
TRANSLATION OF APL TO OTHER HIGH-LEVEL
LANGUAGES

Margaret M. Jacobs

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1975

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13417

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13417

The code generated corresponding to a particular APL routine will not

at first be very efficient. However, methods of optimising the generated

code are discussed at length in the thesis. A brief comparison is made

with other possible methods of conversion.

There are certain restrictions on the types of APL statements able to be

handled by the translation method. These restrictions a/re listed in an

accompanying appendix.

Throughout the text, several examples are given of the code which will

be generated from particular APL statements or expressions. Some more

lengthy examples of conversion of APL routines to FORTRAN are provided as

an appendix.

TRANSLATION OP APL TO OTHER

HIGH-LEVEL LANGUAGES

MARGARET M. JACOBS

,\x

ABSTRACT

The research work required to produce this thesis was carried out in

the Department of Computational Science, University of St. Andrews.

Financial assistance was provided by the Science Research Council.

The thesis describes a method of translating the computer language

APL to other high-level languages. Particular reference is made to

FORTRAN, a language widely available to computer users. Although gaining

in popularity, APL is not at present so readily available, and the main aim

of the translation process is to enable the more desirable features of APL

to be at the disposal of a far greater number of users. The translation

process should also speed up the running of routines, since compilation in

general leads to greater efficiency than interpretive techniques. Some

inefficiencies of the APL language have been removed by the translation

process. The above reasons for translating APL to other high-level

languages are discussed in the introduction to the thesis.

A description of the method of translation forms the main part of the

thesis. The APL input code is first lexically scanned, a process whereby

the subsequent phases are greatly simplified. An intermediate code form

is produced in which bracketing is used to group operators and operands

together, and to assign priorities to operators such that sub-expressions

will be handled in the correct order. By scanning the intermediate code

form, information is stacked until required later. The information is

used to make possible a process of macro expansion. Each of the above

processes is discussed in the main text of the thesis. The format of all

information which can or must be supplied at translation time is clearly
>

outlined in the text.

To

MY HUSBAND AND PARENTS

A description of a method of translating APL into other

high-level languages, with particular reference to FORTRAN.

The work for this project was carried out in the Department of

Computational Science, University of St. Andrews, for the degree

of Ph.D. The project commenced on the 10th October, 1971*

The research for the subject matter of this thesis has been

carried out by myself, and the thesis has been composed by

myself. The thesis has not been accepted in fulfilment of

the requirements of any other degree or professional

qualification.

A C K N O W L E D G E M E N T S

I would like to thank Professor A.J. Cole for his excellent

supervision of my work throughout the course of my stu dies in St.

Andrews and for his advice on the preparation of my thesis.

I am extremely grateful to all the members of staff of t he John

Honey Building at the University of St. Andrews for th eir willing

assistance and encouragement, and to my fellow resear ch students for

their helpful comments.

I also must thank Mrs. V. Butterworth for typing the text of my

thesis, and the Science Research Council for their financial assi stance.

C O N T E N T S

page

INTRODUCTION 1

Chapter

I INPUT PHASE AND METHOD OF STORAGE ALLOCATION ' 5

II LEXICAL SCANNING- PHASE 31

III RIGHT-TO-LEFT SCAN AND PRODUCTION OF INTERMEDIATE CODE 59

IV LEFT-TO-RIGHT SCAN, PRODUCTION OF STACKED INFORMATION 76
AND ORGANISATION OF MACRO EXPANSIONS

V THE MACRO METHOD 109

VI LABELS AND JUMPS 154

VII PROCESSING OF INITIAL INFORMATION I 61

VIII CODE OPTIMISATION 1?1

Appendix

1 SYMBOLS USED FOR INPUT OF APL DURING TESTING

2 TABLE OF USEFUL INFORMATION FOR APL OPERATORS

3 LIST OF MACRO INSTRUCTIONS AND THEIR FUNCTIONS

4 LIST OF MACRO BODIES

5 COMPARISON OF BRACKETING METHOD AND REVERSE POLISH METHOD

6 RESTRICTIONS

7 EASE OF CONVERSION TO OTHER LANGUAGES

8 FUNCTION OF GLOBAL VARIABLES (RUN-TIME)

9 EXAMPLES OF CONVERTED ROUTINES

10 DESCRIPTION OF FINITE-STATE AUTOMATON FOR REMOVAL OF
UNNECESSARY "FIND" CALLS

INTRODUCTION

The following text describes a method of translation of APL to other

high-level languages. The version of APL able to be translated is that

described in the IBM APL 360-OS and APL 360-DOS User's Manual, with a few

restrictions. These restrictions are listed in Appendix 6.

Throughout the text, the target language is assumed to be FORTRAN, but

similar techniques can be applied to translate from APL to ALGOL or to P l/1.

In generating the target language code, only a subset of the permissible

FORTRAN statements has been used. The subset was chosen such that its

members (as far as possible) have counterparts in ALGOL and Pl/1. This

facilitates conversion to either of these languages instead of FORTRAN.

The ease of conversion to ALGOL or to Pl/1 is discussed in Appendix 7•

The translation was intended in the first place to handle conversion

of APL subroutines and functions, but main programs may also be translated.

The APL routines are not intended to remain interactive after conversion,

but to be run under a batch-processing system.

There have previously been some attempts to produce a batch-processor

for APL. One such attempt was made by H. Van Hedel, who implemented an

APL batch-process or in Pl/1 for the IBbl/36st). The only restriction he

imposed was that function names and local variable names should be distinct.

(This restriction, among others, has been placed on the types of AP L state-

7
ments able to be converted to FORTRAN.) In Van Hedel the following example

is quoted:

2
V r <- f i x

R <~@XV

V&1 ; F1

H

V

V G2

h V

Y h

Z <- F1 -A

V

Such an example creates ambiguity in the source text, for H returns differ

ent values in G-1 and G-2 .

For an interactive interpreter it is important that each operation is

executed as soon as sufficient information is gathered. For a batch-

processor, as much as possible of the analysis has to be done before the

execution takes place.

The above example is ambiguous to a compiler, but not to an interpreter.

It is intended that only working routines be converted to other languages.

Thus, the amount of checking required during conversion is greatly reduced. It

can be assumed, for example, that all dimensions are conformable in matrix

operations.

The reasons behind the translation (see Sayers^) are as follows;

(i) It is intended to provide a more easily transportable system. There

are at present more FORTRAN compilers than APL interpreters. Since

APL is highly suited to the development of algorithms (Smillie^), it would

be very convenient to be able to use these algorithms on a larger scale.

This would be possible if the AFL routines wore translated to FORTRAN. (The

same argument can be applied to the translation of APL to ALG-OL or PL/1.)

To make transport of the converted routines as convenient as possible,

the user is provided with an option to specify the output medium for the

converted routines.

(ii) A secondary aim was to improve run-time efficiency by using compilation

rather than interpretation. The amount of code to be interpreted is

reduced if the user supplies some information about non-scalar variables.

The more information supplied, the greater the amount of compilation possible.

In many cases, the types and dimensions of variables will not change, and

such examples readily lend themselves to the improvement of run-time effic

iency. The method of supplying extra information to improve run-time

efficiency is described in Chapter I.

(iii) It is hoped that code can be optimised during the course of translation

by the removal of some of the inefficiencies of APL. An example of

an inefficient APL expression is

4 4* A+B

where A and B are non-scalar. This is obviously inefficient as all the

elements of A and B are summed, whereas only four summations are essential.

The method of removing the above inefficiency is outlined in the following text.

In December, 1971, V.L.Moruzzi gave a set of simple rules for translating

from APL to FORTRAN by hand. He estimated that mechanical APB/FORTRAN trans- ■

lations could achieve a 3,̂ -fold reduction in CPU time. This is discussed in

. 3
Moruzzx .

At a private meeting, Dr. J.L.Alty of Liverpool University remarked tha t,

after visiting various APL installations in the U.S.A. and Canada, he found

APL three to four times faster than-other languages for program development,

but one hundred times slower for execution. This result, he stated,

3

emphasized the need for interchangeability between APL and other languages.

The translation from APL to FORTRAN is effected by a series of macro

expansions. The order of expansion of macros is determined by the order

of the operators in the APL source test.

A system of bracketing was introduced to ensure that all operators

(and hence macro expansions) would be assigned the correct priorities. ■

Reverse polish techniques could also have been applied during the trans

lation process. The rival merits of each method are discussed in Appendix 5»

The options available to the user are discussed in Chapter I, together

with the method of storage allocation. A lexical scan of the APL source

text is first carried out to simplify the subsequent processes. The lexical

scanning phase is discussed in Chapter II. Brackets are then introduced

during a right-to-left scan ox* the code and an intermediate code form is 3et

up. This is discussed in Chapter III. Stacking of information to be used

as parameters fox'* macros is described in Chapter IV, while the macro method

itself is dealt with in Chapter V. A discussion of labels and jumps is

given in Chapter VI, while Chapter VII describes the pre-optimisation phase.

A process whereby the generated code can be optimised has been devised. It

is described in Chapter VIII.

The APL-FORTRAN translator is written entirely in FORTRAN.

Definitions of the names used in the following text are given in

Appendix 8.

5

CHAPTER I

INPUT PHASE AND METHOD OP STORAGE ALLOCATION

APL routines to be converted to PORTRAN are read, line by line , into

a character array LINE. The routines are preceded by some additional

information. Some of the information provided is essential to the

conversion method (see §1.3) 3 and some can be provided as a user

option (see §1.4) .

Most of the additional information supplied relates to the use of

non-scalar variables. The conversion routines use a fairly complicated

method of storage allocation for non-scalar variables. The method is

necessarily complicated as the dynamic storage capability of an APL

interpreter has to be simulated. The storage allocation method is

discussed in detail in §1.2 . The subsequent accessing of non-scalar

variables is necessarily time-consuming, as interpretive techniques have

to be employed. However, under certain circumstances, a simpler storage

allocation method can be employed, which reduces the access time for non

scalars considerably. The simpler method is only possible if the user

supplies additional information about his non-scalar variables.

A set of APL routines can be converted to PORTRAN during one run of

the conversion program. A calling program can be supplied with a set of

subroutines cr functions, but this has limited use in practice as the user

of the converted routines may want results for several different parameter

sets. Only one set of information is supplied initially for non-scalars,

and this requires some care. Consider the following set of subroutines:

6

V A FN B ; X

V

V y Y ; X

V

If FN and F are to be translated during a single run of the

conversion routines, then the types of X in both subroutines must be

the same. That is, if X is declared to be non-scalar at the start,

it will be assumed non-scalar in each subroutine. There is no serious

restriction when X is required to be scalar in one subroutine and non-

scalaz* in another. The problem is easily solved by changing the variable

name X in one or the other of the two routines. No problem would ar ise

if X was a global variable, as its type would be the same in both FN

and F .

Additional information must be supplied for both literal and numeric

non-scalars. All information supplied is printed out. It should be noted

that declarations should be supplied only for those variables which are non

scalar at their first occurrence. Otherwise, scalar occurrences of the

variables would not be recognised as such.

1.1 Input of the APL Source Program

The source program is assumed initially to be in APL internal Z-code

form. The program is read in and converted line by line. Each line is

stored in turn in the character array LINE, which is accessed during the

lexical scanning phase described in Chapter II.

During testing of the conversion routines, it was found simpler to

use an input form more suited to the character set of the IBM 029 card

punches. As far as possible, APL symbols were represented by their

counterparts on the keyboard of the IBM 029 card punch. Composite

symbols were used to represent the extraneous APL symbols. The actual

representation of the APL character set used during testing is shown in

Appendix 1. The symbols were then converted as required to APL internal

2-code form.

Under normal running conditions, the input would, of course, be in

APL internal Z-code form.

1*2 Method of Storage Allocation

The amount of storage space allocated for an APL non-scalar variable

can vary dynamically. The facility of dynamic storage allocation is not

available in FORTRAN. For this reason, it was necessary to si mulate the

feature in the FORTRAN code produced. An arbitrary amount of storage

space (represented by array YSTOKS) vfas thus set aside for storage of all

non-scalar variables, and storage space is allocated as required for

individual non-scalar variables.

Since storage is allocated dynamically, a method had to be devised

of linking together the various blocks of YSTORE associated with a particular

non-scalar. It was obviously not advisable to link together individual

locations, as the cost in terms of storage space and access time would have

been prohibitive. Thus the array YSTORS was treated as separate units

of 10 locations each. The number was chosen as an. experiment, but can

be altered if found to restrict the efficiency of the resultant FORTRAN code.

In practice, this means that a vector of (n*10+l) elements, where 0 < n

will have (n+l)*10 locations allocated for it. A compromise had to be

reached between the allocation of unnecessary locations for non-scalars

and the number of linkage elements required for particular block sizes.

The information required for linking the various blocks of YSTORE

is held in a separate array ZSTORE. This array also incorporates a free

space list. Storage is not actually allocated for non-scalars during

conversion, but the appropriate subroutine calls are generated so that

dynamic allocation can take place as required during run-time of the

converted routines.

To allocate or de-allocate storage for a non-scalar variable it is

only necessary to update entries in the dope vector table DOPES, the

array ZSTOEE , and the array ZB0ND3, which contains limit information

for the dimensions of each non-scalar.

The functions of these 3 arrays are now discussed in greater detail,

1.2.1 The dope vector table DOPES

Corresponding to each non-scalar variable name in an APL routine, a

6-part entry is set up in the array DOPES. The typical form of a dope

vector entry is shown in Diagram 1.2(a) .

For literal non-scalars no space is set aside in YSTORE, and the

format of the dope vector entry is simplified. The third and fourth

parts are not required. This is agfin referred to in Chapter II .

The dope vector entries may change during a subsequent optimisation

phase. This phase will be undergone by the output code if the user

supplies additional information about his non-scalar variables. These

changes, connected with simplification of the storage and accessing

mechanisms, are discussed in § 1.4 .

 --- - - ■ ---

8

9

DOPES

start addres! i no.of last j = the pointer k
pointer, i, in YSTORE block of number of to the

KEY to the (i.e. no.of YSTORE dimensions array

4s

array NAMES 1st block
allocated)

currently
allocated

of the
non-scalar

ZBONDS

derived
from array

name

• r

k+j-1

entry for 1 array

— ZBONDS -----

1 n

| *1 *2

r
a single N M E S entry

NAMES

*1 type indicator for a non-scalar (numeric) variable is 1
(see Chapter II)

*2 n = the number of characters in the non-scalar variable name

*3 these entries will initially be the same

Diagram 1.2(a) : A typical dope vector table entry.

The 6 columns of a dope vector entry hold the following information;

(i) A key derived from the non-scalar variable name.

Only the first 3 characters of a non-scalar variable name are used

to determine the key (or the first n characters, if the name has n < 3

characters). The average of the Z-code values of the characters is found,

and a constant subtracted such that the lowest possible key will have

value 1.

The key determines the first address in DOPES to be searched when an

entry is added to the dope vector table, or an existing entry is access ed.

(ii) A pointer to the array NAMES, which holds information relating to

identifier names (see Chapter Ii).

(iii) The number of the ZSTOKE element associated with the first block of

YSTOKE assigned to the non-scalar variable.

(iv) The number of the ZSTORE element associated Yfith the last block of

YSTOKE currently allocated for the non-scalar variable.

(v) The number of dimensions of the non-scalar variable.

(vi) A pointer to the array ZBONDS where information relating to the

current upper bounds of the non-scalar is stored.

An "open hash" technique is used to place entries in the dope vector

table. The first address to be accessed in DOPES is given by the "key"

value obtained. Hence the necessity for the' lowest possible key to have

value 1. If this address is empty, the location is free and i s used to

store the dope vector entry. Otherwise a new address is calculated and

tested, and the process is repeated until a free location is found. This

location is then used to store the dope vector entry.

10

The method of subsequent address calculation is outlined below. For

a dope vector table with n rows, the address is increased by an integer

m each time. If the address, j, to be searched becomes greater than

n , then j is set to j - n and the process repeated until all locations

of the table have been accessed. The integers n and m should be

coprime to ensure that all positions of the dope vector table will be

accessed. In practice, n is 6 4 and m is 3* this value being prefer

able to 1 in order to avoid the clustering of entries which might otherwise

1
result. The open hash technique is described in Hopgood .

A similar method is used to access previously stored entries in D0ES3.

However, in this instance the test is for an entry with a key value equal

to that derived from the non-scalar name. If such an entry is found it

is not necessarily the required dope vector entry, since keys are not

necessarily unique. (For example, A and AA or B and ABC will have

identical key values.) For this reason both the key and a pointer to the

array NAMES must be contained in each dope vector entry. T$hen keys match,

the characters of the non-scalar variable name and those stored in the

appropriate NAMES entry must be compared to ensure that the correct dope

vector entry has been found.

1.2.2 The array ZSTORE

Elements of ZSTORE can have one of two forms, depending on whether

the associated block of YSTORE is a unit in the free space list or a block

allocated for a particular non-scalar.

The association between ZSTORE elements and YSTORE blocks is such that

ZSTORE (i) refers to the block YSTORE (1 + (i-l)*10) to YSTORE (i*10),

Ytfiere 1 < i < n, n being the total number of blocks of YSTORE.

11

For an unallocated block, i, of Y STORE, the associated ZSTORE

element has value j, where j is

EITHER (a) the number of the next block of YSTORE on the free space l ist,

OR (b) $ if i is the number of the last block of YSTORE on the

free space list.

The form of a ZSTORE element associated with an allocated block of

YSTORE is shown in Diagram 'i. 2 (b) . The usage of the array ZSTORE is

discussed later.

. The method can be extended to cover the case where ZSTORE has more

than 255 elements, that is, there are more than 255 blocks of YSTO RE.

There is room for expansion due to the unused 8 bits at the left-hand

side of each entry.

1.2.3 The array ZBONDS

ZBONDS contains the current bounds for each non-scalar variable

(literal and numeric) appearing in an APL routine. It can be updated

dynamically, as can DOPES and ZSTORE.

The sixth column of a dope vector entry defines the start of bound

information for the corresponding non-scalar. The number of locations

of ZBONDS assigned to a particular non-scalar is obtainable from the

fifth column of its dope vector entry.

In addition, a pointer ZBPTR is maintained, which gives the first

free iocation of ZBONDS at any stage. This is useful if a new entry has

to be added to ZBONDS.

The ZBONDS entry for an n-dimensional non-scalar with upper bounds

b^,b2 ,...,bn is shown in Diagram 1.2(c) .

12

f ZSTORE (m)

9 N I J

.................

N is the number of elements in the m ^ block of YSTORE

I is either

(a) a backward pointer to the previous block of YSTORE
allocated for the same array

til
■ OR (b) & if the m block is the first block allocated for

the array

J is either

(a) a forward pointer to the next block of YSTORE
allocated for the same array

. OR (b) 0 if the m ^ block is the last block allocated for
the array.

Diagram 1.2(b) : 'ZSTORE entry for a block not on
the free space list.

14

ZBONDS »

* h V s

2 n

j is given by the sixth column of the dope vector entry

Diagram 1.2(c) : Shows a typical ZBONDS entry for an
n-dimensional non-scalar variable.

ZBONDS is maintained in the following way. When a non-scalar

variable is encountered, for example the variable A in

A <f— 3 4 5

an entry is set up in DOPES and ZBONDS.

If A is redimensioned such that its number of dimensions is increased,

for example, in the statement

A <--- 2 A A ,

then the elements of the old ZBONDS entry are set to -1. A new entry is

created for A, starting at position ZBPTR.

If A is now redimensioned such that its number of dimensions is

decreased, the relevant part of the ZBONDS entry is updated and the remaining

part set to -1fs .

It can 'be seen that if an APL routine contains a number of redimen

sioning operations, (occurrences of the dyadic "rho" oper ator), the wastage

of space in ZBONDS can become considerable.

A garbage collection mechanism enabling unused space to be retrieved

was therefore devised. If there is insufficient space left in ZBONDS for

a new entry to be created, ZBONDS can be scanned for entries with value -1.

Such entries can be removed by shifting subsequent valid entries along the

appropriate number of places to produce more free space at the end of

ZBONDS. The appropriate dope vector entries must also be updated.

1.2.4 Accessing array elements

APL non-scalar variables are mapped onto the one-dimensional array

YSTORE. Since the size of an APL array can vary dynamically, the array

elements will not necessarily be stored in consecutive blocks of YSTORE.

The ZSTORE elements associated with each block of YSTORE contain

both forward and backward pointers, as described in $ 1.2.2 . To access

a previously stored vector or array element, the following strategy is

required,

(a) a key is derived from the non-scalar variable name,

(b) the address of the dope vector entry for the non-scalar is determined

(using (a)),

(c) the first ZSTORE element associated with the non-scalar is obtained

(using (b)),

(d) the ZSTORE elements for the array are accessed in turn until the

appropriate block is found,

15

(e) the index (in YSTORE) of the element to be accessed is found.

Eor large arrays it can be seen that a large number of 2ST0RE

elements may have to be accessed before the appropriate block of YSTORE

can be located.

An enhancement of the above method would be to store the exact

location (in YSTORE) of the last element accessed for a given array.

Since consecutive access is most likely, it would thus be sufficient

simply to move forward or backward from the position of the last! element

accessed. This additional information could be incorporated into the

dope vector table.

Using the accessing method outlined above, the access time can be

costly for large arrays. However, if the maximum amount of space

required for storage of a non-scalar is known in advance, the non-scalar

elements can be stored in consecutive blocks of YSTORE. A much simpler

accessing method could hence be used for the non-scalar. The array

mapping can be used to determine the relative position of an element in

a non-scalar. The desired location can thus be found directly aftei*

applying steps (a), (b) and (c) above.

The faster method is dependent on more information being supplied

initially by the user. This facility is provided as a user option and

is discussed in greater detail in §1.4 .

Vector or array subscripts can themselves be expressions. Thus it

is not usually possible to locate the exact position in YSTORE of a vector

or array element during conversion. Instead, vector or array element

references are replaced in the output code by function calls. These

functions provide as a result either the value of the element being

accessed or its index in YSTORE. It is necessary to know the YSTORE

16

index (not the value) if an array reference occurs as the left argument •

of a specification operator. A number of functions were written to

produce the above effect;

(a) FIND - produces the index in YSTORE for a numeric non-scalar

variable access

(b) UVFIND - produces the value of a constant vector element as

result

(c) IRFIND - produces the value of an intermediate result element

(d) EVFIKD - used for accessing of empty vectors of arrays

(e) LFIND - used for accessing of literal non-scalars

(f) SCFIND - used for accessing scalars.

Operands (both scalar and non-scalar) can be accessed in a number of

ways (see f 1 . 2 . 5), and functions (b) to (f) above were written to provide

generality with the function FIND. This function is described inf 1.2.5 •

1.2.5 The function FIND

The function FIND is applied to the subscripts of the vector or

array referenced. In the case of an entire array access, loops are set up

to access each of the elements in turn.

Before production of a FIND call, therefore, code is produced to sto re

the subscript values or expression code in the array ZINDX. The appropriate

locations of ZINDX are accessed in FIND and a function applied to these

elements to produce the required index in YSTORE.

APL allows nesting of subscripted expressions, and care must be taken

to ensure that only the required values of ZINDX will be accessed during

one call of FIND. This is done by maintaining a stack o f 'pointers ZPOINT,

having stack pointer ZPT. During any FIND call the array ZINDX is

accessed only from the positions defined by ZPOI NT (ZFT-1)+1 to

ZPOINT (ZPT).

The following example serves to illustrate the type of code produced

corresponding to a subscripted variable.

EXAMPLE 1(a).

Suppose the APL routine contains a reference to

A [l + 1]

where I is scalar. Then the generated code is of the form shown be low.

Since no attempt was made at optimisation during the code generation stage,

the code is not very efficient. However, under certain circumstances,

optimisation will be possible. This is discussed in greater detail in

Chapter VIII.

z0 = j6

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

ZINDX (ZB1 + 1) = 1 + 1

ZPOINT (ZPT) = ZB1 + 1 since A is one-dimensional

CALL STARTS 31, Z2,ZNC)

Ottl FIND1 (W J — \ —)

The use of is redundant in the above example, but is included to

allow for the possibility of non-scalar subscripts, in which case it would

be required for looping operations, (see Chapter VIIl).

The subroutine STARTS uses the value (the index of A in

NAMES, an array whose use is discussed in Chapter II) to provide information

to be used in the call of EIND1. This information is discussed in

18

Chapter V, §5-2 . The subroutine FIND1 contains a call of the function

FIND discussed previously. The variable Yn contains the value of the

required element A £l + fj . The parameters of the function FIND are

discussed later.

In generating subroutine calls two possibilities existed:

1. the subroutine calls could have no global variables (for example,

ZP0INT-, ZINDX) in the parameter list. COMMON statements would thus

have to be inserted in the subroutine bodies. The same process can

be applied to functions,

2. global variables could be included in the parameter list and all non

scalar globals given unit dimensions.

Method 1 is obviously more efficient from the point of view of para

meter linkage. There are two advantages, however, of Method 2,

(a) if the dimensions of any global non-scalar require to be altered it

is not necessary to change these in each subroutine or function

containing a reference to the particular non-scalar;

00 COMMON statements need not be used, and this facilitates conversion

of AEL to, for example, ALGOL or PL/1 rather than FORTRAN.

Throughout the entire text Method 1 will be assumed, as this gives

greater readability of the generated code.

A second example showing the usefulness of the ZPOINT stack for nested

subscripts is given below.

EXAMPLE 1(b)

The following code is generated corresponding to A [jB ; C C D ; E[] J

where A and C are non-scalar; B, D, E are scalar.

19

20

z/J = j6

ZB1 = ZPOINT (ZPT)

ZPT = ZPT'+ 1

ZINDX (ZB1 + 1) = B

r

code
corresponding

to
C [D ; E]

ZB2 = ZPOINT (ZPT)

ZPT = ZPT + 1

ZINDX (ZB2 + 1) = D

ZINDX (ZB2 + 2) = E

ZPOINT (ZPT) = ZB2 + 2

CALI, STARTS (Cm m *)

CALI, PDTO1 C— CNJUffls

ZPT = ZFT - 1

 Y ----)
n '

L

ZINDX (ZB1 + 2) = Y
v n

ZPOINT (ZPT) = ZB1 + 2

CALL STARTS (A ^ ^ ----)

CALL PXHL1 (— A ^ — —)

ZPT = ZPT - 1

Arrays A and C are distinguished in the FIND1 calls.

It can be seen that no information is lost after the C array reference

has been handled. Code production for the A array reference is resumed

in the normal manner.

The stack pointer ZPT is increased when the symbol [] is handled and

is decreased when the symbol 3 is handled.

The function FIND plays an important part in the handling of certain

API- mixed functions. These are:

21

(i) the reverse function

(ii) the monadic transpose function

(iii) the -reverse function (applied along the first co-ordinate)

(iv) the ravel function

(v) the rotate function

(vi) the dyadic transpose function

(vii) the rotate function (applied along the first co-ordinate)

(viii) the compress function

(ix) the expand function

(*) the take function

(xi) the drop function

(xii) the compress function (applied along the first co-ordinate)

(xiii) the expand function (applied along the first co-ordinate)

(xiv) the concatenate function.

The reason for grouping these operators together can perhaps hest be

explained by example.

Consider the following expression:

4 f B + C

(where B and C are vectors).

An APL interpreter (i.e. one without an embedded "look-ahead" facility)

would access all the elements of B and C during the '+' operati on. All

but 4 of these elements would later be discarded when 'T' was dealt with.

There is thus an inherent inefficiency in the above expression. This

inefficiency can be removed by applying a different type of accessing

technique in the function FIND. To do this it is only necessary to apply

a function to the required subset of ZINDX and then use the normal accessing

method.

Consider also (J*I, where M is a vector of n elements. To access

the 1 ^ element of $M, the code

ZINDX (-----) = X

is generated, followed by a call of FIND. However, in this case the

contents of ZINDX (----) could first be changed to n - I + 1 and the

normal accessing method used.

Similarly, all the functions in the above group can be handled by

altering the values of the appropriate ZINDX elements and applying the normal

accessing method. The function to be applied to ZINDX (i.e. the relevant

part of it) to produce the desired type of accessing is determined by the

first parameter of the FIND call.

In Chapter IV it is described how bracketing can be used to delimit the

scope of an operator and thus remove inefficiences. Briefly, here

4 T B + c

is bracketed as (4

The scope of ' 'f' extends over the whole of (B + C). The appropriate

type of accessing can be applied to B and C during the ’+' operation to

remove the necessity for accessing all the elements of B and C .

The scope of an operator could not be so easily defined if reverse

polish techniques had been used in the translation, (see Appendix 5)«

An element of the result of TJ \ V can be zero. This is indicat ed by

setting the result of the FIND call to n , where n is one greater than

the number of elements of YSTORE. Code is therefore produced to test t he

result of the FIND call for this condition.

22

If the ravel operator (monadic comma) is applied to a scalar, then a

vector result is obtained. However, it .is necessary to set up storage in

YSTOKE for the single element result. Such a result is indicated by having

a negative value returned from the FIND call. The value returned is the

negative of the index of the scalar in NAMES.

These tests are carried out immediately after the FIND call. They

are present in each call of FIND1.

The functions UVFIND, IRFIND, EVFIND, LFIND and SCFIND, mentione d

previously, were written to allow for all possible operand types in handling

the 14 listed mixed functions.

The function FIND has the following parameters:

(i) the first parameter is

(a) $ if the normal accessing method is to be applied,

(b) 1 - 14, depending on which mixed function (of the above group)

is to be handled;

(ii) the second parameter is

(a) $ for normal accessing or for a monadic mixed function of the

above group or if the left operand is scalar (in which case the

third parameter represents a value (not an index in the array

NAMES)).

N.B. NAMES is the character array where the characters comprising identifier

names are stored. It is described in Chapter II.

(b) the type value (see Chapter II) for the left operand if non

scalar (in which case the third parameter is the NAMES index

for the left operand);

23

(iii) the third parameter is

(a) $ for normal accessing or for a monadic mixed function of

the above group

C b) a scalar variable name or constant

(c) the NAMES index for the left operand (for dyadic mixed function

of the above group);

(iv) the fourth parameter is

(a) a scalar variable name or constant

C b) the NAMES index for the right operand (for dyadic mixed

functions of the above group).

The FIND calls produced corresponding to B and C in 4 T ® + C

are:-

roffl (11, A 4 , J

a n d ra m > M A 4 , 0 ^)

respectively, where

B. , = the index for B in NAMES = BWAVro_
index NAMES

C. = the index for C in NAMES = C.TA,rot_
index NAMES

1 .3 Essential Initial Information

'Information which a user must supply with his APL routine (s) falls

into two categories:

1. The user must specify the output medium for storage of the target

language. This is done by specifying a value for the variable IOPTON.

The value must be provided in G-12 format. Table 1.3(a) shows the

values of IOPTON associated with particular output media.

25

I0 FT0N value Output medium

line printer

1 card punch

2 magnetic tape

3 magnetic disc

>3 line printer

TABLE 1.3(a) : Shows I0PT0N values and the associated
output media.

2. The user must supply a list of all the variables in his routine(s)

which are non-scalar at their first occurrence. An indication must also

be given of whether the variables are literal or numeric. The reason for

this requirement is as follows. Suppose a non-scalar variable name is

used as an AFL function parameter. The type of the variable may not be

made apparent inside the function body. The parameter may therefore be

treated as a scalar (and incorrect code generated) unless the user explic

itly declares it to be non-scalar.

The number of non-scalar variables being declared is first provided

in 16 format. This is followed by a list of variable names in the format

of Diagram 1.3(a). The zero indicates that no additional dimension or

bound information has been supplied. The list is scanned and, corresponding

to each non-scalar variable name encountered, code is generated to set up an

entry in the dope vector table DOPES at run-time of the converted routine(s).

-ir V-i--’----.'",'- : -V > >' ■

column
21 I

26

Array name blank

T i . * for numeric variable
column “ 1 for literal variable

27

Diagram 1.3(a) : Shows essential information for non-scalars.

Initially, only one bloclc of space is allocated for each non-scalar

variable in the above list. This amount is increased or decreased as

required during the running of the converted program. At this stage

entries are set up in NAMES for all variable names appearing in the above

list.

There are two cases in which an entry of the above form should not

be supplied for a non-scalar variable. These are:

(i) If additional information is supplied, the entry will have instead

one of the forms described in §1.4 •

(ii) If a variable is scalar initially and becomes non-scalar later, no

entry of the above form should be supplied.

If no further information is provided for non-scalars, a certain amount

•of interpretation is essential. For example, to access an array element,

a chain of 23T0RE elements must first be interpreted. If additional

information is provided for non-scalars, the elements can be stored in

contiguous blacks of YSTORE, thus reducing the amount of interpretation

required.

Obviously, from the point of view of the execution time of the

converted program, it is better to provide as much additional information

as possible.

1.4- Additional Input Options

As discussed previously, it is to the user's advantage to supply as

much information as possible regarding his non-scalar variables. The user

may be able to supply full dimension and bound information for certain non

scalar variables at conversion time. Eor other non-scalar variables,

however, he may only know the number of dimensions at this stage. I t is

possible that he will be able to supply the bounds for these variables at

run-time of the converted routine(s).

Two additional input options are therefore available to the user. He

can supply

1. the number of dimensions of a non-scalar variable with bounds' for each

dimension to be read in at run-time,

2. the number of dimensions of a non-scalar variable with fixed bounds

for each dimension.

The information corresponding to forms (1) and (2) above should be provided

in the format of Diagrams 1.4(a) and 1.4(b) respectively.

"When bounds and dimensions are'specified, these are assumed to be the

fflavimum bounds for the array during running of the converted routine.

Thus the maximum number of elements of the array is known. The number of

dimensions and the bounds may differ initially from those supplied. Thus,

27

23

CO.

J
.umn co. .umn

, 20 1
lumn

t 2 7 ° 5
Array name I -N V

t
column

2 1

I = ft for numeric variable
1 for literal variable

N = the number of dimensions of the non-scalar variable

Diagram 1.4(a) : Form of additional information supplied for a
non-scalar with the number of dimensions
known, but not the bounds.

column column column column column
i 1 i 20 J, 27 33 i 80

Array name I N
b1 b0 ------ b blank

2 n

t T

column column
21 33

I = j6 for numeric variable
1 for literal variable

N = the number of dimensions of the non-scalar variable

 are the bounds for each dimension
1* 2* * n

Diagram 1.4(b) : Form of additional information supplied for a
non-scalar with both dimensions and bounds given.

from the initial information code is produced to set up only the first 4 .

parts of the dope vector entry.

If full information is provided, the non-scalar can he stored in

contiguous blocks of Y STORE. This eliminates the need for the time-

consuming access method used in the function FIND. The allocation of

contiguous blocks of YSTORE could have been arranged at the time when

initial information was processed. However, this would involve the

insertion of an extra test in FIND. More time would thus have been

required to access non-scalars for which no additional information was

supplied. This is best avoided. A call of the function FIND is the re

fore produced for all non-scalar references and, where possible, this is

replaced by a simpler accessing function as an optimisation process.

Storage of certain non-scalars in contiguous blocks of YSTORE is

arranged in a pre-optimisation phase. It is done first for those arrays

with full information given. With the bound information supplied at run

time of the converted routine(s), (i.e. after optimisation proper), the

same process can be applied for non-scalars with only partial information

supplied initially.

The following path is therefore taken.

(i) Read in initial information, process, store until (iii), set up NAMES

entries and produce code to set up (partial) entries in D0EE3.

(ii) Convert routine(s) to target language with FIND calls for every non

scalar reference.

(iii) Carry out pre-optimisation phase in which storage is arranged in

contiguous blocks of YSTORE for those non-scalars with full inform

ation supplied.

(iv) Obtain bound information for the relevant non-scalars. Arrange these

non-scalars in contiguous blocks of YSTORE.

(v) Replace RIND calls by simpler accessing function calls for all

non-scalars with more than the minimum amount of information

supplied. '

(vi) Optimise the generated code.

(vii) Run the converted program.

Stages (iii) and (v) are discussed in Chapter VII. Stage (vi) is

described in Chapter VIII.

At this stage an entry is set up in NAMES corresponding to each non

scalar variable name, and code is generated to produce partially filled

dope vector entries. The rest of the information supplied is stored

until required during the pre-optimisation phase.

The information temporarily stored at this stage is:

(i) the position of' the non-scalar variable name in the initial list,

(ii) the index of the non-scalar in NAMES,

(iii) the dimension and bound information in its original form.

The first stage of the conversion proper is a lexical scanning phase,

which is discussed in Chapter II.

The order of submission of information for the translation routines

is given below.

1. I0PT0N value (512 format)

2. Number of non-scalar variables, N (l6 format)

3. N cards with information as described in §1.3 and § 1.4 •

A. APL routine(s) to be converted

5. Blank card, signifying end of input.

30

31

CHAPTER II

LEXICAL SCANNING- PHASE

An APL routine first undergoes a lexical scan. Each line of the

routine is processed as described below, and the relevant information is

stored temporarily on tape.

This scanning,phase was initially introduced so that niladic function

calls would be recognisable as such during subsequent processing. Eor

example, consider the following routines:

V E < - A EN B j X

»
i
t

X <— E + A

i
i
»

V

V E F

i
t
i

V

During processing of function EN, it is not known that E is a niladic

function. This information only becomes available ’when the second function

definition is encountered. Since the code generated depends on the types

of all identifiers, it is necessary to scan each line in turn before the

main lino-by-3ine processing is carried out. This eliminates errors

resulting from incorrect types being associated with identifiers.

The lexical scanning phase is generally useful as it simplifies the

subsequent processes. In particular, it greatly simplifies the right-to-

left scanning phase, which is discussed in detail in Chapter III.

The actions of the lexical scanning phase may be summarised as follows:

(i) All blank characters are removed.

(ii) When an identifier name is encountered for the first time, an entry

is set up in the character array NAMES. The form of such entries

for different identifier types is described in §2.2 . Thereafter

all identifier names are replaced by the appropriate index in the

array NAMES.

(iii) All other symbols not comprising identifier names are replaced by

an integer value. Distinction is made at this stage between

monadic and dyadic uses of particular symbols.

Each line of the APL code is scanned from left to right. Test s are

first made for occurrences of the following symbols:

(i) the lamp-comment symbol

(ii) the 'del1 symbol .

The actions carried out on recognition of these symbols are described in

§2.11 and §2.12 respectively.

A test is then made for the occurrence of a symbol which can start an

identifier name. When such a symbol is met, each character in turn of the

identifier name is stored temporarily. After a complete identifier name

has been decoded, the array NAMES is accessed. The method of accessing

NAMES is also discussed in §2.2 . If no entry already exists in NAMES

for the identifier name, a new entry is added to the end of NAMES.

The processed APL line is stored in the character array NOLINE.

Corresponding to each identifier name, a 2-byte entry is added to NOLINE.

32

The entry represents the NAMES index for the identifier name. NAMES has

locations and, therefore, two bytes are sufficient to store the index

for any identifier name.

A single entry is set up in NAMES corresponding to constant vectors,

for example 3 4 5 in

X < ? - 3 A 5

Constant vector NAMES entries are discussed more fully in §2.10 .

The handling of other symbols is less straightforward. All symbols

are distinguished initially with the aid of a symbol table, which is

discussed in §2.1 .

The symbol table is arranged such that all dyadic operators are

grouped together at one end, and all monadic operators are grouped later,

with symbols which can be either monadic or dyadic appearing between.

Letters, digits and special symbols follow the above three groups. Th us

the address of a symbol in the symbol table can be used to determine the

group to which the symbol belongs.

APL operators are later handled by the expansion of macros, as

described in Chapter V. In general there is one macro for each operator,

although a few operators (for example, +, -, x , t - , *) are grouped together

and dealt with using a single macro expansion.

One method of handling each operator would be to replace the operator

by a macro name and maintain a set of pointers giving the start address o f

each macro body. A more efficient method is employed here. Each operator

has an associated macro number (not a name). The macro number is used to

access a table, MCADDR, where the start addresses of the macro bodies are

stored. Thus, for example, if ' + ' has macro number 21, then MCADDR (dl)

33

gives the start address of the macro body for ’+' .

The above method eliminates the necessity to store a number of macro

names in a table.

Operators are replaced in NOLINE by a 1-byte entry representing the

required macro number. In fact, the entry gives the negative of the macro

number, so that identifier and operator entries can be distinguished,

(The second byte of an identifier entry may have a 1 in its left-most

bit position (and thus be negative} but it will always be preceded by a

a pr
positive entry. NAMES indices must be < 5 0 0 0 > which is < 2 . There

fore the first part of an identifier entry will be positive.)

Identifier entries are stored in NOLINE with the two parts reversed,

the reason being that the- right-most (positive) part will be encountered

first in the subsequent right-to-left scan.

Monadic and dyadic uses of the same operator are detected during- this

scan and the appropriate entries are generated in NOLINE. This is based

largely on the fact that, if an operatox- is used in the dyad ic sense, it

will be preceded by an identifier or) or ~2 .

A similar test is used to distinguish the use of the symbol ’/' in

u/v (where u is a logical vector) and f/x (where f is a dyadic

operator) . Two different entries are set up in NOLINE corresponding to

'/' in the above expressions. Similarly for the symbol .

Distinction is also made between the symbols 1 D ’ and 1 Q 1 used

for input or output purposes. If these symbols are used for o utput, they

always precede a left specification arrow. A test is made for this

occurrence. If the test is satisfied, then an entry is set up i n NOLINE

for *□ » or •O' , but not xor the left specification arrow. Thus,

34

generates entries in NOLINE for *0* and A only. The above expression

is then regarded as the monadic operator Q operating on A .

If the test is not satisfied, then an input use of the symbols is

intended. A different entry for □ or □ would be set up in N0LIN3

for this case.

The symbol is also used in a variety of circumstances. It can

appear in

(i) a constant identifier name

(ii) an inner product

(iii) an outer product

The three uses are distinguished at this stage. In the case of outer

products no entry is placed in NOLINE corresponding to the symbol '•* .

The preceding symbol 'o1 is sufficient to distinguish the occurrence of

an outer product.

All the other symbols are replaced in NOLINE by an entry giving the

negative of the appropriate macro number.

A table of information on APL symbols is given in Appendix 2. The

method of distinguishing all the APL symbols is discussed in §2.1 .

Several values are stored on tape, together with NOLINE. These are

values which are required in subsequent scanning phases. They include

NOLPTR, which gives the number of entries in NOLINE for a particular APL

line. Others are IFUNCT, IEXP and UNI, whose functions are describ ed

in Chapter III, | 2.1 .

2• 1 The Symbol Table and Its Method, of Access

Symbols are first obtained in Z-code form. However, similar sets of

symbols (suoh as the dyadic operators) cannot be grouped conveniently

according to S-code values. For this reason, a symbol table is maintained

in which convenient sets of symbols are grouped together.

The symbol table is a one-dimensional array ISYMBT 160 characters

in length. It contains the Z-code representations of all the legal

symbols in the APL language.

Y/hen a symbol is decoded a function is performed on the Z-code value.

This produces the first address, I, to be accessed in ISYMBT. If th e

decoded symbol value equals ISYMBT (i), then the variable NADDR is set to

I. Otherwise successive addresses of ISYMBT are accessed, starting from

I ,until there is a match. The correct address is then stored in NADDR.

Operators can be:

(i) dyadic

(ii) monadic

(iii) dyadic or monadic .

The group to which a particular operator belongs can be determined

from the value of NADDR, for example:

(a) NADDR = 1 - 2 0 for purely dyadic operators

(b) NADDR = 2 1 - 3 8 for operators which can be either monadic or dyadic

(c) NADDR = 3 9 - 4 3 for purely monadic operators

In addition, the following groups can be distinguished.:

(d) NADDR = 44 - 52 for delimiters

36

(e) NADI® = 5 3 - 1 2 0 for symbols which can start identifier names

(letters, A , A, digits, decimal point, overbar,

•(high minus)-, blank and quote)

(f) NADDR = 121 - 123 for remaining symbols (colon, del and locked del).

Within each of the groups (a) to (f), symbols appear in the symbol table in

increasing order of Z-code value.

^•2 Identifier Names and the NAMES Table

A copy of all identifier names encountered is stored in the array

NAMES. The identifier name is thereafter replaced by the appropriate

index in NAMES. The characters comprising identifier names can thus be

re-accessed when required during the code production stage.

Identifier names must start with characters of the following types:

(i) a letter or a digit

(ii) a letter understruck

(iii) the characters 1A * or 'A'

(iv) the characters or *

If any of these symbols is decoded, successive characters comprising

the identifier name are stored in NAME, a 300-byte array. lor literal

identifiers, the enclosing quotes are first removed and double quotes ins ide

the string are replaced by single quotes.

The elements of a constant vector are stored in NAMES with a blank

character separating each element. A blank character also terminates

each constant vector.

When the entire identifier has been decoded, the non-zero characters

in NAME ax*e compared in turn with the relevant parts of each NAMES entry

37

of the same length and type. This process is repeated until either

(a) a blank entry is reached in NAMES, or

Cb) a match is found between a NAMES entry and the contents of NAME.

The occurrence of (a) signifies that this is the first time the

identifier name has appeared in the APL routine. A new entry is then

set up in NAMES for the identifier. The form of the NAMES entry is given

in Diagram 2.2(a). (The type of the blank entry reached should be tested

as an empty literal vector will have a blank in the relevant part of the

NAMES entry.)

The occurrence of (b) indicates that the identifier name has already

appeared in the routine. A previous occurrence of the identifier name

is only confirmed if the type of the entry in NAME equals that of the

entry in NAMES.

It can be assumed that all variable names start with the permitted

characters, since only working APL routines will be converted.

Table 2.2(b) gives the possible type values for all the identifier

types distinguished.

38

TYPE OF IDENTIFIER TYPE
VALUE

Non-scalar variable name (numeric) 1

Scalar variable name or constant i
Literal (variable or constant, scalar

or non-scalar)
- 1

Function name - 2

Empty vector or array - 3

Label name -K

Constant vector -5

TABLE 2.2(b) ; Shows type values for different
types of identifier.

• ■ ■ : d u : : u : ■ ~ ■ ■ ■ ■■ ■ : , ■ ■ ■ __ •: ■■ ■ / ■ ■ ■ ■ *■ : ■ -a ■ • ■______■ : •/. • ■

NAMES

T N Ns

T = the type value associated with the identifier name

N = the number of characters in the identifier name

These two pieces of information are followed by the actual

characters comprising the identifier name. T and N are

in decimal ; the characters are in Z-code form.

Diagram 2.2(a) A typical NAMES entry.

An APL identifier name can be from 1 to 77 characters long. Using the

above method, only (k + 2) characters are required to store the identifier

name, where k is the number of characters in the identifier name. This

avoids the wastage of space which would result if the maximum number of

characters was allotted for each identifier name.

Storage of the number of characters in an identifier name also makes

.it possible to scan quickly down NAMES to search for a particular identifier

name. An identifier name is only stored in NAMES once, regardless of the

number of times it occurs. However, two distinct entries would be set up

in NAMES for the identifiers A and ‘A* . The former would have a type

value of $ or 1, and the latter a type value of -1 .

Constant vectors require no permanent storage in the array YSTORE.

For such identifiers, the second element, N, of the NAMES entry gives t he

number of characters required to store both the constant and its associated

blank entries. Constant vectors are again discussed in §2.1^ . §2.3 to

§2.10 describe the treatment of different types of identifiers.

2.3 Numeric Variable Names (Scalar and Non-scalar)

Diagrams 2.3(a) and 2.3(b) illustrate the NAMES entries which would

be set up for the non-scalar variable name MARGARET and for the scalar

variable name JACOBS respectively. Additional action is taken for the

non-scalar variable name as described in Chapter I.

Certain identifier names are introduced during conversion of an APL

routine. This is necessary, for example, in handling the looping

operations implied by A+B, where either A or B (or both) is non

scalar. The arrangement is such that integer variable names introduced

start with ; real variable names start with 'Y'̂ Thus Z1, Z2, etc.

40

41

NAMES

1 8 M A R G A R E T

type
value

(decimal)

characters in Z-code form

number of
characters
(decimal)

Diagram 2.3(a) : Shows entry for non-scalar variable name
MARGARET in NAMES' .

NAMES

0 6 J A C 0 B S

type
value

(decimal)

characters in
Z-code form

number of
characters
(decimal)

Diagram 2.3(b) : Shows entry for scalar variable name
JACOBS in NAMES.

are used for integer variable names; Yl, Y2, etc., for real variable n ames.
I

In order to avoid duplication of existing variable name s, the following

strategy is employed. Variable names starting with 'Y f or *Z' are

altered to start with *YY* or 'YZ' respectively.

FORTRAN variable names may not start with ’A' or or with a _

letter understruok. APL variables starting with these c haracters are

therefore altered to start with 'Y0', 'Yl', and 'Y2<letter>'

respectively. For example, AB would be altered to Y2AB . The name

.should be altered to YlpEL, say, to avoid confusion with the generated real

variable name Yl.

It is also necessary to shorten long variable names to c omply with the

rules laid down by the target language. At the same time uniquen ess of

identifier names must be retained. This is arranged in the following way.

A vector is set aside with one element to represent each l etter of the

alphabet. Each time a numeric variable name is decoded, an e ntry is set up

in the vector. The element corresponding to the initial let ter of the

identifier name is set to 1. Thus, after scanning the entire APL routine

(or set of routines) the vector is searched for zero entries. Th ese entries

give letters which have not been used to start identifier nam es. Such

letters can then be used to start any shortened names. Th era will then be

no confusion with existing names.

In the rare event of there being no zero entries left in the v ector,

it is still possible to scan NAMES for a combination of 2,3, etc., letters

which have not been used to start identifier names. The sear oh would stop

when a unique combination of letters was found.

The method originally employed for reducing long na mes is outlined

below. Consider, for example, the variable name A1234567A . If it is

42

known that no identifiers 'start with ’ B 1, then the name can he shortened

to BA1234 without destroying the uniqueness criterion.

All further occurrences of A12345^7A must he reduced similarly,

and thus fB' has to he associated with, the identifier name in some way.

However, the vector element corresponding to 'B' must now be set to 1,

so that no other long names will be shortened to start with 'B1, as

this could also upset the uniqueness criterion.

This method requires one spare letter for every long name to be

reduced. Thus, if only a few letters are available, these can quickly

become exhausted. A method of avoiding this problem was therefore

devised.

No reduction of long names can be done until after the lexical scanning

phase, since spare letters will not be known until then. If any on e letter

has not been used to start an identifier name, then this letter can be used

to 3tart all the shortened names. For example, if 'X' is spa re, then

successive long names can be shortened to X1, X2, X3, etc.

. . A table is maintained associating each long name with the appropriate

integer. This is done as follows:- If 'X1 is spare, and X ̂ n^

(where ^n ^ is any integer) is to replace A1234567A', then location '00'

of the table will contain the index of A12345&7A in NAMES. Entries can

be set up in the table as the names are encountered.

This method is still unsatisfactory if no spare letters are available.

- However, a far greater number of cases can be handled before it is neces sary

to look for a unique combination of unused letters. The method can be

made foolproof by reserving a specific letter, say X, to start shortened

■ names anc replacing each name starting with X by Y3X This refine

ment has not been done at present, but it could.be incorporated without much

effort.

43

It should also be borne in mind that no non-scalar variable names

are reproduced on the output stream. (Non-scalars are mapped onto

YSTOHE.) These can also be used (if not too long) to replace long na mes.

The indices of the two names in NAMES would have to be associated. Long

non-scalar variable names need not themselves be reduced.

2.4 Numeric Constants

The entry sec up in NAMES for the constant 3.142 is illustrated in

Diagram 2.4(a).

No restrictions are placed on numeric constants other than the practical

limits set by the computer on which the converted routine is to be run. F or

example, on an IBM 3 ^ machine an integer constant must have a value less

31
than 2 , since the word length of the computer is 3 2 bits.

44

<----- ,------------- NAMES

------ 5 3 • 1 4 2

t
type
value

(decimal)

number of
characters
(decimal)

J

characters in
Z-code form

Diagram 2.4(a) : Shows NAMES entry for constant 3.142

2.5 Literal Constants

These are stored in NAMES with a type value of -1. For example,

the NAMES entry for the literal constant 'AB' 'C' would he as shown in

Diagram 2.5(a).

z_______________ — NAMES ----- ------------- — >

------ -1 4 A B i C

T
type
value

(decimal)

V. - /

characters in
Z-code form

number of
characters
(decimal)

Diagram 2.5(a) : Shows NAMES entry for the literal
constant ,AB I,C' .

The enclosing quotes do not appear in NAMES and the double quotes

have been replaced by a single quote.

The literal constant ” (signifying an empty vector) is treated

similarly. The corresponding NAMES entry is illustrated in Diagram

46

... _______ NAMES

 _1 - - - - - - - - - - - -

‘1K

type
value

(decimal)

number of
characters
(decimal)

Diagram 2.5(b) : Shows NAMES entry for the literal constant *• .

2,6 Literal Variable Names

If the APL program contains a statement of the form

Z {— ^literal constant ̂

then Z is a literal variable name and its NAMES entry has a type value

of -1 . However, it is necessary to distinguish between a literal variable

name Z and a literal constant with value *Z *. For this reason a two-

dimensional table, LITBLE, is maintained. An entry in LITBLE provides

the following information:

(i) the index (in NAMES) of the literal variable,

(ii) the index (in NAMES) of the literal constant currently associated with

the literal variable.

LITBLE is accessed sequentially.

Suppose a function has to be applied to a literal variable, The

index (in NAMES) of the associated literal constant can be obtained from

LITBLE. Then the function can be applied instead to the appropriate

constant to produce the required result.

The following process can be carried out to distinguish between

literal variables and constants. First, test for an entry in column 1

of LITBLE equal to the index of the literal in NAMES. If no entry exists,

the literal is a constant. Otherwise, it is a literal variable name.

The second column of the LITBLE entry then gives the NAMES index of the

currently associated literal constant.

No storage is set aside in YSTOEE for literal vectors or arrays.

These are stored in NAMES in row-major order. Entries are set up for

literal non-scalars (at run-time) in the dope vector table DOPES and in

the array ZBONDS, which contains bound information. The DOPES entiy has

two dummy values in columns 3 and 4 (since no storage is required for

literals in YSTORE).

Suppose an APL routine contains a statement of the form

Z <C literal constant 1)>

and later there is a statement of the form

Z <— Z, <literal constant 2 >.

Then, if <literal constant 2> is not equivalent to ’ the new constant

associated with Z requires a larger NAMES entry. It is thus necessary to

(a) create a new entry in NAMES giving the new value of Z,

(b) update column 2 of the LITBLE entry for Z to point to the new

associated constant,

(c) update the ZBONDS entry for Z .

47

— 0 3 A B C -1 4 -1 -1 -1 -1 1 2 X Y

<—--- NAMES >

Diagram 2.6(a) : Shows a possible structure of NAMES
before garbage collection

— - 3 A B C 1 2 X Y

«-------------------------- NAMES

Diagram 2.6(b) : Shows the corresponding structure of NAMES
after garbage collection

If the above process is repeated a number of times, a garbage

collection mechanism may be needed to retrieve unused space in NAMES.

Entries no longer required can be set to -1 . The second byte of

header information (giving the number of characters in the identifier

name) must, however, be retained. This is required so that NAMES will

still be scanned properly.

The garbage collection procedure is only carried out if there is

insufficient space left in NAMES to add a new entry. Entries containing

-1's in the character parts can be removed and subsequent valid entries

shifted along. It is also necessary to update the NAMES in dices for

valid entries which have been shifted along. Suppose, for example, that

NAMES was set up as shown in Diagram 2.6(a) . Then, after garbage col lec

tion, the structure of Diagram 2.6(b) would be obtained .

A table is maintained to associate the correct NAMES index with the

non-scalar Tf and all subsequent valid NAMES entries.

2.7 Function Names

These are stored in NAMES with a type value of -2 . For example,

the NAMES entry for the function name FN would be as shown in Diagram

2.7(a) .

49

NAMES }

-2 2 F N

Diagram 2.7(a) : Shows NAMES entry for the function
name FN .

The treatment of function definitions is discussed in §2.12 and

in Chapters III and IV . Function calls are also discussed in Chapters

III and IV.

2.8 Empty Vectors

These are produced as a result of expressions such as X0, ' 1

< scalar >.

A variable name whose value is currently an empty vector is stored

in NAMES with a type value of -3 • Suppose an APL routine contains code

of the form '

Z f - tgr ... (a)

I
I
I

z <— Z,X ... (b)

where X is an (m.*n) matrix. Then, when (b) is handled, an entry has

to be set up for Z in DOPES. The NAMES entry for Z must also be

updated, that is, its type value should be changed from -3 to 1 . These

changes take place at run-time of the converted routine.

2.9 Label Names

These are stored in NAMES with a type value of -A . Each line in an

APL routine has an implied label number associated with it. Entries are

set up for these implied label numbers in NAMES. The method of associating

a label number with every label name is discussed fully in Chapter VI .

The label number is used in the output stream wherever the corresponding

label name appears. This process is required because FORTRAN allows only

label numbers, not label names.

50

51

2.10 Constant Vectors

These are stored in NAMES with a type value of -5 . Thus, for

example, the entry in NAMES for the constant vector

3.1 4 2.39

would he as illustrated in Diagram 2.

NAMES

-5 11

type
value

(decimal)

Z-code Z-code Z-code

number of
characters
(decimal)

Diagram 2.10(a) : Shows NAMES entry for the constant vector

3.1 4 2.39

The number of elements of (as distinct from characters comprising) a

constant vector can be obtained by applying the function NOUNV to the

index of. the vector in NAMES.

2.11 Commentary

Y/hen a comment is encountered in an APL routine, a temporary entry is

set up in NAMES. Such entries have a type value of -6 . After production

of the comment line in the target language code, the NAMES entry for the

comment is "removed" (by setting the relevant parts to -1’s) .

A new NAMSS entry is set-up each time a comment is encountered, so

that a comment entry in NAMES can be "removed" when completely handled

without testing for occurrences of the same comment elsewhere.

A NAMES entry for a comment always has the number of characters part

set to 79, i.e. the entire line (except the first character) is regarded

as the operand for the monadic lamp-comment operator. Blanks in a comment

line thus have no significance.

If necessary, garbage, collection is used to retrieve space in NAMES.

The method of retrieval is described in §2.6 .

2.12 Use of the 'DEL' Symbol

One of the first tests made on an APL input line is for the occur rence

of-a 'del1 symbol at the left-hand end of the line. This can mea n:

1. a function definition header statement,

2. a closing ’del1 on a line by itself (signifying the end of a function

definition).

For (2), a single entry is set up in NOLINE. This entry represents

the negative of the closing 'del1 macro number.

Function header statements deserve special mention. Entries are set

up in NAMES for each identifier in a function header statement. The

function or subroutine name has a type value of -2 .

If a local variable name occurs, the fact that the name is local to

a specific routine is taken into a c c o u n t ; in setting up NAMES entries.

For example, consider

52

S7 r X F N B

53

A = X + F B

I
t

I

v

v H <-- F N ; X

t
t

i

v

The variable X in function FN is inaccessible during processing

of function F . All references to X in function F are taken to mean

the local variable name X .

This is simulated in the following way in setting up NAMES entries.

During the lexical scan of function FN, one entry is set up in NAMES

corresponding to X . During the lexical scan of function F, a new

entry is set up in NAMES for the local variable name X and the previous

occurrence is "locked". That is, it is inaccessible during the lexical

scan of function F .

"When the second NAMES entry for X is no longer required (after

complete processing of the second closing 'del1 symbol), the relevant

parts are set to -1's in preparation for garbage collection. The second

NAMES entry is thus "removed". The first entry for X must then be

"unlocked".

Locking and unlocking is done as follows. iVhen a local variable name

is encountered, a new entry is set up in NAMES. All previous occurrences

of the identifier name are locked by storing the appropriate NAMES indices

in the array FNLOCS. During a scan of NAMES, FNLOCS is searched if a

match is found. If an entry in F NLOCS equals the index for the matching

entry, the search is resumed until an unlocked occurrence (one for which

no entry exists in FNLOCS) is found. If no unlocked entry exists, then

a new entry is added to NAMES.

To unlock an entry again, the corresponding entry in FNLOCS should be

set to zero.

Now consider the example,

V R «— A FN B ; X

i
•

«

v

V R - F Y ; X

I
t

I

V

During the lexical scan of function FN , an entry is set up in NAMES for

the local variable X . This entry is "removed" (by setting the relevant

parts to -1's) when the first closing 'del1 symbol has been completely

processed.

Similarly, for the variable X in function F. After complete

processing of the second closing 'del' symbol, no entries exist in NAMES

for variable X . This is in accordance with the usage of the variable X.

Local variable name indices are stored as they are met in the array

LOCAL. Thus, the appropriate entries can be "removed" later when they

are no longer required. A second array, LOGS, is maintained to provide

the number of entries to be "removed" at a particular time. For exampl e,

consider

55

V R <— A M B ; X ; Y ; Z

t

i

v

V R <r— R Y ; C j D

t

I
I

V

Then LOCS(l) is set to 3 and. L0CS(2) to 5» The' difference Betw een

successive entries in LOCS gives the number of local variable names to be

"removed" after complete processing of a particular closing 'del* symbol.

The locking and unlocking of local variables in this way is similar

in concept to the use of the name-list table used in some ALGOL 60

implementations, (see Randell and Russell̂ ").

A number of other values have to be stored to be re-accessed during

the code generation stage. These are:

(i) For functions only (not subroutines) the result variable index and

the array name index must be retained. These are stored in array

MIND. Consider the function

V R <— A RN B

R <— A + B V

where R, A and B are scalar.

Then code of the following form is generated:

56

FUNCTION FN (A,B) • (a)

• (b)

. (c)

. (a)
• (e)

• (f)

• (s)

R A + B

FN = R

miTE (6,ij m) FN

100 FORMAT (12, G 12.6)

RETURN

END

By storing the appropriate variable name indices at lexical scan time,

lines (c) and (d) can be produced at code generation time.

(ii) If a specification arrow is detected in a function header statement,

an indication of this must be stored so that the correct code can be

generated. For example, the code corresponding to

V A FN B

It is the absence of the left specification arrow from the function header

which results in the generation of code different from lines (a) to (g)

above. The array NEXP is used to retain an indication of the presence

or absence of a left specification arrow until code generation (macro

expansion) time. Entries on NEXP are:

would be of the foxm

SUBROUTINE FN (A,B)

R = A + B

RETURN

END

(a) 1 for function header

(b) 0 for subroutine header.

Successive NEXP entries are accessed in turn during code generation,

ensuring that correct code will he produced.

(iii) Nov/ consider a subroutine with non-scalar parameters. For example,

V R FN A

R <— A + B V

where R and A are non-scalar, and B is a global scalar. Then the

code generated is of the form

SUBROUTINE FN (ZF1, ZF2)

< Start of loops for array access>

CALL FIND1 (Z F 2 Yn)

Y , = .Y + B
n+1 n

CALL SPECS (ZF1, Yn + 1)

<end of loops for array access'?

RETURN

END

The subroutine SPECS handles the non-scalar specification.

Corresponding to a call of the function FN, for example

C FN D ,

code of the following form is generated:

index for C

index for D

ZF1 = C. .
index

ZF2 = D. ,
index

FN (ZF1,ZF2) .

where C . , = NAMES
index

D. , = NAMES
index

Prom the above it can be seen that the position of a parameter in

the parameter list is important. The use of ZF1 or ZF2 is determined

by position in the parameter list. The indices of parameter names are

stored in the array FNPARM preceded by an integer giving the number of

parameters (0, 1 or 2) . Thus, at the code production stage, after

lexically scanning a set of routines, the position of specific parameters

in a function or subroutine header can be obtained.

If a user of the converted subroutine FN, above, wishes to call FN

with parameters C and D, a knowledge of the NAMES indices for C and

D is required. The contents of the array NAMES are made available to

the user. Care should be taken, however, to ensure that NAMES is not

accidentally over-written. If the user can supply at conversion time a

list of all the calls he intends to make of subroutine FN, then these can

be treated as a main program and converted to FORTRAN automatically. This

would remove the necessity for the user to access NAMES. Such action,

however, will not generally be possible. Entries are not set up in

NOLINE for left specification arrows, semi-colons or local variables

appearing in a function header statement. Thus, for example, corresponding

to

V R <— A FN B ; C ; D

entries would be set up in NOLINE for V > R, A, FN and B only. Similarly

for

V F X ,

NOLINE would contain entries for V , F and X .

58

59.

CHAPTER III

RIGHT-TO-LEFT SCAN AND PRODUCTION

OF INTERMEDIATE CODE

At this stage the contents of NOLINE, together with certain other

variables, have been stored on magnetic tape for each APL line supplied.

The contents of NOLINE, corresponding to each APL line, are now processed

in turn. The entire process involves:

(i) a right-to-left scan of NOLINE and production of intermediate code

. in the array NCODE,

(ii) a left-to-right scan of NCODE with frequent interruptions to expand

macros,

(iii) generation of code using' a series of macro expansions (the order of

the expansions arranged in (ii)).

Stages (i) to (iii) are carried out for one line in entirety before th e

next line is considered.

A discussion of (ii) is deferred until Chapter IV, and of (iii) until

Chapter V. This chapter describes stage (i) in detail.

The object of this phase is to separate the APL code into its component

sub-expressions. This is done in such a way that all macro expansions

(corresponding to specific operators) will be carried out in the correct

order in the subsequent phase. The priorities of the APL operators will

therefore be preserved, and code will be generated in the required order.

Since APL has a right-to-left system of operator priorities, this scan

is carried out starting from the right. Brackets are introduced during this

60

scan in such a way that the operator priorities are preserved. For example,

• A <— B + C * D

is transformed to

(A < -- (B + (C * D)))

during the right-to-left scan. In the subsequent left-to-right scan, there

fore, the operators will be applied in the order *, +, <— - . The organ

isation of the macro expansions is described in Chapter XV.

At this stage the entire APL routine(s) has/have been lexically scanned,

and the output stored temporarily. Each lexically scanned line is then

re-accessed in turn, starting from the right. As each line is processed, an

intermediate code form is set up in the array NCODE of 200 characters.

The overall process so far is given in the flow-chart of Diagram 3(a)*

Information may have to be added to either end of NCODE during the

right-to-left scan, due to the insertion of bracketing. Hence, the production

of intermediate code in NCODE starts near the middle and gradually extends

outward. (The actual starting position is 160", since most information is

added to the left.) Two pointers LFTR and RFTR mark the limits in each

direction and these are initially set to 16$.

The subroutine basic to the right-to-left scan is NCHAR. This stores

the value of the next character in the variable LCKAR.

If LCIiAR has a positive value, then it represents the left-most part

of an identifier index. Suppose, for example, that the variable X has

index 27 in NAMES. Then the two pai'ts of the entry must be reversed before

they are placed in the intermediate code. This is illustrated in Diagram

3(b).

61

Diagram 3(a) : Flow-chart of processes described, so far.

62

OUTPUT FROM LEXICAL SCANNING PHASE (NOLINE)

2 7 p

X
p ' 2 7

<------------------- NCODE >

Diagram 3(L) : Shows the process carried out on an operand
entry when transferred from NOLINE to NCODE.

| 3.1 describes the treatment of a few special symbols during the

right-to-left scan. Function and subroutine references are discussed

in |3.2 .

6 3

Operator entries are transferred straight from NOLINE to the inter

mediate code.

Three distinct types of bracketing are introduced:

1. bracketing of monadic operations,

2. bracketing of dyadic operations,

3. bracketing of function calls.

Thus, for example, the expression

I

I A + B * - FN X

would be bracketed as

(A + (B * (- (FN X))))

However, it can be seen that the number of)'s on the right-hand side can

be great. Hence, a single entry is used to replace a large number of

brackets.

Opening round brackets are represented in NCODE by the negative of the

macro number for (. Single)'s are represented similarly.

Macro numbers range from one to ninety-two. However, certain macro

numbers (including numbers 8 4 onwards) do not correspond to specific

operators, see Appendices 2 and 3« Eight bits are used to represent an

operator entry in NOLINE and NCODE. Thus corresponding to macro numbers

1 to 8 3 , there will be entries in NOLINE ranging from 173 to 255* The

left-most eight bits of an operand entry will always have 0 in the left

most bit position, as NAMES has only S îSS'bits. No confusion will arise,

therefore, if multiple closing brackets are represented in NOLINE and NCODE

by (1&0- + n), where n is the number of closing brackets (up to a maximum

of 12). More than 12 closing brackets can be represented by multiple

entries of the form (l6j? + n), where n £. 12 .

64

3.1 A Few Special Symbols

Special care must "be taken for some symbols. These ares

(i) L , 3 , (and)

(ii) ; inside square brackets

(iii) j outside square brackets

(iv) O and , inner and outer produots.

3.1.1 C , 3 , (and)

, It is possible for a complete sub-expression, or set o f sub-expressions,

to appear within round or square brackets. Hence, it is necessary to leave

a few locations of NCODE empty so that) ’s can be inserted if required.

Consider, for example,

(A t B * C) - E

The above expression is bracketed as

((A + (B -* C)) - E) .

An extra closing bracket has been inserted here betw een C and) .

The number of brackets to be inserted is, of course, depend ent on the

APL statement, and space has been left to insert up to 6*12 closing brackets.

The values of the right and left pointers for NCODE are thus updated

as follows:

RPTR « LPTR - 6 ... (a)

LPTR = RPTR ...(b)

. . ••••..:-V.

65

(By altering (a) to RPTR = LPTR - N , space can be left to insert up to

N closing brackets.)

The effect is represented pictorially in Diagram 3*'l*'l(&)*

It is also necessary to store the original value of RPTR to enab le

subsequent closing brackets to be inserted in the correct place after the

bracketed expression has been dealt with. For example, consider

A + (B « C + E) - D

The required bracketing is

(A + ((B * (C + E)) - D))

Production of bracketing is done in the following order:

(i) Obtain D and then - . Insert closing bracket after D for ~ .

(ii) Obtain) . Reset LPTR and RPTR as described above.

(iii) Obtain E and then + . Do not insert) after E as) is

already present.

(iv) Obtain C and then * . Insert (for + before C and)

between E and) . (Spaces have been left in NCODE.)

(v) Obtain B and then (. No need to insert (for * as (i s

already present. Reset RPTR.

(vi) Obtain + . Insert +(in NCODE. The (corresponds to

bracketing of the - operator and its operands. Now insert) for

left-most + symbol. Note that this) is inserted after D) and

not after E), since RFTR has been reset to its previous value,

(vii) Obtain A . Now insert (A in NCODE for the left-most + .

LPTR

V

RPTR

LPTR
RPTR

intermediate
code

M-6

Intermediate code will now
be produced from position
M-6 downwards, with brackets
(possibly) inserted in locations

M-6 to M-1

Further closing brackets
may have to be inserted
after position N when
the whole bracketed
expression has been handled.

Diagram 3.1.1(a) : Shows the re-positioning of the
pointers LPTR and RPTR for NCODE
when a) is encountered.

67

(v)

LPTR RPTR

(iii)

LFJR

t

RPTR

(iv)

LPTR

)

T
RPTR

LPTR

1

a)

(ii)

LPTR

V/

16/5

) -

f
RPTR

LIjTR
RPTR

(vi)

1 4 0

LJTR

(vii)

r L

))

f

RPTR

Diagram 3.1,1(b) : Shows stages of production of intermediate code
for the expression

A + (B*C+E) - D

Diagram 3*1*1(6) shows the contents of NCODE for stages (i) to (vii) above.

In fact, a stack of RPTR values has to be maintained to allow for

nesting of bracketed expressions. A value is stacked when) or] is

recognised, and is unstacked when the corresponding (or [is obtained.

Any locations of NCODE left unused by the above method are set to 1 60.

This distinguishes them both from identifier indices (having value <127 in

the left-most half) and the negatives of macro numbers. Such entries are

ignored in the left-to-right scan of NCODE.

3.1.2 Semi-colons inside square brackets

Semi-colons are used inside square brackets to separate the subscript

expressions. Since the subscript preceding a semi-colon can be an expression,

it is again necessary to leave space for possible insertion of closing round

brackets.

The number of semi-colons encountered in this way has to be counted so

that the required number of RPTR values will be unstacked when C is obtained.

The number of values to be unstacked in this case is (1 + K), where K is

the number of semi-colons encountered.

Again a' stack of semi-colon counts is maintained to allow for nesting

of subscripted variables.

3.1.3 Semi-colons outside square brackets

Semi-colons are used outside square brackets to separate the components

of a heterogeneous output statement. (Their other use, in function or sub

routine definitions, is discussed in §3*2) . Again it is necessary to le ave

space in NCODE to the left of the semi-colon to allow)*s to be inserted

there. Consider, for example,

6 8

C + A [b + cj j 'I S THE RESULT'

The required bracketing is

(c + A [(b + c)J) ; 'is s s s 'J l t '

\
space required for insertion of) .

In this case, however, the right pointer is not reset when another semi

colon is obtained, as no further bracketing is required to the right of the

semi-colon. Thus, the stack of HPTR values need not be up dated. However,

this stack is updated in the normal way when £ and J are obtained.

3 . 1 . 4 D .1Z3, Inner and outer products

The handling of all these operators is much simplified by the action o

the lexical scan.

f | and have already been distinguished in their uses as input or

output operators. Used for output, Q] and QD are now treated as ordinary

monadic operators.

I I and Q used for input are bracketed as operands, but stored as

operators, (i.e. a 1-byte negative entry is placed in NCODE). Eor examp le,

b « - d

is bracketed as (B <— Q) , whereas

□ <--- 'TITLE'

is bracketed as (Q'TITLE') .

Inner and outer products have also been detected during the lexical

scanning phase. Thus, for example, A -r . * X and B « . + Y are

bracketed as (A + . * X) and (B ° + Y) respectively.

69

70

All other multiple uses of symbols have been distinguished during the

lexical scanning phase and hence present no problems during the right-

to-left scan.

3•2 Function and Subroutine References

These can be divided into two groups:

(i) function and subroutine definitions

(ii) function and subroutine calls.

The actions required for (i) and (ii) above are discussed in §3.2.1

and §3.2.2 respectively.

3.2.1 Function and subroutine definitions

If a function or subroutine definition is encountered during the

lexical scanning phase, the variable IFUNCT is set to 1. The value of

this variable is stored with the other lexical scan output to be reaccessed

line by line. The values of the variables IEXP and IFNI are also

available. ISXP has value 1 for a function definition header statement

and value 0 for a subroutine definition header statement.

IFNI gives the number of variable names encountered in a definition

statement, excluding local variables. Thus, for example, IFNI has value

3 for V A FN B ; C and value !+ for V R <— X FX Y .

The treatment of local variables in a function or subroutine definition

statement has been described in Chapter II, § 2.12 . Local variable names

are not present in NOLINE (corresponding to a header statement). Similarly ,

the symbols <— and ; have been removed.

71

Thus, it is only necessary to insert brackets round the remainder of*

the expression. The symbol 'del' used in function or subroutine defin

itions is thereafter treated as an operator with a variable number of

operands. For example,

V A 4— B FN C ; D

is bracketed as

(V A B FN C)

while,

V F X

is bracke-ted as

(V F X) .

The variable IEXP is tested during expansion of the opening 1 del’

macro to determine whether the code

FUNCTION ----

or

SUBROUTINE ----

has to be produced.

3.2.2 Function and subroutine calls

These are treated as multiple operands and are bracketed during

production of the intermediate code. For example,

C <— A + FN X

is bracketed as

(C <— (A + (FN X)))

No distinction is made at this stage between function and subroutine calls.

3.3 Function Bodies and Function Parameters

Function or subroutine bodies are treated in the normal way except that

the variable IDSL is set to 1 if a closing 'del' is obtained . It does

not appear in the intermediate code, but is tested when a line has been

completely processed to determine v/hether the closing 'del1 macro has to

be expanded.

If a function parameter is itself an expression, the expression is

dealt with in the usual way. Thus, for example,

(i) (A+B) FN C is bracketed as ((A+B) FN C)

(ii) A FN B+C is bracketed as (A FN (B+C)) .

In the case of (i) it must be remembered that the number of identifiers

obtained before (A+B) was 2. This is necessary to keep the bracketing

correct. To organise this, a stack is maintained with values either <6 or 1,

depending on' whether the bracketed expression is'the left parameter of a

function call. The stack is necessary to handle nesting of bracketed para

meter expressions. For example,

((A+B) FN G) F X .

A similar situation applies for subscripted left parameters.

72

3.4 An Example

To complete Chapter III, an example is given showing the conversion of

a line of APL code to intermediate code form.

EXAMPLE 3.4(a) .

Consider the APL statement

A <— B [c +d * e 1 f n x .

The APL line is first read into the.array L U O and then scanned from left

to right. During the lexical scan, entries are set up in NA1.33 and NO LINE

as described in Diagram 3.4(a) .

It has been assumed that

(i) B is non-scalar, FN is a function name and all the other variables

are scalar,

(ii) i + 19 <128 (making the other part of the operand entry zero) .

The variable NOLPTE now has value 19. The array NOLINE, together

with the values of variables NOLFTR, IFUNCT, ISXP and IFNI are now

stored until the entire source input has been lexically scanned.

Y/hen reaccessed later, the array NOLINE is scanned from the right and

the intermediate code shown in Diagram 3.4(b) is generated in NCODE.

In fact the variable names would not be stored sequentially in NAMES

as some of these entries must have been encountered previously.

A comparison of the bracketing method and the reverse polish method

is given in Appendix 6.

73

74

NAMES

entry entry entry entry entry entry entry
for A for B' for C for D for E for FN for X

NOLINE

i 0 -3 i+3 0 -62 1+6 0 -21 i+9 0 -25 |i+12 0 -63 0 i+19 0

t
NOLPTR

The most significant character of the operand entries in NOLINE is

at the right.

Diagram 3«4(a) : Shows the entries set up in NAMES and NOLIN]
for the expression

A <-- B [C+D*E] FN X

—
- 6 4 0 i -3 - 6 4 0 i +3 -62 -64

' I ' 150

'.0 i+6 - 2 1 - 6 4 0 i+9 -25 0 - i+12 1 6 2

'

160

- 6 3 0 i + 1 5 0 i+19

' iJIt

+162

Diagram 3.4(b) Shows the entries set up in NCODE
corresponding to

CHAPTER IV

LEFT-TO-RIGHT SCAN, PRODUCTION OF STACKED

INFORMATION AND ORGANISATION OF MACRO EXPANSIONS

The object of this phase is to expand a series of macros, the order

being deteimined by the brackets inserted during the previous scan.

Macros are mainly expanded on recognition of a closing round bracket,

although there are a few macros which require immediate action. These

immediate action macros are discussed in detail in §4.3 •

During this phase also, some information is produced on a stack. The

stack is accessible from the macro bodies by means of the macro instruction

?<h> , where <n> is any integer < 5 • ?<n> accesses the <n>th

position of the stack, starting from the current base level. Hie organ

isation of the stack is described in §4.1 •

The character array NCODE contains the intermediate code produced durij

the right-to-left scan. This code is now scanned from left-to-right and

information relating to operands and operators is stacked in the manner

described in §4.1 • Ihe pointers RPTR and LPTR define the positions to be

accessed during this scan.

The symbols (and) are used to bracket 3 distinct types of

expressions. These are:

(i) dyadic operator sub-expressions

(ii) monadic operator sub-expressions

(iii) function calls.

77

As was discussed in Chapter III, all operators have been replaced by

by the negatives of their macro numbers and all operands by the indices of

their NAMES entries.

In the case of (iii) above, the operand indices appear in the same

order as the identifiers were used in the source text. The operands

could, of course, be expressions, in which case they would fal l individ

ually into one of the categories (i) to (iii) above.

Sub-expressions of types (i) to (iii) can be combined in any order.

G-roups (i) and (ii) can be distingushed by examining the macro

number. G-roup (iii) is distinguished from the others by the absence o f

an operator entry between the brackets. The organisation of macro

expansions is described in §4.2 .

4.1 Organisation of Stacked Information to be Used at

Macro Expansion Time

Information relating to operands and operators is stored on a double-

ended stack IDSTK, having 5®0 half-words. Entries relating to identifiers

are stored at one end of IDSTK and information pertaining to operators at the

other. This is illustrated in Diagram 4.1(a) .

With the exception of operators requiring immediate action, an entry

is placed on IDSTK each time an operator or delimiter entry is detected in

the scan of NCODE. The entry to be stacked is the macro number for the

operator or delimiter.

'irVhsn an identifier entry is recognised during the left-to~right scan,

the NAMES index for the identifier is stacked on IDSTK.

In general, there will be nesting of the sub-expressions corresponding

4'

I D F T R IOPTR

i
IDENTIFIER

\ /
OPERATOR

INFORMATION
/ t --- - -

INFORMATION

IDSTK

IDPTR is stack pointer for the operand end-of IDSTK

IOPTR is stack pointer for the operator end of IDSTK

Diagram 4.1(a) Shows the method of storage of information
on IDSTK.

variable number of

locations containing

operand information

index of operand

IDLPTR = p

Diagram 4.1(b) : Shows a possible stack formation for operand
entries in a nested sub-expression.

to an input APL line. Thus, there may be several sets of operand and

operator information on 3DSTK at any time. This causes no confusion for

operators, as it is only necessary to stack a new operator entry when

required. However, confusion can arise in the case of operand entries,

for the following reasons.

Suppose operand and operator entries are stacked as they occur until

a closing round bracket is detected. A series of macros is then expanded .

There is an "operand" macro which, v/hen expanded, will produce the required

code for an operand, depending on its type value. The index of th e

operand from which code is to be generated by the operand.macro expansion

has previously been stacked on ID8TK, together with some further information

relating to the operand. This information is discussed inf 4.1.1 and may

involve a variable number of locations of IDSTK.

If a dyadic operator sub-expression has been decoded, then expansion

of the operator macro is preceded by two expansions of an.operand macro,

one for each operand. For monadic operator sub-expressions there is one

expansion of an operand macro followed by expansion of the appropriate

operator macro. (Bracketed function calls are discussed in §4.2 .)

Wien code has been generated for an entire sub-expression, operator

entries are merely unstacked from IDSTK. Operand information is replaced

by information for the result. Since the amount of information to be

replaced is variable, confusion can result in the placing of the result

information. This is to be avoided, as the result information will be

used as operand information during any further expansions of the operand

macro. The method of avoiding such errors is discussed below.

A pointer IDLPTR is maintained to enable only the relevant part of

the operand information to be accessed at any time. IDLFTE is initially

80

zero. The start of a new nested sub-expression is detected by the presence

of an opening bracket in the intermediate code. The method of separating

the new sub-expression from the previous one is as follows:

1. the value of IDLPTR is stacked in the operand part of IDSTK

2. IDLPTR is then updated to the value of IDPTR.

Thus, if IDSTK (IDLPTR) is accessed later, the previous value of

IDLPTR can be obtained. A set of backward pointers for IDSTK is thus

produced. These pointers define the start of the relevant information

for specific sub-expressions. The appropriate operand information is thus

always obtainable at macro-expansion time. The starting position for the

placing of result information is also known.

After a complete sub-expression has been dealt with, IDLPTR is set to

its previous value (given by IDSTK (IDLPTR)). The stack pointer IDPTR

is first reset to the old value of IDLPTR and the result information placed

in this position. The stack pointers are reset and the result information

stacked in the following order:

1. IDPTR = IDLPTR

2. IDLPTR = IDSTK (IDLPTR)

3. IDSTK (IDPTR) = < result information>.

This is illustrated in Diagram 4.1(b) . After dealing with the sub

expression whose operand information is on top of.IDSTK, the pointers IDPTR

and IDLPTR are reset. IDPTR is set to P , the value of IDLPTR, and the

result information is placed in IDSTK. (P) . The pointer IDLPTR is reset to

n , given by IDSTK (IDLPTR). Thus operand information will continue to be

added from the current base level of the stack (now n) .

A further illustration is given in §4*6 , where a complete example is

worked, through.

81

4.1.1 Information stacked before the operand macro is expanded

Operands are handled in the following way at macro expansion time.

The NAMES index for the operand is obtained from IDSTK. This index is

used to provide more information relating to the operand. The form of

the information varies for different types of operands, as discussed below.

All information is placed in consecutive locations above the current base

level of IDSTK.

4«1»1»1 Scalar operands, label names, niladic function names, numeric

non-scalars, literals and empty vectors

The information stacked for operands belonging to this group is described

in Diagram 1+.. i . 1. i (a) .

IDSTK (IDLPTR + 1) contains the index of the identifier in NAMES. This

enables the identifier name to be reproduced on the output code.

IDSTK (IDLPTR + 2) contains the type value for the operand. This

enables all the members of the group to be distinguished.

IDLPTR

Diagram 4«1.1 .1(a) Shows the form of operand information stacked :;c
scalars, labels, niladic functions, numeric non
scalars, literals and empty vectors.

82

4.1.1.2 Constant vectors

■ Che information stacked for operands belonging to this group is

illustrated in Diagram 4.1.1.2(a) .

ID STK (IDLFTR + 1) again contains the index of the operand in NAMES

and IDSTK (IDLFTR + 2) provides the type value.

IDSTK (IDLPTR + 3) contains the number of elements of the operand.
t

This is the only case in v/hich the bounds for a non-scalar are known at

this stage.

IDLPTR

n = the number of elements in the constant vector.

Diagram 4.1.1.2(a) : Shows the form of operand information stacked for
constant vectors.

4.1.1.3 Intermediate results

The simple structure illustrated in Diagram 4.1.1.3(a) is used for

storage of intermediate result information.

■ ' '• - • ' ■■■■ : ■ ■ ■ ■__-L_

83

The entry -10 deserves special mention. For all other types of

operands, a NAMES index is stacked on IDSTK. However, intermediate re sults

are not stored in NAMES and they may appear as operands. A negative entry

is used in place of a positive NAMES index to distinguish intermediate

results from all other operand types.

IDLPTR

Diagram 4.1.1.3(a) : Shows the form of operand information stacked
for intermediate results.

4.1.1.4 Monadic function and subroutine references

The information stacked for such operands is illustrated in Diagram

4.1.1.4(a) .

IDSTK (IDLPTR + 1) contains the NAMES index for the function name.

Successive locations contain information for the function parameter, these

entries taking one of the other forms described. (No new base level

is created between the function name index and the parameter information.)

84

IDLPTR

Diagram 4.1.1.4(a) : Shows the form of information stacked for
monadic function and subroutine references.

4.1.1.5 Dyadic function and subroutine references

The information stacked for such operands is illustrated in Diagram

4.1.1.5(a) .

T'or operands belonging to this and the preceding group, the stacked

information is used to produce a function or subroutine call.

4.1.1. 6 Quad and Quote-Quad input

This case has been included for generality. Consider the APL statement

A B * □

Here the "operands" for + are B and [P . The [J symbol is an indicat

that the right operand for + is to be obtained at run-time. This is

85

Diagram 4.1.1.5(a) : Shows the form of stacked information for
dyadic function and subroutine references.

handled by -placing a -2 entry on IDSTK corresponding to Q .

■ When the + operator is to be handled the operands are dealt with

first and the -2 entry is detected. This indicates the presence of

quad input and the appropriate macro is expanded to read in data. The

data obtained is then used as the right operand for + .

Similarly, quote-quad input is indicated by placing a -1 ' entry on

the identifier part of IDSTK.

8 6

4.2 Organisation of Macro Expansions

It is necessary to distinguish between bracketed sub-expressions and

bracketed function or subroutine calls at macro expansion time. The

following method is used.

3?or each level of nesting an indication has to be stored of the presence

or absence of an operator between brackets. A character stack IBITS, with

stack pointer IBIT, is therefore maintained.

Since an opening bracket indicates a new level of nesting, IBIT is

incremented by 1 when (is recognised.

If an operator entry is encountered, IBITS (IBIT) is set to .T RUE.

When a closing round bracket is obtained IBITS (IBIT) is tested. If its

value is found to be .TRUE. , a sub-expression involving an operator has

to be handled. Otherwise a function or subroutine reference has to be

produced. After-dealing with the bracketed expression, return is made to

the previous level of nesting and IBIT is decremented by 1.

When output code is being produced, it is accumulated on an array

MTEMP of 8 0 characters. If a line of code has been completed, the contents

of MTEMP are transferred to the output stream. Intermediate result code

generated at macro-expansion time is stored in the array ITEMP. It can

thus be re-obtained to be used as an operand for the next operator macro to

be expanded. MTEMP can also be used to accumulate the next line of co de.

ITEMP is a character array of 400 bytes, and it is used to store the

code corresponding to each operand. There is a, pointer IBPTR, which is

used to chain down ITEMP to obtain the required operand. Only the last

two operands need to be accessed at any stage, since an APL operator has a

maximum of 2 operands.

87

I TSMP (IBPTR) points to just before the start of the right-most op erand.

This address in turn points to just before the start of the previous opera nd.

The data structure used is described pictorially in Diagram 4.2(a) .

IBPTR is thus a pointer for a backward chain, which enables the operands

to be re-accessed Yfhen required. Using the above method of stor age and

access for operands, it is immaterial whether the operand is an identifier

or an intermediate result.

"When an intermediate result is placed in ITSMP, a -10 entry is stacked

on IDSTK.

£ - I -......... .

operand
1

operand
2

t

IBPTR

<— :----------------- ITSMP >

Diagram 4.2(a) : Shows the method of storage of intermediate
results in ITSMP.

For a sub-expression involving an operator, the usual procedure to be

carried out when) is obtained is described below.

1. The appropriate operand information is stacked as described in §4.1 •

2. An "operand macro" is expanded. This uses the stacked information to

produce the code corresponding to the operand and store it in ITSMP.

8 8

Use of an operand macro to produce code for operands removes the

necessity to test identifier types in the operator macros. The

operator macro bodies are consequently much simpler. Two operand

macros are used, depending on the operators to be handled. These

and other macros are discussed in Chapter V .

3. Steps 1 and 2 are repeated for a dyadic operator sub-expression.

2f. The appropriate operator macro is now expanded. The required operands

can be reproduced on MTSMP by use of the macro instructions LO and

RO . These provide the left operand and right operand respectively.

The compound macro instructions PL and PR also access the operands and

produce code of the form

Y< integer > = operand .

These are also discussed in Chapter V .

5. The code for the result is stored on ITEMP and the pointers IBIT ,

IDLPTR, IDPTR and I'OPTR are updated.

6. A -10 entry is stacked on IDSTK and the left-to-right scan continues.

For a function or subroutine reference, only steps 1,2,5 and 6 are

carried out.

At each stage, the current bounds for the result are stored in the

array ZCBNDS, from positions 1 to ZCPTR. Since the bounds can be updated

dynamically, code is always produced to update ZCBNDS at run-time. This

gives the user a check on the current bounds of his program at each stage

during its execution.

The type of the result may also vary dynamically (for example, in the

case of the statement X <£— Qj) .

89

The variable MARKER is used to denote the type of the result. T he

possible MASKER values are the type values for the seven types of operand

distinguished.

The uses of the.symbols Q and J in expressions such as

(a) A Dl 3 an&

(b) + / [1] X

are distinguished in the following way. In (a), the symbol £ is immed

iately preceded by an operand (it oould also be preceded by a closing round

bracket, for example, in (L,'ABC')) . This is not the case for (b).

A variable ILSFT is used to distinguish (a) and (b) . This variable

is continually being updated during the left-to-right scan. It is set to

1 when an operand index is encountered and reset to J0 when an operator entry

is recognised. Thus the value of ILEFT can be tested when 1C' is

obtained to determine its use.

The action required for cases (a) and (b) is described in§4«3 •

For most operators, the left operand is handled before the right

operand, which will therefore be the right-most entry in ITEMP when the

operator macro is expanded. There is, however, one notable exception to

this rule. In the case of the left specification operator, the right operand

must be handled first. This is to ensure that the correct type and dimension

information will be associated with the left operand. For example, in the

statement

X <---- 3 4 5

the relevant information for X cannot be obtained until the right operand

has been handled.

"When an operator sub-expression is recognised, ID STK (lOPTR) is

tested to. determine the operator. If a dyadic operator is present, the

stack position IDSTK (iQFTR + 1) must also be tested. This address will

have value 6 7 for an outer product (Ao.+ B is bracketed as (A°+B) and

o is stacked before +). For an inner product, IDSTK (loPTR + 1) will

have value 71 •

This test enables inner and outer products to be handled by the sane

method. ■ >

Compound operations, such as +/2 > present no difficulty as the

symbol ’/ ’ will be recognised immediately when IDSTK (3PFTR) is tested.

The uses of the symbol */* (also '/') for reduction and compression

have already been distinguished during the lexical scanning phase, and

different macro numbers used for each.

Immediate Action Macros -

A number of APL symbols require some ' immediate action when they are

recognised during the left-to-right scan. These are:

(i) • the symbols (and)

(ii) symbols used in indexed expressions viz I, 1 and j

(iii) the symbol j used in heterogeneous output expressions

(iv) the symbols £ and 3 used to specify a co-ordinate value .

4.3.1 The symbols (and)

Recognition of the symbol (during the left-to-right scan indicates

the start of a new level of nesting. The stack pointers IDPTR, IDLFTR

and IBIT (discussed previously) must be updated.

90

91

This action must be carried out immediately so that information for

the new sub-expression (or function or subroutine call) can be stacked.

The necessary action is produced by expansion of macro number 6 4 .

Recognition of the symbol) during the left-to-right scan indicates

that a complete sub-expression (or function or subroutine call) can no;? be

dealt with. More information is stacked on IDSTK corresponding to the

identifiers appearing within brackets. The relevant code can no;? be

produced on the output stream. This process normally involves th e expansion

of a series of macros. Operand code is produced and stored temporarily in

the array ITEMP. It is then obtained from ITEMP as required when an opera tor

macro is being expanded.

IDSTK and IBITS are then unstacked as described previously and the left-

to-right scan continues.

4.3«2 Symbols used in indexed expressions

Consider firstly the code produced corresponding to the APL statement

A <— B [l ; J + 6j + 1

where A, I and J are scalars and B is non-scalar. The code is o f the

form shown below.

(i) is. 1! ts.

(ii) ZB1 = ZPOINT (ZPT)

(iii) ZPT = ZPT + 1

(iv) ZINDX (ZB1 + 1) I

(v) ZINDX (ZB1 + 2) J + 6

(vi) ZPOINT (ZPT) ZB1 + 2

92

(vii) CALL STARTS (B , 'i, - --)

(viii) CALL PIND1 (--- B ^ g Yn)

(ix) ZPT = ZPT -1

« Yn+1 = Yn

(xi) XP(HAHGR.KB.0) GOTO 180

(xii) A = Yn+1

(xiii) &0T0 101

(xiv) 100 . CALL SP3CS *n+1, ----)

(xv) • 101 CONTINUE

Lines (x) to (xv) are required so that specifications of the following

types may he handled oorreotly. , r-

(a) scalar f— scalar expression

(b) vector t— non-scalar expression

(c) scalar <— non-scalar expression (implies type change

of scalar)

These lines are obvious candidates for optimisation at a later stage, (see

Chapter VIII, § 8 . 3) . Note that B. , is- used to mean the index for
index

B in NAMES. The lines of code have been numbered for ease of reference.

It can be seen that no reference is made to the non-scalar B in the

code produced until after the subscripts-have been handled and the symbol

*1 » obtained. However, the index for B is stacked on its recognition.

In order to avoid confusion when dealing vrith the subscript.expressions,

: X A - D u L l J'i ii; :: L; _■ Cl ■ i-2 - V A" AxX A:AAAA AtAxT A X '1 AAAASx »xW i.-X • AS

therefore, a new base level is created on IDSTK when 1 is obtained.

Lines (ii) and (iii) are also produced corresponding to the symbol 1D .

Some immediate action is thus required for the symbol * E*

The symbols *;* and O ' * used in indexing serve as delimiters for

the preceding subsci'ipts. Y/hen either of the above symbols is x’ecognised,

therefore, the code corresponding to the subscripts can be produced. After

the code for a subscript has been generated, the subscript information can then

be unstacked. Any further subscript information obtained can be stacked in

turn on ID3TK, starting from the base level set up when 1C1 was recognised.

Line (iv) is produced when *;* is obtained, while lines (v) to (ix)

are produced when 0 1 is recognised. It can be seen that part of th e

action required for ’ and *]1 is the same. Some additional action is

required for since it delimits not only a subscript expression, but also

the complete indexed variable.

The code Y<integer> is stored on ITEMP to be used as a parameter for

the + macro, the next to be expanded.

Return must be made to the previous base level when an indexed expression

has been dealt ’with. The result is an intermediate expression and the value

“10 is stacked to indicate this type of operand. However, in thi s case the

value “10 should overwrite the non-scalar index in IDSTK.

Thus, all three symbols, 1[’, '] 1 , are handled by expansion of

immediate action macros. The action required for each is outlined below.

The symbol *l-t

1. Produce code of the form shorn in lines (ii) and (iii) above.

2. Increment I3IT by 1

93

3. Increment IDP TR by 1

4. Set IDSTK (IDPTR) = IDLFTR

5. Set IDLPTR = IDFTR

The symbol 1;1

1. Produce code of the form shown in line (iv) above

2. Set IDPTR =' IDLPTR

The symbol '-I 1

1. As for step 1 for the symbol ';1

2. As for step 2 for the symbol 1;’

3. Produce code of the form shown in lines (vi) to (ix) above

4. Set IBIT =. IBIT - 1,

5. Set IDPTR = IDLPTR - 1

6. Set IDSTK (IDPTR) = -10

7. Set IDLPTR = IDSTK (IDLPTR)

The above illustrates the action required for a very simple array element

reference. It should be noted that the sub-expression J + 6 would be

bracketed and dealt with in the usual way. ’iVhen the subscript J + 6 was

handled on recognition of ' , therefore, a -10 entry would appear on the

stack. The'code corresponding to J + 6 would thus be obtained from ITSLiP.

The code produced corresponding to a non-scalar variable name is described

in detail in Chapter V. It is obviously more complex, as every element of the

non-scalar has to be accessed.

4.3*3 The symbol *; * used in heterogeneous output expressions

The constituents of a heterogeneous output statement are handled separately

Each constituent is delimited by a semi-colon (or by a blank in the case of

the last constituent).

An immediate action macro is expanded when 1;1 is encountered. (inis

use of *j1 is distinguished from its use as a subscript separator in indexed

expressions by the absence of enclosing square brackets.)

The macro produces a WRITE statement to write out the constituent of the

heterogeneous output statement. A FORMAT statement is also produced. Con

stituents can be literal or numeric and two output statements are produced in

each case. .The FORMAT statements are such that all parts of a heterogeneous

output statement appear on one line.

The stack pointers IDLPTR and IDFTR are both reset to j6 after handling

a constituent of a heterogeneous output statement.

The variable IHET is set to 1 whenever a heterogeneous output statemen

is detected. Its value is tested at the end of a line. In thi s way the

last constituent can be detected and handled correctly.

A .3-4 The symbols f C1 and *1* used to specify a co-ordinate value

An example of the above use of * D and '3 1 is in th e statement

A + / [1] X

Again a new base level is created on IDSTK when ' is recognised. This

use of 'C1 is distinguished from its use in indexing by the presence of an

operator immediately to the left of * C1 . The variable ILEFT (mentioned

previously) will have value 0 in this case.

ILEFT has to be updated within square brackets (so that nested

co-ordinate specifications can be detected). Thus, ILEFT cannot be used to

distinguish indexing and co-ordinate specifications when '3' is recognised.

95

S 6

For this purpose another variable, NCOORD, is used. It is increased by 1

whenever 1[' is obtained in co-ordinate specifications and code of the form

ZCDPTR = ZCDPTR + 1

is generated. The scan then continues in the normal manner until 'J1 is

obtained. NCOORD is decreased by 1 and, if non-zero, macro number 19 is

expanded to produce code of the form

IF (ZCDPTR.GT. ZLIM14) CALL C-VOVER (14, & 100)

ZCOOKD' (ZCDPTR) = <expression inside square brackets >

1J00T CONTINUE

ZCOORD is a stack with pointer ZCDPTR in which successive co-ordinate

values in an expression are stored. Before stacking another value in

ZCOORD, a test is made for overflow. If the test is satisfie d, GVOVER is

invoked to print out a warning message.

(The value ZCOORD (ZCDFTR) is tested in the function FIND, used to

handle the non-scalar reference. The required co-ordinate value can thus

be obtained,)

A stack is required to handle nesting of co-ordinate specifications.

Now consider the example,

4s [l] A + f> [2] (X - Y + Z) + B

Then code of the form

«
t
1

ZCDPTR = ZCDPTR + 1
I
I

ZCOORD (ZCDPTR) = 1

I
f
I

ZCDPTR = ZCDPTR + 1
i

I
ZCOORD (ZCDPTR) = 2

f
I

■ ■ ■ 7. P.- - -v • ' i J _ _ _ _ _ _ ______

The "scope" of [̂ 2] extends over X - Y + Z . After dealing with this

expression, the value 2 must he unstacked from ZCOOKD.

Action of this kind is organised by maintaining a stack of bracket

counts. The count is increased for (and decreased for) . Thus,

only when the matching) has been dealt with is ZCDPTR decreased. At

this stage, code of the form

ZCOOKD (ZCDPTR) = 0

ZCDPTR = ZCDPTR - 1

is generated.

The stacks IDSTK and IBITS are then updated, and the scan continues.

4.4 Symbols Handled by Production of a ’FIND1 Call with

First Parameter Non-zero

The APL operators handled by producing a call of the function FIND are

listed in Chapter I, §1.2.5 . (For occurrences of these functions with

(right) parameters not numeric non-scalars, similar techniques are applied

using other functions. These functions are also listed in Chapter I.)

There are 14 APL operators in the above list. The first parameter o f

a FIND call has value 0 to 14, 0 indicating the normal accessing method,

and 1 - 1 4 one of the methods for a specific operator.

The method of handling the above operators is as follows. The sub

scripts for the required element are set up in consecutive locations of the

array ZINDX. A function is applied to these elements to produce the desired

indices for the result.

97

Th u s , f o r e x a m p le , s u p p o s e th e (3 » 2) e le m e n t o f <j)A i s re q u ire d ,

w h e re A i s a 4 x 5 a rra y . Th e n th e r e s u l t i s o b ta in e d b y a c c e s s in g th e

(3 > 5 - 2 - 1) i— (3 , 4) ^ e le m e n t o f A . A s im p le f u n c t io n h a s b e e n a p p lie d

t o th e s e c o n d s u b s c rip t a n d th e n th e n o rm a l a c c e s s in g m e th o d (d e fin e d b y

FIN D (0 , — —)) i s a p p lie d . Th e sa m e p rin c ip le i s a p p lie d to th e o t h e r

o p e ra to rs i n th e l i s t .

Th e r i g h t o p e ra n d f o r o n e o f th e a b o v e o p e ra to rs c a n b e a n e x p re s s io n .

A l l n o n - s c a la rs i n th e e x p re s s io n w o u ld th e n h a v e to b e a c c e s s e d i n th e

m a n n e r d e te rm in e d b y th e o p e ra to r. Th u s , th e f i r s t p a ra m e te r v a lu e f o r th e

FIN D c a l l h a s to b e re ta in e d th ro u g h o u t th e s c o p e o f th e o p e ra to r. To

a llo w f o r n e s t in g o f e x p re s s io n s in v o lv in g th e a b o v e o p e ra t o rs , a s ta c k o f

f i r s t p a ra m e te r v a lu e s , IF IN D , i s m a in ta in e d . C o n s id e r, f o r e x a m p le , th e

e x p re s s io n

<|)(©X) + Y

D u rin g th e r i g h t - t o - l e f t s c a n , t h i s e x p re s s io n w o u ld b e b ra c k e te d a s

(< K (© x) + y))

Th e f o l lo w in g a c t io n i s re q u ire d d u rin g th e l e f t - t o - r i g h t s c a n .

1 . R e c o g n it io n o f (

A n e w le v e l i s p ro d u c e d o n ID S TK b y u p d a tin g ID LP TR a n d

ID P TR , i . e . b y s e t t in g s

ID P TR - ID P TR + 1

ID S TK (ID P TR) * ID L P TR

ID LP TR - ID P TR

2 . R e c o g n it io n o f §

S e t IF N P TR - IF N P TR + 1

S e t IF IN D (IF N P TR) - 1

. 9 8

99

Set IOPTR = IOPTR - 1

Set IDSTK (IOPTR) = macro number for cf)

3. Recognition of (

As for 1 above

4. Recognition of (

As for 1 above

5. Recognition of ©

Set IFNPTR = IFNPTR + 1

Set IFIND (IFNPTR) = 3

Set IOPTR = IOPTR - 1

Set IDSTK (IOPTR) = macro number for 0

6. Recognition of X

Stack the index for X on IDSTK

7. Recognition of)

Examine IDSTK (IOFTR) - Detect macro number for 0 .

Expand an operand macro to produce code for X . This

involves a call of FIND having first parameter with

value 3 (obtained from IFIND stack).

. Now set IFNPTR = IFNPTR - 1 .

The scope of 0 is exceeded now and therefore the first

parameter entry (value 3) can be removed. IFIND (IFNPTR)

now has value 1. This is the correct value since the scope

of <£> has not yet been exceeded.

100

8. Recognition of +

Set I'OPTR = IOPTR - 1

Set IDSTK (lOPIR) = macro number for +

9. Recognition of Y

Stack the index for Y on IDSTK

10. Recognition of)

Expand operand macro twice to produce code for +

operands and store the code in ITEMP. Then expand

the + macro, which obtains the operands from ITEMP

when required.

Expansion of the macro for the right operand results in

production of a KIND call with first parameter value 1.

11. Recognition of)

The intermediate result code required for cj) has already

been stored in ITEMP. The variable IFNFTR is then

decreased by 1.

The resulting expression involving two YSTORE elements would be stored

on ITEMP. IPIN'D (XFNFTR) retains its value over the entire ra nge of an

operator, that is, until the closing round bracket for the symbol has been

dealt with.

The macro corresponding to the above operators only requires to unstack

the top value from IPIND.

The user can specify that an operation of the above type is to be

applied along the co-ordinate, for example 4s C j 3 A .

101

The above method can still be applied by simply producing code of the

form

ZCDPTR = ZCDPTR + 1

ZCOORD (ZCDPTR) = J

when [J j is recognised. This is done by a macro expansion. The value

of ZCOORD (ZCDPTR) is tested in FIND to ensure that the operation is

applied along the required co-ordinate.

There are a number of dyadic operators in the above group. Th ese are

handled in a similar way.

Consider the left-to-right scan for

(C <(> (A + B))

where C, A and B are non-scalar.

When <j> is recognised, the value 5 is stacked on IFIND. Th e index

for C , the left operand of <J> , must now be included in the relevant FIND

calls.

Corresponding to the above expression, code of the following form would

be generated.

i
i
i

Start of looping

instructions

■
i
i

< label > CALL FIND1 (5,1,cindex*^ndex*— Y < integer 1 > ---)

CALLPIND1 (5,1,C^aex,B.ndex,--- Y<inteser 2 > —)

i

The code Y < integer 1> + Y < integer 2> would then be placed on IT3MP.

102

A stack is maintained to allow for nesting of dyadic operators of the

above group. This ensures that the correct NAMES index is inserted as

third parameter of the FIND call.

The left operand of a dyadic operator of the above group need not be a

numeric non-scalar. Thus a second stack, containing type values (to be

used as second parameters in FIND calls) is also maintained.

Expressions are not allowed as left parameters for dyadic operators of

the above group. This avoids the necessity for maintaining two sets of

current bounds, one for the left and one for the right operand.

4.5 The Handling of □ and □

The symbols Q and Q used for output are very straightforward. For

example, the statement

□ <-- 'THIS IS AN EXAMPLE■ '

would be bracketed as

(□ ' THIS IS AN EXAMPLE'').

|] and used for output can thus be treated as any other monadic

operators.

D a n i □ are slightly more complex when they appear in input

expressions.

A temporary variable is introduced to store the values read in when

' □ □ . is encounteredv When □ or Q used for input is met

in the left-to-right scan, the values -2 and -1 respectively are stacked

on IDSTK. When the next) is encountered and an operand macro is to

be expanded, the value of IDSTK (IDPTR) is tested. If it is I = -1

103

or I = -2 , then macro number (i + 8 3) is expanded. This produces code

to read in the required valiaes.

Consider for example,

A <— , □

This is bracketed in NCODE in the form

(a <— (, □)) •

The action required is outlined below.

1. Recognition of (.

Create a new base level on IDSTK

2. Recognition of A

Stack the index for A in NAMES on IDSTK

3. Recognition of 4--

Set IDPTR = IDPTR - 1

Set IDSTK (IDPTR) = macro number for <

4. Recognition of (

Create a new base level on IDSTK

5. Recognition of ,

Set IFNFTR = IENFTR + 1

IFIND (IFNPTR) = 4

6. Recognition of Q

Stack -2 on operand part of IDSTK

7.. Recognition of)

Expand macro number 81 to produce code for the input operation

required. Store the result variable in ITSMP and return to

the previous level of IFIND. (The values read in are stored

and treated as a vector by applying the function IRFIND (FIND

for intermediate results).)

The stacks IDSTK and TBITS are then updated.

8. Recognition of)

The analysis now proceeds in the usual way.

It is essential always to test for the symbols Q and Q used in

place of operands, and expand the appropriate macro if the test is sa tisfied.

4.6 An Example Showing the Process Carried Out During

the Left-to-Right Scan

Consider the left-to-right scan applied to

A < --- B [C + D * E] FN X

The reader is referred to Diagrams 3«4(a) and 3»4(b) showing the states

of the arrays NAMES, NOLINE and NCODE corresponding to the above statement.

B is non-scalar, FN is a function name and all the other variables are

scalar.

At the start of the left-to-right scan, the variables IDLPTR, IDPTR and

IBIT are zero, and TOPTR has value . IDSTK is set to zeros and the

elements of IBITS are false. The action carried out is described below.

104

1. Recognition of -64 (macro number for (is 6 4)

. Set IDPTR = IDPTR + 1

Set IDSTK (IDPTR) = IDLPTR

Set IDLPTR = IDPTR

Set IBIT = IBIT + 1

2. Recognition of index for A

Set IP,'PTR = IDPTR + 1

Set IDSTK (.IDPTR) = index for A

3. Recognition of -3 (macro number for <— is 3)

Set IDPTR = IOPTR - 1

Set IDSTK (IOPTR) = 3

Set IBITS (IBIT) = .TRUE.

4. Recognition of ■ - 6 4

As for step 1 above

5. Recognition of index for B

Set IDFTR = IDPTR + 1

Set IDSTK (IDPTR) = index for B

6. Recognition of -62 (macro number for £ is 62)

Produce 2 lines of code as described in |4«3 •

create a new base level in IDSTK as described in

step 1 above.

7. Recognition of -64

As for step 1 above.

Also

106

8. Recognition of index for C

Set IDFTR = IDFTR + 1

Set IDSTK (IDPTR) = index for C

9. Recognition of -21 (macro number for dyadic + is 21)

Set IOFTR s IDPTR - 1

Set IDSTK (IDPTR) = 21

Set IBITS (IBIT) = .TRUE.

10. Recognition of -64

As for step 1 above

11. Recognition of index for D

Set IDFTR = IDPTR + 1

Set IDSTK (IDPTR) = index for D

12. Recognition of -25 (macro number for dyadic * is 25)

Set IDFTR * IDPTR - 1

Set IDSTK (IDFTR) = 25

Set IBITS (IBIT) = .TRUE.

13. Recognition of index for E

Set ' IDPTR = IDFTR + 1

Set IDSTK (IDPTR) = index for E

14. Recognition of -65 (macro number for) is 6 5)

Test IBITS (IBIT). This has value .TRUE., indicating a

sub-expression. Test IDSTK (IDFTR). This ' has value 25,

a dyadic operator macro numbex;, IDSTK (IDPTR + 1) has

value 21, and thus an inner or outer product has not been

detected.

107

Now handle the operands for * . Produce more information

on IDSTK for D as described in §4.1 • Then expand operand

macro and store the code for D, Repeat the above process

for E.

Now expand the * macro and produce the code (D**!), which

is placed on ITEMP (the entries for D and E on ITEMP are

removed).

Set IBIT IBIT - 1

Set IDPTR = IDLPTR

Set IDLPTR = IDSTK (IDLPTR)

Set IDSTK (IDFTR) = -10

Set IOPTR = IOPTR + 1

15. Recognition of -65

Using a similar process as for step 14 above, the code

(C + (D**E)) is stored in ITEMP.

16. Recognition of - 6 3 (macro number for is 6 3)

Produce code as described in §4*3 •

Then Set IBIT = IBIT - 1

Set IDPTR = IDLPTR - 1

Set IDLPTR = IDSTK (IDLPTR)

Set IDSTK (IDPTR) = -10

17« Recognition of index for PN

Set IDPTR = IDPTR + 1

Set IDSTK (IDPTR) = index for PN

18. Recognition of index for X

Set ID RPR = ID RPR + 1

Set IDSTK (IDRIR) = index for X

19. Recognition of -65

Test IBITS (IBIT). This has value .PALS2., indicating a

function or subroutine call. More operand information is

set up on IDSTK and an operand macro is expanded to handle

the function or subroutine call.

Then Set IBIT = IBIT - 1

Set IDRIR = IDLPTR

Set IDLPTR s IDSTK (IDLRPR)

Set IDSTK (IDFTR) = -1 &

2f. Recognition of -65

Carry out a similar process as for step 14 above.

Note that,, for convenience, two consecutive entries of -65 have twic e

been used in place of an entry of +162. This is simply for ease of

explanation.

Also, in describing the processes carried out, test for overlap of the

stack pointers IBPTR and IDFTR have been omitted. Similarly, an overflow

test for IBITS has been omitted.

108

109

CHAPTER V

THE MACRO METHOD

This chapter describes the method of producing target-language code

using macros. A complete list of macro instructions and their functions

is given in Appendix 3«

1

1 Macro bodies are stored on disc. At the time of' a macro expansi on,

all the necessary parameter information has been stacked on IDSTK, as des

cribed in Chapter IV.

The start address for a macro body is obtained from the table MCADDR.

To expand macro number N, for example, the start address is given by

MCADDR (N). Macro bodies are in card image form and the first line , IV,

of any macro body is given by ^

XV = <start address> /80 + 1

50 records, starting from the iv"*'*1, are then read into an array MACROS.

The first position to be accessed within the starting record is given by

IP = <start address> - (rV-l)*8^

Thereafter, each character in turn of the macro body is accessed until the

end of the macro body is reached. Access is sequential within a macro body

unless altered by use of branching instructions. Such instructions are

described in §5.1.6 . Instructions within a macro body are separated by

two blank characters. All components of a macro instruction are separated by

1 blank character and labelled instructions have 1 blank between : and'the

corresponding instruction, (see §5.1.6) . • •

Macros are the means by which target language code is accumulated on

the array MTEMP until ready to be transferred to the output medium. The

contents of M TEMP will be transferred to the output medium

(i) v/hen a complete line of code has been produced

(ii) when a character is to be stored on MTEMP and the pointer TEMPR

has value 73* (lines of FORTRAN code do not exceed 72 characters).

For case (ii) above, a continuation line is produced and the process

is repeated until the line is complete.

There is continual interchange .between the arrays ITEMP and MTEMP.

The function of ITEMP has been discussed in Chapter IV. It is a temporary

storage place for operands. The method of transfer between MTEMP and ITEMP

is discussed in §5*1.2 . Transfer of information from IDSTK to MTEMP is

described in §5.1.5 • §5.1 categorises the macro instructions into a

number of different groups.

5.1 Groups of Macro Instructions

All the macro instructions defined fall into one of the groups listed

below.

1. Instructions which access MTEMP.

2. Instructions which transfer information between MTEMP and ITEMP.

3. Instructions which produce lines of code on the output stream.

4. Instructions which produce code on MTEMP.

5. Instructions which transfer information from IDSTK to MTEMP.

6. Branching instructions.

7. Terminating instructions.

8. Looping instructions. ____

9. Instructions which update pointers.

10'. Instructions which set the values of global variables.

11. Instructions to increment global variables.

12. Instructions to calculate expression values and store on MTEMP.

Ill

§5*1.1 to §5.1.12 describe each of the above groups in more detail.

5.1.1 Instructions which access M TEMP

Target language code can be placed on MT3UP using the macro instruction

<f0 -- TEXT /0

This instruction inserts the string -- TEXT on I.ITEMP, starting from

the current position of MTEMP. The pointer TEMFS. for the array MTEMP is

updated as required during the code production stage.

The macro instruction

&

transfers the contents of MTEMP to the output medium. This instruction is

used when a complete line of code has been accumulated on MTEMP. In addition,

there are a number 'of composite macro instructions. These produce lines of

code (first accumulated on MTEMP) on the output medium. Examples are given

in §5.1.3 .

5.1.2 Instructions which transfer information betTfeen MTEMP and ITXIP

Let us suppose that an operand macro has been expanded to produce code

for an operand. This is accumulated on MTEMP. When complete, use of t he

macro instruction

S

causes the code to be transferred from MTEMP to ITSMP. This is done in th e

following manner. The contents of MTEMP(7) to MT3MP(T3MPR) are transferred

to locations (lBFHt+1) to (XBPTR + TEMFR-6) of ITEM?. ITSivIP (lBPTR+TEMPR-5)

is then set to IBP TR, and' IBPTR is updated to (J23PTR+TEMPR-5) .

Thus, for example, suppose TEMPR. is 10, IBPTR is 1 and MTEiJP(7) to

MTEMP(10) contain the characters ABCD . After using the S instruction,

the contents of ITEMP are

jef,A,B,C,D,1-----

and IBPTR i3 6. ■

■ In addition, MTEMP is reset to blank characters and TEMFR is set to 7j
the starting position for most lines of FORTRAN code. '

The pointer TEMPR is automatically reset to 7 after clearing MTEMP. This

can be over-ruled using the macro instruction,

T <integer>

where <integer> can be any positive integer i such that 1 < i < 8$.

This instruction is described iri §5.1.11 .

The macro instruction S+ is similar to the S instruction, except

that MTEMP is not cleared after the transfer.

The operand macros (referred to above) are described in detail in

§5.2 .

Now fet us suppose that the two operands ABCD and XYZ for a dyadic

operation have been stored on ITEMP by the above method. Suppose that

ITEMP has been set up as shown in Diagram 5.1.2(a), and that IBFTR has value

10. Then the left operand, ABCD, can be reproduced on MT3MP, when

required in an operator macro body, by use of the macro instruction

LO

This instruction transfers the contents of ITEMP (lX+1) to ITEMP (IY-1) to

MTEMP, starting from position TEMER. IX and IY are given by

112

113

IY

IX

I TEMP (IBPTR)

ITEMP (IY)

ITEMP

C D 1 X Y Z 6

JT
IBPTR

Diagram 5*1 »2(a) : Shows a possible structure for
the array ITEMP .

The contents of ITEMP are unaltered by this instruction. However, a

marker, NLEFT, is set to 1 to indicate that two entries are to be removed

from ITEMP after the right operand, XYZ, is accessed. If the entries had

been placed in ITEMP in reverse order (and thus IREV is set to 1) then the

•variable NLEFT is set to 2. In this case no entries are to be r emoved

from ITEMP. The variable NLEFT is tested when the macro instruction RO

(see below) is handled. The number of entries to be removed from ITEMP is

thus determined.

Thus, if ITEMP has the structure shown in Diagram 5*1-2(a) and the macro

instruction LO is executed, then MTEMP will have the structure shovm in

Diagram 5• "1 • 2 (b) , assuming MTEMP has just been cleared-.

The right operand for a dyadic operator can be transferred from ITEMP

to MTEMP by use of the macro instruction

RO

This instruction transfers the contents of ITEMP (IY+1) to ITEMP (iEFTR-l)

to MTEMP, starting from position TEMPR.. IY is as defined previously.

NLEFT is tested to determine the number of entries to be removed from

ITSMP. Thus,

if NLEFT is j6 , 1 entry is removed

if NLEFT is 1 , 2 entries are removed

if NLEFT is 2 , 0 entries are removed.

Thus, if the macro instruction RO is now used, the structure of MTEMP

would be as given by Diagram 5*1-2(c) . After using this combination of

instructions, ITEMP would be empty and IBPTR would have value 1.

The instruction R0+ is similar to RO , except that ITEMP remains

unaltered by the instruction.

<------------------------ MTEMP »

. 114
i . .

C D

t
TEMPR

Diagram. 5.1.2(b) : Shows the structure of MTEMP obtained by usi ng
the LO instruction for an ITEMP configuration
as shown in Diagram 5«1*2(a) .

A third macro instruction R1 may be used. This instruction transfers

the right-most entry of ITEMP to MTEMP, but first removes any enclosing

round brackets. Similarly, the instruction R1+ is defined.

The composite instructions PL and PL+ are also defined. These

produce code of the form

Y <integer> = < left operand code>

where <in-eger> is any positive integer and <left operand code> is

obtained from ITEMP.

115

MTEMP

r

TEMPR

The pointer TEMPR has value 14.

Diagram 5.1.2(c) Shows the structure of MTEMP obtained by using
the instructions LO and RO for an ITEMP con
figuration as shown in Diagram 5.1.2(a) .

NLEFT is set by use of PL, but is unaltered by use of PL+ .

Similar effects can be produced using the macro instruction sequences

$ Y <integer> =fo LO

ejol <integer> L0+

respectively (assuming MTEMP had just been cleared).

Similarly, the macro instructions PR and PR+ are equivalent to the

instruction sequences

ajid

$Y<in teger> = $ RO

and
'< integer> = % ROt-

respectively, again assuming that MTEMP had been cleared previously.

5.1.3 Instructions which produce lines of code on the output stream

The majority of the macro instructions defined fall into this category.

They are, in fact, composite instructions replacing groups of other

instructions. Examples are:

(i) C S

This macro instruction produces a number of non-executable statements

(for example, INTEGER, REAL, IMPLICIT, COMMON, EQUIVALENCE). They are

generated after the code for a function header statement.

(ii) Z <integer>

This macro instruction produces code of the form

Z <integer 1> = < integer >

where <integer 1> is a positive integer and <integer> is any integer.

This instruction is often used in conjunction with

(iii) Z+

The macro instruction Z+ produces code of the form

Z <integer 1 > = Z <integer 1> + 1

where < integer 1> has been previously introduced by a statement of type

(ii) above.

5.1.4 Instructions which produce code on MTEMP

These instructions are dependent on the current operator being handled,

that is, on the current value of IDSTK (IOPTR). Examples are:

(i) RL

This results in production of one of the forms

.LT. .La .EQ. .GE. . GT. .NE.

on MTEMP, depending on whether IDSTK (IOPTR) has value 6,7,8,9,10 or 11

respectively.

116

117

(i i) A O

This results in production of

.AND. (a)

or

OR. (b)

on MTEMP, depending on the value of IDSTK (lOPTR). • For value 4 S (a) is

produced; for value 5, (h) is produced. These values correspond to t he

operators A and V respectively.

5.1.5 Instructions which transfer information from IDSTK to MTEMP

Such instructions involve use of the ? symbol. For example,

transfers the value of IDSTK (IDLPTR + <expression>) to MTEMP. The value

■ is placed starting from position TEMPR of MTEMP. This is the method of

obtaining parameter information inside macro bodies.

<expression> is terminated by either a blank or a comma. It may

contain arithmetic expressions whose operands are integers or any of the

global variables listed below:

(i) IND - gives the current value of <integer> to be used in

? <expression>

expressions of the form

Y <integer> = - - - - -

It is updated as described in §5.1.11 .

(i i) I K E gives the current value of <integer> to be used in

expressions of the form

ZB <integer> = ZPOINT (ZPT)

(see Chapter IV).

-/ v:

(iii) S<integer > - gives the current value of SS(<integer>) . The

function of array SS is described in§5«1*8 .

Bracketing is alloiwed in the above expressions. Brackets may be

nested up to a maximum of 10 levels deep.

The form ?? < expression> or ? (- expression involving ? ---)

may be used, but ? may only be nested to two levels deep.

(A transition matrix is used to accumulate the expression value up to

the terminating blank or comma. The value is then converted to character

form and transferred to MTEMP.)

Valid examples are:

(i) ?4

This transfers the contents of IDSTK (IDLPTR + 4) to MTEMP.

(ii) ?(1 + (IND - 1) * 3)

This transfers the contents of IDSTK (IDLPTR + 1 + (IND - 1) * 3)

to MTEMP.

5.1.6 Branching instructions

Branching macro instructions can be

(i) unconditional

(ii) conditional

For both (i) and (ii) there must be an associated labelled macro

instruction. Labelled instructions take the form

118

< label number >: <macro instruetion>

119

< label number> is any positive integral value which is unique for a given

macro body. The form < macro instruction > represents any valid macro

instruction.

For case (i), there will be a corresponding statement of the form

- < label number >

This statement will cause a break in the sequential access of the macro

bodies. The next instruction to be obeyed will then be <macro instructions

For example, consider the following macro body:

= 1

'~ (a)

1 :

When the instruction = 1 is reached, the subsequent instructions (a)

will not be obeyed. The next instruction to be obeyed will be that labelled

1.

Branching forwards or backwards is handled in the following way. A

2-dimensional table, MLTAB, is maintained. For a particular row, the

first entry gives a label number value and the second the pointer value

(given by variable ICLPTR) for the array MACROS.

During the sequential scan of MACROS, if a labelled instruction is

encountered, an entry is set up in MLTAB. When a branching instruction is

met, for example

= n ,

MLTAB is scanned for an entry corresponding to n . If an entry exists,

then a backward jump is made to the correct instruction (using the second

part of the MLTAB entry).

Consider, for example,

120

6 : ------

= 6

When the instruction = 6 is encountered, MLTAB will have an entry of the

form

6 n

where n is the value of ICLPTR corresponding to the blank after 6 : .

A jump can thus be made to the correct point in the macro body.

If an entry does not exist in MLTAB, then a forward jump has been

requested. When this occurs, MACROS is scanned sequentially for a labelled

instruction. If a labelled instruction is met, an entry is set up in MLTAB.

If the labelled instruction obtained is not the required one, the process is

repeated until the correct instruction is found. Sequential execution of

macro instructions is then resumed from the point reached.

MLTAB has 100 rows and is accessed sequentially. This method allows

nesting of label numbers to any depth. Eor example,

1 : 2 : < macro instruction>

would present no problem.

MLTA3 is cleared on exit from each macro body.

121

A number of conditional branching instructions have been defined. In

general these take the form

IF <g.v.n> < relational operator> m n

where (i) <g.v.n> is a global variable name

(ii) Creiational operator> is one of EQ LT • L3 G-E G-T EE

(iii) m is a positive or negative integer

(iv) n is a positive integer.

Here the value of the global variable is compared with m . If the test

is satisfied, a jump is made to the macro instruction labelled n . Ot her

wise, sequential execution continues.

Thus, for example, if IDSTK (IDLPZS + 1) has value 2 and the macro

instruction

IE ?1 EQ 2 4

is executed, then a jump will be made to the macro instruction labelled 4*

If, however, IDSTK (IDLFTR + 1) has value 3> no jump will be made ar.d the

instruction following the conditional branch will be executed next.

The allowable forms of the conditional branch instruction are given in

Appendix 3*

5.1.7 Terminating instructions

The "unconditional stop" macro instruction is

U.se of this instruction causes immediate exit from the macro body.

A number of "conditional stop" instructions have been defined. These

take the form

IF <g.v.n.> Crelational operator> m ^

where <g.v.n>, <relational operator> and m have the same significance as

in § 5*1.6 .

The allowable forms are again listed in Appendix 3*

An example is

IF ?3 LT 4 #

This instruction means "if parameter 3 is less than 4 3 stop. Otherwise,

continue with sequential execution of macro instructions". (Parameter 3

is given by IDSTK (IDLPTR + 3) •)

An interesting use of the stop instruction is when preceded by ROM.

The sequence

ROM #

causes execution of a macro to be interrupted while another macro is expanded.

Return is afterwards made to the point in the original macro following 4 •

For example, suppose the macro below is being executed

122

ROM 4 4 2: —

when ROM ^ is reached, there is an immediate exit from the macro b ody. A

second macro is expanded and then expansion of the above macro is resumed at

label 2.

123

This facility was introduced to allow for the APL features of

(i) reduction

(ii) inner product

(iii) outer product

The handling of these features is described in detail in §5*3 and§5»4 .

5.1.8 Looping instructions

The instruction

S<integer>,<expression>

is used in conjunction with the instruction

& < integer >

to produce looping.

Here <integer> can be from 1 to 10 and <expression> is subject to

the rules laid down in§5»1»5 •

The first instruction stores the value of < expression> (which is

always integral for macro expressions) in SS(<integer>). SS is a

1,£f-element integer array. The current value of ICLPTR is also stored

in variable ICOLM.

Sequential execution then continues until & < integer > is met.

This instruction tests the value, N, of SS (<integer>). If

N > 1, then SS (<integer>) is decreased by 1 and ICLPTR is reset to

the value of ICOLM. If N < 1, then sequential execution of macro

instructions is resumed.

This provides the facility of executing the same piece of macro code

a variable number of times. For example, consider the following macro body

124

31,3

" (a)

& 1

Here macro instructions (a) will be executed 3 times.

5.1.9 Instructions which update stack pointers

A few instructions have been defined simply to update stack pointers.

Examples are:

(i) STK

The effect of executing this instruction is:

(a) IDFTR is increased by 1

(b) a test is made for overflov/ of IDPTR and IOPTR. (if the test is

satisfied, a message is printed out and execution is terminated.)

(c) IDLPTR is stored in IDSTK (IDFTR)

(d) IDLPTR is set to IDPTR.

This macro instruction is used to create a new base level on IDSTK.

(ii) RE

The effect of executing this macro instruction is to .reset the value

of IDPTR to IDLPTR. This instruction is used to reset IDFTR after

expanding the macro for ; used in indexing.

125

5.1.10 Instructions which set the values of global variables

Two examples of macro instructions in this group are:

(i) MR < integer >

This macro instruction sets the value of the variable MARK to <integer>.

The value can then be tested using a statement of the form

IF MR < relational operator > m n

(see §5.1*6) .

Thus, by setting the variable MARK, the path taken during expansion

of a macro can be varied.

(ii) T < integer >

This macro instruction is used to set the value of the pointer TEMER

t o< integer> . Usually, <integer> has value 1 to 6, sinc e the most common

•use of the above instruction is to over-ride the setting of TEMER to 7 after

MTEMP has b.een cleared.

5.1.11 Instructions to increment global variables

The complete list of such instructions is given in Appendix 3» Examples

a re :

(i) +B

This increments the stack pointer IBIT by 1.

(ii) +D

This increments the variable INI) by 1.

126

5.1.12 Instructions to calculate expression values and store on M TE3.IP

Besides the types of macro expressions mentioned previously, a number

of others have been defined. The most widely used is

£< expression >

where <expression> is as defined in§ 5.1*5 • £ gives the current value

of IDOLR, the label value. (IDOLR is incremented as required to produc e

unique label numbers in the generated code by use of the macro instruction

+1).

Suppose, for example, that ID.QLR has value 1j64. Then £ - 4 wi ll

produce the label number 1 £50 on MTEMP.

5.2 The Use of Operand Macros

Two operand macros have been defined. Their functions are to use the

information stacked in the operand part of IDSTK to produce the code for an

operand and store it on ITEMP. The code for the operator macros is thus

much simplified, as no type checking need be done in operator macros .

The first of the operand macros, referred to as the operand-A macro,

merely determines the type of the operand being handled and produces the

required code. It is discussed in detail in §5.2.1 . Discussion of the

second operand macro, referred to as the operand-B macro, is deferred until

§5.2.2 .

5,2.1 Operand-A macro

The operand-A macro is listed in Appendix 4* The macro body is

explained below. It may be useful at this stage to recall the information

stacked on IDSTK for each type of operand. The"information is described

in Chapter IV, § 4.1 •

The first requirement is to separate all operand types into groups which

can (at least partially) be handled together. Thus, the macro body starts

with a series of tests, the first being for an intermediate result operand .

Such an operand is already present in ITEMP and thus no further action is

required.

The functions of all macro instructions are listed in Appendix 3-

The test IP P EQ 1 1 is for a function or subroutine call.

These are handled after label 1.

In each case, the final code produced on MTEMP is transferred to ITEMP

before exit from the macro body.

If label 3 is reached on execution of the macro instructions, then the

operand is either

(i) a scalar

or (ii) & niladic function name.

The code for the identifier is transferred from NAMES to MTEMP (using

the instruction FN1), starting from position TEMPR.

Now consider the situation when label 2 is reached.

2: ' IP ?2 EQ 0 3

This produces a branch to label 3 for a scalar identifier. Thus, i f the

above branch is not executed, the identifier types still to be distinguished

are:

(i) literals

(ii) constant vectors

(iii) numeric non-scalars.

127

For each of these identifier types, loops are set up so that each element

of the non-scalar may be accessed in turn. Only the first half of the

loops is produced at this stage; the loops are not completed until either

(i) the end of the line is reached

or (ii) the dimensionality of the result changes.

The macro instruction SL produces code to start a loop, while the

instruction FL generates the required code to end a loop. These are both

defined in Appendix 3«

Non-scalar accesses result in generation of subroutine calls. Through

out this chapter, any subroutines referred to are present in the module

library SARUN.

If the required loop-starts have already been produced by a previous

expansion of the operand-A macro, there is no need to duplicate them. The

variable MARKER will be non-zero if the loops have been started already.

The instruction SL is composite and generates code of the form

ZB <integer> = ZPOINT (ZPT)

ZPT = ZPT + 1

CALL STARTS (<operand inde^>, Z<xntegeii>, Z<Lnteger 2>, ZNC)

or

ZF1

or

ZF2

ZPOINT (ZPT) = ZB <integer> + Z < integer 2 >

Z < integer 3> = I

< label 2 > Z <integer 4> = ZB <integer> + Z <integer 3>

ZINDX (z <integer) = 1

Z < integer 3> = Z< integer 3> + 1

1 2 8

IP (Z < integer $> . LE. Z < integer 2>) GOTO < label 2>

Z < integer 5> = ZB< integer> + Z < integer 2>

Z < integer 6 > = Z < integer 2> - 1

ZSAVE = J6

Here < integer i > where 1 < i < 6 are distinct positive integers.

<integer> and < label 2 > are also■ positive integers.

The values < integer 5>, <integer 6 > and (<label 2> + 1) are stored

They will be used later when the loops are completed using the PL macro

instruction. The code generated.by the PL instruction is given in

Appendix 3*

The subroutine STARTS has 1 input parameter I and 3 output parameter

J, K and L . I is the index of the non-scalar in NAMES.

The output parameters have the following significance:

(i) for a numeric non-scalar

J = the dope vector address

K = the number of dimensions

L = if MARKER = SI ; otherwise L = 1 .

(ii) for a constant vector

J = the number of elements

K = 1

L = J# if MARKER = ff ; otherwise L = -5 •

(iii) for a literal

J s the number of elements in the associated literal constant

K = the number of dimensions

L = 16 if MARKER = ; otherwise L = -1 .

129

These parameters are used in subsequent subroutine calls.

At this stage, different subroutines are called for each type of

operand. The possibilities are:

(i) FIND1 (containing a call of FIND) for numeric non-scalars

(ii) FIND2 (containing a call of UVFIND) for constant vectors

(iii) FIND3 (containing a call of LFIND) for literals.

Examples of the code produced for each type of operand are given at

the end of this subsection.

The 3 non-scalar cases are distinguished in the macro' body. Thus,

IF ?2 NE 1 4

separates the numeric non-scalar case from the others. A call of FIND1

is then generated.

The macro instruction FV provides the first 3 parameters for a FIND

call (as described in Chapter l).

The instruction FX generates either

(i) the value of the NAMES index for the non-scalar

or (ii) ZF1

or (iii) ZF2

on MTEMP, depending on whether the identifier is a function or subroutine

parameter (see Chapter IV).

<f0 > Zfo INC generates Z < integer 7> • This is an output parameter

used to store the YSTORE index for the particular non-scalar element being

accessed.

Y% IND generates an output parameter where the value of the non-

scalar element is placed.

130

% , Ẑ o IND-5 corresponds to parameter K of the STARTS call, while

ZNC corresponds to parameter L .

The other parameters of FIND1 are global variables. The significance

of all global variables is given in Appendix 8.

Finally, for numeric non-scalars, the value YSTORE (Y < integer 7>)

is stored on ITEMP. Then follows a test for a constant vector identifier.

This takes the form

4: IF ?2 NE -5 5

A call of FIND2 is then generated. FIND2 has the same parameters as

FIND1 except that the global parameters ZCOORD and ZCDPTR are omitted.

(These are unnecessary as they are used in specifying a co-ordinate value

and constant vectors are one-dimensional.)

The value of the constant vector element being accessed is produced

in Y < integer 7> •

For a literal identifier, a call of the function FIND3 is generated.

A literal identifier is regarded as an array of elements whose values are

the character values for the elements of the literal. FIND 3 produces as a

result the character value for the literal element in Z <integer 7 > » The

parameter Y <integer 7 > is- unnecessary and has been omitted from the FIND3

parameter list.

The remaining case to be considered is that of function or subroutine

calls. The macro instruction FA produces the entire code for the call,

except for the list of global variables at the end. These variables, though

not always used inside the function or subroutine body, must be inserted to

allow for accesses of any global variables inside the body. (The user may,

if he wishes, remove those found to be unnecessary on inspection of the

131

 ■ — - - -- — :.v. ■ ■ ■ ■ ~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..

generated code, or use the alternative method of handling global variables

described in Chapter I, ,§1.2.5 .)

EXAMPLES

Suppose that I3FTR is originally 1 and the operand-A macro is expanded

in turn for the following identifiers:

(i) the scalar ABC

(ii) the function call A PN B , where A and B are both scalar

(iii) the numeric non-scalar subroutine parameter Y (Y is the left

parameter of a subroutine)

(iv) the literal constant M 3 4 5 S'

(v) the label name L1

(vi) the niladic function name P

(vii) the constant vector 3*1 2.4 6.7

Then, after the 7 macro expansions, ITELQ? will have the structure sh own in

Diagram 5.2.1(a) .

No further code is generated for (i), (ii), (v) and (vi), but an entry

is placed in LTABLE (see Chapter VI) for (v).

Assume that IND has value 1 and the label number value is 100. Assum e

also that INS has value 10. Then corresponding to case (iii), the following

code would be generated,

IP (MARKER.N3.0) GOTO 101

ZB1 jS - ZPOINT (ZPT)

ZPT = ZPT + 1

CALL STARTS (ZP1, 21, Z2, ZNC)

ZPOINT (ZPT) = ZB1^ + Z2

Z3 = 1

132

133

1 18

0 A B C 1 F N (A f B) 5 Y 3 T 0 R

19

E (Z 7) 13 Z 7 24 1 0 3 27 F 31 Y 7 33

label value IBPTR
associated
with Ll

(see Chapter VI)

Diagram 5.2.1(a) : Shows the structure of ITEMP if IBPTR
is initially 1 and the operand-A macro
is expanded in turn for

the scalar ABC

the function call A FN B , where A and B
are both scalar

the numeric non-scalar left subroutine parameter Y

the literal constant ' 1 3 4 5 9 '

the label name Ll

the niladic function name F

the constant vector 3.1 2.4 6.7

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

134

1/52 Z 4 = ZB 1/S + Z 3

ZINDX (Z 4) = 1

Z3 = Z 3 + 1

IF (Z 3 .LS.Z 2) GOTO 1/52

Z5 = ZB 1/5 + Z 2

z 6 = Z 2 - 1

ZSAVS = J0r

1/51 GALL FIND 1 (^,^,0 , ZF 1,Z 7 ,Y 7 ,Z 2 ,ZNC)

assuming
normal
access

Corresponding to case (iv), similar code to that produced above is generat ed,

except that the last line is

1/Si CALL FIND 3 , ZF 1 ,Z 7 ,Z 2 ,ZNC)

Similarly, for case (vii), code of the above form is again generated. In

this case, however, the last line has the form

1/51 CALL FIND 2 (0 ,jd,Z 5 , ZF 1 ,Z 7 ,Y 7 ,Z 2 ,ZNC)

5•2•2 Operand-3 macro

The operand-B macro is expanded to handle the operands of certain dyadic

mixed functions. These functions are:

(i) encode

(ii) decode

(iii) member

(iv) iota

(v) outer product

(vi) inner product

The method of handling these functions is discussed i n§ 5*3 •

■- ■ ' ":i ■ , ... _.___ ■■■ ■ ■ ■ .___________________ ____

135

A listing of the operancl-B macro is given in Appendix

The purpose of the operand-B macro is to store the elements of a n

operand in YROY/L or YROV/R. The arrays YROY/L and YROV/R are used to store

the elements of the left and right operand respectively. YRO«L has pointer

ZR0V7N0, which is set to the number of elements in the left oper and. Similarly

YROV/R has pointer ZROV/NA.

Certain other functions are performed by the operand-B macro. These a.re

determined by the value of the variable ZMARK. There are 6 possible values

of ZMARK (0 to 5) and the corresponding functions are listed below.

FUNCTION OF OPSRAND-B MACRO

Store the N elements of the operand in YROY/L and

set ZROVTNO = N

As for ZMARK = $. In addition, the current bounds,

ZCBNDS, and pointer, ZCPTR, are updated to the

bounds for the operand.

Store the N elements of the operand in YROwR and set

ZROV/NA = N . Update ZCBNDS and ZCPTR as described for

ZMARK = 1 . Generate a call of the function INDK.

This function is used to produce the result for the

dyadic iota function (see§-5»3).

Store the N elements for the operand in YROV/R and

set ZROV/NA = N .

As for ZMARK = 3 • In addition, the current bounds

are updated as required for an inner product. This

is discussed more fully in §5*3 •

VALUE OF
ZMARK

1

2

3

136

FUNCTION OF OPERAITO-B MACHO

As for ZMARK = 3 • In addition, the current

bounds are updated as required for an outer

product. This is discussed more fully in§5«3 •

The operand-B macro carries out its functions by generating a number of

subroutine calls. The individual subroutines are present in the module

library SARUN .

5.3 Handling of Mixed Functions

A number of mixed functions are handled by generating FIND calls.

These were discussed in Chapter I.

This section describes the handling of

(i) functions involving expansion of operand-B macro

. (ii) monadic rho

(iii) dyadic rho

(iv) monadic iota

(v) grade-up and grade-down

(vi) deal (dyadic ?)

5.3.1 Functions involving expansion of operand-B macro

The encode function

R f N

where R is a vector and N is a scalar, is handled in the following way.

The elements of R are stored in the array YROvTL by expanding the

operand-B macro with ZMARK set to 1. The dimension of R T N is the

VALUE OF
ZMARK

5

137

same as the dimension of R .

The scalar N is then produced on ITEMP by expanding the operand-A

macro.

The operands having been dealt with, the encode macro (number 1 3) is

then expanded. A call of the subroutine NCQAD is generated, that is

CALL NCQAD(N)

The result of R f N is a vector. It is stored in the array ZTEMP

from the base level onwards. A series of non-scalar result elements may be

stored in ZTEMP and hence a stack of successive base levels is required.

The stack is represented by ZY and has stack pointer ZYFTR.

Non-scalar integer results are stored in ZTEMP; non-scalar real

results in the array YTEMP. There is a similar stack ZYY, having stack

pointer ZYYFTR, which gives successive base levels of YTEMP.

A call of the function NCOAD is generated to produce the required

result for R _r N and store it in the next level of ZTEMP.

The decode function

R u X

where R and X can both be non-scalar, also belongs to this group . Th e

result of R ' -1- X is a scalar. Scalar arguments are extended to the same

size as the other argument. For example, both

10 10 1 0 10 1 7 7 6

and 1 0 *L- 1 7 7 6

is 1776 .

Taking this feature into account, the elements of the left operand are stor ed

in Y ROWL by expanding the operand-B macro with ZMARK set to 0 The

elements of the right operand are then stored in YROY/R by expanding the

operand-B macro with ZMARK set to 3 •

To produce the desired effect, the decode macro (number 1 4 .) simply

generates a call of the subroutine DC0D3. DCODB accesses YROWL and YROWR

to produce the result N. The parameters for DCODE are N, YROY/L, YROWR

and ZCPTR.

The member function

A .e B

is another function belonging to this group. A and B can be non-scalar

and A,e B has the same dimensions as A .

The elements of the left operand are stored in YROWL by expanding the

operand-B macro with ZMARK set to 1. The right operand elements are stored

in YROV/R by expanding the operand-B macro with ZMARK set to 3. The result

will thus have the same bounds as the left argument.

The member macro (number 12) simply generates a call of the subroutine

MEMBAR to produce the desired result in ZTEMP.

The iota function,

A \ B

where A and B may both be non-sealar, is very simply handled by this

method. To produce the required result, in ZTEMP, it is only ne cessary to

do two expansions of the operand-B macro.

The first expansion, with ZMARK set to J0, stores the elements of the

left operani in YROY/L. The second expansion, with ZMARK set to 2, st ores

the elements of the right operand in YROV/R. In addition, it sets up bounds

138

(the result having the same bounds as the right operand) and gen erates calls

of the function I NDX. There is one call of HiDX for each element of the

right operand. 3NDX has parameters YROY/L, YR077R and Z, where Z gives

the position in YR0I7L of the right operand element being considered. The

parameters are used to determine the result and store it in successive

locations of ZTBMP, starting from the current base level.

The outer product function is interesting. The non-scalar operands ,

A and B, of

A o . f B

where f is any scalar dyadic function, are handled as follows.

First the left operand elements are stored in TROT/L by expanding the

operand-B macro with ZMARK set to 1. Bounds are also produced in ZCBNDS

as for the left operand A .

The operand-B macro is then expanded with ZMARK set to 5* The elements

of B are thus stored in YRQYiR. In addition, ZCBNDS is updated s o that the

bounds for B are stored above the bounds for A . Thus, if A is

m-dimensional and B is n-dimensional, ZCBNDS will have (m+n) elements

and ZCFIR will be set to m+n .

139

m+n

m + 1

ZCPTR

140

The outer product macro is then expanded. Since the dyadic function,

f, can vary, the execution of the outer product macro (number 6 7) is inter

rupted at a certain point and the macro for f is expanded. The appropriate

elements of YROWL and YROWR are first stored on ITEMP to be used by the f

macro. Expansion of the outer product macro is then resumed from immediately

after the first exit point.

This can be-better understood by considering the code generated. This

code is listed below. (The subroutine call

CALL BDNO (Z, Z1)

produces in Z the product of the

CALL BDNO (Z1, ZRQWNA)

CALL BDNO (Z2, ZROWNO)

Z3 = ZYY (ZYYPTR)

Z4 = fi

Z5 = fi

Z5 = Z5 + 1

Z 6 = fi

1JZH Z 6 = Z6 + 1

. Z4 = Z4 + 1

At this stage, the entries YROWL (Z5) and YROWR (z6) are stored on

ITEMP. Execution of the outer product macro is then interrupted using the

macro instruction sequence RCM

The operands for the f macro have now been stored in ITEMP. The f

macro is expanded to produce a result in ITEMP. Eor example, if f

represents + , then the code (YROWL (Z5) + YROVffi (Z6)) is stored on

ITEMP in place of YROWL (Z5) and YROWR (z6) .

141

Expansion of the outer product macro is resumed and the following code

is generated.

YTEMP (Z4 + Z3) = < result code for f macro with brackets

removed>

IP (Z6.LT.Z1) GOTO 1J01

IP (Z5.LT.Z2) GOTO 1

MARKER = -5

Z7 = 0

1^2 Z7 - Z7 + 1

The code YTEMP (Z7 + Z3) is stored in ITEMP to be used as an operand

in the next macro expansion.

The inner product function

A f . g B

is handled by a similar method. Here A and B ' may be non-scalar and

f and g are any scalar dyadic functions.

The operands A and B are handled as follows. The elements of A

are stored in YROWL by expanding the operand-B macro with ZMARK set to 1.

The bounds for A are also set up in ZCBNDS. The operand-B macro is then

expanded with ZMARK set to 4« The elements of B are thus stored in the

array YROWR. ZCBNDS is updated as required for an inner product. Thus,

if A is m-dimensional and B is n-dimensional, ZCBNDS will be as illustrated

below.

The inner product macro employs a similar strategy to that used in the

outer product macro. In this case there are two scalar dyadic functions to

be handled. There are thus two interruptions in the execution of the inner

product macro. The inner product macro is listed in Appendix L.

142

a*.

<7

n

B

2
m-1

m+n-2

ZCPTR has value m+n-2ZCBNDS (m)
is stored in
ZROWDM to be
used in the
inner product macro body.

5.3.2 Handling of the monadic RHO operator

This simply involves updating the contents of the array ZCBNDS.

For non-scalar result operands, the effect is produced by generating

a call of the subroutine MRHO. For other non-scalar operands, the effect

is produced by generating a call of the subroutine NRHO.

MHRO and NRHO are contained in the module library SARUN.

5.3*3 Handling of the dyadic RHO operator

The dyadic rho operator is handled by two macro expansions. The first

generates code to store the left operand elements in the array ZROW. The

second macro expansion generates a number of subroutine calls. These sub

routines access the elements of ZROY/ (and the right operand) t o produce the

required result.

The dyadic rho operator is discussed in §5*5 •

5.3.4 Handling of the monadic iota operator

To handle

. \ N

where N is an integer > j6, code is simply generated to store values

1,2,...,N in successive positions in the array ZTEMP, starting from the

current base level.

The variables, MARKER, ZCBNDS and ZCPTR are set accordingly.

5.3.5 Handling of the grade-up and grade-down functions

To handle, for example,

4 ̂ A

where A is non-scalar, the result cannot be determined until all the

elements of A are known. Expansion of the operand-A macro to handle A

simply produces the start of the loops required for non-scalar accessing.

Code is therefore generated to store the elements of A in the ar ray YGRAD

and the loops are then completed,

A call of the subroutine GRAD is then generated to produce the required

2
result. The Quick-sort method of sorting (Knuth) is used in GRAD to handl e

grade-up and grade-down.

5 . 3 . 6 Handling of the dyadic ? function

The operands A and B of

A' ?. B

where A and B are both scalar, are handled by two expansions of the

operand-A macro. The code for A and B is thus placed in ITEMP. Then

A calls of the function QUBRY2 are generated, QUERY2 has parameters B. and

the array ZB'OOL. A random number, N, in the range 1-B is first gene rated.

ZB'OOL (N) is then set. If, in a subsequent call of QUERY2, N is obtained

143

as result, . the previous occurrence of N can be detected by testing the

value of ZBOOL (N) . If ZBOOL (N) is set, then the process is repeated

until a random number is produced which has not occurred before. In this

way, for example, N ? N will produce a permutation of N as result.

After A calls of QUBRY2, ZBOOL must be reset in preparation for any

subsequent series of calls.

5.4 Other Interesting Functions

This section deals with the'operators

(i) specification <—

(ii) reduction f/ where f is any scalar dyadic function.

5.4.1 Handling of specification statements

For most functions, the left operand is handled before the right operand.

The specification function is an exception. For specification, the right

operand must be examined first so that the correct type and dimension

information can be set up for the left operand. For example, consider

A <-- L

If L is literal, then A will be literal also.

If L is numeric, then A will be numeric also.

In addition, the dope vector entry for A depends on the dope vect or entry

for L .

Thus, after handling the right operand, the appropriate information is

stacked for the left operand. The specification macro generates a sub

routine call, the subroutine being determined by the type information

available.

144

145

After handling a specification operation, the index for the left operand

is stacked in the appropriate location of IDSTK. The index is thus available

to be re-used to provide operand information for the next operator in multiple

specification statements. Yflien the left operand is not an expression, no

result code is placed in ITEMP.

However, consider

A i— B + R [l] <— 3 •

After handling R[l] 4--- 3> a -10 entry is stacked on IDSTK. This is

consistent with the above method, as the "index" for the left operand

h [i 3 is —10", since R [ll is a result. Since -10 will no w be used as

the information for the right operand of +, it is necessary to have the

code corresponding to r L O stored on ITEMP.

5.4.2 Handling of .reduction

Consider

f / X

where f is any scalar dyadic function and X is non-scalar. (The method

employed only requires explanation for the non-scalar case.)

Assume, for ease of explanation, that X is a vector of N elem ents.

Then the result required is

x [i] f X [2] f --- f X [n] .

The method employed is to set the variables OPL and OPR initially to

(i) the identity element, II), for function f , and

(ii) X [n]

respectively. OPL and OPR are then stored in ITEMP.

Interruption of the reduction macro is then effected using the macro

instructions ROM discussed previously.

The f macro is then expanded to produce the result (OPR f OPL) on

ITEMP. Expansion of the reduction macro is then resumed.

QPL is now set to the result on ITEMP, and OPR to X . The

whole process is repeated using the new values of OPL and OPR .

These steps are carried out N times, the result required being

accumulated in OPL .

The reduction macro is listed in Appendix 4* For a non-scalar operand,

code of the form listed in Chapter VIII, Example 8.1.9, is generated.

5.5 Examples of Macro Bodies

This chapter ends with three example macro bodies and their explanations.

The examples^chosen are:

(i) the macro for +, x, /, *

(ii) the macros for dyadic rho

(iii) the macro for quad input.

5.5*1 The macro for +. x, /, *

This macro is reproduced below.

BR LO 0 RO CB S

The function of BR is simply to produce (on MTEMP. The left operand

code is then transferred from ITEMP to MTEMP. (The operand code has

previously been produced on ITEMP by two expansions of the operand-A macro.)

146

147

The instruction 0 produces the code +%. *,/ or *# on MTEMP,

depending on the operator being handled.

RO results in the transfer of the right operand code from ITEMP to

MTEMP. CB produces a closing round bracket) on MTEMP.

Consider, for example,

A * B

where A and B are both scalar. Then, at this stage in the macro

expansion MTEMP will contain (A ** B).

The contents of MTEMP are now transferred to ITEMP using the S macro

instruction and exit from the macro body is effected using ~j~|~.

Now consider

C + A * B .

Suppose A * B has been handled as described above. ITEMP now contains an

entry (A ** B). The code for C is stored on ITEMP by expanding the

operand-A macro. The variable IREV is set to 1 to indicate that the

operands have been stored in ITEMP in reverse order. IREV is tested when

LO and RO are used to determine the order of access of the operands.

The + macro is now expanded to produce (C + (A**B)) on ITEMP.

Brackets are inserted round the result code each time the above macro is

expanded. It was thus unnecessary to bracket A**B when RO was execute d.

It is, however, necessary to remove the outer brackets when an expression

such as C + A*B is used to the right of a specification arrow.

5.5.2 The macros for dyadic RHO

As stated previously, dyadic rho is handled by two macro expansions.

These macros are listed in Appendix

The first macro handles the left operand, A, of A p B .

Three operand types are first distinguished. These are:

(i) scalar

(ii) non-scalar or constant vector

(iii) result.

The first test IF ?1 LT jj(1 distinguishes case (iii) above. Th us

the code from label 1 onwards handles a result left operand.

The second test IF ?2 NE Sf 2 distinguishes case (i) above. Thus

case (i) is handled up to label 2 and then case (ii) up to label 1 .

For case (i), the following code is generated:

ZROW(l) = < scalar identifier>

ZROWNO = 1

For case (ii), the following code is generated:

CALL RHOBNL (< NAMES inde:x>, <type value>) .

In RHOBND, the operand elements are stored in ZRO¥ and ZROWNO is set.

For case (iii), scalar and non-scalar results are distinguished by

testing the value of MARKER. The following code is generated:

IF (MARK3R.NE.jd) GOTO Clabel 1 >

ZRQW(1) = <result code>

ZROWNO = 1

GOTO < label 2>

148

<label 1> Y<integer> = < result code>

IF (z< integer 1>. GT.ZLIM2#) CALL GVOVER (2/5, & < label 2>)

ZROW (Z < integer 1>) = Y <integer>

CALL BDNO (Z < integer 2>,ZCPTR)

IF (Z< integer 1>.LT.Z < integer 2>) GOTOClabel 1>

ZROWNO = Z < integer 2 >

< label 2> CONTINUE

Here ZLIM2/5 is the upper bound for ZROW. If it is exceeded, G-V OYKR is

called to print out an error message. GVOVER handles overflow of all

global non-scalars.

The call of BDNO produces the product of the ZCPTR elements of ZCBNDS

in Z < integer 2> . This provides a terminating condition for the loop.

The right operand can now be handled. More operand types are allowable

here. Thus the second macro has a greater number of tests. For each

operand type, a different subroutine call is generated. These subroutines

produce the required result in each case.

The following operand types are distinguished:

(i) scalar

(ii) literal

(iii) empty vector

(iv) numeric non-scalar

(v) constant vector

(vi) result

For each operand type, a call of the subroutine YRHO is generated. This

produces in the first parameter the product of all the elements of ZROW, from

positions 1 to ZROWNO. Thus, for the s:ix oases listed above , the following

code is generated:

 i ■ • — •______________________^ ____________:__• ■ ••• ■ ■________________ • ■ • J

149

(i) Scalar

CALL YRHQ (Z < integer 1>,ZR0W)

Y < integer 2> = ^scalar identifier]>

CALL RH02 (Y < integer 2>,Z< integer 1>)

Z<integer 3 > = ZYY (ZYYPTR) produced by instruction ZS

Z < integer 4 > = I produced by

<label 1 > Z<integer 4> = Z< integer 4> + "1 J -instruction DS

The values < integer 4 > and<label 1> are stored to be used in finishing

the loops later using the PC macro instruction, The code

YTEMP (Z< integer 4 > + Z < integer 3>)

is stored in ITEMP to be used as an operand in the next macro expansion.

(ii) Literal

CALL YRHO (Z< integer 1>)

CALL RH05 (<NAMES index>}Z < integer 1>)

‘ Z < integer 3 > = ZY (ZYPTR)

Z < integer 4 > = 0

< label 1 > Z < integer 4 > = Z < integer 4 > + 1

t

I
I

An entry ZTEMP- (Z < integer 4 > + Z < integer 3>) is again placed in ITEMP.

(iii) Empty vector

CALL YBHO (Z < integer 1>)

MARKER = -3

CALL RH04

A dummy entry is stored in ITEMP for an empty vector result. It is accessed

150

-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

151

during subsequent macro expansions (this was done for generality) but is

detected by the fact that M ARKER has value ~3 •

(iv) Numeric non-scalar

CALL YRHO (Z < integer 1>)

CALL VSCA3E (< NAMES index>)

or

ZF1

or

ZJ?2

CALL RHOA

An entry as for case (i) is placed in ITEMP.

(v) Constant vector

CALL YRHO (Z < integer 1>)

CALL RH01 (<NAMES index>,Z < integer 1 >)

Z<integer 3 > = ZY (ZYPTR)

Z < integer A > = 0

< label 1 > Z < integer A > = Z < integer A > + 1

Again, an entry as for case (i) is placed on ITEMP.

(vi) Result

CALL YRHO (Z<integer 1>)

Y < integer 2 > = < result code>

IF (MARKER .NE. 0) G-OTO < label 1>

CALL RH02 (Y < integer 2>,Z < integer 1>)

GOTO < label 2 >

< label 1> Z < integer 3> = Z < integer 3> + 1

IF (Z.< integer 3>.G T. ZLIM 23) CALL GVOVER (25, & < label 3>)

YTEMP2 (Z <integer 3>) = Y < integer 2>

CALL .'BDNO (Z < integer 4>,ZCPTR)

IF (Z <integer 3> «LT. Z <integer 4>) GOTO <label 1 >

< label 2> Z < integer 5> = ZYY (ZYYPTR)

Z < integer 6 > = 0

< label 4 > Z<integer 6 > = Z<integer 6 > + 1

An entry of the form

YTEMP (Z < integer 6 > + Z < integer 5>)

is then stored on ITEMP.

5.6.3 The macro body for quad input

The quad input macro body is listed in Appendix 4.

To read in numerical data, the user must first specify the type of the

data. The following types are possible:

(i) empty vector

(ii) scalar value

(iii) constant vector

The three types are distinguished by first specifying a value for the

variable ZTOND. The values -1,0, n are used for cases (i) to (iii)

respectively, where n is the number of elements in the constant vector.

The following code is generated:

152

READ 1/52, ZVBND

WRITS (6,1/52) ZVBND

IF (ZVBND.NB.-1) G-QTO < label 1>

MARKER = -3

WRITS (6,1/16)

GOTO <label 2 >

< label 1> IF (ZVBND.NB.0) GOTO <label 3>

MARKER = 0

READ (5,1/54) ™ S M (0

WRITE (6,1^4) YTBM (l)

GOTO< label 2>

< label 3 > I K (ZVBND.GT.ZLIM 26) CALL GVOVER (26, & < label 2>)

READ (5,1/54) (YTBM (Zi),Z± = 1,ZVBND)

WRITE (6,1/l4)(lTEM (Z±), Z± = 1,ZVBND)

ZCPTR = 1

ZCBNDS (1) = ZVBND

< label 2 > Z < i + 1 > = 0

Z <i+1> = Z < i + 1 > + 1

An entry of the form Z<i+1> is stored on ITEMP to be re-accessed as required

The FORMAT statements used are listed in macro number 16 in Appendix !+.

They can be altered by the user if required.

Alternatively, the user can write his own input subroutines so that

specification of ZVBND is unnecessary.

(Similar specifications of ZVBND are required for the quote-quad macro

body.)

When quad or quote-quad input is used, the data supplied is printed out

This gives a closer approximation to the printed page produced -."hen these

instructions are used in APL .

154

CHAPTER VI

LABELS AND JUMPS

This chapter describes the handling of APL designational expressions.

The method is much simplified by the presence of the lexical scanning phase.

"When the input APL code is lexically scanned, all label names ar e detected

by the existence of a colon to their right. Entries (having type values

of -4) are set up in NAMES. In addition, entries are set up in a two-

dimensional table, LIABLE. A particular row of LIABLE holds the following

information,

(i) The index for a label name in NAMES.

(ii) The corresponding row number for the statement in Y/hich the

label occurs.

Entries are added to LTABLE sequentially.

Since the lexical scan is completed before code generation time, LTABLE

will hold all the necessary information for production of GOTO statements.

Forward jumps cause no problem because the appropriate label entries have

previously been set up during the lexical scan.

All APL functions and subroutines have assumed label numbers. For

example, consider the subroutine

\7F

CU - - - - - - - - -

[2 1 ---------
i
i
t
i

-» 2
|

155

The statement -> 2 means "transfer control to the 2nd statement in subroutine

F

To allow for this possibility, a count of the number of lines in a

function or subroutine is maintained. In fact, there is a stack of line

counts to handle sets of functions or subroutines. The line count is

increased as required until the end of a function or subroutine is recognised.

For each line processed, entries are set up in NAMES and LTABLE for the current

line count value. The NAMES entries have type values of -4.

Thus, at code generation stage, the appropriate line numbers are produced

at the start of the code corresponding to each line. For examp le, statement

2 of subroutine FN would be converted to

2 CONTINUE

in the translated routine; similarly for all n lines in the subroutin e.

This allows for statements of the form

-» n

where n is not known until man-time of the converted routine.

Label numbers used in FORMAT statements and introduced during code

generation have values starting from 10)3. Thus, up to 99 lines may be

present in an APL function or subroutine. If more than 99 lines exist,

then duplicate label numbers will be generated.

Now consider the statement

->N

In general, N may be

156

(i) a label name

(ii) a scalar variable name

(iii) a scalar constant with integral value

(iv) an empty vector

(v) a constant vector

(vi) a vector variable name

(vii) an expression with scalar result

(viii) an expression with empty vector result

(ix) an expression with non-scalar result

Each case is considered separately. The descriptions are given in §6.1 to

§6.9 respectively. Cases (i) to (ix) are distinguished either by type value

or by the value of MARKER.

6.1 Statements of the Eorm '-^N1, liVhere N is a Label Name

N has a type value of ~4, and its NAMES index, I, is given by

IDSTK (3DLFTR+1) .

The entries in the first column of LTABLE are searched sequentially

until an entry is found having value I . If LTABLE (J,1) equals I, then

the required label number is given by K = LTABLE (J,2) . Thus, it is only

necessary to generate code of the form

GOTO K

6.2 Statements of the Form ' ^ N 1, Where N is a Scalar Variable Name .

N has a type value of 0, and its NAMES index, I, is given by

IDSTK (IDLFTR+1) . The value of N will not be known until run-time.

Two possibilities may arise:

0) 1 < N < MAX , where MAX is the number of lines in the function or

subroutine, or

(2) N < 1 or N > MAX .

For case (1) code of the form

GOTO < label number >

is required.

For case (2) the code

RETURN

should be generated.

The above two possibilities are catered for by generating code of the

form
Z1 = N

GOTO 1000

There is a corresponding switch

1000 IF (Z1.LE.0 .OR. Z1.GT.MAX) RETURN

GOTO (1,2,3,— ,MAX), Z1
9

6.3 Statements of the Form N 1 Where N is a Scalar Constant

With Integral Value

As in §6.2, N has a type value of 0, and its NAMES index, I, is given

by IDSTK(IDLFTR+1) . The value of N is known at code generation stage.

However, distinguishing this case from that above would involve the introduc

tion of a few more macro instructions. In fact, this case is treated exactly

as that outlined above, and code of the form

Z1 = N

GOTO 1000

is again generated.

157

6.4 Statements of the Form ’-frN', Where N is an Empty Vector

In this case there is a vacuous branch and sequential execution of

statements is required. Thus no code is generated.

6.5 Statements of the Form >->Nl, Where N is a Constant Vector

N has a type value of ~5 and its NAMES index, I, is given by

IDSTK (lDLFTR+1) .

The required branch is determined by the first element of the constant

vector. The first element value can be obtained (at run-time) by applying

the function FUN to I with first parameter set to 1 . Thus, code of

the following form is generated,

Z1 = PUN (1,1)

GOTO 1000

The function FUN is present in module library SARUN .

6.6 Statements of the Form ^ N 1, Y/here N is a Vector Variable Name

N has type value 1 and its NAMES index, I, is given by IDSTK (lDLPTR+1).

The NAMES index for N can be used to provide the key and hence the dope

vector address, J, for the vector N .

In this case the switch at label 1000 has to be indexed by the value of

the first element of vector N . This value is given by YSTORE (KA) ,

where K = D0FES(J,3) , and KA = 10 * (K-1) + 1 . The required resul t is

produced by generating code of the following form:

CALL VSET (l,K)

KA = 10 * (K-1) + 1

Z1 = YSTORE (ISA)

GOTO 1000

158

G-iven the index I for the vector N , the subroutine VSET produces the

result K, where K is the number of the first block of YSTORE associated

with N . Subroutine VSET is listed in module library SARUN.

6.7 Statements of the Eorm * ~>Nf, 'I/here N is an Expression

With Scalar Result

In this case MARKER has value 0 and the scalar result code is stored

in ITEMP . The following code is generated

Z1 = < scalar result code>

GOTO 1000

6.8 Statements of the Eorm f->N') Where N is an Expression

With Empty Vector Result

Here, MARKER has value -3 and a dummy result variable has been stored

in ITIEMP . The code

IF (MARKER.EQ.-3) GOTO< label>

is generated, Yihere

< label> CONTINUE

is the last code line generated for a result.

6.9 Statements of the Eorm ' ^ N 1, Where N is an Expression

With Non-Scalar Result

This case has been limited to handle only expressions having a MARKER

value of -5 . The index for the non-scalar result is set to 1 so that the

first element of the result will be used to determine the branch. Eor cases

described in §6.7 to §6.9, therefore, the following code is generated:

IF (MARKER.EQ.-3) GOTO < label 1>

IF (MARKER.NE.0) GOTO < label 2 >•

Z1 = < scalar result code>

GOTO 1000

159

160

< label 2 >

< label 1>

Z1 = < non-scalar result code>

GOTO 1000

CONTINUS

Here Z is the index variable for the non-scalar result, n

161

CHAPTER VII

PROCESSING- OF INITIAL INFORMATION

This chapter describes the processing of the initial information supplied,

with a set of APL routines. From the initial information, en tries of the

following form were stored for numeric or literal non-scalars. Three

possibilities exist:

(a) if no further information was supplied for the .non-scalar, the following

entries are stored:

1. the position, I, of the non-scalar in the initial list,

2. the address, A, of the dope vector entry for the non-scalar,

3. 0 ;

(b) if partial information was supplied for the non-scalar, the following

entries are stored:

1. the position, I, of the non-scalar in the initial list,

2. the address, A, of the dope vector entry for the non-scalar,

3. -N, where N is the number of dimensions of the non-scalar;

(c) if full information was supplied for the non-scalar, the following

entries are stored:

1. the position, I, of the non-scalar in the initial list,

2. the address, A, of the dope vector entry for the non-scalar,

3. N, where N is the number of dimensions of the non-scalar,

4. b,j, where b ̂ is the bound for the first dimension of the non-scalar

* * •
■ if+N-1. bN , where b^ is the bound for the N dimension of the

non-scalar.

■ ■ ■ ■ ■ - • ■ . ■ ■ ■ ■ ■ - ■ ■ ■ ■ ■

All entries stored are in 16 format.

Initially, one block of space in YSTORE was set aside for storage of

each numeric non-scalar for which no additional information was provided.

The generated code may contain calls of a subroutine which allocates or

de-allocates storage for a particular non-scalar. This will be the case if

the dyadic 'rho ' function appears in the original routine. However, before

running the converted routines, the initial information is taken into account.

Where possible, contiguous blocks of YSTORE are allocated for non-scalars.

This is discussed later.

For non-scalars with elements stored in contiguous blocks, a fixed amount

of storage has been set aside in YSTORE. This amount is the maximum amount

of space required by the non-scalar. Thus, for non-scalars with elements

stored in contiguous blocks, the amount of space allocated should not be

varied dynamically. The dimensions for the non-scalar may, however, vary

dynamically. It is therefore arranged that the storage allocation subroutine

has no effect for non-scalars stored in contiguous blocks of YSTORE. The

current dimensions are updated as required throughout the running of the

converted routine.

The dope vector table is now updated (using the initial information) so

that those non-scalars having elements stored in contiguous blocks can be

detected by examining the table. The table is updated in the following

manner:

(a) For arrays with full information given,the actual start address, SA,

in YSTORE can be calculated. DOPES (n,j) and DOPES (n,4) are set

to 0 and SA respectively, where n is the address of the dope vector

entry.

(b) For arrays with no information given, the dope vector entry is unaltered .

1C 2

(c) For arrays with only partial information given, the negative of the

position of the array in the initial list is stored in column 3-

For cases (a) and (c) above, the fifth column of the dope vector entry

is filled in at this stage. For (a) the bound information is stored in array

ZBONDS, from position ZBPl’R onwards. ZBFTR is then increased as required .

For (c) storage is set aside in ZBONDS for the bound information and ZBFTR is

set up as required. In this case the bound information cannot be filled in

until it is obtained at run-time of the converted routine.

Nov; consider arrays with full or partial additional information supplied,

"fcii
l’o access the I element, relative to the base address, the following s teps

are sufficient.

1. Obtain the start address, SA, for the non-scalar from the dope vector

table.

2. Obtain the actual address, AA, which is given by SA + I .

Thus the time-consuming accessing method used in the function FIND can

be replaced by a much simpler function. A method of optimising the generated

code by removing unnecessary FIND calls is outlined in Chapter VIII.

The following types of entry are thus present in DOPES at this stage:

(a) Column 3 > &

No additional information has been given. The accessing method used in

the function FIND is essential.

(b) Column 3 <C 0

Partial information has been supplied for the non-scalar, and the DOPES

entry is in an intermediate form. It will be converted to form (c) using

information supplied by the user at run-time of the converted routine. This

1 6 3

164

is discussed in • in this case the generated code contains an

unnecessary call of the function FI ND,

(c) Column 3 = 0 and column 4 / 0

Full information has been supplied and the dope vector entry contains

the exact start address for the non-scalar (in column 4). Again the code

generated contains an unnecessary call of the function FIND.

For example, suppose that the following information was supplied

initially:

A 0 3 4 4

B 0 0

C 0 -1

D 0 2 US 2

E 0 -2

Thus, the total number of blocks of YSTORE required for A is 5, for D is

2, and it is known that C is 1-dimensional and E 2-dimensional. No

further information is given for B .

During processing, the dope vector entries for A, B, C, D and E are

altered to the form shown in Diagram 7(a). The corresponding layout of

YSTORE is indicated in Diagram 7(b). It is assumed that ZBFTR has value

10 initially. Dotted lines have been used to indicate that the exact amount

of space for non-scalars C and E is not known at this stage.

The amount of space allocated for B may be updated dynamically if 3

has been re-dimensioned in the APL routine. The amount of space allocated

for A, C, D and E, however, will remain constant during execution of the

converted routine.

At this stage, start addresses for A and D are known exactly, and

165

1 0 n 3 10

2 2 2

3 -3 1 13

4 j0 m 2 14

5 -5 2 1 6

Diagram 7(a) : Shows DOPES entries for non-scalars A,B,C,D3E
after the initial information has been processed.

I--------------------------- '

I I

I E I

I ____________________ I
r _ |

1--------------------------- 1

m E

n

A

2 blocks

5 blocks

Diagram 7(b) : Shows layout of YSTORE corresponding to
DOPES entries as given in Diagram 7(a).

R : ' ■ ■ '■ •' • -■ ' ■ ■ ■ ■ '— ..

166

the start addresses for C and E can be calculated immediately before the

converted APL routine is run.

The generated code can now be optimised. The optimisation process

(with particular reference to the removal of unnecessary FIND calls) is

described in Chapter VTII. In replacing FIND calls it is assumed that the

exact start address is stored in column four of the DOPES entry for any non

scalar. This will be the case even for partially specified non-scalars, as

the DOPES entries are altered to this form immediately before execution of

the converted routines.

The processing of the information supplied at run-time of the converted

routines is discussed in §7»1 •

7.1 Handling of Bounds Information for Partially Specified

Numeric Non-scalars

Corresponding to each partially specified numeric non-scalar in the

initial list, the following information must be supplied by the user at run

time :

1. The position, I, of the non-scalar in the initial list.

2. The number, N, of dimensions of the non-scalar.

3. N entries containing the bounds for each dimension.

For example, referring to Diagram 7(b), if YSTORE has 5000 locations, then

n = 4-951 an<l m = 4931 •

Suppose the information specified at run-time for non-scalars C and E

is as shown below:

6 1 2 1 8

CD

(ii)

3 1 2 6 1 - - - - - - - - - - - - - - - _

6 1 2 1 8 2L

5 2 1 2

C
O iiii

for C

for E

Then the start address of C can be calculated as:

4931 “ (2 6 + 9) T 10 x 10 = 4901

Similarly, the start address for E can be calculated as:

4903 - ((1 2 X 8) + 9) -T 10 X 10 = 4801 .

That is, in general

SA . = SA - (no. of elements + 9) -ir 10 x 10 ,
n+1 n v ’

where SA ̂ is the lowest start address for the fully specified non-scalars.

For each line of information obtained, the following process is

carried out:

The array DOPES is scanned, in particular column 3* Suppose (for

entry i in the dope vector table)

(a) Column 3 > -0

This corresponds to a non-scalar for which no additional information

has been provided. No action is required. Entry (i + 1) in DOPES is

now scanned.

(b) Column 3 = 8

Examine column 4. If column 4 = -0> then the entry is either empty or

corresponds to a literal non-scalar. Again no action is required and entry

(i + 1) is now tested. If column 4^-0, then the entry is for an arra y

with full information provided initially. The dope vector entry has already

been filled correctly, and the bounds have been set up in ZBONDS. No further

action is required and entry (i + 1) is now tested.

(c) Column 5 < 0

Suppose column 3 = “k . Then the bounds information for the k non

scalar in the initial list must now be accessed. Using this information

the exact start address for the non-scalar can be calculated. Then DOPES

(i,3) is set to 0 and DOPES (i,4) to the start address.

Suppose DOPES (±,5) = N and

DOPES (i,6) = M ,

then the N bound values are stored in ZBONDS, starting from position M .

This is illustrated in Diagram 7«l(a) •

It is assumed at this stage that information is read in in increasing

order of position in the initial list. Thus, for example, the information

for C appeared before the information for E .

The run-time bound information is supplied in 16 format. Therefore

the first 6 columns of each card could be scanned and the data, reordered

accordingly.

When the initial information was first obtained, the address, I, of

the dope vector entry for each non-scalar was stored. This value has not

been used in updating the entries in the dope vector table. It is used,

however, in replacing unnecessary FIND calls. The value DOPES (1,2) has

to be compared with the fourth parameter of each FIND call recognised. If

a match is found, then column 3 has to be tested for a value < 0, indicating

that the FIND call can be replaced. This is discussed in greater detail in

Chapter VIII.

In conclusion, the entire conversion process is summarised below,

1. Partially process initial information.

2. Convert APL routines to target language code. This involves:

168

169

DOPES

N
0 SA

b . b„ b, .
i 2 N

ZBONDS

Diagram 7*1(a) Shows setting up of entries in ZBONDS using
columns 5 and 6 of the DOPE vector table.

2.1 lexical scan,

2.2 rdght-to-left scan and production of intermediate code,

2.3 left-to-right scan and production of parameter information

on a stack,

2,1+ macro expansions.

Use initial information to update the dope vector entries as described.

Optimise code, in particular by replacing unnecessary FIND calls by

simpler functions.

Read in bounds for partially specified arrays and update the dope vector

entries.

Run the converted routine.

171

CHAPTER VIII

OPTIMISATION OF CODE

This chapter describes optimisation of the generated code. The main

topic is the replacement of unnecessary "FIND" calls by simpler funct ions.

This is discussed in §8.1 and §8.2 . In §8.3 other means of optimising

the generated code are described.

It should be emphasised that no attempt was made at code generation

time to do any optimisation of code. This was reserved for a scan of the

code after generation. For this reason, the generated code is in parts

very inefficient, but can be altered to give a considerable increase in

efficiency.

Another factor contributing to the initial inefficiency of the generated

code is the generality demanded by APL . It is this factor ’which n ecessi

tates the production of a very large amount of code corresponding to only a

simple APL expression. One striking example is provided by the APL

expression +/A, which is discussed in more detail in §8.1.9 •

In producing the generated code, two courses were available for the

handling of global array declarations. These were:

1. to use the exact values for all array bound specifications and to place

the arrays in the COMMON area for each subroutine or function;

2. to give all arrays unit dimensions and to place the array names in the

parameter list of every subroutine and function containing references

to the arrays.

172

The first method is more efficient as parameter linkage, which can he

a costly operation, requires less time ana storage space in this cas e.

However, the second method has the advantage that less alterations need he

made to the code to change the hound values for some arrays, should this

he found necessary. (Only the main program and the subroutine ZINIT, in

which global non-scalars are initiallised, need be altered using the second

method.) With this aim in view, the second method was used in generating

the code, but the first method is employed in all the examples given, as it

provides more readable code. In addition, it is easier to generate ALG-OL

or PL/1 instead of FORTRAN if COMMON statements are not used, (see

Appendix 7)»

8.1 Replacement of Unnecessary "FIND11 Galls

APL allows great diversity in accessing of non-scalars. Some examples

are given below, illustrating a number of different types of non-scalar

access. The code generated is not always very efficient, as this inhe rent

diversity must be allowed for.

Calls of the function FIND are contained in subroutines FIND1 and

SPECS. These subroutines, therefore, must also be replaced by simpler

functions, where possible. At the same time, all the essential information

must be retained (in setting up current bounds, for example). B'or this

reason, calls of the subroutines

1. ZADDR

2. ELPEEM

are often generated when a "FIND" call is being replaced. (The notatio n-

"FIND" is used to mean FIND or FIND1 or SPECS .) These subroutines have

the following functions:

1. ZADDR (I, ZST, ZNUM, ZBOUND)

calculates (a) the start address ZST

0 0 the number of elements ZNUM

(c) the pointer, ZBOUND, to the bound information

for the non-scalar with NAMES index I .

2. ELEERJ/I (I, J, K, L, N, Z)

reorders the subscript- values in array Z according to the value of I .

For a FIND or FIND1 call, the values I, J and K correspond to the first

3 parameters. For a SPECS call, I, J and K all have value 0 . Z is

a two-dimensional array, each row giving the subscript values for a particular

level in nested subscript expressions. L defines the row of Z to be

accessed, and N the number of elements within the L row. The current

bounds for a non-scalar expression are also updated in ELPZEM, in the manner

specified by the value of I .

The following types of array access are now considered.

1. Accessing an element of a 1-dimensional array

2. Accessing an element of a 2-dimensional array

3. Accessing all the elements of an n-dimensional array

4. Addition of an element of a 1-dimensional array to all the elements of

an n-dimensional array

5. A nested subscript expression

6. An expression involving non-scalar subscripts

7. Accessing all the elements of a particular column of an array

8. An expression involving a constant vector subscript

9. An expression involving the APL reduction operator.

173

174

Consider the APL expression

a Ei + Q

where I is scalar and A is non-sca'lar.

The code generated corresponding to the above expression is of the form

shown below.

zj6 - j6

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

ZINDX (ZB1 + 1) = 1 + 1

ZPOINT (ZPT) = ZB1 + 1

CALL STARTS 215 22 ’ 2NC ^

CALL FIND1 (PP'l, FP2, FP3, 23, Y3, 22, ZNC)

ZPT = ZPT - 1

The code Y3 is then stored on ITEMP to be used as parameter for any

further macro expansions.

The above code merits further discussion. It may be observed that the

variable Zj6 is set to j6 initially and is not referred to thereafter.

It was included to handle cases where the subscript expression is non-scalar.

Thus it is redundant for all scalar subscript expressions, but not for non

scalar subscript expressions,in which it is used to handle the implicit

looping operations (see EXAMPLES 8.1.6, 8.1.7 and 8.1.8) .

As was discussed in Chapter I, §1.2.5, the subscript expressions are

stored in the array ZINDX . Since nested subscripts are allowed (see

EXAMPLE 8.1.5), it is essential at any time only to access the current

EXAMPLE 8 . 1 . 1

175

level of ZINDX to obtain the subscript expressions. S'or this reason, the

stack, ZPOINT, was introduced, and the top-most positions o f ZPOINT define

the section of ZINDX to be accessed at any time.

The subroutine STARTS simply does some preliminary calculations before

PIND1 is executed. The first parameter, is the NAMES index for

A . (A similar notation will be used throughout.) EIND1 calculates th e

index, Z3, in YSTORE and the value, Y3, for the non-scalar being accessed.

The first three parameters determine the type of accessing required and the

type value and index (or value, if the type value is fi) for the last

operand for dyadic operations. In addition to the normal type of array

accessing, there are other types, corresponding to certain APL mixed

functions. These are listed in.Chapter I, §1.2.5 .

EXAMPLE 8.1.2

Consider a similar example

A f B [i j J+6] + 1

where B is non-scalar and A, I, J are scalar. Then code of the following

form is generated,

Z1 = 0

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

ZINDX (ZB1 + 1) = I

ZINDX (ZB 1 + 2) = J + 6

ZPOINT (ZPT) = ZB1 + 2

CALL STARTS (B j ^ g)

CALL EIND1 (— B ^ g — Y3 —)

ZPT = ZPT - 1

A = Y3 + 1

Now consider optimisation of the previous examples. Assume, firstly, that

full information is available for A in EXAMPLE 8.1.1 . Then

DOPES (iA , 3) = J0

and DOPES (î , 4) =

where i^ is the address of the dope vector entry for A and is the

start address in YSTORE for A . The elements of A are stored in consec

utive locations of YSTORE, starting from position S^ .

The code for A [l+f] could thus be replaced by code of the form

Y3 = YSTORE (DOPES (iA ,4) + (l+1) “ 1)

and the form Y3 is still suitable as the next operand.

Now assume that B has full information specified in EXAMPLE 8.1.2 .

Then, if Y3 is set to

YSTORE (SB + [(J+6) - 1] * b1 + I - 1)

where B is a (b̂ * bg) array and Sg is the start address in YSTORE

for B, the code Y3 is still equivalent to B [i ; J+6] .

The expression for the equivalent YSTORE element is obviously dependent

on the number of dimensions of the original non-scalar. The above code can

be generalised as shown below to handle n-dimensional array accesses.

(A) Z1 = fi

Z(i,i) = <1st parameter expression>

I
I
I

Z(i,n) = < n^1 parameter expression >

GALL ELP3RM- (-----)

Z2 = n - 1

ZPROD = Z(i,n)

-— ' x'- - : . '■ W 'v :

176

CALL ZADDR (I,ZST,ZNUM,ZBOUND)

1$0.1 IF (Z2.LE.0) G-OTO 1$fe

ZPROD = (ZPROD-1) * ZBONDS (ZBOUND + Z 3-1) + Z(i,Z2)

Z2 = Z2-1

G-OTO

10/62 Y3 = YSTORE (ZST + ZPROD-1)

Here I is the NAMES index for the non-scalar being accessed. It is

assumed that the i nested level is being dealt with.

If n is 1, then code of the following form is sufficient.

(b) zi = f6

Z(i, 1) = < 1st parameter expression>

CALL ELPERM (-----)

ZEROD = Z(i,l)

CALL ZADDR (I,ZST,ZNUM,ZBOUND)

1/J02 Y3 = YSTORE (ZST + ZEROD-1)

Here ZFROD and the label 1 ^ 2 could have been eliminated. They are used

merely to provide conformity with case (A).

In (A), variables Z2 and Y3 have been used, replacing the use of

these names in the original code. It is essential to avoid ambiguity when

introducing variable names. Use of the name ZPROD causes no ambiguity,

as ZPROD would have been replaced by YZPROD, if it had appeared in the APL

text.

177

The label numbers used must also be distinct.

178

In examples such as those given above, the replaceable code is

delimited by

ZB< integer > = ZPOI NT (ZPT) ... (a)

and ZPT = ZPT - 1 ... (b)

Thus, after recognising a statement of the form (a), the subsequent code

must be scanned for a replaceable "FIND" call.

In addition, if a statement of the form

ZINDX (--) = <expression>

is recognised, then the code for <expression> must be retained. The

number, n, of such expressions must also be noted.

To test for a replaceable "FIND" call the following action is required*.

1. Scan column 2 of the dope vector table DOPES for an entry equal to the

fourth parameter of the FIND call.

2. If there is no equal entry, the "FIND" call is necessary and th e scan of

of the generated code should be resumed.

3. If there is an equal entry, the "FIND" call is unnecessary and may be

replaced.

There may be nesting of non-scalar references in APL, and correspondingly

nesting of the types of statement delimited by forms (a) and (b) above. It

is thus necessary to maintain a count, c, of the "current level of com

plexity". The value of c should be incremented by 1 whenever a statement

of form (a) is recognised, and decremented whenever a statement of form (b)

is recognised.

(Che method of transforming the generated code to its reduced form is

outlined in §8.2 .

EXAMPLE 8.1.3

Consider

X f Y + Z

where X, Y and Z are -- *t>n) arrays.

To handle this expression it is necessary to set up loops, as every

element of the non-scalars is accessed in turn. The code required for the

looping operations is fairly complex, as it must allow for n-dimensional

arrays, where n is not known at the code generation stage. The generated

code is of the following form,

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

CALL STARTS (Y n a m e s ,Z1,Z2, --)

ZPOINT (ZPT) = ZB1 + Z2

Z3 = 1

1 0 Z4 = ZB1 -+ Z3

ZINDX (Z4) = 1

Z3 = Z3 + 1

IP (Z3.LE.Z2) GOTO 1 0

Z5 = ZB1 + Z2

Z6 = Z2 - 1

ZSAVE = JZS

CALL FIND1 (— — Yn —)

CALL FUffil (— Zsmss — Yn+1 —)

179

180

GALL SPECS (^LfiJiIES,Y7,Z7)

ZSAVE = 1

ZINDX (Z5) = ZINDX (Z5) + 1

IF (ZINDX (Z5).LH.ZCBNDS (ZCPTR)) GOTO 101

1.02 Z8 = Z6 + 1

1.03 ZINDX (Z8 + ZB1) = 1

Z8 = Z8 + 1

IF (Z8.LE.ZCPTR) GOTO 1,03

IF ((ZB1 + Z6).LE.0) GOTO 1 j66

1.04 ZINDX (ZB1 + Z6) = ZINDX (ZB1 + Z6) + 1

IF (ZINDX (ZB1 + Z6).LS.ZCBMDS (z 6)) GOTO 1J05

IF (Z6.EQ.1) GOTO 1/56

ZINDX (ZB1 +Z6) = 1

Z6 s z6 - 1

GOTO 1/54

1^5 Z6 = Z2 - 1

GOTO 1,01

1^6 ZPT = ZPT - 1

CALL SPECB

The subroutine SPECS handles specifications for all possible type

combinations other than the simple case

< scalar> = < scalar >

However, for the case < vector> = < expression>, the YSTORE elements

containing < vector> are not updated immediately. If they y/ere, problems

could arise with statements such as;

In this case, the first element (1) of the right-hand side would be stored

in Y(l). Then the next element (Y(l)) of the right-hand side would be

stored in Y(2). It can be seen that Y(l) should not have been updated

before its value was stored in Y(2).

This problem is counteracted in the following way. Each time SFECS

is called in the loops, the index of the YSTORE element to be updated,

together with the new value, is stored. Then, on completion of the loops,

SPECB is called, and the appropriate YSTORE elements are then updated.

The variable ZSAVE is the first time round the loops, and is 1

at all other times. Its value is tested in FIND to determine whether the

current bounds are to be updated.

Here there is a group of FIND calls in one level of complexity. The

relevant lines of code should only be removed once, if at all. If ther e

is any one "FIND" call which is not to be replaced, then no lin es of code

should be deleted. The relevant "FIND" calls should still be replaced,

however.

It is possible to reduce the code very considerably if all the "FIND"

calls in one level of complexity are replaceable. For example, consider

the following case.

(a) X, Y and Z all replaceable

The generated code may be replaced by:

ZSAVE = f>

CALL ZADDR (X ^ ^ Z S T)

Zn +2 = Z S T - 1

Z3 = 1

CALL ZADDR (*NAMS3,ZST,--.-)

Zm = ZST - 1 m

CALL ZADDR (ZNAMEg,ZST,ZNUM,)

182

Zm+1 " ZST - 1

Z Z + 1
m m*

Y
n

LFERM- (Zm,I,J,K,L)

Zm+1

tsi

1

+

Y , =
n+1

LFERM (Zm+1,I,J,K,:

iir*- Y + Y ,
n n+1

Z 0 = Z _ + 1
n-i-2 n+2

CALL SPECA (Zn+2»Y7)

ZSAVE 1

Z3 = 23+1

IF (Z3.LE.ZNUM) GOTO 1 0

CALL SPECB

In SPECA, the YSTOES element to be altered (together with the new value)

is stored and the changes made later by calling SPECB.

The function LFERM uses the input parameters I, J, K and L (the

first 4 parameters of a FIND call) to calculate the index N in YSTORE for

the required element. The value YSTORE (N) is returned. In addition, if

ZSAVE is then the current bounds (ZCBNDS) will be updated if necessary

LFERM need not be called if a call of SPECS is being replaced, as normal

accessing is then required in the FIND call. For the vast majority of cases

there will be normal accessing of non-scalars, and thus LFERM will have no

effect.

There is still an increase in efficiency if only some of the "FIND"

calls in a group are replaceable. This is not so readily apparent, however,

as all the looping statements are still required.

A method of transforming the generated code in the above manner is

discussed in §8.2 .

183

EXAMPLE 8.1 .A

Consider

A « - B + C [6]

where A and B are n-dimensional arrays. In the generated code, the

code corresponding to C []6j is produced first, followed hy an array access

of the type given in EXAMPLE 8.1.3 • Thus, where appropriate, the generated

"FIND’1 calls can be replaced by code of the form given in EXAMPLES 8.1.1 and

8.1.3 .

An example of the nesting of subscript expressions is now given.

EXAMPLE 8.1.5

Consider the APL statement

E <f A [B ; C [D]]

where A and C are non-scalars and E, B and D are scalars. The

code generated for the above statement will be of the form shown below,

Z1 = /

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

ZINDX (SB1 + 1) = B

ZB2 = ZPOINT (ZPT) j code for the non-scalar access cQ)]

:
{ I (see EXAMPLE 8.1.1)

I
ZPT = ZPT - 1 Yn = C [d]

ZINDX (ZB1 + 2) = Yn

ZPOINT (ZPT) = ZB1 + 2

CALL STARTS (A j ^ g —)

CAM, FIND1 (^NAMES — — >

ZPT = ZPT ~1

E = Y ,
n+1

If C is replaceable, then the corresponding code for C ^ d]] may be

reduced as described for EXAMPLE 8.1.1 .

If A is also replaceable, the following reduction is possible,

Z1 = 0

Z(1,1) = B

< reduction of type given for EXAMPLE 8.1.1 corresponding to G Cd J >

2 (1 , 2) = Y

I 11
I
I

< remainder of reduction as for EXAMPLE 8.1.2 corresponding to A £ ^ >

E = Y .
n+1

An example illustrating the handling of vector subscripts is now given.

Non-scalar subscripting is catered for, but the subscript expression must

be only one-dimensional. The method employed does not exclude

n-dimensional subscripting (n > 1), but higher dimension subscripting

has been excluded simply to make the generated code less unwieldly.

EXAMPLE 8.1.6

Corresponding to the APL statement

E <— A [B + C [D]]

where E, A, B and C are non-scalar, code of the following form is

generated:

184

185

Z1 = 0

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

<code similar in form to that generated for EXAMPLE 8.1.1 >

ZB2 = ZPOINT (ZPT)
• I

• I

I
ZSAVE = j6 j

1*1 CALL PIND1 C— Bn m e 3 — Yw 1 —)

Z8 = ZY (ZYPTR)

Z1 = Z1 + 1

ZTEMP (Z8 + Z1) = Yn+1 + Yn

as for EXAMPLE 8.1.3

ZSAVE = 1 *1
t I

I as for EXAMPLE 8.1.3

I

1/56 ZPT = ZPT ~ 1

ZYPTR = ZYPTR + 1

ZY (ZYPTR) = Z1

Z1/5 = ZY (ZYPTR - 1)

Z11 = /5

1/57 Z11 = Z11 + 1

ZINDX (ZB1 + 1) = ZTEMP (Z1/5 + Z11)

ZPOINT (ZPT) = ZB1 + 1

CALL STARTS (-------- -----)

CALL RINB1 (— — Yn+2 —)

Y12 = Yn+2

CALL SPSOS (IW s , Y12* —)■

CALL BDNO (Z13 »ZCPTR)

IP (Z13.LT.Z11) EOTO 1/57

CALL SPECB

ZPT = ZPT - 1

186

In this example, the variable Z1 is not redundant. The subscript

values are stored in the next level of ZTEMP, Z1 being incremented each

time round the loops so that successive elements of the non-scalar sub

script will be stored in successive elements of ZTEMP. The appropriate

elements of ZTEMP are then stored in turn in the correct location of ZINDX,

and code generation continues in the usual way.

A similar technique is used in all cases of vector subscripting.

For the above expression, the generated code can be optimised in a

number of different ways, depending on the amount of information supplied

for the non-scalars. The sections of code of the forms given for EXAMPLES

8.1.1, 8.1.2 and 8.1.3 can be optimised, where appropriate, to the forms

described previously. Code which cannot be placed in one of the above

sections is always non-replaceable, and also appears in the optimised

version.

The possible transformations of the above code may also be effected

using the method given in '18.2 .

EXAMPLE 8.1.7

Consider the APL statement

where B and A are non-scalar, and C is scalar.

In this case, as in all cases of vector subscripting, the generated

code is unwieldy. .This is unavoidable, since the implied looping operat ions

must be taken into account.

Code of the following form is generated corresponding to the above

statement.

B

187

Z1 = j&

ZB1 = ZPOI NT(ZPT)

ZPT = ZFT + 1

Z2 = ZY (ZYPTR)

CALL BDVAL (A ^ ^ Z D I M N O ^)

ijSji zi = z.1 + 1

ZTEMP (Z1 + Z2) = • Z1

IP (Z1.LT.Z3) GOTO 1,0/S

ZYPTR = ZYFTR + 1

ZY (ZYPTR) = Z1

Zk = ZY (ZYPTR - 1)

ZSAVE = fS

MARKER = -5

1J01 Z5 = /*

1/ 52 Z5 = Z5 + 1

ZINDX (ZB1 + 1) = ZTEMP (Z4 + Z5)

ZINDX (ZB1 + 2) = C

ZPOINT (ZPT) = ZB1 + 2

CALL STARTS (A ^ ------)

CALL FITO1 (— Am m s — Y, —)

ZSAVE = 1

Y6 = Yn

CALL SPECS (B n a m e s , X M 5)

CALL BDNO (z?,ZCPTR)

IF (Z5.LT. 27) GOTO 1/52

CALL SPECB

ZPT = ZPT - 1

The subroutine BDVAL (l,J,K) has input parameters I and J

output parameter K, where

, and

1. I is the index of the array in NAMES

2. J is the dimension number

3. K is the bound value for dimension number J .

Again, any statements of a form not found in EXAMPLES 8.1.1, 8.1.2 and

8.1.3 are considered to be irreplaceable. All other sections of code are

reduced, where possible, to the forms given for the above examples.

Thus, if both A and B are replaceable, the generated code can be

reduced to the form shown below.

Z1 = $

CALL ZADDR (BNAMBg,ZST,ZEUM,ZBCUND)

Z . ~ ZST - 1
n+1

Z2 = ZY (ZYPTR)
I
I
I

1^2 Z5 = Z5 + 1

< reduction of the form given for EXAMPLE 8.1.2 >

ZSAVE = 1

Y6 = Yn

Zn+1 = Zn+1 + 1

CALL SPECA (Zn+1,Y6)

CALL BDNO (Z7.,ZCPTR)

IE (Z5.LT.Z7) GOTO 1^2

CALL SPSCB

At first sight, it may appear that the reduced code is even lengthier

than the original. However, all the functions and subroutines referenced

are. much simpler in the reduced version.

§ 8.2 describes the method of carrying out the possible reductions for

the above, example.

188

189

EXAMPLE 8 .1 .8

Consider the APL statement

B A [3 4 5]

There are implicit looping operations in the above statement. Again the

subscript values are stored in successive positions in the array ZTEMP, and

loops are set up to store the appropriate zTEMP elements, in t urn, in the

correct subscript positions in ZINDX. The result is a vector Y/hose th ree

elements are stored in vector B . The code generated for the above

statement is again unwieldy on account of the implied looping operations.

However, considerable reductions are possible if additional information is

available for A or B or both. The generated code is of the form sh own

"below.

Z1 = f6

ZB1 = ZPOINT (ZPT)

ZPT = ZPT + 1

ZB2 = ZPOINT (ZPT)
“1

as for EXAMPLE 8.1.3

Z7 = ZY (ZYPTR)

Z1 Z1 + 1

ZTEMP (Z7 + Z1)

ZSAVE = 1

Y
n

as for EXAMPLE 8.1.3
I

1)06 ZPT ZPT
_ _ _ I

ZYPTR = ZYPTR + 1

ZY (ZYPTR) = Z1

ZSAVE = J0

MARKER = -5

190

107

108

The subroutine FIND3 is similar in concept to FIND1, the difference

being that a constant vector element (obtained from NAMES) is produced as

a result instead of an element of YSTORE. Constant vectors (and literals)

may- also be accessed in a number of different ways, corresponding to 14 of

the APL mixed functions.

Some optimisation of the forms illustrated previously may be possible.

EXAMPLE 8.1.9

Consider the APL expression

+/A

where A is a numeric non-scalar. Even for such a simple expression, a

large amount of code must be generated to allow for all the possible types

of A . If A is a vector, then a scalar result is obtained; if A is

an n-dimensional array, then an (n-1) dimensional result is obtained.

Z9 = 0

Z9 = Z9 + 1

ZINDX (ZB1 + 1) = ZTEMP (Z? + Z9)

ZPOINT (ZPT) = ZB1 + 1

CALL STARTS)

CALL r a m (— ̂ 3 — Yn+1 —)

ZSAVE = 1

V1/S = V i

CALL SBSC8 (Bhamk3»y^ . Z9)

CALL BDNO (Z11 , ZCPTR)

IP (Z9.LT.Z11) GOTO 108

CALL SPECB

ZPT = ZPT - 1

191

The number of dimensions of A is not known at code generation time. It

is thus necessary to set up loops to handle n-dimensional array accessing,

where n is unknown.

For the above reasons, the code generated for +/A is extremely

unwieldy. There is no way round this since the additional information

supplied for non-scalars is not taken into account at code generation time.

However, once the additional information is considered, it is immediately

possible to make a drastic reduction in the generated code. This is

discussed below.

The generated code is first described. It takes the form shown

below.

CALL BDINFO (Aj^^g ,ZDIMS,ZBOUND)

IF (ZDIMS.NE.l) GOTO 101

ZB1 = ZPOINT (ZPT)

ZPT ZPT + 1

ZINDX (ZB1 + 1) = 1

OPL = < identity element for + >

ZPOINT (ZPT) = ZB1 + 1

100 Z2 = FIND (1,0,0,A j ^ g)

OPR = YSTORE (Z2)

OPL = OPR + OPL

ZINDX (ZB1 + 1) = ZINDX (ZB1 + l) + 1

IF (ZINDX (ZB:i + 1).LE.ZBONDS (ZBOUND)) GOTO 100

ZPT = ZPT - 1

MARKER = 0

Z3 * ZYY (ZYYPTR)

Zk - 1

YTEMP (Z3 + Zh) = OPL

GOTO 102

- - I

ZB1 = ZPOINT (ZPT) |

' I
’ as for EXAMPLE 8.1.3
? *

ZSAVE = 0 j

CALL BNDSET (l, A ^ g , l)

Z10 = 0

IF (ZCOORD (ZCDPTR).EQ.0) ZCOORD (ZCDPTR) = ZDIMS

ZCD ZCOORD (ZCDPTR)

Zll ZYY (ZYYPTR)

OPL = < identity element for +>

Z12 FIND (1,0,0,)

OPR YSTORE (Z12)

OPL OPR + OPL

ZINDX (z CD + ZB1) = 'ZINDX. (ZCD + ZBl) + 1

IF (ZINDX (ZCD + ZBl).LE.ZBONDS (ZBOUND + ZCD - l)) GOTO 105

Z10 = Z10 + 1

YTEMP (Z10 + Zll) = OPL

ZSAVE = 1 |

, | as for EXAMPLE 8.1.3

t I

z8 = Z8 + l j

IF (Z8,EQ.ZCD) Z8 = Z8 - 1

GOTO 108

Z8 = ZDIMS - 1

GOTO 105

ZPT = ZPT - 1

CALL REDBND (ZCD)

MARKER = -5

ZlH = 0

Zll = ZYY (ZYYPTR)

ZlU = ZlU + 1

The code YTEMP (Zll + ZlL) is then stored to he used as operand for

the next operator.

Subroutines BDINFO, BNDSET and REDBND have the following functions:

1. BDINFO provides the number of dimensions, ZDIMS, and the pointer

ZBOUND for the bound values of the non-scalar with NAMES index given

by the first parameter.

2. BNDSET updates the bound information in ZCBNDS using the appropriate

entries in ZBONDS

3. REDBND calculates the appropriate ZCBNDS entries for a reduction of 1

in the number of dimensions.

The value ZCOORD (ZCDPTR) gives the co-ordinate along which the

reduction is to be applied.

For the above example, the first parameter of the FIND call is non

zero. Thus, if A is replaceable, the call of ELPERM in the optimised

code is necessary to re-order the subscript values appropriately.

If, after the initial information is taken into account, it is known

that A is a vector, then by a preliminary analysis of the generated code,

it can be reduced immediately to the form given below.

ZB1 = ZPOINT (ZPT)

I

YTEMP (Z3 + Z4) = OPL

102 Z14 = 0

Zll = ZYY (ZYYPTR)

111 Z14 = Z14 + 1

Thus a considerable reduction of the generated code is possible. The

code can be further reduced to the form:

193

194
Z(l,l) = 1

OPL » < identity element for +>

100 CALL ELPERM (------)

ZPROD = Z(l,l)

CALL ZADDR (A^^^g, ZST,ZNUM,ZBOUND)

Z2 « ZST + ZPROD - 1

OPR = OPR + OPL

Z(l,l) = Z(l,l) + 1

IF (Z (1,1).LE.ZBONDS (ZBOUND)) GOTO 100

MARKER = 0
I
I
I

< as above >

I
I
I

If A is an n-dimensional array, the code can also be reduced by a

preliminary analysis. Further reduction is then possible, but there is

no advantage in altering the code so that the subscript values are stored

in Z rather than ZINDX. A looping of the subscripts is required anyway

to produce each result element. In this case, the reduced code would be

of the form outlined below.

101 ZB1 = ZPOINT (ZPT)
I
I
t

OPL = < identity element for +>

CALL ZADDR (A . , , Z S T , ZNUM, ZBOUND)
NAMES

Z = ZST - 1ffi
105 Zn = Z10 + 1

212 - Zm + ZPERM (1,0,0,)

195

OPR = YSTORE (Z12)
I
I

111 Z14 = Z14 + 1

Here ZPERM is a function which uses the subscript bounds and values to

reorder the subscripts according to the first parameter value. Then for

position Zn , the actual position relative to the base address is

produced as result. This simply involves applying the array mapping to the

re-ordered subscript values.

The method outlined in ^8.2 may be used to bring about the above

transformations also.

8.2 Method of Optimisation

For a particular level of complexity, the reduction can be carried

out independently of all other levels. However, since nesting of levels

is allowed, the current state on entry to the higher level must always be

stored. Thus, return can always be made to the correct state on exit from

the higher level, and no vital information need be lost.

The method is illustrated using a finite state automaton. The state

diagram for this automaton, together with the action required for each

state, is given in Appendix 10. At any time, the current state value and

the statement encountered are used to provide the next state value.

The state value is initially zero and is updated according to the

statement types encountered during the scan of the generated code. The

statement types to be recognised during the scan are listed in Table 10(a).

Each statement type has an associated letter which is used for ease of

reference in the state diagram.

During the scan of the generated code, entries are set up in several

tables, namely:

1. D ELETE

2. NSTATE

3. IENTRY

4. CODE

The table DELETE is two-dimensional and is used in the following way:

It is not always possible to determine immediately whether particular lines

of code may be deleted or not. For instance, in EXAMPLE 8.1.3, it is only

when the last "FIND" call has been recognised that it is known whether the

looping instructions are required. The DELETE table is updated durin

the scan as indicated below.

There is one entry in DELETE for each line of generated code. For a

particular row, the columns have the following significance.

The first column gives the level of complexity. This is zero at the

start and is updated according to the following criterion.

(a) If a statement of the form

ZB < integer > = ZPOINT (ZPT)

is recognised, then the level number (LEVLNO) is increased by 1.

(b) If a statement of the form

ZPT = ZPT - 1

is encountered, then the level number is decreased by 1 .

The second column has value

(a) 1 for a line definitely to be deleted

(b) ft for a line possibly to be deleted

196

(c) - 1 for a line definitely not to be deleted.

In general, a number of DELETE entries with the second column 0 will

be created, and these entries will be updated to 1 or - 1 as the scan

proceeds.

Thus, at the end of the scan, DELETE will have entries with value 1

or - 1 in the second column, and the relevant lines can all be deleted at

the same time.

Replacement of existing lines must also be considered. Again, it

is not known immediately whether replacements will hav e to be made or not.

For this reason, the table CODE is maintained. When it is known that a

replacement line (or lines) may have to be produced, the appropriate line(s)

is/are produced, and an entry is set up in a two-dimensional table CODE.

Each entry in CODE consists of four parts, having t he fol lowing signif icance

(a) the first column gives the line number before which the insertion has

to be made. (A replacement is considered to be a deletion followed

by an insertion.)

(b) the second column gives the number of lines to be inserted

(c) the third column gives an indication of whether or not the replacement

or insertion has to be made. This column (the insert entry) has value

(i) - 1 initially

(ii) 0 if the insertion is not to be made

(iii) 1 if the insertion is to be made.

Thus -1 entries will be changed to either 0 or 1 as the scan proceeds

and more information becomes available.

(d) the fourth, column gives a pointer to the actual code to be us ed in the

replacement or insertion.

197

A one-dimensional table NSTATE is also maintained. There is one

row for every level of complexity. Each NSTATE entry records the current

state value on entry to a higher level of complexity. Thus the scan of

the generated code can be resumed correctly on return to the previous level

of complexity. When a level has been scanned to completion, the NSTATE

entry for that level should be set to - 1 .

The stack IENTRY is used in updating the DELETE table. IENTRY has

pointer IENPTR, which is 0 initially, and is updated as required. IENTRY

(IENPTR) is 0 initially and is updated to 1 or -1, depending on the

types of statement encountered during the scan.

The tables DELETE, CODE and NSTATE have pointers DELPTR, ICDPTR and

NSTPTR, respectively. Each of these pointers has value 0 initially and

is updated as required.

The variable LEVLNO gives the level number at any point, while ISTATE

provides the current state value (within a particular level).

When label numbers are introduced in producing replacement lines of

code, care should be taken to avoid duplicating existing line numbers.

Similarly, if variable names Z <integer> are introduced, they must not

conflict with existing variable names.

In implementing the finite state automaton, several values require to

be stacked at intervals. Reference is made to these values in Appendix 10.

Using this method, no actual replacements or deletions are made during

the scan of the generated code. The tables DELETE and CODE are later used

to produce the optimised code. On completion of the scan of the generated

code, the array CODE should be ordered increasingly according to the values

of the first column entries. Then DELETE and CODE can be scanned together

and the necessary alterations made to the generated code.

198

For any type of statement not listed in Table 10(a), the action

required is independent of the state value. It is:

1. set DELPTR to DELPTR + 1

2. set DELETE (DELPTR,1) to LEVLNO

3. set DELETE (DELPTR,2) to -1 .

If, at any state, the next statement type is not given in the state

diagram (see Diagram 10(b)), then steps 1 to 3 above should be carried out.

Initially, the variables NSTPTR, LEVLNO, ISTATE, IENPTR and DELPTR

all have value 0 .

8 .3 Other Means of Optimising the Generated Code

In general, the generated code will be very inefficient. This can

be seen by examining the sample translations in Appendix 9. Usually,

however, it is a fairly simple matter to correct the inefficiencies.

Some means of optimising the generated code are discussed in ' 5 8 .3.1 ,

while §8.3.2 contains listings of optimised versions of the subroutines in

Appendix 9.

8.3.1 Discussion of common types of inefficiency and their correction

The types of statement discussed here are:

1. COMMON statements

2. FORMAT statements

3. CONTINUE statements

4. Statements of the form Z < integer > = 0 followed by no other

reference to Z < integer>

5. Statements to reset the values of MARKER and ZCPTR

6 . Statements to reset the values of MARKER, ZCPTR, ZYPTR and ZYYPTR

199

7. Statements produced corresponding to an APL .specification statement

8 . Statements containing unnecessary variable names or redundant brackets

9. Statements corresponding to ;— ̂ statements.

1. When a function or subroutine header statement is translated, it is

not known which global variables will be referred to in the function

or subroutine body. Thus, at this stage, a complete list of COMMON

statements must be generated, together with type specification state

ments for all the global non-scalars. If these are not referred to

in the subsequent code, the non-executable statements may be removed.

Several global parameters may be removed also from function or sub

routine header statements.

.If this type of optimisation is carried out, then the lowest level

subroutine or function should be reduced first, then the next lowest

level, and so on. This ensures that no unnecessary global parameters

are thought to be necessary. For example, consider the following code:

SUBROUTINE A (Y1,Y2,Y3,Y4) •

B * Y1 + Y2

CALL C(B,Y3,Y4)

RETURN

END

SUBROUTINE C (X1,X2,X3)

D = 3*X1

RETURN

END

Here, if A is reduced first, Y3 and Y4 are thought to' be necessary,

which is an incorrect assumption.

2. A number of FORMAT statements are produced at the end of each function

or subroutine decoded. Those unnecessary may easily be removed.

3. At the start of each section of code corresponding to an APL line,

a statement of the form

< label> CONTINUE

is generated. This allows for statements of the form

201

which may occur later. However, in certain cases, ^expression >

may only have a finite range of values. For example, consider the

statement

Here < expression > can only have values 0 or 2.

It may be possible to eliminate certain statements of the form

< label > CONTINUE

see the examples given in § 8.3.2 .

4. If square brackets occur on a line, then a statement of the form

is generated. This is done in order that Z < integer > may be used

as a counting variable if the subscript value is non-scalar. (For

example, consider the variable Z1 in EXAMPLE 8.1.7 .)

If the subscript value is scalar, the statement Z < integer > = 0 is

redundant, and may be removed.

A statement of this type may easily be detected, as there will be no

further reference to Z < integer >.

2 X N > 0

Z<integer > = 0

202

5. After each statement of the form

< label> CONTINUE

the statements

MARKER = 0

ZCPTR = 0

are also generated. These reset the type of the "expression-so-far"

back to scalar. They are necessary in cases where MARKER has been

set to some other type value. Consider the code given below:

< n > CONTINUE

MARKER = 0

ZCPTR = 0

I
I
I

< n+1 > CONTINUE

MARKER = 0

ZCPTR = 0

If there are no subroutine or function calls between < n > CONTINUE,

and < n+3 > CONTINUE , and the value of MARKER has not been explicitly

changed, then the s e c o n d two statements

MARKER = 0 (a)

ZCPTR = 0 (b)

are redundant, and may be removed.

If the above conditions are satisfied, except that there is a call of

the subroutine 0UT2 between the statements labelled <n> and < n+1>,

then the secondtwo statements (a) and (b) are still redundant. 0UT2 (listed

in module library SARUN) does not alter the value of MARKER. In general,

checks may be made for unnecessary individual resetting of these variables,

6 . If two sequences of statements

MARKER = 0

ZCPTR = 0

ZYPTR - 1

ZYYPTR = 1

occur, then the second sequence may be redundant. If any subroutine

is called which updates the above variables, then the statements will

be necessary. If no such subroutine occurs, and the values have not

been explicitly altered, then the second sequence is redundant and may

be removed. In certain cases, only some of the above statements

should be removed.

7. For a specification statement of the form

203

where B is a non-scalar, code of the form

Xinitiallisation statements>

CALL FIND1 (— B n r m e s — Yn —)

V l ” Y n

CALL SPECS (----)

<code to complete loops >

is generated.

If initiallisation statements have not first been 'set up, it is

necessary to test the value of MARKER to determine whether an explicit

assignment may be made, or whether a call of SPECS must be generated.

In cases where M ARKER has previously been set to a specific value,

the test on its value may be removed. For example, consider subroutine

SPHERE listed in Appendix 9. SPHERE contains the statements

MARKER = 0

ZCPTR = 0

Y2 = 4 * (3.14159*(R * R))

IF (MARKER.EQ.-5.OR.MARKER.EQ.-3) GOTO 111

SURF = Y2

GOTO 117

111 CALL SPECS (-------)

CALL SPECB

117 CONTINUE

Here the specification part may be reduced to

Y2 = 4 * (3.1459* (R * R))

SURF = Y2

8 . The above code may be further reduced to

. SURF = 4 * 3.14159 * R * R

by eliminating the unnecessary variable Y2 and removing some redundant

brackets. Care must be taken when removing brackets to ensure that

they are in fact redundant.

9. To allow for statements of the form

 ̂ < expression >

where the value of < expression > is not known until execution time

of the converted routine, statements of the form

Z1 = < expression >

GOTO 1000

204

are generated (see Chapter 6).

Correspondingly at the end of each subroutine or function, the state

ments

1000 IF (Z1 .LE.0.OR.Zl.GT.n) CONTINUE

GOTO (1,2,3, --- ,n) Z1

are generated, where n is the number of lines in the function.

The above two statements will be unnecessary if no --- > statements

are present in the APL subroutine or function.

8.3.2 Optimised versions of the subroutines SPHERE, BASE and Cl

(Listed in Appendix 9)

1. SPHERE may be reduced to the form given below.

SUBROUTINE SPHERE

IMPLICIT REAL (A-Y)

IMPLICIT,INTEGER (Z-Z)

. THE NEXT 3 STATEMENTS WERE INSERTED BY HAND

COMMON / CD1 / R

COMMON / CD2 / SURF

COMMON / CD3 / VOL

SURF = 4 * 3.14159 * R * R

VOL = SURF * R/3

CALL LOCREM

RETURN

END

The subroutine LOCREM is called to remove entries from NAMES corres

ponding to local variable names when these are no longer required. It

will have no effect in the above case, but should be called so that the

appropriate pointer variables will be updated (see the version of LOCREM

in module library SARUN).

In the next examples, the global non-scalars are removed from sub

routine calls and these are assumed to be in COMMON within the subroutines.

A comparison of this method with the original (see Appendix 9) is given at

the start of Chapter VIII.

2. Subroutine Cl (for compound interest calculation) may be reduced to

the form given below.

SUBROUTINE Cl

IMPLICIT REAL (A-Y)

IMPLICIT INTEGER (Z-Z)

COMMON / C351 / MARKER

COMMON / C916 / ZSAVE

COMMON / C726 / ZLIMZ 6

CALL OUT2 (15,-1)

MARKER = 0

ZCPTR = /

READ (5,1/2) ZVBND
I

I

128 CONTINUE

CALL 0UT2 (54,-1)

READ (5,1/2) ZVBND

I
I

151 CONTINUE

CALL OUT2 (87,-1)

READ (5,1/2) ZVBND

206

207

CALL OUT2 (116,-1)

I
I

186 CONTINUE

101 FORMAT (1X,G12. 6)

102 FORMAT (G12)

104 FORMAT (10 G12.6)

106 FORMAT (IX,/)

CALL LOCREM

RETURN

END

'All the subroutines called should be examined for generality. If,

for instance, A handles cases 1, 2, 3 and 4, and it is known that case

3, say, will be applied, then A could be replaced by a simpler function,

thus increasing efficiency.

3. Subroutine BASE produces the representation of a number B to the

base. N. Assuming full informat ion is available for YZ, an array

in which the result is accumulated, the fol lowing r eduction in code

is possible.

SUBROUTINE BASE (B,N)

IMPLICIT REAL (A-Y)

IMPLICIT INTEGER (Z-Z)

COMMON /C351/MARKER

COMMON /C916 / ZSAVE

174 CONTINUE

Ill

2

3

138

208

CONTINUE

Y2 = J2f

IF (Y2.NE.0) GOTO 111

MARKER = -3

ZCPTR = 0

GOTO 112

Further optimisation is

obviously possible here.

This is an example showing

how full generality must

be catered for in code

generation, but that some

calls may be eradicated by

analysis of the code.

CONTINUE

Y7 = B

Y9 = N

IF (Y7.NE.j2f) Y9 = Y9 - ABS (Y7)*AINT (N/ABS(Y7))

R = Y9

CONTINUE

MARKER = j2f

ZCPTR = 0

ZSAVE = 0

CALL ZADDR (1,ZST,ZNUM,ZBOUND)

Zlj2f2 = ZST - 1

Z100 - 1

CALL ZADDR (1,ZST,ZNUM,ZBOUND)

Z101 = ZST - 1

Z101 ~ Z101 + 1

Y17 = LPERM (Zlj2fl,14,J2f,R,l)

Y18 = Y17

Z102 = Z102 + 1

CALL SPECA (Z102,Y12)

Z100 - Z100 + 1

IF (Z10j2f.LE.ZNUM) GOTO 138

CALL SPECB

209

Y20 = N/B

IP (Y20.GE.0) GOTO 153

Y20 = ABS(Y21 - (1-1E-8))

153 Y20 = AINT (Y20)

N = Y 2 J2 f

CALL OUT2 (1,1)

Z23 = 0
■

i

172 CONTINUE

1000 IF (Z1.LE.0.OR.Z1.GT.2) CONTINUE

GOTO (1,2), Z1

CALL LOCREM

RETURN

END

In this example, Z1 always has value < 2 . Thus, if some analysis

of the code is carried out, the statements starting with that labelled

1000 can be updated as shown.

No account has been made of the fact that the SPECS and FIND1 calls

refer to the same non-scalar. Further optimisation is possible here.

147 CONTINUE

210

It has been shown that it is possible to obtain a translation of an

APL routine into another high-level language. It cannot be denied that

the translated code is inefficient, although it is possible to bring abou t

a considerable increase in efficiency.

One major factor affecting the efficiency of the generated code is the

possible presence of unnecessary "FIND11 calls. These can be removed by a

method based on recognition of specific statement types, as discussed in

Chapter VIII, §8.1 and §8.2, and in Appendix 10. The removal of "FIND"

calls involves little or no analysis of the generated code. However, in

cases where any one of a number of different paths may be taken (here each

case must be considered and the generated code soon becomes unwieldy), it

is often possible to eliminate all but one of the paths. Such forms of

optimisation involve analysis of the generated code, often making use of

additional information for non-scalars which was not taken into account at

code generation time.

The inefficiency of the generated code is excusable, since no attempt

whatsoever was made to optimise code at the time of its generation. If

the two methods outlined above, that is

1. replacement of unnecessary "FIND" calls,

2. analysis of the generated code,

CONCLUSION

are combined, then the increase in efficiency can be very great .

In retrospect, it is thought that even greater efficiency may be

obtained by a pre-analysis of the APL code to be translated. APL conceals

a great many operations (such as the testing of variable types) which must

be carried out explicitly in other high-level languages. For this reason

the generated code must make provision for a large number of possibilities.

It is probable that the number of cases to be handled could be reduced by

restating the APL problem.

211

212

REFERENCES

-j. F.R.A. Hopgood

2. D. Knuth

3. V.L. Moruzzi

4.. B. Rondell,
L.J. Russell

5. M.M. Sayers

6. K.W. Smillie

7. H. Van Hedel

"Compiling Techniques", 1969,
MacDonald Computer Monographs 8

"Art of Computer Programming", (Volume 3),
Addison-Wesley, April, 1973

"APB/FORTRAN Translations",
December, 1971

"ALGOL 60 Implementation",
Academic Press, London

"APL to FORTRAN", Paper presented at SEAS
Conference in Gothenburg, Sweden, in September, 1972

"APL AND STATISTICS . PROGRAMS OR INSIGHT?"
Department of Computing Science, University’of
Alberta, Edmonton, Alberta, Canada.

"An APL Batch Processor", Applied Mathematical
Division, European Space Technology Center,
Noordwijk, Holland.

APPENDIX 1

S Y M B O L R E P R E S E N T A T I O N S Y M B O L R E P R E S E N T A T I O N

/ / -

\ # C X # F

D # G

A # J * *

V # K r # H

< < L # I

< # L
1 1

= =
\

P

> # M p # Q

> > * >

¥ # N i i

€
0 * # R

T # s 0 # U

X # T ? y

+ # V ^ # X

i # w
©

@ C

'■ Ar @ D © @ I

- V - * @ E — ^ # E

/ @ J —

\
@ K X # Y

+ + * @ G

@ H A @ P

[# A •

] # B {overbar) @ L

((; :

)) V @ M

/ . f J?. @ N

SYMBOL REPRESENTATION SYMBOL REPRESENTATION

• # Z A - Z A - Z

□ @ A

i i t I i !
o

!
!

!
<£)

l

0 - 9

□ @ B A - Z _ A - J2

A @ F ■ i

A @ 0

APPENDIX 2

T A B L E O F U S E F U L I N F O R M A T I O N F O R A P L S Y M B O L S

S Y M B O L
A D D R E S S I N Z - C O D E M A C R O

S Y M B O L T A B L E V A L U E N U M B E R

p / 1 19 1

u \ 2 20 2

R <■ 3 21 3

E A 4 34 4

L V 5 35 5

Y < 6 36 6

D
< 7 37 7

Y 8 38 8

A > 9 39 9
D

I
> 10 40 10

C 11 41 11

0 € 12 43 12

P T 13 50 13

E X 14 . 51 14

R t 15 55 15

A 4- 16 56 16

T -A' 17 68 17

0 18 69 18

R / 19 74 19

S • 2 0 7 5 2 0

S Y M B O L A D D R E S S I N

S Y M B O L T A B L E

Z - C O D E

V A L U E

M A C R O

N U M B E R

D M

+ 2 1 2 6 2 1 , 3 9

- 2 2 2 7 2 2 , 4 0

X 2 3 2 8 2 3 , 4 1

T 2 4 2 9 2 4 , 4 2

* 2 5 3 0 2 5 , 4 3

r 2 6 3 1 2 6 , 4 4

L 2 7 3 2 2 7 , 4 5

1 2 8 3 3 2 8 , 4 6

V 2 9 4 4 2 9 , 4 7

p 3 0 4 5 3 0 , 4 8

t 3 1 4 7 3 1 , 4 9

i 3 2 4 8 3 2 , 5 0

$ 3 3 4 9 3 3 , 5 1

o 3 4 5 2 3 4 , 5 2

? 3 5 5 3 3 5 , 5 3

k , 3 6 6 2 3 6 , 5 4

© 3 7 6 7 3 7 , 5 5

© 3 8 7 3 3 8 , 5 6

D - D Y A D I C

M M O N A D I C

S Y M B O L
A D D R E S S I N Z - C O D E M A C R O

S Y M B O L T A B L E V A L U E N U M B E R

M

0

->- 3 9 2 2 5 7

N

A

'"V 4 0 5 4 5 8

D

I

X 4 1 6 3 5 9

C 4“ 4 2 7 1 6 0

0

p

■ 4 3 7 2 6 1

E

R

[4 4 1 4 6 2

A
T .

] 4 5 1 5 6 3

0

R

(4 6 1 6 6 4

S) 4 7 1 7 6 5

A

N f 4 8 1 8 6 6

D

s
O 4 9 6 4 6 7

P
E

□ 5 0 6 5 6 8

C
I

□ 5 1 6 6 6 9

A

L
A 5 2 7 0 7 0

S

A - Z 5 3 - 7 8 . 8 6 - 1 1 1

Y

M

A 7 9 1 1 2

B A - Z _ 8 0 - 1 0 5 1 1 3 - 1 3 8

L
‘A 1 0 6 1 3 9

S 0 - 9 1 0 7 - 1 1 6 1 4 0 - 1 4 9 7 1

I N N E R P R O D U C T

• 1 1 7 1 5 0

overbar 1 1 8 1 5 1

blank 1 1 9 1 5 2 7 2

H E T . O U T P U T

' 1 2 0 1 5 3

: . 1 2 1 1 5 4 7 3

V 122 1 5 5 7 4

In the following table the form < ? n > is used to represent the value

of IDSTK (IDLPTR + n).

For macro instructions FL, PC, SL and V, it has been assumed that

IN]) = 1 and ID'OLR = 1/$ initially, so that

variables Z1,Z2, — ■ — are used

and label numbers 1$$, 1J&1, --- are used.

APPENDIX 3

MACRO INSTRUCTIONS AND THEIR JUNCTIONS

MACRO
INSTRUCTION

FUNCTION

% -- %
COPIES THE TEXT -- TO MTEMP, STARTING FROM
POSITION TEMPR. A CONTINUATION LINE IS CREATED
IF NECESSARY.

&
TRANSFERS THE CONTENTS OF MTEMP TO THE OUTPUT
MEDIUM (USER-DEFINED)

+B INCREMENTS THE POINTER IBIT BY 1

+D INCREMENTS THE VARIABLE HID BY .1

+1 INCREMENTS THE VARIA3LE IDOLR BY 1

+N INCREMENTS THE VALUE OF NUMBER (NMBR) BY 1

< label> : -— ■
and

n <label>

USED TO PRODUCE UNCONDITIONAL BRANCH TO MACRO
STATEMENT LABELLED < label >

S<Integer>,<expre5sion> STORES THE VALUE expression IN SS (<integer)>),
USED FOR COUNTING IN LOOPS

& —— &
CONCATENATES-- TO THE LAST ENTRY IN ITSLIP,
THUS CREATING A LONGER ENTRY

M A C H O

I N S T R U C T I O N
F U N C T I O N

< integer>
DECREASES SS (<integer>) BY 1. IF S3 (< integer?-)
IS 0, SEQUENTIAL EXECUTION CONTINUES; OTHERWISE
BRANCH TO START OF LOOP AND REPEAT

£<expression>

EVALUATES AN EXPRESSION (FOR EXAMPLE,*. -1) AND
USES THE VALUE AS A LABEL NUMBER, iffllCIi IS STORED
ON MTEMP. THE ONLY OPERATORS ALLOYED IN
expression> ARE + AND - . OPERANDS MAY BE
INTEGERS, S < integer > or £ . THE VALUES OF
SS(<integer^) AND IDOLR ARE SUBSTITUTED FOR
S<in'beger> AND £ RESPECTIVELY.

?<expression>

EVALUATES < expression> AND STORES THE VALUE OF
IDSTK (IDLFTR + < expression>) ON MTEMP.
EXPRESSIONS M Y INVOLVE OPERATORS +, *, /,
**, (AND). BRACKETS MAY BE NESTED TO A
MAXIMUM OF 1J0 LEVELS DEEP. OPERANDS M Y BE
INTEGERS, S<integer>, IND OH INS. ?'s M Y BE
NESTED TO TWO LEVELS DEEP

AO

GENERATES THE CODS

.AND. (FOR A OR V)

.OR. (FOR V OR TV)

BB
USES A SUBSCRIPT COUNT TO PRODUCE THE NUMBER OF
THE SUBSCRIPT BEING REFERENCED IN MTEMP

BP
RESETS THE POINTER, IBPTR, FOR THE ARRAY ITEMP.

IBPTR <- ITEMP (rBPTR)

BR
GENERATES AN OPENING ROUND BRACKET ON MTEMP
(TSMPR) AND INCREMENTS TEMPR BY 1 ■

CB
GENERATES A CLOSING ROUND BRACKET ON MTEMP
(TEiMER) AND INCREMENTS TEMPR BY 1

CS
GENERATES NON-EXECUTABLE STATEMENTS TO BE PLACED
AFTER A FUNCTION OR SUBROUTINE HEADER STATEMENT
(SEE SUBROUTINE CSRSC IN MODULE LIBRARY 3ALIS)

DB

GENERATES CODS OF THE FORM

ZBA = j6
CALL DRSC (<?1>,ZBA,ZCBNDS,ZCPTR,ZBOUNDS,

ZSTORS)

M A C R O

I N S T R U C T I O N
F U N C T I O N

IT VARIABLE ZIND ft ft, NO EFFECT.
OTHERWISE, GENERATES CODS OF THE FORM

MARKER = -5
< label 1> Z<integer>- = ft
<label 2 > Z < integer > = Z < integer> + 1
<integer> and <label 2> ARE STORED IN ZIND

AND ZNO RESPECTIVELY

IF VARIABLE ZIND ft ft, NO EFFECT.
OTHERWISE, GENERATES CODE OF THE FORM

< label 1 > Z < integer> = ft
< label 2 > Z<integerF= Z<infceger>+ 1

<integer> and < label 2> ARE STORED UN ZIND
AND ZNO RESPECTIVELY

GENERATES CODE FOR A FUNCTION CALL ON MTEMP,
STARTING FROM POSITION TEMPR. (GLOBAL VARIABLES
AES INSERTED SEPARATELY AT THE END, USING THE

INSTRUCTION.)

GENERATES CODE OF TEE FORM

ZSAVE = 1
ZINDX (Z<ISAVB>) = ZINDX (Z<ISAVE>) + 1
IF (ZINDX (Z<JSAVE>).LE.ZCBNDS (ZCPTR))

GOTO < J SAVE>
Z2 = Z<KSAVE> + 1

iftrl ZINDX (Z2) = 1
Z2 = Z2 + 1
IF (Z2.LE. (ZB<integer> + ZCPTR)) GOTO 1/01

1/02 ZINDX (ZB<intsger> + Z<KSAVE>) =
ZINDX (ZB<integer> + Z<XSAVE>) + 1

IF (ZINDX (ZB<int eger > + Z<KSAVE>).LE.
ZBOUNDS (Z<KSAVS>)) GOTO Vft'b

IF (ZAK3AV3>.EQ.1) GOTO 1/04
ZINDX (ZB<integer> + Z<KSAVS>) = 1
Z<KSAVE> = Z<KSAVE> - 1

*

GOTO 1/52
lft3 Z<KSAVE> = Z<KSAVE>- 4 - 1

GOTO < J3AVE>
1 ftl+ ZPT = ZPT - 1

THE VALUES <ISAVE>,<JSAVE> AND A KSAVE > HAVE
PREVIOUSLY BEEN STORED USING INSTRUCTION 3L,

* FOR REDUCTION, THE CODE

■ IF (Z<K3AVE>.3Q.ZCD) Z<XSAVE> = Z<KSAVE> - 1

IS GENERATED HERS

MACRO
INSTRUCTION

FUNCTION

GENERATES CODE FOR AM IDENTIFIER ON MTEMP. THE IDENTIFIER
FN < integer> HAS INDEX

IDSTK (IDLPTR + <integer>) IN NAMES

FP
INCREASES IFNPTR VALUE BY 1 AND SETS IFIND (IFNPTR) TO
1-14, DEPENDING ON THE OPERATOR CURRENTLY BEING HANDLED

F8 SETS IFIND (IFNPTR) TO j6 AND DECREMENTS IFNPTR BY 1

USED IN PRODUCTION OF "FIND" CALLS TO GENERATE THE FIRST
FV 3 PARAMETER VALUES ON MTEMP, STARTING FROM POSITION TEMPR.

FOR EXAMPLE I, J, K

USED IN PRODUCTION OF "FIND" CALLS TO GENERATE THE SECOND
AND THIRD PARAMETERS ON MTEMP, STARTING FROM POSITION
TEMPR. FOR EXAMPLE

FV2
,J,K

(USED IN REDUCTION MACRO, WHERE FIRST PARAMETER ALWAYS
HAS VALUE 1).

USED IN PRODUCTION OP FUNCTION CALLS FOR NON-SCAIAR OPERANDS.

FX
IF OPERAND IS NOT A PARAMETER, ITS NAMES INDEX IS GENERATED
ON MTEMP, STARTING- FROM POSITION TEMPR. OTHERWISE, THE
FORM 'ZF11 OR 'ZF21 IS PRODUCED ON MTEMP, DEPENDING ON
THE POSITION OF THE OPERAND IN THE PARAMETER LIST.

USED TO PRODUCE FUNCTION CALLS FOR DIFFERENT TYPES AND
NUMBERS OF PARAMETERS. FOR EXAMPLE,

F <integer> F1 GENERATES FN.NAME (Z<integer>
F5 GENERATES , ZF2,

THUS F1 F5 5 'WOULD GENERATE A CALL FOR A SCALAR
LEFT PARAMETER AND A NON-SCALAR RIGHT PARAMETER

GENERATES CODE OF THE FORM

F/5 < FUNCTION NAME> = < RESULT VARIABLE>

WRITE (6,1/$) FUNCTION NAME

ID

GENERATES THE VALUE OF THE IDENTITY ELEMENT FOR AN OPERATOR
ON MTEMP, STARTING FROM POSITION TEMPR.

M A C R O

I N S T R U C T I O N
F U N C T I O N

IF < a > < rel.op> CREATES A CONDITIONAL BRANCH TO LABEL NUMBER n IM THE
MACRO BODY. BRANCH IF TEST SATISFIED; 0TH3R7/TSE

m n SEQUENTIAL EXECUTION.

<a> MAY BE
(i) ?<expression>
(ii) A

(TESTS FOR LOOPS SET UP FOR NON-SCALARS)
(iii) F

(TESTS THE VALUE OF IFCN)
(iv) I

(TESTS THE VALUE OF ISXP)
(v) MR

(TESTS THE VALUE OF MARK.)
(vi) N

(TESTS THE VALUE OF FNl)
(vii) N <! expression >

(TESTS THE VALUE OF NAMES (?<expression>))
(viii) 0

(TESTS THE VALUE OF IDSTK (iciPTR))
(ix) S<integer>

(TESTS THE VALUE OF SS (<integer>)
(x) X

(TESTS THE VALUE OF NAMES (?1 + 2)
(xi) Y

(TESTS THE 1st CHARACTER OF THE LAST ENTRY IN ITSLIP)
(xii) Z

(TESTS THE VALUE OF ZMARK)

THE ABOVE SYMBOLS REPRESENT TILE QUANTITIES SHOV/N IN
BRACKETS

rel.op. LAY BE
EQ,NE,GE,GT,LE,LT

m IS A POSITIVE OR NEGATIVE INTEGER

IF < a > CONDITIONAL STOP. AS ABOVE, BUT a MAY ONLY BE
<Tel.op> m (i), (v) OR (xii)

REPRESENTS MACRO SXPBSSSION STARTING 1YITH IND.VALUE
OTXexpression> (AN INTEGER) IS CALCULATED AND STORED ON MTEMP,

STARTING FROM POSITION TEMPR

REPRESENTS MACRO EXPRESSION STARTING V/ITH IMS. VALUE
INE<expression> (AN INTEGER) IS PLACED ON MTEMP, STARTING FROM

POSITION TEMPR

TRANSFERS A COMMENT FROM NAMES TO MTEMP AND SETS THE
NAvIES ENTRY TO -1*s (FOR POSSIBLE GARBAGE COLLECTION)

GENERATES AN INTEGER (1-6) ON MTEMP, STARTING FROM
LM POSITION TEMPR. (USED TO DISTINGUISH RELATIONS IN

RELATIONAL OPERATOR MACRO)

MACRO
INSTRUCTION

FUNCTION

LN AS FOR LM, BUT VALUES 6-1 ARE GENERATED

LO
TRANSFERS THE LEFT OPERAND FROM ITEMP TO MTEMP.
NLEFT IS SET SO THAT ENTRY WILL BE REMOVED FROM
ITEMP LATER.

LO+
AS FOR LO, BUT NLEFT SET SO THAT ENTRY WILL NOT
BE REMOVED FROM ITEMP

L1

CHECKS FOR ENTRY IN COLUMN 1 OF LTABLE WITH VALUE
<?1> . WHEN ENTRY IS FOUND, THE CORRESPONDING
ENTRY IN COLUMN 2 OF LTABLE IS STORED ON MTEMP,
STARTING FROM POSITION TEMPR.

MR< integer > STORES THE VALUE OF < integer> IN MARK

M X-- --
STORES THE VALUE OF THE ENTIRE EXPRESSION ON MTEMP,
STARTING FROM POSITION TEMPR. MX INDICATES AN
EXPRESSION STARTING WITH IMAXFN (IMXPTR).

N
STORES THE VALUE OF NUMBER (NMBR) ON MTEMP,
STARTING FROM POSITION TEMPR.

NB INCREMENTS NMBR. BY 1

GENERATES CODE

+ OR - OR * OR / OR **
0

ON MTEMP, STARTING FROM POSITION TEMPR. THE CODE
DEPENDS ON THE CURRENT OPERATOR

(+ OR - OR x OR -r OR *)

GENERATES CODE OF THE FORM

PC
CALL BDNO (Z2,ZCPTR)
IF (Z<AV.LT.Z2) GOTO < B >

< A> IS GIVEN BY ZIND (SET USING DS INSTRUCTION)
AND < B> BY ZN.O . .

GENERATES CODE OF THE FORM

Z<integer> = Cleft operand>

FOR INTEGERS AND

PL Y < integer > = < left operand >

FOR REAL VARIABLES.

Cleft operand> IS OBTAINED FROM ITEMP. NLEFT IS
SET SO THAT ENTRY WILL BE REMOVED FROM ITEMP LATER.

AS FOR PL, BUT NLEFT IS SET SO THAT ENTRY WILL
PL+

NOT BE REMOVED FROM ITEMP.

PR AS FOR PL, BUT < right operand> IS USED INSTEAD

MACRO
INSTRUCTION

FUNCTION

PR+ AS FOR PL+, BUT < right operand> IS USED INSTEAD

RCM

USED FOR INTERRUPTION OF A MACRO EXPANSION. THE
VALUES OF IND AND IDOLR ARE STORED SO THEY MAY BE
USED WHEN THE REMAINDER OF THE MACRO IS EXPANDED
LATER. AN ADDRESS FOR RETURN TO THE MACRO BODY
IS ALSO STORED.

RE .RESETS THE VALUE OF .IDPTR TO IDLPTR

GENERATES CODE

•EQ. OR .NE. OR .LT. OR .LE. OR .GT. OR .GE.

KL ON MTEMP, STARTING FROM POSITION TEMPR. THE CODE
GENERATED DEPENDS ON THE CURRENT OPERATOR

(= OR OR < OR 4 OR > OR >)

RO
TRANSFERS THE RIGHT-MOST ENTRY FROM ITEMP TO MTEMP.
IF NLEFT IS SET, 2 ENTRIES ARE REMOVED FROM ITEMP;

'OTHERWISE ONLY ONE ENTRY IS REMOVED.

RO+ AS FOR RO, BUT NO ENTRIES ARE REMOVED FROM ITEMP.

R1
TRANSFERS THE RIGHT-MOST ENTRY (WITH ENCLOSING
BRACKETS, IF ANY, REMOVED) FROM ITEMP TO MTEMP.

R1+ AS FOR Rl, BUT ENTRY IS NOT REMOVED FROM ITEMP

R2 REMOVES RIGHT-MOST ENTRY FROM ITEMP

S TRANSFERS CONTENTS OF MTEMP TO ITEMP. MTEMP IS
CLEARED.

S+ AS ABOVE, BUT MTEMP IS NOT CLEARED.

S < integer> ,
< expression>

STORES THE VALUE OF < expression> IN
SS(<integer>)

GENERATES CODE OF THE FORM

SL

ZBl = ZPOINT (ZPT)
ZPT = ZPT + 1
CALL STARTS (< ?1>, Z1, Z2, ZNC
ZPOINT (ZPT) = ZBl + Z2
Z3 — 1

101 Z4 = ZBl + Z3
ZINDX (Z3) = 1
Z3 = Z3 + 1
IF (Z3.LE.Z2) GOTO 101
Z5 = ZBl + Z2
Z6 = Z2 ~ 1
ZSAVE = 0

<ISAVE> IS SET TO 5, < JSAVE> TO 101 AND< KSAVE> TO
6 TO BE USED TO GENERATE THE END OF THE LOOPS LATER

MACRO
INSTRUCTION

FUNCTION

SL2
GENERATES CODE OF THE FORM

CALL STARTS (< ?1>, Zl, Z2 , ZNC ")

STK
INCREMENTS IDPTR BY 1, STORES IDLPTR VALUE ON
IDSTK (IDPTR) AND SETS IDLPTR TO IDPTR.

T< integer > STORES THE VALUE OF<integer>iN TEMPR

GENERATES CODE OF THE FORM

V CALL VSET (<?1> , Z2)

VSET IS PRESENT IN MODULE LIBRARY SARUN

GENERATES CODE OF THE FORM

Z+ Z < integer > = Z < integer> + 1

WHERE <. integer> IS GIVEN BY THE VALUE OF IND.

GENERATES CODE OF THE FORM

ZA
Z < integer> = 1

IND AND IDOLR ARE STORED IN ISUBS (N,l) AND
ISUBS (N,2) RESPECTIVELY. (N IS THE INDEX OF THE
FIRST EMPTY ROW.) USED FOR SUBSCRIPT LOOPS.

REPRESENTS AN EXPRESSION STARTING WITH ZLAB.
Z B -- ---- EXPRESSION IS EVALUATED AND THE VALUE (A LABEL NUMBER)

IS STORED ON MTEMP, STARTING FROM POSITION TEMPR.

ZC
GENERATES THE VALUE OF ZNUM ON MTEMP, STARTINGFROM
POSITION TEMPR.

GENERATES CODE OF THE FORM

ZD Z<integer> = (2f

AND STORES < integer> IN ZNA

ZE PRODUCES THE VALUE OF ZNA ON MTEMP

ZI
GENERATES THE VALUE OF ZIND (OR IND, IF ZIND = 0)
ON MTEMP, STARTING FROM POSITION TEMPR.

ZM
GENERATES THE VALUE OF ZMARK ON MTEMP, STARTING
FROM POSITION TEMPR.

IF ISBPTR = 0, NO EFFECT. OTHERWISE, GENERATES
CODE OF THE FORM

Z < A > = Z < A> + 1
IF (Z< A> .LT. ZBONDS (Z)) GOTO <C >
ZPT = ZPT - 1

WHERE < A> ~ 1SUBS (N,l)

< B> = ISUBS (N,1) - 1
<C > s ISUBS (N,2)

AND N ISBPTR

MACRO
INSTRUCTION

FUNCTION

zs GENERATES CODE OF THE FORM

Z < integer > = ZYY (ZYY PTR - 1)

ZT
GENERATES CODE OF THE FORM

Z< integer > = ZYY (ZYYPTR)

REPRESENTS AN EXPRESSION STARTING WITH ZNUMB. THE
z w ---- EXPRESSION IS EVALUATED AND THE RESULT

MTEMP, STARTING FROM POSITION TEMPR.
STORED IN

ZY
GENERATES CODE OF THE FORM

Z < integer> - ZY (ZYPTR- 1)

ZZ
GENERATES CODE OF THE FORM

Z <integer> = ZY (ZYPTR)

Z < integer>
GENERATES CODE OF THE FORM

Z < integer 1> = < integer>

STOP

APPENDIX 4

A list of all the macro bodies used in the APL-FORTRAN translation

is included for reference purposes.

A header line has been included with each macro body. The header line

gives the macro number, as well as a brief description of the contents or

function of the macro body. The macro processor never accesses the header

lines for the macro bodies, and thus the header lines could be omitted.

Omission of the header lines would significantly reduce the amount of space

required for the macro bodies. The header lines (together with the

surrounding blank lines) have been inserted simply for readability of the

macro code.

KJ 00 ft? a v> z 02 ft? ft? s 3 Cu • « 0
•» «w» I U ft? z > O 3 Q O * 0 3 rH -5 3

k* o 02 > 23 0 O 2 L0 3 4* 02 3 1 ft?

(X 2 UJ 3 •0 CO 4* CM 2 * H 2 M 3 co CL Q > “
M ► H> CM O > - r~l 1 *—« 3 ftp < O ft° • • 2 • - Crj ■

* O A* 22 «■ 02 O O O 0 rH r-x A* ► H

H > ft? ft4> k? c £ 12 ftP Cl O tl 3

2 =ffc ft-? O . U - y~ f -4 ftvO tM Q 3 02 X '
3 M O O \ CL Bx=> k j r^. r» 4- • t 2 rH CD O >? CM

O 3 23 2 02 a Ii ft? ftP O O 1 3 3 X 1
CL 00 Q - J 3 O k - > - 0 ft? ft? ft? 4- rH ro CO II ftp CD v r

k l 2 < 3 OJ CL • 0 f -j M ^0 A* 3 k ! 2 rH

•* 1 O O 02 >* •• ft? f-4 CO «• 2 ft? *- * H u

W» o ' 0D 3 r. > 0 O CO 1 Ck sO ®0 3 r-x 3 c<J 3 ?•?

2 ! > 3 ii CC k j ĉN cc: 2 O 02 ► Hro ft? 02 02
3 ftp CO »-* k~ ii X a O 3 2 Cl A* C a (■

x So ft? CL 02 LU 0 • • < HH ft? O ft? 3 1 9 > G :

3 3 O k* 0 r—t ». rH r-x k~ 3 X cO r -. OJ 7 *

ft? ► J O CL 4> r>J 3 ftP II U J >—H 3 > ft? I 3 . r—

> - k | 0 N4 > fr ft? 02 s? 02 O •s 3 O

S'? ft? • S2 ► > ■ «. UJ % rH > - rH O *• CO 72 3
♦ » ft? f t - ► HO NJ ft? l o c c • s? X l <*3 k - k - CO ft? 3 2 M 2 n ;

ft? O 02 ft? 0 O O rH LL CO 3 r> 3 02 k j ' ;
r<J ft? e O 0 UJ H =<3 3 z UJ k j ft? d 2 rx

Of ft? a k* a 00 • I I - J z BP 1. CM CC ft? 4» ft?-
> f t - M 0 «<5 O U0 u i ft? d ; ftP ■ rx 3 A« 1! k j f t - X SI

3 LA a 4- M O S' C.-P %«-■ <NJ ftP C2 2 f~ x r 3
«-> + >~ *» _ j X UJ S'? Cl Ĉ - O 3 3 0 ft? u . CO 3 -

a2 *** >*» CO i-z 0*+, - j 0 3 r-A w . rH O k~ ©0 <L r~a k ! (
ft? k » M a O O <c z 22 \ UL 2 3 u . X co 3 ft*? ii 3 ’
•*r* a_ w CO 1! • 0 O W LL UJ U-, > • f ft? G 3 7_ 2
3 o ► H3 fx! c5 ---» UJ S-? k j k* 22 8-ft 02 *. rH 8? IS CD 2 3 3 -,

2 O 4* 3 CD 02 2 •« 22 ► H>• c-o rH ft? > O l O
► —» ik] ft? M I— • • • LU G ft? ii i n ft-r: O II ► k i.* -.

3 *S *- CL 02 ro 02 G O w ft? r 2 <r ft? i 1

> a ft? LJLI > - UJ O O'? w fkl I L ftP d ii 0 ft? k
UJ cc • 0 * 2 a : > - 5*2 k~ X I ► H ' f CD 2 k ‘ OJ *

Ii o Cu a rvj 02 Os 00 w ft? O II k j 2 »-H 3 r- — G

ft? o rH k** • w < > CH u . ro 2 SI X 2 2 I
o CM ft? UJ CO > s : *V 1—! ► H 3 Q ► H r-H Cri c h *

k l •xr tH k— M X XI k* x> O O X 2 ft? SC
a ♦ - (X 4* >• •* u . Co ► -HI k j 3 ft? k j 3 3

2? (O OJ 02 VP X r 0 3t k j + =st k* ft? ft * G .—1 ft ' r- ••P ! -• P cr*
3 o > k - O ft-? 0 «n X k4 S-3 *■ CD ii k j ftp k 3 k

rH 2 ! (\ J O Cl 23 4- * « ft? ft? > f t- *- 2 G • XT..
« a • > X 4- M 00 CO '-4 22 ° C uo rO 0 •s ft? ft? rH L— -A 3

o
VP CC c O > M k j f A ► —< o « z ftp r>4 CD 4>

2 ! > - k j k| •* O 0 02 0 z> O 3 i 3 ft5
ft? <r» »*.# - J II a >P O S'? CL ft? II O rH U - CL 4* 0 2 2 CM O 3 VP

UJ - J of -4 h - «~x k j * ? z rH ► H CD r*H 3 V-H 2 2 A* > —H

o c < k - 1 3 1 ft? LLJ O •K LU 1 M X 2 3 x r 7 O
3 a o Cl l -: 0 <0 K - CO 02 O ro LA «x r-H O- • k j ;

3 1 k* __1 X CD O O ' O Q • CM • 3 ft-P ft? ftp Q UJ 3
3 tr* l o - J -~x X > Q < O k “ z S'3 00 O 02 f k k l - J -ft? «K 3 2 r~

< k> < rH k j » - J 23 X c vD X I 0 3 -Tjr 3 • VP ---- L< k - - * ■7; • j - '

O *• o CM ft* M -/ LL. V̂ -H LL CD > 8v= 2 k k - f t ' ?kJ 2 -w 22 02 G 3 :

a x s : k - m k j •*-> w 3 3 vO *. 3 2L 2 2* - r

3 4- CD a 3 Cl • X »v CQ V? 2 co • k ft? CO rH G x -r L2

2 2 ! 2? 3 k - O >D V£ O Cr2 O X I X ro »* rH k l 1 3 3 2 02 :xV

3 i i 3 ► H k l M uo ■ *M k j 2 : »3 k~ LU -«« s? CM A» UJ I • O L1J 3

u . 3 k | 3 4* w a CL Cl i n L'J O* 3 02 G AJ 3 2 C2 w0 2 4-

> *- 02 k 00 a ftp 2 " O co l s? O 3 O 2 A« 3 *—4 v : ftP k J *—r - P ■

UJ —4 o a 02 k j Nf Q rH 9> u . rH K-H L— r - • « •V w n X
—J ~2' « 2 fr~4 CL 9. 3 • • + II k - ► H LO ft? SI 3 2 —« 1- ;

3 CO 3 3 ft? C O 23 CO 3 ro CO ft? O • • > ft? VP 3 2 3 > •' ^ '

O o o O *H> O k j a C5 < II c V ft3 CM *• ft3 • - > .O CD 10
G Cu k4 ft 5 * -» «~4 > - 2 - * 3 7 1 X UJ rH k j CO k l VP rH N -L -xj A C’ --

2 3 > - 23 a •> Nsl k - II CD ft? 3 3 ft? G ---- - t U - il uU ftr —t 7 ■ 3 ;

a ► O 2 : k— ii v? < O ?? O 3 2 ! •s O M' 2 a . 3 w*H SI —J k

3 c> 02 *h 3 =0 X u k i cO OC VH k — • « II G ZD X 2 ft3 3

k* h_ w-. -W of —4 k - ». O e . 3 K—• -* r CC 3 3 *—« cO a 3

CD UJ Cl O i— CL U - - J ,- t ft? CL 11 02 ». 3 k j * 3 k j 3 •V zD *■

3 2 ! O 3 VO 3 k* ■ Cl >1 *-♦ O a ft? LU ^5 »> 02 3 ft? < r-«

3 k| o k j 02 1—i 2! UJ 0 LL m m- X k j 2 rH >3 O >2 VP ftp k O

o < » a «w 4 > «— LU A* >—• 3 *> A* 2 4- • kl v e •»* 02

C*2 * 00 Cr2 3 O k j > X ■ kl 2 rH O ft? 3 2 O n 3 > 5 3
a . 3 a X -H ft-? Cl —* *0 00 LL O % < « j « 3 U_ ?? r-» O 3 2 3 4* k j ;

3 2 ! 5-? ii ?■ ? kL > ft?5 a . O rH rH ii 3 •-/ft 3 -H 3 02 .r'-s 2 "

flD 0̂ 3 v > ft? UJ it ft'c >" k j *l L ft ? f* • vl VC 77.
O * * * k i 00 O M O <M • ft? •* ii 3 32 -3 - *

■>p
■ — $9
CC —
b- s?
Ou
> -
N J O

»• nj
>
N J

0 - N J

2 +
LU fr?
h -
N J

#' i—i

D C N j

3

O
D C

> - N J

_J CL
;s 5 ;

O U J

D C

M

DC
<
C D 0 0

2 O
U J

5;

«t 8°
u »—c
5? I

ti-e

2 e ?

U J

b -
N J O

N N J

DC
| „

a. s?
O NJ
NJ +

». 6?

00
q
2 * -*
CD N)

O
NJ

a. o.
>- 2
NJ UJ
*■ b-

> - NJ
NJ S?

-J
3 CO
O Q
DC

> -
N *-5

S? >
NJ

— II
G a ;
< b -

C CL
r-4 0 >■ f—-I

• s c -n j •

O s? G
■ c*. - J 2

_J

< t * 5
OJ

s?
LU * p UL1

O 0 Q
O II G
O —. O

(T UJ
UJ DC b~

O. O.
b

Q

O S ?

2 II

DC

S P C L

N J O

8 ? O

N J

O D

< r ClC

C

O

S P O

r—I N J

• 8 ?

U J

2:

• » a

s ?

f ?

I-J #«•*

1 s ?

0
2

*—1 w

S ? L-4

N J +

U _

8 ?

5 ? <*5

r-

• a r- J

00 CN DC

s ? f~ l U J

0 • >

II Q 0 O

S ? 2 2 >

► -« — O

a - J

2 s e - J

l~ i N J 'xl <C

s ? O 0

N J * 0

S?

b~ O
o 2
D C b -

b- 2
Cl G
o o
O
N J

s - *-f\

CM %

* 5

(N l o
«

sj > l / l

O O CD •-0
II 2 O CM

«

■ DC O
L*~ O
CL CC %«-*

O ■ «■
O ■ j?

' • . O
N s :

O
e£ «• O 2 :
0 —J V-i

0 t X

0 *x

K i + G£ 2 :

ca

> -

00
S'?
> -
II Q
S? 2

0

► —« >
*,0

>

0 1
-f 0

2?
!

z £ >
a . tl

>*

O
z

u >N-4

CL

I

o
z at

t/>
9-?
>
II Q

99 z

> >3
3-9

<M
a i
+ o

z

a: >
0- ii ULI

3
a

•3
Cl -o
z UJ

_j t-l a;

>-
ii
9?

I N
O

a
z

>■
99

99
>-

* 3

O
•

U J 69
z

99 89

CMCM

Cl
1

Q
z Z

t-H

99 69
> >-

LL </i
f-g CQ
99 <

M
6?

•C
r~ir-1 1

1 a
Q z
Z

6?
99 >-
>- •»»
II k—
99 Z

<
Q «•
Z
w e3

5-9 (M
> I
98 Q

Z
•—i

a
+

•* 6* o >: v-<
- j UL rsj < Q
2 v-w Q o 3:
o + O a £ c
cc 2 : cc rv
> fO M

in X r-
69 r«l

r~l K in Q
I”* 1 V I 4-

a o w e? eg
z LU LO«w* IU n*
l-H V UJ (XI +

>C rv
LL CXI < IV rg

99 C- 2 : Cl cv
NJ ii O Lri
*. «• LL U-

68 CM k—t<1- .J •—t
w -J X O

«t ~J < • • a. rv
% LU O ro

Z CL cfP
LL >~ b* rv

I/)O «« o w fV
II VI LO ll LO

69 fc? o
p. a 2 :

99 X vO *0 CCi
v—< *0 11 rv

K S'? -j UJ
NJ *0 —.<

fV -J .—. UJ o
3: 5*9 aC Jn? V

98 a o
CC H» LL

rC > a -J LO o •—i
a. «K211 “C rv 4-
a rg Bv b t«

DC UJ • < X
LU >- CCo

ro r 5 a
<r c*. V IU i~™ a*?
o V •* Cl LO X
98 > >

LL 1— ►
► —<*- VI _J

O K X *- — s:
+ a. o CCrv

*0 oC zs
X > o

CM LL Q Cr: B'?
»N<> w 2T y >-

O 4f«. r~ tr-* kMM •- UJ
LO £sP LO Q Cl

UJ a JJ rv >
z 27 rn I— £ P e* H®

c _j 9—CV Cj ro V
CMCOIV -J CD •»
0* •siCL to LO

*. O - 1 rV CD
u. r/ V »- VC
► -*4B~ _I < CL LO »>O

CL 0 o o o a 9 CO
o < K' V

-H V O -J CD «.
*• B'? CCX cc

o LO X < VI LL V—
o O *> a

L- 2 st* c3 Ctf o
‘cn VC K- B'? SJ
o LO LO CL -w
iv 1 II *0 L_) ro LO

o« •* UJ IV c?C a
oc III Cl ». V] z

L. :? 2Z > S--5 LO CL CD
k—io h— CDo O

a: CNJv r-i Z'9 V
> v: + Z2 -J ••

cc
,-J UJ
I >

a o
z >
-* o

9P _J
N J <

69 I—
-> o

t-1 Cu
I >-

3
O 3°
Cf. r-t
> +

• - QC

-J I—
2 C.
C >-
cc rvj
> II
-- ■ :€

► *—
a g.
z >

V I n* II Cl < V
*̂s O i i i

> LL V cc “W > -
V I ► «-«w -J CL LL V I

ttmj K—J
H UJ < • • f V
v a . o

> - 6* > -
V I kH V

=S£ v j i« vO X
c-? O II I—

X »v UJ k-H
CO LO +

X X CO
M3 o (XI

UJ II
CD B-i5 tK> - J UJ 1
2: Bv #«. —J <.a
w-t <x3 UJ <
I— CL O V I

O O EX' X
CD rV Q 59 H“ LL
o LD k—4

«: r v O cH
2 t. Cl

r v c I U X
4» QC CC
££ V I > o X

* r. B— e? O
X 5̂ < I U LO B—

k—« a > 0." C
V I tt H- O

r>H Q Y~ CC CD Cj.
1 + V 15 Z5. >

o «* CD o V I
z V CC DC 4k- k-4
► —< X >~ > > - 4-

C- LU «s V
X j r *.

LU LL M Cl X
V I >.*> O s :
4* V I w V v—< LU
v<3 .a ̂ H - *. r v i— *-4

t o •—> CO V 1
JJ V* ZZj ♦ * Q

LD LO H* cC LO V{5 CC z*
V CD k—* rv V v j 3 : i

- J CL ». *v O
a LO CC

iO —J o >"
V I _1 _J 2T ♦ »V
II < —I d CD • J 11

>o O < CO 2 ! IS <
cc r-H X? o V k—i a V
u - 1 e '' *. CC o
CL oc cc >
> w— XI V— a*? •>

Cl X CL > X
•*»' > O f-
> V V ?N<5 CL

Ii o a? O
£ = cC II LO V

w—. UJ CD Cu k.

a . CL 4» 2T rv VD
X > > CG CD

V V— L J 21 O
V? V V V CD L -

a? CD ■ w O a
>.9 ro V ;.3

X ► -< Cl • -

o a »-«
rH X o

>J3 V " l L —J •

0 .— 1 V . j CD 111
!| 1 >— < 7 "

$•? l 0 LJ «~4 «
>3 oc LU UJ vp a :

•> t— 2D zc eg ~ j
V CL <c oC B -
wp > OJ CD V X V C£

> <
v g ;s g

6-c St#
O U

II ID

o C C B*— O L »

a V V B— V X C L

z •* C L > r c c >
r\ .

► H LO D - > — -. il

C D V r g J ..,: V c c

2 V •> LO —J K—

6 8 CO > - O < > C L

> - o Cl N J O > - o

6 9 V 3C e ' V V

«- U J 6 9 X >2

c c h - «k C O

Q B— > r-4 a 5

+ C L c ? Q c ? r 4 2 1 TD

>** Z r—< X a D X "

> - M ► -i 1 a . L D V

< M V

5
0 CC

B -

X V

c O

O > 5 8 C L 5-3 2 5 c .

> * N J > - a - C l C !

U J V c o «~ V r o ‘J J CC CD

z *• Q £ 9 II 1 CO V O '

C L CC it c
*N..

rM 5 *- B - cC O

O - L U X X Cl U J U J C “* C L ■

h— U - > X > X X

L L > - ^ g CjC CC L L .

•—< *- I * tf4> < - -

3 : r J V C S I - J >

O 1
■ >—

c ? < r.

p - i CC c < i n X « D < r CC

V r— o V ? o - -

O •* Cl X - O £ r n .

2 - c c >

k - > - o e o O >

_ J N J _ j il 1 X V ;

1— 1 II •-«. n |h

1 Cl < CrT U J I > *

^ < CD L - » o 2 Z X >

2 C C L c '? X X V

u .

Z
Y

Y

g j-

> -

V ?
2

r g

L J

B̂ = > L L 0-* L--

• a rv r * i V N -t CO o

» 1 c<? C L > - X

X 09 »- 4 *. >-*9 '

9 8 U J -t 2..
*-« 2 : > • 3 c_
3 a £■ ’ V O J J

a -5
o 2! O og w- V
cc *»-• II c» >- V.

V X o ». £3
*. 0C u. U0 lT> UJ

&
> *“■

>?
II cC

u.
a Osl

O

>
V

rg £7 - X uD
V

»~4 U- w U J *
Ql >. Jc H* c-r to —.

>- V I o o *-4
—i>J *. V c c 2 c X

V -J C O CC L—CD 22
-*»- <r C L -X •X
CD LD CL s>;

o V

X >■ ?C O >-
O V V ».

V V -» _ ;
> r? *- &zl 0 B” <

X • • C O CDC. o
-J < n CD zz. o

t 5..
-J O 2̂ X V

< rH V 20 V o »- 1*
O 2 X o V LO 7s

LL V ; ̂ ?:
a? V 3 : V CD C".

CD B 'P 4* CD
*—

C 2 X It

4- II c c V D - V V

%c B— V CI •— »

C L ** > r LC

69 69 UJ s: nj 1 r> NJ
NJ < D 00 f-l

6° >- o 2 O t? Q
H U» >■ N 8i9 ► "‘4 2 >- Uj 2:
1 II 3: >- ar, NJ 69 »—i

o t« ~ O •—« —- +
2 69 02 H 2 69 NJ 6-" 69
► H NJ 4* O >- (• •3 e*

+ 2 —1 O >-
M O 02 t—i a. o 6-4 6—

69 2 t- 02 o o NJ 69 O
NJ t~i o„ eg II 2 CO O
» Q o i 69 »—4 M 69 69 *0

69 + Nj a 02 «N
69 t- zc II cc NJ
N! to M Q 69 «**» (\| *3

D -t a 2 Cl cx 1
2 1 CM 2 »-H >- X a LU
h (tj a. CO *9 Q UJ 2 69 G

f; o >• 2 h- ► -i O 22
UJ NJ »— 69 M >“ NJ II

69 »0 I-- v- <t > NJ 69
>- >- eg x 6? 69
w 6? Cl X 69 oo CL >- O
CM UJ Z < >- X 00 O O
o LU uo Q 69 iU a O 2
X *5 K"~ V + o h** o »—4
02 89 >~

•» r*4 Q
2 : K|

oO <
-J O 85 4* *3 + N

#*• >~
<1 C 8? nt. 69 t—4
CJ O CO UJ W >• r—< 4*
69 1 iH i l

in a I to a 02 r—4 a
+ o 69 ■ =•3 2 h~ l 4-

*23 *"< UJ ► H 2 •3 M a. a
+ M Cl

2
O
1— rM

>-
NJ

2 %
•C E-̂

UJ 3s? i—i o g- &-P 3̂ II
=>0 + M 69

>"
o C-rt UJ

ro
M CC

1— 69
LO

04
59

8? 3-? 69 .— 2! C- >-
69 6? < >~ Cj *—< >- o ir-~|

O -- °0 X 69 • h- INI O 2 3̂? 1
6- 02 •• Q X h~ O 2 a 6? o o
o i~ in <£ O h- O 2 -J G
O o. (\J »~y cj vi • a o t~4 < H* >-<

o — eg ii 69 o *5 It 69 a
*— NJ 02 m i-p 69 >- o
o *• U r-? « 8-9 »-» 69 3̂?
• tO > NJ c rH NJ.&9 6* *1>N

UJ Q Q w O 69 1 w o ra O o *.
2! 2! > m LA w 2 Q >- II • 2 •0 • O
. CO o c II ■ —< 22 ► -4 CC•— a *-4 UJ 4

02 UJ in (M ' *~4 + UJ 02 2 r~i
111 N J of 1 3 1- -L* o * i».
i2 •• —J w~! h- C! O Cu 6s 02 2̂
02 02 < -J 1 •>- 2 '-■ 9 cO >- > »— O
< 1- O LU AJ3 —i > NJ 69 O' K~J
x x < *--4 w r-4 ■>— m o 69 a CO
w >. — C_J o CO U_ 1 < > X • 1 2! 11
u, >• in L'J °0 *-4 C iP 4 Q o NJ J—■ O a « II rH »—t3P

nj f\j u. + > O £9 2 : >-? 69 ► -< + 2 D 69 >4-
69 - X U- 1 2 -A 02 2 •

> — Ui a; S-? —/ m <r Ub a 3-3 G
>• _l Cj V3 • >3 > o O 7'' V 7*

*-H NJ Nj o 1 o NJ o 2 L- »~4
+ «- « O n- > O 2 9t -j + to •—i U.

a i— CL Cl -J 02 1 02 02 cy: 02 LU »—i
x o >- < o. a < Cl 3? 6-4 CL =0 _j O O > > ■ :3?

•2! UJ . > 6-4 2 _J to < Sfc o fc—4 6? X >
y~ !>■ ? nj CL ► -< ZJ 02 a 02 h- > X
> •. O =>1 UJ «<3 eg *J 69 X •C < < 89 2 sk5

+ - >*• 2 : 02 1 >- < L ?9 6- to 2 O O
o' i Q > »-w •M >~H O LLI 02 — < C) 69 UJ M Us
a o z 1 NJ xi _J >• UJ _J !̂C a _) 1— 69 2 _J X + 2 C3 LO Of

02 nh c •» CL — Q. ► ~j Cu Cl Cl O 69 + . a.
.. ISJ Cl. < O 2
.- (»* »-4 X X • • eg NJ o M

RL
C.

I
RR

UC

Al

E
X

P
O

N
E

N
T

I
A

L

(
N

O
.

A
3

)

89 UJ 89 4-1 o o Cl 4- •* NJ
«— rM 4 II NJ s : 8* LO -H#-

CO 1 • • Ci UJ o CL

1 »H f\ l c c H 2 2
UJ w 8 * NJ CC LU
r -{ 1 89 Cl *0 *> NJ O

i 88 °0 D - cx: NJ NJ
4~» O cm h* **•
«— H MM C, NP uo
+ o K-l O >~ rO O NJ Q
89 z z o M 1 O w 2 uo

KM u . 89 89 ti NJ CL 6 a

CC 2C CO

Q UJ a UJ NJ

2 ; 89 89 > -
ry' H - *> * 3

•—* D - II NJ c c o N| CL
mk 89 =*fc c a >1
CO 89 s : o LU

c-e oo co O <93 NJ H -
> - < CD II CO •> CM M 1
i i 4fc li Z CC o c CO •k GC

8 9 88 Q KM H - 89 H a GC h~

Z 0 - KM + CL K— CL
co KM o CC o a . >

o O 89 NJ 1- N j c0 > NJ

z z >* 89 o . *0 *» NJ II
km Q i - i 8? 89 CD *4 DC

z M o o & ? > H~
t -i 88 * 3 4. NJ 2 : r-4 NJ CL

89 8-8 CD co CO 1 «K > -

> - > - + CD o o : N|
8 9 89 89 km 89 Z fc-p NJ v -

> - + «• m CO NJ Cl

89 4—1 1 o o a >* fM
®0 ®0 ii NJ £■ ? h* m N j X)

®3 DC ► a CC II
KM CM UJ CC o £ cC

cn 4 . t-3 II X V~ 8-4 H - a-p Vp

8 ? cC 0 . o -mI CL • O

< > • - j > - II
89 °0 89 89 * 3 z NJ UJ < NJ

89 fr* 2 : o fep CC
CD C NJ • >0 X N"
► — 89 8- CD c c NJ *M>M4 GC LL CL uo

o -> O Z Cl =3 «L Ol * JJ • « >*
O 89 O — c . NJ

• < s LU zC * P ?».o

km km CO LU h - < p*3 <W >

4fc o o O 88 Ofc h~* NJ s : O o NJ

• z • > - NJ &-P w - r~4 (1 X %P
- KM LU — >—4 K-4 r> LL 1 -'jC

CO . J O |— CO 4* &P GC O
9 • z KM o CO N - > 2

it? 8 ? 8? -4 8~ r-t O Cl - J N 1
99 > < 8 -' -4- 1 c ? o
— mk 11 • Zc* >̂•4 NJ <

* s O H* * CD >? 8 ? O UJ CD ► H + o
2 : z Z z Z 8 - iK- l O >
*“•4 —-4 4—4 KM. MM o 4- NJ w

CD < O o CD U o •0 CH &•? • i O <

z km II Z - t Z Cm > - rH rH gsO i n s : fM
KM • 4- 89 S9 89 km * KM KM 1 oc • «s « s : -n

*4" > - km > O c c u . o csT c c ft.? > - L— ft 3 o < «
• mk i n MM z o KM • V - CL NJ Cl 2 o a

8-n O u . o • 4" U - 89 MM 8? 1— UJ o a O ' O Q 2
> ► -< z • 4-4 >-■ > < z >* Wmk O o
MK mk 8? km O 8 ’ IN? M n £ m « N J » r-4 a N i f N
G. z CO LU 8 ? _J II o o *- *3
X MM LU CD Z o cc: 2 : o rP o - J

UJ »3 Cfi Q < L U < H* w a.p CC C l 0
99 o > 3 93 o j j CD o CL h - ^ 4 o NJ >~4 . _ J

2 ■8-? - H* z Z > o ^5 CC VP c 4- CC H 2 .
KM CC OC CC ”3 M X KM N J K— o o 4*

* 3 J J Cl o Cl z >3 UJ CM 4-c LU CL N J N** f™
KM Crt o o CD 0- C8J N j ^* > - o ► O
LU _ J 89 < z 8 ? O N J N J C L W-4 < »_4

CC o KM u . K 4 ---- - z CC KM u . > - 00 L L II L k. N U- CC C -

S . 4 >5 + KM a KM M K * • CC > - Cl Cl

CO u . V - N J O
1 KM CL N J N J

I I O N J 8 9 s
•0 ar o « N J 8 ? I H

f r p E P UJ i n —J
»— + N J X L U CC m r H N J 0

e -p f r p £ -9 n ; t ? Z> H-* t /) 0 * I i « Cl «sS

o < t «0 2 Cl O b ~ r H

o E P s : »H > - CD CC
o X (f j & p 00 N J 8 9 *0 • * 3 O

U - o r H 2 : ♦ - °0 • S'? N J

1 — w 0 > h ~

o o °0 t o c d 0 _ J 0 4 r H I !

H t -p o U J 8? <S Ew? • a CD — * e^p

o r H = »: > a . r H 8 9 N J

CD — r ~ . ?K> o 0 21 ► H +

EfP 2 m O 2 : > CH U J CD S'P

2) l o Vi r H 0 H - f**~ 0 0 11 0
• • U - • o 3 fc «« N J Cl 2 1— 8P N J

o I I o r H - u L A <k > “ M 0 f s j 8? ♦ H

r ~ l r H I U a 6? r H Q N J 0 w * NJ

EvJ * O 2 > - < < it u .

f rP ar 1- r H n > 0 CD c d £ 9 •r—. »—1 O N J

*4 L U O ~J C D i — n j • H 8 9 N J 4, £■ ?

X O e ? r -% L L > - O , w trC- N J

S f ar E ? U J S P 0$ CO fk > - LL. w O O
H c r a N J r H «* 8 9 h»J ► -4 * 8 9 Cl

2 : i n s : 2 E P • v O & P 8? X N J N J O 5 1
u . l =<! r n * H i-H r H (! t L + 2! jJ c C -

LL. H— sr . - J 8? V— • f
L U r n Z *4 L L N J r H * 5 c o * H N J

e -p 2 S P c « CM r H t jp + 5n°

it eg
rH O'*

H U
ar &■ ?

IK* L L J'? r H

► HO if i
r H r H

CM «« 11 N J

CO

O «3

LU ?£ °0
sr £-•-

6 -? O
— Crj O
54? O

(M îJ
r>-

+ o
r-
o

rH £** 0 fre
«r-k. %-?

LO 8* %? O O & O
' h~ NJ W - rH 89

* ? O — O "0 1
CD O J O UJ O O
O Z b? cc 2 O

M a rH O rH rH 2
IT\ 2 C“* h* O CD rH

O lA M CO </> •
O C • L L > UJ se r%

NJ O -t II *?z NJ O ' 8 P

8̂ i • H ***» in NJ
ro rH NJ N* NJ DC rH r>«. 'X •

* in >* n 3t LU >p ‘JJ NJ CO •H 0 2!
• cs: CD « 2 X 5r in a - ? 20. <

in a U J a a <0 c £ • «w UJ
rH 2T D £ -j 2! 1 CM > < O G O

W Or X < «w A* 51 =>0 2 0 M
*H Of » v» NJ

• -H L U L L v f ' LL >:
CO M ► H>0 <

—J <r ®0 C CM rH *3 LU »<3
-J 0 H* A« •« O ii 02
0 0 O C M r H 0 1CC o c CtC -j OC O L L I i 2: CD ► -< c<

CD Cl Cl *H CL cl

89 O 8° 8? in
i i • r H r~* l CD 1

8 ? 8-P bQ I I

UJ r-* . UJ
2T «• CD 5*

Q a ro H *

2 AJ r H CL CM
* H »—<A* > - A-

N J

X JT w » X
s? ► HH >-

>~ N J I I N J

N-* 8̂ M

— O *P
c d r-r *vi
2 4 H - V I

y~ a. o

j a >« u j
• 4 - C>J

_j n S
• k-t < o

*a + or ai
O H £
>■ »>i

a “J s?
(M H =0

>
e*3 MLH

+

J.

O
CD

x? NJ
% 89

VI 8r 8? CM -
1

?

r-(NJ CO fN* rs 1 CD
rH 8?

It
rH H OO LL O >9 CW h—

O ♦ H rH rH 89 O >
H* 8- LD Vi. O LA i/ NJ

UJ O r-*. • • 4* II
2 Cf x» >P CC «*, 04 GD

04 O LU rH 0» CH u-
eg CD • ■ J.
A« M a 2 O O' V“ V.

Q N.I LA x» er” NJ
X 4* X LL — * ■ r 8?

JP
NJ

M

NJ

It 2D
UJ
X

•TJ
rH

0
10 „

0 4. O X + Vr* CL 0
rH

„
<c
CD a

>► > <
X > c""'

O rH O c a? 04 w O M O
rH 5n CD r-*. ■ H X > ,N- II

1- a? O CD NJ ► HO H rs
X
CL

a--5
-J

V
U*

rH *0 -U O 8': c X in X
A* < NJ NJ J— V—«< rH >-

O »- «̂r c? 4* L3 If NJ
X 8? a-p 03 C- 0
H •r-*. O N“ • « >

89 8? 2* LU D CO .— <NJ
O >3 CO K— rH r-H CD “•9

0 x BP CO 0 NJ K l t p f—ft X B? UJ * L/>
CO LO »* Z N % w * J- X 1— BP *0 a

> - EP «. ft—1 O 3 a BP + O H-4 O 2 :
*■ » H CC X co BP Z DC 4 a

• 0 NJ o r CL 0 00 O l DC |>n< Q r~~i QC
». X > NJ B9 a d ; 3 O B-P i n BP 2 z X

ftp CL LL 04 NJ 0 > - N l oC 1 *—< >-4 X LI ►
z Q X *- NJ ># »p X * . 3: X SP cc

O 22 BP #* •—4 • CO X > - *3 o> X
O NJ BP ► ~ft LU II 6P h - w BP O SP Cl

SP z *. w O CC UJ NJ cc BP >♦ r*< II O
+ ► ~«O eg a rg O > f t • UJ BP X 4. 3P X
i-p CC O NJ X 1— < > II Q r-ft f***4a «*.

0 2 ! ** u~ LO LO 0 Cl + DC ► ~LU LO
M ': 0 ► ~»LO NJ X 3 > CC s : 3 Q Q

UJ > - 0 LL O BP r» S'? f t CM ♦ —10 f—. LU O X 2 iZ
z *■ NJ 2* ► X &P 1 1 a Cd BP »-ft CO
► -HftP —J c 5 S-? O • ft 3 3: - J >* > - II 3 LL O

UJ <—J cc z r NJ X • J BP cd BP —J ft—ft X
cc < NJ CM < X fp| < BP 0.

•9 O 0 O • > NJ 1 0 w CM O X BP
CO Z X S'-? CC LL * Q £• ? > » LO O BP vO BP
ISJ t o X a Z NJ X > - CD O Z
41 NJ O. BP 2 : X - CO X LU ► -ft O eg

-• » ** eg O *'V’“ 3 (X u . BP c<J O n »
h - ftp X NJ rO CO z ► ~*4 *3 > - UJ 4
CL NJ 0 m * O CO SP LU - J BP z
NJ «> 22 1 IO 2 > - S-P =te M H* X u . X 4* 00 BP
«-• ftp h—< a ** p—1 II > - • BP *-< BP cC CM X 04
h - NJ UJ «£. LL t— 1 6P 6P *3 f—4 Cl CV BP
Z *• CO CL L— UJ O BP 1
K-i CM a 0 -U NJ CL a : « DC * 0 O LL %
O X 2? r—ft NJ -D ft- X CM =ffc H CC LO h~ + »—ft ft̂-ft r-ft
Cl. LL. 3 1 r. < H* II 1 1 h - 0 Cl 1 X
NJ 0 22 L) LJ 2T h— CL a CL 2T > - 'Jft • • Lft »« *■ £’
t -5 CO 2Z $.9 *—4 CL CO z Z >* CT. >* ro r-ft

ft? > - LL NJ CD X O > - 0 X BP
»■ *• ft—ft ♦ * • * CL CC X X ii ft—ft *■ 3 O w*

°0 ft? N * P rg NJ O w - *. CC + 0 2! X
CL «t 0 LL OC h - rH >—4 X
NJ r J LO <}’ NJ CO i—■ ► —fth"* CL — 11 -• n 3

r -l > »* r*J ro Q * J »P 0 BP CL > rg 5P 4 O
OC LL X 1 If Z* r~i a : 0 a >• X 0^

22 ro O O t-p X X 04 O • « > - J
»—< It 22! CO as + — ► *BP O K - ?P r—. - J

»• ? ftp a ► —!LO X ’ LU SP NJ B? < >0 O BP UJ r-< <
II w* CL •* 11 2 ! ► O 0 3 a O

r~l NJ 10 cc QC DC BP +0 CO z a 2C —ft BO
SP 0 S'? O V - s : ftp ► -HO a • -ft O * 0 h - >—4 0> 5tr

z LO NJ CL + z oc + 2? • O 0 h— 0 00
a s? *> ft—< D u . 1—t X cC S~ft BP LO • 0 2 • w O

z LL BP NJ ► -ft z • N~ O 0 LU SP B“P d UJ
0 * ? *• LH Cl II Z > - 0 X
CO BP LO ftft »? X B? —■ % *— • >-ft 51
N 1 O X O ro £° *•*. X 1 0 X CC CC —. *—ft -z 5, ^ x -

m + < 0 2?! gp z 0 + r>- O w 3̂ X «—* K ' UJ r-< 4 2 —s ^ft f
o s? O C2 2* cc * o *•? 0 -VI cc II a Cl O CJ 'JJ X '
4 ft? X ► ~4 LO LO ' * • 3 : CC 2^ > N - oC f-ft • » OC 01

o O, * a NJ 0 O 0 3 w - 0 V 3 < * O a 0 . '
2 : z O BP #* 2 : UJ z + D£ X CL CO X CL 51 O r—ft O =k3 3 f— 2
W + NJ >? > - O O «.«■ z W. NJ > - > - L— Cl 22 l O -«4. • w :

•* X •* -v ? ! z —1 S'? > - - J > - 3 LL LU ► —<> 0
**ft LO t . ' ■ sr X V—1 %j $ X > O •—4 L— =0 r~ft *. X

Ul a LU LU ft* M X < X 51 w-ft 2l 31 •
v~ z 0.1 z re CC .̂0 0 &? H - f t IO — a LO CC l L pp 3 a
LU 2 : CO Cj O 0 s? 'Z X O LL B-P 3 3 0 X 10 7C a
X 0 K— 2* X X —1 v j 3 •—< X 5 LO a —ft BP 2C B3 *̂4. X 3 :
0 »-! X t o *—< ft—< £ - X -̂ * a SP LO LJ ► —« BP ro 04 o - ■
< *-> 1 •* > NJ 1 LU X c — a X 2 ! D CO It 0 51 cc ■■
C£ X 2 ! O BP B? * CD 0 Q cc. eg + BP UJ X BP - j w~4 cc
CD NJ -rC NJ X 2C VJ Z ! Z D_ O l — 0 \—- cl 3 X 51 3 ;:

• — LL NJ * a 1—4 »—< ► H NJ Ui BP 0 O X LD O 21
O X ► ~h ♦ * -■ 0BP z M X ft—ft * 3 ac • f X 3 V— ». • JJ QC
co 0 BP S 5 S-P LL 1 T—ft LU •—ft •—ft —* *> 22 LU x . X 3 -

• z Nj S? •—ft I— 3 O ry* >■ ? CD S\ L— e* CO ro »—1 ► —V 3 ' -
- J >—1 Q BP rg * X cC 3 NJ Z 1 LU 0 a N-4 0 3 2/
O ' N1 4 rg 4. X a N j— • ft Z O ► —t O zs. 3 LL r—ft z CC X O ► -H *-4.

9? 1 LU UL z V5 CL + VjO K— BP X >—i BP T- CD zz -O
CD cc 3 a N-« II a II O L) > - *? X

eg 22 a c 0 X VO a BP BP * W X B? N

>- + + w M Z 4* ĉP ft O. NJ <1* 2 *0 cC a oC NJ 2 r-4
w 8-? S? CC N» CO •H? NJ N-* 51 ■ w 8—48—4 H* f- f t S? a 00

8? UJ 0 4’ -J UJ ro ?tO G K* a o. 3 ■ N-*■ **• 2 «■ 1
H > O S'? N| 6-P • h- a. NJ 2! 2 I?? >- <- >- O S'? 2 O X

</) CJ + 0 0 H* NJ v- r-H N? NJ 51 b~i S'? O 4~̂ > >~ CC CM r-l 2
2 : a: NJ > O S'? S'? UJ 00 NJ CJ s? NJ 0 M NJ U- 2
NH i— 0 CJ) a h* Q c>? {S3 II ft> e* ro 8-4

89 0- 2 : ?\! NJ 2T S? a LU > Q 2 LL in r—1
>~ G* ..J 4* R' *--4 IS (4i CC NJ N- h- 2 >- < LL 8-4 11 1

49 89 >- NJ -J ac NJ NJ G 0 s? c\3 W a M a R? X
NJ NJ II < L- NJ L-i ro r. 0 «• «• 5 :

II 0 0 . &■ ? »»*4 8-4 ft > 2 a: >- r\J r—1O CO ft
o a. a: CC 0 tflj NJ 5? 4* UJ CO *>3 NJ 8 - a* a CM 2 r-4
Kl

UJ
h -
0 .

h—
a co

NJ a
2 : -J

NJ
s? 4-4

G
v3

?̂
=tt IF

cu
> Z

L

in
NJ
s? r-4

a 00

h- > x CM X O IS n. NJ c*0 4* Oi CC in »• NJ ft Ii
6-5 >- >- x 51 -J NJ c 51 w S'? b~ CO K5 *• LU «* O X- 3?
KJ 89 NJ NJ 8—4 « CC UJ LL a. Oi *— 00 0 > CC '0 a w -
+ 8-5 w -J SP S-? > V— 6? o<j £rP 0 <M NJ O S'? 0
te X ini 8-I NJ * * >" 8? r~4 NJ UJ S-? *. H rJ 2 0

5» X « 4* 4* O II Sx1 > O 3̂ CM Ct: CO a in UJ h~
*5 NJ h- Q 11 £•? CH 0 h- Ss° 0 II 8- NJ M ii a 2 c

Q O 2 &? CO ’®Vf 21 O O > —8S? c? D. #=* tS? 8—4 0
Z s : e 8**4 *0 8—f O h* CO CC UJ O CC CO s?
1— 0

OC
U)

©0
$-?

O S'? Cfi
S'? O

CO .j Cl u 12
NJ

•*
H*
a < -

s?
ai S'?

2

S? S'? 2: 5C Q Q v.p f—» O S'? ~j > NJ t/) G a w LL KJ
8? 8? a NJ r-4 >—< s? CJ 2 “ L— •̂4 • 2T < 5~ u. Q O NJ 3? 8-4
NJ Sfc £•? 2 ; w c£ &? »**4 O w- O 8—1 CJ NJ — I Z NJ -hS: c'r
•«« C ft-. 8~< LL CC O ro UJ KJ w s? CO ft* S-?
a. J"~ £*D 8-«l L** tvT> C_5 0 a ft >- Nj 0 Q t* i—4 S'? a
e : 2T O 3? CL NJ NJ 1— y— 51 (rt *P CO 5- + 85 NJ CC OO h* 2 f t G
UJ O O R'? O 0 NJ CC UJ NJ S-? 2 NJ £P — • r CD CJ a VP 2
8— CC NJ NJ 0 It L" 1— C? 0 8-4 S'? 85 OC CD 8—4

> ft*. w <*3 II 51 S'? Cu NJ <- II G J< O m •»—
8* >1 LL *«? 0 NJ LJ O w 8-4 O NJ <*3 it 0 r~4 Z*

to O
Zc 4- *n 5js

41 4-
f?

CC 5~
Q O

NJ LL G p-4
h- z

s NJ CM
Z

d£
> --J CM LL

d
a

to CD fH a J: 2T ■ Oj S? 8—1L4 m O u„ r- c ■ vf
Q 89 a: II 2! + 00 O ♦ —4-J « s? 0 2 1— ,-**

«■ *NJ ■ ■ •ft**. W-l ■ NJ CC • Q Crl NJ X CO ro a CD O ■
85 • * * NJ NJ V? fr.s 2 V*~* ■ w CM CJ NJ o, r-4

Kl LU a s? • S? NJ w_, a a a: V 51 2
-J CO 2! h- r̂J ->«- > CO 2 f-"r >- X UJ X O X

O • 8ft* t»* O NJ *—4 S-3 G S'? a NJ >- UJ *• O h- a
UJ 2

— <
3? 03

UJ
> 8-4

2

4- »? a Q
2

r-l
4* Li NJ

vp

NJ

LL

Q h-
>-
s?

G
T UJ

Ct:
0

2

NJ

NJ

O

0

a

UJ
2

S'?
89

85
O
2

0
>

4-
v^

Q
4-

NJ
»~4 #—l

4-
*P *-4 VP .V?

z h-
to h~

2
G

2 >? 1—4
a

a *m t~4 0 NJ O Q. NJ 4- o<3 *■ ?Kl u. >- a C <J- a CD
K~ *— O w Nj 5T *0 w C NJ *~l *N NJ G 2 2 a 4
O OC -J NJ ro O UJ s? NJ u. L— o<3 4* a •* X 8-4 8-4 in #-4 ■ ■
o ;< 3? -J CL NJ K- NJ ► —4G =0 O &? 5 ; h~ •* LL 11 N»

0 NJ < 51 > ~̂4 21 O 51 UJ 85 Uj ~z 5T. 8-< G *
OC *—* CJ CM U OC r3 8-4 S? G VP ZD 8—4U.J O S'? Crl

o > LL F— esrj IS NJ C4 Li 3: •—4 in 7D 8̂. Z >- 0 K* CC w- ro 8̂ a
• 8" 8-4 «*L LtJ NJ 3tp CJ w 4- O 4̂ >-*4 Nf O a X S*r CD s? 2 in 4

tu 3? CO S'? y-L ĈJ OC U. NJ JV? ■ 5*3Cl a G V- r- — t a N1 ft •• G a N * 0
2 : 51 4- > • S 3 N J 8-4 NJ 2 2 ^ • 1— 2 * - a i c - : CO « •

« to »—1 O s ? S'? 4* 4* a 8~< CJ 0 O a G a 3* p CM 0 UJ ft-4
OC KJ -J *3 M fNI c »; ro S'? VO >' CJ 2 z >*- 2 y 2 X 2 a NJ
b~ NJ %? K a >- >? p> N.' O UJ nj «« a ■ w • ft
Cl . 8® « UJ (NJ 0 00 c-3 C 2 : S? NJ S-° u. S? CO V— 2 ft-4 0 r-4 — *
O »— r—4 ► — Vp 2 : O S? UJ s? O 1! NJ 89 >- X a M NJ £ •
in ; 85 a: O ft-. O G 8 -4 r-H L ~ CD CC if CO S i: 14 ft f t O ' a

• 3 ? Ji* 2 ! VC 1—4 II NJ V—- G N - — * i 4 8 — J O G G in g a a

u . cv: K -« * ~H OC *->* --v II Cl 2 a crl Ui rO UJ r-l <NJ 2! G 'O 11 a ft-! X
Q >$ 1— O s° VO OC SP O 8-4 >- I— • N» fN G ZD 00 •_n ro G 5.

89 2 it Cu V— in NJ L™ s? G >. a « L— ~3 O NJ 0 ii 2 O
M x C r-4 s° •f vc Cl 2 ! NJ > 00 O CD CD •* +̂- O O

ft-P X O + NJ in H O G *~4 VO V? >- G Z! 2 Or V > 5. IU 2 a * O r-4
h— NJ 5-p O* s? it CC NJ 2' VC NJ NJ w r-̂ 8-4 'JJ $? 8-4 2 a CM r-4 ft-H X
NJ 8? ftft S? h- G VO fc*—« i| 2 CO G 2 OO vp

NJ O LL CL 2T </> G vp SP 3̂ >* KJ UJ ► -<»« G NJ CM w. O
w NJ 8-1 K5 3 - 0=3 O O Z -jf NJ > a 2 ft 2 N- ?■ ? a S.O

L~l .J *? o-O CNJ NJ 0 <1 vp ► —4 II NJ • • NJ 0 u_ a G ft CJ nj »»

O *P VP -X "-H G uO 2»P
NJ CC

0
NJ C j XO 0 vp

LU H
K- _ G

NJ
<
CC

a G <h 7 1 w*— r ?

a: Nj *0 »—i CM 2! G NJ *>J m Sx1 — < Q G 1 2 «•>O LU O NJ

* a KJ X X CO 4—4 w DC 2 S? 0- 2 X *. a X
u. U1 o II s? *« SP o NJ >- «t 4-4 X a 3 O cP o 3 G

2T NJ - J NJ CO CO s-e yU • >• ro rH rH U- LL 2 3 3 zz 3 2 .~o-
• 99 feP e- CL UJ 4* Q SP 4—4 UJ bP N G X CC •* 1—1 3 < NJ a n j Cu"'

II IS) CO NJ G CJ 2! fH? z N - J N S? x NJ a G «. > Nj CC * 2
CM sj 6? o S'? M CC o a Cl HP « w =te >~ 3 • 1 SP CC SP DC 3 r. >-

► “■ Iw o Nl z <~-v Cl V? s? Vp CM #- >~ H* CD t. CD
Q X a O NJ II ► --<CL 5l co 3 SP rv» II s? tP c* CL 'P’ 3 2 NJ

% M a o CG *v£ £P NJ *s l i- O X LU N to CL 3 3 o SP J— tn G gP 5 cr: ;
w z + NJ CD r-M cc ii o K* G DC CL II %i CJ- NI w a CD NJ CD
LL i—i *= NJ *v w* s? N LU >” S? Q a 3 DC o > NJ m ro CC w~

at M M UJ SI w bP K' a *v r~4 2 : SP X s? 2 H- tP UJ K- IL #• G Q >• G N- 3
&<? 99 Ui GC o X NJ a a CC •-4 -r-* ► HG X o IS) CD 2 >- D. C*

CD a : o w o a CC SP x N DC o 2 3 2 H- «v Ni w '
£ H* Cl X NJ DZ G X S? #' < 99 SP zc CD LL CL ». >;
O »o ĉ5 cO 1—1 >Z 1C w 4—1 O V? S? SP X 2 r~l w* O O NJ yz v—
a: + NJ CO NJ UJ O o il CD DC 4—4 o NJ o 2 rH a . NJ NJ 3 4- 3

W H* S NJ N M> V— N 4-M •» 2 2 CM U. 3 NI N* *V 3 h* I— 2
f-9 X LL X CD s? * CL + r-U CL SP 4—4 G 2 «» G < 2 > 3 r— ■

to H XI a cP M s? •» LJ NJ to O o 4* O N QC G rH • • M G 3 2 G 4-4 C, >*
a z 3 :P 1—1 O b'° o G 3P N &•? s? •> 1 LL CD 3 NJ £? a CL •NJ tv

h~ »—! Cl NJ z N •v N II X Q 2 a 2 c-
99 :d a , 99 NJ O t~A 1— CD w LO 4* 3 LL 2 G gp 3 3 O t % 5 p ,C N j 11 CL
. j o k j rW «* gvO X NJ UJ a CD ■ Tfc X f\J 3 s? CL 3 3 LU CM 3 3 nJ“ in e. 3 2
D. 03 H 4* o to o 4' N o 2 a O Cl <C NJ G NJ a LU
O H* 6* z : Q • *> 2 : Q CO H? NJ CO ©'? O rH fvl o *v in e X CO l— .
&•? a ID co S'? L- o UJ 2 O G > > 3 S-? 3 I S-? CC -it 2 >■ >

IS) NJ CD r-H CD LU tfli DC o N 4~4 N N a . 4> a . H” CD O •>
BP UJ CD + • G aC *• X 1— o IL i" CL 2 CQ G 2 2

=0 ► -< >- bp H LL O D, X 4-H r ., o u G 3 G Svj 2
a ►h N CSC 3 c<J cC 4-H CO K-4 SP o VO SP N CO N| *, 3 G
fsl X DC a . *f <t h'" + N to S? N N N V? rH «» fN <M 3 *o DC <C CD Ni '

o ► f-~ o S'? CD D. I! *»r *«r« O Wr 1- G rH • C." G CD S? 3 3 3 cc *■ •''
»-l 99 *3 Cu bh SP S'? O X g.p CD 0. H NI 2 •s o 3 CD 2 NJ 2 CL > *1

BP CD o o o XI a s? X 2 SI CC 3 —4 rH 2 U. 2 2 4-4 «v G • * ••
NJ NJ UJ II NJ ^J 3 LU UJ 2 G S'? y& 3 sy ,—i CD s? NJ <—4 G 2

»9 X K* ii X Ct̂ .U CL NJ Q h- X 4—4 CL DC NJ G t̂ 2 Nf-
II IX CL —•* LU to CD Q N a s - LJ > CC LL N CL a • • <v. NI SP s? G 2” r

N? f - CD X DC —*« tv ,5.0 r-1 G rC ?•0 < *• O L- 3 fvl tv > a X 3 * 2 'D
a W CL zc bp CC O CD 4* 2 2 3 G 5'° c m IL G SP 2 cP 2 2 <
o 9-9 H- N! CC -TV, VO < f\J CD * *-H 3 s? 3 3 o o IA 3 2 4—4 CC N; CrI

— 2 w O S'? CO SI O s? 3 to s? 3 G < 2 ' 5jfc o 1 Nj G G G
C ».—< H- Nj N. r.«j Ni Ii < 3 G 3 X r-v o =*t fr. X X N y N
X O z : *» w -U CD SP G G gp. CD 5P 3 a Q gP ». L— *

IS) z CL ► —43 a X LL Cl J>vp LU N s? N X UJ + > LJ a a*
► -INJ o Cl 2! a •< OtJ —4 3 ►Cl 2: S'? X *v 3 a x SP ♦ -r? z CC >•• 2
o II a Nj *—* 3K3 S? QC Q- 4—4 o a CrC NI V— CM «• o <r° —» Nj *-i >•

r-i CC, B* NJ <« >~4 K- o 3 2 + V- 3 1 SP o r~ O 3 3 N N
2 j? b - Nj UJ UJ Ci. c? X LL Vj5 4—4 a 2C 3 «eL G vp CD cc DC gp r.
u . - J S? II O K- o gsO rH G 4-4 2 aC * b a . 2 o CD o S'? >- 2 '"

- J LU •—» NJ NJ NI N GO 3 N 4—4 3 3 4—4 rH 3 C~ 2 3 N J c
< ZC x o f~~4 S° S'? «> X N Or* DC V.O G t» 3 «• o G r-< G uO SP N CC':

C\l o »-4 CL UJ to + h** N G SP UJ A rH trj >~ Ni o
NJ OC S-? O a ^5 X CD Q CL SP Q > ' SP OC 2 rH S'? |K «v CD v >.

ZI a c: I— h** 2! V? O >0 VP > % 2 II NJ >0 G o NI CC L‘ X 2 S-. »
i-o H—1 VC h- a Cj CC N 3 > 3 DC « *—< 4- rH 3 *V K~ N{ 3 4—4 2_ -J

UJ CD CD LU o o >9 O vp G •CL N X in G CL UJ G O G CL »- 2 > N •
N| >" S-? «— N X !— 3 il N 3 3 rH G O o CD ? v y_. N *-■
VO gp X Ii Cl * CD o II cC t- S? « 3 99 3 G NJ gc -

ii i l OC L— h— 3 2! G <•-- h— 3 LU G BP o DC O n0 Q NJ •> N ’ cC > c.<
C- UJ 3 CL a V—H uL CL t—4 HP CL 4—4 2 2 CL 03 3 2 r. X 3 r V-™N 2 ;

z =0 Cl o S*9 + a N —4 N > NJ Csj or X 00 • 3 *-* lu 2 >? CL ► —
u. CJ f\) go CD r> o tv it > N J *> 3 UJ UJ O •D, CC 3 3 V -0
>—1 CM $? > NJ o NJ rH rH N s? N « gp 2 V 2 3 CJ O G h— N

A- LL W OD *k3 z s? VP II D *H X Ii r-J 2 G S 3 3Z 3 N* C-
x X NJ CD »-4 N CD Q sc LL N < rH 2 V CD *v >- zz *- L.: C.C

at X X CD w r-y* G w t 3 2 —4 rH 2 NJ a . < ?V N i C» -3 N; «— ■
1—1 4—4 V? 2! CO v? a a. UJ UJ NJ 4—1 X *P *» s? *. h- V t- 2

O rH g.c- « CD _I 3 N DC 2 + o ♦ 43 NJ lL < 3 U! CL 3 G C:
bp •—* •NJ z?_ CL S-O O G v—4 3 2 2 vr —4 G 99 1 ► ■ *4 V > NJ VC CD 3 .)

4- m —j 2 nc VO CP 3 3 Ni •so K** 2 Vp >3 s—. r~4 JL LU II G 3 3 CD LL r- N G “ n j
_l V P n L— a> II S !» to 3 N o 3 4<H LJ f- i 2 3 2 4— —̂* r- Nl 2 r

m ► -t-CL N! C O >- VP O *4* ti 35 4-4 V? G 3 rvl < ro 4-4 G 2 VP *- G 2
i—i i O 3 u.. a * HP X o X il CD DO VP r— ŝ 3 O 9-? oc 3 NJ v- 3 •H DC
c- K* + n g UJ NJ N U. DC N N CC N N o LU N* 3 *- *— 3 nc *■ 2- '

Of CD B? 3P NJ -J *■ »Q? Cl 4- H" s? «V £.3 -1- «• OC Q. S“ X v“J CL X 3 X 2
IX L U O * I • 3 DC G Q cO NJ C L V? ii Nl O Ni CL Q O U„ O NJ a 3 NJ 3 >— 2 • j
—1 CD V CZ h— INJ .vr O n >* -J 3 4 S-4 UJ •v 2 2 *v G VI

CM UJ CD DC t—4 CL X > N CC 3 > 3 2 • a. 3 —,G ni “C p

f" rH CD + o L L G N ■ +■G Q a X X NJ N J 3 _ 1

< cc: Z fc? < aC > •* O O
1 21 UJ UJ UJ s LU KJ X O

E? ii Zt w t-o «?3 oc $p

cc >“ o DC LL *0
< <x5 w 2: < *~4 •mJ

*0 2; CO *0 s: W Q -J ► -H
EP z: < + 3-P

og Nt O 0 •r-̂ -’8;
E? + o b? Ui Z EP 6-P
«*» •c UJ H M CO «o

j vO 5 ? O > • 1 CO
1 o in o c<3 KJ KJ (M X
I r-l UJ E? v̂- £9 CH e< CO &p
, o •• KJ H 3-P

vQ O < KJ O CM ŝJ I! =<fr II Ps? UJ
w 1-1 UJ a w* + S? Z O G
UJ + O cc z UJ 4. C H >—t z •s Z
E~ o b? »~4 t̂O H* «3 O 3: O
r-i E? KJ ► —< in a KJ 0 (M 1-
CC E? DC &e 0 z: =te •> CC w z
3 ; Q 5 P 5 " 3 : H E? IU KJ DC a
EP o »a •I* KJ UJ CJ-P O o 1' fH CjC &* LU 0

1— w h— V— 1- tn 00 tl a > 8*
o z >, a o v^ &-p O h- O

•c o EP »—<UJ $;$ «<} o o 0 KJ z co> >
+ h~ < «N ftsp 3: >- O rH

r“N r*(>~ UJ —"* 0 1
CfJ o cO CH o cc b? CC LU 4. 3 CH

♦ 03 O « 03 N> KJ CC rH 3
UJ UJ UJ 5P O CC <

ES 2 h- Nh 6? 2 ! a •H h- O «0
1 >• o c-3 • O z K! 00

O o *>*+ rH O O + «0 KJ «*-*.
J~ 2 *» h- z 4̂. II O G
O CQ vO a COw. SP r o 00 CM Z
o > O Q o > Ĵ ch3 ?.3 Kf CO r-i O •H 51 r-H

M f\J UJ z Kl Kl KJ • z z ► —*
»-« <— t- + 1— c0 #-*. «**> w *J 0 LL 0 31 3
r-l U. o > r~i LL o'J? -J KJ z co O KJ
1 r-1 w CCM 1 in -- KJ S-P w Kl • KJ
« EP UJ 3 1! • 0 Wr 4K KJ L— II

UJ *~ %■ ? UJ r-i II CC c-P O O
2: 4 *0 *-~4 2: O L0 1— • z

« r-l oC c* •̂r • H O r o in O 0 r-O a £0 3 :
o 1 sO *C O0 o 1 ■— *f 0 X 0 a
2: CM Q 2T tri UJ r~A DC 3 : Ki X
cc w* z CC 1— |L °0 a «W Kl
> o' CO > O O DC 00 KJ fc-P
M ° 3 oG UJ r-*. o KJ =0 cc w h~« KJ 0
— - > O Kl 03 UJ Q SP z
u. o Z r? LL §■ ? »L i— • G < G P? V3 O -0
► —iro S-P > co ► -j ro CM. ► —(z > O Kl G •
E? O > CM %•? 4* CM DC CO O (MKJ a — O

UJ »h Ki o<J CO td * 3 w 3 > ». h- U- z
V 3 • - • ac r? KJ LL O 3 : 3 r~« 0̂ vr

* 0 51 -J rH o aO LU It O O O P-
EP •JJ < II ̂9 > UJ (X

h- G K? i— 1 O cO rH G z KJ O
r~< E? o > II S'? a r—(> -̂r Z f. O °0 Z X
CO Q J— c£ Q H- 0 00 < CM 3s? • h-4 0

• 7* c o O K— 2C O -J s° 0 CrC D* LU <
o CO o sf f\J Z Cl H- CQ CD KJ _ 1 -— z LU z a : H*
2 > EP o 5: O ID > c0 9. _ 1 G CD CL u_ CM • X 00

M ih >—< KJ Cl KJ i n < Z O O ► ~4<K DC >
.. *•• z *» 0 0 CD KJ UJ 1! O

i\ i >—< m K| 5'" CM »—t 1—j > sr 1— X rH Z
o 4* • KJ '3 4* KJ LL rH DC 1 *P
r- l g H- *3 Q r-T G (M r. UJ < C4 Ur.

r o <x O «-*, < < CM r-l _J O 5-2 X * -4
CL Q wj UJ • V 5 r o a LU 51 II w
2 <t G Q o < *~4 6 ’ 00 ► '*' X oO KJ LO

UJ fr3 Z i LU s? - J VO UJ X "H UJ
cc EP CD a O UJ £o KJ r--< - J UL S--P

Q E? r o > z K* m « O It G r-t CH 90 .<
< 1 “-3 Kl W-4 •03 a 1 h- Z ■ V Z c** Kl Q
D II — > r » >i O t—4 H- < >0 G
O ► -<cC LL KJ CJ. *~4 a : • CL X LL + ^P 3 : G

+ UJ P? »~n + UJ 04) a L J Q Q
sc O » ?Si r-H :> z K J Z «« O DC
cc Ii w II oc ii CO KJ V9 CD H H- Kl

U
M

S
T

A
C

K
S

'I

f
1-

MO

S
T

A
C

K

V
A

L
U

E

(
M

O
.8

6
)

UJ h- S? 11 r—1 1—
CL nj •-H ► H<r s?

0 O 11 t o S'? •>- S'. 2
Ni SP O 0 X cc a:

u. to 2 rH 0 DO
CO ♦ —< 2 to—' LL K*
O UJ *v UJ
2 M < M3 cc

CM CO SP SP sr O
<_> KJ 4 * Cr̂ »-<

CM NJ £P t 0 a* O 8 ? • a
to NJ II IL rH

O 1- IH? .J LU
UJ CL « > UJ fO r<0

NJ < 2 O H-
O to tt* CO f«4 rH

h- KJ S\°
LL 2 UJ * 0 bP
kH n KJ S?

O + CQ ro MO
CL >- KJ H- 8 ® «

CM NJ t* rsj w —to CM
to <*5 NJ X —4 rH

O' 8® %— Q cO < LD
a , •k3 2 O

S'? k—< CO X
O «-« —to KJ SP to— rH
IU 2 8 9 UJ SP 1-

U- Kl CM < H-*
c o O rH 2 <
CO O < O CC. 2

« LL 8® 2 KJ 0 ar
O »H to 8H rH KJ K" LL 0
IS 8 9 —to cc: II < U,
to.' • • co O 5 : in

r«! O' • oc 0 O
> • K« sp K— 0 --I O
LL Q a e* 11 a. 2 IL 8® rH

UJ CO 2! 2 rH >- *?
—to 2: 11 (—1 to— O K! CM
r- <t 8 9 • 2 O
CO IS to- O CO >- 4, rH 9— CO

• ~J CJ 8® 2 CD UJ K! a^ L-
o UJ 00 2 > CO «*** KJ
2: 2: »-i 8? f— b? »<J
w ► ""* O' U. 2: ro O

1— 1 c o m O UJ r> *P •>$ S? K Ul
0 • CO «3 s: —•» *? KJ 8-9
0 0 0 II UJ t o + -to

w-i cc 2 8® h- CL S'? 5s? CO rH êj O rH
03 w UJ 89 < O —■ * r~1 1 «

0 2) 2 k— O H + Q CM O
H- CO Q CO CO 1 O cx: 2 SP rH

<c z a *— «w KJ h- -~N ► —c —to.O • 3
UJ Ul a 2 UJ 0 ** CL S'? O O LJ
13 cc. 2 LL 'O -J V— > • rH rH ro
_J 0 * -4 ■ »=< co so •JJ KJ SP CM tou«4 CO to—i -o*
C • 0 LL LL 8 9 nj < V M II O KJ r-| I- • g
> UJ O M >• to h—* L_) •wr c£ Kl •«% II O < 0 LL rj

c o c o CM 8 ® UJ do < O, K* KJ S? 2 2 »H 2
iC 8 9 oc 0 •tf* 2 CL 5 \ r-to X CrT to— to
O rH «* LL a LLi ID > UJ > SP • O rH O
< II a f~i —j j— X CJ H* Nl KJ O O LL
H- — - 1 CO UJ UJ CD KJ 4 - 2 2 • f—
00 ccr _! ̂j O. NJ 1 c< S-P w *—4 a < sf CM rn

H < _J r o to 2 -J 2 >7 O 32;
O Cl 0 <r X a w CC rH — J 2 -J
«r Q » 0 UJ a c 2 0 < ° 0 »—1 SP % a Sx"5 'tt UJ UJ UJ
0 O 2 + 2 CO O KJ —to, Nj U- O C£ 3
0 NJ co CO — CO S? t-J t o a? Ll)
0 — UJ 'JJ O «• NJ UJ CO 5 0 CL t o rH CO O O 0
rv! a CJ 8® 0 ro •• 0 2 r-4 S-3 O H* O K- 2 _J s° 2

cc ~3 LL C 25 tto-t O • f 8 9 K| a 0 < 4—4 t~~t 0
</> 0 Q _J a 1~ i 2 0 =!& OO 4 •to— + a 2f v> >.(* t o , i <wO
h- 0 O _ J 0 CM 1 3 0 O O CL «— 2 5*3 —^ O -rJ LJ CD
UJ 0 rC < CC O c£ _J h~ 2 *~4 O K -J < a *3 -J
CO NJ 0. O a. ► -4O CO CL CO O UJ O UJ « r CC u. ro »• O 0 LJ

S'? S3 + CM > O KJ KJ O J— as »— % •? X S3
». KJ >p — to rH

O O' — * NJ CM **■ *

+
S'?

CC CC

s? i-
I I N

U J Q

M

SP
Kl
+ S'?

s ? o

II
U J

o

S'? t '-
N j

H r o s : N J

4 - • U J

X o k *

sc z N J * 0

CO U J

• r o • 0 N J

k ~ o •

o 54; it a
t A z 4 ? &P

f—< oc V * i H N J

n j U J 4 * I I
« o ■ v.s —

Co U J o c
o k - U J k ~

« r -4 z Q , U J a

o M — 1 a N | X
• V o N J

U J r * N J ■ W*

• J 5 $ k - >

• Ou N J N J

r **4 * -« I I * *
M U J OC
— 4 * Q o

Uu X CO c O SS:
4 5 C o CO U J

I D N J

o t o LO o o

o r H U J r~4 O0

o c0 o OO 3 ^ 4 * C L
*—4 Z) U J N ! 0 C X ? o

* ? o % CC & k - —- o

a O CL _ 1
* CrC k— > -

r v j 5 $ Cl O 0 0 N J N J

k— M N J II O

OC N J

APPENDIX 5

COMPARISON OF BRACKETING AND REVERSE POLISH METHODS

Three possible methods are considered:

Method 1 involving two distinct processes :

(a) a lexical scan

(b) a right-to-left scan involving both production of reverse polish and

expansion of macros to generate the target-language code.

Method 2 involving three distinct processes :

(a) a lexical scan

(b) a right-to-left scan in which reverse polish is produced.

(c) a left-to-right scan in which the target language code is generated.

Method 3 involving three distinct processes :

(a) a lexical scan

(b) a right-to-left scan in which a bracketed intermediate code form

is produced

(c) a left-to-right scan in which the target-language code is generated.

A description of the handling of "FIND call" operators is given in the

main text. Using the method described, it is possible to obtain an increase

in efficiency of the target-language code as compared with the original APL

code. Method 3 is most suitable for the handling of these operators, for

the reasons given below. (In fact, a great deal of work had been done on

Method 3 before Methods 1 and 2 were considered. For expressions not

involving "FIND call" operators, reverse polish methods would probably be

slightly more efficient. However, the ease of handling of "FIND call"

operators justifies the use of Method 3.)

Consider Method 1 applied to expressions such as that given below.

F -e A/B + (C-D*E ID) - C

For both / and + , the index and type value for the left operand (or

the value and type value, if the type value is 0) is required. If this

information is extracted during the lexical scan, then the lexical scan

for this method would necessarily be more complex than the lexical scan

for Method 3, as more tests would be required.

For example, the expression involves two "FIND call" operators. The

above information is required for each, together with the "scope" of each

operator, that is, the extent of influence for each operator.

The required value for the first parameter of the "FIND call" must

also be retained here.

All the necessary information could be retained by replacing the

1-byte entries for operators by 3-byte entries, giving

1 . the negative of the operator macro number

2. the value for the first parameter of the FIND call

3. the index value for the left operand (to be inserted in the FIND call).

Some means would have to be devised of distinguishing these entries

from the 2~byte operand entries.

It is better not to store the type value for the left operand of the

FIND call at this stage, as type values can vary dynamically.

It is difficult to keep a record of the scope of an operator using

Method 1. In the above example, the scope of * is terminated by) .

However, in the following example,

A/(B + (C*D) + (F+D) + G) - E ,

the scope of + is terminated by the second), but the scope of / is

not terminated until the end of the line is reached. This implies that

a bracket count is necessary for the. handling of "FIND call" operators,

but that tests must also be made to detect the occurrence of operators

whose scope extends to the end of the line.

Thus, it can be seen that the lexical scan for this method would be

more complex than that described for Method 3 in the main text.

Method 1 has the advantage that one scan can be eliminated. However,

the lexical scan and the right-to-left scan would both be more complex

than for Methods 2 and 3.

Now consider Method 2. Using this method, the first parameter value

and the left operand (for "FIND call" operators) could be retained during

the right-to-left scan, in which the reverse polish notation is generated.

When a "FIND call" operator is detected, it is known that all preceding

operators (either from the right-most end or from a previous occurrence of a

"FIND call" operator, with due regard for bracketing) lie within the scop e

of the operator. 'For example, in the statement

F «- A/B + (C-D*E t D+B) * C ,

the operators + (first occurrence), -, *, lie within the sco pe of /,

while the operator + (second occurrence) lies within the scope of t .

The operator <• lies outwith the scopes of both / and t .

The above information must be stored in some form. Thus, the complexity

of the right-to-left scan would not be considerably less for Method 2 than

for Method 3.

The handling of "FIND call" operators is more difficult using Method 2,

because brackets, which are important to the method, are discarded during

the right-to-left scan. For example, consider the APL expression

A/ (B + (C t D)) - E .

If a reverse polish notation is produced during the right-to-left scan,

the operator / is not reached until (B + (C t D)) - E has been handled.

At this stage, the brackets have been discarded, and thus the scope of /

cannot easily be determined.

There is little difference in complexity between the left-to-right

scans of Methods 2 and 3.

Method 3 has been discussed in detail in the main text. There is ho

problem with "FIND call" operators using this method as the necessary infor

mation can be obtained easily during the left-to-right scan. Using

Method 2, it is not possible to delay the storage of the required information

until the left-to-right scan, as the brackets present have already been

discarded. Thus, due to the problem posed by the need for a bracket count,

if a reverse polish method is to be used, it would appear that Method 1

is preferable.

Comparison of Complexity

Lexical Scan Method 3 = Method 2 < Method 1

Right-to-Left Scan Method 3 = Method 2 << Method 1

Left-to-Right Scan Method 3 *= Method 2 None for Method 1

APPENDIX 6

A list of restrictions on the types of APL statement able to be

translated is now given. The list is in two parts:

A. Important restrictions

B. Less important restrictions.

List A is further sub-divided into

(i) those restrictions imposed as a result of the

method of conversion

(ii) those restrictions which could be removed using

the same conversion method.

A. IMPORTANT RESTRICTIONS

(i)

1. Function or subroutine parameters must be either

(a) numeric scalars

or (b) numeric non-scalar variable names

or (c) literal variable names

The above parameter types are the only ones possible in a function

or subroutine definition header statement. The type assigned to parameters

in the header statement determines the code to be generated in the function

or subroutine body. Thus, for example, a literal constant cannot be used

as an actual parameter when a literal variable name has been used in the

header statement. Similarly, if B is a numeric non-scalar variable name,

then the following code would not be handled correctly,

V A FN B

V

X FN 3

In the above example, looping code would be generated for non-scalar

accessing and this would be incorrect if the variable. B was replaced

by the constant 3.

2. Use of non-scalar or literal parameters requires a knowledge of the

storage method used by the conversion routines. For example, consider

the function

V R •<- CTD L
I
I
I
1

V

where L is a literal variable name.

To call CTD with parameter 'ABCD', it is necessary to

(a) first assign 'ABCD' to a literal variable name, say Ll.

(b) set up an entry in NAMES for 'ABCD'.

(c) set up an entry in NAMES for Ll.

(d) set up an entry in LITBLE associating 'ABCD' with Ll.

(e) call CTD with parameter value equal to the NAMES index for Ll.

3. Function result variables must be numeric scalars. This is due to the

fact that the result value has to be assigned to the function name.

4. Recursive function calls have not been catered for.

5. The left parameter of a "FIND call" operator cannot be an expression.

This is due to the method of handling certain mixed functions. The problem

can be avoided by introducing an extra variable name. For example,

(A+B) (j) X cannot be handled, but

R <■ A+B

R <j> X

will be translated correctly.

6 . Expressions such as

A [Y] Y ■ +• B+C

will not be translated correctly, as immediate action macros are expanded

to handle indexing. Thus, if Y originally has value 4, then A[4]

(not A[B+Cl) will be altered. This problem can be avoided by splitting

the expression into two parts, that is,

Y -c- B+C

A [Y] +■ Y

(Multiple assignments will be handled correctly as long as the left opera nd

of an assignment is not used in an indexed expression on the same line.)

(ii)

1. At present, no account has been taken of run-time changes in the type

values associated with variables. The type values will be updated as

required. However, the conversion routines use instructions of the form

IF ?n <rel-op.> m k

to test the type values.

In fact, the macro bodies should be altered to test the appropriate

NAMES entries at run-time.

2. Nesting of non-scalar indices has not been handled. Thus, for example

A[3 4 5] is acceptable, but A[3; B[C ; D ; E]] where C or D or E

is non-scalar, is not allowed. This restriction has been imposed merely

to avoid production of unwieldy code.

3. The operand for the reduction operator cannot be an expression. This

restriction may be removed by updating the reduction macro (see Appendix 4).

4. A co-ordinate value may not be specified for the following functions

(a) dyadic rho

(b) monadic comma

(c) dyadic iota

(d) grade-up

(e) grade-down

(f) member

5. The variable name MARKER is reserved and should not be used in the

APL source. This restriction may be removed by replacing the name MARKER

by, for example, ZMARK in the macro bodies and all the run-time routines con

tained in SARUN.

6 . Non-scalar variable names may be used as parameters for <— ,' but non

scalar expressions are not allowed.

7. Locked functions are not handled.

8 . 1-indexi.ng is assumed throughout.

9. The functions

-5 o B

-6 o B

-7 a B

have not been defined.

An exponential series is required to handle these functions. The

user may supply the appropriate series to any required degree of accuracy.

This involves updating the function RINGN, which is present in module

library SARUN. If no series is provided by the user, a zero value will

be returned. A message is also printed out for the user.

B. LESS IMPORTANT RESTRICTIONS

This list is also divided into two parts. The first list contains

restrictions which apply because the facilities to which they refer are

system-dependent.

1. No system commands are dealt with.

2. No workspace size is defined.

3. No function editing facilities are available.

4. No trace or stop control is allowed.

5. Any constant will be represented in the output code exactly as it

appeared in the input stream. Size restrictions will be imposed at

run-time by the system used to rim the converted routine.

6 . I-Beam functions are replaced in the output stream by

IBEAM (K) ,

where K determines the function. The body of the function must be

written by the user, since I-Beam functions are system-dependent.

The following size limitations also apply:

A function or subroutine may contain up to 99 lines of code.

In a set of supplied functions or subroutines, there may be up to

64 non-scalar variable names.

The array NAMES has 5000 locations. Therefore, there is a limit to

the number of entries which may be placed there. Garbage collection

of NAMES (by calling subroutine NGARB) may ease the situation .

The intermediate code form may occupy up to 200 bytes. At present,

6 spaces are left for insertion of brackets when certain symbols are

recognised. This amount may be varied, (See Chapter III.)

A macro body may contain up to 100 labelled statements.

A macro body may occupy up to 4000 bytes.

The label table, LTABLE, may hold up to 100 entries. A set of

routines should therefore contain no more than 100 labels.

A constant vector (with one blank separating each element and one

terminating blank) may .contain up to 300 characters in all.

There may be up to 10 "locked" local variable names at any stage.

(See Chapter II.)

There may be up to 100 long names (that is, identifier names having

more than 6 characters) in any set of routines.

Nesting of brackets is allowed up to a maximum of 40 levels deep in

APL expressions.

Nesting of indexed expressions is allowed up to a maximum of 5 levels

13. The parameter stack, IDSTK, may contain up to 500 entries.

14. 10 locations are set aside for storage of result variable and function

name. This allows up to 5 functions per set of routines, but does not

restrict the number of subroutines.

15. there may be up to 10 local variables in a set of routines.

16. A maximum of 10 routines may be converted at once, assuming condition

14 is satisfied.

17. Nesting of "FIND call" operations is allowed up to a maximum of 10.

18. Nesting of bracketed expressions is allowed in macro bodies up to a

maximum of 10 levels deep.

A P P E N D I X 7

EASE OF CONVERSION TO OTHER LANGUAGES

The generated code was produced in FORTRAN, since that language was most

often available for testing purposes. Had ALGOL or PL/1, for example, been

as readily available, they might equally as well have been used.

Code is generated in the following ways:

1. It is generated as a result of macro expansions.

2. There is a library (SARUN) containing the object modules of subroutines

to be included during execution of the converted routines.

.All the subroutines and functions contained in SARUN were written in

FORTRAN. However, since the object modules are included during execution

of the converted routines, it is not necessary to convert these to other

language s.

Thus it is only necessary to consider conversion to other languages

of code generated as a result of macro expansions. In particular, the

languages ALGOL and PL/'i are considered. As far as possible, only the

types of FORTRAN statements having counterparts in ALGOL and PL/'l 7/ere

generated using macro expansions. Thus the problem of conversion to

either of these two languages instead of FORTRAN is fairly straightforward.

The generated code takes two forms:

(a) explicitly generated code, using the macro instructions

*\° C O D E &

(see Chapter V).

(b) implicitly generated, code. This is produced using composite macro

instructions, such as SL, PL, C8. All the APL-FORTRAN conversion

routines are contained in the module library SALIB. To convert

implicitly generated code to other languages, the following subroutines

in SALIB require to be updated.

AREC FAVECT FREC SREC

CSREC FL00P3 PC ODE STPSET

DIMC FSTORE PREC VREC

DOLLAR MKSET RLREC ZRSC

DRSC NSCALE SLOOP

The. subroutines listed above (with the exceptions AR3C, RLREC and

DOLLAR) all contain LOGICAL * i arrays in which the code to be generated

is stored, character by character. Usually, a DO-loop is executed to

place successive characters in the array MTEMP. Complete lines of code

are produced in this way, and then transferred to the output medium.

Thus, to alter implicitly generated code, the LOGICAL * 1 arrays must

be updated, and often also the associated BO-loops.

The subroutine AR3C produces

.AND. or .OR,

while RLRBC produces one of the forms

,EQ. , .LB. , «LT. , « GT. , . GE. , .NE .

These subroutines must also be updated if the target, language is not FORTRA N.

DOLLAR is used in production of label numbers, (see 4.).

All other- subroutines in SALIB are independent of the target-language

and may be regarded as fixed. Thus the APL-FORTKAN conversion involves

1. fixed subroutines and functions in SALIB

2. the subroutines listed in (b) above

3. macro bodies, contained in the data-set SAMACBQD.

To convert APL routines to ALGOL or to PL/1, it is necessary to combine

1. above with updated versions of 2. and 3«

It is possible to produce entire libraries for APL-ALGOL or APL-PL/ 1

conversion by making changes of the types listed below. It is then a

simple matter to provide a user option by Y/hich the target-language is

chosen by the user.

The types of changes to be made take the following forms:

1, Non-executable statements

1.1 IMPLICIT REAL (A-Y)

IMPLICIT INTEGER (Z-Z)

These statements were included for the ease they afforded in the

introduction of non-ambiguous variable names.

(a) Conversion to ALGOL

There is no equivalent ALGOL statement type. In ALGOL, all variable

names must be declared. This involves accumulating a list of all the variable

names used in a routine and inserting the complete list at a later stage. All

non-scalar variables are declared in FORTRAN, and their conversion may be

handled as indicated in 1.2 .

All scalar global variables should be explicitly defined, together with

all scalar variables in the original APL routine. In addition, all scalar

variables of the forms

Z < i > , i = 1, ,N

and ZB <j > , j = 1, ,M

should be explicitly declared. At the end of the routines, the value s

N and M can be obtained from the variables IND and INK respectively.

(b) Conversion to PL/1

A similar process to that given in (a) above must be carried out.

1.2 INTEGER

REAL-------- ----

LOGICAL*1

The equivalent ALGOL or PL/1 forms should be used instead. (it is not

necessary to declare all variable names in PL/1, but it is better to do so

to avoid, unnecessary complications.)

1.3 C O M M O N -

These statements need not appear at all in the FORTRAN version if the

variables concerned are placed in the parameter lists of the subroutines

involved. This is referred to at the start of Chapter VIII.

(a) Conversion to ALGOL or PL/1

If COMMON statements are present, the variable names concerned should

be placed in the appropriate parameter lists.

1.4 EQUIVALENCE

These statements were used to facilitate character handling in FORTRAN

They are not directly equivalent to any ALGOL or PL/1 statement types, "but

this does not matter as their use can be dispensed with in ALGOL or Pl/1 .

(Character handling is easier using these languages.) For example,

instead of

LOGICAL * 1 N (4),NAMES (5///)

EQUIVALENCE (NI,N)

NI ~ 193

NAMES (I) = N(4)

code of the form shown below (illustrated for ALGOL) may be used

'STRING' NAMES

NAMES Ll] : = 'A' j

In ALGOL, the main program (which is partially produced during the

conversion of a routine to FORTRAN) must be delimited by 'BEGIN' and 'END*.

The equivalent structure in PL/1 is

< label> : PROCEDURE OPTIONS (MAIN) j

and

END < label> j

All changes of the types listed above may be made by altering the subroutin

CSREC and DIMC (contained in SALIB).

2. Subroutine and function definitions

(a) Conversion to ALGOL

The form

produced in the FORTRAN version must be altered to the form

'PROCEDURE' j

while the form

FUNCTION ---- -

must be altered to the form

<type> 'PROCEDURE1 ------ ;

RETURN
The form after a FORTRAN subroutine or function should be

replaced by 'END* ; .

(b) Conversion to PL/1

The form SUBROUTINE - - - should be replaced by

< label > : PROCEDURE OPTIONS (~ ™) j

while the form FUNCTION - - - should be replaced by

< label > :* < type > PROCEDURE OPTIONS () ;

"R̂ TTTRN
The statements ' ' in FORTRAN should be replaced by END < label >

j i N D

The above changes may be made by updating macro bodies 74 and 31

(contained in the data set SAMACBOD).

3. READ

. WRITE - - -

FORMAT

All I/O statements should be converted to the forms in use at the

particular ALGOL or PL/1 installations where the converted routines are

to be run.

These alterations may be made by updating maci-o numbers 68, 81, 82,

4. Label numbers must be replaced by label names in both ALGOL and Pl/1 .

For example, ZL1// could be used to replace 1 . This change can be

brought about by updating the subroutine DOLLAR (contained in SALIB).

5. CONTINUE and < label number> CONTINUE

These should be replaced by ; and ZL <label number >;

in both ALG-OL and PL/1 .

6. GOTO ----

This should be replaced by 'GOTO' in ALGOL.

7. Conditional statements

For example, the statement

IF (l.E Q.l) C-OTO l//

should be replaced by

'IF' (X.EQ.Y) 'THEN' - 'GOTO' ZL1//; (ALGOL)

or IF X = Y THEN GOTO ZL1// ; (PL/1)

The forms .EQ. , .LE. , .LT. , ,GT. , .GE. , .I'll. , are replaced

by = , < = , respectively in PL/1 .

8. < L H S > = < H H S >

should be replaced by

16 and 31.

< LHS > : = < EHS > j

< LHS > ~ < RH3 > :

(ALGOL)

(PL/1)

9. C A L L ----

CALL should not appear in ALGOL subroutine calls.

10. Label parameters

These are used in some FORTRAN subroutines, for example

CALL GVOVER (1, &1)

The appropriate forms should be used in ALGOL and PL/1 .

11. Switch statements

These exist in macro numbers 75 and 53. These macros should be upda

to the forms required by either ALGOL or PL/1 .

APPENDIX 8

: (1) TIU3 FUNCTION OF.RUN-TIME GLOBAL VARIABLES

A. INTEGER VARIABLES page

I.. ZTEMP An array where the elements of non-scalar integer results •. 137

are stored

2. ZCBNDS An array where the current bounds for. an expression are 88

stored

3. ZCPTR The pointer for array ZCBNDS. 88

4. ZY An array where successive base levels of ZTEMP are stored. 137

5. ZYPTR The pointer for array ZY 137

6. ZYY An array where successive base levels of YTEMP (see B) are

stored. "*37

7. ZYYPTR The pointer for array ZYY 137

8. ZBONDS An array where the bounds for all arrays are stored

consecutively. . 8

9. ZPOINT An array where successive base levels of ZINDX' (see 11) 17

are shored •

10. ZPT The pointer for array ZPOINT. 17

II. ZINDX An array where the subscript values are stored during array

accesses. 17

12. ZB00L An array used to indicate previous occurrences of a random

humber (used in handling the "deal" function). -143

13* ZC OORD An array where co-ordinate values (specified for

mixed functions) are stored 96

14* ZCDPTR The pointer for array ZCOORD 96

15. ZSTORE An array containing link information for the blocks

of YSTORE (see B) 8

16. ZR07/N0 The pointer for the array YROWL 135

17. ZROMA The. pointer for the array YR07/R 135

18. ZBPTR The pointer to the. next free location of ZBONDS 12

19. A name generated when an indexed expression occurs 18

20. ZB1,ZB2,... Locally generated scalars 18

21. Z -- Integer variable names 40

22. MARKER G-ives type of result . . 89

23* DOPES An array for the dope vector table 8

2 4 . NAMES An array for identifier names 10

-25. ZL An array used to store elements of literals when

quote-quad input is used

26. ZROW An array where the left operand elements are stored

-s
when dyadic "rho" is handled

27. Z&RAD An array where the res’ilt vector for "grade-up"

and "grade-down" is stored

28. ZDIM An array where the co-ordinate values for a particular

row of an array are stored (used in handling

n-dimensional accessing)

page

page

29. ZSUB An array where subscript information is stored during

accessing of n-dimensional arrays

30. ZTEMP3 An array where subscript information is stored

for n-dimensional accessing in inner products

B. REAL VARIABLES

1. YTEMP An array where the elements of non-scalar real

results are stored

2. YSTORE An array used for storage of all numeric non-scalar

elements

137

3. YROY/L An array used for storage of the left operand

elements for certain mixed functions

4. YROWR An array used for storage of the right operand

elements of certain mixed functions

5. Y Real variable names

135

135

40

6. YBOUND An array used for auxiliary storage of non-scalar

elements

7. YBOND An array used for auxiliary storage of non-scalar

elements

8. YGRAD An array used for storage of operand elements for

"grade-up" and "grade-down" functions

9. YTEMP2 An array used for auxiliary storage of dyadic

"rho" right operands

YTBM

XBOUND

An array used to store numeric information supplied

in response to "quad-input" ■

An array used for auxiliary storage of non-scalar

elements

(2) THE FUNCTION OF TRANSLATION TIME VARIABLES

page

1. FNIND

2. FNLOCS

3. FNPARM

4. IBIT

5. (IBITS

6. -'IBPTR

7.. ICLFTR

8. ICOLM

9. IDLPTR

10. IDOLR

11. IOFTR

12. IDSTK

13. IEXP

14. IFIND

15. IFNI

1 6 . IFNPTR

17. IFUNCT

18. IHET

19. ILEFT

20. IOPTON

21. IOPTR

22. IREV

23. ISYMBT

24. ITEMP

An array of variable name indices

An array of "locking" indices

An array of indices of parameter names

The pointer for array IBITS

A character stack

The pointer for array ITEMP

A pointer value from MLTAB

The current value of ICLPTR, retained when the

macro instruction RCM is used

The pointer for the chain on the stack IDSTK

Current label number value

A pointer for IDSTK

A double-ended stack for operands and operators

Used to distinguish function and subroutine

definition header statements

A stack of 1st parameter values for FIND calls

Gives the number of variable names in a funotion or

subroutine definition header statement

The pointer for stack IFIND

Used in decoding function definitions

Used to denote a heterogeneous output statement

Used to indicate the presence of £

Used to indicate the output medium required

A pointer for the stack IDSTK

A marker

The symbol table array of characters

An intermediate result code array

55

53

58

86

86

86

119

123

79

126

78

77

70

98

70

70

95

89

24

78

113

36

86

VjSK&M ' A.;? '-:-0; J ; 'r> H . : ; i> . ::J.x

25. LCHAR Gives value of next character 60

26. LINE A character array for storage of input lines 6

27* LITBLE A 2-dimensional table with, entries for

literal variables 46 ’

28. LOCAL An array of local variable name indices 54

29* LOGS An array giving the number of entries to be

I removed from LOCAL 54

50. LPTR The left pointer for-NCODE 60

31. LIABLE A 2-dimensional table with entries for labels 154

32. MACROS An array of macro records 109

33. MCADDR . An array of start addresses for macro bodies 33

34. MLTAB A 2-dimensional table for macro labels 119

35* MTEMP A temporary output array 86

36 . .NADDR Contains address in ISYMBT of current symbol decoded J 6

37* NAME An .array giving the current identifier name 37

38. NCODE Array of intermediate code 59

39. NCOQRD Gives count of £ symbols 96

40. NEXP Array used to distinguish functions and subroutines 56

41. NLEFT A marker 113

42. NOLINE A character array containing a processed APL line 32

43. NOLFTR Gives the: number of entries in a particular APL l ine 35

44. RPTR The right pointer for NCODE 60

45. SS A looping array for repetition of macro statements 123

46 . TEMPR The pointer for array -MTEMP 110

47. ZMARK A parameter (0 to 5) 115

■■■■■■■■■ ..page

APPENDIX 9

Three examples are given illustrating the conversion of APL to FORTRAN

by the method described.

As indicated in Chapter I, two possibilities existed for the handling

of global variables during conversion.

1. Global variables could have been inserted in the parameter list, making

parameter linkage a costly operation with regard both to space and

execution time.

2. Global variables could have been inserted in the COMMON list, reducing

the amount of parameter linkage required.

Conversion of APL to other languages instead of FORTRAN is made more

difficult if method 2 is used.

Method 1 is used in the sample translations listed below.

In each of the examples listed, a number of non-executable statements

appear. Some of these statements indicate the type and the number of

dimensions of the global variables. In addition, the COMMON statements

COMMON/ C701 / ZLIM1

to

COMMON/ C728 / ZLIM28

are present. The variables ZLIM1 to ZLIM28 are limit variables for certain

global non-scalars. Their values are set on execution of the converted

routines and they are used to test for overflow of global non-scalars.

EXAMPLES OF CONVERTED ROUTINES

For any routine, it is not known at the start of code production which

of the variables ZLIMl to ZLIM28 will be required. For this reason the

complete list has to be inserted.

No optimisation of code is attempted at code generation stage, and

thus the code produced is often inefficient. However, significant increases

in efficiency are possible using the methods outlined in Chapter VIII.

The resultant FORTRAN code produced is necessarily more wieldy than

the original APL code, as the generality of APL has to be catered for.

EXAMPLE 1

This simple example illustrates the conversion of a routine which

calculates the sux-face area and volume of a sphere, given the radius R

V SPHERE

SURF <<— 4 X 3.14159 x R x R

VOL <— SURF x R 4 - 3 y

The following code is generated cox~responding to the above roxiti ne.

SUBROUTINE SPHERE(ZTEMP,YTEMP,YSTORE,YROWL,YROWR,ZCBNDS,ZCPTR,ZY,Z
CYPTR,ZYY,ZYYPTR,ZBONDS,YBOUND,YBOND, ZPOINT,ZPT,ZI NDX,ZBOOL,ZCOORD,
CZCDPTR,Z STORE,ZL,YGRAD,ZROW,ZGRAD,ZDIM,YTEMP2,YTEM,XBOUND,ZTE MP 3)

IMPLICIT REAL(A-Y)
IMPLICIT INTEGER(Z-Z)
REAL YSTORE(1),YTEMP(1)
REAL YTEMP2(1)
REAL YTEM(1)
REAL YGRAD(1)
LOGICAL*1 MCHAC(l)
REAL XBOUND(1)
REAL YBOUND(1)
REAL YBOND(1)
LOCIGAL*l ZL(1),NAMES (5000) ,ZBOOL(1)
LOGICAL*! ZTYPEL(4)
REAL YROWR(1),
REAL YROWL(1)
INTE.GER ZTEMP (1)
INTEGER ZTEMP3(1)
INTEGER ZY(1)
INTEGER ZYY(1)
INTEGER ZCBNDS(1)
INTEGER ZCOORD(1)
INTEGER ZINDX(1),ZPOINT(1),ZBOUND(10)
INTEGER ZBONDS(1)
INTEGER INAMES(1250),INAME(75)
INTEGER DOPES(64,6),ZSTORE(100)
INTEGER ZROW(1)
INTEGER ZGRAD(1)
INTEGER ZDIM(1),ZSUB(1)
COMMON/ C24/ZBPTR
COMMON/ C62/ZROWNO
COMMON/ C63/ZROWNA
COMMON/ C3/INAMES,INAME,KEY
COMMON/ C2/ZSPACE,IADRES,DOPES
COMMON/ C916/ZSAVE
COMMON/ C351/MARKER
COMMON/ C701/ZLIM1
COMMON/ C702/ZLIM2
COMMON/ C703/ZLIM3

COMMON/ C704/ZLIM4
COMMON/ C705/ZLIM5
COMMON/ C706/ZLIM6
COMMON/ C707/ZLIM7
COMMON/ C708/ZLIM8
COMMON/ C709/ZLIM9
COMMON/ C710/ZLIM10
COMMON/ C711/ZLIM11
COMMON/ C712/ZLIM12
COMMON/ C713/ZLIM13
COMMON/ C714/ZLIM14
COMMON/ C715/ZLIM15
COMMON/ C716/ZLIM16
COMMON/ C717/ZLIM17
COMMON/ C718/ZLIM18
COMMON/ C719/ZLIM19
COMMON/ C720/ZLIM20
COMMON/ C721/ZLIM21
COMMON/ C722/ZLIM22
COMMON/ C723/ZLIM23
COMMON/ C724/ZLIM24
COMMON/ C725/ZLIM25
COMMON/ C726/ZLIM26
COMMON/ C727/ZLIM27
COMMON/ C728/ZLIM28
COMMON/ C799/ZSTOP
EQUIVALENCE(INAMES,NAMES)
EQUIVALENCE(ZTYPE,ZTYPEL)

1 CONTINUE
MARKER=0
ZCPTR=0
Y2=4*(3.14159*(R*R))
IF (MARKER .NE.0) GOTO 111
SURF=Y2
GOTO 117

111 CALL SPECS(9,Y2,Z2,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,YSTO RE,ZINDX,ZST
CORE,ZCOORD,ZCDPTR,YBOUND)
CALL SPECB

117 CONTINUE
2 CONTINUE

MARKER=0
ZCPTR=0
Y3—SURF*(R/3)
IF (MARKER .NE.0) GOTO 123
VOL=Y3
GOTO 129

123 CALL SPECS(33,Y3,Z3,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,Y STORE,ZINDX,ZST
CORE,ZCOORD,ZCDPTR,YBOUND)

129 CONTINUE
1000 IF (Z1.LE.0.OR.Z1.GT. 3) CONTINUE

GOTO (1,2,3),Z1
3 CONTINUE
101 FORMAT(1X,G12.6)
102 FORMAT(G12)
103 FORMAT(IX,I12)
104 FORMAT(10G12.6)
105 FORMAT(80A1)
106 FORMAT(IX,/)

CALL LOCREM
RETURN

EXAMPLE 2

This example illustrates the handling of APL input and output expression

SJ Cl ; A ; I ? Y

'ENTER CAPITAL AMOUNT IN DOLLARS'

A^~~ O

'ENTER' INTEREST IN PERCENT'

I 4— □

'ENTER PERIOD IN YEARS'

Y 4— Q

'RESULT IS' ; A X (1 + .01 X I) * Y V

The following code was generated corresponding to the above routine.

SUBROUTINE C^ZTEMP,YTEMP,YSTORE,YROWL,YROWR,ZCBNDS,ZCPTR,ZY,ZYPTR
C ,ZYY,ZYYPTR,ZBONDS,YBOUND,YBOND,ZPOINT,ZPT,ZINDX,Z BOOL,ZCOORD,ZCDP
CTR,ZSTORE, ZL,YGRAD,ZROW,ZGRAD,ZDIM,ZSUB,YTEMP 2,Y TEM,XBOUND,ZTEMP 3)

IMPLICIT REAL(A~Y)
IMPLICIT INTEGER(Z-Z)
REAL YSTORE(1),YTEMP(1)
REAL YTEMP2(1)
REAL YTEM(1) .
REAL YGRAD(1)
LOGICAL*1 MCHAC(l)
REAL XBOUND(1)
REAL YBOUND(1)
REAL YBOND(1)
LOGICAL*! ZL(1),NAMES(5000),ZBOOL(1)
LOGICAL*1 ZTYPEL(4)
REAL YROWR(1)
REAL YROWL(1)
INTEGER ZTEMP(1)
INTEGER ZTEMP3(1)
INTEGER ZY(1)
INTEGER ZYY(1)
INTEGER ZCBNDS(1)
INTEGER ZCOORD(1)
INTEGER ZINDX(1),ZPOINT(1),ZBOUND(10)
INTEGER ZBONDS(1)
INTEGER INAMES(1250),INAME(75)
INTEGER DOPES(64,6),ZSTORE(100)
INTEGER ZROW(1)
INTEGER ZGRAD(1)
INTEGER ZDIM(l),ZSUB(1)
COMMON /C24/ZBPTR
COMMON /C62/ZROWNO

COMMON /C63/ZROWNA
COMMON /C3/INAMES,INAME,KEY
COMMON /C2/ZSPACE,IADRES,DOPES
COMMON /C916/ZSAVE
COMMON /C351/MARKER
COMMON /C701/ZLIM1
COMMON /C702/ZLIM2
COMMON /C703/ZLIM3
COMMON /C704/ZLIM4
COMMON /C705/ZLIM5
COMMON /C706/ZLIM6
COMMON /C707/ZLIM7
COMMON /C708/ZLIM8
COMMON /C709/ZLIM9
COMMON /C710/ZLIM10
COMMON /C711/ZLIM11
COMMON /C712/ZLIM12
COMMON /C713/ZLIM13
COMMON /C714/ZLIM14
COMMON /C715/ZLIM15
COMMON /C716/ZLIM16
COMMON /C717/ZLIM17
COMMON /C718/ZLIM18
COMMON /C719/ZLIM19
COMMON /C720/ZLIM20
COMMON /C721/ZLIM21
COMMON /C722/ZLIM22
COMMON /C723/ZLIM23
COMMON /C724/ZLIM24
COMMON /C725/ZLIM25
COMMON /C726/ZLIM26
COMMON /C727/ZLIM27
COMMON /C728/ZLIM28
COMMON /C799/ZSTOP
EQUIVALENCE(INAMES,NAMES)
EQUIVALENCE(ZTYPE,ZTYPEL)

1 CONTINUE
MARKER=0
ZCPTR=0
CALL OUT2(15,-1,ZCBNDS,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,Y STORE)

2 CONTINUE
MARKER=0
ZCPTR=0
READ 102,ZVBND
IP(ZVBND.NE.-l) GOTO 116
WRITE(6,106)
MARKER^-3
GOTO 120

116 IF(ZVBND.NE.0) GOTO 118
MAEKER=0
READ(5,104) YTEM(l)
WRITE(6,104) YTEM(l)
GOTO 120

118 IF(ZVBND.GT.ZLIM26) CALL GVOVER(26,&120)
READ ̂5,104) (YTEM(Z2),Z2=1,ZVBND)
WRITE(6,104) (YTEM(Z2),Z2=I,ZVBND)
ZCPTR=1
ZCBNDS(1)=ZVBND
MARKER=-5

120 Z3=0

121 Z3=Z3+1
Y4=YTEM(Z3)
IP(MARKER. NE.0) GOTO 122
A=Y4
GOTO 128

122 CALL SPECS(5,Y4,Z3,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,YSTORE,ZINDX,ZST
CORE,ZCOORD,ZCDP TR,YBOUND)
CALL BDNO(Z5,ZCPTR)
IP(Z3.LT.Z5) GOTO 121
MARKER=0
ZCPTR=0
ZYPTR=1
ZYYPTR=1
CALL SPECB

128 CONTINUE
3 CONTINUE

MARKER=0
ZCPTR=0
CALL OUT2(54,-1,ZCBNDS,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,YSTO RE)

4 CONTINUE
MARKER=0
ZCPTR=0
READ 102,ZVBND
IP(ZVBND.NE.-l) GOTO 139 -
WRITE(6,106)
’MARKER^-3
GOTO 143

139 IF(ZVBND.NE.0) GOTO 141
MARKER=0
READ(5,104) YTEM(1)
WRITE(6,104) YTEM(1)
GOTO 143

141 IF (ZVBND. GT.ZLIM26) CALL GVOVBR(26 , &.143)
READ(5,104) (YTEM(Z6),Z6=l,ZVBND)
WRITE(6,104) (YTEM(Z6),Z6=1,ZVBND)
ZCPTR=1
ZCBNDS(1)=ZVBND
MARKER=-5

143 Z7=0‘
144 Z7=Z7+1

Y8=YTEM(Z7)
IF(MARKER.NE.0) GOTO 145
I=Y8
GOTO 151

145 CALL SPECS(8,Y8,Z7,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT, YSTORE,ZINDX,ZST
CORE,ZCOORD,ZCDPTR,YBOUND)

CALL BDNO(Z9,ZCPTR)
IF(Z7.LT.Z9) GOTO 144
MARKER=0
ZCPTR=0
ZYPTR=1'
ZYYPTR=1

. CALL SPECB
151 CONTINUE
5 CONTINUE

MARKER=0
ZCPTR=0
CALL OUT2(87,-1,ZCBNDS,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,YSTORE)

6 CONTINUE
MARKER=0
ZCPTR=0
READ 102,ZVBND

1 6 2

164

166
167

168

174
7

180

186
1 0 0 0

1 0 1

102
103
104
105
106

IF(ZV BND.NE.-1) GOTO 162
WRITE(6,106)
MARKER=-3
GOTO 166
IF(ZVBND.NE.0) GOTO 164
MARKER=0
READ(5,104) YTEM(l)
WRITE(6,104) YTEM(l)
GOTO 166
IF(ZVBND.GT.ZLIM26) CALL GVOVER(26,&166)
READ(5,104) (YTEM(Z10),Z10=l,ZVBND)
WRITE(6,104) (YTEM(Z10),Z10=1,ZVBND)
ZCPTR=1
ZCBNDS(1)=ZVBND
MARKER=-5
Z11=0
Z11=Z11+1
Y12=YTEM(Zll)
IF(MARKER.NE.0) GOTO 168
YY=Y12
GOTO 174
CALL SPECS(11,Y12,Zll,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,YST ORE,ZINDX,
CZSTORE,ZCOORD,ZCDPTR,YBOUND)
CALL BDNO(Z13,ZCPTR)
IF(Zll.LT.Z13) GOTO 167
MARKER=0
ZCPTR=0
ZYPTR=1
ZYYPTR=1
CALL SPECB
CONTINUE
CALL OUT2(116,-1,ZCBNDS,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,Y STORE)
IF(MARKER.NE.0) GOTO 180
Y14=A*((1+(0.1*1))**YY)
WRITE(6,101) Y14
GOTO 186
Y15=A*((1+(0.1*I))**YY)
CALL OUT1(Y15,ZCBNDS,ZCPTR)
CONTINUE
IF(Zl.LE.0.OR.Zl.GT.7) CONTINUE
GOTO(1,2,3,4,5,6,7),Z1
FORMAT(IX,G12,6)
FORMAT(G12)
FORMAT(IX,112)
FORMAT(10G12.6)
FORMAT(80A1)
FORMAT(IX,/)
CALL LOCREM
RETURN
END

EXAMPLE 3

This example illustrates the handling of non-scalar variables. The

routine BASE calculates the representation of a number N to the base B.

N and B are supplied as parameters.

KJ ' B BASE N

Z <-— ~L 0

R < ~ B |*N

Z 4— R , Z

N <r— L N -r B

2 x N > pf ’s'

The following code is generated corresponding to the above routine.

SUBROUTINE BASE (B ,N, ZTEMP , YTEMP , YSTORE, YROWL, YROWR, ZCBNDS , ZCPTR, ZY
C ,ZYPTR, ZYY,ZYYPTR,ZBONDS,YBOUND,YBOND,ZPOINT,ZPT,ZIND X,ZBOOI,,ZCOOR
CD,ZCDPTR,ZSTORE,ZL,YGRAD,ZROW,ZGRAD,ZDIM,ZSUB,YTEMP2,YTEM,XBOUND,Z
CTEMP 3)

IMPLICIT REAL(A-Y)
IMPLICIT INTEGER(Z-Z)
REAL YSTORE(1),YTEMP(1)
REAL YTEMP2(1)
REAL YTEM(1) ,
REAL YGRAD(1)
LOGICAL*! MCHAC(l)
REAL XBOUND(1)
REAL YBOUND(1)
REAL YBOND(1)
LOGICAL*! ZL(1),NAMES(5000),ZBOOL(l)
LOGICAL*! ZTYPEL(4)
REAL YROWR(1)
REAL YROWL(1)
INTEGER ZTEMP(1)
INTEGER ZTEMP3(1)
INTEGER ZY(1)
INTEGER ZYY(1)
INTEGER ZCBNDS(1)
INTEGER ZCOORD(1)
INTEGER ZINDX(1),ZPOINT(1),ZBOUND(10)
INTEGER ZBONDS(1)
INTEGER INAMES(1250),INAME(75)
INTEGER DOPES(64,6),ZSTORE(100)
INTEGER ZROW(1)
INTEGER ZGRAD(1)
INTEGER ZDIM(l),ZSUB(1)
COMMON /C24/ZBPTR
COMMON /C62/ZROWNO

COMMON /C63/ZROWNA
COMMON /C3/INAMES,INAME,KEY
COMMON /C2/ZSPACE,IADRES,DOPES
COMMON /C916/ZSAVE
COMMON /C351/MARKER
COMMON /C701/ZLIM1
COMMON /C702/ZLIM2
COMMON /C703/ZLIM3
COMMON /C704/ZLIM4
COMMON /C705/ZLIM5
COMMON /C706/ZLIM6
COMMON /C707/ZLIM7
COMMON /C708/ZLIM8
COMMON /C709/ZLIM9
COMMON /C710/ZLIM10
COMMON /C711/ZLIM11
COMMON /C712/ZLIM12
COMMON /C713/ZLIM13
COMMON /C714/ZLIM14
COMMON /C715/ZLIM15
COMMON /C716/ZLIM16
COMMON /C717/ZLIM17
COMMON /C718/ZLIM18
COMMON /C719/ZLIM19
COMMON /C720/ZLIM20
COMMON /C721/ZLIM21
COMMON /C722/ZLIM22
COMMON /C723/ZLIM23
COMMON /C724/ZLIM24
COMMON /C725/ZLIM25
COMMON /C726/ZLIM26
COMMON /C727/ZLIM27
COMMON /C728/ZLIM28
COMMON /C799/ZSTOP
EQUIVALENCE(INAMES,NAMES)
EQUIVALENCE(ZTYPE,ZTYPEL)

1 CONTINUE
MARKER=0
ZCPTR=0
Y2=0
IF(Y2.NE.0) GOTO 111
MARKER=-3
ZCPTR=0
GOTO 112

111 CALL IOTB(Y2,ZTEMP,ZY,ZYPTR,ZCBNDS,ZCPTR)
Z3=ZY(ZYPTR-1)
ZY(ZYPTR)=0
ZYPTR=ZYPTR-1
MARKER=-5

112 Z4=0
113 Z4=Z4+r

Y5=ZTEMP (Z4+Z3)
IF(MARKER.NE.0) GOTO 114
YZ=Y5
GOTO 120

114 CALL SPECS(1,Y5,Z4,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,Y STORE,ZINDX,ZST
CORE,ZCOORD,ZCDPTR,YBOUND)
CALL BDNO(Z6,ZCPTR)
IF(Z4.LT.Z6) GOTO 113
MARKER=0
ZCPTR=0

ZYPTR=1
ZYYPTR=1
CALL SPECB

120 CONTINUE
2 CONTINUE

MARKER=0
ZCPTR--0
Y7=B
Y8= N
Y9=Y8
IP(Y7.NE.0)Y9=Y9-ABS(Y7)*AINT(Y8/ABS(Y7))
Y10=Y9
IF(MARKER.NE.0) GOTO 126
R=Y10
GOTO 132

126 CALL SPECS(23,Y10,Z10,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT ,YSTORE,ZINDX,
CZSTORE,ZCOORD,ZCDPTR,YBOUND)
CALL SPECB

132 CONTINUE
3 CONTINUE

MARKER=0
ZCPTR=0
ZB0=ZPOINT(ZPT)
ZPT=ZPT+1
CALL STARTS(1,Zll,Z12,ZNC,ZCPTR,ZCBNDS)
•ZPOINT (ZPT) =ZB0-I-Z12
Z13=l

138 Z14=ZB0+Z13
ZINDX(Z14)=1
Z13=Z13+1
IF(Z13.LE.Z12) GOTO 138
ZJ.5=ZB0+Z12
Z16=Z12~1
ZSAVE=0

137 CALL FIND1(14,0,R,1,Z17,Y17,Zll,ZNC,ZCBNDS,ZCPTR,ZB ONDS,ZPOINT,ZPT
C , YBOUND, ■ ZINDX, Z STORE , ZCOORD, ZCDPTR, YSTOR E)

Y18=Y17
CALL SPECS(1,Y18,Z18,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,YSTO RE,ZINDX,Z

CSTORE,ZCOORD,ZCDPTR,YBOUND)
ZSAVE=1
ZINDX(Z15)=ZINDX(Z15)+1
IF(ZINDX(Z15).LE.ZCBNDS(ZCPTR)) GOTO 137

139 Z19=Z16+1
140 ZINDX(Z19+ZB0)=1

Z19-Z19+1
IF(Z19.LE.ZCPTR) GOTO 140

141 IF((ZB0+Z16).LE.0) GOTO 143
ZINDX(ZB0+Z16)=ZINDX(ZB0+ Z16)+1
IF(ZINDX(ZB0+Z16).LE.ZCBNDS(Z16)) GOTO 142
IF(Z16.EQ.1) GOTO 143
ZINDX(ZB0+Z16)=1
Z16=Z16-1
GOTO 141

142 Z16=Z12-1
GOTO 137

143 ZPT=ZPT-1
MARKER=0
ZCPTR-0
CALL SPECB

144 CONTINUE
4 CONTINUE

MARKER=0
ZCPTR=0
Y20=N/B
IP (Y20.GE.0) GOTO 150
Y20=ABS(Y20-(1-1E-8))

150 Y20=AINT(Y20)
Y21=Y20
IF (MARKER.NE.0) GOTO 152
N=Y21
GOTO 158

152 CALL SPECS(14,Y21,Z21,ZCBNDS,ZCPTR,ZBONDS,ZPOINT,ZPT,YST ORE,ZINDX,
CZSTORE,ZCOORD,ZCDPTR,YBOUND)

CALL SPECB
158 CONTINUE
5 CONTINUE

MARKER=0
ZCPTR--0
CALL OUT2(1,1,ZCBNDS,ZCPTR,ZBONDS,ZSTORE,ZDIM,ZSUB,YSTOR E)

6 CONTINUE
Z22=0
IF(N.GT.0)Z22=l
IF(MARKER.EQ.-3) GOTO 169
IF(MARKER.NE.0) GOTO 170
Z1=2.*Z22
GOTO 1000

170 Z22=l
Z1=2*Z22
GOTO 1000

169 CONTINUE
1000 IF(Zl.LE.0.OR.Zl.GT.6) CONTINUE

GOTO(1,2,3,4,5,6),Zl
101 FORMAT(IX,G12.6)
102 FORMAT(Gl2)
103 FORMAT(IX,112)
104 FORMAT(10G12.6)
105 FORMAT(80A1)
106 FORMAT(IX,/) '

CALL LOCREM
RETURN
END

APPENDIX 10

This appendix describes the finite state automaton which may be

implemented for replacement of unnecessary "FIND" calls. The method is

outlined in Chapter VIII, §8.1 and §8.2 .

Table 10(a) gives a list of statement types to be recognised in the

scan of the generated code. For ease of reference in the state diagram,

each statement type has an associated letter (or letters).

The state diagram is represented by Diagram 10(b).

For statement types not listed in Table li^a), the action required

is outlined in Chapter VIII, §8.2 .

STATEMENT TYPE
ASSOCIATED
LETTER(S)

ZB <integer> = ZPOINT (ZPT) A

ZPT = ZPT + 1 B

ZINDX (ZB < integer > + <integer 1>) = < expression > c

ZPOINT (ZPT) = ZB < integer> +<integer 1> D

CALL STARTS (------) E

CALL FINDl (- - - . -) (replaceable) F

ZPT = ZPT - 1 G

Z < integer > - 1 H

<label> Z < integer 1> = ZB < integer 2> + Z<integer> I

ZINDX (Z < integer 1>) = 1 J

Z<integer> = Z < integer> + 1 K

IF (Z < integer > .LE.Z < integer 3>) GOTO< label > L

Z< integer/ = ZB 4 integer 1 > + Z < integer 2 > M

STATEMENT TYPE
ASSOCIATED
LETTER(S)

Z < integer > = Z <integer 1> - 1 N

< label> CALL FIND1 (---- -) (replaceable) 0

CALL SPECS (~ ----) (replaceable) P

ZINDX (Z < integer» = ZINDX (Z< integer» -1- 1 Q

IF (ZINDX (Z<integer1̂LE.ZCBNDS (ZCPTR)) GOTO<label> R

< label> Z < integer 1> = Z <integer > + 1 S

<label> ZINDX (Z <integer> + ZB <integer>) = 1 T

IF (Z< integer>.LE.ZCPTR) GOTO -i label > U

<label> ZINDX (ZB <integer> + Z Cinteger 1>) =
ZINDX (ZB <integer> + Z .̂integer 1>) + 1

IF (ZINDX (ZB<Lnteger> + Z<Lnteger 1>) .LE.
W

ZCBNDS (Z < integer 1>)) GOTO < label>

IF (Z< integer> .EQ.l) GOTO <label> X

ZINDX (ZB < integerl> + Z<integer>) = 1 Y

Z< integer > = Z < integer > ~ 1 Z

GOTO < label> AA

< labels Z < integer> = Z<integer> - 1 AB

<label> ZPT = ZPT - 1 AC

<label> Z <_integer> = FIND (- - - -) (replaceable) AD

ZINDX (ZB < integer> + 1) = ZINDX (ZB< integer> + 1) + 1 AE

IF (ZINDX (ZB < integer>+l).LE.ZBONDS (ZBOUND)) GOTO <label> AF

<label> ZB < integer > = ZPOINT (ZPT) AG

ZINDX (ZCD + ZB <integer» = ZINDX (ZCD+ZB<integer>) + 1 AH

IF(ZINDX (ZCD+ZB<integer>).LE.ZBONDS (ZBOUND+ZCD-1)) GOTO <label> AI

IF(ZB C integer>i-Z<integer 1> .LE.J2T) GOTO ^label> Aj

IF (Z<integer> .EQ.ZCD) Z <integer> = Z<integer> - 1 AK

CALL FIND!. (- - - -) non-replaceable

CALL FIND1 (Z F 1) "

CALL FIND1 (ZF2 ~—) "

STATEMENT TYPE A S S O C I A T E D

L E T T E R (S)

<£Iabel> CALL FIND1 (----)

< label > CALL FIND1 (-- - Z F 1 --)

< label > CALL FIND1 (— ZF2 —)

non-replaceable

it

n

AM

CALL SPECS (------) non-replaceable AN

< label> Z <integer> =s -■ -

< label> < expression> ~ EVFIND(- ~

< label> < expression> = SCFIND(“ ~

< expression/ = IRFIND(- -

-) non-replaceable

- -)

~ -)

- -)

AO

OPL < value > AP

TABLE 10(a) Statement types to be detected during scan
of generated code.

to 1 7

(next page)

to previous level

7\

/

/

/

Diagram 10(b) : Shows state diagram for replacement of

unnecessary "FIND" calls.

(previous

page)

Diagram 10(b) (contd.)

The following actions are required at each state represented in the

state diagram.

State 1 .

Set NSTFTR to NSTPTR + 1

Set NSTATE (NSTFTR) to ISTATE

Set ISTATE to 1

Set LEVLNO to LEVLNO + 1

Set IENPTR to IENPTR +1

Set IENTRY (IENPTR) to 0

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR, 1) to LEVLNO

Set DELETE (DELPTR, 2) to IENTRY (IENPTR)

Store the value of DELPTR in a stack so that the replacement code for

CALL SPECS (- - - “) may he inserted in the correct place.

State 2 .
Set ISTATE to 2

Set DELPTR to DELFTR + 1

'Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (ISNFTR)

Set ISTATE to 3

Set DELFTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELFTR,2) to IENTRY (IENPTR)

Set ICDPTR to ICDFTR + 1

Set CODE (ICDPTR,1) to DELPTR

Set CODE (ICDPTR,2) to 1

Set CODE (ICDPTR,3) to -1

Set CODS (ICDPTR,4) to point to code of the form

Z(<LEVLNO value >, <integeri>) < expression >

State 4 .
Set ISTATE to 4

Set DELFTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IEKTRY (lENPTR)

Set IGDPTR to ICDPTR + 1

A line of code of the form

ZPOINT(ZPl') = ZB < integer> + < integeri >

has been recognised.

If < integer 1> is 1, then the following entry is set up in CODE

CODE (ICDPTR,1) = DELPTR

CODE (ICDPTR,2) = 2

CODE (ICDPTR,3) = “1

CODE (ICDPTR,4) = a pointer to code of the form indicated below

v CALL ELFERM (------ -)

ZPROD = Z (<LEVLN0 value>,l)

(The parameters of ELPERlvI are filled in later, if the replacement is to be

made. Thus, an indication of the address of the ELPERM call must be

retained.)

If <integer1> is greater than 1, then the following entry is set up

in CODE.

CODE (ICDPTR, 1) _ DELPTR

CODE (ICDPTR,2) = 3

CODE (ICDPTR,3) = “1

CODE (ICDPTR,4) = a pointer to code of the form indicated belo

CALL ELFERM (------

Zcinteger A> = <integer 1> -1

ZPROD = Z(<LEVLNQ value>, <-integer 1>)

Again, the parameters of ELP3RM must be filled in later (if necessary).

State 5
Set ISTATE to 5

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (IENPTR)

If •i integer 1> (see state 4) is greater than 1, the following action is

also required

Set ICDPIR to ICDPTR + 1

‘Set CODE (ICDPTR, 1) to DELPTR

Set CODE (ICDPTR,2) to 5

Set CODE (ICDPTR,3) to -1

Set CODE (ICDFTR, 4) to point to code of the following form

CALL ZADDR (< value>,ZST,ZNUM,ZBOUND)

< label > IF (Z <integer A>.LE.1) G-OTO <label 1 >

ZPROD ,= (ZPROD-1)*ZBQNDS (ZBOUND + Z < integer A > - 1)

Z < integer A > = Z ̂ integer A > - 1

G-OTO < label 2

Here A value> is the 1st parameter value of the STARTS call.

For < integer 1> = 1, only the first line of the above code is re quired,.

and a corresponding CO DS entry is set up.

State 6.

A replaceable FIND1 call has been detected at this stage. The DEL ETE

table (column 1) must be scanned for entries equal in value to LEVLNO. F or

any such entry i, DELETE(i, 2) is tested. If DELETE(i,2) i s j6, then, it

is updated to 1. The appropriate entries in CODE (column 3) should also

be updated to 1 if they are -1 originally.

Then, Set ISTATE to 6

Set IENTRY (IENPTR) to 1

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to 1

Set ICDPTR to ICDPTR + 1

Set CODE (ICDPTR,1) to DELPTR

Set CODE (ICDPTR,2) to 1

Set CODE (ICDPTR,3) to 1

Set CODE (ICDPTR,4) to point to code of the form shown belovf

< label 1> Y <integer B > = YSTORE(ZST + ZEROD - 1)

where < label 1 > is retained from state 5 a*id Z < integer B > is the sixth

parameter of the EIND1 call.

The parameters for the call of BLPERM can now be inserted.

State 7.
Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (IENPTR)

Set IENTRY (IENPTR) to fj

Set IENPTR to IENPTR - 1

Set LEVLNO to LEVLNO - 1

Set ISTATE to NSTATE (NSTPTR)

Set NSTATE (NSTPTR) to -1

Set NSTPTR to NSTPTR - 1

State 8 .

A non-replaceable FIND1 call has been detected at this stage. The

DELETE table (column 1) must be scanned for entries equal in value to

LEVLNO. For any such entry i, if DELETE.(i, 2) is then DEL ETE(i,2)

is set to -1. The appropriate CODE entries (column 3) should be updated

to $ if they are -1 originally. The lines of (replacement) code produce d

for this level are not required, and the space can be utilised if required

to produce more lines of code.

Then,
Set ISTATE to 8

Set IENTRY (lENPTR) to -1

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

> Set DELETE (DELPTR,2) to -1

States 9-1J0.

Set ISTATE to 9 or 1/!

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (lENPTR)

State 11.
Set ISTATE to 11

Set DELPTR to DELPTR + 1

Set DELETE (DSLFTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (lENPTR)

Store the value < integer> on a stack for use later (if the loops a re

replaceable).

State n (12<n<17)

Set ISTATE to n

Set DELPTR to DELPTR * 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (IENPTR)

State 18

A replaceable FIND1 call has been detected. It is not yet known,

however, whether the entire loops can be replaced. This will not become

apparent until State 24 is reached.

Set ISTATE to 18

Set DELFTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to 1

The < label> value in the statement detected should be stacked for (possible)

use when state 24 is reached. Similarly, the valvie of DELFTR should be

stacked. A count, Cl, of the number of replaceable FIND or FIND1 c alls

should also be maintained until state 24 is reached.

The following CODE entry should be set up.

ICDPTR = ICDPTR + 1

CODE (ICDPTR, 1) = DELFTR
CODE (lCDPTR,2) = 3
CODE (ICDPTR,3) = 1
CODE (lCDPCR,4) = & pointer to code of the form outlined below.

Z < integer > = 1
CALL ZADDR Rvalue?, ZST, ZNUIvl, ZBOUND)
Z ^integer 1> = ZST ~ 1

Here integer> has been retained from state 11, < value> is the fourth

parameter of the FIND or FIND1 call, and. Z < integer 1 > should be a unique

variable name.

Z < integer 1> and the sixth parameter of the FIND1 call should be

retained.

State 19

The same action should be carried out as fox' state 8, except that

ISTATE is set to 19.

State 2$

Set ISTATE to 2/i

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to 1

Set ICDPTR to ICDPTR + 1

Set CODE (ICDPTR,1) to DELPTR

Set CODE (ICDPTR,2) to 2

Set CODE (ICDPTR,3) to 1

Set CODE (ICDPTR,4) to point to code of the form

CALL ZADDR(< value >, ZST, ZNUM, ZBOUND)
Z < integer 1> = ZST 1

< value> and <integer 1> have the same significance as in state 18.

same information should be retained here also.

State 21

The same action should be carried out as for state 8, except that

ISTATE is set to 21.

The

If count 02 is non-zero, then the following COD E entry is also set up.

ICDPTR = ICDPTR + 1

CODE (ICDPTR,1) = the value of DELPTR stacked at state 18

CODE (ICDPTR,2) = 2 * C2

CODE (ICDPTR,3) = 1

CODE (lCDPIR,4) = a pointer to code of the form

Z < integer 1 > - Z < integer 1"> + 1

CALL SPECA (Z <-integer 1 >,< variable-?)

The above lines are repeated C2 times, using the value <" integer 1 > reta ine

previously. < value > is the left-hand side of the statement preceding the

SPECS call.

(25<n<38)
VTDTQ Y\

ISTATE to n

DELPTR to DELFTR 1

DELETE (DELPTR,1) to LEVLNO

DELETE (DELPTR,2) to IENTRY (lENPTR)

ISTATE to 39

DELPTR to DELPTR + 1

DELETE (DELFTR,1) to LEVLNO

DELETE (DELFTR,2) to IENTRY (IENPTR)

If IENTRY (IENPTR) is -1, proceed to state 7} otherwise set ICDPTR to

ICDPTR + 1 .

Set CODE (ICDPTR, 1) to DELFTR

Set CODE (ICDPTR,2) to 2

Set CODE (ICDPTR,3) to 1

Set CODE (ICDPTR,4) to point to code of the form shown below.

o u a u e n

Set

Set

Set

Set

State 39
. Set

Set

Set

Set

State 22

The same action is carried out as for state 2$, except ISTATE is se t

to 22, and CODE (1CDFTR,1) is set to the value of DELFTR stacked at state 1.

Maintain a count, C2, of the number of replaceable "SPECS" calls encounter ed.

State 23

Set ISTATE to 23

Set DELPTR to DELFTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to -1

State 24

Set ISTATE to 24

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELFTR,2) to IENTRY (IENPTR)

If the counts C1 and C2 are zero, continue the scan, otherwise set all

the appropriate zero entries in DELETE to 1, update the relevant CODE entries

and set up a new CODS entry as indicated below.

ICDPTR = ICDPTR + 1

CODE (ICDPTR,1) = the value of DELFTR stacked at state 18

CODE (ICDPTR,2) = 2 * C1

CODE (ICDPTR,3) = 1

CODE (lCDPTR,4) = a pointer to code of the form shown below.

Z < integer 1> = Z < integer 1> + 1
Y < integer C> = LPERM (Z <integer 1> ,ZCBNDS,ZCPTR,I,J,K,L)

The above lines are repeated C1 times, using the values of < integer 1> and

< integer C > z’etained previously. If state 18 was reached, the first

statement is labelled < label> , where <-label> is the value stacked at

state 18.

Z <integers = Z <integer> + 1

IP (Z <integer> . LE.ZNUM) GOTO < label>

Here < integer> was retained at state 11 and c label> at state 18.

Proceed to state 7*

State 4/5
Set ISTATE to 4/5

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to -1

Keep note of Z ̂ integer C> at start of next line.

State 41
Set ISTATE to 41

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (lENFTR)

State 42
Set ISTATE to 42

Set DELPTR to DELPTR + 1

. Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to 1

Set IENTRY (lENPTR) to 1

Scan the DELETE table (column 1) for entries having value LEVLNO. Eor any

such entry i, if DELETE (i, 2) is /S, set DELETE (i, 2) to 1 and update the

appropriate CODS entry.

Set up a new CODE entry as indicated below.

ICDPTR s ICDPTR + 1

CODE (ICDPTR,1) = DELPTR

CODE (ICDPTR, 2) = 4

CODE (ICDPTR, 3) = 1

CODE (ICDPTR,4) = a pointer to code of the form given below,

< label> CALL ELPERM (---)

ZPROD = Z (<LEVI.N0 value >,1)

CALL ZADDR (<value>, ZST,ZNUM,ZBOUND)

Z< integer > = ZST + ZEROD-1

Here, <lab.el> is obtained from the statement detected and <value> i s the

fourth parameter of the FIND call.

In this case, the parameters for ELPERM can be inserted immediately.

< integer> is also obtained from the statement detected.

State 4-3

The action required is that described for state 8, except that ISTATE is

set to 43*

State 44

Set ISTATE to 44

Set DELFTR to DELPTR + 1

'Set DELETE (DELFTR, 1) to LEVLNO

Set DELETE (DELPTR,2) to IENTRY (IENPTR)

If IENTRY (IENPTR) = -1, proceed to scan next statement. Otherwise set u p a

CODE entry of the following form:

ICDFER = ICDPTR + 1

CODS (ICDPTR,1) = DELFTR

CODE (ICDFER,2) = 1

CODE (ICDPTR,3) = 1

CODE (ICDPTR,4) = a pointer to CODE of the form shown below.

Z (<LEVLNO value>,l) = Z(< LEVLNO value>,l) + 1

Set ISTATE to 45

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELFTR,2) to IENTRY (IENPTR)

Set up a CODE entry of the following form if IENTRY (iENFili) is not equa l

to -1.

ICDPTR = ICDPTR + 1

CODE (ICDFTR,1) = DELPTR

CODE (ICDPTR,2) s 1

CODE (ICDFTR,3) = 1

CODE (ICDPTR,4) = a pointer to code of the form shown below.

' IP (Z < LEVLNO value>, 1). LE.ZBONDS (ZEOUND)) G-OTO < label>

Here < label> is obtained from the current statement detected.

State n (i+6<n<56)

Set ISTATE to n

Set DELFTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to “1

For state 46, stack the value of DELPTR so that, if necessary, th e replacement

CODE for CALL SPECS (----) can be inserted at the correct point.

State 57
Set ISTATE to 57

Set DELFTR to DELPTR + 1

Set IENTRY (IENFTR) to 1

Set DELETE (DELFTR, 1) to LEVLNO

Set DELETE (DELPTR,2) to 1

Set ICDPTR to ICDPTR + 1

Set CODE (ICDPTR,1) to DELPTR

Set CODE (ICDPTR,2) to 4

Set CODS (ICDPTR,3) to 1

Set CODS (lCDPTR,4) to point to CODE of the form

CALL ZADDR (<• value >,ZST,ZNUM,ZBOUND)

Z < integer A > = ZST “ 1
< label> Z< integer > = Z < integer C > + 1

Z < integer B> = Z <integer A> + ZPERM (l,/),/5,<value>,ZIND X,ZBONDS,
Z < integer>,ZPOINT,ZPT)

Here 4 value > is the fourth parameter of the FIND call, Z < integer A> is a

unique variable name, < integer> is obtained from the current statement (as is

<label>). Z<integer B> is another unique variable name and.< integer C > was

retained at state l+j$.

State 58
Set ISTATE to 58

Set IENTRY (lENPTR) to -1

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to -1

State n ' (59<n<6l)

Set ISTATE to n

Set DELPTR to DELPTR + 1

Set DELETE (DELPTR,1) to LEVLNO

Set DELETE (DELPTR,2) to -1

I NDEX OP TERMS

Term Chapter

associated literal constant 2

assumed label number 6

garbage collection mechanism 1

immediate action macro 4

locking and unlocking of identifier

entries in NAMES ' 2

open hash technique 1

operand macro 4,5

scope of an operator 1

type value , 2

 :- - - - v- - - ,>■ - :—■ ■ ■ ■

Page

46

1 5 4

1 5

90

5 3

10

79,126

22

38

