)). SS is a 10-elemert integer array. The current value of IOLPAR is also stored in variable ICOLM.

Sequential execution then continues until a<irtegor> is met.
This instruction tests the value, \(Y\), of \(S S\) (<integer〉). If \(N \geq 1\), then SS (<integer>) is decreased by 1 and ICSIMF is reset to the value of ICOLA: If \(\mathbb{N}<1\), then searential exeoution of maoro instructions is resumed.

This provides the facility of executing the same piece of macro code a varisole numbor of times. For example, consider the following macro body

(a)

Here macro instructions (a) wiil be executed 3 times.

\subsection*{5.1.9 Instructions which update stack poiniers}

A few instructions have been defined simply to update stack pointers. Examples are:
(i) S ITK

The effect of executing this instruetion is:
(a) IDPTR is increased by 1
(b) a test is made for overflow of IDPYTR and IOPIR. (If the test is satisfied, a message is printed out and execution is ternjnated.)
(c) IDLPMR is stored in TDSTK (IDPRR)
(d) IDLFTR i.s set to IDPTR.

This macro instruction is used to create a new base level on IDSEK.
(ii) RE

The effect of executing this macro instruction is to reset the value of IDFPIR to TDLPTR. This instruotion is used to reset IDETR after expanding the maoro for ; used in indexing.

\subsection*{5.1.1\% Instructions which set the vaiues of global variables}

Two eximples of macro instructions in this group are:
(i) MR 〈integer>

Ihis macro instruetion sets the value of the variable MARK to <integer>. The value can then be tested using a statement of the form

IF \(\mathbb{M}\) <rolational operator> in \(n\)
(see §5.1.6).

Thus, by setting the variable AARK , the path taken during expansion of a macro can be varied.
(ii) I <integer>

This macro instruction is used to set the value of the pointer TPiopr to<integex〉. Ususily, <integer> has value 1 to 6, since the most cominon use of the above instruetion is to over-ride the setting of Trum to 7 after MTEMP has beon cleared.

\subsection*{5.1.11 Instruttions to inorement globel variables}

The complete list of such instructions is given in Appendix 3, Examples exe:
(i) \(+B\)

This incroments the stack pointer IBIT by 1.
(ij) \(+D\)

This inerements the variable JWD by 1.

\subsection*{5.1.12 Instructions to celculate expression vajues and store on river}

Besides the types of macro expressions mentioned previously, a number or others have been defined. The most widely used is
\[
\mathbf{f}\langle\text { expression }>
\]
where 〈expression〉 is as defined in§5.1.5. A gives the ourrent value of TDOLK, the label value. (XDOLR is inorementeg as required to produce unique label numbers in the generated code by use of the macro instructior \(+I)\).

Suppose, for exsmple, that IDOLR has value 104. Fhen \(x-4\) mill produce the label number 102 on MraifP.

\subsection*{5.2 The Use of Ogerand Facros}

Two operand macros have been defined. Their functions are to use the information stacked in the operand part or IDSTK to produce the code for ar operand anc storg it on ITRP. The code for the operator macros is thus much simplifjed, as no type checking need be done in operator macros.

The first of the operand macros, referred to as the operand-A macro, furealy deternjnes the type of the operand being handled and produoes the required code. It is discussed in c̀etail ins5.2.1. Discussion or the second operend mucro, referred to as the operand-B macro, is deforred unitil \(\$ 5.2 .2\)

\section*{5.2 .1 Operant-A macro}

The operand-A macro is listed in Appendix 4. The mecre body is explained belov, It nay be useful at this stage to recall the inforuation stacked on IDSTK for each type of operand. The information is described in Chapter IV, \(\S 4.1\).

The first requirerent is to separate alj operand types into groups whicit can (at least partially) bo hendled together. Thus, the macro body starts wi.th a serjes of tests, the first being for an interrucdiato result operand. Such an operand is alreedy present in IRBMP and thus no further action is required.

The fiunctions of all macro Instructions are listed in Appondix 3.

The test IF \(F E Q i 1\) is for a function or subroutine call. These are hanclod after lakel 1.

In each case, the finel code produced on MrWMP is transferred to TTAMP before exit from the macro body.

If label 3 is reached on execution of the macro instructions, then tine operand is either
(i) a scsilar
or
(ii) a niladic function name,

The code for the identifier is transferred from NABS to MTHP (using

Now consider the situation when label 2 is reached,
```

2: IF ?2 IQ \#% 3

```

This produces a branoh to lebel 3 for a scalar identifier. Thus, if the above branch is not executed, the identirier types still to be distinguishea are:
(i) literals
(ii) constant vectors
(iii) numerio ron-scetars.

For each of these identirien types，loops are set up so that each elemont of the non－scalar may be accessed in tum．Only the first halr of the loops is produced at this stage；the loops are not completed until either
（i）the end of the line is reached or（ii）the dimensionality of the result changes．

The macro instruction SL produces code to start a loop，while the instruction FI generates the required code to end a loop．These are both defined in Appendix 3.

Non－scalar accesses result in generation of subroutine oalls．Through－ out this chapter，any subroutines referred to are present in the module library SARUN．

If tho required loopwstarts have alruady been produced by a previous expansion of the operand－A macro，there is no need to duplicate them．The variable MARAHR will be non－zero if the loops have beon started already． The instruction SL is composite and generates code of the form
```

ZB <integer> = 2POINPT (ZPT)
ZPT = 2PT + 1

```

CALL STARTS（＜operand inde＞，Z〈lntegert〉，Z《integer 2〉，ZNC）

\section*{or}

2F1
or
Zस2
ZPOINT（ZPP）\(=Z B\langle\) integer \(\rangle+Z\langle\) integer 2\(\rangle\)
2〈integer 3＞＝ 1
\(\langle\) lebel 2＞z〈integer 4〉 \(=28\langle\) integer〉 \(+Z\langle i n t e g e n 3\rangle\)
ZINDX（z＜integer 4＞）\(=1\)
\(Z\langle a x\) teger 3\(\rangle=Z\langle\) integer 3\(\rangle+1\)

IF (\(2<\operatorname{irtegar} 3\rangle . \operatorname{LE} .2\langle i n t e g e r 2\rangle\)) GOTO<label 2〉
\(Z\langle\) integer 5> \(=2 B\langle\) integer> \(+2\langle\) integer 2\(\rangle\)
\(z\langle\) intoger 6> \(=2\langle\) integer 2\(\rangle-1\)
2SAVR \(=0\)

Here <integer i> where \(1 \leq i \leq 6\) are distinct positive intogers. <integer> and <label 2\(\rangle\) are also positive integers.

The values <integer 5>, <integer 6> and (<labicl 2> + 1) are stored. They will be used later winen the loops are completed using the min mono instruction. The code generated by the FL instruction is given in Appendix 3.

The subroutine STAPRS has 1 input parameter \(I\) and 3 output paraneters, \(J, K\) and \(L . I\) is the index of the non-zcalar in Namis.

The output parameters have the following significance:
(i.) for a numeric non-scaler
```

J = the dope vector address
K = the number of dimensions
L=\varnothing if MAREFHR=\varnothing ; othermise I = 1.

```
(ii) for a constant vector
\(\mathbf{J}=\) the number of elements
\(K=1\)
\(I=\varnothing\) if MARKFR \(=\varnothing\); otherwise \(L=-5\).
(iii) for a literal
\(J=\) tho number of elements in the associated literal constent
\(K=\) the number of dimensions
\(L=\varnothing\) ir MARKAR \(=\varnothing\); othervise \(L=-1\).

These paraneters are used in subsequent subroutine calls.

At this stage, diferent subroutines are cailea for each type of operand. The possibilities are:
(i) FIND1 (containing a cell of FiND for numeric non-scalars (ii) FIM2 (containing a call of UVFHD) for constand vectors (iii) FTND 3 (contrixing a call of LRIND) for literals.

Exemples of tho code produced for eack type of operend are given at the end of this subsection.

The 3 non-scalar cases are distinguished in the mecro body. Thus, IF 32 NE 14
separates the numeric non-scalar case from the others. a cell of findi is then generated.

The macro instruction FV provides the first 3 parameters for a FIND call (as describsd in Chapter I).

The instruction FX generates either
```

            (i) the value on the Narias index for the non-scaler
    or (ii) 2F1
or (i.ii) 2F2

```
on MLIBR, dopenaing on whether the identifier is a function or subroutime parameter (see Chapter IV).
\(\%\), Z\% IMD generates \(Z<i n t e g e r 7>\). This is an output parameter used to store tioe FBront incex for the particular non-scalar element being accessed.
\%, Y\% MID generates an oxtput paremeter where the value of the nonscajur element is placed.
\(\%, z \%\) TND-5 corresponds to paranieter \(K\) of the STARRS cell, whiie ZNC corresponds to paraneter L .

The other parameters of FHID1 are global variebles. The signjificance of all global variables is given in Apponaix 8.

Finally, for numeric non-scalars, the value YSTORE (Y<integer 7>) is stored on IrsmP. Then follows a test for a constant vector identificer. This takes the form

\section*{4: IF 22 NE \(\quad\)-5 5}

A call of FIND2 is then generated. FIRD2 has the same paraneters as FJND1 except that the global parameters \(Z C O 0 F D\) and \(Z C D P L R\) are omitted. (These are unnecessaty ds they are used in spocifying a co-ordinato value and constant vectors are one-dimensional.)

The value of the constant vector element being accessed is produced in \(Y\) 〈integer 7>.

For a literel identifier, a call of the function FIMD3 is generated. A literal iaentifior is rogarded as an array of elenents whose values ere the character values for the elements of the literal. FRND produces as a result the character value for the literal. olement in \(Z<i n t e g e r 7>\). the paraneter \(Y\) <integer 7 > is unnecessary and has been onitted from the Fmill parancter list.

The remaining case to be considered is that of function or subroutine calls. The macro instruction \(F A\) produces the entire oode for the call, except for the list of global variables at the end. These variables, though not always used inside the function or subroutine body, must be inserted to allow for nocesses of any global variables inside the body. (The user may, if he wishes, remove those found to be unnecessary on inspection of the
generated code, or use the alternative method of handing globel variables doscribed in Chapter \(I, \$ 1,2.5\).

\section*{EXALTLISS}

Suppose that IBPTR is originaliy 1 and the operand-A macro is expanded in turn for the rollowing identiouers:
(i) the scalar \(A B C\)
(ii) the function call \(A\) FN B, where \(A\) and \(B\) are both scalar (iii) the numeric non-sealer subroutine parameter \(Y\) (\(Y\) is the loft paraineter of a subroutine)
(iv) the literel constanit 113459 '
(v) the label name L1
(vi) the niladic function name \(F\)
\(\begin{array}{llll}\text { (vii) the constant vector } & 3.1 & 2.4 & 6.7\end{array}\)

Then, after the 7 macro expensions, Inzir rill have the structure shown in Diagram 5.2.1(a).

No further code is generated for (i), (ii), (v) and (vi), but an entry is pleaed in LTABLS (sse Chapter VI) for (v).

Assume that IND has value 1 and the label number value is 1 中0. Assume also that INS has ralue 1\%. Then corresponding to case (iii), the following code would be generated,
```

IF (MRNSR.NEL|D) COTO 1ON
ZM1D = ZFOINT (ZPN)
ZPCD = ZPT + 1
CALL STAETS (Z31, 21, 22, 2NC)
2PONTM (ZFMC) = 2BHD + 22
23=1

```


19

Diagram 5.2.1(a) : Shows the structure of ITEMP if IBETR is initially 1 and the operand-A macro is expanded in turn for
(i) the scalar ABC
(ii) the function call \(A\) Fiv \(B\), where \(A\) and \(B\) are both scal.ar
(iii) the numeric non-scalar left subroutine parameter \(Y\)
(iv) the litexal constant '13459'
(v) the Iabel name L 1
(vi) the niladje function name \(F\)
\(\begin{array}{lllll}\text { (vii) the constant vector } & 3.1 & 2.4 & 6.7\end{array}\)

182
\[
\begin{aligned}
& 24=2 B 1 \phi+23 \\
& 2 \operatorname{TNDX}\left(a_{+}\right)=1 \\
& Z 3=23+1 \\
& \text { IT (} 23.52 .22 \text {) GOIO 1 } 12 \\
& Z 5=2 B 1 \phi+22 \\
& 26=22-1 \\
& \text { ZSAVZ }=\varnothing
\end{aligned}
\]
\[
\begin{aligned}
& \text { ascurating } \\
& \text { normal. } \\
& \text { access }
\end{aligned}
\]

Corresponding to case (iv), sirnilar code to that produced above is generated, except that the hast line is

Similarly, for case (vij), coae of the above form is again generated. In this case, however, the last line has the form
\(1 \phi 1\) CALL \(\mathrm{FITD2}(\phi, 6, \phi, 2 F 4,27,7,22,2 N C)\)

\subsection*{5.2.2 Operend-3 macro}

The operand-B macro is expended to handle the operenas of certein dyadic mixed functions. These functions are:
(i) encode
(ii) decode
(iii) member
(iv) iots
(v) outgr probuct
(vi) inner produnt

A listing of the operand-B mearo is given in Apperifix 4.

Ihe purpose of the operanduB macro is to store the elements of an operand in YROHD or YROHR. The arrays YRCild and YROFR are used to atore the elements of the left snà right operand respectively. RROiL has pointer ZROMO, which is set to the number of elements in the leit opsrenc. Similexly YROWR has pointsr ZROMA.

Gertain other functions are performed by the operand-3 magro. These are
 of zMARK (\(\varnothing\) to 5) ande the corresponding functions ere listed below,

1

2

3

4

As for ZMANS \(=\varnothing\). In addition, the current bowads, ZCBNDS, and pointer, ZCPPR, are updated to the bounds for the operand.

Store the \(N\) elements of the operand in XROHR and set 2ROMNA \(=N\). Update ZCBNDS and ZCETR as dascribed For \(2 M A R K=1\). Generate a cell of the function \(\operatorname{INDP}\). This function is used to produce tho result for the dyadic iota function (see §5.3).

Store the \(N\) elements for the operand in Yacura and set \(\mathrm{ZRONA}=\mathrm{N}\).

As for \(\mathrm{ZiAPK}=3\). In addition, the ourcent bound are updated as required for an inner produot. This is discussed more fully in \(§ 5.3\).

VALUT OF ZMABTK

As for \(\mathrm{MMARK}=3\). In eddition, the ourrent bounds are updated as required for an outer product. This is discussed nore fully in \(\$ 5.3\).

The operend-B macro carwies out its functions by genereting a nuruber of subroutine calls. Tha lacividual subxoutines are present in the moduie Iibrary seren

\subsection*{5.3 Handing oỉ lixed Functions}

A number of mixed functions are handled by generating FRD calls. These were aiscussea in Chapter I.

This section describes the handing of
(i) functions involving expension of operand-B macro
(ii) monadic tho
(iji) dyadic rho
(iv) monedic iota
(v) grade-up and grade-dom
(vi) deal (dyadio ?)
5.3.1 Functions involying expension of operand-B macro

The encode function
\[
R \quad T \quad N
\]
where R is a rootor and N is a scalar, is hendiled in the following may.

The edements of \(R\) are stored in the amray Yougd by expending the operand-B mecro with Zarark set to 1. The dimension of \(R T\) \(N\) is the
same as the dinonsion of \(R\).

The sodiar \(N\) is then produced on ITRYP by expandins the oparand-A macro.

The operands having been dealt mitin, the encode macro (number 13) is then expanded. A oell of the subrowtine NCOMD is gonerated, that is

CALE NCOAD (N)

The result of \(R T N\) is a vootor. It is stored in the axray ZTixp from the bese level onwards, A series of nonwsealar result elements maj be stored jn \(Z T \mathrm{H}_{\mathrm{il}}\) and hence a stack of shecessive bese levels is required. The stack is represented by ZY smd has stock pointer ZYPRK.

Non-scalar integer results are stored in ZTNMF; non-scalar real results in the arxay YTBip, mere is a similar stack \(Z Y Y\), having stack pointex ZYYFTR, which gives successive base levels or YףæiP.

A oell of the function NCOiD is generated to produce the requined result for \(R T N\) and store it in the next Ievel of zicksP.

The decods function
\[
R \perp X
\]
where \(R\) and \(X\) can both be nonmscalar, also behongs to this group . Ghe result of \(R \perp X\) is a scalar. Scelar argments are extended to the samee size as the othor argument. For example, both
\begin{tabular}{llllllllll}
& 10 & 10 & 10 & 10 & 1 & 1 & 7 & 7 & 6 \\
and & & & 10 & \(\perp\) & 1 & 7 & 7 & 6 \\
is & & 1776 & & & & & & & \\
is & & & & & & & & &
\end{tabular}

Taking this foature into accoint: the elemeots of the lert operand are stored
in YROHL by expanding tho operand-B nacro with Zuank set to \(p\). The elements of the righit opecand aru then stored in Yrolp by expending the operend-E macro with Zildrk set to 3 .

To produce the desired effoct, the decode macro (number 14) simply generates a call of the subroutine DCODE. DCODE accesses YRON and YROFR to produce the result \(N\). The parameters for DCODE are \(N\), YROWL, YROMR and ZCPN:

The member function
\[
A \in B
\]
is another function beloncing to this group. \(A\) and \(B\) can be non-scalar and \(A \in B\) has the same dimensions as \(A\).

The elements of the left operand are stored in YROML by expanding the operand-B macro with ZMARK set to 1. The right operand elements are stored in YROWR by expanding the operandm macro with ZMARK set to 3 . The result prill thus have tho same bounds as the lef't argument.

The member mecro (number 12) simply generatos a call of the subruutine MEABAR to produce the desired rasuit in \(2 T \mathrm{TH}\).

The iota function,

\section*{\(A 2 B\)}
where A and \(B\) may both be nonmscalar, is very simply handed by this methoa. To produse the required resuit, in \(2 T \mathrm{Alip}\), it js only necessexy to do two expansions of the operand-B macro.

The first expansion, with RMARK set to \(\varnothing\), stores the elemertis of the left operani in yonki. The second expansion, with \(Z M A P K\) set to 2 , stores the elenents of the right oparand irr YROWR. In adidition, it sets up bounds
(the result having the same bownds as the right operand) and generatas cails of the function Iady. There is one call of INDX for eacin element of the
 the position in yporff of the right onexand element being considerea. The paraneters are used to detemine the result and store it in successive locations of 2TEPP, starting from the current base level.

The outer product function is interesting, The non-scalar operands, \(A\) and \(B\), of

A O. P B
where \(f\) is any scalar dyadic furstion, are handed as follows.

First the left operand elements are stored in Yroril by expanding the operandub macro with ZMARK sot to 1. Bounds ara also produced in ZCBNDS as for the left operand A.

The operand-B macro is taen expended with 2 BNAK set to 5. The elements of \(B\) are thus stored in YROiR, In addition, ZCBNS is updeted so that the bounds for \(B\) are stored above the bounds for \(A\), thus, if \(A\) is m-dimensional and \(B\) is \(n\)-timensional, ZCSNISS will have (\(n+n\)) elements and ZCPIR will bo set to \(m+n\).
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \(\uparrow\) & & \\
\hline 1 & B & \\
\hline z & & \\
\hline c & & \\
\hline B & & \(\underline{m+1}\) \\
\hline N & & \\
\hline D & & m \\
\hline D & A & \\
\hline
\end{tabular}

The outor product macro is then expended. Since the dyadic function, f', can vary, the execution or the outer proquct nacro (number 67) is interrupted at a certain point and the macro for \(f\) is expanded. The appropriate elements of YROM and YRCi'R are first stored on ITEMP to be used by the \(f^{2}\) maoro. Expansion of the ouler produet macro is then resuned from immediateiy after the first exit point.

This an be better understood by considering the code generated. This code is listed belon. (the subroutine call

CALE BUNO (Z, Z1)
produces in \(z\) the product of the first \(Z 1\) elements of zCBRDS.)

CALL BDNO (Z1, ZROMNA)
CALL BDNO (Z2, ZROMNO)
\[
Z 3=Z Y X(Z Y Y P P R)
\]
\(Z_{4}=\varnothing\)
\(Z 5=\varnothing\)
100 \(\quad 25=25+1\)
\(z 6=\varnothing\)
\(1 \not 2 \quad 26=26+1\)
\(Z_{4}=Z_{4}+1\)

At this stage, the entries YROWL (45) and YROR (26) are stored on InTwip. Rxecution of the outer product mero j.s ther interrupted using the macro instruction sequenoe RCM 身.

The operanis for the \(\mathbf{P}\) macro have now been stored in ITEMP. The \(f\) macro is expanded to produce a rosult in ITHETP. For exanple, if' \(f\) represents + , then the code (YRON (25) + YRONR (26)) is stored on ITER in place of YROML (25) and YROTR (26) .

Expansion of the outer product macro is restuned and the following code is generated.

```

                                    removed>
            IF (26.IT.21) COTO T\notD|
            IF (25.IT.Z2) G0%0 1, %/|
            MATHK&R = - 5
            27 = \not0
    I\$2 27 = 27+1

```

The code \(Y M E A P(27+23)\) is stored in ITREMF to be used as an operand in the next macro expension.

The inner product function
\[
A f \cdot g B
\]
is handled by a similar method. Here \(A\) and \(B\) may be non-scaler and \(f\) and \(g\) are any scalar dyaḋic functions.

The opersnds \(A\) and \(B\) are handled as iollows. The elements of \(A\) are stored in YROML by expanding the operand-B macro with ZMARK set to 1. The bounds for A are also set up in ZCRNDS. The operand-B macro is then expanded with zimiRK set to 4. The elementis of \(B\) are thus stored in the array YRCirR. ZCBNDS is updated as required for an inmer proauct. Thus, if A is mmimensional and \(B\) is n-dimensional, ZOBNDS wijl be as illustreted below,

The imer product macro amploys a similar strategy to that usea in the outer product macro: In this case there are two scajar dyadic functions to be hanaled. There are thus two intermptions in the execution of the innez product manco. The inner produet macro is Iisted in Appendix 1 .

zCBNDS (m)
is stored in
zROWDM to be
used in the
inner product macro body.
ZCPTR has value m+n-2
5.3.2 Handling of the monadic RHO operator

This simply jnvolves updating the contents of the array ZCBNDS.

For non-scaleir rosult oporands, the effect is produced by generating a call of the subroutine ARHO. For other non-scalar operands, the effect is produced by generating a call of the subroutino NHHO.

MHRO and Mrifo are contained in the module librexy sARUN.

\subsection*{5.3.3 Handijng of the dyadic gho operatox}

The dyadic rino operator is handled by two macro expansions. The first generates code to stora the left operand elements in the array ZROM. 㻢. second macro expansion generates a number of subroutine calls. These subroutines access the elements of Znorid (and the right opereni) to produce the required result.

The dyadic rho operator is discussed in §5.5.
5.3.4 Merdins of the monactic iota onerator

To handle
where \(\mathbb{N}\) is an integer \(\geq \phi\), code is simply generated to store values \(1,2, \ldots\), is in successive positions in the array ZTEDP, starting from the current base lovel.

The variables, MEKRR, ZCBMD and ZCPIR are set accordingly.

\subsection*{5.3.5 Handling of the greaje-up and grade-down functions}

To handle, for example,
\[
\text { 公 } A
\]
where A is non-scalar, the result cannot be determined until all the elements of \(A\) are known. Axpansion or the operandma maro to nanale \(A\) simply produces the start of the loops requirea for non-scalex mecessing. Code is theroforo generated to store the elements of \(A\) in the array YGRAD and the loops are then completed.

A call or the aubroutine GRAD is then generated to produce the required result. The quick-sort method or sorting (Knuth \({ }^{2}\)) is used in GKdD to handie grace-up and grade-down.

\subsection*{5.3.6 Handing of the dyadic ? function}

The operands \(A\) and \(B\) of
\[
A ? B
\]
where \(A\) and \(B\) are both scatar, are handled by two expansions of the operand-A macro. The code for A and B is thus placed in ITE班. Thon A calls of the function quERY2 are generated, qugRye has parameters B atu the array \(Z B O C L\). A random number, \(N\), in the rarge \(1-B\) is inst generatsd. ZBOOL (N) is then set. IP, in a subsej!ent cell of gU: RRYe, \(N\) i.s obtained
as result, the previous occurcence of \(N\) can be detected by testing the value of \(Z 3 O O L(N)\). In \(2 \overline{D O O L}(N)\) is set, then the process is repeater until a random number is produced which has not ocourred beifore. In this Way, for example, \(N\) ? \(N\) will produce a perwutation or \(N\) as result.

After A calls of gTBRY2, \(2 B O O L\) must be reset in preparation for any subsequent sexies of oalls.

\subsection*{5.4 Other Interesting Punctions}

Ihis section deals wiith the operators
(i) specificication \(\longleftarrow\)
(ii) reduction f/ where \(f\) is any scalar dyadic function.

\subsection*{5.4.1 Hanaling oin specification statements}

For most furictions, the left operand is handled before the right operaná. The specification function is an exception. For specisication, the rignt operand must be examined first so that the correct type and dinension Information can be set up for the left operend. For oxample, consider

\section*{}

If \(L\) is litersl, then A will be literal also.
If \(L\) is numeric, then \(A\) will be numeric also.
In adition, the dope veotor entry for \(A\) depends on the dope vector entry for \(L\).

Thus, after handling the right operand, the appropriate ixformation is stacked for the left operant. The spocification macro generates a subroutinc cell, the subroutine being determine \({ }^{2}\) by the type information available.

After handing a specification operation, the index for the left operand is stacked in the appropriate location of IDSTK. The index is thus available to be re-used to provide operand information for the next oporator in multivle specirication statements. When the left operand is not an expression, no result code is placed in IMMP.

Hovever, consider
\[
A \leftarrow B+R[1] \longleftarrow 3 .
\]

Atter hamciling \(R[1] \longleftarrow 3\), a \(-1 \varnothing\) entry is stacked on IDSIK. This is consistent with the above method, as the "index" for the lef't operand \(R[1]\) is \(-1 \not \subset\), sinoe \(R[1]\) is \(e\) result. Since \(-1 \varnothing\) pill now be useã as the information for the right operand of \(\dot{r}\), it is necessary to have the code corresponding to \(R[1]\) stoxed on ITwhe.

\subsection*{5.4.2 Handling of reduction}

Consider
\[
f / X
\]
where \(f\) is any scalar dysdic function and \(X\) is non-scaler. (The method employed only requires explanation for the non-scalar oase.)

Assume, for gase of explanation, that \(X\) is a vector of \(\mathbb{N}\) elerents. Then the result required is
\[
x[1] f x[2] f \cdots f(N] .
\]

The methoa employed is to set the variables OPL and OPR initially to
(i) the identity element, ID, for Iunction \(f\), and (ii) \(\mathrm{X}[\mathrm{N}]\)

Interruption or the reduction macro is ther effected using the macro instructions ghe discussed previously.

The \(f\) macro is then expanded to produce the result (P (f (OPL) on ITEXAP. Expansion of the reduction macro is then resumed.

OPL is now set to the result on ITGIP, and OPR to \(X[N-1]\), The whole process is repeated using the new values of OPL and OPR .

These steps are carried out \(N\) tines, the result required being accumulated in OPL .

The reduction macro is listed in Appendix 4. For a nonmscalar operand, code of the form listed in Chapter VIIT, Example 8.1.9, is generated.

\subsection*{5.5 Examples oî Kacro Bodies}

This chapter ends with three example macro bodies and their explanations. The examples chosen are:
(i) the macro for \(+,-x, x\), *
(ii) the macros fror ayadic rho
(iji) the macro f'or quad input.

\subsection*{5.5.1 The macro for \(+t_{2}-x_{2} / 2 *\)}

This macro is reproduced below.
\[
\text { BR LO } \quad 0 \quad \text { RO } \quad C B \quad S
\]

The function of \(B R\) is simply to produce (on MTEMP. The left operand oode is then transferred from Irver to MrPap. (The operand code has previously been produced on ITEFP by two expansions on the oparandak macro.)

Whe instruetion 0 prounces the code \(+, m, * / /\) or \(* * /\) on MIXMP, depending on the operaior being handled.

RO results in the transfer of the right operand code frou ITrig to MrNHP. CB produoes a closing rourd bracket) on MTEMP.

Consider, for example,
\[
A \quad B
\]
where \(A\) and \(B\) are both scalar. When, at this stage in the macro expansion MTEMP will contain (\(A * 3 \mathrm{~B}\))

The contents of MTEMP are now transiexred to ITAWP using the \(S\) macro instruction and exit from the macro body is effected using \#.

Now consider
\[
C+A * B
\]

Suppose \(A\) * \(B\) has been handiled as doseribed above. ITEMP now convains an entry (A** B). The code for \(C\) is stored on ITwiP by expanding the operand \(A\) macro. The variable IMGI is set to 1 to indicate that the operands have been stored in ITHED in reverse order Ine is tested when LO and RO are used to determine the order of access of the operend.

The + mecro is now expanded to produce \(\left(C+\left(A^{* *} B\right)\right)\) on JTEMP. Brackets are inserted round the resulit code eacin time the above mecro fs expanded. It was thus unecessary to bracket A**B when \(R O\) wes executes. It is, however, necessary to remove the outer brackets when an expression sumh as \(C+A^{*} B\) is used to the right of a specification arrow,

\subsection*{5.5.2 The macros fow dymide vio}

As stated prevjousily, dyadic tho is hazaled by two magro expanaions.

These macros are listod in Appandix 4.

Ine first macro handles the left operand, A, of ApB.

Three oprrand types ars first distinguished. These are:
(i) scalar
(ii) non-scalar or constant vector (iii) result.

The first test IF PJ LT Ø 1 distinguishes oase (iji) above. Thus the code from label 1 onvards haridos a result left operand.

The second test IF 22 ME \(\varnothing 2\) distinguishes cese (i) above thus ease (i) is hanaled up to label 2 and then case (ii) up to label 1.

For oase (i), the fohlowing code is generated:
```

ZROM(1) == <Soalar identifjer>
ZROWNO = 1

```

For oage (ij), the following code is generated:

CALL RHOBND (<NAIES index>, <type value〉).

In RHOBND, the operand elements are stored in zROA and zROWNO is set.

For case (iii), scalar and non-scalar results are distinguished by testing the value of Misicir. The following code is generated:

IF (MAPKSR.ME. \(\varnothing\)) GOTO<label 1\(\rangle\)
\(\operatorname{ZRON}(1)=\langle\) result code〉
ZHOMNO \(=1\)
GONO<label 2>
```

<label 1> Y<intcger> = <result code>
IT (Z<integer 1>.GT.ZLTM2p) Cuill GVCFMR (2d, \&<label 2>)
ZROW (Z<integer 1>) = Y<integer>
CALL BDNO (z<integer 2>, zCPMTR)
IF (2<integer 1>.LT.z<integer 2>) GONO<label i>
2ROHNO = Z<integer 2>
<label 2> CONITNTS

```

Here ZLINZX is the upper bound for ZROM, If it is exceeded, GVOVER is called to print out an error nessage. GVOVAR handes overflow of all globel non-scelars.

The cell of BDNO produces the product of the ZCFIR elements of ZCBMDS in \(Z<i n t e g e r 2\rangle\). This provides a tarinating conaition for the loop.

The rieht operand can now be handled. More operand types are alloweble here. Thus the second macro has a greater number of tests. © For each operand type, a different subroutine call is generated. These subroutines produce the required result in each case.

The following operand types are distineuisied:
(i) scalar
(ii) literal
(iiii) empty vector
(iv) numeric non-scaler
(v) constant vector
(vi) result

For each operand type, a call. of the subroutine YRiO is generated. dhis produces in the first perameter the product oi all the elements of ZROit from positions 1 to Zionitio. Thus, for the six cases listod above, the following code is generated:
（i）Scalar

CALL YRHO（ \(2<\) integer 1\(\rangle, 2: 107\) ）
\(Y\langle\) inateger 2\(\rangle=\langle\) scalar identirier〉
CAJL RHO2（ Y ＜integer 2＞，2〈integer 1＞）
Z〈integer 3\(\rangle=\) ZYY（ ZYYpraf ）produced by instruction \(2 S\)
\(z<\) integer 4\(\rangle=\varnothing \quad\) produced．by
\(\langle\) label 1\(\rangle 2\langle\) intcger 4＞\(=2<\) integer 4\(\rangle+1 \quad\) ．instruction DS

The values＜integer 4＞and＜label 1\(\rangle\) are stored to be used in finishing the loops lator using the PC macro instruction．The code

YMRIP（Z＜integer 4＞＋Z〈integer 3＞）
is stored in ITRMP to be used as an operand in tho next macro expension．
（ii）Liter＇al
```

    CALL YRHO (Z<integer 1>)
    GALd PHO5 <NNATS index>,Z <integer 1>)
    Z<integer 3> = ZY (ZYPJR)
    z<integer 4> = 
    <Iabel 1\rangle Z<integer 4> = Z<integer 4>+ 1

```

An ontry \(\quad\) atarp（ \(2<\) integer 4\(\rangle+z<\) integer 3\(\rangle\) ）is again placed in ITPilp．
（iiii）Enpty vector
CALL YRHO（ \(Z<\) integor 1＞）
NARKAR \(=-3\)
CeLL RHO4

A dumy entry is stored in ITBIP for an empty vector result．It is eccessed．
during subsequent macro expansions（this was done for gonerality）but is dotected by the fact that Markir has value－3．
（iv）Numeric non－scalar

CALL YRFO（ \(\mathrm{Z}<\) integer 1＞）
CALL VECASE（＜NATABS index＞）
or
2F1
or
\(\mathrm{Zin}^{\prime} 2\)
CALL RHO4

An entry as for case（i）is placed in IThar．
（v）Constant vector

CALI YRHO（z＜integer 1＞）
CALL．BHO1（KNANES index＞， \(\mathrm{z}\langle\) integer 1＞）
\(\mathrm{Z}\langle\) integer 3\(\rangle=Z Y\)（ZYPIR）
Z〈integer 4＞＝\(\quad \varnothing\)
\(\langle\) lebel 1〉 \(\mathrm{Z}\langle\) integer 4\(\rangle=\mathrm{z}\langle\) integer 4\(\rangle+1\)

Again，an entry as for case（i）is placed on ITAMP．
（vi）Result

CALL YRHO（z＜integer 1＞）
\(Y\langle\) integer 2\(\rangle=\langle r e s u I t\) code〉
IF（MARKIR ．NE．Ф）GOTO＜label i＞
CALL \(2 H 02(Y<\) integer \(2>, 2<\) integer 1＞）
GOTO＜label \(2>\)
```

<label 1> Z<integer 3> = 2<integer 3>+1
IS (Z<integer 3>.G2. 2inm 25) CALL Gvovith (25, \&<lakel 3>)
YTEMP2 (z<integer 3>) = Y <integex 2>
CALLi BDNO (2<integer 4>, 2CNTR)
If (%<intoger 3> .LT. Z<integer 1>>) GOTO<label 1>
<label 2> Z<integer 5> = ZYY (ZXYFXR)
Z<integer 6> = \emptyset
<2abel 4> 2<inveger 6> = 2<integer 6>+1
An entry of the fomm

```
YTEMP (2<integer 6>+2<integer 5>)
is then stored on IIMPR.

\subsection*{5.6.3 The macro body for cied trout}

The quad input macro body is listed in Appendix 4.

To read in numerical data, the user must first specify the type of the data. The following types are pessible:
(i) empty vector
(i.i) scalar value
(iii) constent vector

The three types are distinguished by first specifying a value for the variable \(Z V B N D\). The values \(-1, \emptyset, n\) are used \(\frac{1}{2}\) or cases (\(i\)) to (iii) respectively, where \(n\) is the number of elements in the constant vector.
```

RJSAD 1 $\not 02,2 \mathrm{VBND}$
MRITH ( $6,1 \not 02$ ) ZVBND
IF (ZNBND.NE. - 1) GOTO<label $1>$
MARKER $=-3$
WRITE ( $6,1 \not 06$ )
GOTO <label $2>$
〈label 1> IF (ZVBND. NR. $\emptyset$ ) GOTO〈label 3>
MARKRR $=\emptyset$
RAAD (5, 1/84) YTEN (1)

```

```

GOTO<Labol 2>
<label 3> IF (ZVAND. GT. ZLM 26) GALL GVOVBR (26, \&<Label 2>)
READ ( $5,1 / 44$ ) (YTAM $\left.\left(z_{1}\right), z_{i}=1,2 V B N D\right)$
PRITE $(6,1,04)$ (YMEM $\left(z_{i}\right), z_{i}=1$,ZVEND $)$
ZCPIR = 1
ZCBNDS $(1)=$ ZVBND
$\langle$ labol 2$\rangle$ Z $\langle\mathrm{i}+1\rangle=\emptyset$
$z\langle i+1\rangle=2\langle i+1\rangle+1$

```

An entry of the form \(\mathbb{2}\langle i+1>\) is stored on 1 ITMP to be romacessed as required.

The FORMAT statements used are listed in macro number 16 in Appendix 4 , They can be altered by the user if required.

Alternatively, the user can write his orm input subroutines so that specification of ZVBND is unnecessary.
(Similar specirications of \(2 V B i N D\) are required for the quote-quad macro body.)

When quad or quotemqued input is used, the data supplied is printed out. This gives a closor approximation to the printed page produced won these instructions are used in APL .

\section*{CHAFTER VI}

\section*{LABELS AND JTMPS}

This chapter desoribes the handling of APL designational expressions. The method is much simplified by the presence of the lexical sconning phese. When the input AFL code is lexically scanned, all label names are detected by the existence of a colon to their right. Entries (having type values of -4) are set up in NAMES. In addition, entries are set up in a twodimensional table, ETABLE. A particular row of LIABLiE holds the followine information,
(i) The index for a label name in NAMAS.
(ji) The corresponding row number for the statement in which the label ocours.

Entries arc added to LTABIf sequentially.

Since the lexical scan is completed before code generation tina, ETsBLa will hold all the necessary information for production of GGO statements. Forward jumps cause no problen because the appropriate label entrias have previously been set up during the lexical scan.

All APL functions and subroutines heve assumed label numbers. For example, consider the subroutina

The statement \(\rightarrow 2\) means "transfer control to the \(2 n d\) statement in subroutine F".

To allow for this possibility, a count of the number of lines in a function or subroutine is maintained. In fact, there is a stack or line counlis to handle sets of functions or subroutines. The line count is increased as required until the end of a function or subroutine is recognispd. For each line processed, entries are set up in NAWES and LTABJE for the current line count value. The NbuEs entries have type values of -4.

Thus, at code generation stage, the appropriate line numbers are produced at the staxt of the code corresponding to each line. For example, staterent 2 of subroutine FN would be converted to
```

2. CONTINUS
```
 -
in the translated routine; similarly for all \(n\) lines in the subroutine. This allows for statements of the form
\[
\rightarrow n
\]
where \(n\) is not know until inn-time of the converted routine.

Iabel numbers used in FOPMAT statements and introduced during code generation have values starting from 100. Thus, up to 99 Ines may ne present in an AFL function or subroutine. If rore than 99 lines exist, then duplioate label numbers will be generated.

Now consider the statemont
\(\rightarrow \mathrm{N}\)

In general, \(N\) may be :
(i) a label name
(ii) a scalar variable name
(iii) a scalar constant with integral value
(iv) an empty vector
(v) a constant vector
(vi) a vector variable narne
(vii.) an expression with scalar result
(viis) an expression with empty vector result
(ix) an expression with non-scalar result

Each case is considered separately. The descriptions are given in \(\$ 6.1\) to §6.9 respectively, Cases (i) to (ix) are distinguished either by type value or by the value of MARKAR.
6.1 Statements of the Form \({ }^{\prime} \rightarrow N^{\prime}\), Where \(N\) is a Ligbel. Nang
\(N\) has a type value of -4 , and its NaliEs index, \(I\), is given by IDSIK (TDLFM \(\mathrm{R}+1\)) .

The entries in the first column of LTABLff are searched sequentially until an entry is foumd having value I. If LTABLic (\(J, 1\)) equals \(I\), then the requirea label number is given by \(K=\operatorname{LIABLE}(J, 2)\). Thus, it is only necessary to generate code of the form

\section*{GOHO K}

\subsection*{6.2 Statements of the Form \({ }^{1} \rightarrow N^{\top}\), There \(N\) is a Scalar Variable Name}
\(N\) has a type value of \(\varnothing\), and its NAMES index, \(I\), is given by IDSIK (IDLPIR+1) . The value of \(N\) will not be knom until run-time. Two possibllities may arise:
(1) \(1 \leq N \leq M A X\), where \(M A X\) is the number of lines in the function or subroutine, or
(2) \(\mathrm{N}<1\) or \(\mathrm{N}>\mathrm{MAR}\).

For cese (1) code of the form
GOTO <labol number>
is required.
For case (2) the code

\section*{RETURN:}
should be generated.

The above two possibilities are catered for by generating code of the form
\[
Z_{1}=N
\]

GOTO 1080

There is a corresponding switch

1000 IF (Z1.LA. \(6 . O R . Z 1 . G T . M A X)\) RBYURN
\[
\operatorname{GOTO}(1,2,3,---, \mathrm{MAX}), Z 1
\]

\subsection*{6.3 Statements of the Form \(: \rightarrow N^{\prime}\) mare. \(N\) is a Salar constant}
wath lntegral Value

As in \(\S 6.2, N\) has a type value of \(\mathscr{\theta}\), and its NAMES incex, \(I\), is given by IDSTK (IDLPTM +1). The value of \(N\) is known at code generation stage However, distinguishing this case from that above would involve the introduction of a few more macro instructions. In fact, this case is treated sxactly as that outlined above, and code of the form
\[
21=N
\]

\section*{GOIO \(10 \% 0\)}
is again generated.

\subsection*{6.4 Statements of the Form ' \(\rightarrow\) N', There \(N\) is an zimpty Vector}

In this case there is a vacuous branch and sequential execution of statements is required. Thus no code is generated.

\subsection*{6.5 Statements of the Form \(\rightarrow \rightarrow N^{1}\), Where \(N\) is a Constant Vector}
\(N\) has a typa value of -5 and \(i\) ts NMmS index, \(I\), is given by IDSTK (IDLFTR+1) •

The required branch is determined by the first element of the constant vector. The first element value can be obtained (at mun-time) by applying the function FWN to \(I\) with first parameter set to 1 . Thus, code of the following form is generated,
\(Z 1=\operatorname{FUN}(1, I)\)
GOTO 100\%

The function FUN is present in module library SARUN .

\subsection*{6.6 Statements of the Forn ' \(\rightarrow \mathrm{N}^{\prime}\), Where N is a Voctor Variable Peme}

N has type value 1 and its NanES index, I , is given by IDSTX (IDLPTR+1). The NAMES index for \(N\) can be used to provide the key and hence the dope vector address, \(J\), for the vector \(N\).

In this case the switch at label togo has to be indexed by the value of the first element of vector \(N\). This value is given by YSTOES (Kん) , whero \(K=\operatorname{DOP} \mathrm{Dis}^{(J, 3)}\), and \(\mathrm{KA}=10 *(\mathrm{~K}-1)+1\). The required result is produced by generating code of the following form:

CALL VSEA (\(I, X)\)
```

KA = 1\varnothing* (K-1) +1
21 = YSTORE (TA)
GOTO 10ED

```

Given the index I for the vector \(N\), the subroutine VSer produces the result \(K\), where \(K\) is the number of the first block of YSTORA associated with \(N\). Subroutine VSET is listed in module library SARUN.

\subsection*{6.7 Statements of the Form \(' \rightarrow \mathrm{~N}^{\prime}\), Winere \(N\) is an Expression With Soalar Result}

In this case MARKER has value \(\sigma\) and the scalar result code is stored in ITEMF . The following code is generated
\[
\begin{aligned}
& \text { Zf }=\text { <scalar result code }> \\
& \text { GOHO } 1 \varnothing 00
\end{aligned}
\]

\subsection*{6.8 Statements of the Form ' \(\rightarrow N^{\prime}\) ', Where \(N\) is an Mxpression With Empty Vector Reselt}

Here, MARKER has value -3 and a dummy result variable has been stored in ITMMP . The code

IH (MNRKDR. MQ. -3) GOTO<1abel>
is genergted, where
\[
\langle\text { label> CONTINUE }
\]
is the last code line generated for a result.

\subsection*{6.9 Statements of the Fom \({ }^{1} \rightarrow N^{\prime}\), Where \({ }^{n}\) is an Expression With Non-Sealar Result}

This case has been limited to handle only expressions heving a MARXRR value of -5 . The index for the non-scalar resillt is set to 1 so that the first element of the result will be used to determine the branch. For casea described in \(\$ 6.7\) to \(\$ 6.9\), therefore, the follcwing code is genereted: TH (MARKPR, EQ. -3) GOTO<label \(1>\) IF (MARKER.NE. 0) GOTO \(<\) label \(2>\) \(Z j=\langle s c a l a r\) result code \(\rangle\)
<label 2> \(\quad z_{n}=1\)
\(Z 1=\langle\) non-scalar result code>
60201800
<label 1> CONIINUis

Here \(z_{n}\) is the index variable for the non-scalar result.

\section*{CHAPXiz VII}

\section*{PROCESSIIGG OF TNTMLAT INPORLASION}

This chapter describes the processing of the initial information supplied with a set of API routines. From the tnitial information, entries of the following form were stored for numeric or literal non-scalars. tihree possibilities exist:
(a) if no further information was suppliod for the nonmsealar, the following entries are stored:
1. the position, I, of the non-scalar in the initial list,
2. the address, A, of the dope vector entry for the non-scalar, 3. \(\quad\);
(b) if partial information was supplied for the non-sealar, the following entries are stored:
1. the position, \(I\), of the non-scalar in the initial jist,
2. the address, A, of the dope vector entry for the non-scalar,
3. \(-N\), where \(N\) is the number of dinensions of the nom-socelar;
(c) if full information was supplied for the non-scalar, the following entries are stored:
1. the position, 1 , of the non-scalar in the jnitial list,
2. the address, A, of the dope vector entry for the non-soalar,
3. \(N\), where \(N\) is the number of dimensions of the non-scalar,

4: \(b_{1}\), where \(b_{1}\) is the bound for the first dimension of the non-scalar
\(4+\mathrm{N}-1\). \(\mathrm{b}_{\mathrm{N}}\), where \(\mathrm{b}_{\mathrm{N}}\) is the bourid for the \(\mathrm{N}^{*}\) th dimension of the non-scalar.

All entries stored are in 16 format.

Initially, one block of space in YSHORE was set aside for storage of each numeric non-scalar for which no additional information was provided.

The generated code may contain calls of a subroutine which allocates or de-allocates storage for a particular non-scalar. This will be the case if the dyadic 'rto ' function appears in the oxiginal routine. However, before running the converted routines, the initial information is taken into account. Where possible, contiguous blocks of YSTORE are allocated for non-scalars. This is discussed later.

For non-scalars with elements stored in contiguous blosks, a fixed amcunt of storage has been set aside in YSTORE. This smount is the naximum amount of space required by the non-scalar. Thus, for non-scalars with elements stoxed in contiguous blocks, the amomt of space allocated should not be varied dynamically. The dimensions for the non-scalar may, however, vary dymanically. It is therefore arranged that the storage allocation subroutine has no effect for non-scalers stored in contiguous blocks of YSIORT, 'the current dimensions are updated as required throughout the ruming of the converted routine.

The dope vector table is now updated (using the initial informetion) so that those non-scalars having elements stored in contiguous blocks can be datected by oxamining the table. The table is updated in the following manner:
(a) For arrays with full information given, the actual start address, SA, in YSrope can be calculated. DORES (n,3) and DORES (\(n, 4\)) are set to \(\varnothing\) and \(S A\) respectively, where \(n\) is the address of the dope vector entry.
(b) For arrays with no infomation given, the dope vector entry is unaltered.
(c) For arroys with only partial information given, the nogative of the position of the array in the initisi list is atored in column 3 .

For cases (a) and (c) above, the firth column of the dope vector entry is filled in at this stage. For (a) the bound informetion is atored in array ZBONDS, from position ZBPIR onwards. ZBIFR is then increased as required. For (c) storefe is set aside in ZBOND for the bound injormation and ZBPDM is set up as required. Ir this case the bound information camot be filled in until it is obtained at run-time of the converted routine.

Now consider arrays with full or partial additional infomation supplied. Tla access the \(I^{\text {th }}\) element, relative to the base adiness, the following stepa are sufficient.
1. Obtain the start address, SA, for the non-scalar from the dope vector table.
2. Obtain the actual address, AA, which is given by \(S A+I\).

Thus the time consuming accessing method used in the function FIND can be replaced by a much simpler function. A method of optimising the gererated code by removing unneosssary FND calls is outlined in Chaptor VIJI.

The following types of entry are thus present in DOPES et tines stage:
(a) Columin \(3>0\)

No additional infornation has been given. The accessing method used in the function FTND is essential.
(b) Colimn \(3<\theta\)

Partial information has been supplied for the non-scalar, and the DOPSS ontry is in an intemediate form. It will be converted to form (c) usirg information supplied by the user ait run wime of the converted routine. This
is discussed in \(\& 7.1\). In this cese the generated code contains an umecessary call of the function FIGD.

\section*{(c) Coluran \(3=\emptyset\) and colunn \(4 \not \equiv \emptyset\)}

Full information has been supplied and the dope vector entry contains the exact start address for the non-soalar (in colum 4). Again the code generated contains an unnecessary cell of the function FTND.

For axample, suppose that the following information was supplied initially:
\begin{tabular}{llllll}
A & \(\varnothing\) & 3 & 4 & 4 & 3 \\
B & \(\varnothing\) & \(\varnothing\) & & \\
C & \(\varnothing\) & -1 & & \\
D & \(\varnothing\) & 2 & \(1 \varnothing\) & 2 & \\
E & \(\varnothing\) & -2 & &
\end{tabular}

Thus, the total number of blocks of YSTOH required for \(A\) is 5 , for \(D\) is 2, and it is known that \(C\) is 1-dimensional and \(E\) 2-dimensional. No further information is given for B.

During processing, the dope vecter eatries for A, B, C, D and E are altered to the form shown in Diegram 7(a). The corresponding layout of YSYOPE is indieated in Diagram 7(b). It is assumed that 2Brilk hes value 10 initially. Detted lines have been used to indieate that the exact amount of space for non-scalars \(C\) and \(E\) is not knom at this stage.

The amount of space allocated for \(B\) may be updated dynarically if \(B\) has been re-dimensioned in the AFL routine. The amount of space allocated for \(A, C, D\) and \(E\), however, will remain constant during execution of the converted routine.

At this stage, start addresses for \(A\), and \(D\) are fnown exactiy, and
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & & \(\emptyset\) & \(n\) & 3 & \(1 \varnothing\) \\
\hline 2 & & 2 & 2 & & \\
\hline 3 & & -3 & & 1 & 13 \\
\hline 4 & & \(\varnothing\) & \(m\) & 2 & 14 \\
\hline 4 & & -5 & & 2 & 16 \\
\hline & & \\
\hline
\end{tabular}

Diagram 7(a) : Shows DOFiS entries for non-sealars \(A, B, D, D, E\)

after the initial ineormation has been processed.

Diagram \(7(b): \quad\) Shows layout of YSTORE corresponaing to
DOFES entries as given in Diagram \(7(a)\).
the start addresses ror \(C\) and \(E\) can be calculated jmmediately before the converted APL routine is run.

The generated code can now bo optimised. The optimisation process (with particular reference to the removal of unnecessary FIND calls) is described in Chapter VIII, In replacing FIND calls i.t is assumed that the exact start address is stored in column four of the DOPES entry for any nonsoslar. This will be the case oven for partially specified non-scalars, as the DOFES entries are altered to this foxm immediately before execution of the converted routines.

The prooessing of the information supplied at min-time of the converted routines is discussed in §7.1.

\subsection*{7.1 Handling of Bounds Intormation for frrtially Specjfied}

\section*{Numeric Mon-scelars}

Gorresponding to each partially specified numeric non-scalar in the indial list, the following information must be suppijed by the user at muntime:
1. The position, \(I\), of the non-soalar in the initial list.

2n The number, \(N\), of dimensions of the non-scalar.
3. N entries containing the bounds for each dimension.

For example, referring to Diagram 7 (b), if YSHORE has 5000 locations, then \(\mathrm{n}=4951\) and \(\mathrm{m}=4931\).

Suppose the information spceified at run-time for non-scalars \(C\) ard \(E\) is as shown below:
(i)
 for 6
(ii)

Then the start address of \(C\) can bo calculated as:
\[
4931-(26+9) \div 10 \times 10=4901
\]

Similarly, the start address for \(E\) can be calculated as:
\[
4901-((12 \times 8)+9) \div 10 \times 10=4801 .
\]

That is, in general
\[
S A_{n+1}=S A_{n}-(\text { no. of elements }+9) \div 10 \times 10,
\]
where \(S A_{1}\) is the lowest start address for the fully specified non-scalars.

For each line of information obtained, the following process is carried out:

The array DOPES is sconned, in particular columm 3. Suppose (for entry \(i\) in the dope vector table)

\section*{(a) Columr \(3 \geq 0\)}

This carresponds to a non-scalar for waich no additional information has been provided. No action is required. sintry \((\pm+1)\) in Doprs is now bcamed.
(b) Colunn \(3=\theta\)

Examine colum 4. If columan \(4=\theta\), then the entry is either empty or corresponds to a literal non-scalar. Again no action is required and entry (i+1) is now tested. If column \(4 \neq \varnothing\), then the entry is for an array with full information provided initially. The dope vector entry hes already been filled correctily, and the bounds have been set up in ZgONDS. No further action is required and entry (i +1) is now tested.
(c) Column \(3<0\)

Suppose columin \(3=-k\). Then the bounds information for the \(k^{\text {th }}\) nonsoelar in the initial list must now be accessed. Using this information the exact start address for the non-scalar can be calculated. Then DOPRS (i,3) is set to \(\varnothing\) and DOPBS (i,4) to the start adaress.
\[
\begin{aligned}
\text { Suppose } & \operatorname{DOPES}(i, 5)=N \text { and } \\
\operatorname{DOPES}(i, 6) & =M,
\end{aligned}
\]
then the N bound values are stored in ZBOMDS, starting from position . This is illustrated in Diagram 7.1(a).

It i.s assumed at this stage that infornation is read in in jnorersing order of position in the initial list. Thus, for exmpie, the infomation for \(C\) appeared before the information for \(E\).

The run-time bound information is supplied in 16 format. Therefore the first 6 columns of each card could be scenned and the data reordered accordingly.

When the initial information was first obtained, the address, \(I\), of tha dope vector entry for each non-scalar was stored. This value has not been used in updatine the entries in the dope vector table. It is used, however, in replacing unecessary FHD calls. The value DOPES (\(I, 2\)) has to be compared with the fourth parameter of eack FIND call recognised. If a match is found, then column 3 has to be tested for a value \(\leq \infty\), indicating that the FIND call can be replaced. Mhis is discussed in greater detail. in Chapter VIII.

In conclusion, the entire conversion process is summarised below.
1. Fartially prooess initial information.
2. Convert APL routines to target language code. This involves:

Diagxami \(7.1(4)\) : Shows setiting up of entries in ZBONDS using columns 5 anā 6 of the Dopa vector table.
2.1 lexical scan,
2.2 right-to-jeft scan and production of intornediate code,
2.3 left-to-right scan and production of parameter infonation on a stack,
2.4 macro expansions.
3. Use injtial information to update the dope vector entries as described.
4. Optimise oode, in particular by replacing unnecessary PIND oajis by simpler functions.
5. Read in bounds for partially specified arrays and update the dope vector entries.
6. Run the converted routine.

\section*{CHAP12 Fl VIII}

\section*{OPITMISASTON OF CODE}
this chapter describes optinisation of the generated code. The main topic is the replacement of unnecessaxy "FTij" calls by simpler functions. This is discussed in \(\$ 8.1\) and \(\S 8.2\). Ia \(\S 8.3\) other means of optimisirg the generated code are described.

It should be emphasised that no attempt was nade at code equeration time to do any optimisation of code. This was reserved for a scan of the code after eereration. For this reason, the generated code is in parts very irofficiont, but can be al.tured to zive a considerable inorease in efficiency.

Another factor contrizuting to the initial inetficiency of the generated
 tates the production of a very large amourt of code corrcsponding to only a simple ALJ expression. One striking exampie is provided by the ApL expression +/A, which is discussed in more detail in §8.1.9.

In producing the generated codo, two courses wore available for the handeing of global axray geclarations. these were:
1. to use the exat values for all array bound specifications and to place the arrays in the Condon area for each subroutine or function;
2. to give all arreys unit dimensions and to place the array names in the paratueter list of every suoroutine add function containing references to the arrays.

The first method is more offisient as parameter linkege, which can be a costly operation, requires less time and storage space in this case. However, the second method nes the advantase that less alterations need be mede to the code to chanye the bound values for some ardeys, should this be found necessary. (Only the main program and the svorouting ZDIIT, in which global non-scalars are initiallised, noed be altered using the second mothod.) 洋th this aim in view, the second method was used in generating the codo, but the Pirst mothod is employed in ell the examples given, as it proviaes more readable code. In addition, it is easior to gonerate AlGOÏ or \(\mathrm{PI}_{4} / 1\) instead on FORMRAN if COMMON statemerits are not used, (see Appendix 7).

\section*{8. 1 Replacement of Unnecessamy ativit Calls}

APT allows great diversity in accessing of non-soalars. Some examples are given below, illustrating e number of difrorent types of non-sealer acoess, The oode penerated is not always very efficient, as this inherent diversity must be allowed for

Calis of the funotion FIND aro contained in subroutines frrmi and SFECS. These subroutines, thererore, must also be replaced by simplex functions, where possible. At the same time, all the essential informatiork must ba retainod (in setting up current bounds, for example). For this resson, calls of the subroutines

\section*{1. \(Z A D D R\)}
2. EJPYRM
are orten generated when a "FnND" call is being raplaced. (The notation "sIND" is used to mean FIND or FIND1 or gRECS .) these subroutines have the following functions:
1. \(Z A D D R(I, Z S T, Z G H 2, Z B O T N D)\)
calculates (a) the start eddress ZST
(b) the number of elements zaNs
(c) the pointer, ZBOUND, to the bound information
for the non-acalar with Natics index I .
2. 3LPARM (I, J, K, \(I, N, Z)\)
reorders the subscript values in axray \(Z\) bcooroing to the value of \(I\). For a FIND or FBDA call, the values \(T\), \(J\) and \(K\) corraspond to the first 3 parametors. For a spocs cald, I , J and K all have value \(\not \varnothing . ~ Z\) is a two-dimensional array, each row giving the subscript velues for a partiouler level in nested subscripe expressions. I defines the row of \(Z\) to be accessed, and is the number of elements within the \(L^{\text {th }}\) row. The current bounds for a non-scalar expression are also upated in RLP ARM, in the maner specified by the value of I .

The following types ar array access ure now congidered.
1. Accessing an element of a imämensional array
2. Accessing an element of a 2-dimensional array
3. Accessing all tho elemonts of an n-dianensional array
4. Addition of an element of a 1 -dimensional array to all the elements of an \(n\)-dimensional array
5. A nested subscript expression
6. An expression involving non-sealar subscripts
7. Accessing all the elements or a perticular column of an array
8. An expression involving a constant vector subscript
9. An expression involving the APL reduction operator.

EXAMPLT 8.1.1

Gonsider the ARE expression
\[
A[I+1]
\]
where \(I\) is scalar and \(A\) is non-scalar.

The code gencreted corresponding to the above expression is of the form shown below.
```

2\phi= =
2B1 = 2POJNT (ZPI)
ZPTS = 2FTN + 1
2.TNDX (zB1 + 1) = I + 1
ZPOINI (ZPP) = ZB1 + 1
CALL STARTS (ANAMS, 21, 22, 2MC)
CALL FIND1 (FP1, FP2, FP3, A NEMESS
ZPT = ZPM - 1

```

The code \(Y 3\) is then stored on InERP to be used as parameter for any further macro expansions.

The above code merits further discussion. It may be observed that the variable \(z \phi\) is set to \(\not D\) initially and is not referred to thereafter. It was included to hande casos where the subscript expression is nonmbalar. Thus it is redundant for all scalar subscript expressions, but not for nonscalar subscript expressions, in which it is used to handle the implicit looping operations (see EXAMPLics 8.1.6, 8.1.7 and 8.1.8) .

As was discussed in Chapter I, \(\$ 1.2 .5\), the subscript expressions are stored in the array ZINDX . Since nosted subsoripts are allowed (see EXAMPLE 8.1.5), it is essential at any time only to access the ourrent
level of ZINDX to obtain the subscript expressions. F'or this reason, the stack, ZPOINT, was introduced, and the topmost positions of ZPONNT define the section of zmDX to be accessed at any time.

The subroutine sidits simply does some preliminary calculations before FIND1 is executea. The first parameter, \(A_{N A B S}\), is the NAMS index for A. (A sirailax notation will bo used throughout.) FIND1 calculates the index, \(Z 3\), in YSTORE and the value, \(Y 3\), for the nonmsoalar being accessed. The first three parsneters deterujne the type of acoessing requirea and the type value and index (or value, if the type value is f) for the last operand for dyadic operations. In addition to the normal type of array accessing, there are 14 other types, corresponding to certajin APL mixed functions. These are listed in Chapter I., §1.2.5.

EXAMPLE 8.1 .2

\section*{Consider a similar example}
\[
A \leftrightarrow B[I ; J+6]+1
\]
where \(B\) is non-scalar and \(A, I\), \(J\) are scalar. Then code of the following forill is generated,
```

21 = 0
ZB1 = 2POINI'(ZPI)
ZPT = ZPT + 1
ZINDX (ZB1 + 1) = I
ZINDX (ZBI +2) = J + 6
ZPOTNT'(ZPPT) = 2B1 +2
GALL STARTS (B
CALL FINDH (--- EMAMSS --- Y3 --- )
ZFT = ZFPT - 1
A = Y3+1

```

Now consider optimisation of the previous examples. Assume, firstly, that full information is available for \(A\) in EXAMPLZ 8.1.1. Then
\[
\operatorname{DOFSS}\left(i_{A}, 3\right)=\not \varnothing
\]
and
\[
\operatorname{DOFSS}\left(i_{A}, 4\right)=S_{A}
\]
where \(i_{A}\) is the address of the dope vector entry for \(A\) and \(s_{A}\) is the start address in YSHORT for A . The elements of A are stored in consecutive locations of YSTORE, starting from position \(S_{A}\).

The code for A \([I+1]\) could thus be replaced by cade of the form
\[
Y 3=\operatorname{YSTORS}\left(D O F M S\left(i_{A}, 4\right)+(T+1)-1\right)
\]
and the form \(Y 3\) is still suitable as the next operand.

Now assume that \(B\) has full information specified in XXAmPIR 8.1 .2 . Then, if \(Y 3\) is set to

YSTORE \(\left(S_{B}+[(J+6)-1] * b_{1}+2-1\right)\)
where \(B\) is a \(\left(b_{1} * b_{2}\right)\) array and \(S_{B}\) is the start address in YSTORA for \(B\), the code \(Y 3\) is still equivalent to \(B[I ; J+6]\).

The expression for the equivalent YSTORE element is obviously dependent on the number of dimensions of the original non-scalar. The above code can be generalised as shown below to handle n-dimensional array accesses.
(A) \(z 1=\not D\) \(Z(i, 1)=\langle 1 s t\) parameter expression \(\rangle\) \(\underset{Z(i, n)}{i}=<n^{\text {th }}\) parameter expression \(>\) CALL ELEM (- . -)
\[
z 2=n-1
\]
\[
Z \mathrm{ZPROD}=2(\mathbf{j}, n)
\]

CALL ZADDR (I, \(2 \mathrm{AS}, \mathrm{ZNDM}, \mathrm{ZBOLRT}\))
\(1 \phi \phi 1\) IF (\(22 . \mathrm{LE} . \phi\)) coro 10ф2
\(\angle Z R O D=(Z P R O D-1)\) ZBOMDS (ZBOUSD \(+22-1)+z(i, 22)\)
\(Z 2=22-1\)
GOTO \(1 \not d /\)

Here \(I\) is the NAMIS index for the non-scelar being accessed. It is assumed that the \(i^{\text {th }}\) nested level is being dealt with.

If \(n\) is 1, then code of the following fore is sufficient.
(B) \(21=\varnothing\)
\(z(i, 1)=\langle 1 s t\) parameter expression \(\rangle\)
CALL RLPERM (- - -)
ZPROD \(=Z(i, 1)\)
CALL ZADDR (I, ZST, ZRUR, ZBOUND)
\(1 \not D 02\) Y3 \(=Y S T O R E(Z S J+Z P H O D-1)\)

Here ZPROD and the label \(1 / 0 / 8\) could have been eliminated. They are used merely to provide conformity with case (A).

In (A), variables \(Z 2\) and \(Y Y\) have been used, replacing the use of these names in the original code. It is essential to avoid aubiguity when introducing vardable names. Use of the name ZPROD qauses no anabjeguity, as zpaid would have been replaced by YZPROD, it it had appeared in the APL text.

The label numbers used must also be distinct.

In examples such as those given above, the replaceable coae is delimited by
\[
\text { ZB<integer }>=\text { ZPOINT (ZFT) ... (a) }
\]
and \(\quad\) ZPI \(=2 P T-1\)

Thus, after recognising a statement of the form (a), the subsequent code must be scenned for a replaceabie "Enin" call.

In addition, if a statement of the form
\[
\operatorname{ZIIDX}(\cdots-)=\langle\text { expression }\rangle
\]
is recogrised, ther the code for <expression> must be retained. The number, \(n\), of such expressions must also be noted.

To test for a replaceable "FIND" call the following action is required:
1. Scan colum 2 of the dopo vector table DOFSS for an entry oqual to the fourth parameter of the FIND call.
2. If there is no equal. entry, the "Frod" call is necessery and the scan of of the generated code should be resumed.
3. If there is an equal entry, the "FIND" call is unnecessary and may be replaced.

There may be nesting of nonmscalar references in ApL, and comespondingly nesting of the types of statement delimited by forms (a) and (b) above. It is thus necessary to maintain a count, o, of the "current level of conplexity". The value of \(c\) should be incremented by 1 whenever a statement of form (a) is recognised, and decremented whenever a stetement of form (b) is recognised.

The method of transforming the generatea code to the reduced form is outlined in \＄8．2．

\section*{EXAMPIE 8.1 .3}

\author{
Consider
}
\[
X \leftarrow Y+Z
\]

To handle this expression it is necessery to get up loops，as every element of the non－scalars is accessed in turn．The code required for the looping operations is fancly complex，as it must pllow for n－dimensional． arrays，where \(n\) is not known at the code generction stage．The generated code is of the sollhowing form，
\(\mathrm{ZB1}=\) ZPOENT（2FP）
ZPXI \(=\) ZPT +1
CALL STARTS（ \(\mathrm{Y}_{\text {NAHIES }}, 21, Z 2,---\) ）
ZFOLNE（ ZFI ）\(=\mathrm{ZBi}+\mathrm{Z2}\)
\(23=1\)
\(1 \not \equiv 0 \quad Z_{4}=Z B 1+Z 3\)
\(\operatorname{ZINDX}(24)=1\)
\(23=23+1\)
IF（23．IE．Z2）GOTO 1\＆め
\(\mathrm{Z} 5=281+22\)
\(z 6=z 2-1\)
ZSAVB \(=\varnothing\)
Tめ1 CALL FIND1（ \(--Y_{\text {NA緼S }} \cdots Y_{n} \cdots\) ）
CALL FIND1（ \(-\cdots Z_{\text {NAMES }} \cdots Y_{n+1} \cdots\) ）
\[
I 7=Y_{n}+Y_{n+1}
\]

CALL \(\operatorname{simes}\left(x_{\text {Natasig }}, 37,27\right)\)
ZSAVE \(=1\)
\(2 \operatorname{INDX}(25)=2 \operatorname{INDX}(25)+1\)

\(1 \not 12\)
\(28=26+1\)
\(1 \not \partial 3 \quad z \operatorname{ZinD}(z 8+z 81)=1\)
\(z 8=28+1\)

TF (\((2 B 1+26) \cdot L D . \not D)\) GOTO \(1 \not 06\)
1, \(\quad\) ZINDX \((2 B 1+26)=2 \operatorname{INDX}(Z B 1+26)+1\)

IF (\(26 . \mathrm{BQ} .1\)) GOTO \(1 \not 26\)
\(\operatorname{ZIINDX}(2 B 1+26)=1\)
\(26=26-1\)
GORO 1/4.
\(105 \quad 26=22-1\)
GOTO 1.01
\(1066 \quad Z P T=Z P T-1\)
CALL SFFICB

The subroutine SFicS handles specitications for all possible type combinations other than the simple ca.ss
```

<scalar> m <sealar>

```

However, for the case <vector> = <expression>, the XSTORA elements containing <veotor> are not updated irmediately. If they were, proolema oould arise with statements such as:
\[
\mathbf{Y} \longleftarrow \quad 1, Y
\]

In this case, the first olement (1) of the rigat-hand side would be stored in \(Y(1)\). Then the next element (\(Y(1)\)) oi the ripht-hand side would be stoxed in \(Y(2)\). It osn be seen that \(Y(1)\) should not have been updated before its value was stored in \(Y(2)\).

This problem is counteraeted in the following way. Each time SPSCS is oalled in the loops, the index of the YSTORN element to be updated, together with the new value, is stored. Ihen, on completion of the loops, SPEGB is onjled, and the appropriate YSTORX elements are then updated.

The variable zSAVE is \(\nRightarrow\) the flrst time round the loops, and is 1 at all other times. Its value is tested in Find to determine whether the current bourds are to be updated.

Here there is a group of FIND cal.ls in one level of complexity. The relevant lines of code should only be rerroved once, if at all. If there is any one "THID" call which is not to be replacea, then no lines of code should bo doleted. Tho relevant "FIND" cails should still be replaced, however.

It is possible to reduce the code very considerably if all the "Find" cails in one level of complexity are replaceable. For example, consider the following case.
(a) \(X_{2} Y\) and \(Z\) all replaceable

The generated code may be replaced by:

ZSAVE \(=D\)
CALL ZADDR (\(\mathrm{X}_{\text {NAMLS }}, 2 S T---\))
\(Z_{n+2}=2 S T-1\)
\(23=1\)
CALH ZADDH (\(\mathrm{Y}_{\text {NKMES }}, 2 \mathrm{ST},--\))
\(Z_{\mathrm{m}}=\mathrm{ZST}-1\)
CALL ZADDR (\(Z_{\text {NAMES }}, Z \mathrm{ST}\), ZNUM,,\(\cdots\))
\(z_{m+1}=2 S T-1\)
\(1 \not p \phi\)
\(z_{\mathrm{m}}=z_{\mathrm{n} \cdot}+1\)
\(Y_{n}=\operatorname{LPARif}\left(z_{n}, I, J, K, L\right)\)
\(z_{\mathrm{m}+1}=z_{\mathrm{m}+1}+1\)
\(Y_{n+1}=\) LPEPM (\(\left.Z_{n+1}, I, X, K, L\right)\)
\(Y_{7}=Y_{n}+Y_{n+1}\)
\(z_{n+2}=z_{n+2}+1\)
CALL SPricA \(\left(Z_{n+2}, Y_{7}\right)\)
ZSAVB \(=1\)
\(23=23+1\)

CALS SPECB

In SPGCN, the YSTOPe element to be altered (togetion with the new value) is stored and the changes made later oy calling SFACB.

The function LPrini uscs the irput parameters \(I\), \(J, K\) and \(L\) (the first 4 parameters of a pIND oall) to calculate the index \(\mathbb{N}\) in YSTORR for the required element. The value YSTORE (N) is returnad. In addition, if ZSAVE is \(\nRightarrow\), thon the current bounds (ZCBIDS) will be updated if necessary.

LPRKin need not be oalled if a call of SPGCS is being replaced, as normal accessing is then required in the Frivi pall. For the vast majority of oases, there will be normal accessing of non-scslars, anä thus LPBill will have no offect.

There is still an increase in efficiency if only some of the "fIND" calls in a group are replaceable. This is not so readily apparent, however, as all the loopiric statements are still required.

A method of transfoming the generated oods in the above manner is discusseã in§ 0.2 .

EXAMIDA 8.1.4

Consider
\[
A \longleftarrow B+C[6]
\]
whexe A and B axe n-dimensional arrays. In the generatod code, the code corresponàing to \(c[6]\) is produced f'irst, fotlowed by an array access of the type given in mailpli 8.1.3. Thus, where appropriate, the generated "ind catis can be replaced by code of the form given in EXAfPLES 8.t.1 and 8.1 .3 .

An example of the nosting of subsoript expressions is nos given.

EXAMPTIS 8.1 .5

Consider the APL statement
\[
E \longleftarrow A[B ; C[D]]
\]
where \(A\) and \(C\) are non-scalars and \(E, B\) and \(D\) are soalars. The code generated for the abova statenent will be of the form shown below,

CALLE FTND1 (-- \(A_{\text {NAMESS }}--Y_{n+1}-\cdots\))
\[
\begin{aligned}
& Z P Y=Z P N-1 \\
& Z=Y_{n+1}
\end{aligned}
\]

If \(C\) is replacesble, then the corresponding oode for \(c[D]\) may be reduced as desoribed for \(\operatorname{BZM} \mathrm{HPL}\) 8.1.1.

If \(A\) is also roplaceable, the following reduction is possible,
\[
\begin{aligned}
& z 1=\varnothing \\
& z(1,1)=B
\end{aligned}
\]
\(\langle r e d u c t i o n\) of type given for EXAFPLE \(8.1,1\) corresponaing to \(6[D]\rangle\)
\[
\underset{1}{Z(1,2)}=Y_{n}
\]
<remainder of reduction as for EXAMPLE 8.1 .2 corresponding to \(\left.A[-\ldots-]^{-}\right]\)>
\[
E=Y_{n+1}
\]

An example illustrating the nandiling of veotor subseripts is noy eiven. Non-scalar subscripting is catered for, but the subscript expression must be only one-dimensional. The method employed does not exolude nwaimonsional subscripting (\(n>1\)), but hi气̌her dimension subscripting has been excluded simply to make the generated code less unwielduy.

EXAMPLE 8.1 .6

Corresponding to the AFL statement
\[
\vec{B} \longleftarrow \mathrm{~A}[\mathrm{~B}+\mathrm{C}[\mathrm{D}]]
\]
where \&, A, B and \(C\) are non-scalar, code of the following form is generated:
```

Z1 = b
ZB1 = GROLHI (ZIT)
ZFTT = 2PT + 1

```
<code siminar in form to that generated for EXhisLIS 8.1.1>

\(\mathrm{ZB}=\mathrm{ZY}\) (ZYERR)
\(\mathbf{2 1}=\mathbf{Z 1}+\mathbf{1}\)
\(\operatorname{ZTEDP}(Z 8+21)=Y_{n+1}+Y_{n}\)
\(\underset{1}{\text { ZSAVE }}=1 \quad-7\)
\(1 \quad 1\) as for EXA,SPLE 8.1.3
\(186 \quad \mathrm{ZPI}=2 \mathrm{PFI}-1\)
ZYPYR \(=\) ZYPYR +1
\(Z Y(Z Y \Psi T R)=Z 1\)
\(Z 1 \varnothing=Z Y(Z Y P T R-1)\)
\(z 11=\not D\)
107 \(\quad \mathrm{Z} 11=211+1\)
\(\operatorname{ZINDX}(2 B 1+1)=Z \operatorname{ZFHIP}(Z 1 \not D+211)\)
\(\mathrm{ZPOLITL}(\mathrm{ZPT})=2 \mathrm{~B} 1+1\)
CaLI Starts (\(A_{\text {Mhmes }}-\cdots\))

\(\Psi 12=Y_{n+2}\)
GALL SFRCS (MAMES, Y12, ---)
CALL BDNO (\(\mathrm{Z} 13,2 \mathrm{ZPTR}\))
IF (213.2T.Z11) GOTO 1 107
CALL SPECB
```

ZPTP = ZPT - 1

```

In thils example, the variable \(Z 1\) is not redundant. The subsciript values are stored in the next level of \(2 T H y P\), 21 being incremented each time round the loops so that successive elements of the non-scalar subscript will be stored in successive elements of ZTHilP. The appropriate elemonts of ZTEWP are then stored jn turn in the correct location of ZlNDX, and code generation continues in the usual way.

A similar tochnigue is used in all cases of vector subsexipting.

For the above expression, the genexated code can be optimised in a number of different ways, depending on the amount of information supplied for the non-scalars. the sections of code of the forms given for RXAEPES 8.1.1, 8.1.2 and 8.1.3 cen be optimised, where appropriate, to the forms described previously. Coae which camot be placeã in one of the above sections is always non-replaceable, and also appears in the optimised version.

The possible transformations of the above code may also be effected using the method given in \(\$ 8.2\).

\section*{EXANPLE 8.1.7}

Consider the APG statement
\[
B \longleftarrow A[; C]
\]
where \(B\) and \(A\) are non-scalar, and \(C\) is scalar.

In this case, as in all cases of voctor subsoripting, the generated code is unvieldy. This is unavoidable, since the impliea looping operations must be taken jnto account.

Code oi the following form is generatea corresponding to the above statement.
\(21=\not \subset\)
ZB1 \(=\) ZPOLITE (ZPI)
\(2 P T=2 P T+1\)
\(Z 2=Z Y\) (\(Z Y P Y T R\))

\(Z 1=2.1+1\)
\(Z 2 \mathrm{INP}(21+\mathrm{Z} 2)=21\)
IT (21.5,T.23) GOTO 伸
\(\mathrm{ZYIXIR}=\quad \mathrm{ZYPIR}+1\)
\(Z Y\) (ZYPrir) \(=Z 1\)
\(24=Z Y(Z Y P T R-1)\)
ZSAVE \(=\varnothing\)
MAREIR \(=-5\)
181
\(25=\not 2\)
\(1022.25=25+1\)
\(\operatorname{ZIND}(\mathrm{ZB} 1+1)=\quad \mathrm{ZEBAP}(\mathrm{Z} 4+25)\)
\(2 \operatorname{ATD} X(\mathrm{ZB} \uparrow+2)=C\)
ZPOTNT (ZPP) \(=\mathrm{ZB1}+2\)
CALL STARTS (ANARS \(-\cdots\))
CALL FIND1 (\(--A_{\text {NAMISS }}-Y_{n}-\cdots\))
ZSAVE \(=1\)
\(Y 6=Y_{n}\)
CALL SHECS (\(\mathrm{BAMES}, \mathrm{Y} 6,25\))
CALL BINO (Z \(7, \mathrm{ZCPTR}\))
IF (Z5.LT. Z7) COTO 1,02
CALL 3 PECB
\(Z P T=2 P T-1\)

The subroutine BDVAL (\(I, J, K\)) has input paranmiers \(I\) and \(J\), and output paraneter K , where
1. I is the index of the array in NAMS
2. J is the \(\mathfrak{n i m e n s i o n ~ n u m b e r ~}\)
3. \(K\) is the bound value for dimension number \(j\).

Again, any statements of a form not found in EXAMFLES 8.1.1, B.1.2 and 8.1.3 are consiacred to be irreplaceable. All other sections of code are reduced, where possible, to the forms given for the above oxamples.

Thus, for both \(A\) and \(B\) are replaceable, the generated code can be reduced to the form shown below.
\(21=\varnothing\)
GALL ZȦDDR (BAMES \(, Z S T, Z M T M, Z B O N D)\)
\(1 \not 22\)
\(z_{n+1}=Z S T-1\)
\(\mathrm{Z2},=\mathrm{ZY}\) (ZYPRR)
\(25=25+1\)
<reduction of the form given for EXAMPLE 8.1.2>

ZSAVE \(=1\)
\(Y 6=Y_{n}\)
\(z_{n+1}=z_{n+1}+1\)
CALI SIPCA \(\left(Z_{n+1}, Y 6\right)\)
CALL BDNO (\(27, \mathrm{ZCPTR}\))
IF (Z5.LT.Z7) GOIO 1中2
CALL SPECB

At first sight, it way appear that the reduced code is even lengthier than the original. Foweyer, all the functions and subroutines referenced are much simpler in the reduced version.
§ 8.2 describes the method of carrying out the possible reductions for the above example.

\section*{EXAMPLE 8.1.8}

Consider the APL statement
\[
B \longleftarrow A\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right]
\]

There are implicit looping operations in the above statement. Agein the subscript values are stored in successjve positjons in the array zTB:aP, and loops aro set up to store the appropriate ZTHP elements, in turn, in the corroct suoserjpt positions in GINDX. The result is a vector whose taree elements are stored in vector B. The code generated for the above statement is again unvieldy on acoount of the impliea looping operations. However, consicienable reductions are possible if additional incornation is svailable for \(A\) or \(B\) or both. The generated code is of the form shown below.

\[
\begin{aligned}
& 1 \$ 7 \quad 29=\phi \\
& 1 \not 88 \quad \text { Z9 = } 49+1 \\
& \text { ZIND }(231+1)=2 \pi 315(27+29) \\
& \text { ZPOIRT (2PT) }=2 B H+1 \\
& \text { CALL STARTS (ANATSS }-\cdots \text {) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { ZSAVA = } 1 \\
& \mathrm{Y} \nmid \%=X_{\mathrm{n}+1} \\
& \text { CALL SFSCS (} \mathrm{B}_{\text {NAMISS }}, \mathrm{Y} 1,6,29 \text {) } \\
& \text { CALL BDNO (Z11, ZCPIR) } \\
& \text { IF (Z9.LJ.211) GOMO 1p8 } \\
& \text { CALL SYECB } \\
& Z P I^{1}=Z P T-1
\end{aligned}
\]

The subroutine FJID3 is similar in concept to FIND1, the difference beine that a constant vector element (obtained from Nation) is produced as a result instead or an element of YSTORE, Constunt vectors (end literals) may also be accessed in a number of different ways, corresponding to 14 of the APL mixed functions.

Some optimisation of the forms illustrated previously moy be possible.

\section*{EXAMPLE 8.1.9}

Gonsider the APL expression
\[
+/ A
\]
where A is a numeric non-scalar. Even \(\mathfrak{F o r}\) such a simple expression, a large amount of coge must be generated to allow for ell the possible types of A . If A is a vector, then a scalar result is obtained; if \(A\) is an n-dimensional array, then an (\(n-1\)) dinensional result is obtained.

The number of dimensions of \(A\) is not known at code generation time. It is thus necessary to set up loops to handle n-aimensional array accessing, where \(n\) is unknown.

For the above reasons, the code generated for \(+/ \mathrm{A}\) is extremely unwieldy. There is no wey round this since the addi.tional information supplied for non-scalars is not taken into account at code generation time. However, once the additional information is considered, it is immediv.tely possible 40 make a drastic reduction in the generated code. This is discussed below.

The generated code is first described. It takes the form shown below.
\(1 \phi \varnothing\)
```

CALL BDINYO (ANANES,ZDIMS,ZBOINDD)
IF(ZDIME.NE.1) GOTO 1ф1
ZBl = ZPOINT (ZPT)
ZPT = ZPT + 1
ZINDX (ZBC] + I) = 1.
OPL = <identity element for +>
ZPOINT (ZPT) = ZBI +1
Z2 = FIND ( }1,\emptyset,\emptyset,\mp@subsup{A}{\mathrm{ MANES }}{}\cdots
OPR = YSTORE (Z2)
OPL = OPR + OPL
ZINDX (ZBl + 1) = ZINDX (ZBl + 1) + 1
IF (ZINDX (ZB1 + 1).LE.ZBONDS (ZBOUND)) GONO 1中\emptyset
ZPT = ZPT - I
MARKER = }
Z3 = ZYY (ZYYPTR)
Z4 = I
YMPMP}(Z3+Z4)=OPI
GOTO Iøट

```
```

101
165
OPR = YSTORE (Z1.2)
OPL = OPR + OPL
ZINDX (ZCD + ZBI) = ZINDX. (2CD + ZBI) + I
JF (ZINDX (ZCD + ZBI).LE.ZBONDS (ZBOUND + ZCD - 1)) GOTO 1\emptyset5
Z1\emptyset = Z1\emptyset + I
YTEMP (Z1\varnothing + Z1I) = OFL
ZSAVE = 1
z8 = 28+1
- +
IF ( Z8, EQ,7,CD) Z8 = 28-1
GOTO 1ø8
1.99
11\varnothing ZPT = ZPT - 1
CALL REDBND (ZCD)
MARKER = -5
1ф2
1.1.
Z8 = ZDIMS - 1
goTO 1ф5
214 = \emptyset
ZJ.1 = ZYY (ZYYPTR)
ZB1 = ZPOINT (ZFT)
as for EXAMPLE 8.1.3
ZSAVE = }
-7
101
CAIL BNDSET (1., A ANAMES, 1$)$
$Z 1 \varnothing=\varnothing$
IF (ZCOORD (ZCDPMR).EQ. $\varnothing$ ) $\mathrm{ZCOORD} \mathrm{(ZCDPTR)} \mathrm{=} \mathrm{ZDIMS}$
$\mathrm{ZCD}=\mathrm{ZCOORD}$ (7.CDFMR)
ZXI $=$ ZYY (ZYYPTR)
OPL $=$ <icentity elenent for $+>$
Zil2 $=\operatorname{FIND}\left(1, \emptyset, \emptyset, A_{\text {NAMES }} \cdots--\right)$
$O P R=Y S T O R E$ (Z1.2)
OPL $=O P R+O P L$
ZINDX $(Z C D+Z B D)=\operatorname{ZINDX} \cdot(Z C D+Z B 1)+I$
JF (ZINDX (ZCD + ZBI).LE.ZBONDS (ZBOUND + ZCD - 1)) ©OTO $1 \emptyset 5$
$Z 1 \varnothing=21 \emptyset+1$
$Y T E M P(21 \varnothing+Z 11)=O F L$
ZSAVE $=1$ $-7$
$28=28+1 \quad-\perp$
$\mathrm{IF}(\mathrm{ZB}, \mathrm{EQ}, 7 \mathrm{CD}) \mathrm{Z} 8=28-1$
GOTO $1 \varnothing 8$
$\mathrm{ZB}=\mathrm{ZDINS}-1$
GOTO $1 \varnothing 5$
$\mathrm{ZPT}=\mathrm{ZPT}-1$
CALL REDBND (ZCD)
MARKER $=-5$
$214=\varnothing$
ZJI $=$ ZYY (ZYYPTR)
$214=214+1$

```
the next operator.

Subroutines BDINFO, BNDSET and REDEND have the following functions:
1. BDJNFO provides the number of dimensions, ZDIMS, and the pointer zBound for the bound values of the non-scalax with NAMES index given by the first parameter.
2. ENDSET updates the bound information in ZCBNDS using the appropriate entries in ZBONDS
3. REDDND calculates the appropriate ZCBNDS entries for a reduction of 1 in the number of dimensions.

The value ZCOORD (ZCDPTR) gives the co-ordinate along which the reduction is to be applied.

For the above example, the first parameter of the FIND call is nonzero. Thus, if \(A\) is replaceable, the call of EIPERM in the optimised code is necessary to re-order the subscript values appropriately.

If, after the initial information is taken into account, it is known that \(A\) is a vector, then by a preliminary analysis of the generated code, it can be reduced irmediately to the form given below.
```

        ZB1 = ZPOINT (ZPT)
            '
            '
            YTEMP (Z3 + 24) = OPL
            Z14=$
            ZIL = ZYY (ZYYPTR)
            214 = 214 + 1
    ```

Thus a considerable reduction of the generated code is possible. The code can be further reduced to the form:
\(19 \varnothing\)
```

Z(1,1)=1
ORL = <identity element for +>
CAEL ELPERM (------)
ZPROD = Z (1,1)
CALL ZADDR (A NAMES,ZST,ZNUM,ZBOIND)
Z2 = ZST + ZRROD - 1.
OPR = OPR + OPI'
Z(1,1)= = (1,1) +1
IF (Z (1,1).LE.ZBONDS (ZBOTND)) GOTO 1.66
MARKER = }
<as above>

```
禺

If A is an n-dimensional arxay, the code can also be reduced by a preliminary analysis. Further reduction is then possible, but there is no advantage in altering the code so that the subscript values are stored in \(Z\) rather than ZINDX. A looping of the subscripts is required anyway to produce each result element. In this case, the reduced code would be of the form outlined below.
```

IQI ZBI = ZPOINT (ZPT)
OPL = <identity element for +>
CALJ ZADDR (A NAMES,ZST,ZNUM,ZBOUND)
Z
Z

```

```

OPR = YSTORE (212)
I
,
111
Z14 = Zl4 + 1

```

Hexe ZPERM is a function which uses the subscript bounds and values to reorder the subscripts according to the first parameter value. Then for position \(z_{n}\), the actual position relative to the base address is produced as result. This simply involves applying the array mapping to the re-ordered subscript values.

The method outlined in \(\{8.2\) may be used to bring about the above transformations also.

\section*{8. 2 Method of Optimisation}

For a particular level of complexity, the reduction can be carried out independently of all other levels. flowever, since nesting of levels is allowed, the current state on entry to the higher level must always be stored. Thus, return can always be made to the correct state on exit from the higher level, and no vital information need be lost.

The method is illustrated using a finite state automaton. The state diagram for this automaton, together with the action required for each state, is given in Appendix ly. At any time, the current state value and the statement encountered are ased to provide the next state value.

The state value is initially zero and is updated according to the statement types encountered during the scan of the generated code. The statement types to be recognised during the scan are listed in Table \(1 \varnothing(a)\). Each statement type has an associated letter which is used for ease of reference in the state diagram.

During the scan of the generated code, entries are set up in several tables, namely:
1. DELETE
2. NSTATE
3. IENTRY
4. CODE

The table DEIETE is two-dimensional and is used in the following way: It is not always possible to deternine immediately whether particular lines of code may be deleted or not. For instance, in EXAMPLE 8.1.3, it is only when the last "FIND" call has been recognised that it is known whether the looping instructions are required. The DELFTE table is updated during the scan as indicated below.

There is one entry in DELETE for each line of generated code. For a particular row, the columins have the following significance.

The first colum gives the level of complexity. This is zero at the start and is updated according to the following criterion.
(a) If a statement of the form

ZB<integer> \(=\) ZPOINT (ZPT)
is recognised, then the level number (IFVLNO) is increased by 1.
(b) If a statement of the form
\(Z P T=Z P T-1\)
is encountered, then the level number is decreased by 1.

The second column has value
(a) I. for a line definitely to be deleted
(b) \(\varnothing\) for a line possibly to be deleted
(c) -1 for a line definitely not to be deleted.

In general, a number of DEIETE entries with the second columa \(\Rightarrow\) will be created, and these entries will be updated to 1 or -1 as the scan proceeds.

Thus, at the end of the scan, DELETE will have entries with value 1 or -1 in tho second column, and the relevant lines can all be deleted at the same time.

Replacement of existing lines must also be considered. Again, it is not known immediately whether replacements will hav e to be made or not. For this reason, the table CODE is maintained. When it is known that a replacement line (or lines) may have to be produced, the appropriate line (s) is/are produced, and an entry is set up in a two-dimensional table coDF. Each entry in CODE consists of four parts, having the following significance:
(a) the first column gives the line number before which the insertion has to be made. (A replacement is considered to be a deletion followed by an insertion.)
(b) the second column gives the number of lines to be inserted
(c) the third colum gives an indication of whether or not the replacement of insertion has to be made. This colum (the insert entry) has value
(i) -I initially
(ii) \(\varnothing\) if the insertion is not to be made
(iii) 1 if the insertion is to be made.

Thus -J. entries will be changed to either \(\varnothing\) or 1 as the scan proceeds and more information becomes available.
(d) the fourth column gives a pointer to the actual code to be used in the replacement or insertion.

A one-dimensional table NSTATE is also maintained. There is one row for every level of complexity. Each NSTATE entry records the current state value on entry to a higher level of complexity. Thus the scan of the generated code can be resumed correctly on return to the previous level of complexity. When a level has been scanned to completion, the NSTATE entry for that level should be set to -1.

The stack IENTRY is used in updating the DETETE table. IENTRY bas pointer IENPTR, which is \(\varnothing\) initially, and is updated as required. IENTRY (IENPTR) is \(\varnothing\) initially and is updated to 1 or -1 , depending on the types of statement encountered during the scan.

The tables DEIETE, CODE and NSTATE have pointers DELPTR, ICDPTR and NSTPTR, respectively. Each of these pointers has value \(\bar{\phi}\) inftially and is updated as required.

The variable JEVINO gives the level number at any point, while ISTATE provides the current state value (within a particular level).

When label nurtbers are introduced in producing replacement Ines of code, care should be taken to avoid duplicating existing line numbers. similarly, if variable names \(Z\) <integer〉 are introduced, they must not conflict with existing variable names.

In implementing the finite state automaton, several values require to be stacked at intervals. Reference is made to these values in Appendix 10 .

Using this method, no actual replacements or deletions are made during the scan of the generated code. The tables DELETE and CODE are later tused to produce the optimised code. On completion of the scan of the generated code, the array CODE should be ordered increasingly according to the values of the first column entries. Then DELETE and CODE can be scanned together and the necessary alterations made to the generated code.

For any type of statement not listed in Table \(1 \varnothing(a)\), the action reçuired is independent of the state value. It is:
1. set DEFWTR to DELPTR + 1
2. set DELETE (DEJRTR,1) to LFVLNO
3. set DELETE (DEIPTR,2) to \(-I\).

If, at any state, the next statement type is not given in the state diagram (see Diagram lof(b)), then steps 1 to 3 above should be carried out.

Initially, the variables NSTPTR, LEVINO, ISMATE, IENPTR and DEIPTR all have value \(g\).

\section*{8. 3 Other Means of Optimising the Generated Code}

In general, the generated code will be very inefficient. This can be seen by examining the sample translations in Appendix 9. Usually, however, it is a fairly simple matter to correct the inefficiencies.

Some means of optimising the generated code are discussed in \(\widehat{3} 6.3 .1\), while \(\S 8.3 .2\) contains listings of optimised versions of the subroutines in Appendix 9.

\subsection*{8.3.1 Discussion of common types of inefficiency and their correction}

The types of statement discussed here are:
1. COMMON statements
2. FORMAT statements
3. CONTINUE statements
4. Statements of the form \(z<i n t e g e r>=\phi\) followed by no other reference to \(z<i n t e g e r>\)
5. statements to reset the values of MARKER and ZCPTR
6. Statements to reset the values of MARKER, ZCPTR, ZYPTR and ZYYPTR
7. Statements produced corfesponding to an RPL specification statement
8. Statements containing unnecessery variable names or redundant brackets
9. Statements corresponding to \(\rightarrow\) statements.
1. When a function or subroutine header statement is translated, it is not known which global variables will be referred to in the function or subroutine body. Thus, at this stage, a complete list of COMMON statements must be generated, together with type specification statements for all the global non-scalaxs. If these are not referyed to in the strbsequent code, the non-executable statements may be removed. Several global parameters may be removed also from function or subroutine header statements.

If this type of optimisation is carried out, then the lowest level subroutine of function should be reduced first, then the next lowest level, and so on. This ensures that no unnecessary global parameters are thought to be necessary. For example, consider the following code:

SUBROUTINE A (Y1,Y2,Y3,Y4)
\(\mathrm{B}=\mathrm{Y} 1+\mathrm{Y} 2\)
CALL C (B,Y3,Y4)
RETURN
END
SUBROUTINE C (X1, X2, X3)
D \(=3 * \mathrm{XI}\)
RETURN
END

Here, if \(A\) is reduced first, \(Y 3\) and \(Y 4\) are thought to be necessary, which is an incorrect assumption.
2. A number of FORMAT statements are produced at the end of each function or subroutine decoded. Those unnecessary may easily be removed.
3. At the staxt of each section of code corresponding to an APt line, a staterent of the form
< label> CONTINUE
is generated. This allows for statements of the form
\(\rightarrow\) < expression >
which may occur later. However, in certain cases, <expression > may only have a finite ronge of values. For example, consider the statement
\(\longrightarrow 2 \times N>\nexists\)

Here <expression > can only have values \(\emptyset\) or 2 .

It may be possible to eliminate certain statements of the form
\(<1\) abel > CONITINUE
see the examples given in 88.3 .2 .
4. If square brackets occur on a line, then a statement of the form
\[
\mathrm{z}\langle\text { integer }\rangle=\emptyset
\]
is generated. This is done in order that \(z<i n t e g e r>\) may be used as a counting variable if the sutscrivt value is non-scalac. fFor example, consider the variable 21 in EXAMPIE 8.2.7.)

If the subscript value is scalar, the statement \(z\) <integer \(>=\varnothing\) is redurdant, and may be xemoved.

A statement of this type may easily be detected, as there will be no furthex reference to \(Z\) <integer >
5. After each statement of the form
<1abel> conminut
the statements
```

MARKER = D
ZCP'R = =

```
axe also generated. These reset the type of the "expression-so-far" back to scalar. They are necessajy in otses where MARKER has been set to some other type value. Consider the code given below:
\(\langle n\rangle\) CONIINUE
MARKTR \(=\varnothing\)
\(Z C P T R=\not \subset\)
1
1
\(\langle n+1\rangle\) CONTINUE
```

    MARKER = }
    ZCPTR = D
    ```

If there are no subxoutine or function calls between \(\langle n\rangle\) CONTINUE and \(\langle n+1\rangle\) CONTINIJE , and the value of MARKER has not been explicitly changed, then the second two statements
```

MARKER == }
(a)
ZCPTR = }=
(k)

```
are redundant, and may be removed.

If the above conditions are satisfied, exeept that thexe is a call of the subxoutine OUT2 between the statements labelled \(\langle n\rangle\) and \(\langle n+1\rangle\), ther the sscond two statements (a) and (b) are still redundant. OUT2 (listed In module library SARUN) does not alter the value of MARKFR. In general,
checks may be made for unnecessary individual resetting of these variables.
6. If two sequences of statements
\[
\begin{aligned}
\text { MARKER } & =\varnothing \\
\text { ZCPPR } & =\varnothing \\
\text { ZYPTR } & =1 \\
\text { ZYYPTR } & =1
\end{aligned}
\]
occur, then the secondsequence may be redundant. If any subroutine is called which updates the above variables, then the statements will be necessary. If no such subroutine occurs, and the values have not been explicitly altered, then the secondsequence is redundant and may bo removed. In cexțaj.n cases, oniy some of the above statements should be removed.
7. For a specification statement of the form
\[
A \longleftarrow B
\]
where \(B\) is a non-scalar, code of the form
\[
\begin{aligned}
& \text { <initiallisation statements> } \\
& \text { CALI FTNDL (--- } \left.\bar{B}_{\text {NAMES }} \cdots-y_{n}-\cdots\right)
\end{aligned}
\]
\[
Y_{n+1}=Y_{n}
\]

CALL SPECS (. - -)
<code to complete loops>
is generated.

If indtiallisation statements have not first been set up, it is necessaxy to test the value of MARKER to determine whether an explicit assignment may be made, or whether a calt of SPECS must be generatea.

In cases where MARKER has previously been set to a specific value, the test on its value may be removed. For exauple, consider subroutine SPMPRE listed in Appendix 9. SPHEFE contains the statements
```

MARRKFR \#\varnothing
ZCPTR =
Y2 = 4 * (3.14159* (R * R))
IF (MNRKER.FQ.-5.OR.MARKER.EQ.-3) GOTO 1ll
SUFr \# Y2
GOTO 117
CALL SPESS (* - - -)
CAIL STEECB
CONTINUE

```
11.7

Here the specification part may be reduced to
```

Y2 = 4 * (3.1459* (R * R\)
SURF = Y2

```
8. The akove code naty be further reduced to
. SURE \({ }^{2}=4 * 3.14159 * R * R\)
by eliminating the unnecessary variable \(Y 2\) and removing some redunfant brackets. Care must be taken when removing brackets to ensure that they are in fact redundant.
9. To allow for statements of the form
```

M<expression\rangle

```
where the value of <expression > is not known until cxecution tine of the converted routine, statements of the form

Z1 \(=\langle\) expression \(\rangle\)
\(\operatorname{sot} 01 \phi \phi \phi\)
are generated (see Chapter 6)

Correspondingly at the end of each subroutine or function, the statements
\(19 \not 0 \varnothing\)
```

IF ( $\angle 1 . L E . \emptyset . O R . Z 1 . G T . \pi) ~ C O N T I N U E$ GOTO $(1,2,3, \cdots \cdots, n)$ Z1

```
are generated, where \(n\) is the number of lines in the function.

The above two statements will be unnecessary if no \(\rightarrow \rightarrow\) statements are present in the APL subroutine or function.
8.3.2 Optimised versions of the subroutines SPRERE, BASE and CI (Listed in Appendix 9)
1. SPHERE may be reduced to the form given below.

SUBROUTINE SPHERE
IMPLICII REAL (A-Y)
INPLICIT', INTIEGER (\(\mathrm{Z}-\mathrm{Z}\))
C***** •THE NEXT 3 STATEMENTS WERE INSERTED BY HAND
COMMON / CDI/R
COMMON / CD2 / SURF
COMMON / CD3 / VOL
SURF \(=4 * 3.34159 * R * R\)
VOL \(=\operatorname{SURF} * R / 3\)
CALL LOCREM
RETURN
END

The subroutine rockrm is called to remove entries fror Nates corresponding to local variable nanes when theso are no longer recquired. It
will have no effect in the above case, but should be caljed so that the appropriate prointer: variablos will be updated (see the version of EOCRFM in module library SARUN).

In the next examples, the global non-scalars are removed from subroutine calls and these are assumed to be in COMMON within the subroutines. A comparison of this method with the oxiginal (see Appendix 9) is given at the start of Chapter VIII.
2. Subroutine CI (fox compound interest calculation) may be reduced to the form given below.

SUBROUSTNE CI
IMPI.ICIT REAL (A-Y)
IMPLICJTT JNTMGGER (Z~Z)
COMHON / C351/ MARKER
COMMOR / C916/ ZSAVE
COMHON / C726 / ZLIME6

CALL OUT2 \((15,-1)\)
MARKER \(=\phi\)
ZCPTR \(=\varnothing\)
READ (5,192) ZVBND \(\stackrel{1}{1}\)
1
128
CONTINUE
CALL OUT2 (54, -1)
READ (5,192) ZVEND
1
+.
CONTTNUE
CALL OUTP \((87,-1)\)
READ (5,1g2) ZVBND

174

186

161
192
\(1 \emptyset 4\)

196

CONTINUE

CAL工 OUT2 (116,-1)
,
,
;

CONTTINUE
FORMAT (1X,G12.6)
FORMAT (G12)

EORMA 1 (\(1 \varnothing\) G12,6)
FORMAY (IX, /)
CALL LOCREM

RETURN

END
nll the subroutines called should be examined for generality. If, for instance, \(A\) handles cases \(1,2,3\) and 4 , and it is known that case 3. say, wijl. be applied, then \(A\) could be replaced by a simpler function, this increasjing efficioncy
3. Subroutine EASE produces the representation of a number \(B\) to the base N. Assuaning fulj information \(1 s\) available for \(Y Z\), an array in which the result is accumulatod, the following reduction in code is possible.

\author{
SUBROUTINE BASE (\(\mathrm{B}, \mathrm{N}\)) \\ IMPLICIT REAL (A-Y) \\ IMPLICXI INTESESR (Z-Z) \\ COMRON N351/MARKER \\ COMMON /C91.6/ ZSAVE
}

IF (Z1.LT.甲.OR.Z1.ET.2) CONTINUE
\(\operatorname{GOTO}(1,2), Z 1\)
CAIL LOCRTEM

RETURN

END

In this example, \(2 l\) always has value \(\leq 2\). Thus, if some analysis of the code is carried out, the statements starting with that labelled lygø can be updated as shown.

No account has been made of the fact that the specs and FIND1 calls refer to the same non-scalar. Further optimisation is possible here.

It has been shown that it is possible to obtain a translation of an API routine into another high-level language. It camot be denied tinat the transilated code is inef'ticient, althougn i.t i.s possible to bring about a considerable increase in efficiency.

One major factor affecting the efficiency of the generated code is the possible presence of unnecessary "PIribn" calls. Thesc can be romoved by a method besed on recognition of specific statentent types, as discussed in Chapter VIHI, \(\$ 8.1\) and \(\$ 8.2\), and in Appendix 18. The removal of "FJND" calls involvos littale or no analysis of the fenerated code. However, in cases where any one of a number of dirferent paths inay be taken (here each caso must be considered and the genersted code soon becomes unwieldy), it is often possibile to eliminate all but one of the paths, Such forms of optimisstion involve analysis of the genosated code, often making use of additional infomation for non-senlars which was not taken into account at code genaration time.

The inefficiency of the generated code is excusable, sirwo no atiempt whatsoever was made to optimise code at the time of its generstion. It tine two methods outilined above, that is
1. replacoment of unnecessary "Fond" calla,

2, analysis of the gererated code,
are combined, then the increase in efficiency can be very great.

In retrospect, it is thought that even greater efficiency nay be obtained by a pre-analysis of the APL code to be translated. APL conceals a great many operations (such as the testing of veriable types) wich must be carried out explicitly jn other high--level languages. For this reason the generatod code must make provizion for a large number of possibilitiss. It is probable that the namber oŕ cases to be handled could be reduced by restating the Ald problem.

\section*{IREHWRENCES}

\begin{tabular}{|c|c|c|c|}
\hline SYMEOL & REPRESENTATION & SYMPOL & REPRESENTATIOIT \\
\hline 1 & / & \(\cdots\) & - \\
\hline \(\backslash\) & 4 C & \(x\) & \# F \\
\hline * & \# D & \(\div\) & \# G \\
\hline \(\wedge\) & \# J & * & * \\
\hline \(\checkmark\) & \# K & \(\Gamma\) & \# H \\
\hline \(<\) & \(<\) & \(L\) & \# I \\
\hline \(\leq\) & \# L & 1 & 1 \\
\hline \(=\) & \(=\) & 2 & \# P \\
\hline \(\geq\) & \# M & \(\rho\) & \# 0 \\
\hline \(>\) & \(>\) & , & \(\checkmark\) \\
\hline \(\neq\) & \# N & \(!\) & 1 \\
\hline \(E\) & \# 0 & \(\phi\) & \# R \\
\hline - & \# s & \(\bigcirc\) & * 0 \\
\hline \(\pm\) & \# T & 3 & ? \\
\hline \(\uparrow\) & \# V & \(Q\) & \# X \\
\hline + & \# W & (*) & 0 C \\
\hline A & (1) & © & e I \\
\hline \(\infty\) & 0 E & \(\longrightarrow\) & \(\#\) E \\
\hline \(t\) & © J & \(\cdots\) & \(\cdots\) \\
\hline \(t\) & @ K & 1 & \# Y \\
\hline + & + & \(\uparrow\) & @ G \\
\hline \$ & \(0_{0}\) & \(\triangle\) & \(\bigcirc\) \\
\hline [& \# A & - & - \\
\hline] & \# 3 & (overbar) & 9 L \\
\hline ¢ & (& : & : \\
\hline 1 &) & \(\nabla\) & @ M \\
\hline ; & 1 & 8 & © N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & REPRESENTAITON & SYMBOL & REPRESENTATION \\
\hline - & \# 2 & A-2 & \(A \rightarrow Z\) \\
\hline \(\square\) & © \(A\) & 0-9 & 0-9 \\
\hline \([7]\) & @ B & A-Z & \(\cdots{ }^{\text {A }}\) \\
\hline A & a F & 1 & 1 \\
\hline \(\Delta\) & 0 & & \\
\hline
\end{tabular}

\section*{APPENDIX 2}

TABLAF OF USEFUT, TMFONNATIOA FOR ARL SYMBOLS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{SYMBOI} & ADPNPSS IN SYYTBOL TABLT & \begin{tabular}{l}
\[
\mathrm{z}-\operatorname{con} \mathrm{E}
\] \\
VALUE
\end{tabular} & \begin{tabular}{l}
MACRO \\
NUMBER
\end{tabular} \\
\hline F & 1 & 1 & 19 & 1. \\
\hline U & , & 2 & 20 & 2 \\
\hline R & \(\leftarrow\) & 3 & 21 & 3 \\
\hline E & \(\wedge\) & 4 & 34 & 4 \\
\hline J & \(\checkmark\) & 5 & 35 & 5 \\
\hline \(\mathbf{Y}\) & \(<\) & 6 & 36 & 6 \\
\hline D & \(\leq\) & 7 & 37 & 7 \\
\hline Y & \(\pm\) & 8 & 38 & 8 \\
\hline A & \(\geq\) & 9 & 39 & 9 \\
\hline I & \(>\) & 10 & 40 & 10 \\
\hline c & 7 & 11 & 41. & 11 \\
\hline \(\bigcirc\) & \(E\) & 12 & 43 & 12 \\
\hline P & \(\tau\) & 13 & 50 & 13 \\
\hline E & \(1:\) & 14 & 51 & 14 \\
\hline R & \(\uparrow\) & 1.5 & 55 & 15 \\
\hline A & \(\downarrow\) & 16 & 56 & 16 \\
\hline \(T\) & \(\cdots\) & 17 & 68 & 1.7 \\
\hline \(\bigcirc\) & 8 & 18 & 69 & 18 \\
\hline R & 7 & 19 & 74 & 19 \\
\hline S & \(t\) & 20 & 75 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & SYMBOL & ADDRESS TN SYMBOL 'LABLE & \[
\begin{aligned}
& \text { Z-CODE } \\
& \text { vALUE }
\end{aligned}
\] & \[
\begin{gathered}
\text { MACRO } \\
\text { NUMRER } \\
0
\end{gathered}
\] \\
\hline B & + & 21 & 26 & 21, 39 \\
\hline 0 & - & & & \\
\hline T & - & 22 & 27 & 22,40 \\
\hline Eİ & \(x\) & 23 & 28 & 23,41 \\
\hline M
O & & & & \\
\hline N & * & 24 & 29 & 24,42 \\
\hline A & * & 25 & 30 & 25, 43 \\
\hline I & \(\Gamma\) & 26 & 37 & 26,44 \\
\hline & 1 & 27 & 32 & 27, 45 \\
\hline A
N & & 28 & 33 & 28, 46 \\
\hline D & 2 & 29 & 44 & 29,47 \\
\hline y & \(\rho\) & 30 & 45 & 30, 48 \\
\hline A
D & , & 31 & 47 & 31,49 \\
\hline I & [& 32 & 48 & \(32 \cdot 50\) \\
\hline & \(\phi\) & 33 & 49 & 33,51 \\
\hline P
P & \(\bigcirc\) & 34 & 52 & 34,52 \\
\hline R & \(?\) & 35 & 53 & 35, 53 \\
\hline A
T & Q & 36 & 62 & 36,54 \\
\hline R & (t) & 37 & 67 & \(37 \cdot 55\) \\
\hline S & \(\theta\) & 38 & 73 & 38,56 \\
\hline
\end{tabular}

D - DYADJSC

M - MONADTC

\section*{APPUNIK 3}

\section*{}

In the following teble the form \(\langle ?\) n \(\rangle\) is used to represent the velue of TPSJTK (CIJLPNP \(\% n\)).

For macro instruetions \(F \Sigma, P C, S L\) and \(V\), it has been assumed that IN \(P=1\) ard \(T D O T R=1 \phi \phi\) indtialIy, so that
\[
\text { variables } 21,72, \cdots-\infty \text { aro used }
\]
and
label numbers \(1 \not \emptyset \emptyset, 1 \not \subset\), \(-\cdots=\) awe used.

\(8-\cdots\)
 THOS CEBATING A IfOVENR SGTRY
\begin{tabular}{|c|c|}
\hline Maceo DNSTRUCTIUN & FWSCJTON \\
\hline \＆＜intoger＞ & \begin{tabular}{l}
DHCRMSES SS（＜intoger＞）BY 1．F AS（＜integer＞） \\
 \\

\end{tabular} \\
\hline f ＜expression＞ & \begin{tabular}{l}
 \\
 \\
 ＜expression＞AES＋ARD－．OPRMND MAY BE \\
 \\
 \\

\end{tabular} \\
\hline ？〈expression＞ & \begin{tabular}{l}
 MDSTK（IDEJTR＋〈expression＞）on MTEMP． \\
 \\
 \\
 THMGERS，S＜integer＞，THD OR DE．？＇s kay BE N路TSD TO THO LEVELS DEEP
\end{tabular} \\
\hline AO & \begin{tabular}{l}
GETERAEAS THE CCDE \\
－AND．（ \(\mathrm{FCR} \wedge\) OR \(\downarrow\) ） \\
．OR．（ros V CR A）
\end{tabular} \\
\hline BB & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline B2 & \\
\hline 8 R & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline CB & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline CS & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline DB &
ZSTORS) \\
\hline
\end{tabular}

MaClo
INSMUCTION

MABKBR \(=-5\)
\(\langle\) Jabel 1〉Z《intrger＞\(=\phi\)
〈label 2＞\＆＜integex＞\(=2\langle i n t a g e r\rangle+1\)
＜integen＞and＜lake．2＞ARu sroied IN 4 IVD AND 7NO RUBPGCITVSLY

DS2

\(\langle\) lebel 1\(\rangle 2<\) integer \(\rangle=\varnothing\)

＜intager＞and＜label 2＞fun stoned in zand

F＇A

 －－－INETMUCRTCN．）

MACRO
DNBMUCTMON
\begin{tabular}{|c|c|}
\hline FN <integer> & \begin{tabular}{l}
 itics Livpex \\
TUSTK (IDLFTER + <integer>) \\
IN NMAS
\end{tabular} \\
\hline FP & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline FS & \\
\hline FV & \begin{tabular}{l}
 \\
 FOR BXUPLE T, J, K
\end{tabular} \\
\hline
\end{tabular}

 TTMPR. FON HXABPLS
Fv2
\[
\text { , } \quad, \mathrm{K}
\]
 FidS valut 1).

 que posimion or mas opmand w mas farderse list.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \multirow[t]{2}{*}{F<intoger>} & \begin{tabular}{l}
F1 G \\
F5 G3NEATHS , ZF2,
\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & GEDERATES CODE On mes forit \\
\hline F\% & MTITE (\(6,1 \not \subset \phi\)) EUNCTICN NETHE \\
\hline
\end{tabular}

ID

MACRO
INS＇TiUCOITON

IF〈a〉〈rel．op〉 nl \(n\)

 sequavicil whouniol．
〈a〉My BH
（i）？〈expression＞
（ii）\(A\)

（iiti） x

（iv）I
（TESSCS TME VALLE OF TEXP）
（v） x
（TBAM＇＇GER VALJE OF MARK）
（vi．）\(N\)
（qusm Tre Thaje on fir）
（vij）M＜uxpression＞

（vilii） 0

（ix）\(s \ll\) integer \(\rangle\)

（ \(x\) ）\(x\)
（gesps mia vilus or king \((? 1+2)\)
（xi） Y
 （xii） Z
（TESNA CIFR VALUE OH ZMARK）
 BIt，
－rel．op MX BR

m lis a fositrys on Negntive Pribgra
〈rel．op＞ m 市 （i），（v）OR（xi．i．

 STAREIN ZROA POBIPION WMAR

INE expression）
 FOSISTON TWMER
LI

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
MACRO \\
INSTRRUCTION
\end{tabular} & FUNC＇ION \\
\hline LN & AS FOR LM，BUT VALUES 6－1 ARE GENERATED \\
\hline LO & TRANSFERS THE LEERT OPERAND FROM ITEMP TO MTEMP． NJEFTP IS SET SO THET ENTRY WILL BE REMOVED FROM ITEMP IATEER． \\
\hline LOH & AS FOR JO，BU＇S NLEET SET SO THAT ENTRY WILL NOT BE RFMOVED FROM ITTEMP \\
\hline LLI & CHECKS FOR ENTRY IN COLUMN ．L OF LA＇ABI．E WITH VALUE \(<? \%\rangle\) ．WITN ENTRY IS FOUND，TIUE CORRESPONDING ENTRY IN COLUMN 2 OF LTABLE IS STOPED ON MTEMP， STAR：＇LNG FROM PUSITIYON IEMER． \\
\hline MR＜integer〉 & \\
\hline 1 18 －－－ & STORES THE VALUE OF THE ENTIIPE EXPPESSION ON MTEMP， STARTING FROM POSITION TEMPR．MX MNDICATES AN EXPFESSION STARTING WETH IMAXEN（IMXPTR）． \\
\hline N & STORES THE VAEIE OF NUMBER（NMER）ON NTEMP， STARTING FROM POSITION TEMPR． \\
\hline NB & INCRFMENTS NMBR DY 1 \\
\hline 0 & \begin{tabular}{l}
GENERRATIES CODF \\
＋OR－OR＊OR／OR＊＊ \\
ON MTEMP，STARTING FROM POSITION TEMLER．THE CODE DEPENDS ON THE CUPRENT OPERATCR \\
\((+\operatorname{OR}-\mathrm{OR} \times \mathrm{OR} \div \mathrm{OR} *)\)
\end{tabular} \\
\hline 2 C & \begin{tabular}{l}
GENERATES CODE OF THE FOFM \\
CALL BDNO（Z2，ZCPTR） \\
IT（Z〈A＞．JTT．Z2）GOTO〈B＞ \\
\(\langle A\rangle\) Y＇S GIVEN BY ZIMD（SET USING DS INSTRUCTION） \\
AND 〈B〉 BY ZN．O
\end{tabular} \\
\hline PL & \begin{tabular}{l}
GENERAMES CODE OF THE：FOMM \\
Z〈integer〉 \(=\langle\) left operand \(\rangle\) \\
FOR INTEGRRS AND \\
\(Y\langle i n t e g e r\rangle=\langle\) left operand〉 \\
FOR REAL VARIABLES． \\
＜left operand＞IS OBTAINSD FRCM ITEAPP．NLEFTI IS SET SO THAT FNTRY WILI BE RBMOVED FROM ITEMP IAIER．
\end{tabular} \\
\hline PL＋ & ZS FOR PL，BLT NIEFT IS SET SO THAT ENTRY WILL NOT BE PEMOVFD FROM ITEMP． \\
\hline PR & AS FOR PL，BUT＜right operand＞IS USED INSTEAD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MACRO INSTRUCTYTON & FUNCTITIN \\
\hline PR＋ & AS FOR FInt，BUT＜right cperand＞IS USFD mmsterd \\
\hline RCM & USED FGR INTEREUFTION OF A MACRO EXPANSION．TIIS VALUES OF IND RND IDOLR ARE STORED SO THEY MAY BE USED WHEN THE RFMAMNDER Of THP MACRO IS EXFRMDED LATER．AN ADDRESS TOR RETURN TO THE MACRO BODY IS ALSO STORED． \\
\hline RE & RESETS THE VALUE OE IDPTR TO IDLPTR \\
\hline RI， & \begin{tabular}{l}
GENERZTES CODE \\
．EQ．OR ．NE．OR ．LT．OR ．IE．OR ．GH．OR ．GE． \\
ON MTEMP，STARTING FROM POSITION TEMMR，IY：E CODE GENERATED DEPENDS ON THE CURFENE ORERAROR
\[
(=O R ; O R<O R \leq O R>O R \geq)
\]
\end{tabular} \\
\hline RO & TRANSFERS CHE RIGHT－MOST ENTRY FROM JTEMP TO MTEMP． IF NLUl＂ OTHERWISE ONLY ONE ENTRY YS REMONED． \\
\hline \(\mathrm{RO}+\) & AS FOR RO，BUT NO ENTRIES AR＊REMOVED FROM ITEMP． \\
\hline RI & TRANSFERS THE RIGIT－MOST ENTRY（WITH ENCLOSING BRACKETS，IF ANY，HEMOVFO）FROM ITEMP TO DATEME． \\
\hline \(\mathrm{RL}+\) & AS FOR RI，BUT ENTRY IS NOT REMOVAN PROM ITEMP \\
\hline R2 & REMOVZS PIGET－MOST ENCRY FROM ITEMP \\
\hline S & TRANSFERS CONTENTS OF MTEMF TO ITENP．MTEMP IS CLIEARED． \\
\hline St & AS ABDVE，BUT HTEMP IS NOT CLEAEED． \\
\hline \[
\begin{gathered}
s\langle i n t e g e r\rangle \\
\langle\text { expression }\rangle
\end{gathered}
\] & STORES ThE VAJUE OF＜expression＞IN SS（＜integer〉） \\
\hline SI & GENERATES CODE OF THE FORM
```

    ZBI = ZPOINT (ZPT)
    ZPT = ZPT + I
    CALL STARTS (<?l`,Z1,ZZ,ZNC)
    ZPOJNI' (ZPT) = ZB1 + Z2
    z3 = ].
    191 244=2B1 + 23
ZFNDX (Z3) = 1.
Z3 = 2,3+1
IF (Z3.IF.Z2) GOTO 1%61
Z5 = 7.BI + Z.2
Z6 = Z2 * l
ZSAVE = G

``` \\
\hline & 〈ISAVE〉 IS SET TO 5，〈JSAVE〉 TO 1\％I RND〈KSAVE〉 IC 6 TO BE USED TO GENERATE THE END OF THE LOORS LATER \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MACRO
INSTRUCTION & FUNCTION \\
\hline SL2 & \begin{tabular}{l}
GENERAPES CODE OF THE FORM \\
CALL STARTS（＜？I〉，21， \(22,7 \mathrm{NC}\) ）
\end{tabular} \\
\hline STK & INCREMENGS IDPTR BY 1，STORFS IDLLTN VALUT ON IDSTK（TDPTR）AND SETS IDEPTR TO IDPTR． \\
\hline T＜integer：〉 & SFORNS XHE VALUE OFくinċeger＞IN TEMPR \\
\hline V & \begin{tabular}{l}
GENERATES CODE OF THF FORM \\
CALI，VSEI（＜？ 1\(\rangle\) ，Z2） \\
VSEN IS PRESENT IN MODULE LIIBRRRY SAKUN
\end{tabular} \\
\hline Z＋ & \begin{tabular}{l}
GENERATES CODE OP THE FORM
\[
2\langle\text { integer }\rangle=2<\text { integer }\rangle+1
\] \\
WHERE＜integer〉 IS GIVEN BY THE VNLUE OF TNIJ．
\end{tabular} \\
\hline ZA & \begin{tabular}{l}
GENERATES CONE OF THE FORM
\[
\text { Z〈integer> } \quad 1
\] \\
IND AND IDCER ARE STORED IN ISUHS（N，1）AND ISUBS（N，2）RESPECTIVELY．（N IS THE TNDFX OF TVE FIRST JMPTY RON．）USED FOR SUBSCRIPT EOOPS．
\end{tabular} \\
\hline 2B－－－－ & REPRESENTS NN EXPRESSION STAETING WTTR ZLAM． EXPRESSION IS EVALUATED RND THE VALUE（A LAEEL NUMLBER） IS STORED ON MRENP，SIIARIING FRCM POSITICN TENDR． \\
\hline ZC & GENERAGLS GHE VALUE OF ZNUM ON MTEMP，STARTING FROM POSITION TEMPR． \\
\hline ZD & gENERATES CODE OF THE FORM
\[
\begin{gathered}
\mathrm{z}\langle\text { integer〉 }=\varnothing \\
\text { AND } \operatorname{scopes}\langle\text { intege } \gg \text { in } \mathrm{zNA}
\end{gathered}
\] \\
\hline 2E & PRODUCES TFE VALUE OF ZNA ON MTEMP \\
\hline ZI & generates lhe value of zind（or ind，If ziivd \(=\varnothing\) ） ON MTEMP，STERTING HROM POGITJON TEMPR． \\
\hline ZM & GENERATES THE VALUE OF ZMARK ON MTEMF，STARTJNG FROM POSITION TE：SPR． \\
\hline ZP & IF TSBPMR \(=0\) ，NO EFFECT．OHMERWISE，GENERNTES COD：OF THE FORM
\[
\begin{aligned}
& \mathrm{Z}\langle A\rangle=z\langle A\rangle+1 \\
& \mathrm{IF}(Z\langle A\rangle . \operatorname{LI} \cdot \mathrm{ZBONDS}(\mathrm{Z}\langle\mathrm{~B}\rangle)) \text { GOTO }\langle C\rangle \\
& \mathrm{ZFT}=\mathrm{ZPT}-1
\end{aligned}
\] \\
\hline ． & \\
\hline & AND N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MACRO INSTRUCNION & FUNCTION \\
\hline 25 & GANERATES CODE OF THE FOMM Z＜integer〉 ：\(Z \quad Z Y Y\)（ZYY PTR－1） \\
\hline \％\({ }^{\text {2 }}\) & GENERATES CODE OF THE HORM
\[
Z\langle\text { integer }\rangle=Z X X \text { (ZYYYPRE) }
\] \\
\hline \％W－－ & RERRESENOS AN EXZRESSION SIARRIING WTSII ZNUMB．TIIE EXERESSION IS EVALUATED AND THF：RESUST STORED IN MITEMP，STARTING FROM POSITION TEPSR． \\
\hline ZY & gentrates code or the form Z〈integex＂〉 \(=\quad Z Y(2 Y P T R-1)\) \\
\hline ZZ & GENERAPES CODE OF THE FORM
\[
Z\langle\text { integer }=Z Y \text { (ZYPTR) }
\] \\
\hline 2＜integer〉 & GENERATES CODE OF THE POKN
\[
z\langle\text { integer } 1\rangle=\langle\text { integex }\rangle
\] \\
\hline 厽 & STOP \\
\hline
\end{tabular}

\section*{AMTATX 4}
A. list of all the macro bodies usod in the APD-FCRTRA translation is included for reforence purposes.

A heeder line has been jnoluaed with cach màaro body, The header líne gives the nacro number, as well as a briof description of the contients or function of the fracro body. Dhe mucro processor never aocesses the header Iines for the macro bodies, and thus the header lines could be prithted. Omission of the header jines would signiricantly reduce the arount of space reçuired for the macro bocies. The header lines (togetion with the surroundine blank lines) have beer inserted sinply for readability or the macro code.

\section*{\{ NC. 2) \\ PROULCTION DF EVFIND GAEL}

SPECIFICATIDN \{NO.3)

AVI.OR (YOS:4-5)
\(\%\)
ONI 2264

MEHBER (NQ.12)
ENCIDE
OCALL NCOADYYO IND SYYROWL, ZY, ZYPTR,ZCBNOS,ZCPTR,ZTENPI合
\[
\stackrel{7}{\square} Z Y P T R=Z Y P
\]
\[
S^{8} Z y \quad \text { YZYi }
\]

CIRCUIAR (NO. 34) \(P L\) \& \(\quad \mathrm{PR} \& \quad\) 名IF!Y\%
\& \(\div \mathrm{O} \% \mathrm{Y} \%\) IND \% \(=\) RINGVYY\% 2

 (00.35)
NATURAL LOGARITHM
NATURAL.LOGARTTHM \{NU.37\}
IND-2
多 / / ALOGIY

\[
8
\]
\(\because\) 126pp164 14042\(\}\)

Ol \(\mathrm{H}\{\mathrm{M}=5\) (N2.52)

\section*{I-GEAM (NO.59)}

(MOS.62.04)
(NO .63)

; IN IHLEXING (NO.66)

\section*{25}
\(B P\)
\(\%\)
E
都 \(=0\)
N

\(+\)

\(\left\{\left\{\left.\right|_{1} ^{1}\right\}=73\right\}\)

\[
\begin{aligned}
& N \\
& \dot{u}
\end{aligned}
\]

－包

> QUAD INPUT \{ND.BL\} \(\infty\)
\(\begin{aligned} & \text { IND } \\ & S^{4}\end{aligned}\)
ह
\(\begin{gathered}6,1061 \% \\ =8\end{gathered}\)
> (78*Civ:

\(\mathrm{MX}-\mathrm{S1*}\)
XHTS
\(3 G 0 T 0: \%\)
8

\(I+\times W\)

\[
\begin{aligned}
& \text { PRUDUCES CODE } \quad Z\langle I N T E O \Sigma R>=0 \text { (NO.36) } \\
& \begin{array}{l}
27 \% \\
3+2 \%
\end{array} \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{c}
\text { कีTEMPIZ } \\
Z Y
\end{array} \\
& \text { No. } \\
& \text { ZE }
\end{aligned}
\]
\[
\begin{aligned}
& \text { © } Z Y(Z Y P T R)=Z^{\circ} \\
& \text { 12 * \% Z Z } \\
& { }^{3}
\end{aligned}
\]

Three possible methods are considered:

Method I involving two distinct procenses :
(a) a lexical scan
(b) a right-to-left scan involving both production of reverse polish and expansion of macros to generate the target-lancuage sode.

Method 2 involving three distinct processes :
(a) a lexical scan
(b) a right-to-left scan in which reverse polish is produeod.
(c) a left-to-right scan in which the target language code is generated.

Method 3 involving three distinct processes :
(a) a lexical scan
(b) a right-to-left scan in which a bracketed intermediate code form i.s produced
(c) a left-to-right scan in which the taxget-language code is generated.

A description of the handing of "FIND call" operators is given in the main text. Using the method described, it is possible to obtain an incxease in efficiency of the target-language code as compared with the original ApL code. Method 3 is most suitable for the handing of theso operators, for the reasons given below. (In fact, a great deal of work had boen done on Method 3 before Methods 1 and 2 were considered. For expressjons not involving "FIND call" operators, reverse polish methods woulct prohably be slightly more efficient. However, tho ease or handing of "FIMD cail" operators justifies the use of Method 3.)

Consider Method 1 applied to expressions such as that given below.
\[
F \quad \leftarrow \quad A / B+\left(C-D^{*} E+D\right)-C
\]

For both \(/\) and \(\uparrow\), the index and fype value for the left operand for the value and type value, if the type value is \(\not \boldsymbol{\phi}\)) is required. If this information is extracted duxing the lexical scan, then the lexical scan for this method would necessarily be more conplex than the lexical scan for Method 3 , as more tosts would be reçuixed.
for example, the expression involves two "EtND dill" opexators. Jhe above information iss required for each, together with the "scope" of each operator, that is, the extent of influence for each operpton.

The required value for the first pasameter of the "FIND call" must also be retained here.

All the necessaxy information could be retained by replacing the 1-byte entries for operators by 3-byte entries, giving
1. the negative of the operator macro number
2. the value for the first parameter of the fivd call
3. the index value for the left operand (to be inserted in the FJND cell).

Some means would have to be devised of distingujshing these entries from the 2 …byte operand entries.

It is better not to store the type value for the joit operand of that F3ND call at this stage, as type values can vary dynamically.

It is difficult to keep a record of the scope of an operator using Method 1. In the above example, the scorse of \(f\) js terminated by , However, in the following example,
\[
A /\left(B+(C * D)+\left\langle F^{2}+D\right)+G\right\rangle-E,
\]
the scope of \(t\) is teminated by the second \()\), but the scoge of \(/\) is not terninated until the end of the line is reached. This inplies that a bracket count is necessary for the handling of "FTND eall" operators, but wat tests must also be made to detect the occurrence of operators whose scope extends to the end of the line.

Thus, it san be seen that the lexical scan for this method would be more complex than that described for Method 3 in the main text.

Metinod 1 has the advartage that one scan car be eliminated. However, the lexjeal scan and the right-towleft scan would both be more complex than fox Methods 2 and 3.

Now consider Mothod 2. Using this method, the first parameter value and the left operand (for "FIND cal1" operators) could be retainod during the rightmtomeft scan, in which the neverse polish notation is generated.

When a "FJND call" operator is detected, it is known irat a3.1 preceding operators (either from the right-most end or fxom a previous occurcence of a "FIND dall" opexator, with due regaxd for bracketingl lie within the soope of the operator. For example, in the statement
\[
F \leftarrow A / E+\left(C-D^{*} T \uparrow D+B\right) \div C
\]
the operators + (first occurrence), - , *, \(\div\), lie within the scope of /s while the operator + (second occtarsence) lies within the scope of + . The operator + lies outwith the scopes of both \(/\) and \(\uparrow\).

The above information mast be stored in some form. Juns, the coriplexity of the right-ro-left scan would not be consjieraly less for Method 2 than for Method 3.

The handing of "FTND call" operators is more difficult using Mothoc" 2 , because bsackets, which are impoxtant to the method, are discarded during
the xight-to-left scan. For example, consider the APL expression
\[
A /(B+(C \uparrow D))-E
\]

If a reverse polish notation is produced duxing the right-to- left scan, the operator / is not reached until (\(\mathrm{B}+(\mathrm{C}+\mathrm{D})\)) - E has beon handied. At this stage, the brackets have been discarded, and thus the soope of cannot easily be determirned.

There is litcle difference in complexity between the left-to-right scans of Methods 2 and 3.

Method 3 has been discussed in detail in the main text. Ihere is no problem with "FIND call" operators using this method as the necessary information can be obtained easily cluring the left-to-right scan. Using Method 2 , it is not possible to delay the storage of the reguired information until the left-to-right scan, as the brackets present have already been discarded. Thus, due to the problem posed by the need for a bradket courit, if a revorse polish method is to be used, it would appear that Nethod 1 is preferable.

Comparison of Complexity
\begin{tabular}{ll}
Lexical Scan & Method \(3=\) Method \(2<\) Method 1 \\
Right-to-Left. Scan & Method \(3 \equiv\) Method \(2 \ll\) Method 1. \\
Left-to-Right: Scan Method \(3 \fallingdotseq\) Method \(2 \quad\) None for Method 1.
\end{tabular}

A list of restriotions on the types of APL statement able to be translated is now given. The list is in two parts:
A. Important restrictions
B. Jess important restrictions,

List A is Eurther sub-divided into
(i.) those restrictions imposed as a result of the method of conversion
(ii) those restrictions whdch could be removed using the same conversjon method.
A. IMPORCANT RESTRICTIONS
(i)
1. F'unction or subroutine parameders mute bo dither
(a) numeric scalars
or (b) mumoric non-scalar variable names
or (c) literal vaxiable names

The above parameter types are the only ones possible in a function or subroutine definition header statement. The type assigned to pararneters in the header statement determines the code to be generated in the function or subroutine body. Thus, for example, a literal constant camot be lased as an antual parameter when a literal variable name has been used in the header statement. similarly, if i is a numeric nonmscalar variable name, then the following code would not be handjed correctiy,
\(\nabla\) A \(\mathrm{FN} \quad \mathrm{B}\)

\(\nabla\)

In the above example, looping code would be generated for non-scalar accessing and this would be incorrect if the varlable. \(B\) was replaced by the constant: 3 .
2. Use of non-scalar or literal parameters requires a knowledge of the storage method used by the conversion routines. For example, consider the function

where \(\mathrm{I}_{\mathrm{r}}\) f.s a literal variable name.

To call CTD with paraneter 'ABCD', it is necessary to
(a) first assign 'ABCD' to a litexal varizile name, say in.
(b) set up an entry in NAMES for 'ABCD'.
(c) set up an entry in NAMES for Ll.
(d) set up an entry in LTTHJE associating 'ABCD' with Lh.
(e) call CTD with parameter value equal to the NAMES index for Li.
3. Function result variables must be numeric scalars. This is due to the fact that the result value has to be assigned to the function name.
4. Recurgive function calls have not been catered for.
5. The left: parametex of a "F'JND adl" operator cannot be an expression. This is clue to the method of handling certain mixed functions. The problem can be avoided by introducing an extra variable name. For exariple, \((A+B) \geqslant x\) cannot be handled, but
\[
\begin{aligned}
& R \notin A+1 B \\
& E \& X
\end{aligned}
\]
will be translated correctly
6. Fxpressions such as
\[
A[Y] \& Y \leftarrow B+C
\]
will not be translated correctly, as irmediate action macros are expanded to handle indexing, Thus, if \(Y\) originally has value 4 , then \(A[4]\) (not \(\mathrm{A}[\mathrm{B}+\mathrm{d}]\)) will be altered. This problen on be avoided by splitting the expression into two parts, thet is,
```

Y % B+C
A[Y] < Y

```
(Multiple assignments wjul be handled correctly as long as the left operand of an assignment is not used in an indexed expression on the same line.)

\section*{(ii)}
1. At present, no account has been taken of run-time changes in the tyou values assoctated with variables. The type values will be uxdiated as required. Ifwever, the conversion routines use instruetions of the form
```

IN ?n <rel-OD.> m k

```
to test the type values.

In fact, the macro bodjes should be altered to test the appropriate NAMES entries at run-time,
2. Nesting of non-scalar indices has not been hanalod. Thus, for example, A[3 4 5] is acceptable, but \(A[3 ; B[C ; D ; E]]\) where \(C\) or \(D\) or \(E\) jis non-scalar, is not allowed. This restriction has been imposed merely to avoid production of unwieldy code.
3. The operand for the reduction operator cannot be an expression. This restriction may be removed by updating the reduction macro (see Appendix s).
4. A co-ordinate value may not be specified for the following functions
(a) dyadic rho
(b) monadic comma
(c) dyadic iota
(d) grade-up
(e) grade-down
(f) methber:
5. The variable name MARKFR is reserved and should not be used in the APL source. This restriction may be removed by replacing the name NARKER by, for example, wakk in the macro bodies and all the run-time routines contained in GARON,
6. Non-poalar variable names may be used as parameters for \&-m, but nonscalar expressions are not allowed.
7. Locked functions are not handled.
8. l-indexing is assumed throughout.
9. The functions
\begin{tabular}{lll}
-5 & 0 & \(E\) \\
-6 & 0 & \(B\) \\
-7 & 0 & \(B\)
\end{tabular}
have not been defined.

An emponential series is required to handie these functions. The user may supply the appropriate series to any required degree of accuracy. This involves updating the function RiNGY, which is present in moctule library saRIN. Tf no sexies is providod by the user, a zero value will be returned. A message is also printed out for tho uscr.
B. LESS TMPOKLANI RESTRLCDIONS

This Jist is also divided into two parts. The first list comtains restrictions which apply because the facilities to which they refer are systent-dependent.
1. No system comands are dealt with.
2. No workspace size is defined.
3. No function editing facilities are available.
4. No traco or stop control is alloweत.
5. Any constant will be represented in the output code exactily as it appearod in the input stream. Size restrictions will be imposed at run-tine by the system used to run the converted routine.
6. I-Beam functions are replaced in the output stream by

\section*{IBERM (K) ,}
where \(K\) determines the function. The body of the function must be written by the user, simce J.-Beam functions are systex-cependent,

The following size linitations also apply:
J. A function or subroutine may contain un to 99 lines of cote.
2. In a set of supplied functions or subroutines, there may be ap to 64 non-scalax variable names.
3. The array 1 ambs hes \(5 \varnothing \not \subset \emptyset\) locations, Therefore, there is a limit to the nurnbex of entries which may be placed there. Garbage collection of NAMLS (by calling subroutine NGASB) may ease tlse situation .
4. The internediate code form may occupy up to \(2 \not \varnothing \varnothing\) bytes. At present, 6 spaces are left for insertion of brackets when certain syribols are recognised. Thjs amount may be varjed. (See Chaptar JII.)
5. A macro body may contain un to l \(\ell \varnothing\) labelled statements.
6. A macro body may occupy up to \(4 \not \varnothing \emptyset \emptyset\) bytes.
7. The label table, JTAELEA, may hold up to IMø entries. A set of routines should therefore contain no more than \(1 \varnothing \varnothing\) labels.
8. A constant vectur foith one blank sepaiating each element and one texninating blank) may contain up to \(3 \varnothing \varnothing\) characters in all.
9. There nay be up to \(1 \varnothing\) "locked" local variable names at any stage. (See Chapter IT.)
10. There may be up to 180 long names (that is, identifier nantes having more than 6 characters) in any set of routines.
31. Nesting of brackets is allowed up to a maximum of \(4 \not \subset\) levels deep in APL expressions.
12. Nesining of indexed expressions is aljowed up to a maximin of 5 levels deep.
13. the parameter stack, lismk, may contain up to \(5 \not \subset 6\) entries.
14. Ig locations are set aside for storage of result variable and function name. This allows up to 5 functions per set of routines, but does not restrict the number of subroutines.
15. there may be up to ig local variables in a set of routines.
16. A maximum of 106 routines may be converted at once, assuming condition If is satisfiod.
17. Nesting of "FIND call" operations is ajlowed up to a maximum of hg.
18. Nesting of bracketed expressions is allowed in macro bodies up to a maximum of \(1 g\) Jevels deep.

\section*{APYENDIX 7}

The fenerrated code was mroduced in FORTRAN, since thet language was most often aveitable for tasting purposes. Had ALGOL or ly/i, for example, been as readily available, they might equally as woll have been uged.

Code is genorated in the following ways:
1. It is generatod at a result of macro experisions.
2. There is a library (SARLNX) contajning the object modules of subroutines to be included during cxecution of the oonverted routines.
A.7.1 the subroutines and functions contained in SMEJN were written in Hondpan. Honever, since the object modules are included durine execution of the converted routines, it is not necessary to convort these to other Ionguages.

Thus it is orly necessary to consider ponversion to othex langueges of code genereted ds a result of macro expansions. In partioular, the Janguages sigot and Pr/i are consjdered. As far as yossible, only the types of roRdziN statements heving courterparts in ALGOL and PL/ 1 Fere gonerated. using macro expansions. Ihus the probjem of convexsion to oither of these two languages instead of fordruin is foirly straightarmard.

The generated code takes two forms:
(3) explicitly generated coue, using the macto intirutions

(see Chapter V).
(b) implicitily generated code. This is produced using composite macro instructions, such as Sid, Fid, CS. Ald the APL-FOitraly oonversjon routines are contained in the module libraxy SkLEB. To onvert implicithy generated code to other languages, the folloring aubroutines in SALIB require to be updated.
\begin{tabular}{|c|c|c|c|}
\hline ARIC & TAVECD & Frait & SiEEC \\
\hline csatic & H'SOOP3: & FCODS & STPSEI \\
\hline DJ.M & PGTOPP & PREC & VRESC \\
\hline DOLLAR & MIMSET & RLEREC & 2REC \\
\hline DFLCC & NSCALI: & SLOOP & \\
\hline
\end{tabular}

The subroutines listed above (with the exceptions AROC, RupxC end DOLLAR adt contain hogabil \% arrays ir which the code to be generated is stored, character by charactor. Usually, a Do-loop is executed to place suocessive characters in the array dimp. Complete lines of code are produced in thils way, and then transferred to the output nedina.

Thus, to slter implicitly generated code, the Locicely 1 arrays must be updated, and often also the associated jowloops.

The subroutine AESC produces
. AND. or . OR.
white RIREC produces one of tho Poms

> *

These subroutines must also be updetec if the targed language i.s not Fodunar.

DOLSAR is used in production of label nabers, (see 4.).

All other subroutines in SALiE exe independent on the tareetolarisurge and moy be regarded as fixed. Thus the APL-FOHRAN conversion involves
1. fixed subroutines and functions in SALIB
2. the subrautines listed in (b) wove
3. macro bodies, comtained in the satawset sAmidBOD.

To convert Abt routines to figGO ox to Pu/t, it ts necessury to combine 1. above with updated versions of 2. and 3.

Tt is possible to produce entire dibraxies for APTHAGOH or APlmpry conversion by moking ohanges of the typos listod below. It is then a simple mattex to provios a ueer option by wiach the target-lancuage is chosen by the user.
the typos of oxenges to be made texe the following foms:

\section*{1. Non-expeutabio statements}
1.1 DKPLICIT FRMA (A Y)

IWPLICII INTMGRR (Z~O

These statements were included for the ease they atforled in the irturoduetion of non-ambiguous vainable names,
(a) Converision to ALGCTA
 names must te declazed. This involves accumulating a list of ail the varienla nares used jin a routine encl inserting the completa list at a later stage. Alz. nonwseajar varianles are declared in nondryty arid their eorversion indy be handeed as indicated in 1.2.

AL, scalaw globel variables should be cxplicitily jerined, together with
a.l seatar varianhes in tine original A.FI, routine. In edidions all sealar variables of the forms

should be explicitily dechared. At the end of the routines, the vilues \(N\) and. \(N\) oan be obthined from the vaximbles fin and timerespotivoly
(b) Gonverston to \(\mathrm{Pr} / 1\)

A similen prooess to that given in (a) above must be carried out.
1.2 INTEXBS

RUAL
Iosichex 1

The equivelent atGoJ, or PL/ 1 forms shotk be usod instead. (It jt not neeessary to declere all varisble nemes in \(\mathrm{PL} / \mathrm{f}\), but it is better to do so to avoid urmovessery complicetions.)
1.3 OHLHON \(\rightarrow--\)

These stetemcrita need not appear at all in the porfrum versich if the variables concerned dre plsced in the parameter lists of the subroutines involved. \(\mathrm{I}^{\mathrm{h}} \mathrm{i}\) s is referred to at the start of Chepter VIJ.
(a) Convexsion to ALGOL or PL/1

If Comiden statcments are present, the variable rames concemed should be placed in the appropriadt paranetor lists.

Those statements were used to facilitate chamecter hewdidig in Fomithiv. They are not direotily equivalent to ary ALMOL or FL/ \(/ 1\) statement types, but this does not matter as the ir use can be dispensed with in alGol or Ph/i . (Chamoter handling jis easier using these lenguges.) For example, insteaă of
```

LORICAL * N (4),NALES (5p/p)

```

```

NTH = . .93
NGHiss (I) = N N(4.)

```
codo of the form shown below (illustrated for ALGOL) may be used

\section*{'snrang' Natizs (c/bob);}

Natis [I]: \(=A^{\prime} \mathrm{A}^{\prime}\);

In hugoh, the main progrem (which is partially produced during the
 The equivalent; structure in PI/ \(/ 1\) is
```

<<abol> : FMOCNDUES OENHONS (MANN);
on+J
2MPD <label>;

```

All changes of the types listed above may be made by altoring the subroutines CSHEC and DINC (conteined in SADTB).

\section*{2. Subroutine and runction definjtions}
(a) Convexsion to ALcen,
produced in the armais version must be altered to the Pom

whitle the form
```

HWNCITON .. - - -

```
nust; be al.tered to the form
 <type> 'wRocepdrie' .- - - - ;

The fom RETURN arter a FORTRAN subroutine or function shoula be replaced by 'Gidj' ; •
(b) Conversion to \(\mathrm{PL} / 1\)

The form SuBRUTHEE should be replaced by

while the form ruacrion shosila be replaced by

The above ohanges may bo made oy updating macro bodins \(7 / 4\) and 3 t (contained in the data set SAMACDOD).
3. FEAD

WRTITE \(\quad . \quad .\).
FORIAAT - - ..

All I/O ntatemencs should be oonverted so the forms in uso alt the partioulax ALGOL or PL/1 jnstailations mine the convarted raztines are to be run.

These alterations may be made by updeting macro mubers 68, 84, 82, 16 and 34.
4. Label numbers must be rapleced by Jabel names in both ALCOL and mJ/ 1 .
 brought about by updeting the subroutire DOLLAK (contained in BHITB).
5. ColTtNus anci<label number > ConTTnus

These should be xeplaced by ; and ZL <label number>; in both NJSOL and \(\mathrm{PI}_{2} / 1\).
6. GOMO \(-\cdots\)
lhis should be replaced by \({ }^{1}\) Gorio' in ALGOL.
7. Condj.tjondl stetenients

For example, the statsment
should be repliced by
\[
\begin{aligned}
& \text { (AJGOL) }
\end{aligned}
\]
by \(=,\langle=,\langle\rangle,\rangle=,, \cdots=\) respectively in DL/f.

\section*{8. \(\langle\mathrm{HHS}\rangle=\langle\mathrm{RHS}\rangle\)}
should be repleced by
```

<LHS>: = <甚HS>;
(ALGO5)
<UHS \rangle = < 2HN > ;
(PL/L)

```
9. CALL

CALL should not apper in ALGOL subroutine aalls.
10. Label parameters

Ihese are used. in some FORTRAN subroutines, for example

CASI, GVOVZR (1, \&1)

The appropritate forms ahould be used in ALGOL anc Fi/i .
11. Switch statementis

Shoso exist in macro numbers 75 and 33. These macros should be wodate a to the roms required by oither ALGOL or PL/i .

\section*{APFENDIX 8}
(1) TH: FUNOMON OF RUN-TDN GLOEAL VARLALES
A. 3NLECTR VARTASLES page
1. zTRTP An array where the elements of non-scalar integer results 137 are stored
2. ZCBIDS An array where the current bounas for an expression are 88 stored
3. ZCFPR The pointer for array 2CPRDS. 88
4. \(Z Y\) An array where successive baso levels or \(Z\) ZEMP are stored. 137
5. ZYFPR The pointer for array \(Z Y\) 137
6. ZYY An array where successivg base levels of yTETP (see B) Ere stored. 137
7. ZYYFit The pointer for array ZYY 137
8. ZBOWD An array where the bounds for all axiays are stored consecutively. 8
9. ZFONN An array whe supoessive base levels of Zajod (see 11) 17 are stored
10. 2PT The pointer for array \(Z P G I T\).17
11. ZINDX An array where the subscript values are stored during arreyaccessos.
12. \(\quad\) BOOE An erray uged to indicate previous occurrenoes of a ranaom number (used in hondling the "dce?" function).
13. ZCOORD An array where co-ordinate values (specified for mixed functions) are stored 96
14. ZCDFTR The pointer for array ZCOORD 96
15. ZSTORE An array containing link information for the blocks of YSTORE (see B) 8
16. ZROMN The pointer for the array YROWL 135
17. ZROWNA The pofnter for the array YRONR 135
18. ZBPTR The pointer to the next free location of ZBONDS 12
19. \(2 \phi\) A name generated when an indexed expression occurs 18
20. \(2 B 1, Z B 2, \ldots\) Locally generated scalars 18
21. \(\mathbf{z}\)--- Integer variable names 40
22. NARKFR Gives type of result 89
23. DOPBS An array for the dope vector table 8
24. NalaEis An array for identirier names 10
25. ZL An array used to store elements of literals whenquotemquad input is used
26. ZROW An array where the left operand elements are storedwhen dyadic "rho" is hendled
27. ZGRAD An array where the repיlt vector for "gradempl"and "grade-down" is stored
28. \(Z D M\) An array where the co-ordinate values for a particular row of an array are stored (used in handling n-dimensional accessing)
29. ZSUB An array where subscript information is stored during accessing of \(n\)-dimensional arrays
30. 2TMP3 An array where subscript information is stored for n-dimensional accessing in inner products
B. REAL VARTABLEES
1. YTBMP An array where the elements of non-scalar real results are stored 137
2. YSTORE An array used for storage of all numeric non-scalar elements 7
3. YRONL An array used for storage of the left operand elements for certain mixed functions 135
4. YROMR An array used for storage of the right operind elementa of certain mixed functions 135
5. Y --- Real variable names 406. YBoUnD An array used for auxiliary storage of non-scalarelements
7. YBOND An array used for auxiliary storage of non-scalar elements
8. YGRAD An array used for storage of operand elements for "grade-up" and "grade-down" functions
9. YTMMF2 An array used for auxiliary storage of dyadic
"rho" right operands
10. YTEM An array used to store rumeric information supplied in response to "quad-input"
11. XBOUND An array used for auxiliary storage of non-scalar elements
(2) THE FUNCTION OF TRANSLATION TIME VARTABLES
page
1. FNIND An array of variable name indices 55
2. FNLOCS An array of "locking" indices 53
3. FNPARM An array of indices of parameter names 58
4. IBIT The pointer for array IBITS 86
5. IIBITS A character staok 86
6. IBPIR The pointer for array InEMP 86
7. ICLPTR A pointer value from MLTAB 119
8. ICOLM The current value of ICLPTR, retained when the mecro instruction RCM is used 123
9. IDLPTR The pointer for the chain on the stack IDSITK 79
10. IDOLR Current label number value 126
11. IOPTR A pointer for IDSTK 78
12. IDSTK A double-snded stack for operands and operators 77
13. IEXP Used to distinguish function and subroutine definition header statements 70
14. IPIND A gtack of 13 t parameter values for FIND cells 98
15. IFNI Gives the number of variable names in a function or subroutine definition header statement 70
16. IFNPIR The pointer for stack IFIND 98
17. IFPUNCT Used in decodirg function definitions 70
18. IHPT Jised to denote a heterogeneous output statement 95
19. ILEFT Used to indicate the presence of [..... 89
20. IOFTON Used to indicate the output medium required 24
21. IOPTR A pointer for the stack IDSTK 78
22. IREV A marker 113
23. ISYMBT The symbol table array of characters 36
24. ITEMP An intermediate result code array 86
25. LCHAR Glves yelue of next character 60
26. LITNE A character arrey for storage of input lines 6
27. FITBLS A 2-idimensional table with entries for Literal variables 46
28. LOCAZ An array of local variable rame indices 54
29. HOCS An array giving the number of entries to benemoved from LOCAL54
30. 1 PmR The left pointer for NCODB 60
\(31 . \quad\) LTABLE A 2 -dimeniLonal table with entries for labels 154
32. MACROS An arrey of miacoro records 109
33. MCADDR An array of start adaresses for macro bodies 33
\(34 . \ldots \mathrm{MAB}\) A 2-dimersional table for macro labels 119
35. MTEMP A temporazy output array 86
36. NAPDR Contains address in ISYMBT of ourrent symbol decoded 36
37. NAME An array giving the current identifier natne 37
38. NCODE Array of Entermediate code 59
39. NCOORD Gives count of \([\) syembols 96
40. NEXP Array used to distinguish functions and subroutines 56
41. NEHPT A marker 113
42. NOLINE A character array containing a processed Apl line 32
43. NOLPTR Gives the number of entries in a pacticular APL line 35
44. HPMR The right pointer for NCODS 60
45. SS A looping array for repetition of miscro statements 123
46. TEMRPR The pointer for array MTMP 110
47. ZMARK A parameter (0 to 5) 115

\section*{APPENDIX 9}

\section*{EXAMPLES OF CONVTRTED ROUTINES}

Mhree examples are given illustrating the converejon of AHE to FORTRAN by the method described.

As indicated in Chapter 1 , two possibilities existed for the handing of global variables during conversion.
1. Global variables could hare been insexted in the parameter list, making parameter linkage a costly operation with regard both to space and execution time.
2. Global variables could have been inserted in the common list, reducincy the amount of parameter linkage recuixed.

Conversion of APE to other languages instead of FORTRAN is made more difficult if method 2 is used.

Method 1 is used in the sample translations listed below.

In each of the examples listed, a nuriber of non-executable statements appear. Some of these statements indicate the type and the numbex or dimensions of the global variables. In addition, the COMMON statementr COMMON/C7gl / ZLTMI to
```

COMMON/ C728 / ZLIM28

```
axe present. the variables ZLIML to ZEIM2S are limjt variables for certain global non-scalars. Theix values are set on execution of the convertod routi,nes and they are used to test for overflow of global non-scalars.

For any routine, it is not known at the start of code production which of the variables ZIsIMJ. to \(2 \mathrm{I}_{\mathrm{x}} \mathrm{IW} 28\) will be required. For this reason the complete list has to be insexted.

No optimisation of code is attempted at code generation stage, ank thus the code produced is often inefficient. However, signiflcant increases in efficiency are possible using the methods outlinecl in Chaptex VIly.

The resultant FORTRAN code produced is necessarily more fieldy than the original APL code, as the generality of APJ has to be catered for.

This simple example illustrates the conversion of a routine which calculates the surface area and volume of a sphere，given the radius \(R\) ． \(\nabla\) SREERF

SURF 《－ \(4 \times 3.24159 \times R \times R\) VOL \(\longleftrightarrow\) SURF \(\times \mathrm{R} \div 3 \quad 7\)

The following code is generated corresponding to the above routine．
 CYPTR，ZYY，ZYYPTR，ZBONDS，YBOUND，YBOND，ZPOINT，ZPI，ZJNDX，KBOOM，ZCOORT，

```

IMPLICIT REAL(A-Y)
IMPLICIT INTPEEER(Z-Z)
REAL YSTOURE (I),YYEMP(1)
REAL YTEMP2(1)
REAL Y!PMM(1)
REAL YGRAD(1)
LOGICAJ*I MCHAC(I)
REAL XBOUND(1.)
MEAL YBOUND(1)
REAL YROND (1)

```

```

IOGICAEAJ. ZTYPEL(4)
REAL, YROWR(1)
REAL YEGML(I)
TNTEGER\& ZTEMP(1)
INTFGGER ZTEMP3(2)
INITGGER ZY(I)
INTVEGER RYY(J)
INTEGER ZCBNDS (I)
INLEGPR ZCOCHI\(1)
INTEGPR ZINDY(1),ZPOINT(1), ZBOUND (1め)
INTEGER ZBONDS (I)
INTEGE'R INAMES (1250), INRME (75)
INTEGER DOPES (64,6),ZSTORE (1%6)
INIEGER 2RON(1)
INTEGER ZGRAD(1)
INIEGER ZDMA(J.),ZSUB(1)
COMMON/ C24/ZBPTR
COMMON/ C62/ZROMNO
COMMON/ C63/ZROWNA
COMMON/ C3/INAMES,JNANE,KEY
COMMCN/ C2/ZSPACE,TADRES,DOPES
COMMON/ C316/ZSNVE
COMMON/ C35l/MARKER
COMMON/ C/पl/EIJIMI
COMMON/ C7め2/ZLTM2
COMMON/C7\emptyset3/ZLIM3

```
```

    COMMON/ C7\emptyset4/ZLIM4
    COMNON/ C7\varnothing5/ZLIMM5
    COMMON/ CTg6/ZLIM6
    COM4ON/C767/ZLIM7
    COMMON/ C7ด8/ZIIMM8
    COMMON/ C7g9/Z1.TM9
    COMMON/C7L\varnothing/RLIMI\emptyset
    COMMON/ C7I1/ZLIMLI
    COMMON/ C7.2/2L.TML2
    COMMON/ C7L3/2FINM3
    COMMON/ C714/ZLIMl4
    COMMON/ C715/ZLIMMT
    COMMON/ C7.16/ZLTM16
    COMMON/ C7M7/ZLTM17
    COMMCN/ C718/ZLIM18
    COMMNN/ C719/RNMM19
    COMMON/ C720/ZLIM20
    COMMON/ C721/Z1.AM21
    COMMCN/ C722/ZLIM22
    COMMON/C723/ZLIM23
    COMMMN/ C724/ZI.IM24.
    COMMON/ C725/ZIIM25
    COMMON/ C726/ZJJM26
    COMMON/ C727/ZIJM27
    COMMON/ C723/ZLTMM2B
    COMMON/ C7G9/ZSTOP
    EQUIVALENCE (INAMESS,NAMES)
    EQUIVALENCE (2TYPE,ZTYPEE)
    1 CONTINUE
MAFKEIR=\varnothing
ZCPTR=多
Y2=4* (3.1.4159*(R*R))
IF (MARKER .NE,g) GOTO 1l1
SURF=Y2
GO2O 117
1l1 CALL SREGY9,Y2,Z2, 2CBNUS,ZCPIR,ZBONDS,ZPOLN', ZPT,YSTORE',ZINDX,ZST
CORE,ZCOORD,ZCDPTR,YBOUND)
CNLE SPECB
117 CONTINUE
2 CONIINNUE
14ARKHR=6%
2CPTR=\emptyset
Y3mSURE* (R/3)
IF(MARKER .NE.ø) GOTO }12
VOL=Y3
GOTO }12
123 CALJ, SPECS {33,Y3,Z3,ZCRNDS,ZCPTR,ZZONDE,ZPOJNT,ZPT,YSTORF,ZTNDX,ZST
CORE,ZCOORD,ZCDETR,YBOUND)
129 CONTINDE
1\emptyset\not\emptyset IF(Zl.LE.\emptyset.OR.Zl.GU.3) CONITMUE
COTO (1,2,3),2].
3 CO\&TINLIE
101 FORMZT (1X,G12.6)
1\varnothing2 FORHAT(G12)
193 FORMEry(1X,II2)
1ø4 FORMAT(1%G12.6)
105 FORMAT' (\&GA1.)
106 FORM1AT(IX,/)
CALL LOCREM
RETURN
END

```

This example illustrates the handing of APL ioput: and output expressions.
```


# CI ; A ; I ; Y

    'ENTER CAPIT:AL AMOUN'' IN DOINMRRS'
    A&-D
    ' ENTER' INTEREST' IN PERCENT'
    I<M]
    'ENTER PERIOD IN YEARS;'
    Y «- []
    'RESUUST IS' ; A x (I + .Ol x I) * Y 
    ```

The Eollowing code was generated corresponding to the above routine.
```

SUBROUTINE CJKZYFMP,YTEMP,YSTORE,YROWL,YROWR,ZCRNDS,ZCP'TR,ZY,ZYPTRR
C,ZYY,ZYYPTR,ZBDNDS,YBOIND,YBOND,ZPOTN:2,ZFT,ZINDX,ZROOI,ZCOORD,ZCDP
CTR,ZSTORE,ZL,YGRAD,ZROW,ZGRAD,ZLIMM,ZSUB,YTNMP2,YTEEM, XBOUND,ZINEMP 3)
IMPLICI! REA工(A-Y)
IMPLICIT INTEGER(%-Z.)
REAL YSTORE (1), YTEMP (1)
RHAL Y'{'MME'2 (I)
FFAL YTEM(1) .
REAL YGRAD(1)
LOGICAL*Z MCHRC (1.)
BNAL XBOUND(1)
REAL YBOINN (1)
REAL YBOND (I)

```

```

    LOGICAL*I ZTYPEL(4)
    RRAL YROWh(1)
    REAL YRONJ, (J.)
    INIEGEIR ZIT:YP(1)
    INTEGER ZTESP3(1)
    INTEGER KY(1)
    INTEGER ZYY(1)
    INTMEGER ZCBNDS(I)
    INIFGGER ZCOORD(1)
    JNIEGEIN ZINDX(1), %POTNT(1), ZROUND (1ф)
    INTEGER ZBONDS{l)
    INCIEGER INAMES (125㫙,INANE (75)
    INTEGEI< DDPES (64,6), SSlOPL (1\varnothing\emptyset)
    INTEGER ZFOW(1)
    INTFGER ZGRADD(1)
    TNTEGER ZDIM(1),ZSUE(1)
    COMMON /C24/ZSPrR
    COMNON /CE2/ZROWNO
    ```
```

    COMHON /C63/ZROWNA
    COMAON/C3/IMAMES,INANE,IKEY
    COMMON /C2/ZSEACE,IADRES,DOEES
    COMMON /CO16/%SAVF.
    COMAON /C35L/MARKER
    COMMON /C7%1/ZLIML
    COMNON /C701./ZL.LN2
    COMMON /C703/ZLIM3
    COBMON /C7\emptyset4/ZLIM4
    COMMON /C765/ZLIM5
    COMMON/C7g6/ZLTMG
    COBJMON /C7G7/ZEIM7
    COMMON/C76E/ZLIM8
    COMMON /C7q9/ZLIM9
    COMMON /C71\phi/ZLI`\1\varnothing
    COMMON /CFIl/ZLIMlL
    COMNON /C712/ZLJM12
    COMMOK /C713/ZLIM13
    COMMON /C714/7LIIM14
    COMMON /C71.5/ZLIM15
    COMMON /C716/ZLIM16
    COMSON /C717/ZJ.TMI7
    COMMON /C718/ZLIMLLB
    COMMON /C719/ZLTM1.9
    COMMON /C72%/ZLIM2%
    COMmON /C72l/ZLIM2l
    COMMON/C722/ZLIM22
    COMMON /C723/ZLIM23
    COMMON/C724/ZLIM24
    COMMCNN/C725/ZLIM25
    CONMON /C726/7LIIM26
    COMMON /C727/ZLLM27
    COSMON /C72B/2LJM28
    COXMON /C799/ZSTOR
    EQUIVALENCE (INAMBR,NAMES)
    EQUIVALENCE (ZTYPE,ZTYPEL)
    ]. CONTINOH
    NMRKER=G
    ZCP11R=\varnothing
    CALI OUT2(15,-1,ZCBNDS,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,YSTORE)
    2. CONTINUE
NARKER=\emptyset
ZCPTR=0
READ 192,ZVBND
IF'(2VBND.NE.-1) GONO 116
WRITE(6,.L\emptyset6)
MARKE:R=-3
GOTO 3.2\not¢
116 IF(ZVBND.NE.%) GOTO I18
MARKER==\varnothing
READ(5,1.04) YTEM(1)
WRITE(6,It\&4) YTEM(1)
GO'1O 12%
115 IF(ZVBNL.GT.ZLIM2G) CALL GVOVER(2G,\&I2\emptyset)
READ (5,1\varnothing4) (YTEM (Z2),Z2\#1,Z\MBND)
KRTIE (6,1%64) (YTEM(Z2),Z2=' ZVEND)
ZCPTR=1.
ZCBNDS (1)=%VEND
MARKER=-5
120
Z3=\varnothing\
```
```

2.1 z.3=z3+1.
Y4=YTTMM(Z3)
EF(Mn\&XER.NE.\not8) GOTO 122
A=Y4
GOTO }22
122 CALL SPFCS (5,Y4,'Z3,ZCBNDS,ZCPTR,ZBONDE,ZPOTNT,ZPT,YSTORN, ZINDX,ZSTT
COSE,'ZCOORD,ZCDDTR, YBOUND)
CALL BDNO(Z5,ZCPTR)
JF'(z3.LI'z5) GOTO 121
MARKER=[\
ZCP!!N"\emptyset
ZYPTR=1
ZYYPTR=)
CALJ, SPBCB
128 CONRJNUE
3 CONTINIUE
MARKEKR=\varnothing
ZCPTR=%
CAL工 OUT2(54,-1,ZCBNDS,ZCPTUN,ZBONDS,ZSTHORB,ZLIM,'ZSUB,YSTORS)
4 CONSINUH
MARKER=誃
ZCPTR= }
READ 1ø2,ZVBlND
IT(ZVBND.NE.-l) GOTO 139
WRIME (6,106)
MARKER=-3
GOTO 1.43
139 IF(EVBND.NE.g) GOTO 141
NARNER=め
RGAD(5, .0%4) YTFM(1)
WRIIE(6,1/f4) YTEM(1.)
GOTO 143
141 JF (ZVBND.GT.ZT,TM2E) CAT,N,GVOVER(26,F143)
READ(5,104) (YTEM(26), Z6=1,ZVBND)
WRIMF:({2,164) (Y'NMM(Z6),Z6%-1,ZVBND)
ZCPTR=1
ZCBNDS (1) = ZVMNND
MARRE: F=- 5
143 77=6
144 z7=27%1
Y\&=Y'2EM (Z7)
JW(NPRKER.NL.\emptyset) GOJOO 145
I=Y\&
GOTO J.51
145 CAJL SPECS (8,YB,Z7,ZCBNDS,ZCPTR,ZEONDS,ZPOINT,ZPT,YSTORR,ZINDX,ZST
CORE,ZCOORD,ZCDDN'R,YSOUND)
CAlLL BNNO(Z9,ZCP1'R)
IF(Z7.LT.20) GOTO 144
MARUTE=%
ZCPTR=0
ZYPI*N:1
ZYYFTR=1
CAIsE SPECE
151 CONPTMNUE
5 CONTMNUP
MARKL:Z-\emptyset
ZCO2

```

```

CONTINCE
NARE:IP:=
ZCPMR=\varnothing
FEAD \$62,ZVBND

```
```

    TF(ZVBNIJ.NE,-1) GORO 162
    WRIT'E (6,196)
    MARKE:R=-3
    GOTO 166
    162 \F"(ZVBND,NE.\emptyset) GOTO 164
    MARKKER=%
    RHAD (5,104) YTEM(1)
    WRL'TE (6,1044) Y'1mM(1)
    GOTO 166
    1.64 IF(ZVBND.GT.ZLIM26) CALL GVOVER(26,\&166)
READ (5,101} (YTMM (Z1\varnothing), \&1%=1, Z%BND)
WRJTEE (6,1প4) (YTEN (2J.\varnothing), ZJ \emptysetF=1,ZVBND)
ZCP'sk=1
ZCBNDS ( }1\mathrm{ )=ZZVEND
MTRICSR=-5
266 211.=\varnothing
167 2l1=%1.1+1
Y12=Y'WY(%11)
IF (MARKIRR.NE.g) GOTO }16
YY:=Yl2
GOTO 174.
166 CALU SPECG(11,Y12,Z11,ZCBNDS,ZCPSR,ZBONDS,ZPOINT,ZPT,YSTORE,ZINDX,
CZSTORE, ZCOORD, ZCDPTR, Y'BOUNJ1)
CALI BLNO(Zl3,ZCPTR)
IF(Z11.LT.zl3) GOTO 167
MARKERR=\varnothing
7CPTR=\emptyset
ZYPTMR=1
ZYYFTR=1
CALL SPPACB
174 CONTINUE
7 CALL OUT2(116, -1,ZCLNNDS,ZCPSR,ZBONDS,ZSTOKF,ZDIM,ZSUH,YSIOXP)
IF (MARKER, NE. \&) GOJO 180
Y14=A*((J.t(%.L*I))**YY)
WRITE{6,1G1) Yl\&
GOIO 186
I8(8 Y15=\*((1+(㣙,*I))**YY)
CALL OU'P1(Y15,ZCBAWS,ZCPTR)
3.86 CONTINUE

```

```

    GOTO (1, 2,3,4,5,6,7),21
    101 FORMAN(1X,GL2,6)
    202 FORMAT(G12)
    103 FORMAN(1X, 112)
    104 FOPMAT (1.0G12.6)
    1\emptyset5 FORMA'1' (8|fAL)
    1%6 FORMAT(1X,/)
        CALL LOCREM
        RETUTN
        END
    ```

\section*{EXAWPLE 3}

This example illustrates the handing of non-scalatr variables. The routine BASI calculates the representation of \(a\) number \(N\) to the base \(B\). \(N\) and \(B\) are supplied as parameters.
\[
\begin{aligned}
& \because B \operatorname{BASE} N \\
& Z \leftrightarrow 2 \\
& R \leftrightarrow E \mid N \\
& Z \leftrightarrow R, Z \\
& N \leftarrow L N \div B \\
& \rightarrow 2 \times N>\phi V
\end{aligned}
\]

The following code is generated corresponding to the above routine.
```

SUBROUTINE BASF' ( }3\mathrm{ ,N,Z'QEMP,YTEMP,YSTORF,YROWE, YROWR,ZCRNDS,ZCPSR,ZY
C,ZYMTR,ZYY,ZYYPTR,ZBONDS,YBOUND,YBOND,ZPOINT,ZPT,ZINDX,ZBOOL,ZZCOR
CD,ZCDPTR,ZSTORW,ZL,YGRAD,ZRCW,ZGRND,ZIDTN, FSU\#3,YTEMD2,YTEM,XBOTAND,Z
CPENP 3)
IMPLTCYM REAL (A-Y)
IMPLICIT INJEOER(Z-Z)
REAL YSTORE (1),YTEMF(1)
RRAL Y'GMM2(1)
RHAL YTEM(1) .
REAL YGNAD (1)
LOGICAL*1 MCHAC (1.)
REAL XBOUND(1)
FEAL YBOUND(1)
FEAL YBONI\(1)
LOGICAL*1 ZI_(1),NMMES(50%d0), ZBOOL(1)
IOGICAL*1 ZTYI'EL(4)
REAL YROWR(J.)
REAL YROWS (1)
INTGGER ZTEMF (l)
INTEEGER ZTENES(1)
INTFGER SY(1)
INTEGER ZYY (1)
IN\lEGER ZCBNDS(1)
INITGGEN ZCOORD(1)
INTEGER ZINDX (1), ZPOTNT (1), ZBOLND (10)
IN1'EGER ZEONDS(1)
INTEGER INAMES (1250), INAM㸞 (75).
INTEGER DOPES (64,6), 2STCRE (ID\emptyset)
INTTEGETर \&ROW(1)
INIEGER ZGRAD (1)
INTFGOR ZOIM(J),ZSUR(I)
COMMON /C24/ZBPTR
COMMON /C62/RROWNO

```
```

    COMMON /CG3/ZROWNA
    COMMON /C3/INAMES, INANT, KEY
    COMMON /C2/ZSPPRCE,TADNES,DOPES
    COMMON/C9.6/7SNVF
    COMMON /C351/MAKKER
    COMMON /C7%1/ZLIMI
    COMMON /C7%2/ZLIM2
    CCMMON /C7G3/R.LIM3
    COMMON /C%/4./7J.TN4
    COPMON /C7%5/ZITMS
    CONMON/C/G6/ZEIMG
    COMMON /C7%7/ZLIM7
    COMMON /C7%B/ZLIME
    COMMON /C769/ZLTMM
    CONMON /C71Q/ZLIM1め
    COMMON /C7J.\/2LIMlJ.
    COMEON /C7L2/2LIM12
    COMMON /C713/ELIM13
    COMMON /C7J.4/RJJIMJ.4
    COMMON /C715/ZEIML5
    COMMON /C7J.6/2LIM16
    COMMON /C7I7/ZLIMI7
    COMMON /C718/ZLIMJ.S
    COMMON /C71.9/ZLIM19
    COMMON/C72G/ZLIM2\emptyset
    COMMON /C721./RITMM1
    COMMON/C722/ZLIM22
    COMMON /C723/ZLIM23
    COMMON /C724/ZLIM24
    COMMON /C725/ZLIM25
    COMMON /C726/ZLIM26
    COMMON/C727/ZLIM27
    COMMON /C728/ZJIM28
    COMMON /C799/ZSI'OP
    EQUIVALBNCN: (TNAMES,NANFMS)
    EQUIVALENCE (ZTYPE,ZTYPEL)
    1 CONTINUF
MARKER=\varnothing
ZCP'TR=\$6
YZ=\
IF(Y2.NE.g) GOTO 111
MARKER=-3
2CPTR=
GOTO 112
111 CALE JORF(Y2,ZHENP,ZY,7YPMR,2C5NDS,ZCDMR)
Z,3=ZY(ZYPTR-].)
ZY(ZYPTR)=%
ZYPIR=-RYPTR-1
MARKER-:-5
1.2. Z,4=0
113 24=Z4+!
Y5=ZMEMP (Z4+Z3)
IF (MARKER.NE, \&) GOTO 114
YZ=Y5
GOTO 120
114 CALL SPFCS(1,Y5,Z4,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,YSTORE,ZINDX,ZST
CORS, ZCOONU,'ZCDP:YR,YBOUND)
CALI BDNO(2G,ZCPI'R)
IF(Z4.TT, Z6) GOTO 113
MARK\#RR= ¢0
ZCPTR=\varnothing

```

ZYPTR＝1
ZYYPTrfe＝
CALL SPECB
120 CONTJNUS：
2 CONTINUE
RAARKERF－ 6
ZCPMK＝め
Y7 \(\approx\) B
\(\mathrm{Y} 8=\mathrm{N}\)
Y9＝Y
IF（Y7．NR．\(\varnothing\) ）Y9＝Y9－ABS（Y7）＊AINT（Y8／ABS（Y7））
Yl \(\varnothing=Y 9\)
JF（MATKRR．NLD．\(\varnothing\) ）GOTO 126
\(\mathrm{R}=\mathrm{Y} 1\) ¢
GONO 132
 CZSTORE，ZCOORD \(\quad\) ZC：DPTR，YBOUND）
CALI GPFCB
132 CONTINUF
3 CONHINLE
MARKER＝\(\varnothing\) D
ZCPTR＝㱛

ZPT：ZFT＋1
CAEL SLARJS（1，Zll ，Z \(12, Z \mathrm{ZNC}, \mathrm{ZCPTR}, Z C B N D S)\)

Z13＝1

ZlNDX（Z1，4）＝1
2 \(13=\) Z \(13+1\)
TE＇（\％13．LE，Z12）GOTO 138
Z3．5＝ZE \(\varnothing \square+212\)
Z16＝212－1
7SAVE：＝
137 CALL FlND．（ \(14, \not, 2,1, Z 17, Y 17,711,2 N C, 7 C B N D S, Z C P T R, Z B O N D S, Z P O I N T, Z E T\) C，YIOCUND，\(Z\) THDX，
Y18＝Y17
CALL SPECS（ \(1, Y 18, Z 18, Z C B N D S, Z C P T R, Z B O N D S, Z P G I N T, Z P T, Y S N O R F, Z J N D X, Z ~\)
CSTORE，ZCOOND，ZCDPTR，YBOUND）
ZSAVE＝1
ZINDX（Z15）＝ZINDX（215）+1
IF（ZINDX（Z15）．LE．ZCBNDS（ZCPTR））GOTO 137
\(139 \quad 7.19=\mathrm{Z1} 6+1\)

7．19＝Z19＋1
IF（Z19．LE．ZCPTR）GOTO 14ด
1．41 IF（（ZB6brそ16）．LE．\(\varnothing\) ）GOrO 143
\(Z \operatorname{INDX}(Z B \not \subset+Z 1.6)=Z \operatorname{INDX}(\% B \not \subset+Z 16)+3\).

IF（Z16．EQ．1）GOTO 143
7．J．NDX \((Z B C f+216)=1\)
\(216=21.6-1\)
GOTO 141
\(142 \mathrm{Z} 16=7 \mathrm{Z} 2 \mathrm{Z}\) ，
G以NO 137

MAFKEIZ＝所
ZCPTR＝－\(\not \subset\)
CALL SMECB
144 CONTINUE
4
CONTINUE
```

    MARESR=\varnothing\varnothing
    ZCP'IR==\varnothing
    Y2\varnothing%N/13
    IF(Y2ด.GE.g) GOIO 15\emptyset
    Y2%=ARS (Y2\emptyset0-(1\cdots1F:-8))
    15% Y2O=AINT (Y2%)
Y21=Y2\$6
IT(MARKFR.NE,W) GOIOD 152
N=Y2]
GOTO 158
152 CALL SPECS(14,Y21,Z21,ZCDNDS,2CPMR,ZBONDS,RPOTNT,ZPT,YSTORE,ZINDX,
C\angleSTORE, ZCOORD, ZCDITR,YBCUND)
CALL SPECB
158 CON'1TNUE
S CONTINUE
NAKKER紬
2CPTT==多
CAL?, OUT2 (.l, l, ZCBNDS,ZCPIR,ZBONDS,ZSTORE,ZDIM,ZSUB,YS'IORE)
CONTINUE
Z22=\varnothing
IF (N,GT. Ø) Z22=1
Il'(NARKER.EQ,-3) GOTO 169

```

```

    Z1.=2*Z22
    GOTO J.4/x,
    170 z22\#1
z1=2*%22
GOHO 1\varnothing\varnothing\varnothing
169 CONYTNUE
IMg\emptyset IF(ZL.WE.\notૃ.OR.Z1.GI.G) CONTINUE
GOTO(1, 2, 3, 4,5,6),21
101 FORMAT(1X,G12,6)
102 FORMAN'(G12)
103 FOEMAT (1X,I12)
104 FORMAT(1\emptysetG12.6)
195 FONHAM (G%A1.)
106 FON\&AN'(1X,/)
CALL LOCPEM
REMUYN
END

```

This appendiz descrikes the finite state automaton which may be implemented for replacement of unnecessary "r'IND" calls. The method is outlined in Chapter VIII, \(\$ 8.1\) and 38.2 .

Table I历(a) gives a list of statement types to be recognised in the scan of tho generated code. Fox ease of reference in the state diagram, each statement type has an associated letter (or letters).

The state ditgram is represented by Diagram \(10(b)\).

For stabement types not listed in Table lof(a), the action required j.s outlined in Chapter VIII, §B. 2 .
\begin{tabular}{|c|c|}
\hline SIATEMENT TYPE & \begin{tabular}{l}
ASSOCIATED \\
I, ETTER(S)
\end{tabular} \\
\hline ZB <integer> \(\quad=\quad \mathrm{ZPOINT}\) (ZPT) & A \\
\hline ZPT \(=\) ZPr +1 & B \\
\hline ZMNDX \((2 B<\) intege \(x\rangle+\langle\) jnteger \(1>\)) \(=\langle\) expression \(\rangle\) & c \\
\hline ZPOINT (ZPrd) = ZB<integer>+<integer i> & D \\
\hline CALI, STARTLS (\(-\cdots-\)) & E \\
\hline CALL FIND 1 (\(-\cdots-\)) (xeplaceable) & F \\
\hline 2RT = \(\quad\) QPT - 7. & \(G\) \\
\hline z<integer〉 \(\quad=1\) & H \\
\hline \(\langle\) <abel> \(\mathrm{z}\langle\) intigex 1\(\rangle=\) zB<integer 2\(\rangle+z\langle i n t e g e r\rangle\) & I \\
\hline ZINDX (Z <integer l>) \(=1\) & J \\
\hline \(z\langle i n t e g e r\rangle=z<i n t e g e r\rangle 4.1\) & K \\
\hline & I, \\
\hline & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline STATSMUNIT RYPE & \\
\hline & AK \\
\hline CALL SMWS (- - -) non-replaceable & AN \\
\hline & A0 \\
\hline OPL \(=\langle\) VG.Lue \(\rangle\) & \(\mathrm{AF}^{3}\) \\
\hline
\end{tabular}

MABLs \(10(a)\) : statement types to be detected during scan of generated code.

Diagram \(1 \phi(b)\) : Shows; state diagram for replacement of unnecessary "FIETD" calls.

The following actions are required at oach stite represcrited in the state diagran.

\section*{State 1.}

Set NSTEMR to NSMPMR + 1
Set FSTATE (NSTPRR) to ISTATX
Set SEMDW to 1

Set Levino to LEVLNO + 1
Set IBNIPR to THNPYR +1
Set IGNMRY (TENDRTR) to \(\varnothing 0\)
Set DEDPMRR to DELENR + 1
Set DWLETE (DELTTR, 1) to LEVINO
Set DETHMH (DELPCR,2) to MNERY (TMNPR)

Store the value of DFLPP'R in a stack so thet the replacement code for CALI SPACS (- - - -) may be inserted in the corract place,

State 2.
Sot ISTATE to 2
Sot DETHMR to DELEPR + 1
'Set DELGM (DELFTR, 1) to EEVLNO
Set DBLANTM (DELETR,2) to JMTRY (JENPRR)

State 3.
Set ISTATE to 3
Set DELPSR to DELPRR +1
Set DELETA (DELPTR, 1) to LBVLAO
Set DELBTE (JEDFPR,2) to IENFRY (IENPPR)
Sot TCDPTR to ICJPRR + 1
Set \(\operatorname{CODS}(\) IGDETR; 1) to DELPTR
Set GODE (ICDFPR,2) to 1
Set CODE (HCDFIR,3) to -1
Set CODZ (ICDPAIT,4) to point to code of the form
```

Z(<LEVLNO value\rangle,\langleintegert\rangle) = <expression>

```

State 4
Set ISTASH to 4
Set JYMLPTR to DEL \(\}\) NTN +1
Set DETHTE (DMEPR, 1) to LIVNINO

Set IGBPJR to ICDPTR + 1

A linie of code of the fosil
```

ZPOINT(ZPI') := ZB<integer> + <integery >

```
has been ree ognised.
I. <integer \(1>\) is 1 , then the following eatry is set up in CODR
\(\operatorname{CODE}(\mathrm{ICDPIR}, 1)=\operatorname{DELPR}\)
\(\operatorname{CODS}(I G D P 1 R, 2)=2\)
CODE (ICDP M R , 3) \(=-1\)
CODE (TGDFLR, 4) \(=\) a pointer to codo of the form indicated below

CALL MLPERN (- - ... \()\)
2PROD \(=\quad \mathrm{Z}(\langle\mathrm{LEVLFO}\) value \(\rangle, 1)\)
(The paraneters of ELPARN are filled in later, if the replecement is to be made. Thus, an indication of the address of the EEpzRH call must be rotained.)

If <integery> is greater then 1, then the following entry is set up in CODS.
```

CODE (TCDPTTR,1) = DELP1R
CODS (ICDINR,2) = 3
CODE (ICDPMH,3) = - -
CODS (ICDINR, 4) = a pointer to code of the form indicated below.
CALL ELPERM (- - - -
L<integer A> = <intecer 1> -1
ZFZOD = Z(<LINLNO value>, <integer 1>)

```

Again, the paranetors of ELPMRM must be filled in later (if necessary).

State 5
Set MSTATE to 5
Set DRLPTR to DRIPPR +1
Set Detefr (DELPiR, 1) to LBVINO
Set DELETS (DELPIR,2) to IRFTRY (TMPTR)

If <integer 1 〉 (see state 4) is greater than 1, the following eution is slso required

Set ICDFXR to ICDPMR + 1
Set CODE (ICDFRR, 1) to DSLPTR
Set CODE (ICDPrR,2) to 5
Set CODR (ICDFTR,3) to -1
Set CODE (ICDPSR, 4.) to point to code of the following form

CALL ZADDR (*value>,ZSi', ZNUM,ZBOUND)

\(2 \mathrm{ZROD}=(2 \mathrm{PROD}-1)\)) \(\mathrm{ZBONDS}(Z B O J N D+2<\) integer \(A\rangle-1)\)
\(Z\langle\) integer \(A\rangle=Z\langle\) integer \(A\rangle-1\)
Gorio < lebel >

Here <value> is the 1 st paraneter value of the STARPS call.
For <integer 1\(\rangle=1\), only the Eirst, line of the above code is required,
and a corcespondint CODE entry is set up.

\section*{State 6.}

A roplaceable FIND call has been detected at this stage. The DELPr table (colimm 1) must be scanned for entries equal in value to Levino. For
 is updatod to 1 . The appropriate entries in CODR (column 3) should also be updated to 1 if they are -1 oribinaily.

Then, Set ISTATE to \(G\)
Set LEANTRY (IENYPR) to 1
SEd DELPR'R to DELETR + 1
Set DiLETH: (DELERR,i) to LEMINO
Sot DELRTT (DELPTR;2) to 1
Set TCDPRR to ICDPA'ir a 1
Set CODE (ICDPTR,1) to DELPRR
Set CODE (ICDPRR,2) to 1
Se't CODE (ICDPRR,3) to 1
Set CODN (IGDPTR, 4) to point to code or the form shown below
\(\langle\) label 1\(\rangle \mathrm{Y}\langle\) integer B\(\rangle=\operatorname{YSTOR}(\mathrm{ZST}+\mathrm{ZFROD}-1)\)
where <label 1> is retained from state 5 and \(z<i n t e g e r\). \(B\) 〉 is the sixth parameter of the EnD 1 call.

The parameters for the call of ELPBPM can now be inserted.

State 7.
Set DELPIR to DELPTR +1
Set DELATE (DELFIR, 1) to LENLO
Set DELST: (DRLETR,2) to TENTRY (ITNJPR)
Set IMNERY (imFtrin) to \(\not p\)
Set IMNPTR to TENFIR - 1

Set LGVLNO to LRYLNO -- 1
Eet JATMATE to NSTAIE (NS'JPMR)
Sot NSTMMB (NGNPRR) to -1
Set NSTPMR to RSTPTR - 1

\section*{State 8.}

A non-mepleceable frind cell has been detected at this stage. dhe DELEPR toble (column 1) must be scanned for entries equal in value to havino. For any such entry \(i\), if \(\operatorname{DisLET}(i, 2)\) is \(\not 0\), then \(\operatorname{phate}(i, 2)\) is set to -1. The appropriate CODE entries (colum 3) shoula bo updated to \(\$\) if they are -1 originaily, The bires of (rephacement, code produced f'or this level are not required, and the space can be utilised if' requirod to produce more lines of code.

Then,
Set TSDhys to 8
Set Jind TRY (TPMPTR) to -1
Set MELPME to DELPMR + 1
Set DFLEEE (DILF: 1) to LEVAMO
- Set DhLieTE (DELPTR,2) to \(m 1\)

States 9-10.

Set InTaTs to 9 or \(1 \not \subset\)
Set DELPRTR to DRIMPR + 1
Set DELARE (DELITR,1) to LENDNO
Set DELETE (JFITPSR,2) to TANIRY (TMMFPR)

State 11.
Set ISTATE to 11
Set DBLIPTR to DTLFCR + 1
Set DELETE (DALFRR,1) to LWNO

Store the value <integer> on a stack for use later (if the loops are replaceable).

State n (12sm<l.7)

Set thtatid to \(n\)
Set DHLPPR to DELRPTR * 1
Set DELATRE (TRLIPTR, 1) to LEVLNO
Set DRLEMA (DELPTR,2) to IENTRY (IWNTPR)

State 18

A replaceable FIND1 call has been detected. It is not yet known, however, whetrice the entire loops can be replaced. This will not becone apparent untial state 24 les reached.
```

Set ISIAPE to 18
Sot DBLENR to DRLWDK + 1

```

```

Set DELINTS (DSLFPR,2) to 1

```

The 《label> value in the statement detected should be stacked for (possicie) use when state 24 is reached. Similarly, the value of DELPTR should be stacked. A count, \(C l\), of the number of replaceable FTIND or FIND calls should also be maintained uritil state 24 is reached,

The followirg CODI entry should be set up.
```

ICDPER = MCDETR + 1
CODE (IGDPTTR,1)= DELEPR
CODIS (ICDPIR,2) = 3
CODS (IODPJF,3)=1

```

```

    Z<integer> = 1
    CALI ZADDR (<value>,ZSE,ZMTi4,ZBQUND)
    Z 人integer 1> = 2ST - 1
    ```

Here <integer> has been retained from state \(14,\langle v a l u e\rangle\) is the fourth
 variable name.
\(Z<i n t e g e r\) 1. and the sixth pareneter of the FIND1 call should be retained.

State 19

The sane action should te carried out es for state 8, except that TSMARE i.s set to 19.

\section*{State 2D}

Set JSPATE to \(2 \not \emptyset\)
Set DELJPIR to DBLPPTR + 1
Set DHLETE (DRLPTR, 1) to LEVLNO
Set DELETE (DELPTR, 2) to 1
Sot ICDPMTR to ICDPRR + 1
Set CODK (TCDPPR,1) to DRIFPR
Set CODG (TNDPNR,2) to 2
Set CODF (TODFIR,3) to 1
Set CODS (ICDPTR,4.) to point to code of the foxm

CALL ZADDE(<volve >, ZST, ZNGM, ZBOUMD) \%〈integer 1\(\rangle=2 \mathrm{ST}-1\)
\(\langle\) value> and <integer 1\(\rangle\) have the sane signiticance as in state 10. The same information should be retained hero also.

State 21

The same action should be carried out as for state 8, except that ISTAMS is set to 21.

If count C 2 is non-wero, then the following CODE entry js also set up.
```

TNDFIRR = IGDPIR +1
CODE (tCDPNM, 1) = the value of DEINPTR stacked at state 18
CODA (ICDNPR,2) = 2% C2
CODR (ICDEPR 3) = 1
CODN (ICDPALR,4) = a pointer to code of the foxm
Z<integer 1> = Z<integer {> + 1
CALLI SPRC\& (Z<integes* {>,\langlevariable>)

```

The above lines aro repeatied C2 times, using the value <integer 1\(\rangle\) retained previously. <value > is the leftrhand side of the statement preoeding the SPECS cal. 1.
state
\(n \quad(25 \leq n \leq 33)\)
Set ISTATE to \(n\)

Set Dikturn to DMEPIR + 1
Set DHAEME (JEZMPR, 1) to LEVCN0

Stette 39
Set ISNATE to 39
Set DFLEMR to DELPTR +1
Set DRLETE (DEEPRR,1) to JEVINO
Sot DKLMPE (DSMPTR, 2) to IEMTRY (IMTPMR)

If IENTRY (IENFPR) is \(m\), proceed to state 7, otherwise set TCDYPR to ICDPIR + 1 .

Set CODH (TCDPIR, 1) to DELPSR
Set CODE (TCDPMR, 2) to 2
Set CODF (ICDPM, 3) to 1
Set CODE (TCORPR,4) to point to code of the form shom below.

\section*{State 22}

Whe same action is carriad out ag for state 20 , except ISTATH is set to 22, and CODS (ICDPPR, 1) is set to the value of DEIXPF stacked ati state 1 . Maindain a count, \(C 2\), of the number of replaceable "SPsCs" oall.s encountered.

\section*{State 23}

Sot ISCASE to 23

Set DELJTE (DELIMR, 1) to JEVLNO
Set DRLTRE (DRHMN'R,2) to m1
state 24
Seti 2 gnamy to 24
Set DTELPHY to DELPNR +1
Set DELJNT: (DRLPIR, 1) to LHVLNO
Set DELEME (DRLPRR, 2) to TRNTRY (IEMFPR)

If the counts of and \(C 2\) are zexo, contimus the soan, otherwise set all the appropijate zero entries in DELHTH wo 1, update the relevart COID entrias and sot inp a new CODS entry as inajasted below.
```

TCDFR = ICOFTER + 1
CODN (IGNFR,1) = the value of DELPNR stacked at state 18
COH (ICDEN,2)=2*C1
CODN (LODPPR,3)=1
CODE (TCDNRN,4) = a pointer to code of the form shown below.
z<intoger 1> = Z<integer 1> + 1

```

glee above lines are repouted 01 times, using the values of <integex 1\(\rangle\) and. \(<\) integer \(C>\) retained previousiy. If state 18 was reached, the foxut statement is lapelled <lebel>, where <label> is the value stached at state 18.
```

    Z<integer > = z<integer> + 1
    IF (Z<integer> . LE. ZNUS) GONO<Labei>
    ```

Here 〈integer〉 was retained at state 11 and < Jabel> at state 18. Proceed to state 7.

State 10
Set ISTATE to \(4 \phi\)
Sed DELPRR to DRTAPiR + 1
Got DEJTETE (DELPMR,1) to LEVINO
Set JFEITM (DELPRR,2) to 1

Keep note of \(Z\langle i a t o g e r C>\) at start of next line.

State 41
Set ISTAITS to 41
Set DELiPRR to DELPRR +1
Set DTLETH (DRTPMK, 1) to JEVLNO
Set DNLENTM (DSLPMR,2) to IENHRY (JTHPCR)

Stiate 42
Sei IsTaTd to 42

- Sot DELJTTE (DELPDR, 1) to LEMLINO

Set DMLETG (DEIPTR,2) to 1
Set ISNMRY (MrNPRR) to 1

Scan the DRJFTE table (coumm 1) for entries having value LEVLNO. For arag such entry \(i\), if DBJ.ETR (\(i, 2\)) i.s \(\phi\), set DTsicre (i,2) to 1 and update the appropriate \(O O D\) entiry.

Set up a now CODP entry as indicated bolow.

TCDFAIR \(=\) TCDPPIR +1
\(\operatorname{CODF}(\operatorname{ICDPAR}, 1)=\mathrm{DEJ} F \mathrm{SR}\)
\(\operatorname{CODE}(\operatorname{CDFLR}, 2)=4\)
\(\operatorname{CODB}(\operatorname{ICJIMR}, 3)=1\)
```

CODS (GGDPLR,4) = a pointer to code of the form given below.
<label> GALL ELPEENT (-m)
ZPROD = Z (<MENLNO value >, }1\mathrm{ )
GALL ZADDR (<value>, ZST, ZNUM,ZBOUND)
Z<integer> = ZST + ZMROD=1

```

Here, <labeł> is obtained from the statenent deteeted and <value> is the fourth parameter of the FIND cadi.

In this oaso, the parameters for HPPRM ean be initerted immedately.

《intoger) is also obtained from the statement dotected.

\section*{State 5}

The action required is that described for state 8, exoept that lismen is set to 43.

\section*{State 44}
```

Set ISTATE to 44.
Set DEGPNR to DSLEPT +1
-Set DELBra (DEMPMR,1) wo ILvLNO
Sot DSLRTHE (DELPTR,2) to IMNMPY (TENTN1R)

```

If IENTRY (TarPMR) =-1, proceed to scan ne"t statenent, othervise set up a CoDs entry of tro following form:
```

ICDFTR =ICDFXR + 1
CODN (JCDPSR,i) = DELETR
CODE (ICDPTR,2)=1
CODEA (ICDDNA, 3) = 1
CODN (ICDPIR,故) = a pointer to CODE of the forn shown below.
Z(<JEVLNO vajue>,1) = z(<LMVINO value>,1)\& \&

```

State 45
Set Istats to 4.5
Set Dislicit to DELFrR + 1
Set DHEETM (DNLPTR, 1) to LGUNO
Set DALETE (DALPMR,?) to THUNPY (IENPIR)

Set up a CODS entry of the following form if IBNTMY (IFAJPIR) js not equal to mt .
```

    ICDIPIR = TCDPTR + 1
    CODE (ICDPIR,1) = DELPIR
    CODS (IGDPER,2) = 1
    CODE (TCDPTR,3)=1
    CODE (ICJPTM,4) = a pointer to code of the form shown belots.
    IF(z<LININO value>, 1).TIE.ZRONISS (ZNOUND)) GOTO<Iabel>

```

Here <label> is potained from tha current staterent deteoted.
Stete \(n \quad(46 \leq n<56)\)
 Set IsTATS to \(n\)
 Sot DELPLR to DELFPR + 1
 Set DALBIE (DELPAR,1) to LBVLNO
 Set DELEME (DMLPRR, 2) to -1

For state 4.6 , stack the value of Deirfat so that, if necessary, the replacement CODF for CALJ SPeCs (---) can be inserted at the correct point.

State 57
Set J.Smaie to 57
Set DHLP'R to DELPTR + 1
Set TRN'AR (INNPTR) to 1
Set DALETE (DM1PTR,1) to IEVLNO
Set DELSN (DMPIR,2) to 1
Set ICDFTR to ICDPTR + 1

Set COD: (ICDFYR,1) to DETFNTA
Set \(\operatorname{CODS}\) (ICDPCR,2) to 4
Sot CODA (ICDRNR, 3) to 1
Set CODF (ICDPIR,4) to point to CODE of the from

CALL ZADDR (‘value>,ZST, ZNUM,ZBOUND)
\[
2\langle\text { integer } A\rangle=2 \$ I-1
\]
\(\langle\) label〉 \(Z\) 〈intoger \(\quad=\quad Z\langle i n t e g e r C\rangle+1\)
 Z<integen \(\rangle\), ZPOINI, Z\#P)

Here <value> is the fourth parameter of the ITND call, \(z<\) integer \(A\) > is a unique variable name, <integer> is obtained from the current statement (as is <label>). \(Z<\) integer \(B>\) is another unique variable name and <integer \(C>\) was retained at state \(4 \varnothing\).

State 58
Set IStrars to 58
Set TMETTRY (TENPIR) to - -1
Set DSALPMR to DELPPIR + 1
Set Dissice (DHLFBR, 1) to IEVLMo
Set DELATH (DELPRR,2) to -1

Set DELPRTA to DSLPTR + 1
Set DELETGE (DELPMR, 1) to LEVLINO
Sot DELASE (DELFTR,2) to -1

\section*{INJEX Of RIEMS}
Term Chapter \({ }^{\mathrm{P}_{51} g e}\)
associated literal constant 2 46
assumed label. number 6 154
garbage colleotion mechunjsu 1 25
immedinte action macro 4 90
locking and unjooking of identifier entries in NAths 2 53
open hash technique 1 10
operand macyo4,579,126
scope of an operetor 122
type value 238```

