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ABSTRACT

 In genetic algorithms selection mechanisms aim to favour reproduction of better individuals
imposing a direction on the search process. It does not create new individuals; instead it selects
comparatively good individuals from a population and typically does it according to their
fitness. The idea is that interacting with other individuals (competition), those with higher
fitness have a higher probability to be selected for mating. In that manner, because the fitness of
an individual gives a measure of its “goodness” , selection introduces the influence of the fitness
function to the evolutionary process. Moreover, selection is the only operator of genetic
algorithm where the fitness of an individual affects the evolution process. In such a process two
important, strongly related, issues exist: selective pressure and population diversity. They are
the sides of the same coin: exploitation of information gathered so far versus exploration of the
searching space. Selection plays an important role here because strong selective pressure can
lead to premature convergence and weak selective pressure can make the search ineffective
[14]. Focussing on this equilibrium problem significant research has been done.
 In this work we introduce the main properties of selection, the usual selection mechanisms and
finally show the effect of applying proportional, ranking and tournament selection to a set of well
known multimodal testing functions on simple genetic algorithms. These are the most widely used
selection mechanisms and each of them has their own features.
 A description of each method, experiment and statistical analyses of results under different
parameter settings are reported.

KEYWORDS: Genetic algorithms, selection mechanisms, genetic diversity, premature
convergence.
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CONTRASTING MAIN SELECTION METHODS IN GENETIC ALGORITHMS

1. MAIN PROPERTIES OF SELECTION

By simulating evolution, a Genetic Algorithm (GA) maintain a population of multiple
individuals (chromosomes) which evolve throughout generations by reproduction of the fittest
individuals. After initialisation, to create the original population of individuals, a GA consists of
a selection- recombination-mutation cycle until a termination criterion holds.
Selection, crossover and mutation are the main operators repeatedly applied throughout the GA
execution used to modify individual features. So, it is expected that evolved generations provide
better and better individuals (searchers in the problem space).

For the following discussion it is convenient to adopt the notation used by Bäck [6].
Let us call I the space of individuals a ∈ I  and f : I → 5 a real-valued fitness function. Let be µ
the population size and P(t) = (a1

t ..., aµ
 t) ∈Iµ a population at generation t.

 A well known property of a selection operator is selective pressure which can be defined as the
probabili ty of the best individual being selected relative to the average probabil ity of selection of all
individuals.
 It also can be seen as a parameter associated to the takeover time. The concept of takeover time is
defined, in the work of Goldberg and Deb  [12], as the number of generations necessary for a
(unique) best individual found in the initial population to occupy the complete population by
repeatedly applying a given selection mechanism alone [4]. If the takeover time is large or small
then the selective pressure of a selection operator is, accordingly, weak (explorative search) or
strong (exploitative search).
 During the selection step of an EA copies of better ones replace worst individuals. Consequently,
part of the genetic material contained in these worst individuals disappears forever.  This loss of
diversity is defined as the proportion of the population that is not selected for the next generation
[7].
 When the selection mechanism imposes a strong selective pressure then the loss of diversity can be
high and, to prevent a premature convergence to a local optimum then, either a larger population
size or adequate crossover and mutation operators are needed. On the other side of the coin a small
selective pressure can excessively slow the convergence rate.
 The population diversity was introduced by Bäck and Hoffmeister [3], in terms of the bias measure
defined by Grefenstette [13]  as follows;
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 where l is the chromosome length and at
i,j denotes the allele value. The bias b  (0.5≤ b ≤ 1.0)

indicates the average percentage of the most outstanding value in each position of the individuals.
Smaller values of b indicate higher genotypic diversity and vice versa. The bias b can be used to
formulate an adequate termination criterion.
 The selection probability Psel is an important parameter of a selection mechanism and normally
determines the number of expected copies of an individual after selection given by:

 )()( t
isel

t
i aPa ⋅= µξ

 These expected values not always agree with the algorithmic sampling frequencies. Different
algorithms provide large or minor differences between them. Baker [2] introduced the concept of
bias as an individual’s actual sampling probabili ty and its expected value. Also he defined spread
as the range of possible values for the number of copies an individual receives by a selection
mechanism.
 Two related properties are selection intensity and growth rate.
 The selection intensity is defined as the average fitness difference prior and after selection.  So,
denoting selection intensity by I,



 σ/)( afterbefore ffI −=
 where σ is the mean variance of the population before selection.
 For quasi normal distributed values of individual’s fitness in the population, I gives a measure of
the average fitness of the selected individuals and that of the whole population [15], [5].
 The growth rate is defined as the ratio of the number of the best solutions in two consecutive
generations. Early and late growth rates are calculated respectively, when the proportion of best
solution is not significant, at the beginning, and large (about 50%) in the final stage of the evolution
process. Both can be used as measures of convergence for fast near-optimizers or precise-optimizer
algorithms.
 From the above discussion we can conclude that a selection mechanism should be the driving force
to conduct the search towards better individuals but also it is concerned of maintaining a high
genotypic diversity, to avoid stagnation.  Can we ask only to selection to fulfil this compromise?
 As stated by Deb ([12]):
 “ ... for a successful EC simulation, the required selection pressure of a selection operator depends
on the recombination and mutation operators used. A selection scheme with a large selection
pressure can be used, but only with a highly disruptive recombination and mutation operators.”
 Conversely, when a recombination scheme forces the exploitation in the searching space, then
alternative selection mechanisms should be used [10 ].
 
 2. COMMONLY USED  SAMPLING MECHANISMS

Most of the topics of this section can be found in more detail i n chapter 5 the Bäck book [6].
For the following discussion we concentrate on GAs applied to search (optimization) problems.
Within this framework we refer to the fitness function f, as a mapping which maps the value of the
objective function to an interval in ℜ+. In that way maximization and minimization are equivalent.

Proportional Selection

In proportional selection, an individual ai is chosen at random for mating from a population of size
µ according to the following probabili ty:
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This is the simplest selection scheme also known as roulette-wheel selection or stochastic sampling
with replacement.
Here, individuals are mapped to contiguous segments in the real interval [0,1] in such a way that a
segment corresponding to an individual has a size equal to the individual fitness. Then a random
number in such interval is generated and the individual whose segment encompasses the random
number is selected.
One pernicious consequence of this assignment of probabiliti es resides in the different behaviour
showed by the EA for functions that are equivalent from the optimization point of view such as
f(x) = ax2 and g(x) = ax2 + b. For example, if  for certain values of x, it results b >> ax2 then the
selection probabilit ies of many individuals would be extremely similar and the selective pressure
would result too weak. Consequently optimization of g(x) becomes  a random search process. This
frequently happens when the population converges to a narrow range of values during the evolution
process.
To avoid this undesirable behaviour the fitness function can be scaled to the worst individual and
instead of absolute individual’s fitness, we manage with an individual’s fitness relative to the worst
individual.
But on the other hand, when scaling to the worst individual, the inverse effect (excessive selective
pressure) can emerge inasmuch as a super-performer appears in the population. Copies of this
super-individual wil l rapidly invade the whole population.
Scaling methods try to cope with problems, which are dependent on the characteristics of the



function being optimized. Different categories of scaling were defined. Goldberg introduced;
linear, sigma truncation and power law scaling [11] and Michalewicz extended the later to another
method knew as non-uniform scaling [14].
Goldberg and Deb [12] determined the takeover time τ  for f1(x) = xc and f2(x) = exp(cx):
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This results tell us that the takeover time for proportional selection is of the order of Ο(µ ln µ),
regardless of a polynomial or exponential objective function in x.
As asserted in  [14], considerable effort has been done in the search for a trade-off between
population diversity and selective pressure. In that direction, one of the originally most recognized
works was due to De Jong [9] who introduced several variations of proportional selection. The first
one, the elitist model, preserves indefinitely the best-found individual. The second modification, the
expected value model, attenuates the stochastic errors by introducing a count, associated to each
individual, which is decreased each time it is selected for reproduction. The third variation, the
elitist expected value model, combines the first two variations. In the fourth variation, the crowding
value model, a newly created individual replaces an old one, which is selected from those
resembling the new one.
Brindle [8] and Baker [2] considered further modifications, remainder stochastic sampling and
stochastic universal sampling, that were confirmed as improvements over the simple selection
mechanism.

Rank-based selection

The need of scaling procedures under proportional selection might induce Baker to consider an
alternative sampling mechanism, to control the EA behaviour [1]. The first approach was called
linear ranking.
By means of linear ranking the selective pressure can be controlled more directly than by scaling
and consequently the search process can be accelerated remarkably. During many years this
method was criticized due to the apparent inconsistency with the schema theorem, which aff irms
that low order, above average fitness schemata receive exponentially increasing trials in subsequent
generations. Nevertheless, Whitley [16] pointed out that ranking acts as a function transformation
assigning new fitness value to an individual based on its performance relative to other individuals.
Why to insist that “exact fitness” should be used? He posed.
The Baker’s original linear ranking method assigns a selection probabili ty that is proportional to the
individual’s rank. Here, according to Bäck [6] the mapping rank: I→{1,...,µ}  is given by:
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where ≤≥ denotes the ≤ relation or the ≥ relation for minimization or maximization problems res-
pectively.  Consequently the index i of an individual ai denotes its rank. Hence, individuals are
sorted according to their fitness resulting a1 the best individual and aµ the worst one. Assuming that
the expected value for the number of offspring to be allocated to the best individual is ηmax =µP(a1)
and that to be allocated to  the worst one is  ηmin =µP(aµ)  then
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As the following constraints must hold
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it is required that:
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The selective pressure can be adjusted by varying ηmax. As remarked by Baker if ηmax = 2.0 then all
individuals would be within 10% of the mean and the population is driven to convergence during
every generation. To restrain selective pressure, Baker recommended a value of ηmax =1.1. This
value for ηmax close to 1 leads to Psel (ai) ≅ 1/µ , almost the case of random selection.
Goldberg and Deb also determined the takeover time for two cases of linear ranking: ηmax = 2.0 and
1< ηmax <  2.
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A ranking mechanism can be devised also by means of non-linear mappings. For instance
Michalewicz, to increase selective pressure, has used an exponential ranking approach where the
probabilit ies for selection were defined as follows:
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where the constant c, assigns the probability of selection for the best individual.
As pointed by Michalewicz [14], even though ranking methods have shown, in some cases, to
effectively improve genetic algorithms behaviour some apparent drawbacks remain. They can be
summarized as follows: the responsibility to decide when to use these mechanism is put on the
user’s hands, the information about relative evaluation of chromosomes is ignored, all cases are
treated uniformly regardless of the magnitude of the problem and, finally, the schema theorem is
violated.

Tournament Selection

 In tournament selection q individuals are randomly chosen from the population and then the best
fitted individual, designated as the winner, is selected for the next generation. The process is
repeated µ times, until the new population is completed.
The parameter q is known as the tournament size and usually it is fixed to q = 2 (binary
tournament). If q = 1 then there is no selection at all : each individual has the same probabil ity to be
selected. As long as q increases the selective pressure is augmented.
As Brickle [7] affirms, tournament selection can be implemented eff iciently having the time
complexity O(µ) because no sorting of the population is necessary but, as a counterpart,  this also
leads to high variance in the expected number of offspring resultant from µ independent trials. As
scaling techniques needed for proportional selection are unnecessary, the application of the
selection method is as well simplified. Furthermore, global calculations to compute the
reproduction rates of individuals are needless under this method.
As showed by Bäck [6], the selection probability for individual ai , (i ∈ {1,...,µ} ) for q-tournament
selection is given by
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Goldberg and Deb also determined the takeover time for q-tournament selection as approximated
by
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3. EXPERIMENTAL TESTS

Here we describe an approach to contrast results obtained from optimization of recommended
multimodal testing functions when either proportional, ranking and tournament selection
mechanisms are applied on a simple GA.
For our experiments, 20 runs with randomised initial population of size fixed to 80 individuals
were performed on each function, using binary coded representation, elit ism, one point crossover
and bit flip mutation. . The number of generations was variable and probabilities for crossover and
mutation were fixed to 0.65 and 0.001 for f1 and f2 and 0.50 and 0.005 for f3 and f4.  In order to
isolate the convergence effect of each selection method, the kind of genetic operators and parameter
settings chosen were those commonly used in optimising with a simple GA.
For this report, we choose contrasting results on four well -known multimodal testing functions of
varying difficulty:

f1: Michalewickz’s multimodal  function

f2: Michalewickz’s highly multimodal  function
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As an indication of the performance of the algorithms the following relevant variables were
chosen:
Ebest = ((opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or
estimated, optimum value opt_val. It gives us a measure of how far are we from that opt_val.
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Epop = ((opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the population mean fitness when compared with opt_val. It tell us how
far the mean fitness is from that opt_val.

4. RESULTS

The main selection mechanisms were applied on each function. Proportional selection was
applied in the conventional way, and it is denoted by SGA in the figuresand tables. In the case
of raking selection settings for low, intermediate and high values of ηmax were used: 1.1, 1.5 and
2.0 respectively. In the case of tournament selection the size q of the set of competing individuals
was set to 2, 3, 4, 5, 10 and 20.
In the analysis of each function we show those results of ranking and tournament corresponding
to the setting of parameters for which the method behaves better.
In the following  tables µperfvar, σ perfvar, σ/µ perfvar stands for the mean, standard deviation and
coefficient of deviation of the corresponding performance variable (perfvar)

Function f1
For the multimodal Michalewicz’s function using ranking the best mean Ebest values where
found with ηmax = 2.0. Poor results with values as high as 32% were obtained with remaining
settings. In the case of tournament the best mean Ebest values where found with q = 4, and
remaining settings produced values in the range 0.9% to 5.5%.
In many runs under any of the alternative selection mechanisms the genetic algorithm
reached the optimum.
Following figures and tables discuss on results for f1
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Fig. 1: Ebest values throughout the experiments for Propor, Rank and Tourn on f1
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Fig 2. Percentile of Ebest values bellow and above 1% throughout
the experiments for Propor, Rank and Tourn on f1

µµEbest σσEbest σσEbest/µµEbest

Propor 2,17438421 4,1829588 1,9237441
Rank 2,0 0,81565754 2,3491819 2,88010812

Tour (q=4) 0,9395669 2,3493265 2,50043554
Table 1: Mean and standard deviation for Ebest throughout

the experiments for Propor, Rank and Tourn on f1



Figures 1 and 2, and table 1 show that best values are found with Rank (2.0) where 80% of the
Ebest values are less than 1%. Also with Tourn (q=4) good results are obtained. In this case
75% of the Ebest values are less than 1%.
Both selection mechanism outperform proportional selection. Nevertheless, as can be observed
in figure 1, under any selection mechanism the algorithm reach sometimes the optimum. Also it
can be observed that statistical values are moderately dispersed around the mean.

Analysis of Epop follows.

Epop
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Fig. 3: Epop values throughout the experiments for Propor, Rank and Tourn on f1
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Fig 4. Percentile of Epop values bellow and above 1% throughout
the experiments for Propor, Rank and Tourn on f1

µµEpop σσEpop σσEpop/µµEpop

Propor 2,6557993 4,4210455 1,66467603
Rank 2.0 1,15964994 2,4066567 2,07533038

Tourn (q=4) 1,10501227 2,3066101 2,08740683
Table 2: Mean and standard deviation for Epop throughout

the experiments for Propor, Rank and Tourn on f1

Figures 3 and 4, and table 2 show that in the final stages, when the algorithm converges,
population remains closer to the optimum value when either Rank (2.0) or Tourn (q=4) with
70% and 65% of the population below 1% of the optimum. Epop values are also better and
remain enough centralized around the mean.



Function f2

Function f2 was definitively harder than f1 for the genetic algorithm. For the highly multimodal
Michalewicz’s function using ranking the best mean Ebest values where found with ηmax = 2.0.
Poor results with values as high as 30% were obtained with remaining settings.
In the case of tournament the best mean Ebest values where found with q = 3, and remaining
settings produced values in the range 5.8% to 6.4%.
In few runs under any of the alternative selection mechanisms the genetic algorithm reached the
optimum.
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Fig. 5: Ebest values throughout the experiments for Propor, Rank and Tourn on f2
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Fig. 6:  Percentile of Ebest values bellow and above 8% throughout
the experiments for Propor, Rank and Tourn on f2

µµEbest σσEbest σσEbest/µµEbest

Propor 3,43027374 3,2560932 0,94922255
Rank 2,0 4,77518358 3,8557875 0,80746372

Tourn (q=3) 4,24364967 3,0211970 0,71193366
Table 3: Mean and standard deviation for Ebest throughout

the experiments for Propor, Rank y Tourn on f2

A lesser performance is detected for function f2 with any of the selection mechanisms. Figures 5
and 6, and table 3 show a slight advantage of proportional selection and tournament selection
over ranking selection. Nevertheless, good minimal values for Ebest were observed under any
selection method: 0.0002% for Propor, 0.001% for Rank (2.0) and 0.03% for Tour (q=4).
Ebest values remain centralized around the mean when applying any selection method.



Analisys of Epop follows.
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Fig. 7: Epop values throughout the experiments for Propor, Rank and Tourn on f2

65
55 60

35
45

40

0

20

40

60

80

100

Epop < 5% Epop >= 5%

Propor

Rank 2,0

Tourn (q=3)

Fig. 8:  Percentile of Epop values bellow and above 5% throughout
the experiments for Propor, Rank and Tourn on f2

µµEpop σσEpop σσEpop/µµEpop

Propor 4,69946624 3,0872195 0,65692983
Rank 2,0 5,01799048 3,7930008 0,75588043

Tourn (q=3) 4,44483845 3,0806361 0,69308169
Table 4: Mean and standard deviation for Epop throughout

the experiments for Propor, Rank and Tourn on f2

Figures 7 and 8 and table 4, show that all the methods are similarly dispersed around the
mean. Proportional selection retains a higher percentage of individuals with fitness near to
that of the optimum, but the remaining methods are no so far from this performance.



Function f3

For the Branin’s function using ranking the best mean Ebest values where found with ηmax = 2.0.
Good results with values of 0.88% and 0.23%  were obtained with ηmax = 1.1 and ηmax = 1.5,
respectively.
In the case of tournament the best mean Ebest values where found with q = 4, and remaining
settings produced also good values in the range 0.02% to 0.03%.
In many runs under any of the alternative selection mechanisms the genetic algorithm reached
the optimum.
Following figures and tables discuss on results for f3.
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Fig. 9: Ebest values throughout the experiments for Propor, Rank and Tourn on f3
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Fig. 10:  Percentile of Ebest values bellow and above 0,01% throughout
the experiments for Propor, Rank and Tourn on f3

µµEbest σσEbest σσEbest/µµEbest

Propor 0,06332596 0,2468112 3,89747293
Rank 2,0 0,00239591 0,0001668 0,06960991

Tourn (q=4) 0,00236471 0,0001263 0,05339067
Table 5: Mean and standard deviation for Ebest throughout

the experiments for Propor, Rank and Tourn on f3

Here, any selection method performs much better than when optimizing f1 or f2. Figures 9 and
10 and table 5 show that ranking and tournament outperforms proportional selection (most of
the runs hit the optimum). Also it can be seen that for both (Rank and Tourn) the Ebest values
remain more centered around the mean than in proportional selection (Propor).



Analisys of Epop follows.
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Fig. 11: Epop values throughout the experiments for Propor, Rank and Tourn on f3
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Fig. 12:  Percentile of Epop values bellow and above 0,01% throughout
the experiments for Propor, Rank and Tourn on f3

µµEpop σσEpop σσEpop/µµEpop

Propor 0,19628763 0,5751949 2,93036747
Rank 2,0 0,75882468 1,0576247 1,3937669

Tourn (q=4) 0,30620344 0,7459909 2,43625917
Table 6: Mean and standard deviation for Epop throughout

the experiments for Propor, Rank and Tourn on f3

Figures 11 and 12, and table 6 show that after convergence most of the population is
concentrated around the optimum when using tournament selection. Nevertheless, mean and
deviation of the population are lower when proportional selection is used.



Function f4

For the Griewangk's function using ranking the best mean Ebest values where found with ηmax =
2.0.
Poor results with values as high of 48% and 39%  were obtained with ηmax = 1.1 and ηmax = 1.5,
respectively.
In the case of tournament the best mean Ebest values where found with q = 20, and remaining
settings produced values in the range 0.14% to 5.8%.
In few runs under any of the alternative selection mechanisms the genetic algorithm reached the
optimum.
Following figures and tables discuss on results for f4.
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Fig. 13: Ebest values throughout the experiments for Propor, Rank and Tourn on f4.
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Fig. 14:  Percentile of Ebest values bellow and above 0,1% throughout
the experiments for Propor, Rank and Tourn on f4

µµEbest σσEbest σσEbest/µµEbest

Propor 1,4864597 1,2129254 0,81598273
Rank 2,0 0,08496272 0,0720580 0,84811291

Tourn (q=20) 0,14493713 0,0999323 0,68948752
Table 7: Mean and standard deviation for Ebest throughout

the experiments for Propor, Rank and Tourn on f4

The above figures and table show a better performance of the algorithm under ranking selection.
With tournament  have an intermediate performance and the worst is achieved by means of the
conventional proportional selection. This can be clearly seen in figure 13.

Analisys of Epop follows.
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Fig. 15: Epop values throughout the experiments for Propor, Rank and Tourn on f4.
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Fig. 16:  Percentile of Epop values bellow and above 5% throughout
the experiments for Propop, Rank and Tourn on f4

µµEpop σσEpop σσEpop/µµEpop

Propor 8,55777883 2,1347468 0,24945104
Rank 2,0 3,18685456 1,7445121 0,54740876

Tourn (q=20) 6,23747706 9,9698854 1,5983843
Table 8: Mean and standard deviation for Epop throughout

the experiments for Propor, Rank and Tourn on f4

The above figures and table shows again that the mean population fitness is nearer to
that of the optimum under ranking or tournament when contrasted with proportional
selection.

GBEST ANALYSIS

µµGbest σσGbest σσGbest/µµGbest

Propor 207,15 90,6097909 0,43741149
f1 Rank 2.0 129,40 72,7174778 0,56195887

Tourn (q=4) 109,15 78,5522119 0,71967212
Propor 241,65 79,4091835 0,32861239

f2 Rank 2,0 82,75 32,7219144 0,39543099
Tourn (q=3) 81,10 30,8389706 0,38025858

Propor 565,90 269,4237320 0,47609778
f3 Rank 2,0 199,25 187,6805447 0,94193498

Tourn (q=4) 366,85 352,2036305 0,96007532
Propor 550,30 344,3280413 0,62570969

f4 Rank 2,0 635,85 273,6550412 0,43037673
Tourn (q=20) 922,40 97,6391854 0,10585341



Table 9: Mean, Standard deviation and coefficient of deviation values for Gbest throughout the
experiments on each function under each approach

Except for f4, table 9 clearly shows that the best individual, retained by eliti sm, is found
in a much earlier generation when we use either ranking or tournament selection.

5. CONCLUSIONS

This paper presented discussed the main properties of selection methods widely used in
evolutionary computation. A set of experiments on a selected set of multimodal testing
functions of varying difficulty was described.
At the light of the results we can conclude that even though proportional selection is the most
diffused  method of selection, similar or better quality of results can be obtained with ranking
and tournament selection when the issue is to optimize multimodal functions.
Nevertheless this requires an extra effort: tunning of parameters. In our case, extensive
experimental work was necessary to determine the best setting for each particular function.
Those setting found a better balance between selective pressure and genetic diversity.
Today a new trend exists in evolutionary computation which attempt to modify parameters
settings “on the fly” , while the algorithm is executing.
Future work will consider incorporation of some feedback from the evolution process itself to
dynamically adjust parameter settings.
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