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ABSTRACT

In genetic adgorithms sledion mecdhanisms aim to favour reproduction of better individuals
impaosing a direction onthe seach process It does not create new individuas, insteal it selects
comparatively good individuals from a population and typically does it according to their
fitness. The idea is that interading with other individuals (competition), those with higher
fitness have ahigher probability to be seleded for mating. In that manner, because the fitnessof
an individual gives a measure of its “goodress’, selection introduces the influence of the fitness
function to the evolutionary process Moreover, seledion is the only operator of genetic
algorithm where the fitness of an individual affects the esolution process In such a processtwo
important, strongly related, issues exist: selective pressure and popilation diversity. They are
the sides of the same in: exploitation of information gathered so far versus exploration of the
seaching space Seledion plays an important role here because strong selective pressure can
lead to premature convergence and weak selective presaure can make the search ineffective
[14]. Focussing onthis equilibrium problem significant research has been dore.

In this work we introduce the main properties of selection, the usual selection mechanisms and
finaly show the dfed of applying proportional, ranking and tournament selection to a set of well
known multimodal testing functions on smple genetic dgorithms. These ae the most widdly used
seledion medanisms and each o them hastheir own features.

A description of each method, experiment and datisticd anayses of results under different
parameter settings are reported.

KEYWORDS: Genetic agorithms, selection mechanisms, genetic diversity, premature
convergence
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CONTRASTING MAIN SELECTION METHODSIN GENETIC ALGORITHMS
1. MAINPROPERTIESOF SELECTION

By simulating evolution, a Genetic Algarithm (GA) maintain a popuation d multiple
individuals (chromosomes) which evolve throughout generations by reproduction o the fittest
individuals. After initialisation, to create the origina population of individuals, a GA consists of
a sel ection- recombination-mutation cycle until atermination criterion hdds.

Selection, crossover and mutation are the main operators repeatedly applied throughou the GA
exeaution used to modify individual features. So, it is expected that evolved generations provide
better and better individuals (searchers in the problem space).

For the following discussionit is convenient to adopt the notation used by Bad [6].
Let uscall | the spaceof indvidualsa [J1 andf: | - &area-valued fitnessfunction. Let be u
the population size and P(t) = (a;' ..., a,") (1" a population at generationt.
A well known property of a seledion goerator is selective pressure which can be defined as the
probability of the best individual being seleded relative to the average probability of selection d dl
individuals.
It also can be seen as a parameter associated to the takeover time. The @ncept of takeover timeis
defined, in the work of Goldberg and Deb [12], as the number of generations necessary for a
(unique) best individua found in the initia population to occupy the cmplete population by
repeaedly applying a given sdlection mechanism aone [4]. If the takeover time is large or small
then the selective pressure of a sdedion qerator is, accordingly, wedk (explorative search) or
strong (expl oitative search).
During the selection step of an EA copies of better ones replace worst individuals. Consequently,
part of the genetic material contained in these worst individuals disappears forever. This loss of
diversity is defined as the proportion o the population that is nat seleded for the next generation
[7].
When the selection mechanism impases a strong selective pressure then the lossof diversity can be
high and, to prevent a premature convergence to alocal optimum then, either a larger population
Sizeor adequate crossover and mutation qoerators are needed. On the other side of the coin a small
seledive pressure @n excessively dow the convergencerate.
The population diversity was introduced by Back and Hoffmeister [3], in terms of the bias measure
defined by Grefenstette [13] asfollows;
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where | is the chromosome length and a'; denotes the dlele value. The bias b (0.5< b < 1.0)
indicates the average percentage of the most outstanding value in each position o the individuals.
Smaller vdues of b indicate higher genotypic diversity and vice versa. The bias b can be used to
formulate an adequate termination criterion.
The selection probability P« is an important parameter of a selection medhanism and normally
determines the number of expected copies of an individual after seledion given by:

(&) = puPw(a)
These epected values nat aways agree with the dgarithmic sampling frequencies. Different
algarithms provide large or minor differences between them. Baker [2] introduced the concept of
bias as an indvidua’s adua sampling probability and its expected value. Also he defined spread
as the range of possble values for the number of copies an individua recelves by a sdedion
medhanism.
Two related properties are selection intensity and growth rate.
The selection intendity is defined as the average fitness difference prior and after selection. So,
denating selectionintensity by I,



I :(fbefore - fafter)/a
where o isthe mean variance of the population before seledion.
For quasi normal distributed values of individual's fitness in the population, | gives a measure of
the average fitness of the seleded individuals and that of the whde population [15], [5].
The growth rate is defined as the ratio dof the number of the best solutions in two conseadtive
generations. Early and late growth rates are calculated respectively, when the proportion of best
solution is not significant, at the beginning, and large (about 50%) in the final stage of the evolution
process. Both can be used as measures of convergence for fast near-optimizers or precise-optimizer
agarithms,
From the &ove discussionwe Gan conclude that a selection medhanism shoud be the driving force
to conduct the search towards better indviduas but aso it is concerned of maintaining a high
genotypic diversity, to avoid stagnation. Can we ask only to selection to fulfil this compromise?
As gated by Deb ([12]):
“... for a successful EC smulation, the required seledion pressure of a seledion operator depends
on the recombination and mutation @erators used. A selection scheme with a large sdledion
pressure can be used, but only with ahighly disruptive recombination and mutation operators.”
Conversdly, when a recombination scheme forces the exploitation in the seaching space then
alternative selection mechanisms $ould be used [10].

2. COMMONLY USED SAMPLING MECHANISMS

Mogt of the topics of this sdion can be found in more detail i n chapter 5 the Badk bodk [6].

For the following dscusson we @ncentrate on GAs applied to seach (optimization) problems.
Within this framework we refer to the fitnessfunction f, as a mapping which maps the value of the
objedive functionto aninterval in 0. In that way maximization and minimization are euivalent.

Proportional Selection

In propartiond selection, an individual & is chosen at random for mating from a population o size
L according to the following probabili ty:

Pas(a) = —(B1)

Zf(aj)

Thisisthe smplest seledion scheme aso known as roulette-wheel selection or stochastic sampling
with replacement.

Here, individuals are mapped to cortiguous sgmentsin the real interva [0,1] in such away that a
segment corresponding to an individual has a size equd to the individual fitness. Then arandam
number in such interva is generated and the individual whose segment encompasses the random
number is selected.

One pernicious consequence of this assgnment of probabiliti es resides in the different behaviour
showed by the EA for functions that are equivalent from the optimization point of view such as
f(x) = @ and g(x) = @ + b. For example, if for certain values of X, it results b >> ax® then the
seledion probabilities of many individuals would be extremely similar and the seledive pressure
would result too weak. Consequently optimizaion o g(x) becomes arandom search process. This
frequently happens when the popul ation converges to a narrow range of values during the evolution
process.

To avoid this undesirable behaviour the fitness function can be scded to the worst individua and
instead of absolute individua’s fitness, we manage with an individual’ s fithess relative to the worst
individual.

But on the other hand, when scding to the worst individud, the inverse dfect (excessive sdlective
pressure) can emerge inasmuch as a super-performer appeas in the popuation. Copies of this
super-individua will rapidly invade the whole popul ation.

Scaling methods try to cope with problems, which are dependent on the daracteristics of the



function being gptimized. Different caegories of scaling were defined. Goldberg introduced;
linear, sigma truncation and power law scding [11] and Michalewicz extended the later to anather
method knew as non-uniform scaling [14].
Goldberg and Deb [12] determined the takeover time T for f1(X) = xc and f5(X) = exp(cX):

T, =(uinp-1)/c

T =(uinu)lc
This results tell us that the takeover time for proportiona selection is of the order of O(u In L),
regardless of a polynomia or exponential objective functionin x.
As assarted in  [14], consderable effort has been done in the search for a trade-off between
population dversity and selective pressure. In that direction, one of the originally most recognized
works was due to De Jong [9] who introduced severd variations of proportiona seledion. The first
one, the ditist modd, preservesindefinitely the best-found individual. The second modificaion, the
expected value modd, attenuates the stochastic errors by introducing a count, associated to each
individual, which is decreased each time it is slected for reproduction. The third variation, the
dlitist expected value model, combines the firgt two variations. In the fourth variation, the crowding
value model, a newly creded individua replaces an dd one, which is selected from those
resembling the new one.
Brindle [8] and Baker [2] considered further modifications, remainder stochagtic sampling and
stochagtic universal sampling, that were confirmed as improvements over the smple selection
medanism.

Rank-based sdlection

The need of scding procedures under proportional selection might induce Baker to consider an
dternative sampling mechanism, to control the EA behaviour [1]. The first approach was caled
linear ranking.

By means of linea ranking the seledive pressure an be controlled more diredly than by scaling
and consequently the search process can be accelerated remarkably. During many yeas this
method was criticized due to the apparent inconsistency with the schema theorem, which affirms
that low order, above average fitnessschemata receive exponentially increasing trials in subsequent
generations. Nevertheless, Whitley [16] pointed out that ranking acts as a function transformation
assigning new fitness value to an individual based onits performance relative to aher individuals.
Why to ingst that “exact fitness” should be used? He posed.

The Baker' s origina linea ranking method assigns a selection probabili ty that is propationa to the
individua’ s rank. Here, according to Back [6] the mapping rank: | - {1,...,1} isgiven by:

Oi OfL,... u}: rank(a) =i =
0 OfL...u-1: f(a)<=f(a.,)

where <= denotes the < relation o the = relation for minimization a maximization problems res-
pectively. Consequently the index i of an indvidua a dendtes its rank. Hence, indviduals are
sorted according to their fitness resulting a, the best individual and a, the worst one. Assuming that
the expected value for the number of off spring to be dlocated to the best individual iS M =UP(a1)
and that to be dlocated to theworst oneis nyin=uP(a,) then

Pa(a)= ) B ) B

Asthefollowing congtraints must had
Py (a;) 20 Oi
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it isrequired that:
1SN, S2and Ny, =2 =N e

The selective pressure @an be aljusted by varying Nmax. As remarked by Baker if np.x = 2.0 then dl
individuals would be within 10%6 of the mean and the population is driven to convergence during
every generation. To restrain seledive pressure, Baker recommended a value of Ny =1.1 This
vauefor N closeto 1 leadsto Py (&) [J1/u, dmost the @ase of random selection.

Goldberg and Deb also determined the takeover time for two cases of linea ranking: Nmex = 2.0 and
1< Nrex < 2.

r)=log, u +log,(n u)and

2
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A ranking mechanism can be devised dso by means of non-linear mappings. For instance
Michalewicz, to increase seledive pressure, has used an exponential ranking approach where the
probabilities for selection were defined asfollows:

Psi(a) =c(1-c¢)' ™, with 0<c<<1

where the mnstant ¢, assigns the probability of selection for the best individual .

As painted by Michaewicz [14], even though ranking methods have shown, in some ceses, to
effectively improve genetic agarithms behaviour some gparent drawbacks remain. They can be
summarized as follows: the responsibility to dedde when to use these mechanism is put on the
user’s hands, the information about relative evaluation of chromosomes is ignored, all cases are
treated uniformly regardless of the magnitude of the problem and, finally, the schema theorem is
violated.

Tournament Selection

In tournament selection g individuals are randomly chosen from the population and then the best
fitted individual, designated as the winner, is ®lected for the next generation. The process is
repeaed u times, until the new population is completed.

The parameter q is known as the tournament size and wsualy it is fixed to q = 2 (binary
tournament). If g = 1 then there is no selection at al: each indvidual has the same probability to be
sdeded. Aslong as q increases the sdlective pressure is augmented.

As Brickle [7] affirms, tournament selection can be implemented efficiently having the time
complexity O(u) because no sorting of the population is necessary but, as a cunterpart, this aso
leads to high variance in the expected number of offspring resultant from u independent trials. As
scaling techniques needed for proportional sdedion are unneassary, the gplication o the
sdedion method is as well simplified. Furthermore, doba calculations to compute the
reproduction rates of individuals are needlessunder this method.

As dowed by Badk [6], the selection probability for individud &, (i £ {1,...,} ) for g-tournament
sdedionisgiven by

Px(a,) =%((u-i +1f ~ (u-i))

Goldberg and Deb also determined the takeover time for g-tournament seledion as approximated
by
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3. EXPERIMENTAL TESTS

Here we describe an approach to contrast results obtained from optimizaion of recommended
multimoda tegting functions when either proportiona, ranking and tournament selection
medanisms are goplied on asimple GA.

For our experiments, 20 runs with randomised initial population of size fixed to 80individuals
were performed on each function, using binary coded representation, dlitism, one point crossover
and kit flip mutation. . The number of generations was variable and probahilities for crossover and
mutation were fixed to 0.65 and 0.001 for f1 and f2 and 0.50 and Q005 for f3 and f4. In order to
isolate the convergence dfect of each seledion method, the kind d genetic operators and parameter
settings chosen were those commonly used in gptimising with asmple GA.

For this report, we dhoose mntrasting results on four well-known multimodal testing functions of

varying dfficulty:

f1: Michaewickz' s multimoda function

f(x1) = 2.0+ x2[8Nn (1077 [X1)
-10<x1£20
estimated maximum value : 3.850274

f2: Michalewickz' s highly multimodal function

f (Xl,XZ) =215+ X1E‘Sin (477 D(l) + X2 &n (207T D(z) , for ;
-3.0< X1<12.1, 4.1< X255.8
estimated maximum value :38.850292

f3: Branins's Rcos Function

5.1
(40)
X1 = -5:10, Xo = 0:15;
mninumgobd vaue: 0.397887

fa(X,X:) = D(z— Xi2 + — Dxl - 6|]+10[%1 gzm(xl)uo

f4: Griewangk's Function F8

5 2 5 D |])( DD
A _ X\ _ D D—\DD
fo(x:) = 1 + 214000 DZlacosH sk
0 0O <i 00
X = - 600:600 , i = 1:5;
minimum global value: 0.0

As an indication of the performance of the algorithms the following relevant variables were
chaosen:

Ebest = ((opt_val - best value)/opt_val)100

It is the percentile eror of the best found individua when compared with the known, o
estimated, gotimum value opt_val. It gives us ameasure of how far are we from that opt_val.



Epop = ((opt_val- pop mean fithess)/opt_val)100
It isthe percentile aror of the population mean fitness when compared with opt_val. It tell us how
far the mean fitnessisfrom that opt_val.

4. RESULTS

The main selection medhanisms were gplied on each function. Propational selection was
applied in the conventional way, and it is denated by SGA in the figuresand tables. In the case
of raking selection settings for low, intermediate and high values of 1. were used: 1.1, 1.5 and
2.0respedively. In the Gase of tournament selection the size g of the set of competing individuas
was st to 2, 3, 4, 510 and 20.

In the analysis of ead function we show those results of ranking and tournament corresponding
to the setting of parameters for which the method kehaves better.

Inthefollowing tables Lertvar, O pertvar, O U pertvar Stands for the mean, standard deviation and
coefficient of deviation d the arresponding performance variable (perfvar)

Function f1

For the multimodal Michalewicz's function using ranking the best mean Ebest values where
foundwith n,. = 2.0. Poor results with values as high as 32% were obtained with remaining
settings. In the @se of tournament the best mean Ebest values where foundwith g = 4, and
remaining settings produced values in the range 0.9% to 5.5%.

In many runs under any of the dternative seledion mecdianisms the genetic dgorithm
readed the optimum.

Foll owing figures and tables discusson results for f1
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Fig. 1. Ebest values throughou the experiments for Propor, Rank and Tourn onfl
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Fig 2. Percentil e of Ebest values bellow and above 1% throughou
the experiments for Propar, Rank and Tourn onfl

HEbest OEbest Okbest/HEbest
Propor 2,17438421 4,1829588 1,9237441
Rank 2,0 0,81565754 2,3491819 2,88010812
Tour (q=4) 0,9395669 2,3493265 2,50043554

Table 1. Mean and standard deviation for Ebest throughou
the experiments for Propar, Rank and Tourn onfl




Figures 1 and 2,and table 1 show that best values are found with Rank (2.0) where 80% of the
Ebest values are lessthan 1%. Also with Tourn (g=4) good results are obtained. In this case
75% of the Ebest values are less than 1%.
Both selection mecdhanism outperform propational selection. Nevertheless as can be observed
in figure 1, under any salection medianism the dgorithm read sometimes the optimum. Also it
can be observed that statistical values are moderately dispersed aroundthe mean.

Analysis of Epopfoll ows.
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Fig. 3: Epopvalues throughou the experiments for Propar, Rank and Tourn onfl
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Fig 4. Percentil e of Epop \alues bell ow and above 1% throughout
the experiments for Propar, Rank and Tourn onfl

HEpop OEpop Oepop/Hepop
Propor 2,6557993 4,4210455 1,66467603
Rank 2.0 1,15964994 2,4066567 2,07533038
Tourn (q=4) 1,10501227 2,3066101 2,08740683

Table 2: Mean and standard deviation for Epop throughou
the experiments for Propar, Rank and Tourn onfl

Figures 3 and 4, and table 2 show that in the final stages, when the agorithm cornverges,
popuation remains closer to the optimum value when either Rank (2.0) or Tourn (g=4) with
70% and 6% of the population below 1% of the optimum. Epop values are aso better and
remain enough centralized aroundthe mean.



Function f2

Function f2 was definitively harder than f1 for the genetic algorithm. For the highly multi modal
Michalewicz' s function using ranking the best mean Ebest values where foundwith npe = 2.0.
Poor results with values as high as 30% were obtained with remaining settings.

In the @se of tournament the best mean Ebest values where found with g = 3, and remaining
settings produced vauesin the range 5.8% to 6.4%.

In few runs under any of the dternative selection medanisms the genetic dgorithm reached the
optimum.

15 Ebest
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Fig. 5: Ebest values throughou the experiments for Propar, Rank and Tourn onf2
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Fig. 6. Percentile of Ebest values bell ow and above 8% throughou
the experiments for Propar, Rank and Tourn onf2

HEbest OEpest Okbest/ Pebest

Propor 3,43027374 3,2560932 0,94922255
Rank 2,0 4,77518358 3,8557875 0,80746372
Tourn (g=3) 4,24364967 3,0211970 0,71193366

Table 3: Mean and standard deviation for Ebest throughout
the experiments for Propar, Rank y Tourn onf2

A lesser performanceis detected for function f2 with any of the selection mechanisms. Figures 5
and 6,and table 3 show a dight advantage of proportional selection and tournament selection
over ranking selection. Nevertheless good minimal values for Ebest were observed under any
selection method: 0.0002% for Propor, 0.001% for Rank (2.0) and 0.(8% for Tour (g=4).

Ebest values remain centrali zed aroundthe mean when applying any selection method.



Analisys of Epop foll ows.
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Fig. 7. Epopvalues throughou the experiments for Propar, Rank and Tourn onf2
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Fig. 8. Percentile of Epopvalues bell ow and above 5% throughou
the experiments for Propar, Rank and Tourn onf2

HEpop OEpop Oepop/Hepop
Propor 4,69946624 3,0872195| 0,65692983
Rank 2,0 5,01799048 3,7930008| 0,75588043
Tourn (g=3) 4,44483845 3,0806361| 0,69308169

Table 4: Mean and standard deviation for Epop throughou
the experiments for Propar, Rank and Tourn onf2

Figures 7 and 8 and table 4, show that al the methods are similarly dispersed around the
mean. Propationa seledion retains a higher percentage of individuals with fitness nea to
that of the optimum, but the remaining methods are no so far from this performance



Function f3

For the Branin’s function using ranking the best mean Ebest values where foundwith Ny = 2.0.
Good results with values of 0.88% and 023% were obtained with Ny = 1.1 and N = 1.5,
respectively.

In the @se of tournament the best mean Ebest values where found with g = 4, and remaining
settings produced al so good values in the range 0.02% to 0.03%.

In many runs under any of the dternative selection mecdhanisms the genetic algorithm readed
the optimum.

Foll owing figures and tables discusson results for f3.
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Fig. 9: Ebest values throughou the experiments for Propor, Rank and Tourn onf3
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Fig. 10 Percentile of Ebest values bellow and abowve 0,01% throughout
the experiments for Propar, Rank and Tourn onf3

HEbest OEbest Okbest/ HEbest
Propor 0,06332596 0,2468112 3,89747293
Rank 2,0 0,00239591 0,0001668 0,06960991
Tourn (g=4) 0,00236471 0,0001263 0,05339067

Table 5: Mean and standard deviation for Ebest throughou
the experiments for Propar, Rank and Tourn onf3

Here, any selection method performs much better than when optimizing f1 or f2. Figures 9 and
10 and table 5 show that ranking and tournament outperforms propational selection (most of
the runs hit the optimum). Also it can be seen that for both (Rank and Tourn) the Ebest values
remain more cantered aroundthe mean than in proportional selection (Propor).



Analisys of Epopfoll ows.
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Fig. 11 Epopvalues throughou the experiments for Propar, Rank and Tourn onf3
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Fig. 12 Percentile of Epopvalues bellow and above 0,01% throughout
the experiments for Propar, Rank and Tourn onf3

MEpop OEpop Oepop/ Kepop
Propor 0,19628763 0,5751949 2,93036747
Rank 2,0 0,75882468 1,0576247 1,3937669
Tourn (q=4) 0,30620344 0,7459909| 2,43625917

Table 6: Mean and standard deviation for Epop throughou
the experiments for Propar, Rank and Tourn onf3

Figures 11 and 12, and table 6 show that after convergence most of the population is
concentrated around the optimum when using tournament selection. Nevertheless mean and
deviation of the population are lower when propartional selectionis used.



Function f4

For the Griewangk's function wsing ranking the best mean Ebest values where foundwith Ny =
2.0

Poor results with values as high d 48% and 3% were obtained with Ny = 1.1 and Nme = 1.5,
respectively.

In the @ase of tournament the best mean Ebest values where foundwith g = 20, and remaining
settings produced vaues in the range 0.14% to 5.8%.

In few runs under any of the dternative selection medanisms the genetic dgorithm reached the
optimum.

Foll owing figures and tables discusson results for 4.
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Fig. 13 Ebest values throughou the experiments for Propor, Rank and Tourn on f4.
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Fig. 14 Percentile of Ebest values bellow and abowve 0,1% throughou
the experiments for Propar, Rank and Tourn onf4

HEbest OEbest o'Ebest/P-Ebest
Propor 1,4864597 1,2129254 0,81598273
Rank 2,0 0,08496272 0,0720580 0,84811291
Tourn (g=20) 0,14493713 0,0999323 0,68948752

Table 7: Mean and standard deviation for Ebest throughout
the experiments for Propar, Rank and Tourn onf4

The above figures and table show a better performance of the algorithm under ranking selection.
With tournament have an intermediate performance and the worst is achieved by means of the
conventional proportional selection. This can be dearly seenin figure 13.

Analisys of Epopfoll ows.
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Fig. 15 Epopvalues throughou the experiments for Propar, Rank and Tourn onf4.
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Fig. 16 Percentile of Epopvalues bellow and above 5% throughou

the experiments for Propop,Rank and Tourn onf4

HEpop OEpop Okpop/MEpop
Propor 8,55777883 2,1347468 0,24945104
Rank 2,0 3,18685456 1,7445121 0,54740876
Tourn (q=20) 6,23747706 9,9698854 1,5983843

Table 8: Mean and standard deviation for Epopthroughout

the experiments for Propor, Rank and Tourn on f4

The a&owve figures and table shows again that the mean popuationfitnessis nearer to
that of the optimum under ranking or tournament when contrasted with proportional

sdedion.

GBEST ANALYSIS

HGbest OGbest chest/uGbest

Propor 207,15 90,6097909 0,43741149

f1 Rank 2.0 129,40 72,7174778 0,56195887
Tourn (q=4) 109,15 78,5522119] 0,71967212

Propor 241,65 79,4091835 0,32861239

f2 Rank 2,0 82,75 32,7219144 0,39543099
Tourn (g=3) 81,10, 30,8389706] 0,38025858

Propor 565,90] 269,4237320 0,47609778

f3 Rank 2,0 199,25| 187,6805447 0,94193498
Tourn (g=4) 366,85 352,2036305 0,96007532

Propor 550,30 344,3280413 0,62570969

f4 Rank 2,0 635,85 273,6550412 0,43037673
Tourn (q=20) 922,40 97,6391854 0,10585341




Table 9: Mean, Standard deviation and coefficient of deviation values for Ghest throughout the
experiments on each function under ead approach

Except for f4, table 9 clearly shows that the best individual, retained by €liti sm, is found
in amuch earlier generation when we use dther ranking or tournament seledion.

5. CONCLUSIONS

This paper presented discussed the main properties of selection methods widely used in
evolutionary computation. A set of experiments on a selected set of multimodal testing
functions of varying difficulty was described.

At the light of the results we can conclude that even though proportional selection is the most
diffused method of selection, similar or better quality of results can be obtained with ranking
and tournament selection when the issue isto ogimize multimodal functions.

Nevertheless this requires an extra effort: tunning of parameters. In ou case, extensive
experimental work was necessary to determine the best setting for each particular function.
Those setting found a better bal ance between sel ective pressure and genetic diversity.

Today a new trend exists in evolutionary computation which attempt to modify parameters
settings “on the fly”, while the algorithm is executing.

Future work will consider incorporation of some feedback from the evolution process itself to
dynamicdly adjust parameter settings.
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