
TOOLS AND TECHNIQUES FOR MACHINE-ASSISTED
META-THEORY

Andrew A. Adams

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1997

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13382

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13382

Tools and Techniques for
Machine-Assisted Meta-Theory

A thesis subm itted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

by

Andrew A. Adams

School of Mathematical and Computational Sciences

University of St Andrews

August 1997

ProQuest Number: 10167253

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167253

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A

I, Andrew A. Adams, hereby certify that this thesis, which is approximately 40,000 words

in length, has been written by me, that it is the record of work carried out by me, and that

it has not been submitted in any previous application for a higher degree.

date s ig n a tu re o f c a n d id a te__

I was admitted as a research student in October 1994 and as a candidate for the degree

of Doctor of Philosophy in October 1995; the higher study for which this is a record was

carried out in the University of St Andrews between 1994 and 1997.

d a t e _____________ s ig n a tu re o f can d id ate _

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu

lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

date ^ ̂ ^ ^ 1*^-------------- s ig n a tu re o f su p erv isor _

In submitting this thesis to the University of St Andrews I understand that I am giving

permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the work

not being affected thereby. I also understand that the title and abstract will be published,

and that a copy of the work may be made and supplied to any bona fide library or research

worker.

date — 7 ------------------ s ig n a tu re o f can d id ate

A b stra ct

Machine-assisted formal proofs are becoming commonplace in certain fields of mathematics

and theoretical computer science. New formal systems and variations on old ones are con

stantly invented. The meta-theory of such systems, i.e. proofs about the system as opposed

to proofs within the system, are mostly done informally with a pen and paper. Yet the

meta-theory of deductive systems is an area which would obviously benefit from machine

support for formal proof. Is the software currently available sufficiently powerful yet easy

enough to use to make machine assistance for formal meta-theory a viable proposition?

This thesis presents work done by the author on formalising proof theory from [DP97a] in

various formal systems: SEQUEL [Tar93, Tar97], Isabelle [Pau94] and Coq [BB+96]. SE

QUEL and Isabelle were found to be difficult to use for this type of work. In particular, the

lack of automated production of induction principles in SEQUEL and Isabelle undermined

confidence in the resulting formal proofs. Coq was found to be suitable for the formalisa

tion methodology first chosen: the use of nameless dummy variables (de Bruijn indices) as

pioneered in [dB72]. A second approach (inspired by the work of McKinna and Pollack

[vBJMR94, MP97]) formalising named variables was also the subject of some initial work,

and a comparison of these two approaches is presented. The formalisation was restricted to

the implicational fragment of propositional logic. The informal theory has been extended

to cover full propositional logic by Dyckhoff and Pinto, and extension of the formalisation

using de Bruijn indices would appear to present few difficulties. An overview of other work

in this area, in terms of both the tools and formalisation methods, is also presented.

The theory formalised differs from other such work in that other formalisations have involved

only one calculus. [DP97a] involves the relationships between three different calculi. There

is consequently a much greater requirement for equality reasoning in the formalisation.

It is concluded that a formalisation of any significance is still difficult, particularly one

involving multiple calculi. No tools currently exist that allow for the easy representation

of even quite simple systems in a way that fits human intuitions while still allowing for

automatic derivation of induction principles. New work on integrating higher order abstract

syntax and induction may be the way forward, although such work is still in the early stages.

C ontents

1 In tro d u ctio n 1

1.1 Logical Frameworks ... 1

1.2 Terminology... 3

1.2.1 Sequent Calculus and Natural Deduction .. 3

1.2.2 Proofs, Derivations and Deductions.. 3

1.2.3 U n fo ld in g ... 3

1.3 The Requirement for a M eta-L ogic... . 4

1.4 Overview . .. 4

2 P erm u ta tio n o f D er iv a tio n s in S eq u en t C alcu lus 6

2.1 Overview ... 6

2.2 Three Sequent-Style C a lc u li... 7

2.3 Relationships Between the Calculi .. 8

2.4 Permutations in L J ... 9

2.5 Weak Normalisation of Perm utations... 9

2.5.1 The Equivalence of M J and N J ... 10

2.5.2 Proof that Permutation Reduction is Weakly N orm alising.................... 10

3 F orm alisa tion in Isabel le 17

3.1 A Brief Overview of Isabel le .. 17

3.2 An Isabelle Object Logic as a M eta -L o g ic .. 18

3.2.1 S y n ta x 18

3.2.2 Logical Rules in the Meta-Logic and the Isabelle M e ta -L o g ic 19

3.3 Isabelle as a T o o l .. 21

3.4 Isabelle^s ASCII notation ... 23

4 F orm alisa tion in S E Q UEL 24

4.1 Introduction to S E Q U E L ... 24

4.2 Meta-Theory in a SEQUEL F ram ew ork .. 25

4.3 Generalisation of the M e th o d .. 27

4.4 Using a Logical Framework for Meta-Theory .. 29

5 A B r ie f In tro d u ctio n to F orm alisa tion in Coq 30

5.1 A Quick Overview of C o q ... 30

5.1.1 The Basis of the Type Theory.. 30

5.1.2 Logical Notation in A S C II.. 30

5.1.3 Definitions ... 31

5.1.4 The Minimality Principle and Inversion of Predicates............................... 32

5.1.5 Performing Proofs in C o q .. 33

5.2 Formalisation of Proof Terms in C o q ... 35

6 A n In itia l F orm alisa tion in Coq 37

6.1 De Bruijn In d ices.. 37

6.2 Formulae, Contexts and Variables.. 39

6.3 Derivations and D ed u ctio n s.. 41

6.3.1 S u m m a ry .. 43

6.4 C onclusions.. 44

7 A F orm alisa tion in Coq U sin g de B ru ijn Ind ices 45

7.1 Initial D efin itions............... 45

7.2 Decidability of R elation s.. 46

7.2.1 Set i f b ... 47

7.2.2 L iftin g ... 48

7.2.3 The Usefulness of Boolean Functions... 49

7.2.4 The Usefulness of Propositional F unctions... 50

7.3 Translation Functions .. 51

7.4 Derivations and D ed u ctio n s.. 53

7.4.1 Structural R u l e s ... 54

7.5 Perm utation.. 55

7.6 Proof T echniques.. 58

7.6.1 Induction P r in c ip le s .. 58

7.6.1.1 Inductions on Simple Inductive S e t s 58

7.6.1.2 Induction for More Complex Sets ... 59

7.6.1.3 Direct Induction over F a m ilie s ... 59

7.6.1.4 Induction with Inversion ... 60

7.6.2 Strong Induction P r in c ip les... 60

7.7 Summary and Conclusions... 62

8 A F orm alisa tion in Coq U sin g N a m ed V ariables 63

8.1 Background of the Coquand-McKinna-Pollack A pproach.................................... 63

8.2 N J Formalised with Named Abstract S y n t a x .. 64

8.2.1 First Order Abstract Syntax for T erm s... 64

8.2.2 (Restricted) Higher Order Abstract Syntax for J u d g em en ts 67

8.2.2.1 The CMP Approach for General Judgements and Predicates 69

8.2.3 Complexity of the CMP A p p roach .. 69

111

8.3 Scope of the Formalisation.. 69

9 R e la te d W ork: T ools an d T echniques 71

9.1 Introduction... 71

9.2 Formalisations Using de Bruijn In d ices.. 71

9.2.1 Strong Normalization of System F in LEGO .. 71

9.2.2 Verification of Algorithm W: The Monomorphic C a s e 72

9.2.3 Church-Rosser Proofs in Isabel le /HOL .. 73

9.2.4 Coq in C o q .. 73

9.3 A Formal Theory of Pure Type S y s te m s ... 74

9.4 Five Axioms of o -C o n v ersio n y . . . 74

9.5 HOL, ALE, Coq and L E G O ... 74

9.6 Higher Order Abstract Syntax ... 75

9.7 Higher Order Abstract Syntax with Induction .. 76

9.7.1 Restricted Higher Order Abstract Syntax with Induction in Coq . . . 77

9.7.2 HOAS with Primitive R ecu rsio n .. 77

9.7.3 First Order Logic with Definitions and Natural Number Induction . . 78

10 C on clu sion s an d F urther W ork 79

10.1 Frameworks vs. Proof A ss is ta n ts ... 79

10.2 Expansion of the Formalisation of the Permutation Theorem 79

10.2.1 New Tactics for C o q ... 80

10.2.2 R ippling... 81

10.2.3 The Permutability Theorem for First Order Logic 81

10.2.4 Strong Normalisation of Permutation Reduction 82

10.3 Other Logics, Other Problem s... 83

10.4 De Bruijn Indices, the CMP Method and HOAS'. C onclusions........................... 83

IV

10.4.1 De Bruijn Indices... 83

10.4.2 The CMP M e th o d .. 85

10.4.3 86

B ib lio g ra p h y 88

A P rim a ry D efin itio n s an d L em m as in Coq 94

A .l De Bruijn Index F orm alisa tio n .. 94

A.2 CMP Method Formalisation... 108

B P ull D ev e lo p m en t in Coq u sin g d e B ru ijn Ind ices 116

C hapter 1

Introduction

The Study Of Formal Deductive Systems {logics) has a long history, reaching back through

the history of mathematics. With the advent of powerful digital computers in the latter

half of the twentieth century, we have seen an explosive increase of interest in formal logics,

in large part as a tool to understand the operation of those very computers. Increasingly

over the last two or three decades, investigations using these formal logics have been carried

out in software environments specifically designed for such work. The process of develop

ment is fairly clear. A researcher invents a new system which is then implemented in a

suitable language or environment and theorems are formally validated within the deduct

ive system, either through interaction, or automatically by using pre-programmed methods.

The processes modelled by these logics are complex, and recursive structures common.

1.1 Logical Fram eworks

Techniques have been developed over the last two decades to make these investigations

easier, in particular to ease the job of defining the new logics in a formal environment.

To this end logical frameworks [HP91, HP93] implemented as ALF[AGNvS94], Elf [Pfe91],

Isabelle [Pau88] and SEQUEL [Tar93] have been developed. These frameworks provide

different but internally coherent approaches to the implementation of formal logics, freeing

the designer to work on theoretical issues and use of the system rather than tedious details

of program correctness and issues of representation in a general purpose language. The

resulting implementations are very useful in proving object-level theorems of the logic and

for exploring the deductive system. However, the implementation of a logic in a logical

framework does not give one access to machine support for meta-level judgements about the

CH APTER 1. INTRODUCTION 2

logic, as opposed to deductions within the logic. For such theoretical work a pen and paper is

still the primary tool for most researchers. Some work has been done with machine-assisted

formal meta-theory, but it remains a very small part of the larger field.

The literature on logical frameworks and on special purpose implementations of common

logics (e.g. the various Isabelle object logics and the various implementations of type theor

ies; NuPrl [CA'^Sô], ALF [AGNvS94] and Coq [BB'^96]) contains many varied arguments

about the necessity for machine support when performing formal proofs. The issue of con

fidence underlies most of these: confidence that the theorem really is a consequence of the

axioms and rules of the logic, particularly confidence that one has not missed vital cases in

an induction or case-splitting step, and that any definitions are acceptable within the logic.

These arguments are no less valid for the study of the logics themselves as for working within

these logics. In fact, they may carry more weight. If the modelling power of a logical system

depends on, for example, the confluence of its type inference algorithm, then we require

assurance that the said algorithm really has that property. Such proofs tend to be long and

complex, requiring inductions and case analyses involving a large number of variations on

a theme. The phrases “similarly” and “obviously” are very common in such work. It is

unusual, though not unknown, that the “similar” proof method in these cases does apply.

Consider the following, however: two constructions may appear almost identical, and there

fore proofs about the properties may require the same steps. If an error has been made in

some related definitions then what is true for one may not hold for the “similar” case. Proof

is an interactive process, which leads to a deeper understanding of the underlying theory,

as well as a mechanical verification of facts. Errors in the formulation, or subtle differences

leading to divergent proof requirements, may be missed in the standard informal approach.

Until recently, the machine environments available were not at all suitable to the demands of

formal meta-theory. Either the environment simply did not have sufficient logical power to

allow the required proofs to be performed or, more commonly, the amount of work required

to encode the logics and perform meta-theoretic proofs was prohibitive. Formal meta-theory

is an expanding field, however, so we wish to examine some of the environments currently

available to see how easy such work now is, how easy it may become, and what direction

development of environments should take to encourage this important step forward.

CHAPTER 1. INTRODUCTION 3

1.2 Term inology

1.2.1 Sequent Calculus and N atural D eduction

We are interested in two kinds of calculi: sequent calculi and natural deduction calculi

[Gen33, Pra65]. A good introduction to the two kinds of calculi can be found in [TS96, §1.3].

In order to study both kinds in a common framework, we will present natural deduction

calculi in a sequent-style (called the logistical style in [Gen34]). [TS96, §2.1.4] presents a

sequent-style version of natural deduction. The differences between these kinds of calculi can

be seen if we examine the rule for logical conjunction {and), written as A. For sequent-style

natural deduction we might have the following three rules for conjunction:^

Fh- Fi T h F 2 _ F h F i A F a P h f i A F g
T h F , A F , r h f t

while for sequent calculus we might have the two rules:

r i - F i F l - f s T , F u F 2 h F 3
F I - F i A F a F , F i A F g l - f s

The two rules Al and AR are identical, but there are striking differences between the rules

AEi/2 and the rule AL. The primary difference between a natural deduction calculus and a

sequent calculus is that the sequent calculus includes rules which change formulae occurring

in the context (the sets F of formulae).

1.2.2 Proofs, D erivations and D eductions

Since the word proof can become overused when discussing meta-theory, we will adopt the

following convention: proof refers to the proof of a meta-theoretic result; when discussing

object-level proofs, the words derivation or deduction will be used, depending on the type

of logic being investigated. Derivations are proofs within sequent calculi. Deductions are

proofs within natural deduction calculi (even when those calculi are presented in a sequent-

style).

1.2.3 U nfolding

Unfolding is a process which takes a function application such as f {a, b) and replaces it with

the body of the definition of /, with formal parameters replaced by actual parameters. So,

 ̂W here the F, are m eta-variables for form ulae, and F is a m eta-variable for sets o f form ulae.

CHAPTER 1. INTRODUCTION 4

if we have the function plus for natural numbers defined by the equations:

plus{Q,n) —def n

plus{S{m),n) =def S{plus{m,n))

then unfolding the first application of plus in

plus{S (5(0)), plus{S (%),;))

gives

5 {plus{S (0), plus{S [i) , j)))

1.3 T he R equirem ent for a M eta-Logic

Implementations of logics such as first order intuitionistic logic, classical linear logic etc.,

are coded within the machine environment in a way that allows the user to perform com

plex derivations/deductions within the logic thus defined. The aim of such work is to prove

complex object-level statements. Investigations into the properties of these logics require

different tools. To perform such investigations, induction is invariably required at the level of

reasoning about derivations/deductions. We wish to be able to define the notion of a deriva

tion/deduction within the system. Even if the logic we are reasoning about has no need for a

term assignment system representing the derivations/ deductions (as it might not if provab

ility is the only issue of interest), we may want a term assigned to derivations/deductions to

aid reasoning at the meta-level. With first order theories, we are interested in the witnessing

term when proving formulae, but at the meta-level, we only wish to know that appropriate

terms exist, and explicit encodings in a logical framework may complicate the meta-theory

without providing any more confidence in the resulting proofs.

1.4 O verview

In this thesis, we will examine three environments: Isabelle [Pau88], SEQUEL [Tar93] and

Coq [BB+96]. The first two are found to be unsuited to the work we wish to do. Coq is found

to be adequate although not ideal. Some work was also done in ALF [AGNvS94], but this

was never a fully released system and has now been superseded by a new system HALF? The

methodology of ALF (that of directly editing proof terms for Martin-Lof’s monomorphic

type theory [NPS90]) did not lend itself to work with multiple calculi, particularly with

^The im plem entation o f H A L F is an ongoing project th a t has no official docum entation yet, and is not

available outside Chalm ers. Som e work done in H A L F has been published, m ost notab ly [CN96].

CH APTER 1. INTRODUCTION 5

the need for equality reasoning about translated proof terms. The meta-theory we will be

exploring in this formal setting is taken from [DP97a] with background material in [DP96].

The informal meta-theory developed there is closely linked with work by Herbelin in [Her94].

The informal development from [DP97a] is shown in §2. Following this, we will briefly

examine attempts at formalising these examples using Isabelle in §3 and SEQUEL in §4.

§5 contains a brief overview of the proof assistant Coq, and discusses some of the choices

made for the formalisations presented in §§6-8. We examine other approaches in §9, briefly

looking at other formalisations of meta-theory with particular attention to the approaches.

In §10 we draw conclusions about the work presented in the thesis and give some indicators

of further possibilities in this area. We briefly examine the extension of the formalisation

to cover the example theorems in the universally quantified implicative fragment of first

order logic. Extension to the full propositional cases would appear to involve little challenge

but would require a fair amount of time to perform the proofs. We also draw conclusions

about the relative merits of de Bruijn indices and the named variable syntax used in §8. We

compare the tools used for the various formalisations in §§3-8, and indicate the requirements

for tools which would better support further work in formal meta-theory. Finally, in §A we

highlight some of the important definitions of the Coq formalisations and then in §B we give

the full development of the formalisation using de Bruijn indices.

C hapter 2

Perm utation of Derivations in

Sequent Calculus

This chapter contains a brief overview of the theory being formalised. A more complete

version can be found in [DP97a].

2.1 O verview

It has long been a piece of logic folklore that two intuitionistic sequent calculus derivations

are really the same if, and only if, they correspond to the same natural deduction. To

paraphrase [GLT89, p.39]:

The translation from sequent calculus into natural deduction is not 1-1: different

proofs of the same sequent, differing only in the order of application of the rules,

have the same translation.

In some sense, we should think of the natural deductions as the true “proof”

objects. The sequent calculus is only a system which enables us to work on these

objects: AV- B tells us that we have a deduction of B under the hypotheses A.

[Kle52] discusses permutability of inferences in sequent calculus without reference to the

corresponding natural deductions, and some of his permutations do not maintain equality

of the image. Similar ideas may also be found in [Min96]. The relationships between

individual sequent calculus derivations can be described using a set of permutations, such

that two sequent calculus derivations are inter-permutable if and only if they correspond to

6

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 7

the same natural deduction. An obvious extension of this idea is to try to produce a set

of reductions which replace the bi-directional permutations, and indeed to try and find a

confluent set of reductions, which lead to a ‘normal’ form.

But what is ‘normal’ in this sense? In [DP97a] ‘normal’ is defined syntactically in such

a way that the normal derivations are immutable under the composition of the Prawitz

translations into natural deduction and back. The translation from natural deduction to

sequent calculus, unlike the reverse translation [Pra65, Fel89], has not been explicitly defined

in the early literature. Prawitz [Pra65] does, however, describe the steps of this translation

(here called p), which is also described in [TS96]. Prawitz’ translation is from normal

deductions in natural deduction into the sequent calculus. Gentzen [Gen34] described a

translation of non-normal natural deductions in the sequent calculus with cut. In fact, the

translation is naturally formed as the composition of the translations via an intermediate

calculus, the permutation-free sequent calculus due to Herbelin in [Her94] and refined by

Dyckhoff and Pinto in [DP96]. There are therefore two distinct parts to this work. The

new calculus^ M J must be shown to be isomorphic to natural deduction [DP96] and the

reductions must be shown to be normalising with respect to the retraction of LJ onto itself

via M J.

The permutation reductions in [DP97a] have been shown to be strongly normalising, with

some simple extra constraints on their application, in [Sch]. The informal proof of strong

normalisation of this system appears as a corollary of a result for another calculus which

allows further fine-grained reasoning about the relationship between a derivation in M J

and its equivalent derivation in LJ. The work in [Sch] has appeared too recently for a

formalisation to be performed and the results included here.

2.2 T hree Sequent-Style Calculi

To present a coherent picture of the three systems, a single approach is taken for each. The

systems are defined using a sequent-style notation, although only LJ and M J are sequent

calculi in the sense of Gentzen’s original version [Gen34], while N J is a sequent-style calculus

equivalent to natural deduction with assumption classes [Lei79]. All three systems are cut-

free. Cut-elimination for NJ'*‘‘̂“* and LJ"*"*̂ *̂ is well-known, and cut-elimination for MJ'^‘’“*

has been shown in [Her94] (see also [DP98]). N J also differs from a standard presentation

of the simply-typed A-calculus in its splitting of terms into normal (N) and applicative (A)

 ̂C alled M J in [DP96] to avoid confusion betw een H erbelin's nam e L J T in [Her94] and D yckhoff’s different

calcu lus L J T in [Dyc92].

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 8

terms. Normal terms (N) have the form:

Xx\ . . . •• {x l) tfn)

where the are normal. The sets of derivation/deduction terms of these systems are A and

N for N J , M and M s for M J, and L for LJ, defined as follows:

N ::= AV.N I an(A) M ::= (V ; M s) [AV.M

A ::= ap(A ,N) | for(V) M s ::= [] | M :: M s

L ::= w (V) I app(V ,L ,V .L) |AV.L

where V is the set of variables {x, y , . . .) and is a binding operator. app{x, h j p . h) is the

term of L representing an occurrence of the Implies Left rule: the translation into natural

deduction is

\app{x,h,y. l2)\ = [ap(æ, |/i |) /y] |/2l.

Taking P, Q, R as meta-variables for formulae and T for contexts^, the rules for the three

systems are in table 2.1 on page 11. The judgement forms for each calculus are summarised

here:

Calculus (term) Judgement Form Calculus (term) Judgement Form

N J (N) r OO n : P N J(A) F > a : P

M J(M) F m : P M J(M s) F ms : P

LJ(L) r - A l - . P

2.3 R elationsh ips B etw een th e Calculi

Following our definition of the three calculi, we define functions which translate deriva

tion/deduction terms between calculi, and show how the translations interact. These func

tions (derived from [Gen33, Pra65, DP98]) are shown in table 2.2 on page 12, and vari

ous theorems regarding their interaction are shown in table 2.3. These theorems include

those showing that translated derivation/deduction terms still derive/deduce the same for

mula in the same context (theorems N_Admis_0('), M_Admis_'0('), L_Admis_/>, L_Admis_p,

N_Admis_</> and M_Admis_^)- The names of the theorems (e.g. tpO) shown in table 2.3

are derived from the names used in the formalisation described in §7, with names of Greek

letters (e.g. rho) replaced by the correct symbol (p). The diagram below shows how the

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS 9

translation functions relate derivations/deductions in the calculi:

MJ

2.4 P erm utations in LJ

Now that we have introduced each of the calculi, and the translations between them, we may

define a relation permuting derivations in LJ. This is the relation shown as >- in table 2.4.

X* is defined as the reflexive transitive closure of in the usual way. Once we have defined

the >-* relation for untyped terms, we must show the admissibility of sub-term reduction

for the new relation (see table 2.6 on page 16, theorems L_PermnJm, L_Permn_appl and

L_Permn_app2): i.e. that reducibility of a term implies the reducibility of any superterm.

The Weak Normalisation Property of y* follows from the three theorems NormJmpermX,

NormX_p and NormJled (see table 2.6), as per the specification of weak normalisation for

abstract reduction systems in [Klo92, Definition 2.0.3(2)]. The normal form to which terms

are rewritten is defined informally in table 2.5.

[DP97a] contained a conjecture that by adding certain side-conditions to the system of

reductions the system would be strongly normalising. In [Sch], Schwichtenberg proposed

that only the restriction that I3 must be fully normal wrt w for app-appl or app^app2 to

be applied, was needed. He then proved strong normalisation for the resulting system as a

corollary of a theorem involving another intermediate calculus.

2.5 W eak N orm alisation o f P erm utations

The aim of this work was originally to define an equivalence class of derivations in L J each

of which mapped to the same derivation in M J (and, by the bijection between M J and

 ̂C ontexts are defined to be functions from a finite set of variables to a set o f form ulae.

CH APTER 2, PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 10

N J , to the same deduction in NJ) . As the informal exploration continued the equivalence

relation was replaced by an oriented reduction relation, and the goal developed into a search

for a strongly normalising reduction relation. As a partial step towards this goal, a weakly

normalising reduction relation was developed; >-, as shown above. As mentioned in §2.1,

some minor modifications of the weakly normalising reduction relation leads to a strongly

normalising relation, the proof of which is a corollary of a similar proof in [Sch]. [Sch],

however, introduces yet another calculus which further identifies the steps in translation of

derivations in LJ to derivations in M J (and so to the equivalent deductions in NJ) . We will

ignore the work in [Sch] here, since the formalisation we wish to examine later only covers

the weakly normalising permutation reduction relation and M J.

2.5.1 The Equivalence of M J and N J

[DP96] (an expanded version of [DP97a]) includes proofs of the equivalence of the full pro-

positional versions of M J and N J . These proofs are performed simply using the obvious

mutual induction schemes inferred from the definitions of M , M s, N and A .

2.5.2 P roof th at Perm utation R eduction is W eakly N orm alising

[DP96] also includes a proof of the theorem that the permutation reduction relation defined

in table 2.4 is weakly normalising. The major work involved in this is the proof of the lemma

called App_Red_M in table 2.6:

app{x ,p{mi) ,y .p{m 2)) y* p{stib{x, m i , y , m 2))

where p is the translation function from M to L:

p : M

; []) -de} vr{x)

p{x ; m :: ms) =def opp(z, p{m), z.p{z ; ms)) z new

p{Xx.m) =def Xx.p{m)

Since this is a non-standard recursion {z ; ms is not a sub-term of æ ; m :: ms in the second

definitional equation) a standard inductive argument will not provide us with an appro

priate induction hypothesis for conjectures involving p. A measure induction principle is

therefore defined for performing induction on terms in M and M s, which may be used to

prove conjectures involving p such as App_Red_M above. A similar process is used in the

formalisation described in §7.6.2.

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCUL US 11

Table 2.1: Proof Rules for N J, M J, LJ.

N J

T,x : P Ï » n : Q
F I » Xx.n : {P D Q) ^

r > a : P
F t » an(a) : P

F > o : (P d Q) F o t > a : P

AN-Axiom

D E
F > ap{a, n) : Q

A-AxiomF, æ : P > var{x) : P

M J

F,æ : P - ^ m s : R
ChooseT,x : P =y {x \ ms) : R

r , x : P => m : Q
T ^ y . m : (P D Q)

F => m : P F ms : R
 D SF m :: ms : P

LJ

L-AxiomF, æ : P —>■ vr{x) : P

F , ^ : P d Q —» h : P F, æ : Q, z : P D Q — /g : P
F, z : P D Q app(z, h , x.h) ■ P

F, æ : P -> / : Q _
F - ^ A z . P P D Q ^ ^

D L

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 12

Table 2.2: Translation functions for proof terms.

9{x;ms) =def 6 ' {var{x), ms)

9{Xx.m) =def Xx.{9{m))

9' : A x M s N

9 (a, []) —def on(ct)

9'{a,m::ms) =def 9'{ap{a,9{m)),ms)

V?(an(a)) =def i^'{a,[])

i^iXx.n) =def Aa?.(V’(n))

i})'{var{x), ms) =def (x\ms)

i ;'{ap{a,n),ms) =def 'ip'{a,{ip{n)) :: ms)

p[x ; []) —def rr[x)

p { x ; m : : m s) =def app{x^p{m)^ z.p{z \ ms)) z new

p{Xx.m) ~def Xx.p{m)

^{vr{x)) =def {x ; [])

^ { a p p { x , h , y . l 2)) - d e f s u b { x , ^ { l i) , y , 4 > { l 2))

^{Xx.l) = d e f Xx.^{l)

sub : V x M x V x M —> M

sub{x, m, y, {y ; ms)) =def {x ; m :: subs{x, m, y, ms))

sub{x ,m, y , { z ; ms)) =def {z \ subs{x,m,y,ms)) z ^ y

sub{x,m,y,Xz.m') =def Xz.sub{x,m^y,m') z ^ y

subs : V X M X V X M s M s

subs{x,m,y,[]) =def []

s u b s { x , m , y , m ' :: ms) =def sub{x,m,y,m') subs{x,m,y,ms)

p : N - f L

p{n) - d e f P(V'W)

<!){vr{x)) = d e f an{var{x))

<i>{app{x,h,yh)) = d e f [ap{^^Hh))/y]<f>{h)

(j){Xx ,1) —d e f Xx

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 13

Table 2.3: Relationships between the calculi

'ij)d : ip{${m)) — m

ip{9'{a, ms)) — ms)

Oijj : ${'^{n)) = n

: 6 {‘ip'{a, ms)) = 9'{a, ms)

r m:R
N_Admis_^ : r [» 9{m):R

r > a:P r ~ ^ m s : P
N _A dm isj0' : r » 9'[a, ms):R

M _A d m isj0 :
r 1 » n:R

r tjj{n):R

r [> a:P T - ^ m s : R
M _Adm is_^' : r => ms)\R

(j)p: <^(p(m)) = m p9p: p(i9(m)) = p{m)

6 {^{l)) = <f)p: (f>{p{n)) = n

r => m :P r —y I'.R
L_Admis_p : r -4- p{m):R M_Admis_(^ : F => ^(1):P

r —>• I'.R F 1 » n:R
N_Admis-j?!i : r tX> <f){n):R L_Admis_p : F -> p{n)R

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 14

Table 2.4: Permutations of Derivations in LJ

(Im)
h >- h

Xx.li y XxÀ2

(appl)
h y h

ap p{x ,k ,y . l 3) y a p p { x j 2 ,y-h)

(app2) app{x ,h ,y . l2) y app{x,h,y. l3)

(appjwkn) app{x ,h ,y . l2) y h y ^ h

app{x,li,yMpp{z,Î2,'W.l3)) y ^ z
(app.appl) y { y Ç i h V y ^ h)

app{z, app{x, l i , z . l 2),w.app{x, h^y.h))

(app-app2)

app{x, l i ,y.app{y, h . w . h))

y [y e h v y e h)

app{x, h,y' .app{y’, app{x, h , y.l2) ,w.app{x, h , y.ls))) y'new

(appJm) app{x, li , y.Xz. l2) y Xz.app{x,l i ,y. l2)

CHAPTER 2. PERM UTATION OF DERIVATIONS IN SEQUENT CALCULUS 15

Table 2.5: Normal Forms of terms in L wrt >-

I is normal if it is

a variable, or

of the form Xx.l where I is normal, or

of the form app{x, l i , p.fg)

where

k is normal;

I2 is var-normal with respect to the variable y.

I is var-normal wrt x if it is

equal to vr(x), or

of the form app(x, h , y.h)

where

h is normal;

I2 is var-normal wrt y;

X ^ l i ,h -

CH APTER 2. PERM UTATION OF DERIVATIONS IN SEQ VENT CALCUL US 16

Table 2.6: Subject Reduction and Weak Normalisation

/i I2 T —y l \ ' R
L_AdmisJPerml : T l2 'M

X* I2 r —> '.R
L_Admis_Permn : T l2 '.R

h y* h
L_PermnJm Xx.li y* XX.I2

h y* h
L_Permn_appl o,pp{x,li,y.l^) a p p { x j 2 , y-h)

 h y* h_____________
L_Permn_app2 app{x, li ,y . l2) y* app{^,li ,y^h)

NormJmpermX : Normal(^) I y lo

Norm_L_p : Normal(p(m))

App_Red_M : app{x, p{ mi) ,y .p{m2))

>-* p { s u b { x , m i y y , m 2))

NormJled : I >-* p{^{l))

C hapter 3

Form alisation in Isabelle

3.1 A B rief O verview o f Isabelle

As with most logic software, Isabelle uses an ASCII notation for the non-ASCII symbols of

logic. §3.4 gives a basic introduction to this, but throughout this chapter standard logical

notation will be used for ease of reading.

Isabelle is a highly modular system with many incompatible object logics developed around

a single core: the Pure system.

The Pure system allows for the definition of sorts, subsorts and types. Types may inhabit

the global sort, the primitive sort logic, or any of the defined sorts or subsorts. Polymorphism

is implemented by means of the sorts. Types are simply declared and constructors for the

types defined as functions (there is no distinction between general function definitions and

constructor functions for types).

Isabelle’s meta-logic is implemented in a natural deduction style [Pra65] using the same

symbol (==>) as the connective between the premises and conclusion, and the connective

between assumptions and premises. So the rule of implication introduction which is usually

represented in natural deduction as:

B
A d B D l

would be represented in Isabelle as

17

CHAPTER 3. FORMALISATION IN ISABELLE 18

(A B) (A D B)

This overloading of ==> is a confusing aspect of the language of Isabelle for new users, but

is not a serious problem. The Isabelle meta-logic is not designed to be used directly as a

proof system. Isabelle was designed to allow users to implement the logic in wish they wish

to prove theorems. For our work in formal meta-theory, we must therefore define our own

meta-logic in which proofs about logical systems (such as N J, M J LJ) may be performed.

The semantics of our meta-logical connectives will be defined by relating their meaning

to the Isabelle connectives. Various packages supplied with the basic system (such as the

equational reasoning package) in fact require rules of a specific form relating the new Isabelle

object logic connective to an Isabelle meta-level connective.

3.2 A n Isabelle O bject Logic as a M eta-L ogic

Since the Isabelle meta-logic is designed for the implementation of object logics, and not for

direct use as a proof system, a three-level hierarchy must be used. At the bottom there is the

Isabelle meta-logic. Above that is the meta-logic used for reasoning about the systems N J

and M J. The meta-logic we implement as an Isabelle object logic is intuitionistic first-order

logic with built-in size induction schemes, simple arithmetic (the natural numbers, addition

and a “less than” relation), and with first order terms. At the top are the systems N J and

M J themselves. The different levels are used as shown in the table below

Logic Use

Object Logics N J and M J Proof of Theorems

Meta-Logic Proving Properties of Proof Systems

Isabelle Meta-Logic Tactics and Forward Proof

The aim of this work is to provide machine support for the meta-logic. It is not an aim to

make the object logics particularly usable within this system, although they must of course

be correctly defined.

3.2.1 Syntax

We define the sort of terms, which includes the deduction terms for N J , derivation terms for

M J, formulae, object-level variables and hypothesis lists. Quantification for the meta-logic

CH APTER 3. FORMALISATION IN ISABELLE 19

is allowed over terms of specific types.

The usual symbol is used for the Isabelle meta-logic implication, and any free variables

are implicitly universally quantified within the Isabelle meta-logic. The equality relation

within the Isabelle meta-logic is represented as = . This Isabelle meta-logic equality is

defined with respect to syntactic equality of terms, but it is usual to extend it to include

Isabelle object logic (our meta-logic) equality.

The following symbols are used for the various connectives required for the meta-logic:

= Equality of proof terms

Implication

A Conjunction

V Universal quantification of terms over meta-logical predicates

> Derivability in A

» Derivability in N

Derivability in M

Derivability in Ms^

Since only the implicational fragments of M J and N J are dealt with, the only object-level

connective required is implication (d) . To illustrate the use of some of the above connectives,

we show the rule of our meta-logic which performs case analysis of a term in M .

((Væ.Vms.(m = (æ ; ms)) — y P{x ; ms)) A (Væ.Vm'.(m = Xx.m') — y P{Xx.m'))) = > P[m)

where P is some predicate abstracted (at the Isabelle meta-level) over objects of type M .

3.2.2 Logical R ules in th e M eta-Logic and the Isabelle M eta-L ogic

Isabelle supports both forwards and backwards chaining as methods of proof. Backwards

chaining involves the usual method of applying a rule to the current goal and having a set

of sub-goals returned. When supplied with a conjecture G to prove, Isabelle automatically

applies the identity implication rule {G ==> G) to it, setting the basic goal to G and

initialising the sub-goaler to a single sub-goal of G also. Forward chaining allows a user to

combine rules and axioms to produce a new rule, which may or may not depend on sub

goals. In this way, the user may build up a complete proof tree applicable to the current

goal. Proofs are seldom performed this way, although completely deterministic tactics may

be built and named in this manner, avoiding the need to program them in ML.^

 ̂W here F is a. Formula or a variable ranging over formulae.
^N on-determ inistic tactics still require program m ing in ML, however.

CH APTER 3. FORMALISATION IN ISABELLE 20

The rules for the Isabelle meta-logic are not used for proving theorems in general, but are

for writing tactics in ML, and for writing ML tacticals to generate tactics. The useful rules

for proving theorems are those programmed into each object logic, so we need to implement

such rules as part of our meta-logic.

There are certain ML functionals written to help define sets of rules when implementing

object logics. These require the prior provision of object logic (our meta-logic) versions of

common connectives as arguments. The ML functionals then produce rule sets derived from

these. One of the most commonly used sets is the equality reasoning, which takes a set of

equality rules defined using an object level equality, and rules specifying that the object level

implication and equality are derivable from the Isabelle meta-logic implication and equality,

and returns a tactic which will use the provided equalities as a rewriting system and rewrite

to a fixpoint in both the current goals and their local assumptions. There is no attempt to

prevent looping of these rules, and it is up to the programmer of the object logic to ensure

that the equality rules are appropriately ordered to avoid this.

In the implementation of the example, the rules linking the meta-logic and the Isabelle

meta-logic connectives are:

(a = b) (a — b)

(f = > Q) = > (f — +Q).

The first of these defines our meta-logic equality relation as an equality relation for the

system. The definition of our equality relation must include (but is not restricted to) rules

showing symmetry, refiexivity and transitivity for the relation. We may then use an ML

functional to provide a simplification tactic performing rewriting using our meta-logic equal

ity. This simplification includes unfolding of functions such as 9 which have been defined

using the Isabelle meta-logic equality (=) .

The second of these is the definition of our meta-logical implication connective (— >-). We

are stating that we may derive P — y Q if we can derive Q by assuming P.

To prove properties of the proof terms, such as theorems ipB and , we require an induc

tion principle. Again, we must define an induction principle manually within the Isabelle

meta-logic for each class of objects upon which we wish to perform induction. This is where

we find the greatest barrier to using Isabelle for this work. Given the complex, one might

almost say unreadable, nature of the Isabelle source text, definition of an induction principle

for complex, mutually defined, inductive objects becomes a non-trivial task. Mistakes are

not easy to spot, nor is one ever completely sure that one’s implementation is absolutely

correct.

C H A PTE R S. FORMALISATION IN ISABELLE 21

For example in order to perform induction proofs for simultaneous proof of and

the following rules had to be encoded into Isabelle:

♦ A definition of the size function for objects of types M , M s, A and N , including objects

formed from the translation functions <f) and $.

♦ A principle of induction over the size of an object.

♦ A number of rules about natural numbers including an ordering function.

♦ Case analyses of objects of type M and M s.

Many of these are quite complex rules, and the prospect of having to implement them

individually for each type of proof object etc. in each new logic for which met a-theory is

required would be a waste of time, as it would lend little extra confidence in the results for

much extra work.

There is yet more work involved in defining rules to allow the proof of theorems such as

N„Adm is_0. Either a new induction principle for proof on the structure or size of derivations

is needed or two versions of each rule in the object logic are needed — an introduction and

elimination version for assumptions and goals involving derivations assumed to be correct.^

Therefore manual implementation of these principles appears to be a dead end in Isabelle. So

we come to the requirement for writing a new top-level which uses Isabelle as a proof engine

and accepts definition of inductive objects and functions, returning appropriate induction

principles, from which we may derive appropriate structural induction schemas. Use of one

of the existing Isabelle object logics would also be possible. The HOL object logic (re-

implementing the HOL theorem prover [GM93]) includes facilities for automatic derivation

of induction principles, but is based on classical higher order logic. Since most proof theory

(even that studying classical logics) is done constructively then using a system such as

Isabelle/HOL to formalise such work would seem inappropriate.

3.3 Isabelle as a Tool

Isabelle has a medium-sized community active in using object logics and in programming

new object logics. There is a smaller community working on improving Isabelle and on

programming more general functions and functionals in ML for use with the system (for

sim ilar problem was encountered when a ttem p tin g an im plem entation in the sequent n o ta tion of

SEQ U E L{see §4).

C H A PTE R S. FORMALISATION IN ISABELLE 22

an overview see [Pau95a]). There is constant development of the system, for instance four

releases of upgrades to the system were made in 1995, these improving the major overhaul

of the system released late in 1994. Further upgrades to the Isabelle-Q4 system have been

released regularly since 1995.

Very few of the commonly-used large systems are completely stable: A few major and a

number of minor upgrades of Isabelle have been released in the last two years. Work in

the area of machine supported logic is therefore always requiring maintenance. How much

maintenance is needed for each upgrade depends upon both the nature of the upgrade

and the nature of the work undertaken. The Isabelle development team usually produce a

program which can transform the majority of proof scripts into new versions, although some

interaction may be necessary to complete this properly. The scripting capabilities of Isabelle

are adequate to alleviate this problem in the main. Tactics and tacticals may often need

major overhauls to keep up with the latest version, and this is another reason why writing

large amounts of code on top of a specific version of Isabelle does not appear to be a very

attractive method of producing generally useful machine-assistance for meta-theoretic work,

given the regularity of the upgrade releases.

The documentation of the system is very varied, even within the areas of meta-programmer,

programmer and user documentation. Some parts of each type of user’s area of interest are

very well-documented, while some are barely touched and others require one to look at the

original code to see how the system operates. While there is a good introduction to using

the Isabelle system for performing proofs in existing object logics in [Kal94], there is no

similar paper introducing the basics of writing object logics, and one must wade through

the large [Pau94] which includes many internal technicalities mixed in with the necessary

information to start writing an Isabelle object logic.

From a user’s point of view, Isabelle is neither very easy nor very difficult to use. The

interface could be much improved, but that could be said of most freely available academic-

written software, since the interface is the least interesting part of the work for those writing

these complex systems. The proof paradigm is a little odd for someone more used to auto

mated systems using a sequent-style calculus, and there are certain obvious top-level controls

not present where they might be expected. These problems are being addressed slowly by the

growing community of Isabelle programmers and meta-programmers, and support for users

is currently very good amongst those on the electronic mailing list devoted to it. Whether

these situations will continue as and when the user community grows is difficult to judge.

Given the difficulties involved in programming Isabelle for use as a general tool for machine-

CH APTER 3. FORMALISATION IN ISABELLE 23

assisted meta-theory,'* it would appear to be a poor candidate for further development. This

conclusion also appears in [BC93].

3.4 Isabelle^s A SC II n otation

To give a flavour of the Isabelle ASCII notations, here are some of the connectives and

predicates mentioned in §3.2.1 with their ASCII notation. The Isabelle meta-logic symbols

are provided by the system, whereas the symbols for M J and N J and the meta-logic are

defined using the complex Isabelle mixfix system. The system is moderately good at rep

resenting what is wanted, although the documentation is somewhat obscure, and the type

system leaves the parsing difficult to manage.

Symbol ASCII

Isabelle Meta-Logic

V !!

Meta-Logic

---->

A -

Væ.P(æ) ALL X . P(x)

Object Logic

r , x\P, A ~ ^ M s:iî $H,æ:P,$G - (P) - - > Ms:R

“̂ Especially the problem s w ith im plem entation o f induction schemes.

C hapter 4

Form alisation in SE Q U E L

4.1 Introduction to S E Q U E L

SEQUEL [Tai’93, Tar97] is a logical framework in the LCF [GMW79] style. It has an ASCII

syntax for representing single-conclusion sequents in the style of a typed lambda calculus.

Rewriting rules may be defined on the terms or types of the sequents. A logic specified by

these sequents is compiled into Common Lisp (with a type checker added).

The propositions of SEQUEL’s notation are expressions of the form w * t , so the rule for a

non-term propositional calculus rule AR might be written:

:name And-R

<A> I" P? * thra

<A> I - q? * thra

th u s

<A> I - (P? & Q?) * thra

If we are encoding a term calculus, however, the natural method of representation would be:

:name And-R

<A> I- t i ? * p?

<A> I- t2? * q?

th u s

<A> I- (p a ir t l ? t2?) * (P? & q?)

These ASCII representations, although necessary for programming SEQUEL, are more dif

24

CHAPTER 4. FORMALISATION IN SEQUEL 25

ficult to read than the more usual forms, so for the remainder of this chapter such rules will

be written

rhti'.p r h t2 : <5
AR.

4,2 M eta-T h eory in a S E Q U E L Framework

In order to work on the metatheoretic level within a SEQUEL framework, we define the

propositions to be of the form

(d e r X G D) or (d er MS F G D)

where

X

a
D

:= A \ N \ M

:z= nil I {concons D G) \ -y

:= t : F

and where F are formulae, t terms of A , N , M , M s, and 7 the object logic contexts, (d e r

X G D) represents a deduction in N J (if X is in A or N) or a derivation in M J (if X is

in M), and (d e r MS F G D) represents derivations in M J where F is the “stoup” formula

which appears under the sequent arrow, e.g. P D Q in the conclusion of the rule:

T => m : P r ms : R
---------------------- 2----------- 2) S

r m:: ms R

We also define the standard intuitionistic predicate logic connectives, equality between terms

or formulae, unfolding of functional expressions, and conditions pertaining to binding of a

variable to a formula in a context (G). Again these ASCII representations, although necessary

for SEQUEL, will not be given here. Similar representations are used for the predicate logic

connectives between terms.

We need to implement two proof methods as part of the definition of the meta-logic —

proof by induction on the size of, and case analysis of, proof terms. Case analysis is a simple

matter to encode, but induction is more difficult. We define a general method of proof by

induction, dependent on the definition of a polymorphic function size:

r h Væ : T . (Vy : T.{[size{y) < s i ze{x)) D A [y / z]) D A[x/z \)
r h Vz : r.A

This is in fact a single principle which does not cover mutual definitions. It is possible to

make use of this method for mutual recursive types using the following general approach.

CH APTER 4. FORMALISATION IN SEQUEL 26

Say we have two predicates Pq : A —y Prop, P\ : B -y Prop, where A and B are mutually

recursively defined sets and Pq and Pi are mutually recursively defined predicates. If we

wish to prove:

Va : A.P(i{a)

then we prove:

V6 : P . (Va : A.size{a) < size[h) D Po(a)) D Pi(b)

using induction on the size of b, and then proceed to prove the required theorem by induction

on the size of a.

To illustrate the techniques used in this development, we take the example theorems

N _A dm isj9 and N_Admis_j^\

After translation,N_Adm isj0 appears as the conjecture:

h Vm : M .(7 => m : R)) D ((7 ! » 9{m) : R)

and after applying size induction we are left with the conjectures:

m : M , æ : V , ms : M s, (m = (æ ; ms)), (7 => m ; R),

Ind-Hyp h (7 » 0{m) : R)

m : M , æ : V , mi : M , (m = (Aæ.mi)), (7 m : R),

Ind-Hyp h (7 » 9{m) : R)

where Ind-Hyp is the assumption

Viui : M.(Vtü2 : F.{\fws : C o n te x t .((s2>e(ttii) < size{m)) D {w^ ^ wi : m2)))).

In the hypotheses of the first case (m = {x;ms)) , we are assuming (7 =j>- (æ ; ms) : R).^ T his

sequent can only be formed in a valid derivation (in M J) as the conclusion of the rule

r= > M : P r - ^ M s : P
r ^ M : : M s : P

so the 7 context in our example must include (for some formula P) the assumption x : P,

and we may also assume (7 , x : P ~ ^ m s : P).^

m : M , æ : V , P : F, ms : M s, {m = {x ; ms)), {x : P E 7),

{ j ~ ^ m s : R), Ind-Hyp h (7 » 9{x ; ms) : R)

where P is a new formula. (We may want to delay our choice of P, since it can be any formula,

in which case we would use a place-holder variable and check that any instantiation was a

formula. In this case, we need a new formula here.)

^By su b stitu tin g {x ; m s) for m in p / m : R) .
 ̂We are effectively inverting an assum ption . See §5.1.4 for more d etails on inversion o f assum ptions in

Coq,

CH APTER 4. FORMALISATION IN SEQUEL 27

Looking to the goal, we can unfold 9{x ; ms) to 0'(var(x), ms). Instantiating the restricted

form of N_Admis_j0' to^:

(((7 > var(x) : P) A (7 - ^ ms : R)) D (j t » 0'(var(x), ms) : R))

and adding it as an assumption we get:

m : M , X : V , P : F, ms : M s, (m = (x ; ms)),

(x : P e j) , (7 “7 ̂ms : R),

(((7 > var(x) : P) A (7 “7 *’ ms : P)) D (7 D» 9'{var{x), ms) : P))

Ind-Hyp h (7 1» 6'{var{x), ms) : R)

We use the implication-left rule to proceed to the following goals:

m : M , X : V , P :F, ms: M s, (m = (æ ; ms)),

{x : P e 7), (7 “7 "ms : P),

Ind-Hyp h (7 > var{x) : P),

m : M , X : V , P :F, ms : M s, (m = (æ ; ms)),

{x : P e 7), (7 -7 ^ms ; P),

Ind-Hyp h (7 - 7 + ms : P)

The second of these follows immediately. Looking at the first, we see that the goal

(7 > var{x) : P)

is of a form that might be discharged via the A-Axiom rule:

r , æ : P > var{x) : P ^

provided we can show that x : P E j . This is one of the hypotheses, so we have proved the

main conjecture for the case of m = (æ ; ms).

4.3 G eneralisation o f th e M ethod

The interesting points of this proof were the uses of the rules of N J and M J in the hypotheses

and goal. The uses we made, informally, of these rules can now be formalised below and,

through analogy, appropriate SEQUEL axioms can now be coded for all the rules of N J

and M J.
* T ogether w ith an extra prem ise which can be proved from the inductive h ypothesis Ind-H yp.

CH APTER 4. FORMALISATION IN SEQUEL 28

r H æ : p? E 7 F E 7 “ 7 ms? ; r?
— Select-Gr I- 7 (æ; ms?) : r?

r h ((a? : p?) I 7) m? : q?
r H 7 => (A æ.m?) : (p? D q?)

æ : p? G 7 , 7 ms? : r?, F h A

Abstract-G

Select-H
7 => (æ; ms?) : r?, F h A

(p? = (ç? 3 r?)), ((æ : g?) | 7) m? : r?, F h A
7 => (A æ.m?) : p?, F h A

r > 7 V : P?

F b 7 => m? : p? F h 7 “ 7 ms? : r?

Abstract-H

r b 7 (7 7 ,̂) (m? :: ms?) : r? ^

(p? = g?), F b A
7 7 T : g?, r b A

(p? = (g? D r?)), 7 => m? : g?, 7 —7 ms? : s?, F b A
7 7 7 " ms?) : s?, F b A

F b 7 > a? ; p?
r h 7 I>l>(A na?): p? AN-Ax.om-G

F b ((æ : p?) I 7) [X> n? : g?

3 S -H

F b 7 [» (A x.nl) : (p? D g?)

7 > a? : p?, F b A

D l-G

AN-Axiom-H
7 D>C> (An a?) : p?, F b A

(p? = (g? D r?)), ((æ : g?) | 7) t » n? ; r?, F b A
7 I » (A æ.n?) : p?, F b A

F b æ ; p? G 7 . . . „
F b 7 o (Var x) : p? A-Axiom-G

F b 7 > a? : (p? D g?) F b 7 I » n? : p?

DI-H

F b 7 O (Ap a? n?) : g?

æ : p? G 7 , F b A

D E-G

A-Axiom-H
7 o (Var æ) : p?, F b A

7 t> a? : (p? D g?), 7 OI> n? : p?, F b A
7 > (Ap a? n?) : g?, F b A D E-H

CH APTER 4. FORMALISATION IN SEQUEL 29

So for the eight rules of M J and N J , we produce sixteen rules for our meta-logic. In general,

if we have a rule in the object system of the form:

a' :A', A P F :B' A h c ; C „ ,
 a - . A , A h b - . B ----------

then we need two rules in the meta-system of the form:

r h ((o' : A' :: : A)) => b' : B') T h ((7 \a : A) c : C)
r h (7 y : B ') r h (a : A € t) „ ,
-------------------- F P F ^ i T B) --------------------

(D = B), (a : A e j) , ((a' : A' :: (7 \a : A)) => b' : B'), ((j \ a : A) c : C) L A
{y => a : D), F h A Rule-H,

Together with these rules, a specification of how the 7 contexts are handled is required, but

that is a simple mechanical process.

Conversion of the single object-level rule to the more complex meta-level rules might be

automated, although there are some problems with this, most notably with the formalisation

of side-conditions on rules. SEQUEL includes a fast, easy to use method of specifying side-

conditions as guards on the application of rules, which might be very difficult to translate

from object- to meta-level. Using extra sequents — while a slower, more cumbersome method

— might provide the answer to these problems.

We shall see in the later sections on formalisation in Coq, that this process has already

been automated in a very general fashion in proof assistants such as LEGO and Coq. Rule-

G ’s definition is part of the standard definition-time analysis of a recursive propositional

function, while Rule~H is an Inversion Lemma on the propositional function (see §5.1.4 for

details of Inversion in Cog).

4.4 U sin g a Logical Frame work for M eta-T h eory

Given its basic design, it was always obvious that SEQUEL could be used for defining

frameworks for meta-theoretic proofs. As with Pure Isabelle however, it is clear that a great

deal of work would be involved in developing a system for performing formal meta-theory

in any logical framework. A more constrained system with a recursive definition mechanism

and, particularly, the automatic production of induction principles, would appear to be

required. A number of such systems are available, and in the next few chapters we examine

various formalisations in the proof assistant Coq, which fulfills these requirements.

C hapter 5

A B rief Introduction to

Form alisation in Coq

5.1 A Quick O verview o f Coq

Coq [BB+96] is a proof assistant for the Calculus of Inductive Constructions (CIC) [CH85,

PM93]. The syntax of Coq is quite readable, providing the reader is aware of the conventions

used to represent non-ASCII symbols in ASCII text, and the basics of the type theory that

underlies the system. The main points of the notation used in this thesis are noted below.

5.1.1 T he B asis of th e T ype T heory

CIC has two basic Sorts; Prop and S et . Each of these is actually the base of a hierarchy

of universes (Type and T yp eset respectively) as in Martin-Lof Type Theory [ML84]. The

hierarchy can be ignored by the user since the system automatically keeps track of universes

above the base cases.

5.1.2 Logical N otation in A SC II

Lambda abstraction is represented (following A U T O M A T H [dB80]) by square brackets;

e.g. [x : A] X is the unnamed identity function on a set A.

Universal quantification is represented by round brackets; e.g. symmetry of equality in a set

A would be stated (x , y : A)x=y->y=x.

30

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 31

-> is used both for function typing and to represent logical implication. Conjunction is

represented as / \ and disjunction as \ / .

5.1.3 D efinitions

Three basic definition mechanisms are used: In d u ctive for defining objects and famil

ies of sorts Prop and Set; R ecursive D e f in it io n and F ixp o in t for functions. Thus the

definition* of natural numbers (nat) in Cog is:

I n d u c t iv e

n a t : S e t : =

0 : n at I

S : n a t - > n a t .

Mutual In d u ctive definitions are allowed using a M utual.. .w i t h . . . construct so, for ex

ample, the mutual definition of even and odd predicates on natural numbers would be:

Mutual I n d u c t iv e

even: nat->Prop :=

even_0 : (even 0) I

even_s_odd : (n : n a t) (o d d n) - > (e v e n (S n))

w ith

odd : nat->Prop :=

odd_s_even : (n : n a t) (e v e n n)-> (o d d (S n)) .

The addition function may be defined thus:

R e c u r s iv e D e f i n i t i o n

p lu s :n a t - > n a t “>nat ; =

□ j => j I

(S i) j => (S (p lu s i j)) .

Function definition using the R e c u r s iv e D e f i n i t i o n syntax is restricted to (higher order)

primitive recursion. F ix p o in t [Gim94] is, as the name suggests, a recursive fixpoint operator

which allows definition of (mutual) recursive functions using case analysis via the Case and

C ases operators. The addition function could therefore also be defined in the following two

ways:

^The num ber 0 is a reserved token in Coq, so the letter 0 is used.

CH APTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 32

F ix p o in t

p in s [i:n a t] :n a t -> n a t :=

[j:nat]<nat> C ase i of

j

C i’ :n a t](S (p lu s i ’ j))

end.

The construct Case i of deconstructs the term i into its inductive definitional clauses (here

0 and (S i ’) for some i ’ :nat), and any new variables are named. The first clause has no

new variables because i has been decomposed to a ground clause of 0. A recent innovation

(and a more readable syntax) uses the new construct Cases [BB+96, §11], which extends

Case deconstruction to dependent types using a syntax more like the functional program

ming language ML:

F ixp o in t

p lu s [i:n a t] :n a t -> n a t :=

Cj: nat] Cases i o f

0 => j I

(S i >) => (S (p lu s i ' j))

end.

R ecursive D e f in it io n is useful since it is integrated into a simplifier tactic (called by the

command Simpl). To allow unfolding of F ixp o in t definitions, each line of the definition

must be proved as a named lemma and Rewrite with the name as argument applied. The

Cases construct is a recent innovation in Coq, and is thus not always used in the work presen

ted in this thesis. R ecursive D e f in it io n has, technically, been superseded by F ixp o in t in

Coq, but is still part of the system for backwards compatibility, and because the simplifier

tactic has not yet been updated.

5.1 .4 T he M inim ality P rincip le and Inversion of Predicates

In d u ctive definitions in Coq are interpreted under a Minimality Principle. That is, when

an In d u ctive definition is made, the object being defined is taken to be the minimal object

satisfying the rules as stated in the definition: i.e. all objects which are a member of the

type (family) must have been constructed by the clauses defining the type (family). Thus, if

the less-than relation on natural numbers is defined as the propositional function (i.e. family

of propositions):

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 33

In d u ctive

I t : nat->nat->Prop :=

l t _ 0 : (i : n a t) (I t 0 (S i)) I

l t _ S : (i , j :n a t) (I t i j) - > (l t (S i) (S j)) .

then all true propositions w hich are m em bers o f th is fam ily are b u ilt up from a basic fact

(l t _ 0): (n : n a t) (I t 0 (S n)) and a fin ite sequence o f im plications increm enting b o th ar

gu m en ts (l t _ S) .

Similarly, if we have a hypothesis that (I t i j) , then there are only two possibilities for this:

1=0 / \ j = (S n) or i= (S m) A j= (S n) A (I t m n)

It would be possible to prove this as an Inversion Lemma, but this is no longer neces

sary, as there is a tactic to perform such a case analysis on a hypothesis of the current

(sub-)conjecture [BB+96, Ch.8].

5.1.5 Perform ing Proofs in Coq

Later we shall be using the Coq representation of sequents to show proofs in progress. To

prove a theorem in Coq we present the system with a type, for which we aim to construct a

term which inhabits that type. Unlike ALF, in which the user directly constructs the term,

construction of the term in Coq is done by the program, behind the scenes. We give the

program commands which further the search for such a term. We shall work through part

of a proof to demonstrate the proof display syntax.

We may envisage a completed proof (in CIC) as a tree of sequents such as:

r b <2 : (O : n a t) ^ ̂
r b tl : {{S O) : nat)

ThU-. {(S 0) = „ a t (S o))

where the t,- are terms of ClC, and F is the current environment (which includes definitions

and local assumptions). Unless we request Coq to print out the we shall never see them.

Mostly the user is not concerned with these terms unless they are programming tactics.

In order to prove the fact that 1 = 1 in Coq (the statement above), we present this as a

type. Since 1 is a ground term, we require no quantifiers (as shown). When we present Coq

with such a term as a named or un-named conjecture (via the Lemma or Goal commands), a

partial proof tree is initiated. This partial proof tree contains the initial sequent:

F b : ((,9 O) = n at O))

where f? is a placeholder for a term. As we progress through the proof, this placeholder

will gradually be refined into a proper term of CIC. Giving the command Apply r e f l_eq.

CH APTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 34

which tells Coq to apply the lemma stating refiexivity of equality, the term t? would be

replaced by the term witnessing r e f l_eq, with a place-holding term for the proof that the

two arguments to equality (which must be syntactically equal) are of the correct type. The

rest of this, very simple, proof is performed completely automatically by the type-checking

engine of Coq, according to the definition of the natural numbers (nat).

We next illustrate the display of current sub-goals. Coq presents sequents such as

Il : T l , . . . ,tn : Tn to : Tq

as

t l : Tl

t n ; Tn

t o : TO

Say we are trying to prove the following simple theorem about natural numbers:

Vi : N .i < S{i).

In Coq syntax this is formalised as the type:

(i : n a t) (I t i (S i))

Having entered this into Coq as a conjecture to be proved (under the name I t iS i) we are

presented with the following display:

1 su b -goa l

(i : n a t) (I t i (S i))

Initially, there is only a single (sub)goal to be proved. Where we have more than one sub

goal remaining to be proved (i.e. more than one branch of the proof tree which is not closed

by an axiom) we may have Coq show us either all the remaining sub-goals or only one at a

time.

We wish to move the universally quantified variable i into the current context with a name

new to the context (since the current context is empty, the name will remain as i) . We do

this by matching the conclusion of the universal quantifier introduction rule:^

T , y : T P [y / x] G
________________________________ r h Væ : T.G
^W ith a side-condition that y is not free in F, T or G.

V-I

CH APTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 35

to the sequent above, so that F matches the empty sequent, x and y match i , T matches

n at and G matches (I t i (S i)) . Coq then prints

1 s u b - g o a l

i : nat

(I t i (S i))

Elimination on the type n at (i.e. induction) then gives us:

2 s u b - g o a ls

i : n at

(I t 0 (S 0))

s u b - g o a l 2 i s :

(n : n a t) (I t n (S n)) - > (l t (S n) (S (S n)))

Here, Coq is showing us all the remaining sub-goals but only the first is displayed in full;

only the conclusions (consequents) of the other goals are shown. Note that this is simply an

interface matter; we cannot assume that the hypotheses of the second sub-goal are identical

to the fully printed first sub-goal. We may have Coq show us the full sequent for sub-goal 2:

su b -g o a l 2 i s :

i : nat

(n : n a t) (I t n (S n)) - > (l t (S n) (S (S n)))

5.2 Form alisation o f P ro o f Term s in Coq

The central issue in formalising sequent-style calculi with proof terms is the handling of

variable bindings and references. There are two different forms of variable occurrence in proof

terms: bound and free variables. In a sequent, we would expect all variables to be bound,

i.e. there should be no references to objects outside the sequent, but when dealing simply

with proof terms (as we do for the theorem tj)6 in table 2.3), we may have variables which

reference formulae in an unspecified context rather than occurrences of binding constructors

such as A and app. Specifying a context would clutter the proof unnecessarily, provided that

the theorem being proved is true for all possible contexts.

CH APTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 36

This problem of variable binding and references is an old one in computer-aided reasoning.

The problems of renaming, a-conversion and substitution have been dealt with in various

ways. The most common way of dealing with bound variables for formal treatments of

A-calculi in recent years has been nameless dummy variables, also called de Bruijn indices

[dB72].^ Another, more recent, idea has been to use a higher order abstract syntax to define

equivalence classes of concrete terms to represent the abstract a-convertible terms required

[DFH95, GM96]. A similar but simpler approach is used in [MP93, MP97]

In the following three chapters we will look at three methods of formalising our example

theory in Coq. The first method (§6) uses de Bruijn indices for the bound variables in a term

and an encoding derived from the (object-level) context for free variables. There are some

problems with this approach so §7 shows a formalisation using de Bruijn indices for both

bound and free variables. Finally, in §8 we shall look at a method for using named variables

developed by McKinna and Pollack (with suggestions by Coquand) used in [MP93, MP97].

A deeper discussion of the various approaches is contained in §9.

^In fact, Coq itse lf uses de Bruijn indices in ternally together w ith a persistent nam ing m echanism for

disp lay and interaction.

C hapter 6

A n Initial Formalisation in Coq

This chapter presents a formalisation of the example theory using de Bruijn indices for

bound variables in terms and an encoding of the current context for free variables. It was

initially thought that this would avoid certain problems regarding context manipulation for

operations such as weakening. It turned out that the problems did not exist, and that this

encoding produced problems of its own. The next chapter will present a formalisation built

by amending this one, which uses de Bruijn indices for both bound and free variables.

6.1 D e Bruijn Indices

First we need to explain standard de Bruijn indices, before we enter into the variant used

here. This standard de Bruijn approach is used in the next chapter.

We will use the well-known simply-typed A-calculus [Bar84, Appendix A] for this exposition,

since it is slightly simpler than the calculi N J , M J and LJ. In the following description of

the simply-typed A-calculus meta-variables P and Q range over Formulae {F) , V is a set of

variables and the F are contexts as before.

t : : = Y \ X Y . t \ { t t) F o \ F D F F ::= [] | F ,V : f

T , x : P \ - t . Q T [- t i : { P D Q) T P t 2 : P
D I TT, 77 7~\ 77 D E ^ AxiomT P Xx.t : {P D Q) F h (tl 2̂) • Q T,x : P [> x : P

We will use the last stage of the proof tree in the derivation of the S combinator as an

example later:

X : {P D {Q D R)) P Xy.Xz.{{x z) {y z)) : {P D Q) D {P D R)
P Xx.Xy.Xz.{{x z) {y z)) : {P D {Q D R)) D {P D Q) D {P D R) D l

37

CH APTER 6. A N INITIAL FORMALISATION IN COQ

If we take the term for the S combinator and view it as a tree structure, we have:

Ax

38

app

app app

X z y z

Now, the names of the bound variables do not matter in this instance, since with the graph

ical references, all that matters is that a particular leaf (variable occurrence) refers to a

particular node (binding constructor). So, we might view the term S as:

app

app app

This picture, while valid and useful for human interaction, would be difficult to formalise

directly (higher order abstract syntax is a method of doing this with pointers). What we

may do, therefore, is use the natural numbers to reference binding occurrences, since all we

are interested in when making a reference to a bound variable is which A is being referenced.

There are two ways to do this: either the number refers to the number of binding operators^

between the reference and the operator it references, or the number refers to the number of

binding operators between the root of the syntax tree and the occurrence of the operator

being referenced. The first of these is the more common method of representation, but both

may be useful depending on the application. Using the leaf-to-binder counting, the partial

^In sim ply typed A-calculus there is only the one b inding operator (A). In other system s, there m ay be

m ore than one binder [NPS90].

CH APTER 6. A N INITIAL FORMALISATION IN COQ 39

deduction of the S combinator becomes:

[(f D (Q D J%))] b A.A.((2 0) (1 0)) : (P D Q) D (f D B)
[] h A.A.A.((2 0) (1 0)) : (P D (Q D R)) D [P D Q) D {P D R) D l

where indices which count beyond the local binders reference formulae in the context, which

is represented as a list. For the simply typed A-calculus, the indexing flows seamlessly in

rules such as D I. This is not the case for all sequent-style calculi. Any logic involving

splitting of the context, such as linear logics in particular, will require renaming of indexing

in such rules. This is one of the weaknesses of de Bruijn indices as a general methodology.

For both methods, insertion or deletion of an abstraction in the term (e.g. 77-expansion and

/^-reduction respectively) require changes to the indices. These changes involve lifting and

dropping. As an example take the /9-reduction below:

Az.A7/.((Az.Atu.(æ (w y))) z)

reduces to:

\ z . \ y .X w . { z (w y)).

Using leaf-to-binder de Bruijn indices this process becomes:

A.A.((A.A.(1 (0 2))) 1)

= A.A.A.(2 (0 1))

While performing these calculations, we must ensure that the referencing depths are kept

updated, which is why the z which is originally a T ’ becomes a ‘2’ and the y which is

originally a ‘2’ becomes a T% but w is represented by a ‘0’ which stays constant. For a

deeper examination of the role of lifting and dropping in using de Bruijn indices see §7.2.2

or [Hue94]. Lifting and dropping also come into play when defining the structural rules such

as weakening (also called thinning from a literal translation of the term used in [Gen34]),

where dropping is the process that must be carried out on a term when deleting an unused

formula from the context.

6.2 Form ulae, C ontexts and Variables

We begin by defining an infinite set of formulae F: which are either atomic (/ o , / i , . . .) or

implicative:

I n d u c t iv e

F :S e t :=

f : n at->F |

Impl : F->F~>F.

CH APTER 6. A N INITIAL FORMALISATION IN COQ 40

In propositional logics, such as the implicative fragments we are studying, the exact form

of the atomic formulae does not matter. For the meta-theoretic proofs we are interested in,

we will be working with universally quantified formulae in the theorems. The S-combinator,

for example, is usually represented as

(A D D C)) D ((A D D (A D C))

which is parametric va. A, B and C. In our syntax above the S-combinator would be

(Impl (Impl (Impl A (Impl B C)) (Impl A B)) (Impl A C))

Following this, the set of hypothesis lists (or contexts) for sequents can be defined as the set

H yps:

I n d u c t iv e

Hyps : S et : =

MT : Hyps I

Add_Hyp : F->Hyps->Hyps.

Since the word context is also used to refer to hypotheses in the current sequent in Coq,

object-logic contexts will be referred to as hypothesis lists. The set V of nameless variables

is defined as follows:

I n d u c t iv e

V : S e t : =

vfree : Hyps->V 1

vbnd : nat->V.

The vbnd constructor is used to denote bound variables within a derivation/deduction term

and so uses natural numbers to refer to occurrences of binding operators, in the usual de

Bruijn technique (see [dB72] for details). The v f r e e constructor is used to denote free

variables within a derivation/deduction term, i.e. variables which reference a formula in the

hypothesis list. The referencing mechanism consists of using the list before the addition of

a new formula to reference that new formula. This use of a hypothesis list to represent free

variables is more complex than use of the length of the hypothesis list or some other natural

number encoding. It helps to specify the hypothesis list in which the derivation/deduction

term has been created, and allows a distinction between free variables which were created

with respect to different hypothesis lists of the same length. For example, during a proof

involving structural rules, the hypothesis list will change in ways other than being extended

by new formulae.

Equality is proved decidable for all these sets, together with decidability of some other

relations, such as occurrence or non-occurrence of a free variable in a term (see §7.2 for

more details in a different but related formalisation).

CH APTER 6. A N INITIAL FORMALISATION IN COQ 41

Thus, the derivation/ deduction terms of the three systems are defined in the following way:

Mutual I n d u c t iv e Mutual I n d u c t iv e

N ;S et := M:Set :=

lam : N->N | s c ; V->Ms->M I
an : A->N lambda : M->M

w ith w ith

A :Set := Ms:Set :=

ap : A->N->A I m nil : Ms I

var : V->A. mcons : M->Ms->Ms.

I n d u c t iv e

L :S et :=

vr : V->L I

app : V->L->L->L I

Im : L“>L.

This formalisation of M and M s gives the following induction principle:^

(P:M->Prop)

(PO:Ms->Prop)

((v:V)(m s:M s)(PO m s)-> (P (s c v m s))) - >

((m:M)(P m)->(P (lambda ra)))->

(PO m n i l) - >

((m:M)(P m)->(ms:Ms)(PO ms)->(PO (mcons m m s))) - >

(((m: M) (Pm)) A ((ms:Ms)(PO ms))) .

This is equivalent to the induction scheme:

Væ : V.Vms:M s.Po(»îs) D P{x ; ms)
Væ : V .V m :M .P(m) D P(Aæ.m)

Po{Nil)
V m :M ,P(m) D ' ims:Ms.Po{ms) D Po(m :: ms)

(V m :M .P(m)) A (Vms:Ms.Po(ms))

6.3 D erivations and D ed uctions

All the components of a sequent have now been defined, and so the the prepositional func

tions representing derivations/ deductions may now be defined. Given the size of such defin

itions only derivations within M J are shown here. L_Deriv, N_Deduc and A_Deduc are

similarly defined.

^T his is sem i-autom atically produced. Som e sim ple cut-and-paste and an easy proof is currently required

for induction principles derived from m utual inductive definitions. A m acro for au tom ating th is should be

included in the next full release of the Coq system .

CH APTER 6. A N INITIAL FORMALISATION IN COQ 42

Mutual I n d u c t iv e

M_Deriv : Hyps -> M -> F -> Prop :=

Choose : (h : Hyps) (i : Hyps) (P :F)(ms : Ms) (R:F)

(In_Hyps i P h)->

(Ms_Deriv h P ms R)->

(M_Deriv h (s c (v f r e e i) ms) R) I
A b str a c t : (h:H yps)(P:F)(m :M)(Q :F)

"(Occurs_Free_In_M h m)->

(M_Deriv (Add_Hyp P h)

(bnd_to„free_M h m)

Q)->

(M_Deriv h (lambda m) (Impl P Q))

w ith

Ms_Deriv : Hyps -> F -> Ms -> F -> Prop :=

Meet : (h :H yp s)(P ;F)(M s_D er iv h P m nil P) I
Im p lies_ S : (h:Hyps)(m :M)(P:F)(Q :F)(m s:M s)(R:F)

(M_Deriv h m P)->

(Ms_Deriv h Q ms R)->

(Ms_Deriv h (Impl P Q) (mcons m ms) R) .

Figure 6.1: Formal Definition of Derivations in M J

Figure 6.1 shows the Coq definition for derivations in M J and figure 6.2 (on page 43) shows

the induction scheme semi-automatically produced for induction. The complexity of these

induction principles shows why machine support is desirable for such work, and why a

system such as (7oç, with the ability to derive such principles (semi-) automatically, and the

capability to prove such principles sound, is required.

The main point to be noted about M_Deriv is the newness or freshness condition:

~(Occurs_Free_In_M h m)

which occurs in the A bstract rule, ‘h’ is the free variable used to reference the formula

(P) which is added to the hypothesis list in the premise. The non-occurrence of h as a free

variable in the derivation term m is required to ensure that derivation terms do not contain

variables outside the hypothesis list of the sequent. The same side-condition is required for

similar reasons in [MP93, p.297, rule LDA] (see also §8.2.2).

CH APTER 6. A N INITIAL FORMALISATION IN COQ 43

(P: (h:Hyps)(m:M)(f:F)(H_Deriv h m f)->Prop)
(PO: (h:Hyps)(f;F)(m:Hs)(fO:F)(Hs_Deriv h f m fO)->Prop)
((h,i:Hyps)(P1:F)(ms:Ms)(R:F)

(iO:(In_Hyps i PI h))
(m:(Hs_Deriv h PI ms R))
(PO h PI ms R m)->
(P h (sc (vfree i) ms) R (Choose h i PI ms R iO m)))->

((h:Hyps)(Pl:F)(m:M)(Q:F)
(n:~(Occurs_Free_In_H h m))
(mO:(H_Deriv (Add„Hyp PI h) (bnd_to_free_M h m) Q))
(P (Add_Hyp PI h) (bnd_to_free_M h m) Q mO)->
(P h (lambda m) (Impl PI Q) (Abstract h PI m Q n mO)))->

((h:Hyps)(P1:F)(PO h PI mnil PI (Meet h Pl)))->
((h:Hyps)(m:M)(P1,Q:F)(ms:Ms)(R:F)(mO:(M_Deriv h m PI))

(P h m PI mO)->
(ml :(Ms_Deriv h Q ms R))
(PO h Q ms R ml)->
(PO h (Impl PI Q) (mcons ra ms) R

(Implies„S h m PI Q ms R mO ml)))->
((h:Hyps)(m:M)(f:F)(mO:(H_Deriv h m f))(P h m f raO))/\
((h;Hyps)(f:F)(ms:Ms)(fO:F)

(mO:(Ms_Deriv h f ms fO))(PO h f ms fO mO)).

Figure 6.2: Induction scheme for derivations in M J

6.3.1 Sum m ary

The formal derivation term

(lambda (s c (vbnd 0) (mcons (s c (v f r e e MT) m n il) m n i l)))

in the context of a hypothesis list

(Add_Hyp (f 0) (Add_Hyp (f 1) MT))

represents the informal term of M J

A æ . (æ ; ((y ; []) : : []))

in the context of a hypothesis list

[^ :/o ,y :/i]

CH APTER 6. A N INITIAL FORMALISATION IN COQ 44

6.4 C onclusions

This hybrid approach of combining named free variables and nameless bound variables ap

peared at first to be a way of avoiding problems with some of the structural rules. On deeper

examination, it became apparent that there were no real problems. This hybrid approach

requires functions for both lifting/dropping and for the substitution of free variables for

bound variables as for the McKinna and Pollack approach (see figure 8.1 on page 66 in §8).

Since we must prove theorems about the interaction between each new function and each of

these support functions, we are creating more work than necessary by using this approach.

We describe a full formalisation, using only de Bruijn indices, of the example theory from §2

in the next chapter §7 and then some initial work using named variables in §8 . This hybrid

approach may have some uses, however, which we will examine in §10 .

C hapter 7

A Form alisation in Coq U sing

de Bruijn Indices

This chapter presents a formalisation using de Bruijn indices for both the bound and free

variables. Similar formalisations of typed A-calculi appear in [Bar96, NN96].

7.1 In itial D efin itions

This section deals with the definitions of the parts of a sequent: the formulae, the context

(represented as a list of formulae) and the derivation/deduction terms, followed by the

definitions of the propositional functions representing M J derivations.

The set of formulae, F, is defined as before:

I n d u c t iv e

F :S e t :=

form: n a t-> F I

Impl : F->F->F.

The set of contexts H yp s is defined using syntactic constructions to be an abbreviation for

a list of F(ormulae), using the polymorphic list library provided with Coq. The length of a

list, function len g th of type (A :Set) (l i s t A)->nat, and some of its properties are made

available with this library without the need to re-prove them for a new implementation. The

syntax for H yp s is equivalent to the inductive definition:

45

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 46

I n d u c t iv e

H yp s:Set :=

MT : Hyps I

Add_Hyp : F->Hyps->Hyps.

LenJiyps is defined as (l e n g t h Hyps).

The set V of nameless variables is defined as an abbreviation for the natural numbers. Note

that the lack of differentiation between free and bound variables makes this much simpler

than before.

Thus, the derivation terms of the three systems are defined in the following way:

Mutual I n d u c t iv e Mutual In d u c t iv e

N :S et := M:Set :=

lam : N->N | s c : V->Ms->M I

an : A~>N lambda : M->M

w ith w ith

A :Set := Ms:Set :=

ap : A“>N“>A | mnil : Ms I

var ; V->A. mcons : M->Ms->Ms.

I n d u c t iv e

L :S et :=

vr : V->L 1

app : V->L->L~>L I

Im : L->L.

Note that these definitions (and therefore also any induction schemes derived) are identical

to those in the previous chapter. The structure of these terms does not change despite

the difference in the definition of the set V . The differences will manifest themselves in the

definitions of functions involving variables, for instance substitution, and in the definitions

of the propositional functions representing derivations in the calculus.

7.2 D ecidab ility o f R elations

In order to perform meta-theoretic reasoning about derivations encoded using de Bruijn

indices, we require the decidability of certain propositional functions over the natural num

bers. In order to prove these, we approach the problem in an indirect way. We will look at

the “less than” function over natural numbers as an example. First, we define “less than”

(I t) as in §5.1.4:

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 47

In d u ctive

I t : nat->nat->Prop :=

lt_D : (i : n a t) (l t 0 (S i)) I

l t_ S : (i , j : n a t) (l t 1 j) - > (l t (S i) (S j)) .

then we define a boolean function I tb which we will prove is equivalent:

R ecu rsive D e f in it io n

I tb : n a t-> n at-> b ool :=

0 0 => f a l s e I

0 (S j) => tru e I

(S i) 0 => f a l s e I

(S i) (S j) => (I tb i j) .

Then we prove the four theorems (i.e. each direction of the bi-implications):

\ / i , j : n a t .(lt i j) (i tb i j) = tru e

: nat. ~ (i t i j) ^ (itb i j) = f a ls e .

The decidability of I t ,

' i i , j : n a t.(I t i j)V ~ (i t i j) ,

follows immediately from these theorems.

As mentioned above, this is an indirect approach to proving a theorem which is amenable to

a more direct proof by induction. There is method in this apparent madness, though. Each

of the four theorems above is useful individually. So, using them to prove the decidability

of I t is simply a bonus.

To show why we require both the propositional and boolean functions for I t , we must first

look at a polymorphic if function.

7.2.1 Set i f b

We wish to be able to define functions over the sets of derivation/ deduction terms and

over contexts. These functions should be easy to reason with and about. To this end, we

define a general notion of If, not contained in the basic library of Coq. In the standard

libraries, IF is defined with type Prop->Prop->Prop->Prop. There is also i f b of type

b o o l-> b oo l-> b oo l-> b oo l where bool is the standard set { tr u e ,fa ls e } . What we require

is a complete function using a boolean value as a test and with general inputs and output.

Thus, we define Set ifb :

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 48

H y p o th es is B : S e t .

R e c u r s iv e D e f i n i t i o n

S e t i f b : bool->B->B->B :=

t r u e X y => X

f a l s e X y => y .

W h en we discharge the H y p o th e s is B, S e t i f b is defined as th e polym orph ic if over general

sets, w ith typ e (B :S e t)b o o l-> B -> B -> B .

7.2.2 Lifting

Lifting is a necessary operation for using de Bruijn indices correctly. An implementation

for standard untyped A-calculus terms can be seen in [Hue94]. Here we will use the stand

ard substitution function in N and A to illustrate Lift_N and Lift_A. Informally, we can

mutually define substitution of an A for a variable in an N or an A:^

[ao/x]Ai/.n = Xy.[ao/x]n ® # 2/

[aQ/x\an{a) = an{[aQ/x]a)

[ao/x]ap{a,n) = ap{[ao/x]a,{a/x]n)

[ao/x]var{y) = var{y) x ̂ y

[aQ/x]var{x) = üq

Let us take as an example the following term including a substitution in both named and

nameless variable formats;

\x.\y.{var{x)/y]Xz.an{Xu.an{ap{ap{var{u), an(uar(j[/))), on(i'ar(z)))))

A.A.[üor(l)/0]A.an(A.an(ap(ap(iiar(0), an(uar(2))), an(üar(l)))))

Unfolding the application of substitution once, we get:

Xx.Xy.Xz.{var{x)/y]an{Xu.an{ap{ap{var{u), an{var{y))), an{var{z)))))

A.A.A.[uar(2)/l]aR(A.an(ap(ap(t;ar(0), an{var{2))), an{var{l)))))

As can be seen, no changes of name were required to move the substitution ‘through’ the

lambda abstraction,^ but for the de Bruijn indices, each variable in [var{x)/y] has been

increased by one to take account of the extra levels of abstraction between the variable

occurrence and its ‘parent’ abstraction. Continuing the process through to the end we have

 ̂W e are assum ing th a t the variable nam es are chosen so as to avoid problem s w ith capturing free variables

in ttQ.
^T his is due to the careful selection o f d istin ct nam es for all the variables.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 49

the following sequence of terms:

\x.Xy.Xz.an{[var{x)/y]Xu.an{ap{ap{var{u), an{var{y))), on(uar(z)))))

A.A.A.an([i)ar{2)/l]A.an(ap(ap(t;ar(0), an{var{2))), an(uar(l)))))

Xx.Xy.Xz.an{Xu.[var{x)/y]an{ap{ap{var{u), an{var{y))), an(uar(.?)))))

A.A.A.an(A.[ua?’(3)/2]an(ap(ap(var(0), an{var{2))), an(uar(l)))))

Az.Ap.Az.on(Au.on(up(up(uor(u), an(uar(æ))), an(war(^)))))

A.A.A.an(A.an(ap(ap(uc!r(0), on(w r(3))), an(tia7’(l)))))

The important point to notice here is that the de Bruijn reference variables in the substi

tution term [var[x)/y] increase by one every time we unfold the application of substitution

through an abstraction operator. In the above example, the only instances of variables

within the term being substituted in (uor(O)) are free (within the scope of the term itself).

If this term contains variables bound within the term, for instance ap(uar(æ), Xw.an{var{w)))

(= ap(war(0), A.an(üor(0)))), then we require more care. Each time we unfold past an ab

straction operator we need to increment the free variables within the term but leave the

bound variables unchanged. This operation is called lifting and is defined thus:

X . n —d e j A. f (*+1) ^

t i an(a) =de/ ««(ft a)

tîOp(a,n) = d e j ap(tîa,t»«)

t i var{x) =def if x < i var{x) else var{x -f 1)

7.2.3 The U sefu lness of B oolean Functions

We shall now show the necessity for S et i f b, and for the boolean versions of functions such as

I tb and nateqb (boolean equality for nat). While it is possible to define functions perform

ing branching on propositional functions (such as the definition of l i f t_ r e c in [Hue94]) the

use of boolean functions (proved equivalent to the propositional versions) provides greater

clarity, in particular when we wish to consider the various cases involved in comparing two

generic ally appearing numbers. Below, we show the formal definition of lift for variables

and for derivation terms of L J :

R e c u r s iv e D e f i n i t i o n

l i f t _ V : nat->V->V :=

i j => (S e t i f b V (I t b j i) j (S j)) .

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 50

R e c u r s iv e D e f i n i t i o n

l i f t _ L : nat->L->L :=

i (v r x) => (v r (l i f t _ V i x)) |

i (app X 11 12) =>

(app (l i f t _ V i x) (l i f t _ L i 11) (l i f t _ L (S i) 1 2)) I

i (Im 1) => (Im (l i f t _ L (S i) 1)) .

The separation of lif t_ V from the individual lifting operations for L, A , N , M and M s

allows us to prove general theorems about the behaviour of lift with regards to other func

tions operating on variables (such as drop and exchange below) and use these to show similar

theorems about the lifting operations for derivation/deduction terms generally, without re

peating the parts of those proofs dealing with variable occurrences.

We also require the inverse function of lift, called drop, which lowers the value of the de

Bruijn indices in a term. This is needed when an abstraction is deleted from a term. (In

particular, we will see that lifting and dropping are precisely the functions needed for certain

sequent structural operations such as weakening.) Dropping (4-i) is defined in a very similar

way to lifting, and the following theorems about lifting and dropping hold for all the sets of

derivation/deduction terms:

Vz : nat, t : T. {it* I =

Vz : n at, t : T.z ^ t D tift t = t,

where T is one of {M , M s, N , A , L, V } . These theorems have only been proved in the

formalisation where necessary: for V , M and Ms: see pages 154 and 155 in §B.

7.2 .4 The U sefulness of Propositional Functions

So, we have explained why we need the boolean version of equality and other I t , but why

do we also need the propositional versions? The usefulness of the propositional version of

these functions lies in the Inversion tactic described in §5.1.4 . Were we to restrict ourselves

to the boolean functions, we would have to prove inversion theorems for each function.

Defining propositional and boolean functions and showing their equivalence allows us to

use the standard inversion tactics for hypotheses and to use those hypotheses to rewrite

subterms of the goal involving the boolean version in S e t ifb constructs. Finally, in the case

of nat equality, we wish to be able to use equality hypotheses as rewriting rules thus:

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 51

X, y :nat

H; x=y

(P X y)
where P is some propositional term, can be simplified by using H as a rewriting rule to

x : n a t

(P X x)

If we had the hypothesis H: (nateqb x y) we could not do this without proving the equi

valence of nateqb and =nat-

7.3 Translation Functions

Having defined the derivation/deduction terms and variable adjustment functions, we can

now proceed to the functions translating derivation/ deduction terms between the three

systems, as shown in table 2.2. The definitions of the functions translating terms between

N J and M J are fairly straightforward, since they are simple primitive recursive definitions,

which do not change the level of abstraction of a variable occurrence with respect to its

binding.

Of more interest are the translations involving LJ. In particular, the definition of p requires

considerable changes in order to be accepted by Coq^s function definition mechanism. If we

transform the definition seen in table 2.2 to use de Bruijn indices, we get the following:

p(æ ; []) =de/ vr{x)

p { x \m \ \m s) =def app{x,p{m), p{0 ;-\o ms))

p{X.m) -de f X.p{m)

The second recursive call in the right hand side of the second definitional equation is not

primitive recursive: (0; fo ms) is not a sub-expression of (æ ; m :: ms). We may avoid part of

the problem by using a mutual definition such as:

P(æ,[]) =de/
p{x ;m :: ms) =dej app(æ,p(m),p'(0 , to ms))

p(Xx.77i) —def Xx.p(m)

p'(æ,[]) =def vr(x)

p '(x ,m :: ms) =def app(x, p(m), p'lOf'I'o ms))

which is primitive recursive in all but one respect: that of the lifting operation required on

ms in the fourth equation, necessary to retain variable reference consistency. We therefore

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 52

add an extra argument to the definition of p‘, which tracks the number of lifting operations

we have yet to do. We may also remove the first argument (a V), since only 0 is ever

passed as that argument. The delayed lifts are performed where necessary by which is

equivalent to fm repeated n times:

p{^ ; []) = d e f vr{x)

p{x ; m :: ms) - d e f app{x,p{m),p'{ms, 1))

p{Xx.m) = d e f Xx.p{m)

— d e f vr{0)

p'{m\\ ms, n) —d e f app(0 ,to p{m),p'{ms,n + 1))

We now reach the following formal Coq definitions:^

F ix p o in t

rhobar [m:M] : L :=

Cases m o f

(s c X m n il) => (v r x) I

(s c (mcons m' ms)) => (app x (rhobar m') (r h o b a r ’ ms (S O))) |

(lambda m’) => (Im (rhobar m’))

end

w ith

rh o b a r ' [ms : Ms] : nat->L : =

[n :n a t]C a se s ms o f

m nil => (vr 0) 1

(mcons m m s’) =>

(app 0 (l i f t s _ L n 0 (rhobar m)) (r h o b a r ’ m s’ (S n)))

end.

where l i f t s J L is the formal version of This is the form of the definition in the formal

isation. It is easier Since these definitions are primitive recursive, they are accepted by Coq

without problem. We must now show that this formal rhobar is equivalent to the original

version above. This requires us to prove the three lemmas:

RhoBarl : (x :V)(r h o b a r (s c x m n i l)) = (v r x)

RhoBar2 :

(ms:Ms)(x:V)(m:M)

(rhobar (s c x (mcons m m s)))=

(app X (rhobar m) (rhobar (s c 0 (l i f t _ M s 0 m s))))

RhoBarS : (m:M)(rhobar (lambda m))=(lm (rhobar m))

^T he definition is given using the C ases operator for ease o f com parison w ith the inform al definition. T he

actual form alisation was done using the Case operator and can be seen on page 186 in §B.

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 53

which are the formal Cog versions of the first set of definitional equations using de Bruijn

indices shown above. As we shall see in §7.6, proof of RhoBar2 requires stronger induction

methods than the standard ones.

Many lemmas have been proved regarding the interactions between the translation functions

and the appropriate versions of lift and drop: mostly commutation lemmas. In some cases

many variations of the basic lemma are required to take into account comparisons between

variables. All the lemmas proved may be found in §B near pages 154 and 155.

7,4 D erivations and D ed uctions

All the components of sequents have now been defined, as have a number of strategic reason

ing aids. Propositional functions representing derivations/deductions may now be defined.

Again, we will only show the definition for derivations within M J.

Mutual I n d u c t iv e

M_Deriv : Hyps ~> M -> F -> Prop :=

Choose : (h :H y p s)(i :V)(P ;F) (m s:M s)(R ;F)

(In_Hyps i P h) ->

(Ms_Deriv h P ms R)->

(M_Deriv h (s c 1 ms) R) |

A b str a c t :

(h:H yps)(P:F)(m :M)(Q :F)

(M_Deriv (Add_Hyp P h) m Q)->

(M_Deriv h (lambda m) (Impl P Q))

w ith

Ms_Deriv : Hyps -> F -> Ms ~> F -> Prop ;=

Meet : (h ;H yp s)(P :F)

(Ms_Deriv h P m nil P) 1

Im p lies_S :

(h:H yps)(m :M)(P:F)(Q :F)(m s:M s)(R:F)

(M_Deriv h m P)->

(Ms_Deriv h Q ms R)->

(Ms_Deriv h (Impl P Q) (mcons m ms) R) .

The particular point that should be noted is the way in which the de Bruijn indexing works

in the A bstract rule:

(h:H yps)(P:F)(m :M)(Q :F)

(M_Deriv (Add_Hyp P h) m Q)->

(M„Deriv h (lambda m) (Impl P Q))

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 54

Variables in m which reference the initial lambda binder in the conclusion of the rule reference

the free variable P in the premise of the rule. This same system also works for the formal

definitions of N J and LJ. We can take no credit for this, since it is a general property of the

particular systems we are working with. Other sequent-style calculi do not necessarily have

this property. For instance any linear calculus with context-splitting rules would not share

this useful property. See §10 for some discussion on how we might cope with such problems.

The fact that all three systems share this property makes our work much easier.

7.4.1 Structural R ules

It may be noted that our presentation of the systems does not include any structural rules.

Some structural rules are necessary in the proofs of theorems in table 2.3, specifically those

involving LJ. Again, any proof involving p requires a strong induction principle.

The three structural rules we require, at different points, are Weakening, Strengthening and

Exchange, as shown below for a generic sequent-style calculus. Exchange is not necessary for

the proofs of theorems in table 2.3, but is essential for some of the proofs about permutation

of derivations of LJ, shown in table 2.6.

X not free in t W eakening
T, x : P \ - t : R

F@(cc : P : : y : Q : \ / N) \ - t \ R
m { y : Q - . : x : P : : A) [- t : R

This is, of course, a representation using named variables. Considering these rules for use

with a formal implementation using de Bruijn indices, we see that we need to alter the

derivation/deduction term to take account of the change in the context. Careful consid

eration of Weakening and Strengthening reveals that lifting and dropping exhibit precisely

the functionality that is needed, since all that is happening is that a non-occurring variable

is being added to or deleted from the context. Therefore, all we need to do is increase or

decrease all the variables in the term which refer to a point beyond the change. The required

function for exchange is simply to replace all references to a particular abstraction level with

its successor and vice-versa.

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 55

7.5 P erm u tation

Table 2.4 on page 14 shows the permutations in the usual informal syntax. Formalising these

rules was more complex than might be thought. The exact variable namings and renamings

that form an integral part of the reductions are subtle, and it is only when looked at in the

typed case that one can fully decipher the meanings of the reductions and formalise them to

capture the correct translations. Figure 7.1 shows the formalised versions of the interesting

permutations (i.e. the actual permutations, rather than the sub-term permutation rules).

The formalisation of l_perml_app_app2 highlights the complexity of the process. Figure

7.2 shows the informal version of the typed reduction rule. Only the leaves and root of the

relevant derivation tree fragments are shown since they contain all the information necessary

for the analysis.

Each of the leaves of a tree corresponds to a particular occurrence of a named term (a

variable or a term of L: x, y, y ' , / i , Zg, I3) in the root of that tree. So, for each of the three

different occurrences of the terms li and x in the root of the second tree there is a leaf with

11 or æ as the principal term. A comparison of the contexts of these leaves with the original

leaf in the first tree shows the differences in the de Bruijn indices for the terms. Thus the

first occurrences of x and li are unchanged in the formalisation, the second occurrences are

both lifted once, and the third occurrences are lifted twice.

The most complex variations in the contexts occur for I3 . Originally the bindings for vari

ables are F, %/, z.Zg. In the permuted derivation the bindings are V ,y ', z ,y . l3 . Since y' does

not appear in I3 , but must be accounted for in the referencing to other variables in F, I3

must be lifted by 2 ((S (S 0))) . Also, the occurrences of y and z are switched, so the de

Bruijn references must be Exchanged — exchange is defined only for switching references

to a binding depth and its successor. This may be done without loss of generality, since

any general exchange can be expressed in terms of multiple applications of this pairwise

exchange. Similar analyses give us the lifting, dropping and exchanging requirements for

each permutation as shown in figure 7.1. The admissibility of various structural rules has

been proved in the formalisation for all three systems. While Strengthening, Weakening and

Exchange are all obviously admissible for all three systems, this has only been proved where

it has been required for other results.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 56

Inductive

L_Perml : L->L->Prop :=

l_perml_app_wkn :
(x:V)(11,12:L)
~(Occurs_In_L 0 12)->
(L_Perml (app x 11 12) (drop_L 0 12)) |

l_perml_app_appl :
(x,z:V)(11.12,13;L)
((Occurs_In_L 0 12)\/(0ccurs_In_L (S 0) 13))->
(Norm’.L 13)->
(L_Perml (app x 11 (app (S z) 12 13))

(app z
(app X 11 12)
(app (lift_V 0 x)

(lift_L 0 11)
(L_Exchange 0 13)))) I

l_perml_app_app2 :
(x:V)(11,12,13:L)
((Occurs_In_L 0 12)\/(0ccurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Perml (app x 11 (app 0 12 13))

(app X
11

(app 0
(app (lift_V 0 x)

(lift.L 0 11)
(lift.L (S 0) 12))

(app (lifts_V (S (SO)) 0 x)
(lifts.L (S (SO)) 0 11)
(L„Exchange 0

(lift_L (S (SO)) 13)))))) I

l_perml_app_lra : (x:V)(11,12:L)
(L_Perml (app x 11 (Im 12))

d m (app (lift_V 0 x)
(lift.L 0 11)
(L.Exchange 0 12)))).

Figure 7.1: Formalised Permutations (see page 218 in §B)

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 57

(z : P2) :: {y : (P i D P2)) :: T Z3 ; P
{ y : { P i D P 2)) ' . : T - > l 2 ' P i

r /i : Po
{x : (Po D (Pi D P2))) € r

r -4- app{ x , l i , y . app{ y , l 2yZ. l 3)) : R

y
(2 / : P i 3 P2) : : {z : P2) : : (2 / : (P i D P2)) " T R

{z : P2) ;; (y' ; (P i D P2)) T -> Zi ; Po
(æ : (Po D (P i 3 P 2))) e (2: : Pg) :: (y' : (P i 3 P g)) :: T

(2/ : (F i 3 P g)) :: r - 4 Z2 : P i
(y ' : (P i 3 P 2)) : : r ^ / i : P o

(a; : (Po 3 (P i 3 P g))) € (%/ : (P i 3 Pg)) ::T
(l / : (P i 3 f 2)) E (y ' : (P i 3 P g)) : : r

r -4 Zi : Po
{x : (Po 3 (P i 3 P g))) e r

r - 4 app{xJi,7j'.app{y',app{x,li ,y .l2),z.app{x,li ,y.l3))) : R

Side-conditions; y'new and {y £ h ov y £ I3)

Figure 7.2: Proof Ti'ee Fragment for Permutation App_App2

One final point to note about the formal permutations is highlighted in the side-conditions

and the left hand side of l_perml_app_appl:

l_perm l_app_appl :

(x ,z :V)(11,12,13:L)

((Occurs_Iii_L 0 1 2) \ / (0 c c u r s _ I n _ L (S 0) 1 3)) - >

(Norm’_L 1 3) ->

(L_Perml (app x 11 (app (S z) 12 1 3)) . . .)

which formalises:'^

app{x ,li ,y .app{zj2 ,w .l3)) y ^ z

(a p p ..a p p l) y (2/ E Z2 V y G Z3)

The interesting point is that the inequality side-condition (y z) does not appear explicitly

in the formalisation. The use of (S z) (instead of just z) forces this variable to differ from

the bound variable 0 which is the translation of the binder “y.” in the informal version.

We could use z, and include an explicit side-condition, but the version above allows slightly

cleaner and shorter proofs, and is an obvious use of de Bruijn indexing.

^T he extra side-condition of I3 being fully norm al w ith respect to y ((Korm'JL 1 3)) is an add ition due to

Schwichtenberg: see §7.7 for explanation .

!

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 58 |

7.6 P ro o f Techniques

In this section we discuss some of the facets of using the formalisation described above to

actually perform proofs in Coq. Some of this focuses on general issues, some on specific

problems with de Bruijn indices, and some on aspects of the Coq environment.

7.6.1 Induction Princip les

Induction in Coq, as with most proof assistants based on type theory, is derived from the

standard elimination principle for an inductive definition. So, for instance, from the defini

tion of n at given in §5.1.3, Coq derives the induction principle:

(P :n at-> P rop)

(P G)->

((n : n a t) (P n) -> (P (S n))) - >

(n : n a t) (P n) .

7 .6 .1 .1 In d u c t io n s o n S im p le I n d u c t iv e S e ts

Suppose we wish to prove the conjecture about natural numbers from §5.1.5:

(i : n a t) (l t i (S i))

This requires induction over the natural numbers. If we wish to use the standard induc

tion principle for natural numbers given above, there are various ways to invoke this, all

being operationally equivalent, but each being more or less appropriate under different local

proof conditions. The Coq Induction tactic will attempt to apply the induction scheme

given above by using second-order pattern-matching to find a binding for P (here it binds

to [i :n a t] (I t i (S i)). Sometimes the algorithm cannot find the appropriate set of

bindings, at which point we may supply them using the command Apply . . . w ith

Alternatively, we may define a predicate with the appropriate type (i.e. nat->Prop) which

has the appropriate functional definition, at which point the algorithm should be able to cor

rectly identify the bindings. When performing proofs involving mutually inductively defined

sets (e.g. M and M s) we have used this method of defining a predicate.

If we wish to use a non-standard induction principle (such as strong mathematical induction

as shown in §7.6.2), we may not use the Induction tactic, which automatically uses the

standard principle, but we may apply the principle to the conjecture (either directly or via

a defined predicate to supply the bindings).

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 59

7 .6 .1 .2 In d u c t io n fo r M o r e C o m p le x S e ts

When we have families of propositions such as LJDeriv;

I n d u c t iv e

L_Deriv : Hyps -> L -> F -> Prop :=

L_Axiom :

(h : H y p s) (i : V) (P :F)

(In_Hyps i P h) ->

(L_Deriv h (v r i) P) |

Im plies„L :

(h : H y p s) (i : V) (P : F) (Q : F) (l l : L) (1 2 : L) (R : F)

(In_Hyps i (Impl P Q) h) ->

(L_Deriv h 11 P)->

(L_Deriv (Add_Hyp Q h) 12 R)->

(L_Deriv h (app i 11 12) R) |

Im plies_R :

(h :H y p s) (P :F) (l :L) (Q : F)

(L_Deriv (Add_Hyp P h) 1 Q)->

(L_Deriv h (Ira 1) (Impl P Q)) .

there are two ways in which we may approach induction proofs involving such families.

7 .6 .1 .3 D ir e c t In d u c t io n o v er F a m ilie s

Firstly, we may use induction directly on the family, for which we must supply bindings,

since the algorithm cannot solve the second-order matching problem in these cases. So, we

might define a predicate with type:

(h : H y p s) (l : L) (f : F) (L _ D e r iv h 1 f) -> P r o p

and apply our induction principle derived from the above family. This method is used in

the formalisation when proving theorem L_Admis_Weaken (the admissibility of weakening in

LJ). We define the function l_adrais_weaken (see page 194 in §B):

D e f i n i t i o n l_adrais_weaken :

(h ' .H y p s)(1 :L)(P :F)(L _ D er iv h 1 P)->Prop : =

[h :H yp s][1 :L][P :F 3 [D:(L_Deriv h 1 P)]

(j m a t) (Q:F)

(I t j (S (Len_Hyps h))) - >

(L_Deriv (Weaken_Hyps j Q h) (l i f t _ L j 1) P) .

and then proceed to prove:

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 60

Lemma L_admis_weaken :

(h : H y p s) (l : L) (P : F) (D ; (L _ D e r iv h 1 P))

(l_adm is_weaken h 1 P D) .

by applying the induction principle derived from the definition of L_Deriv. The actual

theorem L_Admis_Weaken follows simply from L_admis_weaken by unfolding the definition

of l_admis„weaken.

7 .6 .1 .4 Induction, w ith In version

Some families are defined so that one of the arguments (here the argument of type L) is

composed in a tight correspondence with the formation of the family. In this case, we might

also perform induction on this term and then use inversion (see §5.1.4) on the hypotheses

involving the family to gain the correct induction hypotheses. When defining judgements

for a deductive system with a term calculus, this should always be possible, since the de

rivation / deduction terms are designed to represent the derivations/deductions, and should

therefore have an appropriate correspondence.

In general, we would use induction directly on the family. We shall see in the next sec

tion that when using strong induction methods, we will wish to use this second method of

‘inducting on the derivation/deduction term then inverting the judgement hypotheses’.

7.6.2 Strong Induction Princip les

As mentioned in §7.3, proofs of theorems involving p require a different induction principle

from the automatically generated ‘standard’ principle inferred from the definition of M and

M s. This standard principle is, basically, an immediate sub-term induction. That is, we

assume that all the immediate sub-terms of some term have a property and then prove that

the term itself has this property. For mutually defined sets, we have a slight variation on this

theme in that we have two properties (usually mutually defined via a recursion similar to

the original mutual set recursive definition). Performing the obvious eliminations we obtain

induction hypotheses assuming the property appropriate to the type of each subterm. A

stronger induction principle may be needed, such as with natural numbers needing strong

mathematical induction:

VP: (N -4- Prop).{yj: N.(Vz: N.z < j D P{i)) 3 P{ j)) 3 Vn: N .P (n).

Coq includes a library to ease production and proof of this principle (the well-founded

library). Unfortunately, at present this does not cover mutually defined sets. It is therefore

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 61

necessary to prove strong induction principles for mutually defined sets directly.®

The definition of p in [DP97a] requires some justification of its admissibility as a total

function, since the recursion is non-standard. This justification takes the form of a measure

function on M and M s which equates to the height of a derivation; i.e. the length of the

longest branch of the derivation tree.

height{x ; ms) =dej 1 + height{ms)

height{Xx.m) —def I h e i g h t { m)

height{[]) =dej 0

height{m :: ms) =dej 1 F max[height{m),height{ms))

This definition is easily translated into the formal Coq syntax. We prove various theorems

about the height of terms, such as the fact that lifting or dropping of a derivation/deduction

term do not alter its height. We also prove the following induction principle, allowing us to

perform induction on the height of a derivation in M J :

(P:M->Prop)

(PO:Ms->Prop)

((m:M)

((m l : M) (l t (Height_M ml) (Height_M m))-> (P m l))

/ \ ((m s l : M s) (I t (Height_Ms m sl) (Height_M m))->(PO m s l)) - >

(P m))->

((ms:Ms)

((m s l : M s) (I t (Height_Ms m sl) (Height_Ms m s)) -> (P 0 m s l))

/ \ ((m l : M) (l t (Height_M ml) (Height_Ms m s)) -> (P m l)) ->

(PO m s)) ->

((m:M)(P m))/\((m s:M s)(PO ms))

where H eight _M and H eight _Ms are the formal functions calculating the height of a derivation

term (and therefore a derivation) in M J. This induction method is used by applying it first,

and then performing non-inductive elimination (i.e. case-analysis) on the m and ms.

So, we have an induction principle which we may use to prove theorems involving p about

the derivation terms. If we wish to apply this strong induction principle to theorems about

derivations involving p, then we need to use the ‘induction on derivation/ deduction term

then inversion of the judgement hypotheses’ method described in §7.6.1.2 above.

 ̂An extension should appear in the next full release o f the Coq system .

CH APTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 62

7,7 Sum m ary and C onclusions

In this chapter we have reviewed a formalisation of the theory from §2 in Coq using de

Bruijn’s nameless dummy variables. The formalisation completes the proof of weak nor

malisation for permutation reduction in the implicational fragment of propositional logic.

Proofs of the same conjectures for full propositional logic are unlikely to require more com

plex methods, although such proofs would be long and tedious. Some automation of the

procedures would therefore be useful. The Coq tactic Auto, when given appropriate H ints as

to which lemmas to apply, produces some automation, particularly for simple linear arith

metic problems arising from de Bruijn index manipulation. However, there is a definite

boundary, beyond which the Auto tactic is not designed to work, which is in the search for

appropriate bindings in lemmas with variables which appear in the premises but which do

not appear in the conclusion. Auto will not find such bindings, even if exact matches to the

premises are found in the current context. Other than writing tactics designed to automate

the few linear arithmetic problems not solved by Auto (such as those requiring complex

transitive arguments), automation of the proof procedures needed for the work presented

here would appear very difficult. The method of interactive proof exhibits a strong similarity

to the automated methods of rippling [BS'*'93] and relational rippling [BL95]. §10 examines

this relationship in some more detail.

Initial work on the permutability theorems NormJmpermX and Norm_Red was performed

using a formalisation of the original version of the permutations shown in table 2.6. Fol

lowing the proof of strong normalisation for the system of reductions by Schwichtenberg in

[Sch], weak normalisation was proved using the conditional variants for which strong norm

alisation holds. Very little work was required to re-do these proofs with the extra conditions,

indicating the robustness of Coq’s proof scripting mechanisms.

While the approach was successful, there are obvious problems remaining with the de Bruijn

indices approach. The lifting and dropping of variable referencing, and the lack of names in

itself, divorces the formalisation of the theory from the usual informal approach. Given that

one of the aims of such formalisation is to increase our confidence in those informal results,

the gap between the formal and informal syntaxes of the object systems is unfortunate.

In the next chapter we examine a methodology proposed by McKinna and Pollack (with

some suggestions by Coquand), laid out in some detail in [MP97], and its application to the

example problem in Coq.

C hapter 8

A Form alisation in Coq U sing

N am ed Variables

8.1 Background o f th e C oquand-M cK inna-Pollack A p

proach

McKinna and Pollack have been involved in formalising a substantial theory regarding Pure

Type Systems {PTS) for a number of years. They have published papers showing the results

[MP93, vBJMR94, Pol94], and recently submitted {MP97], which contains a more abstract

view of their approach. Their work represents a very large development of a single abstract

system (one which includes the Calculus of Constructions [CH85], a fragment of CIC, as

a specific example). Their work is done in LEGO [LP92, Pol94], a proof assistant which

can be instantiated to use a number of type theories, including The Extended Calculus of

Constructions [Luo94], which is very similar to C lC and it is this instantiation that McKinna

and Pollack use.

The Coquand-McKinna-Pollack {CMP) method represents a rejection of de Bruijn indices

as counter-intuitive. When we are performing informal proofs about typed A-calculi, we do

not think of the A terms as de Bruijn terms, we think of them as terms with named variables

which have o-conversion built in. We recognise the equivalence of, for example, Xx.x and

Xy.y with little effort. Definitions are all made involving named variables, and lifting and

dropping are nowhere in our minds. Since the only approach allowing named variables

known when their work started (see §9.6 on higher order abstract syntax) did not allow

proofs by induction, McKinna and Pollack, with some suggestions by Coquand, developed

63

CH APTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 64

their method for using named variables in a way independent of the particular calculus.

At the core of their approach is the distinction between variables and parameters: bound

and free variables. The idea of distinguishing between these two sets is contained in [Gen34,

Pra65] amongst others. Using this distinction, the CMP approach is described by McKinna

[McK96] as “first order abstract syntax for terms with (restricted) higher order abstract

syntax for judgements” . The novel part of their approach involves the use of two different,

but provably equivalent, formal judgements for each informal judgement in which we are

interested. The equivalence of the two judgements allows us to derive stronger induction

principles for the formal judgement we wish to use in proofs.

8.2 N J Form alised w ith N am ed A bstract Syntax

8.2.1 First Order A bstract Syntax for Terms

Consider the informal definition of NJ:

N AV.N | an{A)

A ap(A ,N) | variy)

N J

r , æ : P t>t> n : Q
F » Xx.n : {P D Q) ^

F [> o : P
F M> an{a) : P

V > a: {P D Q) F l » a : P

AN-Axiom

D EF > ap{a, n) : Q

A-AxiomF, æ : P > var{x) : P

and the role of the free and bound variables. As an argument to var we must be able to

distinguish between variables which reference a A binder (bound variables) and those which

reference a formula in the local context (free variables). The properties we wish our variables

to have are:

• Decidable equality.

• Availability of new variables when compared to a finite set of existing variables.

CH APTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 65

For the purpose of formalising N J , M J and LJ, we require only a single set of names, Vars

with the following assumed properties:

Var : S et

New_Var : (l i s t Var)->Var

New_New_Var : (1 : (l i s t V a r)) “ (In Var (New_Var 1) 1) .

i.e. that Var is a CIO set, and that there is an operator (New_Var) which, when given a list

of Vars will return a new Var which is not in the given list (New_New_Var). We assume that

there is a boolean equality function for Var, which is equivalent to propositional equality, as

shown for the natural numbers in §7.2. These assumptions allow us to show decidability of

propositional equality for Var. We also include the definition of S e t i fb as shown in §7.2.1.

We then define a set V which distinguishes between bound and free variables thus:

I n d u c t iv e V : S et :=

BV : Var->V I

FV : Var->V.

These two sets, Var and V, are used in the definition of formal deduction terms for NJ:

Mutual In d u c t iv e

N :S et :=

lam : Var->M->N I
an : A->N

w ith

A :Set :=

ap : A->N->A 1

var : V->A.

This definition does not account for a-convertible terms in the same way that de Bruijn

indices do. For example we wish to identify the two terms

(lam X (an (v a r (BV x))))

and

(lam y (an (var (BV y))))

(i.e. Xx.x and Xy.y) as equal. We must define an equality predicate which captures this

notion. We shall show the formal definition of such a predicate in the next section 8.2.2, but

first we require a support function which substitutes a free variable (constructed with FV)

for a bound variable (constructed with BV) in a term. Figure 8.1 shows the formal definition

of such functions for sets V , N and A . As is often the case with F ixp o in t definitions, we

define a secondary function using F ixp oin t and then a non-recursive primary version with

the arguments in an order appropriate for human reaeiing. (BTF stands for Bound To Free.)

CH APTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 66

R e c u r s iv e D e f i n i t i o n

VBTF : Var->Var->V->V :=

X y (BV z) => (S e t i f b V (Vareqb x z) (FV y) (BV z))

X y (FV z) => (FV z) .

F ix p o in t

NBTFl Cn:N]: Var->Var->N :=

[b , f : V a r] C a s e s n o f

(lam X n O =>

(S e t i f b N (Vareqb x b)

(lam X n ')

(lam X (NBTFl n» b f))) I

(an a) => (an (ABTFi a b f))

end w ith

ABTFI [a : A] : Var->Var->A :=

[b , f : V a r] C a s e s a o f

(ap a ' n) => (ap (ABTFi a» b f) (NBTFl n b f))

(var x) => (var (VBTF b f x))

end.

R e c u r s iv e D e f i n i t i o n

NBTF : Var->Var->N->N :=

b f n => (NBTFl n b f) .

R e c u r s iv e D e f i n i t i o n

ABTF : Var->Var->A->A :=

b f a => (ABTFI a b f) .

Figure 8.1: Replacing Bound Variables with Free Variables

CH APTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 67

8.2.2 (R estricted) H igher Order A bstract Syntax for Judgem ents

We wish to define an equality predicate which we will use instead of the syntactic equality

of Cog where necessary. There are a number of ways of formalising the predicate, but the

CMP approach requires two forms: Neq and Neq’ , as shown in §A.2 on pages 111 and 112

respectively. These definitions are almost identical. The difference is in the treatment of the

lam constructor (as might be expected).

Mutual In d u ctive

Neq : N->N->Prop :=

lameq :

(x , y , f :V ar)(n l,n 2:N)

~(Free_In_N f n l) ->

“(Free_In_N f n2)->

(Neq (NBTF x f n l) (NBTF y f n 2))->

(Neq (lam x n l) (lam y n2)) I

Mutual In d u ctive

Neq' : N->N->Prop :=

lameq’ :

(x ,y :V a r)(n l,n 2 :N)

((f :V ar)"(Free_In_N f n l) ->

"(Free_In_N f n2)->

(Neq’ (NBTF x f n l) (NBTF y f n 2))) ->

(Neq’ (lam x n l) (lam y n2)) I

The method of showing a-conversion is fairly straightforward: every time a binding con

structor (lam being the only one for N and A) is met while recursing through the terms, the

variables being bound are replaced in both terms by a single common free variable which

did not previously occur in the terms. When we reach variable occurrences (with the Var

constructor) we expect them to be the same free variable (i.e. the same Var with constructor

FV). This only works with terms which have no hanging bound variable occurrences (bound

variables which appear as (Var (BV x)) for which no binder lam x can be found further

CH APTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 68

up the parse tree of the term). The two variants of this method require (for Neq) that the

property holds for all (new) free variables when we recurse down through lam, and (for Neq’)

that there exists at least one (new) free variable for which the property holds.

When we come to use the a-conversion equality relation, such as proving that Neq is trans

itive, we would like to have the induction hypotheses from the scheme generated by Neq ’ .

When we wish to recurse through a lam occurrence, however, we would like to apply lameq.

The heart of the CMP approach is that for each judgement we wish to formalise (including

those formalising derivations/ deductions) we define variants such as those shown above. A

particular method (detailed in [MP97]) allows one to prove the equivalence of any two such

specific judgements (though each proof must be performed separately, as there does not

appear to be a general higher order statement of the property that can be usefully proved

and then applied). Once the bi-implication showing equivalence of the two judgement forms

has been proved, a fairly simple proof can be done for the required induction scheme (see

also page 112 in §A.2:

Lemma N_A_eq_ind’ :

(P :(n ,n O :N)(N eq n nO)->Prop)

(P O :(a ,aO : A)(Aeq a aO)->Prop)

((x , y :V a r) (n l ,n 2 :N)

(n : (f :Var)~(Free_In_N f n l) -> ~ (F re e_ In „ N f n 2) ->

(Neq (NBTF x f n l) (NBTF y f n 2)))

((f :Var)

(nO: ~(Free_In_N f n l))

(n 3 :~ (F ree_In _N f n 2))

(P (NBTF X f n l) (NBTF y f n2) (n f nO n 3))) - >

(P (lam X n l) (lam y n2) (lameq x y n l n2 n))) - >

((a l , a 2 : A) (a : (A e q a l a 2))

(PO a l a2 a) -> (P (an a l) (an a2) (aneq a l a2 a))) - >

((a l ; A) (n l : N) (a 2 : A) (n 2 ; N)

(a :(A e q a l a 2))

(PO a l a2 a) ->

(n:(N eq n l n 2))

(P n l n2 n) - >

(PO (ap a l n l) (ap a2 n2)

(apeq a l n l a2 n2 a n))) - >

((x :V ar)(P O (var (FV x)) (var (FV x)) (vareq x))) - >

((n ,n O :N)(n l : (N e q n nO))(P n nO n l)) / \

((a , a O : A) (a l : (Aeq a aO)) (PO a aO a l)) .

CH A PTE R S. A FORMALISATION IN COQ USING NAMED VARIABLES 69

8 .2 .2 .1 T h e C M P A p proach for G en era l J u d g em en ts an d P red ica te s

In performing formal meta-theoretic proofs, we deal with formalisations of judgements and

of predicates. Both of these are formalised as predicates in Coq (and LEGO). The CMP

approach is that we use the same procedure for all the predicates in Coq. The method shown

above for formalising equality of deduction terms is equally applicable to the formalisation

of derivations in N J.

The method above, of defining a universal variant (following the form of Neq, see 67) and

an existential variant (following the form of Neq’ , see 67) of the abstract predicate or judge

ment we are formalising, allows us to ignore bound variables almost entirely, by replacing

them with (new) free variables when we pass beneath binders. Other methods of formalisa

tion involve inductively defining predicates which use a local context to account for bound

variable names. The experience of McKinna and Pollack [vBJMR94, MP93, MP97] is that

the induction schemes derived from such definitions are often unsuitable for proving the

conjectures being made. The induction schemes derived as described briefly above are more

suitable to the formal development, and the homogeneity of the approach leads to induction

hypotheses being of the appropriate (i.e. usable) form even when dealing with more than

one predicate in a proof.

8.2 .3 C om plexity of th e C M P Approach

The CMP approach requires a large amount of initial work in performing formalisations.

Some can be carried across between developments, but not a great deal. As well as the

BTF functions shown above, functions dealing with renaming free variables to other free

variables (in single and parallel cases) are required in order to prove the necessary equi

valences between universal and existential variants of complex typing judgements. Length

(aka height) induction is also required for these proofs. Once the initial development has

been carried out, there is still an overhead in extending a formalisation in that lemmas

showing the relationship between new functions and each of the variable handling functions

are required.

8.3 Scope o f th e Form alisation

The formalisation of the theory from §2 using this method in Coq was limited by the time

available. The formalisation covers only the systems M J and N J , and theorems required to

CH APTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 70

prove the bijection between them (including ipû('}y M_Admis_^(Q and N_Admis_0(')). The

primary definitions and lemmas are shown in §A.2.

C hapter 9

R elated Work: Tools and

Techniques

9.1 Introduction

This chapter presents an overview of the various approaches and tools used in the area of

formal meta-theory. §9.2 starts us off with nameless dummy variables, also known as de

Bruijn indices, as used in §§6 and 7, reviewing some of the many formalisations which have

used that approach. We then describe the work of McKinna and Pollack, using the approach

described in §8 , followed by a discussion of the main ideas of higher order abstract syntax

in §9.6. Finally we examine the attempts to combine higher order abstract syntax with

induction and recursion in §9.7.

9.2 Form alisations U sing de Bruijn Indices

9.2.1 Strong N orm alization of System F in L E G O

[Alt93] presents a formalization of strong normalization for System F using the LEGO proof

assistant [LP92]. The terms of System F are defined by Altenkirch in the standard de Bruijn

manner. The types of System F are also defined using de Bruijn indices, but here a LEGO

dependent type is used which also encodes the number of free variables in a term (see [Alt93]

for an explanation as to why this is useful for types but unnecessary for terms).

71

CH APTER 9. RELATED W ORK: TOOLS AND TECHNIQUES 72

Altenkirch’s conclusions about the viability of Computer Aided Formal Reasoning is very

up-beat:

However, the fact that formalizing the proof after understanding it was not too

much of an additional effort seems to justify the belief that Computer Aided

Formal Reasoning may serve as a useful tool in mathematical research in future.

However, he does admit that:

However, in completing the proof I observed that in certain places I had to

invest much more work than expected, e.g. proving lemmas about substitution

and weakening.

The ease with which Altenkirch formalised this complex result reflects the usability of the

system [LEGO), and the method (de Bruijn indices), for this particular kind of theory, and

also Altenkirch's proficiency with the system, method and theory. As with many works of

formal meta-theory, Altenkirch’s proofs are simplified by the fact that he was working with

only a single calculus. His approach is close to the work done by Coquand in ALF [Coq93],

which also uses a semantic argument to prove strong normalization (this time of simply

typed A-calculus) where the terms are encoded using de Bruijn indices.

9.2.2 Verification of A lgorithm W: T he M onom orphic Case

Algorithm W is the original type inference algorithm presented by Milner in [Mil78], which

forms the basis of the ML type system, and, by extension, the type systems of many of the

strongly typed functional languages currently available. Nazareth and Nipkow in [NN96]

claim the first formal proof of soundness and completeness of algorithm W with respect to the

typing rules. They deal only with the monomorphic case (not including the l e t construct),

but state that they are unaware of any other formalisations involving algorithm W. [NN96]

presents a proof in Isabelle/HOL (a re-implementation of the HOL proof assistant using

Isabelle as a framework). The formalisation uses standard de Bruijn indexing techniques

for representing the terms for which algorithm W computes the types. This formalisation

has two effects: firstly, the informal proofs of soundness and completeness of algorithm W,

which follow similar lines, gain credibility; secondly, the importance of the new variable

problem as a non-trivial aspect of the proof is raised, together with a weakening of one of

the conditions on a subsidiary part of the algorithm.

Despite their success with the proof in the monomorphic case, Nazareth and Nipkow believe

CH APTER 9. RELATED W ORK: TOOLS AND TECHNIQUES 73

that extension to “an object language with a let-construct and polymorphic types” is “likely

to be a substantial piece of work” .

9.2 .3 C hurch-Rosser Proofs in Isabelle / H O L

There have been many formalisations of the Church-Rosser theorem for untyped A-calculus

with ,0-reduction, e.g. [Hue94, Sha94]. In [Nip96], Nipkow claims the first formalisation

of Church-Rosser for /?-ï;-reduction. Again Nipkow uses the standard de Bruijn indexing

technique in Isabelle jH O L in order to formalise various aspects of A-calculus. The work

concentrates on abstract notions of the various properties of binary relations, using these

to show the appropriate properties of the various calculi (A-calculus with /?-, g- and /?-77-

reduction). There is also a high level of automation present. Nipkow’s conclusions are:

It should be obvious from the above comparisons that the field [formal meta

theory] as a whole is making progress: formalizations have become more natural

and shorter, and the degree of automation is increasing. We are also beginning to

reuse other people’s work (as in the case of Rasmussen’s proofs). Yet each system

still has painful shortcomings, for example arithmetic in the case of Isabelle. More

work on the integration of decision procedures is urgently needed.

9.2 .4 Coq in Coq

[Bar96] presents a formalisation of the Calculus of Constructions {CoC) [GH85], a fragment

of CIC. The formalisation, extensively studied in [Bar96], covers strong normalisation and

decidability of type inference for CoC. A Caml Light program is extracted which performs

type inference or type checking for CoC. As a test of the program, the term derived from

a formal proof of Newman’s Lemma in Coq is re-verified by the program, with reasonable

performance. The eventual aim of such work is to formally extract a kernel (type inference

engine and type checker) for CIC, which may form the basis of a new version of Coq, a

bootstrapping method similar to that used for ACL2, the latest of the Boyer-Moore family

of provers [BM79, BM88].

Since Coq uses de Bruijn indices internally, it is unsurprising that Barras also uses them to

produce a kernel for a fragment of its underlying calculus. An approach such as the CMP

method, using an abstract type of variables, would not allow for the direct extraction of a

program. However, by specifying a set of variables which have the appropriate properties a

new kernel using names might be extracted.

CH APTER 9. RELATED WORK: TOOLS AND TECHNIQUES 74

9.3 A Form al T heory o f Pure T ype S ystem s

The methodology of the CMP method is described in §8 . Here, we review the work done

by McKinna and Pollack using that method. McKinna and Pollack began by formalising

informal proofs by van Benthem Jutting and others (presented in [vBJ93] and elsewhere

previously), and have since extended the formalisation to cover new ground, including a

formal development of the theory of untyped A-calculus with /^-reduction. Their work is

done using LEGO in its instantiation of the Extended Calculus of Constructions [Luo94,

LP92]. This calculus is similar to CIC, the underlying calculus of Coq, although the top-level

syntaxes of the two systems are rather different. Several versions of the basic P T S rules are

presented and various equivalencies are proved. This does not require new machinery, since

the term and type languages are not extended, only the rules for deriving judgements in the

PTS. The complete development is an impressive body of formal proof, although as with

all such developments the only way to understand what is being done is to run portions of

the proof scripts line by line through LEGO. Even expert users of systems such as LEGO,

Isabelle and Coq cannot run proofs in their heads from the statement of a conjecture and

the proof commands in a script.

9.4 F ive A xiom s o f of-Conversion

Gordon and Melham in [GM96] present a set of axioms for HOL which encode «-conversion

for object languages with binding. The approach shows abstract similarities to the CMP

method, differing mostly owing to the very different styles of the underlying systems HOL

and LEGO. Similarities with the work on restricted higher order abstract syntax (see §§9.6

and 9.7) in [DFH95] are also evident. The primary distinction of their method is the encoding

of an initial set of untyped lambda terms, which may then be differentiated by predicates to

form sets of terms for different languages. The initial presentation in [GM96] includes only

the definition of standard untyped A-calculus terms, but the extension to other systems of

syntax (such as the terms of LJ as presented in §2) would seem simple,

9.5 H O L , ALF , Coq and L E G O

In the previous sections we have briefly reviewed formalisations of proofs of properties of

typed and untyped A-calculi in various systems: HOL, ALF, Coq and LEGO. Since the main

work presented in this thesis has been performed in Coq, it has been presented in more detail

CHAPTER 9. RELATED W ORK: TOOLS AND TECHNIQUES 75

than the other systems. Nevertheless, it seems appropriate to set out some of the strengths

of each system.

ALF seems one of the weakest systems available. It was never, however, a properly released

and supported system, and has now been superseded by the still-experimental HALF. No

documentation is available for HALF, although work done with it has been published in

[CN96]. HALF, like ALF, is based on Martin-Lof’s monomorphic type theory. One of the

aims of the new system is to improve interaction and automation, areas where ALF was

quite weak. Until the developers are satisfied enough with HALF to produce a full release,

it is probably inadvisable to undertake large formalisations using HALF.

HOL, in its two incarnations as a stand-alone system [GM93] and an Isabelle object lo

gic [Pau95b], implements a version of classical higher-order logic. Both versions are well

implemented, and fairly mature, systems. They are somewhat divergent in their higher-

level capabilities, particularly in the complex tactics available, though not in the underlying

calculus.

Coq and LEGO are based on similar underlying calculi, and their capabilities are therefore

also similar. The group working on Coq in the last few years has been larger, and the system

developed more, although this leads to the corresponding problem of keeping up-to-date with

new system releases. LEGO has developed less, and the core system has remained stable,

allowing more time to be spent on new proofs and less on maintaining old ones. Coq is

probably more accessible to the first-time user, however, with its extensible grammar syntax

and more developed interface.

9.6 H igher Order A bstract Syntax

Higher order abstract syntax (from here on referred to as HOAS) is one of the central

techniques of the LF approach, embodied particularly in the Elf framework [Pfe91]. The

usage of this method is subtle, and works within logical frameworks such as Elf. Essentially,

we define the language that we wish to reason about using the variables of the framework to

represent the local variables of the language. Thus, we obtain «-conversion and ^-reduction

Tor free’ from the framework notions of conversion and reduction. However, the method of

defining a set of terms which uses the framework variables as its variables is inadmissible in

current frameworks with inductive definitions, such as Coq [PPM89]. The problem is in the

definition of binding operators, such as A, as might be expected. If we are defining a type

CH APTER 9. RELATED W ORK: TOOLS AND TECHNIQUES 76

term in a framework which allows HOAS, then the type of the A abstractor is:

{term —> term) —>• term.

The part we are interested in is the antecedent of the type:

{term term).

In [PPM89], there is a restriction on recursive occurrences of the type being defined, which

states that the type itself may not occur in a negative position in the antecedent. [PPM89,

Definition 2, page 213], which we paraphrase here for the simply typed case, defines negative

occurrences:

X occurs negatively in R if

R = Ri —̂ i?2 and

X occurs positively in R \ or

X occurs negatively in R 2

where

X occurs positively in R if

i7 = æ or

R ~ R i —̂ R 2 and

X occurs negatively in R \ or

X occurs positively in % .

Thus, in:

(term —> term) term.

the underlined occurrence of term is a negative occurrence in the antecedent of the type of

the A constructor and thus disallows the inductive definition of term. At present, although

HOAS is a very powerful methodology, it cannot be implemented in a system in which

induction is a core method. Since induction is such a central tool for meta-theory of the

systems we might wish to investigate, HOAS would not currently appear to be a reasonable

candidate for such work.

9 .7 H igher Order A bstract Syntax w ith Induction

There have been several recent investigations into how a system of HOAS might be imple

mented within a framework allowing induction on the same terms. We will look at three

CH APTER 9. RELATED W ORK: TOOLS AND TECHNIQUES 77

approaches: a restricted version of HOAS developed in Coq in [DFH95], work on implement

ing primitive recursion within HOAS as a first step towards induction from [DPS96] and

lastly a new framework proposal including HOAS and natural number induction in [MM97].

9.7.1 R estricted H igher Order A bstract Syntax w ith Induction in

Coq

The main presentation of this work is [DFH95]. Owing to the restrictions presented in the

previous sections from [PPM89], HOAS is not usable in Coq. What is possible is to assume

an abstract set of variables V , and then define our A abstractor as having type:

(V —)■ term) -4- term.

As with the CMP approach, we must define our own equality predicate on terms. While

we gain «-conversion from the framework {Coq) we do not gain /^-reduction for free. There

are also exotic terms included in the definitions of such a set: i.e. terms which satisfy the

definition but which are not within the intended scope. The solution to this problem is

two-fold. All definitions are made with respect to a notion of equivalence classes of terms,

together with a validity requirement which excludes the exotic terms. This definition allows

standard inductive arguments to be applied, although we may no longer define functions

on our terms, and instead must use functional relations, which moves us further from the

informal theories we may wish to formalise. In general, this restricted form of HOAS is too

complex and too far from the informal theories to be a good solution.

9.7 .2 H O A S w ith P rim itive R ecursion

[DPS96] is a large report detailing

.. .an important first step towards allowing the methodology of LF to be employed

effectively in systems based on induction principles such as ALF, Coq or Nuprl,

leading to a synthesis of currently incompatible paradigms.

The system presented in that report uses a modal A-calculus to encode a system of primitive

recursive functionals, in a manner inspired by linear logic. As of publication of the report,

only a simply typed version of their theory had been developed and no implementation work

had been done. This represents a significant step forward, and is the basis for ongoing work.

It is unknown how long development will take and swift availability of a combined system

is unlikely.

CH APTER 9. RELATED W ORK: TOOLS AND TECHNIQUES 78

9.7 .3 F irst Order Logic w ith D efinitions and N atural N um ber In

duction

[MM97] contains an overview of a proposal (laid out in full in [McD97]) for a system which,

again, might allow HOAS to be combined with a system allowing induction. Here, the

approach is somewhat different from that of Pfenning et al. McDowell and Miller start

with a calculus of partial inductive definitions and add the natural numbers to produce

FOA"^^. By implementing the natural numbers as part of the framework, together with

the elimination principle allowing induction over the naturals, some forms of induction for

other types may be derived via measure functions.

C hapter 10

C onclusions and Further Work

10.1 Fram eworks vs. P ro o f A ssistan ts

Initial work, as shown in §3 and §4, was carried out in logical frameworks. While it was

possible to perform appropriate formalisations in these systems, it was necessary to encode

induction principles as rules of the system. Addition of induction principles to a logic in

order to improve its power is a traditional and valid method. However, the complexity of

the inductions we required undermined our confidence that the principles we were adding

to the system were correct. Since there are systems, (such as Coq and LEGO) which allow

proof of such principles as part of their higher order logic, it would seem obvious that such

systems are more suited to the formalisation of meta-theory. Isabelle and SEQUEL would

be useful frameworks in which to encode a new system specifically designed for general

meta-theoretic investigations. However, the theoretical basis of such systems (requiring as it

does both induction and some form of higher order abstract syntax) is still an area of active

research. An attempt to produce such a system would almost certainly take longer than was

available for this project and it is doubtful that any progress would have been made with

the motivating problem of formalising the permutation theorem.

10.2 E xpansion o f th e Form alisation o f th e P erm utation

T heorem

As stated in §7.7, the informal proofs of the theorems in §2 have been extended to full

propositional logic [DP97b]. Extension of either of the formalisations in §7 or §8 to full

79

CH APTER 10. CONCLUSIONS AND FURTHER W O RK 80

propositional logic would probably not require methods any more complex than those already

used. The only substantive change to the theory of the implicational fragment in §2 is that

the terms of type M s are no longer simply lists of terms of type M . Thus, certain proofs

which follow by simple list induction will require full proof by mutual structural or size

induction. Since the list induction proofs are merely employed because they are available

and shorter, rather than because of any doubt as to the viability of the full method, this

should cause no problems.

10.2.1 N ew Tactics for Coq

Since extension to full propositional logic would involve some long and tedious proofs, it

would seem sensible to consider programming subject-specific tactics for such a purpose.

Identifying tactics which would be of general enough application to justify the work re

quired to write them (writing tactics in Coq is a fairly time-consuming process) is difficult.

Some simple syntactic abbreviations are obvious, and some have been programmed into the

formalisation already. For instance, a common operation is to use the decidability of equality

on variables (for both the CMP method and de Bruijn indices): if we have two variables x

and y in our environment, we wish to perform a case split on x = y \ /~ (x = y) . When reasoning

about a substitution, for instance, such case splits are often necessary. To perform this case

analysis without any special-purpose tactics, the following commands suffice:

Cut x = y \ /~ x = y .

I n t r o s c; Case c; C lear c; I n tr o .

provided c is not the name of a hypothesis in the current context. This process leaves us

with three sequents to prove where we had one before. If we have added the decidability of

equality on variables to the Coq H ints list, we may have the cut goal x = y \ / ~ x - y automat

ically proved by Auto using the command:

Cut x = y \ /~ x = y ; Auto; I n t r o s c; Case c; C lear c; I n t r o .

We can then use the extensible grammar capabilities of Coq to define Vcomp x y to be

equivalent to the above sequence, and the pretty printer to ensure that the same text is

returned as part of a proof script. If there is already a hypothesis with name c, however,

we will be reduced to using the full command with a diiferent name. Using the Caml level

of programming tactics, we could extend the Vcomp command to use a new name for the

intermediate hypothesis c.

This is all very simple, and there are a number of cases like it, both in terms of extensions

to the command grammar of Coq and with simple tactics. More complex tactics which

would be useful are more difficult to identify. Certainly one tedious area highlighted by

CH APTER 10. CONCLUSIONS AND FURTHER WORK 81

the formalisations was the use of the F ixp oin t recursive function definition method. The

existing simplifier, which reduces terms to a normal form without unfolding recursive func

tions further than necessary (see [BB+96]), only takes account of functions defined using

the R ecursive D e f in it io n construct. Since Recursive Definition does not allow mutual

recursive functions, of which there are quite a number in the permutability theory, we must

use F ix p o in t and interactively perform rewriting. An extension to the simplifier tactic to

use definitions made via F ixp o in t would greatly simplify the proofs in the formalisations

shown.

To go further than this, there is a recognisable pattern in many of the proofs in this form

alisation. That pattern, to someone well-versed in the technique, is obviously rippling

[BS+93, BL95].

10.2.2 R ippling

Rippling is the most successful method in the proof planning approach pioneered by Bundy

et al. [BvHHS91]. Currently, rippling is primarily concerned with equality and functional

expressions, but an extension to general relations has been studied, although not integrated

into the main proof planning tool, Clam.

While performing the proofs of the theorems leading up to weak normalisation of the per

mutation reduction relation, we come across many proofs where the obvious method corres

ponds extremely well to rippling. The interactive search process that preceded a proof being

found seemed to correspond well to the search mechanism of proof planning (with rippling

as the primary method). Without an implementation of proof planning that interfaces to

Coq, or a formalisation in a system for which proof planning is available, this is difficult to

check without a long and involved by-hand proof planning analysis of the formalisation.

Providing an interface for Clam to Coq and integrating the relational rippling (necessary for

the proofs involving derivations/ deductions) technique into Clam would provide a powerful

tool for simplifying the proof process involved in this formalisation. Particularly when faced

with the tedious details of multiple connectives and the many similar sub-proofs entailed,

such a combination would be an invaluable tool,

10.2.3 T he P erm utability T heorem for First Order Logic

As well as extending the existing weak normalisation result for permutability of inferences

in LJ to full propositional logic, following the informal proofs, there is also the case of

CH APTER 10. CONCLUSIONS AND FURTHER W O RK 82

extension to first order logic. This has not been done in the informal work to date. One of

the main motivations of the formalisation was to explore the possibilities of a formal proof

for the first order case. While extension to full first order logic is the eventual aim, the

universal-implicative fragment would be a useful test case.

In order to represent first order theories in a manner suitable for meta-theoretic reasoning,

we must consider the proof process and its resulting proofs. To re-iterate a statement from

§1.3: “Implementations [in a logical framework] of logics such as first order intuitionistic

logic, classical linear logic etc., are coded within the machine environment in a way that

allows the user to perform complex derivations/ deductions within the logic thus defined. The

aim of such work is to prove complex object-level statements (or enumerate their proofs).”

This is particularly the case when we examine first order logic. A useful implementation

of first order logic has “objects” about which theorems are proved. The precise structure

of these “objects” is not our concern when dealing with the meta-theory of first order

logic. We require a definition of them made with broad brush strokes, enabling a particular

implementation the freedom to specify the objects of interest without too many restrictions.

So, we wish to encode unsorted first order logic in a manner which allows us to reason

about its properties without needing to know too much about the objects over which our

quantifications range. We therefore specify a set of expressions in an abstract manner,

allowing us to reason about them without specifying too closely what their meaning is. We

have an infinite set of constants, each of which has a natural number associated with it

which is its arity. Terms (e.g. witnessing terms proving existential statements) can be built

up from these constants in functional expressions and used in our meta-theoretic reasoning,

without any actual semantics attached to these terms save their arity.

10.2 .4 Strong N orm alisation o f Perm utation R eduction

As stated in §7.7, [Sch] includes a proof of strong normalisation for a weakened version of

the permutation reduction relation shown in §2 (for which weak normalisation was shown in

the formalisation studied in §7). The proof of SN for permutation reduction is a corollary

of a result involving yet another calculus. Extension of the formalisation (either using de

Bruijn indices or the CMP method) to cover Schwichtenberg’s proof would be interesting,

as would explorations into a direct proof of SN for the weakened permutation reduction

relation using only LJ and M J.

CHAPTER 10. CONCLUSIONS AND FURTHER W O RK 83

10.3 O ther Logics, O ther Problem s

There is a large body of informal meta-theory waiting to be formalised. The scope for such

formalisations is limited only by the willingness of people to expend the time and effort to

learn the techniques and become familiar with the tools.

One obvious candidate for formalisation is the permutation of inferences in Linear Logic

[Gir87, GP94]. Linear logic, with its plethora of connectives, provides a rigorous challenge to

the logician working informally. With so many interconnections to consider, the possibilities

of an omission are very high, demanding meticulous care in approaching such work. The

more detail that is spelled out in the informal proofs, the closer such work is to the formal

approach demonstrated in this thesis. There do not appear to have been many attempts at

formalising complex arguments about linear logic, although there may be some in progress

now. The amount of work required to lay the groundwork for such an undertaking both

deters, and delays the exposition of, such work. In particular, the standard de Bruijn

approach does not work well if applied in a naive manner to the meta-theory of linear logic.

See §10.4.1 for an exposition of the problem and some suggestions for a solution.

10.4 D e Bruijn Indices, th e C M P M eth od and H O A S :

C onclusions

10.4.1 D e Bruijn Indices

I don’t like de Bruijn indices myself.

— N.G. de Bruijn

The above quote appears at the start of [DFH95]. De Bruijn indices are not what we really

want, which is a formal environment in which to do proofs in a way that allows our creativity

free reign while ensuring correctness of our work. De Bruijn indices are a relatively easy way

to ensure some correctness. They are easy to implement and understand. If we make an

error in our initial formalisation of terms with de Bruijn indices it will be easily spotted and

corrected. However, the question of whether our encoding of functions and relations (such

as p or M_Deriv) using de Bruijn indices is correct is more difficult. The more complex our

definitions become, and the further away our framework leads us ̂ from our original, informal

intuitions, the less the confidence gained from the formalisation transfers back to our original

^For exam ple com pare the original, inform al, definition o f p and the num erous transform ed versions until

we get the prim itive recursive formal version.

CH APTER 10. CONCLUSIONS AND FURTHER W O RK 84

work. In some cases this is not a problem. For instance, Barras’ work on formalising CoC in

Coq makes good use of de Bruijn indices: a program derived from a named syntax might be

very much less efficient. The formalisation shown in §7 is sufficiently close to the informal

version to be useful, but the differences still remain and are the cause of some dissatisfaction

with the results.

The really positive aspect of de Bruijn indices is the fact that they are useful now. Within

certain limits they are easy to use and while there is some expansion of the proof require

ments to handle the arithmetic, much of that can already be automated (in Coq at least).

The overheads of using de Bruijn indices are mostly linear. Every time a new function is

introduced, the relationship with the de Bruijn indexing functions lift and drop must be

derived, but little else is required. In particular, there is little start-up cost that has not

already been done in a number of formalisations, particularly the one shown here. The final

point in favour of de Bruijn indices is that «-convertible terms are equal terms within the

framework used (here Coq). Any framework such as Coq or LEGO which includes reason

able support for equality reasoning and rewriting will be easier to use when dealing with de

Bruijn indices rather than a user-defined «-convertibility relation for equality.

As has been mentioned a number of times, however, not all logics are easy to encode using

de Bruijn indices. Any logic which includes structural changes to the context as part of a

rule will violate the smooth transition from binder-reference to context reference. Take for

instance the right-rule for tensor (0) , or any of a number of other multiplicative rules, in

intuitionistic linear logic {ILL) [Gir87]:

F i b : A F g b <6 : B

F i, F2 b tsr{ta,tb) : A 0 B 0-R

The problems with a de Bruijn index formalisation are caused by the splitting of the context

between the conclusion and the premises. Unlike those of N J , M J and LJ, the rules

of ILL contain more complex changes to the context than simple growth by addition of

new formulae, ta and t(, in the premises are not equal to ta and tb in the conclusion in

terms of variable referencing. The hybrid approach described in §6, which uses de Bruijn

indices for bound variables but a different encoding for free variables, might well prove an

adequate solution, without the overheads involved in using the CMP method. Another

possible solution, retaining use of de Bruijn indices, would be to amend the contexts in

some way to block the use of the same formula in both branches of the proof tree. More

exploration of these methods would be needed to show if they retained enough simplicity to

justify not moving to the CMP method or another form of named variable syntax.

CH APTER 10. CONCLUSIONS AND FURTHER W O RK 85

10.4.2 The C M P M ethod

The approach of McKinna and Pollack is obviously successful, as shown by the impressive

body of work they have accumulated in their “hobby” time about P T S and A-calculus. When

working with a large body of proofs involving a single term structure, the initial overheads

of «-conversion, variable replacement etc. pale in comparison to the overall proof effort.

The overhead involved in showing the relationship of each new definition to the variable re

placement functions is approximately equivalent to the overhead involved in using de Bruijn

indices, where the relationship with lift and drop must be shown for new functions. New

inductive relations also require the equivalence of the existentially and universally quantified

variants as described in §8. So, in total, the CMP method involves more work than using

de Bruijn indices. Why, then, would it be worth using? Well, once the initial formalisation

has been done, further work takes approximately equivalent effort to de Bruijn indices, but

the use of named variables keeps the formalisation closer to the informal definitions. In par

ticular, function definitions remain closer to the informal definition. Consider the informal,

de Bruijn index and CMP formalisations of sub from table 2.2:

sub : V X M X V X M - 4 M

sub{x,m , y, {y ; ms)) = d e f {x ; m :: subs{x, m, y, ms))

sub{x, m, y, {z ; m s)) = d e f ; subs{x,m , y, ms)) z i ^ y

sub{x, m, y, Xz.m') = d e f Az .su b{x ,m ,y,m ') z i ^ y

Coq formal de Bruijn index lemma representing lines 1 and 2:

Lemma MSVMVl :

(x :V) (m :M) (y ,z : V)(ms:Hs)

(MsubstVMV X m y (s c z m s)) =

(S e t i f b M (nateq b y z)

(s c X (mcons m (MssubstVMV x m z m s)))

(s c (drop_V y z) (MssubstVMV x m y m s))) .

Coq formal CMP approach lemma representing lines 1 and 2:

Lemma MSVMVl :

(x:V)(m :M)(y ,z:V ar)(m s:M s)

(MsubstVMV X m y (s c (BV z) m s)) =

(S e t i f b M (Vareqb y z)

(s c X (mcons m (MssubstVMV x m z m s)))

(s c (BV z) (MssubstVMV x m y m s))) .

CHAPTER 10. CONCLUSIONS AND FURTHER W O RK 86

Coq formal de Bruijn index lemma representing line 3:

Lemma HSVMV2 : (x :V)(m:M)(m’ :M)(y:V)

(MsubstVMV X m y (lambda m’)) =

(lambda (MsubstVMV (l i f t _ V 0 x) (l i f t _ M 0 m) (S y) m’)) .

Coq formal CMP approach lemma representing line 3:

Lemma MSVMV2 : (x:V)(m:M)(m’ : M) (y , z :Var)

(MsubstVMV X m y (lambda z m’)) =

(S e t i f b M (Vareqb y z)

(lambda z m’)

(lambda z (MsubstVMV x m y m’))) .

The exact F ixp o in t definitions, of course, do not matter, as it is these equality lemmas in

which we are interested. The lack of lift and drop in the CMP version makes it easier to

compare the formal and informal versions. (The formalisations of subs exhibit few differences

and are both similar to the informal definition.)

When choosing between de Bruijn indices and the CMP method for a formalisation, the

judgement will always be tricky. The more different term structures involved, the more

initial overhead the CMP method will contain, and the more work will have to be done

using the «-conversion predicate instead of direct syntactic equality. The formalisation

described in §7 did not contain all of the support functions and proofs that must be done

for the method to be applied properly. There is such a plethora of functions and theorems

to be proved when developing a formalisation using the CMP method that few researchers

performing formalisations will be willing to proceed. To enhance the usability of this method

tactics to automate the proof of the many lemmas required, and even to derive their form

would be needed.

10.4.3 H O A S

Higher order abstract syntax appears to be an elegant solution to the problem of variable

handling. Since most frameworks already have a method for handling variables, it seems

an obvious requirement that we should not have to solve the same problem at both levels.

However, the incompatibility between frameworks allowing higher order abstract syntax

and the well-known restrictions on methods for defining inductive structures with strong

elimination principles, currently rules out this approach. As shown in this thesis, induction

plays too large a role to be left to an informal correctness argument: such a method removes

too much of the gain from machine support to leave the formalisation effort worthwhile.

CHAPTER 10. CONCLUSIONS AND FURTHER W O RK 87

The work by Miller and McDowell [MM97], and Pfenning et al. [DPS96], though still in

the early stages, holds out promise for a more satisfactory solution in the long term. In

the short term, however, we appear to be left with de Bruijn indices and manually-defined

named syntaxes such as the CMP approach, or a hybrid of both. For those developing such

tools, the following capabilities seem to be required:

• named variables,

• inductive definitions,

• recursive definitions,

• automatic derivation of elimination/induction principles,

• the capability of proving new induction principles sound,

• list, set and multiset handling of contexts

B ibliography

[AGM92] S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors. Handbook of Logic

in Computer Science Vol 2: Computational Structures. Oxford, 1992.

[Alt93] Th. Altenkirch. A formalisation of the strong normalisation proof for System

F in LEGO. In [BG93], 13-28.

[AGNvS94] Th. Altenkirch, V. Gaspes, B. Nordstrom, and B. von Sydow, A User’s Guide

to ALF, 1994. Available from ftp.cs.chalmers.se.

[BN94] H. Barendregt and T. Nipkow, editors. Types for proofs and programs: in

ternational workshop TYPES ’93: selected papers. Springer-Verlag LNCS 806,

1994.

[Bar84] II. P. Barendregt. The Lambda Calculus — Its Syntax and Semantics. North

Holland, 1984.

[Bar96] B. Barras. Coq en Coq. Technical Report 3026, INRIA, 1996.

[BB"^96] B. Barras, S. Boutin, et al. The Coq Proof Assistant Reference Manual (Version

6.1). Technical report, INRIA, 1996. Available on-line with Coq distribution

from ftp.inria.fr.

[BC93] D. A. Basin and R. L. Constable. Metalogical Frameworks. In [HP93], 1-29.

[BC96] S. Berardi and M. Coppo, editors. Ttjpes for proofs and programs: international

workshop TYPES ’95: selected papers. Springer-Verlag LNCS 1158, 1996.

[BG93] M. Bezem and J. F. Groote, editors. Typed Lambda Calculus and Applications.

Springer-Verlag LNCS 664, 1993.

[BGM93] E. Borger, Y. Gurevich, and K. Meinke, editors. Computer Science Logic ’93.

Springer-Verlag LNCS 832, 1993.

[BM79] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.

ftp://ftp.cs.chalmers.se
ftp://ftp.inria.fr

BIBLIOGRAPH Y 89

[BM88] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic

Press, 1988.

[Buc85] B. Buchberger, editor. EUROCAL ’85 Vol. 1. Springer-Verlag LNCS 203, 1985.

[BL95] A. Bundy and V. Lombart. Relational rippling: a general approach. In Pro

ceedings of the 1 4 th International Joint Conference on Artificial Intelligence,

175-181. IJCAI, 1995.

[BS+93] A. Bundy, A. Stevens, et al. Rippling: a heuristic for guiding inductive proofs.

Art. Int., 185-253, 1993.

[BvHHS91] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with Proof

Plans for Induction. J. Automated Reasoning, 303-324, 1991.

[CN96] J. Cederquist and S. Negri. A Constructive Proof of the Heine-Borel Covering

Theorem for Formal Reals. In [BC96].

[CA"^86] R. L. Constable, S. F. Allen, et al. Implementing Mathematics with the NuPrl

Proof Development System. Prentice-Hall, 1986.

[Coq93] C. Coquand. From Semantics to rules: A machine assisted analysis. In [BGM93].

[CH85] Th. Coquand and G. Huet. Constructions: A Higher Order Proof System for

Mechanizing Mathematics. In [Buc85], 151-184.

[dB72] N. G. de Bruijn. A-Calculus Notation with Nameless Dummies, A Tool for

Automatic Formula Manipulation. Indag. Math, 34:381-392, 1972.

[dB80] N. G. de Bruijn. A Survey of the Project AUTOMATH. In [SH80], 579-606.

[DFH95] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-Order Abstract Syntax in

Coq. In [PDC95], 124-138.

[DPS96] J. Despeyroux, F. Pfenning, and C. Schiirmann. Primitive Recursion for Higher

Order Abstract Syntax. Research Report CMU-CS-96-172, School of Computer

Science, Carnegie Mellon University, 1996.

[DNS94] P. Dybjer, B. Nordstrom, and J. Smith, editors. Types for proofs and programs:

International Workshop TYPES ’9f: proceedings. Springer-Verlag LNCS 996,

1994.

[Dyc92] R. Dyckhoff. Contraction-Free Sequent Calculi for Intuitionistic Logic. Journal

of Symbolic Logic, 57(3):795-807, 1992.

BIBLIOGRAPH Y 90

[DP96] R. Dyckhoff and L. Pinto. A Permutation-Free Sequent Calculus for Intuition

istic Logic. Research Report C S/96/9, School of Mathematical and Computa

tional Sciences, University of St Andrews, 1996.

[DP97a] R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent

calculi, 1997. Submitted for publication, extended version available as [DP97b].

[DP97b] R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent

calculi. Research Report C S/97/7 , School of Mathematical and Computational

Sciences, University of St Andrews, 1997.

[DP98] R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent

Calculus for Intuitionistic Logic. Studia Logica (to appear), 1998.

[Fel89] A. Felty. A Logic Program for Transforming Sequent Proofs to Natural Deduc

tion Proofs. In [SH89], 157-178.

[GP94] D. Galmiche and G. Perrier. On Proof Normalisation in Linear Logic. Theor

etical Computer Science, 135(1):67-110, 1994.

[Gen33] G. Gentzen. On the Relation Between Intuitionistic and Classical Arithmetic.

In [Sza69], 53-67.

[Gen34] G. Gentzen. Investigations into Logical Deduction. In [Sza69], 68-131. Trans

lated from 1934 original in German.

[Gim94] E. Giminez. Codifying guarded definitions with recursive schemes. In [DNS94],

39-59.

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1-102, 1987.

[GLT89] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CUP, 1989.

[GM96] A. D. Gordon and T. Melham. Five Axioms of Alpha-Conversion. In [vWGH96],

173-190.

[GMW79] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF. Springer-

Verlag LNCS 78, 1979.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL. CUP, 1993.

[Her94] H. Herbelin. A A-calculus Structure Isomorphic to Gentzen-style Sequent Cal

culus Structure. In [PT94], 61-75.

BIBLIOGRAPH Y 91

[Hue94] G. Huet. Residual Theory in A-calculus: A Complete Gallina Development. J.

Functional Programming, 3(4):371-394, 1994.

[HP91] G. Huet and G. Plotkin, editors. Logical Frameworks. CUP, 1991.

[HP93] G. Huet and G. Plotkin, editors. Logical Environments, CUP, 1993.

[Kal94] S. Kalvala, A Gentle Introduction to Isabelle, 1994. Available with system

documentation.

[Kle52] S. C. Kleene. Permutability of inferences in Gentzen’s calculi LK and LJ. Mem.

Amer. Math. Soc., 1-26, 1952.

[Klo92] J. W. Klop. Term Rewriting Systems. In [AGM92].

[Lei79] D. Leivant. Assumption Classes in Natural Deduction. Zeitschrift ftir math.

Logik, 25:1-4, 1979.

[Luo94] Z. Luo. Computation and Reasoning. Clarendon Press, 1994.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System; User's Manual.

Technical Report ECS-LFCS-92-211, Laboratory for Foundations of Computer

Science, University of Edinburgh, Scotland, UK, 1992.

[MMMS90] M. Main, A. Melton, M. Mislove, and D. Schmidt, editors. International Con

ference on the Mathematical Foundations of Programming Semantics. Springer-

Verlag LNCS 442, 1990.

[ML84] P. Martin-Ldf. Intuitionistic Type Theory. Bibliopolis, 1984.

[McD97] R. C. McDowell. Proving Meta-Theorems in a Logical Framework. PhD, Com

puter and Information Science Department, University of Pennsylvania, 1997.

In preparation.

[MM97] R. C. McDowell and D. Miller. A Logic for Reasoning with Higher-Order Ab

stract Syntax. (Extended Abstract). Submitted for publication, 1997.

[McK96] J. McKinna. Private Communication, 1996.

[MP93] J. McKinna and R. Pollack. Pure type systems formalized. In [BG93], 289-305.

[MP97] J. H. McKinna and R. Pollack. Some Lambda Calculus and Type Theory

Formalised. Submitted, 1997.

BIBLIOGRAPH Y 92

[MS96] M. A. McRobbie and J. K. Slaney, editors. Automated deduction, Cade-13:

13th International Conference on Automated Deduction, New Brunswick, NJ,

USA, July 30-August 3, 1996: proceedings. Springer-Verlag LNAI 1104, 1996.

[MÜ78] R. Milner. A Theory of Type Polymorphism in Programming. Journal of

Computer and System Sciences, 17:348-375, 1978.

[Min94] G. Mints. Cut-elimination and normal forms of sequent derivations. Technical

Report CSLI-94-193, Stanford University, 1994.

[Min96] G. Mints. Normal forms of sequent derivations. In [Odi96], 469-492. Also part

of [Min94].

[NN96] D. Nazareth and T. Nipkow. Formal Verification of Algorithm W: The Mono-

morphic Case. In [vWGH96], 331-345.

[Nip96] T. Nipkow. More Church-Rosser Proofs (in Isabelle/HOL). In [MS96].

[NPS90] B. Nordstrom, K. Petersson, and J. M. Smith. Programming in M artin-Lof type

theory: an introduction. Oxford University PressP, 1990.

[Gdi96] P. Odifreddi, editor. JCreiseliana. A. K. Peters, Wellesley (Massachusetts), 1996.

[PT94] L. Pacholski and J. Tiuryn, editors. Computer Science Logic ’94- Springer-

Verlag LNCS 933, 1994.

[PM93] C. Paulin-Mohring. Inductive definitions in the system Cog: Rules and proper

ties. In [BG93].

[Pau88] L. C. Paulson. The Foundation of a Generic Theorem Prover. J. Automated

Reasoning, 5:363-396, 1988.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, Springer-Verlag LNCS

828, 1994.

[Pau95a] L. C. Paulson, editor. First Isabelle Users Workshop, 1995. Contact

Paulson, L. C. (lcp@cl.cam.ac.uk) for copies.

[Pau95b] L. C. Paulson. Introduction to Isabelle. Computer Laboratory, Cambridge

University, 1995.

[Pfe91] F. Pfenning. Logic programming in the LF logical framework. In [HP91], 149-

181.

mailto:lcp@cl.cam.ac.uk

BIBLIOGRAPH Y 93

[PPM89] F. Pfenning and C. Paulin-Mohring. Inductively Defined Types in the Calculus

of Constructions. In [MMMS90], 209-228.

[PDC95] G. Plotkin and M. Dezani-Ciancaglini, editors. Typed Lambda Calculus and

Applications. Springer-Verlag LNCS 902, 1995.

[Pol94] R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calcu

lus of Constructions. PhD, Department of Computer Science, University of

Edinburgh, 1994.

[Pra65] D. Prawitz. Natural Deduction. Almquist & Wiksell, 1965.

[SH89] P. Schroeder-Heister, editor. Extensions of Logic Programming. Springer-Verlag

LNAI 475, 1989.

[Sch] H. Schwichtenberg. Termination of permutative conversions in intuitionistic

Gentzen calculi. Submitted for publication, Jan 97.

[SH80] J. P. Seldin and J. R. Hindley, editors. To H.B. Curry: essays on combinatory

logic, lambda calculus and formalism. Academic Press, 1980.

[Sha94] N, Shankar. Metamathematics, Machines, and GodePs Proof. Cambridge Tracts

in Theoretical Computer Science. Cambridge, 1994.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic

and the Foundations of Mathematics. North-Holi and, 1969.

[Tar93] M. Tarver. A Language for Implementing Arbitrary Logics. In Proceedings of

the 13th International Joint Conference on Art. Int., 839-844, 1993.

[Tar97] M. Tarver. Functional Programming and Automated Deduction in SE Q U E L .

Wiley, 1997. (Forthcoming).

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. CUP, 1996.

[vBJ93] L. S. van Benthem Jutting. Typing in Pure Type Systems. Information and

Computation, 105(1) :30-41, 1993.

[vBJMR94] L. S. van Benthem Jutting, J. McKinna, and Pollack R. Checking Algorithms

for Pure Type Systems. In [BN94], 19-61.

[vWGH96] J. von Wright, J. Grundy, and J. Harrison, editors. Theorem Proving in Higher

Order Logics: 9th International Conference. Springer-Verlag LNCS 1125, 1996.

A p pendix A

Prim ary D efinitions and

Lem m as in Coq

A .l D e Bruijn Index Form alisation

The following are some of the main definitions and lemmas from the de Bruijn index form

alisation examined in §7.

S e c t i o n b o o le a n _ e x t e n s io n .

H y p o th e s is g e n s e t r S e t .

R e c u r s iv e D e f i n i t i o n

S e t i f b : b o o l - > g e n s e t - > g e n s e t - > g e n s e t :=

t r u e X y => X I

f a l s e X y => y .

End b o o le a n _ e x t e n s io n .

R e c u r s iv e D e f i n i t i o n

n ateqb : n a t - > n a t -> b o o l :=

0 0 => t r u e I

(S i) 0 => f a l s e I

0 (S j) => f a l s e I

(S i) (S j) => (nateq b i j) .

94

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 95

Lemma n a t e q b _ is _ e q l : (i , j : n a t) i = j - > (n a t e q b i j) = t r u e .

Lemma n a te q b _ is„ e q 2 : (i , j : n a t) (n a t e q b i j) = t r u e - > i = j .

Lemma n a te q b _ is„ e q 3 : (i , j :n a t) (~ i = j) - > (n a t e q b i j) = f a l s e .

Lemma n a te q b _ is_ e q 4 : (i , j :n a t) ((nateq b i j) = f a l s e) - > " i = j .

R e c u r s iv e D e f i n i t i o n

max„nat : n a t-> n a t~ > n a t :=

i j => (S e t i f b n at (I t b i j) j i) .

I n d u c t iv e

F :S e t :=

form: n at->F I

Impl : F~>F~>F.

I n d u c t iv e

In_Hyps : nat->F->Hyps~>Prop :=

in h yp s_b ase : (P :F)(h :H yp s)

(In .H yps 0 P (Add_Hyp P h)) I

in h y p s_ re c : (n :n a t) (P ,Q :F) (h :H y p s)

(In_Hyps n P h) - >

(In_Hyps (S n) P (Add_Hyp Q h)) .

D e f i n i t i o n V : S e t := n a t .

I n d u c t iv e

L :S et :=

vr : V->L I

app : V->L“>L->L I

Im : L->L.

Mutual In d u c t iv e

M:Set :=

J

APPENDIX A. PRIM A R Y DEFINITIONS AND LEMMAS IN COQ 96

s c : V->Ms“>M I

lambda : M->M

w ith

M s;Set :=

m a il : Ms I

mcons : M->Ms->Ms.

Mutual In d u c t iv e

N: S e t : =

lam : N->N I

an : A->N

w ith

A :Set :=

ap : A->N->A I

var : V->A.

F ix p o in t

t h e t a [m:M]:N :=

<N>Case m o f

[x : V] [m s : M s] (t h e t a l ’ ms (v a r x))

[m:M](lam (t h e t a m))

end w ith

t h e t a l ' [m s:M s]:A->N :=

[a : A]<N>Case ms o f

(an a)

[m:M][ms : M s] (t h e t a l ' ms (ap a (t h e t a m)))

end.

R e c u r s iv e D e f i n i t i o n

t h e t a ' : A -> Ms -> N :=

a ms => (t h e t a l ' ms a) .

F ix p o in t

p s i [n:N]:M :=

<M>Case n o f

[n:N](lam bda (p s i n))

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 97

[a : A] (p s i ' a m a i l)

end w ith

p s i ' Ca:A]:Ms->M :=

[ms:Ms]<M>Case a o f

[a ' : A] [n : N] (p s i ’ a ' (mcons (p s i n) m s))

[x : V] (s c X m s)

end.

Lemma t h e t a p s i :

(n : N) ((t h e t a (p s i n)) = n) .

Lemma t h e t a p s i ' t h e t a ' :

(a :A) (m s : M s) ((t h e ta (p s i ' a m s)) = (t h e t a ' a m s)) .

R e c u r s iv e D e f i n i t i o n

l i f t _ V : nat->V“>V :=

i j => (S e t i f b V (I t b j i) j (S j)) .

R e c u r s iv e D e f i n i t i o n

l i f t _ L : nat->L->L :=

i (v r x) => (v r (l i f t _ V i x)) 1

i (app X 11 12) =>

(app (l i f t _ V i x) (l i f t _ L i 11) (l i f t _ L (S i) 1 2)) I

i d m 1) => d m (l i f t . L (S i) 1)) .

Lemma L i f t_ L if t_ V _ B r id g e : (x:V) (i , j m a t)

(I t i j) - >

(l i f t _ V i (l i f t _ V j x))=

(l i f t _ V (S j) (l i f t _ V i x)) .

R e c u r s iv e D e f i n i t i o n

drop_V : nat->V->V :=

j i => (S e t i f b V (I t b i j) i (pred i)) .

I n d u c t iv e

Occurs_In_V : nat->V->Prop :=

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 98

D ccurs_ in _v : (i , j :n a t) i = j - >

(Occurs_In_V i j) .

I n d u c t iv e

Occurs_In_L : nat->L->Prop :=

O ccu rs_ in_vr :

(i ; n a t) (x : V)

(Occurs_In_V i x) - >

(Occurs_In_L i (v r x)) I

O ccu rs_ in_ap pl :

(i : n a t) (x : V) (1 1 , 1 2 :L)

(Occurs_In_V i x) - >

(Occurs_In_L i (app x 11 1 2)) I

0ccu rs_ in _ap p 2 :

(i : n a t) (x : V) (1 1 ,12:L)

(Occurs_In_L i l l) - >

(Occurs_In_L i (app x 11 1 2)) I

0ccu rs_ in _ap p 3 :

(i : n a t) (x : V) (1 1 ,12:L)

(Occurs_In_L (S i) 1 2) ->

(Occurs_In_L i (app x 11 1 2)) I

Occurs_in„lm :

(i : n a t) (1 : L)

(Occurs_In_L (S i) l) - >

(Occurs_In_L i (Im 1)) .

F ix p o in t

MsubstVMVl Cm:M] ; V->M->V->M :=

[x:V]Cm’ :M][i:V]<M>Case m o f

[z:V][ms:M s]

(S e t i f b M (nateq b i z)

(s c X (mcons m’ (MssubstVMVl ms x ra’ z)))

(s c (drop_V i z) (MssubstVMVl ms x m’ i)))

Cm ’ ’ : M]

(lambda (MsubstVMVl m” (l i f t _ V 0 x) (l i f t _ M 0 m’) (S i)))

end w ith

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 99

MssubstVMVl [ms : Ms] : V->M->V->Ms : =

[x :V][m ’ :M][i:V]<Ms>Case ms o f

m nil

[m’ ’ :M][ms’ : Ms](mcons (MsubstVMVl m’ ' x m’ i)

(MssubstVMVl ms’ x m’ i))

end.

R e c u r s iv e D e f i n i t i o n

MsubstVMV : V->M->V->M->M :=

X m i m’ => (MsubstVMVl m’ x m i) .

R e c u r s iv e D e f i n i t i o n

MssubstVMV : V->M->V->Ms->Ms :=

X m i ms => (MssubstVMVl ms x m i) .

R e c u r s iv e D e f i n i t i o n

p h i : L -> N :=

(v r x) => (an (var x)) I

(app X 11 12) =>

(NsubstAV (ap (v a r x) (p h i 1 1)) 0 (p h i 1 2)) I

(Im 1) => (lam (p h i 1)) .

R e c u r s iv e D e f i n i t i o n

p h ib ar : L->M :=

(v r x) => (s c X m n il) I

(app X 11 12) =>

(MsubstVMV X (p h ib a r 11) 0 (p h ibar 1 2)) I

(Im 1) => (lambda (p h ib ar 1)) .

R e c u r s iv e D e f i n i t i o n

l i f t s _ L : n a t - > n a t “>L->L :=

i j (vr x) => (vr (l i f t s _ V i j x)) I

i j (app X 1 10) =>

(app (l i f t s _ V i j x)

(l i f t s _ L i j 1)

(l i f t s . L i (S j) 1 0)) I

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 100

i j (Im 1) => (Im (l i f t s _ L i (S j) 1)) .

F ix p o in t

rhobar [m:M] : L :=

<L>Case m o f

[x;V][ms:Ms]

<L>Case ms o f

(v r x)

[m:M][ms : Ms](app x (rhobar m) (r h o b a r ’ ms (S 0)))

end

[m:M](lm (rhobar m))

end

w ith

rh o b a r ’ [ms:Ms] : nat->L :=

[i:n a t]< L > C a se ms o f

(v r Q)

[m:M][ms : Ms](app 0 (l i f t s _ L i 0 (rhobar m)) (r h o b a r ’ ms (S i)))

end.

R e c u r s iv e D e f i n i t i o n

rh o b a r1 : nat->Ms->L :=

i ms => (r h o b a r ’ ms i) .

Lemma phibarrhob ar :

(m:M)(phibar (rhobar m))=m.

Lemma ph irho : (n : N) (p h i (rho n))= n .

I n d u c t iv e

L_Deriv : Hyps -> L -> F -> Prop :=

L_Axiom :

(h : H y p s) (i : V) (P :F)

(In_Hyps i P h) - >

(L_Deriv h (v r i) P) I

Im plies_L :

APPENDIX A. PRIM A R Y DEFINITIONS AND LEMMAS IN COQ 101

(h : H y p s) (i : V) (P : F) (Q : F) (l l : L) (1 2 : L) (R : F)

(In_Hyps i (Impl P Q) h) - >

(L_Deriv h 11 P)->

(L_Deriv (Add_Hyp Q h) 12 R)->

(L_Deriv h (app i 11 12) R) |

Im plies_R :

(h :H y p s) (P :F) (l :L) (Q : F)

(L_Deriv (Add_Hyp P h) 1 Q)->

(L .D e r iv h (Im 1) (Impl P Q)).

Mutual I n d u c t iv e

M_Deriv : Hyps -> M -> F -> Prop :=

Choose :

(h z H y p s) (i : V)(P:F)(m s:M s)(R:F)

(In_Hyps i P h) ->

(Ms_Deriv h P ms R)->

(M_Deriv h (s c i ms) R) I

A b str a c t :

(h:H yps)(P:F)(m :M)(Q :F)

(M_Deriv (Add_Hyp P h) m Q)->

(M_Deriv h (lambda m) (Impl P Q))

w ith

Ms_Deriv ; Hyps -> F -> Ms -> F -> Prop :=

Meet :

(h :H yp s)(P :F)

(Ms_Deriv h P m nil P) I

Im p lies_ S :

(h:Hyps)(m :M)(P:F)(Q :F)(m s:M s)(R:F)

(M_Deriv h m P)->

(Ms_Deriv h Q ms R)->

(Ms_Deriv h (Impl P Q) (mcons m ms) R) .

Mutual In d u c t iv e

N_Deduc : Hyps -> N -> F -> Prop :=

I m p l ie s _ I :

(h :H y p s) (P :F) (n :N) (q :F)

APPENDIX A. PRIM A R Y DEFINITIONS AND LEMMAS IN COQ 102

(N_Deduc (Add_Hyp P h) n Q)->

(N„Deduc h (lam n) (Impl P Q)) 1

AN_Axiom :

(h.'Hyps) (a: A) (P:F)

(A_Deduc h a P)->

(N_Deduc h (an a) P)

w ith

A_Deduc : Hyps -> A -> F -> Prop :=

Im plies_E :

(h :H y p s)(a :A)(P :F)(Q :F)(n :N)

(A_Deduc h a (Impl P Q))->

(N_Deduc h n P)->

(A_Deduc h (ap a n) Q) I

A_Axiom :

(h : H y p s) (i : V) (P :F)

(In_Hyps i P h) - >

(A_Deduc h (var i) P) .

Lemma M_Admis_Psi :

(h:H yps)(n:M)(R :F)

(N_Deduc h n R)->

(M_Deriv h (p s i n) R) .

Lemma M_Admis_Psi’ :

(h :H yp s)(a :A)(m s:M s)(R :F)(P :F)

(A_Deduc h a P)->

(Ms_Deriv h P ms R)->

(H_Deriv h (p s i ’ a ms) R) .

Lemma N_Admis_Theta :

(h:Hyps)(m:M)(R:F)

(M_Deriv h m R)->

(N_Deduc h (t h e t a m) R) .

Lemma N_Admis_Theta’ :

(h :H yp s)(P :F)(m s:M s)(R :F)

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 103

(Ms_Deriv h P ms R)->

((a :A)((A _D ed u c h a P)->

(N^Deduc h (t h e t a ’ a ms) R))) .

R e c u r s iv e D e f i n i t i o n

Weaken_Hyps ; nat->F->Hyps->Hyps :=

0 P h => (Add_Hyp P h) 1

(S n) P MT => MT 1

(S n) P (Add_Hyp Q h) => (Add_Hyp Q (Weaken_Hyps n P h)) .

Lemma N_Admis_Weaken :

(h : H y p s) (n : N) (P : F) (j : n a t) (Q : F)

(N_Deduc h n P)->

(I t j (S (Len_Hyps h))) - >

(N_Deduc (Weaken_Hyps j Q h) (l i f t _ N j n) P) .

Lemma A_Admis_Weaken ;

(h : H y p s) (a : A) (P : F) (j : n a t) (Q ; F)

(A_Deduc h a P)->

(I t j (S (Len_Hyps h))) - >

(A_Deduc (Weaken_Hyps j Q h) (l i f t _ A j a) P) .

Lemma L_Admis_Weaken :

(h:Hyps) (1 :L) (P,Q:F) (j m a t)

(L_Deriv h 1 P)->

(I t j (S (Len_Hyps h))) - >

(L_Deriv (Weaken_Hyps j Q h) (l i f t _ L j 1) P) ,

R e c u r s iv e D e f i n i t i o n

Hyps_Exchange : nat->Hyps->Hyps :=

1 MT => MT I

i (Add_Hyp P MT) => (Add_Hyp P MT) 1

0 (Add_Hyp P (Add_Hyp Q h)) =>

(Add_Hyp Q (Add_Hyp P h)) I

(S i) (Add_Hyp P (Add.Hyp Q h)) =>

(Add_Hyp P (Hyps.Exchange i (Add.Hyp Q h))) .

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 104

R e c u r s iv e D e f i n i t i o n

V.Exchange : nat->V->V :=

i j => (S e t i f b V (nateq b i j)

(S i)

(S e t i f b V (nateq b (S i) j) i j)) .

R e c u r s iv e D e f i n i t i o n

L.Exchange : nat->L->L :=

i (v r x) => (v r (V.Exchange i x)) |

i (app X 11 12) =>

(app (V.Exchange i x)

(L.Exchange i 11)

(L.Exchange (S i) 1 2)) I

i (Im 1) => (Im (L.Exchange (S i) 1)) .

Lemma L.Admis.Exch :

(h : H y p s) (l : L) (R : F) (j : n a t) (P ,Q : F)

(L .D e r iv h 1 R)->

(In .H yps j P h) - >

(In .H yps (S j) Q h) - >

(L .D e r iv (Hyps.Exchange j h)

(L.Exchange j 1)

R).

Lemma RhoBarl : (x:V)

(rhobar (s c x m n i l)) = (v r x) .

Lemma RhoBar2 : (ms:Ms)(x:V)(m:M)

(rhobar (s c x (mcons m m s)))=

(app X (rhobar m) (rhobar (s c 0 (l i f t . M s 0 m s))))

Lemma RhoBarS : (m:M)

(rhobar (lambda m))=(lm (rhobar m)) .

Lemma L_Admis_RhoBar : (h:Hyps)(m :M)(P:F) ^
i

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 105

(M.Deriv h m P)->

(L .D e r iv h (rhobar m) P) .

Lemma L_Admis_Rho : (h :H y p s)(n :N)(P :F)

(N.Deduc h n P)->

(L .D e r iv h (rho n) P) .

Mutual In d u c t iv e

Norm.L : L->Prop :=

norm .vr : (x:V)(Norm_L (v r x)) I

norm.app :

(x : V) (l l , 1 2 : L)

(Norm.L l l) - >

(Norm’.L 1 2) ->

(Norm.L (app x 11 1 2)) I

norm.lm :

(1 :L)

(Norm.L l) - >

(Norm.L (Im 1))

w ith

Norm’.L : L->Prop :=

norm’. v r : (Norm’ .L (v r 0)) |

norm’.a p p :

(1 1 ,1 2 :L)

(Norm.L l l) - >

(Norm’ .L 1 2) ->

“ (O c c u r s .I n .L 0 l l) - >

~ (O c c u r s .In .L (S O) 1 2) ->

(Norm’ .L (app 0 11 1 2)) .

Lemma Norm.L.RhoBar : (m;M)

(Norm.L (rhobar m)) .

Lemma Norm’.L.RhoBar : (ms:Ms)

(Norm’ .L (rhobar (s c 0 (l i f t . M s 0 m s)))) .

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 106

I n d u c t iv e

L.Perml : L->L->Prop :=

l . p e r m l . lm :

(1 1 ,1 2 :L)

(L.Perm i 11 1 2) ->

(L.Perml (Im 11) (Im 1 2)) I

l_p erm l_ap p l :

(i : V) (l l l , 1 1 2 , 1 2 : L)

(L.Perml 111 1 1 2) ->

(L_Perml (app i 111 12) (app i 112 1 2)) I

l_perm l„app2 :

(i : V) (l l , 1 2 1 , 1 2 2 : L)

(L.Perml 121 1 2 2) ->

(L.Perml (app i 11 121) (app i 11 1 2 2)) 1

l_perml_app_wkn :

(x : V) (l l , 1 2 : L)

“ (Occurs_In_L 0 1 2) ->

(L.Perm l (app x 11 12) (drop.L 0 1 2)) 1

l_perm l_app_appl :

(x , y : V) (l l , 1 2 , 1 3 : L)

((O c c u r s .I n .L 0 1 2) \ / (0 c c u r s _ I n _ L (S 0) 1 3)) - >

(Norm’.L 1 3) ->

(L.Perm l (app x 11 (app (S y) 12 1 3))

(app y

(a p p X 11 12)

(app (l i f t . V 0 x)

(l i f t . L 0 11)

(L.Exchange 0 1 3)))) I

l .p e r m l .a p p .a p p 2 :

(x ; V) (l l , 1 2 , 1 3 : L)

((O c c u r s .I n .L 0 1 2) \ / (0 c c u r s _ I n . L (S 0) 1 3)) - >

(Norm’.L 1 3) ->

(L.Perm l (app x 11 (app 0 12 1 3))

(a p p X

11

(app 0

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 107

(app (l i f t . V 0 x)

(l i f t . L 0 11)

(l i f t . L (S 0) 1 2))

(app (l i f t s . V (S (S 0)) 0 x)

(l i f t s . L (S (S 0)) 0 11)

(L.Exchange 0

(l i f t . L (S (S O)) 1 3)))))) I

l .p e r m l .a p p . lm : (x : V) (1 1 , 1 2 :L)

(L.Perml (app x 11 (Im 1 2))

(Im (app (l i f t . V 0 x)

(l i f t . L 0 11)

(L.Exchange 0 1 2)))) .

I n d u c t iv e

L.Permn : L->L->Prop :=

l .p e r m n .b a s e :

(1 0 ,1 1 : L)

1 0 = 1 l - >

(L.Permn 10 11) |

l .p e r m n .r e c :

(1 0 ,1 1 ,1 2 : L)

(L.Perm l 10 l l) - >

(L.Permn 11 1 2) ->

(L.Permn 10 1 2) .

Lemma L.Admis.Perml :

(l ,1 0 : L) (h : H y p s) (P : F)

(L.Perm l 1 1 0) ->

(L .D e r iv h 1 P)->

(L .D e r iv h 10 P) .

Lemma L.Permnn :

(1 ,1 0 ,1 1 : L)

(L.Permn 1 1 0) ->

(L.Permn 10 1 1) ->

(L.Permn 1 1 1) .

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 108

Lemma L_Admis_Permn :

(h : H y p s) (1 0 , l l : L) (P : F)

(L.Permn 10 l l) - >

(L .D e r iv h 10 P)->

(L .D e r iv h 11 P) .

Lemma App.Red.M :

(x:V)(ml,ra:M)

(L.Permn (app x (rhobar ml) (rhobar m))

(rhobar (MsubstVMV x ml 0 m))) .

Lemma Norm.Red :

(1:L)(L .Perm n 1 (rhobar (p h ib a r 1))) .

A .2 C M P M eth od Form alisation

The following are some of the main definitions and lemmas from the CMP method formal

isation examined in §8.

Param eter V a r :S e t .

Param eter Vareqb : V ar-> V ar->b oo l.

Param eter V a r e q b . i s . e q l :

(x ,y : V a r)

x=y->

(Vareqb x y) = t r u e .

Param eter V areqb„is„eq2 :

(x , y :Var)

(Vareqb x y) = t r u e ->

x=y.

Lemma V a r e q b . i s .e q S :

(x , y :Var)

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 109

~x=y->

(Vareqb x y) = f a l s e .

Lemma V a r e q b .i s„ e q 4 :

(x ,y :V a r)

(Vareqb x y) = f a l s e - >

"x=y.

Param eter New.Var : (l i s t Var)->Var.

Param eter New.New.Var :

(1 : (l i s t Var))

" (In Var (New.Var 1) 1) .

I n d u c t iv e V : S e t :=

BV : Var->V I

FV ; Var->V.

R e c u r s iv e D e f i n i t i o n

VBTF : Var->Var->V“>V :=

X y (BV z) => (S e t i f b V (Vareqb x z) (FV y) (BV z)) I
X y (FV z) => (FV z) .

R e c u r s iv e D e f i n i t i o n

VFTF : Var->Var->V->V :=

f i f 2 (BV b) => (BV b) I

f l f 2 (FV f 3) => (FV (S e t i f b Var (Vareqb f l f 3) f 2 f 3)) .

Mutual In d u c t iv e

N :S et :=

lam : Var->N->N I

an : A->N

w ith

A ;S et :=

ap : A->N->A |

var : V->A.

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 110

F i x p o in t

NBTFl [n : N] : Var->Var->N :=

[b , f :Var]Cases n o f

(lam X n ’) =>

(S e t i f b N (Vareqb x b)

(lam X n ’)

(lam X (NBTFl n ’ b f))) |

(an a) => (an (ABTFl a b f))

end w ith

ABTFl [a : A] : Var->Var->A :=

C b ,f :Var]C ases a o f

(ap a ’ n) => (ap (ABTFl a ' b f) (NBTFl n b f)) I

(v a r x) => (var (VBTF b f x))

end.

Mutual In d u c t iv e

N c lo s e d : N~>Prop :=

la m c lo sed :

(x ,y : V a r) (n :N)

(N c lo se d (NBTF x y n)) ->

(N c lo se d (lam x n)) I

a n c lo s e d :

(a:A)

(A c lo se d a) ->

(N c lo se d (an a))

w ith

A c lo sed : A->Prop :=

a p c lo s e d :

(a :A)(n :N)

(A c lo se d a) ->

(N c lo se d n) ->

(A c lo se d (ap a n)) I

v a r c lo s e d :

(x:V ar)

(A c lo se d (var (FV x))) .

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 111

Mutual I n d u c t iv e

N c lo s e d ’ : N->Prop :=

l a m c l o s e d ’ :

(x :V a r) (n :N)

((y :V a r) (N c lo s e d ’ (NBTF x y n))) - >

(N c lo s e d ’ (lam x n)) I

a n c l o s e d ’ :

(a:A)

(A c lo s e d ’ a) ->

(N c lo s e d ’ (an a))

w ith

A c lo s e d ’ : A->Prop :=

a p c l o s e d ’ :

(a :A)(n :N)

(A c lo s e d ’ a) ->

(N c lo s e d ’ n) - >

(A c lo s e d ’ (ap a n)) I

v a r c l o s e d ’ :

(x:V ar)

(A c lo s e d ’ (var (FV x))) .

Mutual In d u c t iv e

Neq : N->N->Prop :=

lameq :

(x , y , f : V a r) (n l , n 2 : N)

~(Free_In_N f n i) - >

" (F r e e .I n .N f n 2)->

(Neq (NBTF x f n l) (NBTF y f n 2)) - >

(Neq (lam x n l) (lam y n2)) I

aneq

(a l ,a 2 : A)

(Aeq a l a 2) ->

(Neq (an a l) (an a 2))

w ith

Aeq : A->A->Prop : =

apeq :

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 112

(a l ; A) (n l : N) (a 2 : A) (n 2 : N)

(Aeq a l a 2) ->

(Neq n l n 2)->

(Aeq (ap a l n l) (ap a2 n 2)) I

vareq :

(x:V ar)

(Aeq (var (FV x)) (v a r (FV x))) .

Mutual In d u c t iv e

Neq’ : N->N->Prop :=

lam eq’ :

(x , y :V a r) (n l ,n 2 :N)

((f :V ar)~(Free_In_N f n l) - >

"(Free_In_N f n 2) ->

(Neq’ (NBTF x f n l) (NBTF y f n 2))) - >

(N eq’ (lam x n l) (lam y n2)) I

a n eq ’ :

(a l ,a 2 : A)

(Aeq’ a l a 2) ->

(Neq’ (an a l) (an a 2))

w ith

Aeq’ : A->A->Prop :=

a p eq ’ :

(a l : A) (n l : N) (a 2 : A) (n 2 : N)

(Aeq’ a l a 2) ->

(Neq’ n l n2)->

(Aeq’ (ap a l n l) (ap a2 n 2)) 1

v a r e q ’ :

(x:V ar)

(Aeq’ (v a r (FV x)) (var (FV x))) .

Lemma N .A . e q . i n d ’ :

(P :(n ,nO :N)(N eq n nO)->Prop)

(PO :(a ,aO :A)(A eq a aO)->Prop)

((x , y :V a r) (n l ,n 2 : N)

(n : (f :Var) ~(Free_In_N f n l) -> ~ (F re e_ In _ N f n 2) ->

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 113

(Neq (NBTF x f n l) (NBTF y f n 2)))

((f : V a r)

(nO:~(Free_In_N f n l))

(n3:~(Free_In_.N f n 2))

(P (NBTF X f n l) (NBTF y f n2) (n f nO n 3))) - >

(P (lam X n l) (lam y n2) (lameq x y n l n2 n))) - >

((a l , a 2 : A) (a : (A e q a l a 2))

(PO a l a2 a) -> (P (an a l) (an a2) (aneq a l a2 a))) - >

((a i : A) (n l : N) (a 2 : A) (n 2 : N)

(a :(A eq a l a 2))

(PO a l a2 a) ->

(n :(N eq n l n 2))

(P n l n2 n) - >

(PO (ap a l n l) (ap a2 n2)

(apeq a l n l a2 n2 a n))) - >

((x :V ar)(P O (var (FV x)) (var (FV x)) (v a re q x))) - >

((n ,n O : N) (n l : (Neq n nO))(P n nO n l)) / \

((a , a O : A) (a l : (Aeq a aO)) (PO a aO a l)) .

Mutual In d u c t iv e

N.Deduc : Hyps -> N -> F -> Prop :=

I m p l i e s . I :

(H :H y p s) (P :F) (b ,f :V a r)(n :N)(Q :F)

~(Free_In_N f n) - >

“ (Free_In_Hyps f H)->

(N.Deduc (Add.Hyp f P H)

(NBTF b f n) Q)->

(N.Deduc H (lam b n) (Impl P Q)) i

AN.Axiom :

(H :H yps)(a :A)(P :F)

(A.Deduc H a P)->

(N.Deduc H (an a) P)

w ith

A.Deduc : Hyps -> A -> F -> Prop :=

I m p l ie s .E :

(H :H yp s)(a :A)(P :F)(Q :F)(n :N)

(A.Deduc H a (Impl P Q))->

APPENDIX A. PRIM ARY DEFINITIONS AND LEMMAS IN COQ 114

(N.Deduc H n P)->

(A.Deduc H (ap a n) Q) I

A.Axiom :

(H rH y p s)(i :V a r)(P :F)

(In .H yps i P H)->

(A.Deduc H (v a r (FV i)) P) .

Lemma Neq.Deduc :

(H rH yps)(n l,n2:W)(P ;F)

(N.Deduc H n l P)->

(Neq n l n 2)->

(N.Deduc H n2 P) ,

Lemma Aeq.Deduc :

(H r H y p s) (a l ,a 2 : A)(P:F)

(A.Deduc H a l P)->

(Aeq a l a 2) ->

(A.Deduc H a2 P) .

Lemma Meq.Deriv :

(H rH yps)(m l,m2:M)(P:F)

(M.Deriv H ml P)->

(Meq ml m2)->

(M.Deriv H m2 P) .

Lemma M seq.D eriv :

(HrH yps)(m sl,m s2:M s)(P ,Q :F)

(M s.Deriv H P msl Q)->

(Mseq msl m s2)->

(M s.D eriv H P ms2 Q) .

Lemma N_Admis_Theta :

(h:Hyps)(m:M)(R:F)

(M.Deriv h m R)->

(N.Deduc h (t h e t a m) R) ,

APPENDIX A . PRIM ARY DEFINITIONS AND LEMMAS IN COQ 115

Lemma N_Adrais_Theta’ :

(h :H yp s)(P :F)(m s:M s)(R :F)

(M s.Deriv h P ms R)->

((a :A)((A .D e d u c h a P)->

(N.Deduc h (t h e t a ’ a ms) R))) .

Lemma M_Admis_Psi ;

(h :H yp s)(n :N)(R :F)

(N.Deduc h n R)->

(M.Deriv h (p s i n) R) .

Lemma M_Admis_Psi’ :

(h :H yp s)(a :A)(m s:M s)(R :F)(P :F)

(A.Deduc h a P)->

(M s.Deriv h P ms R)->

(M.Deriv h (p s i ’ a ms) R) .

A ppend ix B

Full D evelopm ent in Coq using

de Bruijn Indices

This appendix includes all the definitions and the statements of the lemmas proved in

the development of the meta-theory from §2 using de Bruijn indices (approximately 4000

lines of Coq code). Not included are the many lines of proof script (an extra 6500 lines

approximately).

116

a
8

i

O ’

8

<y

8

8

8

Ig
I
O ’

8

O’

8

O’

8

8

S

Ig
1

8

I
I
§

I
I
§

I

a

a

a

a

I
Q

I
g

I
Q

I
O’

8

I
I
i

a

I
g

I
8
§

I
I
i

8

8
§

I
i

a

o-

8

a

<y

a

o*

I
§

1

8

O ’

8

O ’

!

8

O’
8

!
a a

8

!
1
§

I
I

8

8

(y

O’

8

O’
8

I
!Q
1
§

8

8

S

8

a a

I
q

I
8

8

s e.

a

8

a

I
Q

1
8

O’

8

8

& g

s H

&
g

g

bo to dû

a

8
S

i
I
I

s

a

a

a

&

8

I
g

I
8
S

I
a

8

O’

8

< y

8

8

S a a

O’

8

8

a - tS

8

cia

