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ABSTRACT

Provision of population diversity is one of the main goals to avoid premature
convergence in Evolutionary Algorithms (EAs). In this way the risk of being trapped in
local optima is minimised. Eshelman and Shaffer [4] attempted to maintain population
diversity by using diverse strategies focusing on mating, recombination and
replacement. One of their approaches, called incest prevention, avoided mating of pairs
showing similarities based on the parent’s hamming distance.

Conventional selection mechanisms does not consider if the members of the
new population have common ancestors and consequently due to a finite fixed
population size, a loss of genetic diversity can frequently arise.
This paper shows an extended approach of incest prevention by maintaining information
about ancestors within the chromosome and modifying the selection for reproduction in
order to impede mating of individuals belonging to the same “family” , for a predefined
number of generations.
This novel approach was tested on a set of multimodal functions. Description of
experiments and analyses of improved results are also shown.
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IMPROVING EVOLUTIONARY ALGORITHMS PERFORMANCE BY
EXTENDING INCEST PREVENTION

1. INTRODUCTION

Natural systems provide a powerful source of inspiration for the design of artificial
systems since even modest biological systems are adept at solving complex, real world
problems.
Genetic Algorithms (GAs), a special class of Evolutionary Algorithms (EAs), attempt to use the
mechanism of natural selection to search a problem space using the Darwinian theory of natural
selection and population genetics [9]. They were developed by John Holland and coworkers [8]
at the University of Michigan in the 1970s and have been studied by other research groups
since. These studies have established the GA as a robust technique effective across a spectrum
of problems even in the presence of difficulties such as noise, multimodality, high-dimension-
ali ty and discontinuity [3]. GA's have been applied to a wide variety of problems from pipeline
engineering [6], VLSI circuit layout [1],  [2], resource scheduling [12] and machine learning [7].
As shown in the following pseudo-code, a GA maintain a population of multiple individuals
(chromosomes) which evolve throughout generations by reproduction of the fittest
individuals. Selection, crossover and mutation are the main operators used for modifying
individual features. So, it is expected that evolved generations provide better and better
individuals (searchers in the problem space).

begin
t:= 0; // t is the generation number
initialize  P(t); // P(t ) is the population at generation t
evaluate individuals in  P(t);
while end condition is not true do
begin

t := t + 1;
select C(t) from P(t-1);  //C(t) stands for the mating pool
recombine and mutate individuals in C(t) building C’ (t);
evaluate individuals in C’ (t);
select individuals from C’ (t) to replace individuals in P(t-1) to build P(t)

end
end

In the case of multimodal functions the problem space, also called the fitness landscape,
provide multiple suboptimal points. Depending on the type of operators used and their
frequency of application, the convergence to these suboptimal points can arise. This effect,
known as premature convergence, is mainly derived from a loss of population diversity
before optimal, or at least satisfactory values, have been found.
A possible strategy to maintain population (genetic) diversity, attempting to avoid premature
convergence is a mating strategy known as incest prevention.
This approach was first used by Eshelman and Schaffer [4] who avoided mating of those
pairs showing similarities. As a bit string representation was used for their experiments
similarities were determined on the parent’s hamming distance.
The present work proposes an extended, representation-independent-approach of incest
prevention. This goal is achieved by maintaining information about ancestors within the
chromosome structure and modifying the selection for reproduction. In this way mating of
individuals belonging to the same “family” is avoided for a predefined number of
generations.

This novel approach was tested on a set of multimodal functions. We concentrate here on
description of experiments and analyses of improved results on two of those functions.



2. GENERAL DESCRIPTION OF EXTENDED INCEST PREVENTION (EIP)

In EIP the concept of incest is highly related to the concept of mating members of the same
family and to prevent it this approach allows recombination of individuals without common
ancestors only.
To build the new population in EIP, individuals are randomly chosen from the previous one
according to the conventional fitness proportional selection, but they are allowed to
crossover if no common ancestors are detected in earlier generations. In this way exchange
of similar genetic material is reduced and population diversity is maintained up to some
convenient degree. Persistent high population diversity has also a detrimental effect: to slow
down the search process.
To make this point clearer we have to note that by allowing crossover only on some non
relative individuals, we modify the effect of the selection mechanism on the population.
Moreover, selection is the only operator of an EA where the fitness of an individual affects
the evolution process. In such a process two important, strongly related, issues exist:
population diversity and selective pressure enforced by the mechanism. They are the sides of
the same coin: exploration of the searching space versus exploitation of information gathered
so far. Selection plays an important role here because strong selective pressure can lead to
premature convergence and weak selective pressure can make the search ineffective [9].
Focussing on this equil ibrium problem significant research has been done [10], [5].
 In this work we address the issue by fixing the number of generations to determine the ancestry
relationship between individuals.
 The following pseudo-code delineates a procedure to prevent incest between members of the
same or consecutive generations (brother-sister and parent-offspring).
 
procedure parent selection

begin
for 1 to sizepop

select indiv-1 C(t)
select indiv-2 C(t)
while  ((parent(indiv-1)=parent(indiv-2)) OR

    (indiv-1=parent(indiv-2)) OR
    (indiv-2=parent(indiv-1)))
select indiv-2 C(t)

end while
recombine and mutate individuals in C(t) building C’ (t);

end for
end

3. EXPERIMENTS DESCRIPTION

The experiments consisted in contrasting results obtained from EIP and a simple, but non
canonical, genetic algorithm (SGA). Both approaches worked on the optimization of three
testing functions f1, f2 and f3, described below. For our experiments, series of 20 runs each with
randomised initial population of size fixed to 80 individuals were performed on each function,
using proportional selection, binary coded representation, elitism, one point crossover and bit
flip mutation. The number of generations was variable and probabil ities for crossover and
mutation were fixed to 0.65 and 0.001 for f1 and f2 and 0.50 and 0.005 for f3, respectively.  In
order to isolate the convergence effect of EIP, the kind of selection mechanism, genetic
operators and parameter settings chosen were those commonly used in optimising with a simple
GA.

For this report, we choose contrasting results on three multimodal functions of varying
difficulty:



f1: Michalewickz’s multimodal  function

f2: Michalewickz’s highly multimodal  function
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As an indication of the performance of the algorithms the following relevant performance
variables were chosen:

Ebest = ((opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or
estimated, optimum value opt_val. It gives us a measure of how far are we from that opt_val.

Epop = ((opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the population mean fitness when compared with opt_val. It tell us
how far the mean fitness is from that opt_val.

Gbest: Identifies the generation where the best value (retained by elitism) was found.

4. RESULTS

As a termination criterion, on each function a variable number of generation between a lower
bound of 300 and an upper bound of 1000 was determined when the difference of population
mean fitness, between two consecutive generations: )()1( tPtP ff −= +ε  was less than 10-4.

A general overview for EIP values contrasted with the corresponding SGA values, follows.
Although the optimum was reached in many runs of each series, to contrast the performance of
the algorithms only statistical data is reported. Mean values and corresponding variance for the
above mentioned performance variables were studied. This was done for all functions and
experiments.

Function f1

Ebest results were analysed for SGA and two EIP variants: EIP2G and EIP3G, which prevent
incest during two or three consecutive generations respectively. In the following  tables µperfvar,
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σ perfvar, σ/µ perfvar stands for the mean, standard deviation and coeff icient of deviation of the
corresponding performance variable (perfvar)
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Fig. 1 Ebest values throughout the experiments for SGA, EIP2G and EIP3G on f1.
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Fig. 2 Percentile of  Ebest values below and above 0.5% throughout
the experimentsfor SGA, EIP2G and EIP3G on f1.

µµEBEST σσ EBEST σσ /µµ EBEST
SGA 2,17438421 4,1829588 1.923744

EIP2G 0,41339136 1,03931327 2.514111
EIP3G 0,24635909 0,57028618 2.314857

Table 1. Mean and standard deviation values for Ebest throughout
the experiments for SGA, EIP2G and EIP3G on f1.

Figures 1 and 2, and table 1 show that the EIP approach clearly outperforms SGA on
function f1 optimisation: the number of optimal hits through the series is greater (fig. 1). It
also can be perceived that, preventing incest during three consecutive generations is better
than doing it on two generations only. Also it is important to remark that Ebest values are
better and remain enough centralized around the mean in any EIP variant when they are
contrasted against the SGA.



Analysis of Epop follows.
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Fig. 3 Epop values throughout the experiments for SGA, EIP2G and EIP3G on f1.
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Fig. 4 Percentile of  Epop values below and above 1.5% throughout
the experimentsfor SGA, EIP2G and EIP3G on f1.

µµEPOP σσ EPOP σσ/µµ EPOP
SGA 2,6557993 4,4210455 1.664676

EIP2G 1,3914906 2,0325115 1.460672
EIP3G 0,9162802 2,0163942 2.2006375

Table 2. Mean and standard deviation values for Epop throughout
the experiments for SGA, EIP2G and EIP3G on f1.

Figures 3 and 4, and table 2 show that in the final stages, when the algorithm converges,
population remains closer to the optimum value when either EIP approach is used. It also can
be observed that, EIP3G is better than EIP2G. Epop values are also better and remain enough
centralized around the mean in any EIP variant when they are contrasted against the SGA.



Function f2

Following figures and tables discuss on results for f2
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Fig. 5 Ebest values throughout the experiments for SGA, EIP2G and EIP3G on f2.
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Fig. 6 Percentile of Ebest values below and above 1.5% throughout
the experiments for SGA, EIP2G and EIP3G on f2.

µµEBEST σσ EBEST σσ /µµ EBEST
SGA 3,43027374 3,25609318 0.949222

EIP2G 2,33285389 1,98179553 0.849515
EIP3G 1,247088019 1,482983636 1.189157

Table 3. Mean and standard deviation values for Ebest throughout
the experiments for SGA, EIP2G and EIP3G on f2.

Although with less performance than in the f1 case, for both approaches SGA and EIP, here
again figures 5 and 6, and table 3 show that the EIP approach clearly outperforms SGA when
optimizing function f2. The number of optimal hits through the series is greater (fig. 5). It
also can be perceived that, preventing incest during three consecutive generations is better
than doing it on two generations only. Here, also  Ebest values are better  and remain enough
centralized around the mean in any EIP variant when they are contrasted against the SGA.



Analysis of Epop follows.
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Fig. 7 Epop values throughout the experiments for SGA, EIP2G and EIP3G on f2.

25
35

70
75

65

30

0

20

40

60

80

Epop <2% Epop >= 2%

SGA

EIP2G

EIP3G

Fig. 8 Percentile of  Epop values below and above 2% throughout
the experimentsfor SGA, EIP2G and EIP3G on f2.

µµEPOP σσ EPOP σσ/µµ EPOP
SGA 4,69946624 3,08721954 0.701725

EIP2G 3,64490413 2,27059911 0.622951
EIP3G 1,247088019 1,482983636 1.189157

Table 4. Mean and standard deviation values for Epop throughout
the experiments for SGA, EIP2G and EIP3G on f2.

Figures 7 and 8, and table 4 show that in the final stages, when the algorithm converges,
population remains closer to the optimum value when either EIP approach is used. It also can
be observed that, EIP3G is better than EIP2G. Epop values are also better and remain enough
centralized around the mean in any EIP variant when they are contrasted against the SGA.



Function f3

Following figures and tables discuss on results for f3
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Fig. 9 Ebest values throughout the experiments for SGA, EIP2G and EIP3G on f3.
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Fig. 10 Percentile of Ebest values below and above 0.003% throughout
the experiments for SGA, EIP2G and EIP3G on f3.

µµEBEST σσ EBEST σσ /µµ EBEST
SGA 0,06338075 0,24056168 3,79550068

EIP2G 0,00293075 0,06045548 20,6279894
EIP3G 0,00411278 0,05958231 14,4871133

Table 5. Mean and standard deviation values for Ebest throughout
the experiments for SGA, EIP2G and EIP3G on f3.

Here with much better performance than when optimizing f1 or f2, for any approach, figures
9 and 10 and table 5 show that the EIP approach clearly outperforms SGA when optimizing
function f3. It also can be perceived that, preventing incest during three consecutive
generations is better than doing it on two generations only. Here, again Ebest values are
better but a slower dispersion around the mean in any EIP variant is observed.



Analysis of Epop follows.
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Fig. 11 Epop values throughout the experiments for SGA, EIP2G and EIP3G on f3.
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Fig. 12 Percentile of  Epop values below and above 0.8% throughout
the experimentsfor SGA, EIP2G and EIP3G on f3.

µµEPOP σσ EPOP σσ /µµ EPOP
SGA 0,50199955 0,5002563 0,99652739

EIP2G 0,54270477 0,49906946 0,9195966
EIP3G 0,23704757 0,49792428 2,10052472

Table 6. Mean and standard deviation values for Epop throughout
the experiments for SGA, EIP2G and EIP3G on f3.

In the case of function f3, although both approaches behave well figures 11 and 12, and table
6 show that in the final stages, when the algorithm converges, population remains closer to
the optimum value when either EIP3G or SGA approach is used. It also can be observed that,
EIP2G is less dispersed than EIP3G.

ANALYSIS OF GBEST

SGA EIP2G EIP3G
µµGBEST σσ GBEST σσ /µµ GBEST µµGBEST σσ GBEST σσ /µµ GBEST µµGBEST σσ GBEST σσ /µµ GBEST

f1 207,15 83,53 0,40 182,9 72,04 0,39 182,9 72,04 0,39
f2 241,65 79,41 0,32 237,05 68,66 0,28 237,05 68,66 0,28
f3 565,9 262,60 0,46 379,45 224,70 0,59 379,45 224,70 0,59

Table 7. Mean, standard deviation and coefficient of deviation values for Gbest throughout
the experiments on each function under each approach



Table 7, clearly shows that the best individual retained by elitism, is found in earlier
generations when we use any EIP variant. Values are dispersed similarly around the mean
for any approach.

5. CONCLUSIONS

EIP, a variant of incest prevention is presented here. Instead of using a measure of
similarities between individuals through their Hamming distance to prevent recombination,
EIP avoids breeding between individuals belonging to the same parentage for a limited
number of generations.
This approach showed evidence of better performance when contrasted with traditional GA
approaches on optimization of multimodal functions of varied difficulty. The optimal value
was reached in many runs of each series and the mean value for the best individual
throughout the series was always found earlier and was better than with SGA.
On the testing functions set, prevention through three consecutive generations showed better
results than when it is applied through only two consecutive generations.
Experiments with a greater number of consecutive generations, not reported here, were also
performed but the process shows higher overhead when looking for distinct ancestry of
individuals in localized search. Further work would be necessary to determine an adequate
limit to the number of consecutive generations involved in incest prevention.
This new variant presents also an alternative criterion to prevent incest that is independent of
the individual's representation and consequently can be applied to integer, real, vectored or
other representations without change.
Presently EIP is being tested on a wider set of testing functions and even if it can add some
overhead due to the control, specifically when the genetic diversity of the initial population
is not high, the results are promissory.
Further research will i nclude thorough inspection of initial and evolved population diversity
in order to maintain improved performance.
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