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ABSTRACT

Features such as fast response, storage eff iciency, fault tolerance and graceful degradation in face
of scarce or spurious inputs make neural networks appropriate tools for Intelli gent Computer
Systems.
A neural network is, by itself, an inherently parallel system where many, extremely simple,
processing units work simultaneously in the same problem building up a computational device
which possess adaptation (learning) and generalisation (recognition) abiliti es. Implementation
of neural networks roughly involve at least three stages; design, training and testing. The
second, being CPU intensive, is the one requiring most of the processing resources and
depending on size and structure complexity the learning process can be extremely long. Thus,
great effort has been done to develop parallel implementations intended for a reduction of learning
time.
Pattern partitioning is an approach to paralleli se neural networks where the whole net is
replicated in different processors and the weight changes owing to diverse training patterns are
paralleli sed. This approach is the most suitable for a distributed architecture such as the one
considered here.

Incoming task allocation, as a previous step, is a fundamental service aiming for improving
distributed system performance facilit ating further dynamic load balancing.
A Neural Network Device inserted into the kernel of a distributed system as an intelli gent tool,
allows to achieve automatic allocation of execution requests under some predefined performance
criteria based on resource availabilit y and incoming process requirements.

This paper being, a twofold proposal, shows firstly, some design and implementation insights to
build a system where decision support for load distribution is based on a neural network device
and secondly a distributed implementation to provide parallel learning of neural networks using
a pattern partitioning approach.
In the latter case, some performance results of the parallelised approach for learning of
backpropagation neural networks, are shown. This include a comparison of recall and
generalisation abiliti es and  speed-up when using a socket interface or PVM.
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1. INTRODUCTION

Implementation of neural networks roughly involves at least three stages; design, training and
testing. Training, being CPU intensive, is the one requiring most of the processing resources
and depending on size and structure complexity the learning process can be extremely long.
Thus, great effort has been done to develop parallel implementations intended for a reduction of
learning time.
The backpropagation (BP) learning algorithm, due to its eff iciency and wide range of
applications, is one of the most popular learning algorithm.
BP can be paralleli sed through two partitioning schemes; either the network or the training
pattern space is partitioned [9][14][15].

In network partitioning, the nodes and weights of the neural network are distributed among
diverse processors and thus the computations for node activation, node errors and weight
changes are paralleli sed.

In pattern partitioning the whole neural net is replicated in different processors and the weight
changes owing to diverse training patterns are paralleli sed.
This last scheme is suitable for problems with a large set of training patterns and fit properly  to
run on local memory architectures.
In this work we only concentrate on a pattern partitioning approach with a new variant of the
per-epoch-training regime, to paralleli se the learning process for transparent task allocation in
a computer network. The variant called variable-epoch training regime consists in randomly
assigning the number of epochs (epochs interval) locally performed before any exchange takes
place. Higher speed-up was the motivation of this new approach previously envisioned for a
socket-based interface [5]. In the following sections alternative parallel approaches, supporting
architectures, the application and results concerning speedup, recall and generalisation
capabiliti es when contrasted against the conventional sequential approach will be discussed.

2. PARALLELISING BACK PROPAGATION

One significant point to think about when designing a parallel system  is the paralleli sm
granularity of the  applications.
For paralleli sing the BP learning algorithm, we mentioned two schemes:

In network partitioning each processor processes  its corresponding task and therefore, during
the propagation and adaptation phases the processors need to establish communication with
each other. Since this interaction and exchange of data is frequently done, this scheme demands
a fine granularity of paralleli sm. This type of paralleli sm is advantageous on a Multiprocessor
or Shared Memory Architecture[20].
On the other side, in pattern partitioning[1][10][12] a single program is replicated among
processors and each computer will execute its personal copy of this program on different data
elements (patterns). As shown in figure 1, pattern partitioning replicates the neural net structure
(units, edges and associated weights) at each processor and then the partitioned training set is
distributed among processors. Each processor performs the propagation and adaptation phases
for the local set of patterns. Also, each processor accumulates the weight changes produced by
the local patterns, which afterward are broadcast to other processors for updating weight
values. This is done by using Ts/P patterns where Ts is the size of the training set and P is the
number of processors committed to the learning process. Weight changes are performed in
parallel and then the corresponding accumulated weight change vectors are exchanged between
processors. This scheme is suitable for problems with a large set of  training patterns, by



permitting a more  coarse paralleli sm  than the  network partitioning scheme. This scheme fit
properly to run on Message Passing  Multiprocessors  or Multicomputers [20].
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Fig, 1. A Pattern Partiti oning Scheme

Here we propose a distributed architecture supporting pattern partitioning for parallel training
of neural networks. In the corresponding implementation the neural net is replicated in each
system node where an individual learning process is running for the associated partition of the
pattern space. Hence, weight changes are computed concurrently, exported, imported and
adjusted accordingly until the whole parallel learning process is completed.

3. A NEURAL NETWORK DEVICE FOR ALLOCATION OF INCOMING TASKS

As an application of neural networks we used an intelli gent facilit y to automatically allocate, in a
computer network, a user incoming process to the most appropriate node in accordance to its
computing requirements[2].
The model assumes that:
• The relevant performance feature to improve is the response time for user processes.
• Processes coming to be served in this network have different demands on system resources

(CPU, Memory and I/O devices).
• The network is formed by a set of N nodes, such that each of them can contribute with different

performance to a user process depending on its demands.
• Every user incoming process comes to the network through an entry node, before passing to the

execution node (see Fig. 2). Process behavior and resource requirements can be determined by a
program profile file or explicitly declared by the incoming process.

• An evaluator module within the Operating System kernel evaluates process attributes,
requirements and system state at the process arrival time.

• Using the output of the evaluator, as input, a decisor module decides which node in the
network can accomplish more eff iciently the process execution and then process migration
takes place.
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Fig. 2 The kernel portion of an entry node

As a simple example, let us assume the following scenario:



We have a system where N available nodes differ essentially in Current Memory Capacity (CMC)
and MIPS provided. Due to system dynamics they also differ in Current Available Processing
Power (CAPP). User processes are CPU intensive tasks and their main requirements are Memory
Required (MR) and Desired Response Time (DRT).

CMC, CAPP, MR and DRT, are each divided into a number of levels (high, medium and low, or
more levels). Other processes requirements on system resources, such as access to secondary
storage, can be equally satisfied by any of the available nodes and there will not be network
transfers (except for initial process migration, which we assume is equally costly for every node).
Then the following simple allocation criterion can  be applied:

• Having MR best fit satisfied, satisfy DRT by allocating the process to the best fitted node
(the one with minimum CAPP fulfilli ng process requirement). In case of equal CAPP
values for more than one node then node selection is random.

• If the strategy also considers the situation where idle nodes exists, then; if for two or more
nodes CAPP is equal, and some of these nodes is in idle2 state (IS) then the process is
allocated to that idle node. This second decision attempts to balance the workload.

For this allocation criterion, with N system nodes, 4+5N binary inputs will suff ice to depict
process requirements (4 bits) and system state (5 bits per system node), while the size of total
pattern space is given by:

T = [ 3 2 ] - [ 3 ( 2 + 2 )]2(N+ 1) N N+ 1 2N N

Because only legal inputs conform a training set for the neural net, the second term of T excludes
the cases in which MR is greater than CMC available.

4. PARALLEL LEARNING IMPLEMENTATION

4.1  THE  ALGORITHM

The basic steps of a parallel backpropagation learning algorithm using variable-epoch regime is
depicted below. We recall that, under these approaches, during a number (one ore more) of
epochs, the submission of all patterns in the partition, the corresponding computations and the
accumulation of weight changes must be performed before weights update takes place, then the
next epoch interval begin.
The Parallel Training Algorithm

Repeat
1. For each pattern

1.1 Compute the output of units in the hidden layer.
1.2 Compute the output of units in the output layer
1.3 Compute error terms for the units in the output layer.
1.4 Compute error terms for the units in the hidden layer.
1.5 Compute weight changes in the output layer.
1.6 Compute weight changes in the hidden layer.

2. Exchange of accumulated weight vectors
      2.1 If epoch interval was reached then
            send local hidden weight vectors and output weight vectors.
      2.2 Receive remote hidden weight vectors and output weight vectors.

                                                          
2A node is defined as being in an idle state when no user process is running.



3. Update weights changes in the output layer.
4. Update weights changes in the hidden layer.

Until (current error < max. accept. err.) or  (number of iterations = maximum number
of iterations)

Here a parent process spawns several BP processes  with the corresponding parameters.
Each process during the propagation phase, if epoch interval was reached, the accumulated
weight change vector is broadcast to others processes and remote accumulated weight change
vectors are received from other processes. The reception is not blocking, since if nothing has
arrived, the children go ahead. Finally, each BP process performs the adaptation phase and
completes one epoch.
Each children finish when the current error of the neural network is less than the maximum
accepted error or the number of iterations is greater than the admissible number of iterations.

4.2  ALTERNATIVE SUPPORTS

In previous works[5][6] a real implementation was  built on the processors distributed in a LAN
of workstations (multicomputers). Each  process ran in a workstation. The routines used a
socket interface as an abstraction of IPC (Interprocess Communication) mechanism
[3][4][16][17].
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Fig. 3. A node in a System Architecture
           for real processors.
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A UDP protocol was chosen because we were working in a reliable LAN and even, if a package
missing happens the learning process is not be sensiti vely affected (each process will update the
weights with the packages received).  Figure 3 depicts the underlying system architecture and
procedures supporting the parallel learning process for this approach.

The current work  with PVM is discussed now. PVM is created to link computing resources and
provide to the user with a parallel platform for running their computer applications,
independent of the number of processors[18][19]. PVM supports a very eff icient message-
passing model.



Fig. 4. System Architecture for PVM
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Figure 4 shows an alternative support to implement our particular application on Parallel
Virtual Machine.

5. EXPERIMENTS DESCRIPTION

Experiments covered here refer solely to the variable-epoch training regime. The variable
number of epochs locally performed before any exchange took place was chosen as a random
number r between 1 and 15. Better results were observed for greater r values, but reported
results corresponds to average values.
Let be S  the total pattern space. The processors training sets (ts) were  subsets of S.
For sequential training, the training set Ts was built by uniform selection of X% of the pattern
space S.
For parallel training the pattern space was divided into n subsets and each subset was assigned
to one processor (virtual or not)  in parallel execution. The training subsets tsi were built by
uniform selection of (X/n)% of the pattern space S.

Values for X was chosen as 30 and 60.

In what follows the experiment identifiers indicate:
<Training type>-<size(%) of Training Set>/<number of subsets for parallel execution>

To compare results, the neural net was trained sequentially (i), in parallel using socket (ii ) and
in parallel using PVM (iii ):

• (i) Experiments SBP-X/1: SBP-30/1 and SBP-60/1. Size(Ts) = 30% and 60% of S
respectively.

 
• (ii ) Experiments PBP-X/n: PBP-30/3 and PBP-60/3. Three disjoint subsets of  (X/n)% of S

were selected and each subset was assigned to one processor in different workstations.
Size(tsi) = 10% and  20% of S respectively.

 
• (iii ) Experiments PVM-X/n: PVM-30/3, PVM-30/6, PVM-60/3 and PVM-60/6. The

software allows any numbers of processors to be created without any relationship to the
number of real processors. In this state three and six disjoint subsets of (X/n)% of S were
selected respectively, and each subset was assigned to one process. The number n of
parallel processes was set to 3 and 6. Size(tsi) = 10%, 5%, 20% and 10%  of S respectively.

As we were working in two stages (learning and testing), the following  parameters were used
in each case:



• For Sequential Processing, Ts (the training set of the unique neural network) was used on
the learning stage.

• For Parallel Processing, on the learning stages, tsi was the local training subset submitted to
the  BPi, with the accumulated weight changes vectors received from other BPj networks
(with training subset tsj, j ≠ i). For that reason, Ts=  ts1 ∪  ts2 ∪  ts3 ∪  ... ∪ .tsn  was  the
training set for all BPi   networks at the learning stages.

In both cases Ts and S (the whole sample space) were used in the testing stage (for Recall and
Generalisation respectively).
Figure 5 shows  an example of  parallel partitioning scheme for experiments  SBP-X/1, PBP-
X/3 and  PVM-X/3:

Fig. 5 - The Partitioning Approach for
            three processes in parallel.
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During these processes, the following relevant performance variables were  examined:

Training process:
LT: Learning time, is the running time of the learning algorithm.
Niter: Number of iterations needed to reach an acceptable error value while
training.

Testing process:
R = rcg/Size(Ts). Is the recall abilit y of the neural net. Where rcg is the total
number of patterns recognized when only patterns  belonging  to the Training
Set (Ts) are presented, after learning, to the network. The objective is to
analyse if each net can assimilate (can acquire) the learning of other networks
that were running in parallel with it.
G = gnl/Size(S). Is the combined recall and generalization abilit y. Where
Size(S)  is the size of the Total Pattern Space and gnl is the total number of
patterns recognized when all possible patterns are presented, after learning, to
the network.
Sp =LTapproach1 / LTapproach2 is the ratio between the learning times under different
approaches (sequential or parallel).
RecB/C = Sp/(Rseq  - Rpar) is the benefit-cost ratio for recall . It indicates the benefit
of speeding up the learning process, which is paid by the cost of (possibly)
loosing recall abilit y.
GenB/C = Sp/(Gseq  - Gpar) is the benefit-cost ratio for generalisation. It indicates
the benefit of speeding up the learning process, which is paid by the cost of
(possibly) loosing generalisation abilit y.



6. RESULTS

As we previously said, the neural net was trained sequentially (SBP), in parallel using socket
(PBP) and in parallel using PVM (PVM). The corresponding mean values of the performance
variables are shown in the following figures and tables.
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     Fig. 6 - Number of iteration needed  under sequential and parall el processing   (best case)

As we can observe in figure 6 a reduction, greater than one third  in the number of iteration
needed to achieve permissible error values, was achieved. Results for the partitioning scheme
of 30% are shown but using either parallel partitioning approach attains similar results.

Table 1, is a summary of the experiments performed and their results:

Experiment Learning Time Recall
%

Generalisation
%

SBP-30/1 1989 100 98
PBP-30/3 426.91 97-85 96.84
PVM-30/3 123.33 97.84 95.71
PVM-30/6 53.05 92.8 92
SBP-60/1 5996 100 99.5
PBP-60/3 1137.66 99.33 98.83
PVM-60/3 275.66 99.91 99.73
PVM-60/6 87.22 98.97 .97.64

Table 1 – Summary of LT, R y G results. LT expresses in seconds while R y G are expressed in percentile
values.

Figures 7 and 8  show the associated loss in recall and generalisation of the neural network for
different sizes of the training set.
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In general, the detriment of recall and generalisation capabiliti es decreases as the training set
size is incremented. Their values range from 0.09% (PVM-60/3) to 7.2% (PVM-30/6) for
recall . In the case of generalisation the values range from -0.23% (PVM-60/3) to 6% (PVM-
30/6). Opposite to the expected, in this case, an improvement was also detected: PVM-60/3
achieved a generalisation capabilit y better than the sequential BP.

Table 2 indicates the speed-up in learning time attained through parallel processing when
different sizes of the portions of the total pattern space S are selected for training the neural
network. Table 2(a) shows the ratio between the sequential learning and the parallel learning
times ( SP  =LT(S) / LT(P)  ).

SBP-30/1
vs.

SBP-60/1
vs.

PBP-30/3 PVM-30/3 PVM-30/6 PBP-60/3 PVM-60/3 PVM-60/6
4.65 16.12 37.49 5.27 21.75 68.74

Table 2(a) - Speed-up values achieved through parallel
            processing vs. sequential processing

In general, as the size of Ts increases (from 30% to 60%) then an increment of the speed-up can
be observed under variable-epoch training.



This effect shows a substantial improvement over the per-epoch approach used in earlier
implementations. Moreover, increment of the speed-up can be observed among different
parallel  implementations.  Table 2(b)  shows  the  ratio  between  both  parallel  learning  times
( SPVM  = LT(PBP)  / LT(PVM) ).

PBP-30/3
vs.

PBP-60/3
vs.

PVM-30/3 PVM-30/6 PVM-60/3 PVM-60/6
3.46 8.04 4.12 13.04

Table 2(b) - Speed-up values achieved through parallel processing
             with PVM   vs.  parallel processing with Socket

Both parallel implementations showed comparable capabilit y, but  PVM-X achieved a
substantial increment in speed-up with values ranging from  3.46 to 13.04 times faster than
PBP-X.
It is interesting to observe in table 3 the Benefit-Cost Ratio, which gives an indication of a
speed-up Sp obtained at the cost of a detriment in recall or generalisation. Table 3(a) shows for
PVM-X, the benefit-cost ratio for recall abilit y

RecB/C = Sp/(Rseq  - RparPVM)

and table 3(b)  shows  the benefit-cost ratio for generalisation abilit y

GenB/C = Sp/(Gseq  - GparPVM ).

SBP-30/1
vs.

PVM- 30/3

SBP-30/1
vs.

PVM-30/6

SBP-60/1
vs.

PVM- 60/3

SBP-60/1
vs.

PVM-60/6
13.96 30.29 21.66 67.71

Table 3(a) - Benefit-Cost Ratio for Recall .

SBP-30/1
vs.

PVM- 30/3

SBP-30/1
vs.

PVM-30/6

SBP-60/1
vs.

PVM- 60/3

SBP-60/1
vs.

PVM-60/6
7.03 6.24 -- 37.35
Table 3(b) - Benefit-Cost Ratio for Generalisation

In all cases, it can be observed good ratios between benefits and costs. In the particular case of
PVM-60/3 an increment of speed-up was simultaneously detected with an increment in
generalisation capabilit y, hence the benefit cost ratio is not registered. This performance
variable is of great help to inspect the goodness of a parallel design for training neural nets.

7. CONCLUSIONS

A preliminary set of experiments in our investigation of parallel training of neural networks,
using a pattern-partitioning approach, revealed that the beneficial effects of parallel processing
can be achieved with minor capabilit y loss.



Using this technique, in this work we presented feasible alternative architectures for a system
supporting parallel learning of backpropagation neural networks implementing a neural
network device for automatic task allocation in computer systems.

We discussed and showed results of an improved implementation using a Parallel Virtual
Machine approach and a new variant called variable-per-epoch approach.
Most recent results were contrasted against sequential and parallel approaches previously
implemented. In the parallel case the variable-per-epoch and the per-epoch approaches were
compared showing better performance for the new variant.

Furthermore, we need to remark that PVM provided us a unified framework within which our
parallel application was developed in an eff icient and clear manner. That resulted in a
straightforward program structure and very simple implementation. PVM transparently
manipulated all message routing, synchronization aspects, data conversion, message packing
and unpacking, process group manipulation and all aspect regarding heterogeneity. All these
factors contributed to reduced development and debugging time.  It worth remarking that a
more effective implementation of  parallel backpropagation  neural network was completed.

Finally, at the light of the effectiveness showed by the distributed approach for the parallel
learning process by means of PVM, at the present time, testing with larger number of
processors and different training set sizes are being performed for different neural networks.
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