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Abstract. We present a series of monometallic ([Cu(Mabiq)OTf] (1) and [Cu(Mabiq)] (2)) and 

bimetallic copper-Mabiq complexes ([Cu2(Mabiq)(PPh3)2(OTf)2] (3) and [Cu2(Mabiq)(PPh3)2]PF6 

(4). The latter compounds contain an additional CuI center that binds in a tetrahedral fashion to the 

external bipyrimidine nitrogens of the macrocyclic ligand. Compounds 3 and 4 represent the first 

examples of bimetallic transition metal Mabiq complexes, stable both in solution and in the solid 

state. The structural and electronic properties of compounds 1 – 4 were analyzed by means of X-

ray crystallography, cyclic voltammetry and spectroscopic methods. One-electron reduced 2 and 

4 consist of a CuII ion coordinated by a Mabiq ligand radical, [CuII(Mabiq•)]. Thus, both bimetallic 

compounds are mixed valent with respect to the copper oxidation states. The formally CuI 

complexes can also be generated photochemically, upon irradiation of 1 or 3 with visible light in 

the presence of a sacrificial electron donor. 
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Introduction. Tetraaza-macrocyclic metal centers feature prominently among enzymes, and 

therein support diverse functions that include O2 activation (heme centers), isomerization reactions 

(vitamin B12) and light harvesting (chlorophylls).1-8 The chemistry and photochemical properties 

of these cofactors have inspired the synthesis of tetraazamacrocyclic metal complexes for over a 

century.9-13 To date, the structural and functional diversity within this family of synthetic 

compounds is vast. The biomimetic porphyrins, corrins and phthalocyanins represent cornerstone 

molecules among a growing number of related, yet more complex, scaffolds.14-21 The 

corresponding coordination complexes mimic many properties of their biological counterparts, 

including photosensitizer capabilities and reactivity toward small molecules.21-25 However, the 

array of N4-macrocyclic compounds also continue to yield new reactivities and wide-ranging 

applications in areas ranging from catalysis,26-27 to solar cell and photodiode technologies,28-29 to 

medical applications.30-31 

Over the past years, we have examined the coordination chemistry and redox properties of a 

macrocyclic biquinazoline ligand, Mabiq.32 This ligand resembles the more common corrins and 

phthalocyanines, and has several notable features. The molecule is redox-active, giving rise to 

characteristic electronic structures and offering an additional electron storage site in the reactivity 

of the corresponding metal compounds.33-35 The molecule also exhibits promise for 

photoredoxcatalysis, as recently demonstrated for the [NiII(Mabiq)]+ complex.36 Furthermore, the 

Mabiq ligand is distinct from the majority of N4-macrocycles in that it provides a second peripheral 

metal binding site. This latter feature has so far been underexplored. Our studies have primarily 

focused on the characterization of the monometallic compounds, although binding of cobalt and 

sodium ions to the second coordination site was observed in several cases.34-35 The established 

properties of the Mabiq ligand and the availability of the second metal binding site opens new 
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avenues for reactivity, including the potential for bifunctional (photo)catalysis. Thus, we recently 

turned our attention to the synthesis and study of bimetallic Mabiq complexes. We herein present 

a series of mono- and bimetallic Cu-Mabiq compounds, which include mixed valent CuICuII forms. 

The synthesis and redox properties of the complexes are described, along with results of 

preliminary studies examining their photochemical properties. 

 

Synthesis and Solid-State Structures. The monometallic copper complexes were synthesized 

in straightforward reactions of the macrocyclic ligand with various copper salts (Scheme 1). The 

reaction of HMabiq with Cu(OTf)2 yielded the brown solid [Cu(Mabiq)OTf] (1), whereas the one-

electron reduced [Cu(Mabiq)] (2) was synthesized using [Cu(MeCN)4]PF6 as the CuI source. 

Compound 2 alternatively can be generated upon reduction of 1 with one equiv. of Na/Hg. The 

copper-containing compounds complete the MII and formally MI series of late first-row transition 

metal Mabiq complexes. The sequence of complexes permits an evaluation of periodic trends in 

redox properties, electronic structures and reactivity among M-Mabiq complexes. 

The presence of the external bipyrimidine binding site of the Mabiq ligand inspired a strategy to 

incorporate a copper-based photosensitizer at this position and, thereby, generate potential 

binuclear photocatalysts. A binuclear Co-Mabiq complex, [Co2(Mabiq)Cl3], was previously 

isolated, but appeared to suffer from solution instability. However, heteroleptic CuI 

photosensitizers based on phenanthroline and phosphine ligands are well-known.37-45 We 

speculated that a cuprous ion could be stably supported with a comparable coordination 

environment – supplied by the Mabiq bipyrimidine group and added triphenylphosphines – and 

that this second copper unit might exhibit similar luminescence properties. The reaction of 1 with 

[Cu(MeCN)4]OTf and two equivalents of PPh3 yielded the binuclear [Cu2(Mabiq)(PPh3)2(OTf)2] 
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(3), isolated as an orange solid. The one-electron reduced, green solid [Cu2(Mabiq)(PPh3)2]PF6 (4) 

can be generated upon reaction of HMabiq with two equivalents of [Cu(MeCN)4]PF6 and PPh3. 

Improved yields of 4 were obtained by addition of Cu(PPh3)3PF6 to 2. The solid-state composition 

of the dicopper complexes was verified by elemental analysis, alongside other analytical methods 

as described below.  

Molecular structures were obtained for all compounds 1 – 4 (Figure 1, Tables S1–S3). The 

copper bound within the macrocyclic cavity of 1 (Cuc) adopts a square pyramidal coordination 

geometry, with a weakly bound triflate ion in the axial position (Cuc–O1A = 2.497(4) Å), whereas 

compound 2 is square planar. The Cuc–N bond distances are comparable in the two complexes (1: 

Cuc–N(bpm)avg = 1.955 Å, Cuc–N(diketim)avg = 1.920 Å; 2: Cuc–N(bpm)avg = 1.952 Å, Cuc–N(diketim)avg = 

1.921 Å).46 In contrast, considerable differences in the C–N bond distances of the diketiminate unit 

and bridging imines of 1 and 2 are observed (Table S1). The data suggest that both compounds 

contain a cupric ion, such that 2 may be described as [CuII(Mabiq•)] instead of [CuI(Mabiq)].47 The 

former formulation is consistent with our previous findings that the formally MI-Mabiq complexes, 

across the series M = Fe, Co, Ni, Zn, possess substantial ligand radical character.33-34 In addition 

to the altered Mabiq bond distances, reduction of the ligand coincides with significant buckling of 

the macrocycle: a ~16° coplanarity difference between the two quinazoline groups of 2 is observed, 

vs. ~2° in complex 1.  

The outer metal center (Cuo) assumes a tetrahedral geometry in the bimetallic complexes 3 and 

4. Binding of the second copper ion has only a minor effect on the coordination environment of 

the central copper site. The geometry of Cuc in 4 is identical to that of the metal center in 2, whereas 

the cupric ion of 3 coordinates an additional triflate ion (Cuc–Oavg = 2.562 Å). The Cuc–N distances 

of 3 and 4 are similar to each other, and to their monometallic counterparts (3: Cuc–N(bpm)avg = 
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1.955 Å, Cuc–N(diketim)avg = 1.904 Å; 4: Cuc–N(bpm)avg = 1.954 Å, Cuc–N(diketim)avg = 1.920 Å). The 

Cu···Cu distances are 5.4602(8) Å and 5.4160(6) Å in 3 and 4, respectively. 

 

Solution state characterization. Each of the four copper complexes exhibit unique electronic 

spectra (Figure 2), but also share several spectral features with previously isolated M-Mabiq 

compounds.32-35 The intense π–π* transitions seen in the UV-visible region for 1 and 2 are common 

among the spectra of M-Mabiq complexes. The visible-NIR bands of 2 (600 – 2200 nm; Figure 

S1) typify neutral [MII(Mabiq•)] species, such that across the M-Mabiq series, ligand-centered 

reduction is favoured over metal-centered reduction, even for the copper compounds. The 

absorption spectra of the binuclear 3 and 4 differ markedly from those of 1 and 2, as well as of 

[Cu(PPh)3]PF6, an indication that both metal ions remain associated with the ligand in solution. 

The bands in the UV-visible region exhibit greater complexity and a decreased intensity vs. their 

monometallic counterparts. These absorptions may encompass CuI
o → bpm MLCT transitions in 

addition to ligand-centered transitions, as [(phen)Cu(PPh3)2]
+ compounds possess MLCT bands in 

this region.37-38, 40, 48 Compound 4 also exhibits the visible-NIR bands indicative of Mabiq-centered 

reduction (Figure 2, Figures S1 and S2), but their absorbance, likewise, is significantly diminished 

in comparison to the spectrum of 2. 

Cyclic voltammetry (CV) data for compounds 1 – 4 (Figure 3; Table 1) provide further 

information on the redox properties of the complexes, as well as insight into the influence of Cuo 

on the redox behaviour of Cuc. The CV of 1 displays two reversible reductions at −1.22 V and 

−2.15 V vs. Fc+/0 (THF), along with an additional irreversible reductive event below −2.5 V  (Figure 

S3). An oxidative event, corresponding to the CuIII/II couple, can be observed at 1.32 V for CVs in 

MeCN (Figure S4). Three redox couples appear in the CV of the four-coordinate square planar 2 
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but are shifted to significantly more positive potentials vs. the corresponding couples of the five-

coordinate 1. The redox events at −1.22 and −0.49 V in the CVs of 1 and 2, respectively, are each 

associated with the formal CuII/I couple but, more likely (vide supra), involve ligand-centered 

processes corresponding to the Mabiq/Mabiq• couple. The last reductions likely then yield a 

[CuI(Mabiq••)]2− species; evidence for a Mabiq-biradical was observed in our studies with the Co-

Mabiq compounds.34  

The effect of coordination of Cuo is evident in the electrochemical data for 3 and 4: the redox 

couples are generally shifted to more positive potentials vs. those of the monometallic counterparts 

(Table 1), but all remain reversible. The dicopper complexes exhibit irreversible oxidative 

processes in the region from 0.5 – 1.5 V that correspond to the Cuo
II/I and Cuc

III/II couples (Figure 

S4, MeCN). However, these processes cannot be differentiated, as the oxidation of CuI-

phenanthroline compounds similarly occurs at potentials greater than 0.5 V vs. Fc+/0.40, 49-50 

Overall, a wide range of oxidation states is available for the series of mono- and bimetallic copper 

compounds, which may offer advantages for reactivity. 

As expected, complexes 1 and 3 are paramagnetic with an S = 1/2 ground state. The EPR spectrum 

of 1 recorded in dichloromethane solution at room temperature bears the hallmark four-line pattern 

resulting from the hyperfine coupling of the CuII electron spin with the I = 3/2 nuclear spin of the 

63,65Cu isotopes (100% abundant). There is additional splitting on the lines to high field from 

superhyperfine coupling of all four nitrogen (14N, I = 1, 99.7% abundant) donor atoms of the Mabiq 

ligand. Such a profile is very familiar in macrocyclic CuN4 complexes.51-52 The spectrum was 

simulated yielding spin-Hamiltonian parameters: giso = 2.0782; ACu = 87 × 10–4 cm–1; AN = 14.5 × 

10–4 cm–1 (Figure 4). The addition of THF to this sample of 1 afforded a homogeneous frozen glass 

at 140 K. The spectrum is quintessentially that of a CuII species with an unpaired electron in the 
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dx2-y2 orbital (2B2 ground state) with anisotropic spin-Hamiltonian parameters for Cu: g = (2.037, 

2.040, 2.153); ACu = (25, 22, 218) × 10–4 cm–1. The glassing solvent mixture ensured resolution of 

the superhyperfine interaction with the N-donor atoms of Mabiq which is seen as an 11-line 

splitting of each of the A lines and the central g feature with magnitude, AN = (13, 13, 12) × 10–

4 cm–1. The EPR spectrum of 3 is not surprisingly similar to that of 1 giving nearly identical spin-

Hamiltonian parameters for both fluid solution (giso = 2.0788; ACu = 83 × 10–4 cm–1; AN = 14.8 × 

10–4 cm–1) and frozen glass spectra (g = (2.037, 2.040, 2.160); ACu = (20, 17 214) × 10–4 cm–1; AN 

= (13, 13, 12) × 10–4 cm–1; Figure 4). The salient difference at room temperature are the broader 

lines and consequently less resolved 14N superhyperfine splitting. This stems from the inclusion 

of a {CuI(PPh3)2} moiety which perturbs the motional tumbling of this molecule in solution as this 

is the mechanism that governs linewidth. In frozen solution, it is the uniformity of the glass which 

does lead to a slight line broadening in the spectrum of 3 though the 14N superhyperfine splitting 

remains visible for all features across the spectrum. 

Solutions of the one-electron reduced forms 2 and 4 neither exhibit EPR signals nor any 

discernible 1H NMR resonances. The room temperature magnetic moment values, as determined 

by the Evans method, are 1.8 ± 0.08 μB and 2.0 ± 0.03 μB,53 respectively. As previously noted, the 

structural and spectroscopic data imply that both complexes are comprised of the reduced Mabiq 

ligand ligated to a CuII
c ion. DFT (B3LYP) calculations were carried out on 1 – 4 to further probe 

their electronic structures (Figures S5 – S7, Tables S4 – S9). Both the ST = 0 and ST = 1 ground 

states of 2 were examined. For the ST = 0 configuration, the BS(1,1) approach provided a lower 

energy solution vs. the UKS calculation, which nevertheless yielded an open-shell solution and an 

identical electronic structure. The triplet (UKS) and open-shell singlet BS(1,1) species are near-

degenerate (ΔE (ST = 1 – ST = 0) = 0.5 kcal mol–1). In each case, one metal-centered and one ligand-
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centered SOMO can be identified (Figure 5), with a spatial overlap of S = 0.29. The ligand-

centered SOMO is largely distributed over the diketiminate unit, but also encompasses π-based 

orbitals of the opposing bipyrimidine. The unpaired electron on the CuII center resides in the dx2−y2 

orbital, as was determined for 1 (vide supra). Analogous calculations were carried out on the 

bimetallic 4 and yielded similar results (Figures S6 and S7). The calculated S = 0 and S = 1 ground 

state are likewise degenerate (0.7 kcal mol–1), and the electronic structures are consistent with the 

[Cuo(↑↓)(Cuc↑)(Mabiq↓)]+ or [Cuo(↑↓)(Cuc↑)(Mabiq↑)]+ formulations of 2. The presence of the 

external CuI
o ion has no impact on the nature of the SOMOs. Although we currently cannot 

unambiguously explain the magnetic moments obtained for 2 and 4, which lie in between the 

expected values for an S = 0 and S = 1 state, contributions from the triplet and singlet forms of the 

compounds may account for the unusual magnetic moment values.  

 

Photochemical properties. The photochemical properties of Cu-phenanthrolines are well-

established, while CuI-phthalocyanins show only very weak fluorescence.54 We thus examined the 

steady state luminescence of 1 — 4, as well as of the metal-free HMabiq molecule, to assess the 

capacity of our compounds to act as photosensitizers. HMabiq exhibits an emission band at 521 

nm, corresponding to the excitation at 506 nm (Figure 6 and Figure S8). The 506 nm band in the 

absorption spectrum of HMabiq appears as a shoulder to the broad, more intense transitions that 

span the UV-visible region. Compound 1 also fluoresces at a similar wavelength, but the 

fluorescence is substantially reduced compared to that of the free ligand. Complexes 2 — 4 do not 

exhibit any appreciable steady state emission. One might expect that any luminescence exhibited 

by the HMabiq ligand would be retained upon coordination of a genuine CuI d10 ion. The absence 

of any observable luminescence by 2 and 4 further supports the CuII-(Mabiq•) character of the 
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complexes. Emission due to the CuI
o site also was not observed. The heteroleptic Cu-phosphine-

phenanthroline photosensitizers, as well as pyrimidine-based analogues, typically display broad 

emission bands at 600 nm, originating from MLCT transitions centered at ca. 450 nm in their 

absorption spectra.37, 44, 55 The absence of any steady-state emission for 3 and 4 suggests effective 

quenching of the Cuo fluorescence by the Cuc. 

Previous studies have shown that it is possible to photoreduce the NiII-Mabiq complex upon 

irradiation with visible light in the presence of a sacrificial electron donor.36 We thus examined 

whether the cupric containing 1 and 3 exhibited similar photochemical behaviour (Scheme 2). 

Indeed, both complexes 1 and 3 can be reduced to 2 and 4 upon irradiation (λ = 457 nm; LED see 

SI for details) in the presence of triethylamine (NEt3) as the sacrificial reductant. The 

photoreduction of 1, monitored by absorption spectroscopy, was complete within 20 min, while 

only 59% conversion of 3 to 4 was achieved in the same time period (Figure 7 and Figure S9; λ = 

457 nm, [1, 3] = 0.13 mM; [NEt3] = 0.5 M in DMF). The photoreduction of 1 also could be 

followed by EPR spectroscopy, which shows the disappearance of the CuII-Mabiq signal over 

several minutes ([1] = 0.6 mM; [NEt3] = 0.72 M in MeCN); Figure S10). Quantum yields of the 

photoreduction were determined for both 1 and 3 ([1, 3] = 0.67 mM; [NEt3] = 2.3 M in DMF; λ = 

457 nm). A higher quantum yield is obtained for the photoreduction of 1 ( = 1.2 × 10-3 ± 9 × 10-

5; Figure S12) versus the bimetallic 3 ( = 5.4 × 10–5 ± 9 × 10–6; Figure S13). The two copper 

centers clearly influence each other, as evidenced by the differing quantum yields of the mono- vs 

bimetallic complexes. Importantly, however, the presence of the outer copper center does not 

preclude photoreduction of the central metal ion. At a slightly shorter wavelength (λ = 415 nm) 

the quantum yields also are nearly identical for the mono- and bimetallic complexes ( = 6.0 × 
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10–4 and  = 1.6 × 10–4 for 1 and 3, respectively). An examination of the nature and lifetimes of 

the excited states of the Cu and related Mabiq compounds is currently underway. 

 

Conclusions. 

The Cu-Mabiq complexes presented herein complete the series of late transition metal 

complexes of this unique ligand scaffold. The compounds share a number of features with other 

M-Mabiq complexes, including preferential reduction of the Mabiq diketiminate moiety over 

metal-centered reduction. The dicopper complexes 3 and 4 provide the first examples of stable 

transition metal bimetallic Mabiq compounds, and have therefore enabled us to examine the 

influence of the second metal center on the properties of the central metal ion; a key facet for the 

further development of these systems as bifunctional catalysts. The addition of CuI
o has only a 

minor effect on the redox potentials of Cuc and does not alter the electronic structure of the reduced 

CuII(Mabiq•) unit. The bipyrimidine group of the Mabiq ligand, thus, does not appear to mediate 

strong coupling between the two metal ions. The photochemical properties exhibited by the Cu-

Mabiq unit also are retained, with only a moderate effect of Cuo on the quantum yields for the 

photoreduction process. The data suggest that each individual metal ion can be further tuned for 

distinct functions without adversely affecting the neighboring site. As such, one can envision 

several roles for the individual metal centers in promoting reactivity. For example, through the 

judicious choice of conditions, Mc could act as a photosensitizer in conjunction with Mo as a 

catalytically active site, taking advantage of the less constrained coordination environment of the 

outer binding site. Alternatively, Mo could be used to incorporate pendant groups, position 

substrates or introduce steric constraints in order to enhance reactivity occurring at the Mc. With a 
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greater understanding of the bimetallic Mabiq systems, we now turn our attention to exploring 

these aspects. 
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EXPERIMENTAL 

General Procedures. Cu(OTf)2, Cu(OTf), triphenylphosphine and triethylamine were 

purchased from Sigma Aldrich, and [Cu(MeCN)4]PF6 was purchased from Strem Chemicals. 

Solvents were dried by passage over activated alumina columns, deoxygenated and stored over 

activated 3 or 4 Å molecular sieves prior to use. All metal complexes were synthesized under an 

inert atmosphere. [Cu(PPh3)(MeCN)]PF6 was synthesized according to literature procedure.56 

H(Mabiq) was synthesized as previously described.32, 34 Tetrabutylammonium 

hexafluorophosphate was recrystallized three times from ethanol and Ferrocene was sublimated 

prior to use. 

Cu(Mabiq)OTf (1). Triethylamine (12 µL, 0.13 mmol) was added to a solution of H(Mabiq) 

(70.0 mg, 0.13 mmol) in dichloromethane (10 mL), and Cu(OTf)2 (46.3 mg, 0.13 mmol) was added 

subsequently. The solution quickly turned dark red and, after stirring for 18 hours, was dark brown. 

The product solution was filtered over Celite. Single crystals suitable for X-ray diffraction and 

used for all other data analysis (98.9 mg, 0.11 mmol, 89% yield) were obtained by slow diffusion 

of pentane into the crude product solution. When used for measurements other than X-ray 

diffraction, the crystals were washed with pentane and diethyl ether and dried under vacuo. 

The unit cell contains one molecule of dichloromethane per molecule of 1. Anal. Calcd for 

C35H35Cl2CuF3N8O3S (1·CH2Cl2): C, 50.09; H, 4.20; N, 13.35. Found: C, 50.09; H, 4.21; N, 13.32. 

ESI-MS(+): m/z 604 ([M]+). UV-Vis [λmax, nm (ε, M-1 cm-1), THF]: 268 (5.9 x 104), 340 (3.3 x 

104), 471 (2.2 x 104).  

Cu(Mabiq) (2). Triethylamine (21 µL, 0.14 mmol) was added to a solution of H(Mabiq) (75 mg, 

0.14 mmol) and acetonitrile (10 mL), and Cu(MeCN)4PF6 (52 mg, 0.14 mmol) were added 

subsequently. The solution was stirred overnight, resulting in a green suspension. The precipitate 
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was filtered off and washed with acetonitrile, yielding a green powder (yield = 62%). Single 

crystals suitable for X-ray diffraction were obtained by the addition of pentane into a solution of 

2 in THF. Alternatively, Na/Hg (5%, 38 mg, 0.09 mmol) was added to a solution of 1 (50 mg, 0.09 

mmol) in 10 mL MeCN. After 18 hours of vigorous stirring, the green precipitate was filtered over 

a sintered glass filter and washed with 20 mL MeCN. A higher purity sample could be obtained 

when the green powder was dissolved in THF and filtered over Celite. Anal. Calcd for C33H33CuN8 

(2): C, 65.49; H, 5.50; N, 18.51. Found: C, 65.21; H, 5.75; N, 18.38. ESI-MS (+): m/z 604 ([M]+). 

UV-Vis [λmax, nm (ε, M-1 cm-1), THF]: 258 (6.8 x 104), 336 (3.9 x 104), 353 (4.1 x 104), 416 (1.3 

x 104), 683 (6.3 x 103), 752 (5.4 x 103), 1326 (2.7 x 103).  

Cu2(Mabiq)(PPh3)2(OTf)2 (3). Cu(MeCN)4OTf (26 mg, 0.068 mmol) and PPh3 (36 mg, 0.14 

mmol) were added to a solution of 2 (57 mg, 0.07 mmol) in THF (10 mL). The brown solution 

turned dark red after 18 hours of stirring. The product solution was filtered over Celite. Single 

crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a THF 

solution of 3. When used for measurements other than X-ray diffraction, the crystals were washed 

with pentane and dried under vacuo (70 mg, 0.05 mmol, 74%). Anal. Calcd for 

C72H66Cu2F6N8O6P2S2: C, 57.18; H, 4.26; N, 7.51. Found: C, 57.00; H, 4.25; N, 7.62. (UV-Vis 

[λmax, nm (ε, M-1 cm-1), THF]: 273 (4.9 x 104), 362 (12.4 x 104), 469 (1.8 x 104).  

[Cu2Mabiq(PPh3)2](PF6) (4). [Cu(PPh3)3(MeCN)]PF6 (67 mg, 0.07 mmol) was added to a 

solution of 2 (41 mg, 0.07 mmol) in THF (10 mL). After 18 hours of vigorous stirring, the light 

green solution became a dark green reaction mixture, which was filtered over Celite. Single 

crystals suitable for X-ray diffraction and all other data analysis were obtained by slow diffusion 

of pentane into the filtrate. When used for measurements other than X-ray diffraction, the crystals 

were washed with pentane and dried under vacuo (73.4 mg, 0.055 mmol, 82 % yield). The unit 
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cell contains one molecule of tetrahydrofuran per molecule of 4. Anal. Calcd for 

C73H70Cu2F6N8OP3 (4·THF): C, 62.17; H, 5.07; N, 7.94. Found: C, 62.57; H, 5.25; N, 8.17. UV-

Vis [λmax, nm (ε, M-1 cm-1), THF]: 257 (3.7 x 104), 355 (1.5 x 104), 386 (1.4 x 104), 686 (2.6 x 103), 

759 (2.7 x 103), 888 (6.5 x 102), 1014 (6.2 x 102), 1202 (5.3 x 102), 1665 (5.7 x 102). 

Physical measurements. X-band EPR spectra were recorded on a Bruker ELEXSYS E500 

spectrometer, and simulations performed with Bruker’s Xsophe software package.57 X-band EPR 

spectra monitoring photoconversion were recorded on a Mini Scope MS5000EPR spectrometer in 

a sealed capillary. Solution state NMR spectra were recorded on a Bruker Avance Ultrashield (400 

MHz 1H). For determining magnetic susceptibility by the Evans method, cyclohexane was used as 

a reference. Electronic spectra were measured on a Shimadzu UV-3600 Plus UV-Vis-NIR 

spectrophotometer or an Agilent Cary 60 UV-Vis spectrophotometer. All absorption 

measurements were recorded after the acquisition of a baseline with pure solvent, or with the 

double beam setup with a solvent filled cuvette as the reference. UV Quartz cuvettes (190 – 2500 

nm) with a 1 cm pathlength were used in all measurements. Luminescence spectra were recorded 

on a Varian Cary Eclipse Fluorescence Spectrophotometer under anaerobic conditions in THF 

(c(compound) = 0.05 mM). ESI mass spectra were measured on a Thermo ScientificTM UltiMateTM 

3000 HPLYHPLC System using the loop mode. Microanalyses were carried out at the Technische 

Universität München. Electrochemical measurements were carried out with an EmStat3+ 

potentiostat using a three-electrode cell equipped with a glassy carbon working electrode and 

counter electrode and a Pt wire as reference electrode. Potentials are reported with reference to an 

internal standard of ferrocenium/ferrocene (Fc+/0).  

Crystallography. Crystallographic data were collected on an X-ray single crystal diffractometer 

equipped with a CMOS detector (Apex III, κ-CMOS), an IMS microsource with MoKα radiation 
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(λ = 0.71073 Å) and a Helios mirror optic using the Apex III software package.13, 58 The 

measurements were performed on a single crystal coated with perfluorinated ether. The crystal 

was fixed on top of a microsampler and transferred to the diffractometer. The crystal was frozen 

under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. 

Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and 

background using SAINT.59 Absorption corrections, including odd and even ordered spherical 

harmonics were performed using SADABS.59 Space group assignments were based upon 

systematic absences, E statistics, and successful refinement of the structures. Structures were 

solved by direct methods with the aid of successive difference Fourier maps, and were refined 

against all data using SHELXLE60 in conjunction with SHELXL-2014.61 Hydrogen atoms were 

assigned to ideal positions and refined using a riding model with an isotropic thermal parameter 

1.2 times that of the attached carbon atom (1.5 times for methyl hydrogen atoms). If not mentioned 

otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Full-

matrix least-squares refinements were carried out by minimizing Σw(Fo
2-Fc

2)2 with SHELXL-9762 

weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion 

corrections for the non-hydrogen atoms were taken from International Tables for 

Crystallography.59  

Images of the crystal structures were generated by PLATON and Mercury.63-64 

 

Density Functional Theory (DFT) Calculations. All DFT calculations were performed with 

the version 3.0.2 ORCA program package.65-66 The input geometry for all molecules were defined 

by the crystallographic coordinated, and calculations utilized by the B3LYP67-70 hybrid functional 

without imposing molecular symmetry. The all-electron Gaussian basis sets were those developed 

by the Ahlrich’s group.71-72 Triple-ζ quality basis sets (TZV(P)) with one set of polarization 
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functions72 on the metals and on the atoms directly coordinated to the metal center were used for 

transition metal ions and all atoms other than carbon and hydrogen, for which the double-ζ basis 

sets with one set of polarization functions71 (SVP) were used. The resolution of the identity 

approximation (RIJONX) was employed73-77 with matching auxiliary basis sets.76-77 SCF 

calculations were tightly converged (1 x 10-8 Eh in energy, 1 x 10-7 Eh in the density change, and 1 

x 10-7 Eh in maximum element of the DIIS error vector). Geometry optimizations were carried out 

in redundant internal coordinates without imposing symmetry constraints. In all cases the 

geometries were considered converged after the energy change was less than 5 x 10-4 and 3 x 10-4 

Eh Bohr-1, respectively, and the root-mean square and maximum displacements of all the atoms 

were smaller than 2 x 10-3 and 4 x 10-3 Bohr, respectively. For calculations where the broken 

symmetry (BS) approach was used,78-79 the notation BS(m,n) refers to a broken symmetry state 

with m unpaired α-spin electrons essentially on fragment 1 and n unpaired β-spin electrons 

localized on fragment 2. BS solutions were analyzed via the corresponding orbital 

transformation.80-82 Orbital/spin density plots were created using VMD.83 
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Scheme 1. Synthesis of mono- and bimetallic Cu-Mabiq compounds 1 – 4. 
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Figure 1. Molecular structures of 1 – 4 (50% probability ellipsoids). Hydrogen atoms, solvent 

molecules and non-coordinating counter ions are omitted for clarity.   
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Figure 2. Electronic spectra of 1 (black), 2 (green), 3 (blue) and 4 (orange) in THF. 
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Figure 3. Cyclic voltammograms of 1 – 4 (0.1 V s–1; 0.1 M [N(n-Bu)4]PF6; 0.5 mM of 1 – 4 in  

THF). 
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Table 1. Reduction Potentials (V vs Fc/Fc+) of 1 – 4 in THF.  
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Figure 4. X-band EPR spectra of 1 and 3. Left panel: CH2Cl2 solution at 293 K; right panel: 

CH2Cl2/THF frozen glass at 140 K. Experimental data are shown by the solid line; simulation 

depicted by the red trace (experimental conditions: frequency, 9.420 GHz; modulation, 0.2 mT; 

power, 0.63 mW). 
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Figure 5. Top: DFT-derived (B3LYP) spin density plots for 2 based on Löwdin population 

analysis for A: S = 0 (BS(1,1) calculation); B: S =1 (UKS calculation). Bottom: DFT-derived 

(B3LYP) depiction of the SOMOs of 2. A: S = 0 state, BS(1,1) with spatial overlap S; B: S = 1 

state (UKS). 
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Figure 6. Absorption (––) and emission (···) spectra of HMabiq (orange, λexc = 506 nm, λem = 521 

nm) and 1 (black, λexc = 497 nm, λem = 513 nm); c(1, HMabiq) = 0.05 mM in THF; room 

temperature; data acquired under anaerobic conditions. The respective fluorescence quantum 

yields are provided in the SI.  
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Scheme 2. Photoreduction of 1 to 2. The same scheme applies for the reduction of 3 to 4. 
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Figure 7. Spectral evolution during photoreduction of 1 over a period of 20 minutes ([1] = 0.13 

mM; [NEt3] = 0.5 M; DMF; λ= 457 nm). Inset depicts the spectrum of 2 ([2] = 0.13 mM; DMF) 

for reference. 
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For Table of Contents Only.  

A series of mono- and bimetallic copper-Mabiq complexes is described. One-electron reduction 

of the CuII and CuICuII complexes is ligand-centered, yielding the (Mabiq•) form of the 

macrocycle. Both bimetallic compounds are thus mixed-valent with respect to the metal ions. The 

influence of the outer copper ion on the redox, spectroscopic and photochemical properties of the 

central ion was examined.  The two metals ions interact weakly, such that the photoactivity of the 

central Cu-Mabiq unit is retained. 

 


