

Design of a gesture detection
system at real time

Master Thesis

Submitted by Roger Villanueva Sert

In fulfillment of the requirements

For the Master’s Degree in Electrical Engineering

Under the direction of:

Professor Stéphane Dupont

August 2017

Faculté Polytechnique

__

« You have to have a big vision and take very small steps to get there.

You have to be humble as you execute but visionary and gigantic in terms

of your aspiration. In the Internet industry, it's not about grand

innovation, it's about a lot of little innovations: every day, every week,

every month, making something a little bit better »

(Calacanis, 2009)

 Master’s Degree in Electrical Engineering

Final Thesis Summary

AUTHOR - Roger Villanueva Sert

WORK TITLE - Design of a gesture detection system at real time

- Conception d’un système de detéction de gestes en

temps réel

(English and French)

KEY WORDS (English and French)

Convolutional neural network, CNN, convnets, gesture detection, face

detection, background subtraction, computer vision.

Réseau neuronal convolutif, CNN, convnets, détection de geste, détection

de visage, soustraction de fond, vision par ordinateur.

SUMMARY (350 words, English and French)

The project I have realized consist in developing a gesture detection

system to work at real time situations. In particular, it has the aim to

detect a wink of an eye and activate a flag when that happens.

There are some actual projects and systems that already do that, but

they are focused on voice detection. This project follows the same

principles but it uses an input of video instead of a sound.

The creation of the pipeline was made in different parts. First of all, a

convolutional neural network was created to detect the gesture in a

sequence of images and it had to be trained to do so.

Secondly, a convolutional neural network for face detection was used as

background subtraction, in order to select the main part of the image.

Finally, different methods of optimization were taken into account, so as

to make the processing operations work faster.

A code was implemented to prove the background susbstraction of the

image in order to reduce the processing time. Using this code, results

were obtained about the accuracy and the processing time using Python.

However we only obtained results from the part of background

subtraction because the part of detecting the gesture was finally

proposed as future work according to the lack of time and resources.

All in all, the results obtained were about the simplification of the image

doing the background subtraction using a face detection method. We

obtained that the time to detect the zone of the face took an average of

0.65 second.

Knowing that the system needs to take an image with the camera, do the

background subtraction and process a convolutional neural network

several times to detect a gesture, we deduce that the time that lasts the

face detection makes that imposible.

It is needed to improve it more to make it work at real time.

PROFESSOR - Stéphane Dupont

PRESENTATION DATE - 21st of August, 2017.

ACKNOWLEDGMENTS

This work would not have been possible without the collaboration and

assistance of the people that surrounded me, and helped me to grow and

reflect during my final thesis report about computer vision and machine

learning.

First of all, I would like to thank the University of Mons for giving me the

opportunity to invest and develop a work Master Degree related to the

Electrical Engineering field.

I would also like to thank my final thesis professor and tutor for the

project, Stéphane Dupont, to encouraging me to learn, for his help in the

approaches and for giving me the opportunity to learn about this process,

but also for showing the benefits of machine learning methods.

A special thanks to all the members of the University of Mons that have

offered me the facilities and materials required to implement this project.

I have to thank my friends for supporting me during the practical part of

my work. Since the very beginning, they showed to be very interested on

this domain, and opened to learn about it. This experience helped me to

know about the strengths and weakness of this approach and to see which

are the level and methods used on this field nowadays.

Finally, to the Universitat Politècnica de Barcelona for giving me the

chance to do my master thesis abroad.

To all of you, thank you.

Design of a gesture detection system at real time

Index

INDEX

1. Introduction ... 1

2. General method .. 1

2.1. Problem definition .. 1

2.2. Similar projects ... 3

2.3. CNN theory ... 5

2.4. Algorithm .. 9

2.5. Hardware used ... 15

2.6. Software used ... 16

2.7. Datasets used ... 17

2.8. Efficiency methods ... 18

2.9. Explanation of the code .. 21

3. Results ... 27

4. Conclusions and future work ... 33

4.1. Conclusions ... 33

4.2. Future work .. 35

5. References ... 37

IMAGES INDEX ... 41

Design of a gesture detection system at real time

Introduction

1

1. Introduction

On the epoch we live in, people search for comfort and facilities to make

their current life activities, even if they do them occasionally. This has

only been possible thanks to the technology improvements that have been

made.

One example of this is the application of voice recognition methods on

electronic machines and devices. The most famous applications are SIRI

(from Apple Inc.), Ok Google (from Alphabet Inc.) and Cortana (from

Microsoft Corporation) that work as personal assistant in smartphones.

The way how they work is formed with a program running in a loop and

when it hears a word, it recognizes it and activates a flag, so another part

of the code starts running.

The finality of this project is to develop a very similar software on how Ok

Google works. There is a programming code running in a loop and when it

hears the words Ok Google, it activates a flag that starts to recognize the

words that you say after that two words.

This project is focused on the idea to activate a system without sound,

focusing on the image. The main idea is that a camera will be recording

images at real time and when it recognizes a human gesture, the system

will get activated.

It can mainly be used in places where the sound is too loud, when the

camera is far from the person that activates it or if the person is not able

to speak.

The main challenges were that the system had to have a good detection

rate with few false alarms and signal misses. Moreover, it need to have a

low power consumption due the fact that it will be running all time in a

low consumption CPU or GPU.

Design of a gesture detection system at real time

2

The report is structured in several sections. In objectives are defined the

main goals of the project at the beginning and the ones we had last days.

State of the art is divided in different parts where on similar projects we

speak about the existing projects from where we based our work. The

software used section is the main computer programs and libraries used

to code. In CNN theory we make a brief introduction about convolutional

neural networks. On data sets used we explain which ones we used and

why.

In the section of optimization, the different techniques to make the code

faster (optimization) are explained. On approaches we detail the different

steps we follow to develop the project. On explanation of the code is

shown which is the model we used on our system.

In the section of results, we show the output of the code and its times and

accuracy.

Finally, in conclusions and future work we explain our personal opinion

and future modifications to improve the code even better.

General method

1

2. General method

2.1. Problem definition

The realization of this project has changed while the work was taking

form. For this reason, the several objectives we had at the beginning and

the ones we decided and accomplished at the end are going to be

presented. The final objectives have been adapted from the initial ones, so

a lot of sub objectives and methods have been maintained.

Initial objectives

The definition of this project has been taken from a list of proposed

projects of the University of Mons (2017). The provided statement was:

“The second topic is focused on analysing and understanding the

motion/gestures of an individual to detect specific gestures that are to be

used to activate a system. This would be similar to the idea of vocal

activation (like the "hey Siri" used to activate the Siri vocal dialog system

on iphones) but here motion activation. Imagine it like a specific gesture

that you do to start "talking" to you TV. It should be very robust and

cheap in terms of computing as it would run all the time, waiting for a sign

from the user”.

To do that I decided to take as an input a sequence of time-continued

frames and to use a facial gesture (wink an eye). The reason why the

facial gesture was chosen was because there is a lot of methods on the

field of face detection, so it was easier than doing it with hands gestures

instead.

At first, it was necessary to define the methods to accomplish it. The

general problems we found were:

Design of a gesture detection system at real time

2

 A way to make the system identify the motion/gesture of different

people in different places, with different duration and with different

characteristics (duration, rotation, perspective, size, etc). It was

decided to use a convolutional neural network to do that.

 A way of reducing the computational time of processing the images

to detect the gesture. There were several methods found and used

to do that which are explained in the following sections.

However, there was the biggest problem that consisted in training a

convolutional neural network in a face gesture. There was the need of a

dataset of images to detect a specific gesture but we could not succeed on

finding one, so it was not possible to train the system. For that reason, it

was decided to avoid the gesture detection and focus on what it was

obtained om that moment, that was the face detection.

Final objectives

Once it was clear that the part of face gesture detection could not be

done, it was decided to focus on the actual work and to use it to solve a

problem. At that moment we had a face detector, so it was decided to

make a face tracker to be faster and cheaper in terms of computing.

General method

3

2.2. Similar projects

In order to design our system, the main projects and methods used to

take ideas about it are:

Viola Jones

Viola Jones face detection algorithm is one of the fastest tools to do face

detection. The reason is that has a high accuracy and false positives rates

compared to other algorithms. It was also one of the first to achieve real-

time face detection at 15 frames per second so it is very known on this

field (Patil, 2014; Smaridge, 2013).

The algorithm is based in four key features (Ramsrigouthamg, 2012;

Wang, 2014).

 Integral image: it is the added area table that is necessary for fast

calculations.

 Haar-like features: simple rectangular features generated randomly.

They are used to form classifiers.

 Adaboost: algorithm that eliminates all the redundant features.

 Cascade filter: it discards all negative windows as early as possible

to reduce the time on future operations. So at the end of the filter

there will be two groups: the positive matches that are sent along to

the next feature and the negative matches, that are rejected and

exit the evaluations.

This algorithm was studied in order to do the part of background

subtraction and how it used the cascade filters. As it is a general method

there are a lot of existing projects adapting this method.

Design of a gesture detection system at real time

4

A convolution neural network cascade for face detection

This project is based on face detection with a convolutional neural network

using cascade. As it does the same of one sub-objective we defined, it has

been used on the project. Later on, it is explained on the report (Li, Lin,

Shen, Brandt & Hua, 2015).

Max-Pooling convolutional neural networks for vision-based hand gesture

recognition

This project developed by members of the university of Lugano

(Switzerland) and the university Tenaga Nasional Putrajaya (Malaysia)

explains a system of classifying hand gestures at real time. It interested

us by the fact they use a convolutional neural network to obtain a class

(there are 6 possible gestures). Another interesting things is how it works

at real time and how it trains its neural network (Nagi, Ducatelle, Di Caro,

Ciresan, Meier, giusti, Nagi F., Schmidhuber & Gambardella, 2011).

General method

5

2.3. CNN theory

Convolutional neural networks, conv nets or CNN nets are a type of neural

networks that consist on a set of layers where you take an image and

pass it through a series of layers (convolutional, nonlinear, pooling and

fully connected layers) to get an output. The output can be a single class

or a probability of belonging to one that describes the image in the best

way (Deshpande, 2016, Jefkine, 2016 & Kuwajima, 2014).

If you feed them with a bunch of faces, they will recognize lines and edges

because they are a multi-layer neural network. At each layer it will

recognize more complex features.

Figure 1: CNN algorithm [Source : Rohrer, B. (2016) How Convolutional Networks work]

The different types of layers that compose a CNN are (Deshpande, 2016,

Jefkine, 2016 & Kuwajima, 2014):

 Pooling: this is how we shrink the image stack. We start with a

window of a determined size (usually 2 by 2 or 3 by 3 pixels) and

we move it in strides across each of the filtered images. For each

window we take the maximum value (if it is used maximum

pooling). It can happen that when we are doing the pooling, not all

the pixels are represented in the last column. In order to solve this

problem, several techniques can be used. For example, picking the

maximum value or doing the average.

Design of a gesture detection system at real time

6

What we have once we have finished is a similar pattern but

smaller. This has a lot of sense for images with lots of pixels, so the

following operations will be faster to do. Another thing it does is that

pooling does not care where the maximum value occurs, so that

means that has a margin of detecting the big values, that is the

same than saying that it will detect patterns that are a little moved,

rotated, etc. Pooling is done to all the filtered images and in every

case we obtain reduced images maintaining the patterns.

 Normalization: it is used to reduce the math operations applying

non-linearity functions. There are several of them sigmoid,

hyperbolic tangent, ReLu, step function, etc.

Figure 2: Non-linear functions [Source : Michael A. Nielsen (2015) Neural Networks and Deep Learning,

Determination Press]

ReLu is used to change all the negative values to zero. This is done

to all the images and it is obtained the same images with no

negative values. The layer where it is done is called rectified linear

unit layer (ReLU).

General method

7

 Fully connected layer: it is the last step of a CNN. It consists that

every value gets a vote. The outputs of the layers are resized as an

array. Each value will have high values when it has the same

patterns that the training image (depending on a weight). So at

every case we will obtain different values that, depending if their

values are closer to the ones of the training it will determine if the

image belongs to a determined class.

All these layers are used stacked on to the other, so the output of one

layer becomes the input of another. We can design the numbers of layers

we want and their order, so in every convolutional layer the image will be

filtered and all the neural network will reduce its dimension.

The function of each layer is to reduce the image size and obtain and

maintain some characteristic features. So at the end of the first

convolutional layer the features are going to be straight lines and curves,

but as the number of convolutional layers increases, each one is going to

detect more complex features.

On the figure 1 we can observe an example of a convent to detect the

object of the picture.

For example, if we want to read an image and detect if there is a drawing

of an X or and O there are several steps to make. Let us imagine that the

input is a two dimensional image where the X and the O can be shifted,

bigger, rotated, thicker or thinner. The easiest way is to compare pixel by

pixel, but if the image is modified as I said before it does not work. A CNN

uses small parts or features of the images and compare them to some

general features that have relations between them. They multiply each

image pixel by the corresponding feature pixel. They add them up and

divide by the total number of pixels in the feature. This is called filtering.

The process of doing the filtering to all the image is called convolution.

The process of doing several convolutions with a bunch of filters is called a

convolutional layer. Using a convolution in one image become a stack of

Design of a gesture detection system at real time

8

filtered images. We get as many images back as we have filters (Rohrer,

2016).

The most interesting thing about CNN is the way they learn to determine if

an image belongs to a class or to another. This is done through

backpropagation, that determines the features in the convolutional layers

and the voting weights in the fully connected layers (the importance of

each value on how affects the class classification). The first values of the

convolutional layer and the voting weights are set randomly. We obtain an

output after the fully connected layer, we compare it to an expected one

and we get an error. Using the gradient descend and lots of iterations in a

loop helps us to reduce the output error adjusting the parameters said

that can be modified automatically (Mazur, 2015).

However, there are some parameters called hyperparameters that the

designer needs to make. These are (Deshpande, 2016, Jefkine, 2016 &

Kuwajima, 2014):

 The number of layers we want, the kind of them and in which order.

 In convolutional layers: the number of features that should be used

and its size.

 In the pooling layers: the window size and the window stride.

 In the fully connected layers: the number of hidden and

intermediate layers and the number of neurons.

Convolutional neural networks have many applications. The main one is to

identify and recognize objects or situations from an image. For example, a

convent can be trained to identify the kind of animal that appears. All the

animals of a species are different and there are a lot of races. The CNN is

trained with a bunch of images of each animal and it learns the main

features of each animal, so later on it is possibly to classify the kind of

being of the picture. It can be also done with type or vehicles, furniture,

houses, landscapes, etc.

General method

9

2.4. Algorithm

Once we had clear what were our objectives we thought about the design

of the algorithm to accomplish it. Using different existing problems to take

ideas to make our project, the resulting methods to solve it were:

Initial approaches

The proposed solutions for the initial objectives can be presented in three

different parts:

 Part 1, where we take time-continuous frames and we obtain an

output saying if the gesture happens or not.

 Part 2, which is a way to reduce the image to the zone of the face,

so for next steps it is not necessary to compute all the image again.

On the pipeline it goes before the Part 1.

 Part 3, which is used to make modifications to the code to reduce

the number of computations.

 Part 4 that consists on making the method work in real time.

At first, it was tried to develop and run the code in the NVidia Jetson TX1

(detailed on the hardware used section) connected to a laptop in order to

run the code in the NVidia GPU. However, there were several problems

with compatibility between the NVidia graphic card and the laptop. The

main was that after installing the drivers to use an external GPU the

laptop graphic card became unused to reproduce even the laptop screen,

which made impossible to code. For that reason, it was decided to use

only one laptop with a powerful graphic card and the chosen was the MSI

laptop of the hardware section to make it work.

Part 1

The desired project should read a set of continuous-time images and

analyse them if a determined gesture takes place. We decided to use as a

Design of a gesture detection system at real time

10

gesture the blinking of an eye of a short duration for the reason that there

is a lot of actual projects working on facial recognition and detection, and

blink one eye is an easy gesture that people do not do unconsciously. To

do that, it was thought to use a convolutional neural network that has an

input of real time video (continued frames) of a duration of x seconds. The

CNN will identify if the gesture is done and then will exit an output saying

if it happens or not.

Figure 3: CNN training dataset. [Own Source]

The number of inputs of the CNN depends on how we want to last the

blink of an eye. With 1-2 seconds it would be perfect. It is also necessary

to know the duration of the processing of the code, because if it lasts too

much it will be better to use several new images (instead only a new one)

before running it again.

The input will be a sequence of time continued frames in real time, so it

will be an array containing k images. At each time the CNN is run, the

code will rotate the input array, making the images to move their position.

By this way, the older images will disappear and it will save the last ones

taken as the new ones.

To make the CNN work, it is necessary to train it. To do that (with the

idea we want) it was necessary to search for a dataset of sequences of

continued time images where the gesture takes place. This sequence

should be of different people, in different angles, sizes, etc. However, it

General method

11

was difficult to find something similar and we found nothing, so it was a

problem to make this part of the code work.

Part 2

For the optimisation part we decided to reduce the non-interesting zones

of the image (background subtraction). For that reason, we applied a

convolutional neural network for face detection. Its input consists on an

image and the output we want is, in case there is a face, its region of

interest (ROI), so for the next methods (in case there is a face) it will only

be necessary to process the part of the image where the face is.

This convolutional neural network was taken from an existing project of

face detection - A Convolutional Neural Network Cascade for Face

Detection (Li et al, 2015) - but several changes were needed in order to

make the code compatible with the desired project. A lot of tests were made

changing the number of layers but the better results were obtained with the

configuration provided, so it was maintained. Moreover, several changes of

modifying general parameters like the number of epochs, the stride and how the

layers are connected were made. So the perfect idea is when you run this

code it reads an actual frame, it looks after a face and provides an output

saying if there is a face or not. In case there is a face it exits the region of

interest where the face is.

Design of a gesture detection system at real time

12

Figure 4: Region of interest. [Own source]

The size of the image does not matter, the CNN reads it and resize it into

a standard size and resolution.

The code used needed to be trained in order to be able to detect the face,

so we used three different datasets that are going to be explained later

on.

This part is connected to the Part 1 in the way that the inputs of Part 1 are

the ROI of this part. This will allow the project to run faster.

Part 3

We looked for several forms of reducing the computations. One of them is

the background subtraction (Part 2) although there are more methods.

Another way was to reduce the resolution. As there is a lot of

computations, if the number of bits were adapted to the amount of data

they contain it would allow to make faster computation. So the type of all

the used variables need to be related with the information it has to

contain. In fact, a resolution of 8 bits for a convolutional neural network is

good (it is used on actual projects of it).

Part 4

General method

13

To make the project work on real time, it was necessary to control the

processing time of the different parts of the code.

At the beginning of the program there is a camera that reads images that

are used as inputs of the pipeline. Then, the program obtains the ROI of

the face. Finally, it processes the CNN to detect if there is a face in the

image or not.

Let us suppose that the system lasts X seconds to run the background

subtraction of an image (part 2, where obtains the ROI of the face) and Y

seconds to compute the CNN to see if the gesture is done (part 1). In this

case, the time between the images taken from the camera should be a

minimum of X + Y seconds. If during the background subtraction no face

is detected, it is not going to be necessary to execute the gesture

recognition (part 1). This one will be only ran if a face is detected

previously.

Moreover, the code does not need to be running all time. We are

interested in taking frames that are continued enough so as to contain a

gesture. During the rest of the time, the processor is not running the

code.

Final approaches

The objectives and the methods to achieve them were not possible to be

programmed. Its main problem was that no dataset was found to train a

convolutional neural network to detect a face gesture and there was not

time during the project to create one. For that reason, as the objectives

had been adapted, the methods became adapted too.

The project was modified to read an image, detect if there is any face and

obtain the region of interest. The parts of the guideline of the previous

section are only the part 2. The rest of them (part 1, part 3 and part 4)

Design of a gesture detection system at real time

14

were made to be used for the gesture detection, but as it was not possible

they were left in the theoretical part.

It was also looked for a way to be able to train a CNN for facial recognition

without using a data set made for that. It was planned to use an existing

dataset to train a system for face features or emotion recognition (UCF-

101, youtube-8M, etc) and using the trained system on detecting face

features to adapt it to detect facial gestures. However, it was very

complex to do and we left it in the planning.

General method

15

2.5. Hardware used

To make this project work it was necessary a processing unit where to run

the developed code. The ones used were:

 MSI GT62VR 7RE Dominator Pro (MSI, 2017). This is the laptop used

to code and run the code. It contains a GPU NVidia GeForce GTX

1070 (memory frequency of 8Gps, video memory of 8Gb GDDR5,

256-bit interface) and a processor Intel Core i7-7700HQ with

2.8GHz.

 Jetson TX1 (Nvidia, 2017). Used on the first attempts to code. It

contains a GPU NVidia Maxwell (256 cores) and a CPU 4 CPU-cores,

64-bit ARM 4x A57 2MB L2.

Design of a gesture detection system at real time

16

2.6. Software used

In order to make this project it was necessary to use several computer

programs to run the code and the examples. These are:

 CUDA: it is a compiler and a set of tools that allow to run algorithms

in the GPU of nVidia, that is translated in more speed. It was initially

installed on the computers. The version used is the 8 (Corporation,

2017).

 CuDNN: it is a library that belongs to nVidia CUDA for deep neural

networks that provides standard routines for convolutional, pooling,

normalization and activation layers. The version used is the 5.

 OpenCV: it is a library made for computer vision. It contains a lot of

functions to deal with images. The version used is 3.2.

 Tensorflow: it is a library used for designing and processing of

neural networks. The version used is 1.2.1 (Tensorflow, 2017).

 Git: it is a software used to save programming code, share it, work

in parallel with other people. It also allows to recover versions of

what have you been saving.

 Pycharm: is a programming environment mainly used by Python

language. It allows to code in an ergonomic way and to run and

debug it (JetBrains, 2017).

The code used to program the project was python 2.7 (it is the most used

for machine learning) and the operative system was Ubuntu.

Moreover, there were several libraries from python that needed to be

installed to solve particular problems.

General method

17

2.7. Datasets used

The code used to do this project, as it was a convolutional neural network,

it was necessary to be trained to make it work. Many images to train the

system to detect faces were needed. The datasets used for that are:

 Annotated facial landmarks in the wild (AFLW):

It consists on a set of face images obtained from the net, with

different appearances (gender, age, ethnicity, position, etc.) and in

different environments and backgrounds. There are around 25000

images with annotations of 21 landmarks per image. Their format is

jpg. It has been developed by the Institute of Computer Graphics

and Vision. We use it as the positive dataset (Koestinger, Wohlhart,

M.Roth & Bischof, 2011).

 Common objects in context (COCO):

This dataset consists on several images of common objects to train

and to test. It also provides several files with annotations of the

information of the images. There are around 80.000 images. We use

the training dataset as the negative one (COCO, 2016).

 Face detection data set and benchmark (FDDB):

It consists on a set of images of face regions to solve problems of

unconstrained faces detection. It contains annotations for 5171

faces in a set of 2845 images taken from the Faces in the Wild

dataset. The annotations say how many faces are there and its

coordinates. The data set belongs to the University of

Massachusetts. We use it as the test dataset to make trials and to

see if our code works correctly (Jain & Learned-Miller, 2010).

Design of a gesture detection system at real time

18

2.8. Efficiency methods

The desired system, in order to be used in a real-time situation, need to

be faster and cheaper in terms of computational time. For this reason, it

was necessary to look for several techniques to reduce the number of

operations of the code. The most interesting techniques found were:

 Cascade filters

 Background subtraction

 Image reduction

 Signal detection theory

Cascade filters

The way they work is very simple, it consists in a condition that sets two

outputs (Chen, Parada, & Heigold, 2017; Patil, 2014; Ramsrigouthamg,

2012):

 Positive matches, that are sent along to the next feature.

 Negative matches, that are rejected and exit in the evaluation.

Figure 5: Graphique representation of Cascade Filters [Source : Alliance, E. V. (2017). CEVA. Obtenido de Design

Guidelines for Embedded Real-Time Face Detection Aplications: https://www.embedded-vision.com/platinum-

members/ceva/embedded-vision-training/documents/pages/design-guidelines-face-detect]

General method

19

This is useful because as it discards features and regions of the image if

they are not interesting, it avoids them to be processed on the following

layers, so the number of computational operations and time is reduced.

Background subtraction

This is a method that consists on removing zones of the image that are

not interesting for the system. This allows that in next steps of the

pipeline, less number of pixels are taken into account to further processes.

There is not a perfect method, so investigators are searching for methods

to improve the resolution of this problem. Most of the actual methods are

used when the background is static because they suffer small or no

changes respect a reference image. By this way, in order to solve this

problem, it is only necessary to compare the obtained image with the

reference one and to compare the zones that do not change (or are very

similar) to discard them. This can be done applying a parameter to define

a margin between the similarity of the two images. Other ways can be

using the mean filter and the Gaussian filter. Basically it has to fulfil the

next equation (frame_i corresponds to an image taken at a time i and

image_i-1 is an image that was taken an instant before):

|frame_i –frame_i-1|>Threshold

On the other hand, dynamic background is an actual problem. As the code

is supposed to work on real time, images from one frame to another will

not have significant differences on the background. So the background will

be very similar with a margin of displacement and brightness.

Image reduction

To analyse an image to find an object, face, etc. it is necessary to look for

characteristic patterns. However, as the bigger the number of pixels is,

the bigger the number of operations need to be done, that is translated in

Design of a gesture detection system at real time

20

processing time. For that reason, the solution is to reduce the size of the

input images along with its resolution and convert them to grayscale. The

process to detect face features does not depend on colours. There is a

minimum resolution the images need to have that does not affect the

features that are contained.

Signal detection theory

Detection theory or signal detection theory is a mean to discard the non-

interesting information (also called noise). It is based on the probability of

a target of belonging a class. In every case there is a factor called

sensitivity index that the user determines to make the target belong to a

class or to another. There is also a measure called bias that says if an

answer is more probable than another. The class that correspond to the

target is always the one with higher probability (Heeger, 2003-2007).

Each response of the detection can be:

 Respond “Absent” Respond “present”

Signal present Miss Hit

Signal absent Correct rejection False alarm

In this case, there are four possibilities. The perfect results are the ones in

Correct rejection and Hit. Miss and False alarm interest us to be as

reduced as possible. However, it depends on the sensibility we decide, so

we could decide to make more false alarms than missed or the opposite.

Referring to this project, the best option is to be more prone to miss the

signal than to make false alarms (so in case it is not very sure if there is a

face it will discard it).

General method

21

2.9. Explanation of the code

In order to provide a system with efficiency and low power consumption

we used several methods explained in the previous section (efficiency

methods) used on a CNN to do background subtraction. To do so we

based our code on an existing project [A Convolutional Neural Network

Cascade for Face Detection (Li et al, 2015)] that is introduced and

explained in the part 2 of the section 2.4. Algorithm. Next it is explained

the model of the used neural network.

The project used has 6 convolutional neural networks concatenated. Three

of them are used for face identification and the other three to calibrate the

bounding boxes (Li et al, 2015).

The general pipeline is (Li et al, 2015):

Figure 6: Test pipeline of the detector - detection windows.[Source : Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G.

(2015). A Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision

Fundation, 5327]

The sequence of files that needed to be executed in order are: 12-net, 12-

calibration-net, 24-net, 24-calibration-net, 48-net and 48-calibration-net.

The file 12-net scans a test image that can have different scales and

rejects the 90% of the detection window. The result is the input of the 12-

calibration-net, that are images of 12x12 and adjust its size. After that it

takes place the Non-maximum suppression to eliminate the overlapped

detection windows (to reduce the number of them).

Design of a gesture detection system at real time

22

The remaining windows are resized into a 24x24 format that serves as the

input of 24-net. This will allow to reject around the 90% of it. As it was

with the 12-net, the results of the 24-net are calibrated by the 24-

calibration-net where it is applied the non-maximum suppression another

time to reduce the number of detection windows.

Finally, the results are passed through the 48-net that accepts images of

the size 48x48 to check the detection windows. It is also applied the non-

maximum suppression. The 48-calibration-net is the last thing to be

applied and it calibrates the exit bounding boxes with the detection of the

face.

The design for the different CNN is:

12-net

The pipeline of this part consists on:

Figure 7: 12-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A Convolutional

Neural Network Cascade for Face Detection. Open Class Version - Computer Vision Fundation, 5328]

This convolutional neural network is the first on the pipeline. It takes as

input the images to test, it scans them and it converts them into 12x12

detection windows, that are each point of the confidence map which are

([(W-12)/4]+1)X([H-12)/4]+1) where W and H are the width and height

of the input image.

12-calibration-net

General method

23

The configuration of this part of the code is:

Figure 8: 12-calibration-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A

Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision Fundation,

5328]

This part is used for bounding box calibration. As the image is cropped

and resized, the resulting outputs are a bunch of bounding boxes.

However, there are several of them in the same image, so we have to use

the best of them. Each bounding box has a rate of confidence, so the first

solution is to apply a threshold that discards the ones that have low

confident patterns. This threshold is the average of the values of the

different bounding boxes, so as closer the results are, the confidence on

that point will be higher.

24-net

The layers of this CNN are:

Figure 9: 24-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A Convolutional

Neural Network Cascade for Face Detection. Open Class Version - Computer Vision Fundation, 5328]

Design of a gesture detection system at real time

24

This CNN is an intermediate one used for binary classification. Its main

function is to reduce the number of detection windows. The images of the

output of 12-calibration-net are resized to 24x24. Moreover, it is used also

the 12-net in parallel due to the fact that it provides better results on

helping to detect the small faces.

24-calibration net

The pipeline of this part is:

Figure 10: 24-calibration-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A

Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision Fundation,

5328]

This way of calibrating is the same than the one in the 12-calibration-net

with the exception of the inputs, that are with a size of 24x24.

48-net

The configuration of this part is:

General method

25

Figure 11: 48-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A Convolutional

Neural Network Cascade for Face Detection. Open Class Version - Computer Vision Fundation, 5328]

This is the last classification on the pipeline. It is the most powerful CNN

and the slowest due the fact that is more complicated than the others.

Like the 24-net, we use the previous CNN (in this case the 24-net) to help

to detect small faces.

48-calibration-net

The layers of this CNN are:

Figure 12: 48-calibration-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A

Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision Fundation,

5328]

The way of the calibration is the same than the 12-calibration-net and 24-

calibration-net except for the fact that the inputs are with a size 48x48

and it uses only one pooling layer.

Finally, there is the non-maximum suppression implementation used in

the different nets. It works selecting the detection window with a high

confidence score and eliminates the rest. In the 12-net and 24-net the

method of NMS is not discriminative enough to detect false positives. After

Design of a gesture detection system at real time

26

the 12-calibration-net and the 24-calibration-net, the false positives have

a higher confidence than the true positives. Also, after these two nets we

apply NMS separately for detection windows that have the same scale.

Finally, 48-net is applied globally to all the detection windows with

different scales to obtain best accuracy for detection windows and avoid

redundant windows in the 48-calibration-net.

Results

27

3. Results
Graphical results

On this project, to test how good the code worked on the part of face

detection, there were a lot of images (around 3000) tested from the Face

Detection Data Set and Benchmark (Jain & Learned-Miller, 2010) and

images taken by the user. Processing these images with the code using

the GeForce GTX 1070 (details on hardware used section) some of the

results are:

Figure 13: Face detection example 1 [Own Source] Figure 14: Face detection example 2 [Own Source]

Figure 15: Face detection example 3 [Own Source] Figure 16: Face detection example 4 [Own Source]

Figure 17: Face detection example 5 [Own Source] Figure 18: Face detection example 6 [Own Source]

Design of a gesture detection system at real time

28

Figure 19,20: Face detection example 6 & 7 [Source: Jain, V. & Learned-Miller, E. (2010). FDDB: A Benchmark
for Face Detection in Unconstrained Settings . Technical Report UM-CS-2010-009, Dept. of Computer Science,
University of Massachusetts, Amherst. Retrived from http://vis-www.cs.umass.edu/fddb/]

Figure 21,22: Face detection example 8 & 9 [Source: Jain, V. & Learned-Miller, E. (2010). FDDB: A Benchmark

for Face Detection in Unconstrained Settings . Technical Report UM-CS-2010-009, Dept. of Computer Science,

University of Massachusetts, Amherst. Retrived from http://vis-www.cs.umass.edu/fddb/]

Figure 23: Face detection example 10 [Source: Jain, V. & Learned-Miller, E. (2010). FDDB: A Benchmark for Face

Detection in Unconstrained Settings . Technical Report UM-CS-2010-009, Dept. of Computer Science, University

of Massachusetts, Amherst. Retrived from http://vis-www.cs.umass.edu/fddb/]

Results

29

As we can see, the code worked on detecting faces. However, there were

exceptions. Even though the majority of faces were detected, there were

still some that were not. The results from a set of 400 images were:

 50% with perfect results. All the faces were detected with the

bounding box surrounding them in a good way.

 15% have good results but not perfect. Being several faces some

were detected and others or the bounding box surrounded a part of

the face and not all of it.

 35% did not detect any face.

Also it was tried in a set of nearly 3000 images and the average of face

detection was 77%.

From these results we can say that the hit rate is 60% (detects faces

when are present), the false alarm (detects faces when are not present) is

very low (around 5%) and it misses the image when it is present 35% of

the times. We can say that the system is focused on avoiding false

alarms, so it will rather miss a face than detect one when it is not present.

Looking at the results we obtained we can say that the results depend on

how the image was on the faces. A lot of women with long hair were

missed because they did not show they ears, so as the system did not

found that feature it discarded them. The main reason of that is because

when the code was trained it learned that a face has ears (there were few

images with the ears hidden). This also happened with people with hats,

because the dataset contained very few images and in the test were not

recognized as faces. We can deduce that face detection depends on some

characteristic features that works on most of the cases, but not always.

Another fact to take into account is that it does not matter the age or the

colour of the skin, it is detected in a similar proportion than the others.

Design of a gesture detection system at real time

30

Finally, the main way the faces were detected is when they are showing

the main features (eyes, mouth, ears, form of the face, etc.) with the

same distance to the camera (no face rotated). On this case, almost all

the images worked. When these features start to vary, the system did not

work so well and the bounding box did not surround the face perfectly, or

even no face was detected.

Mathematical results

On the pipeline there were three parts that should be taken into

consideration to see the viability of the project in terms of computational

time. These are:

 The time to take an image with a camera. This depends on the

camera, so it is not treated on this project. We suppose a digital

basic camera for this project because few resolution is needed.

 The time to detect the bounding box. We took into account two

factors that we are interested in: the computational time and the

success rate. For the first one we have to say that after running the

code several times with different images, the average time we

obtain running the algorithm using the hardware described in the

hardware used section was 0.65 seconds. The complementary

actions of reading images and writing them to the disk provided a

processing time of 0.8 seconds.

 The time to do the gesture recognition. This was not done and was

proposed as future work.

The perfect processing time would be 20 photograms per second for all

the pipeline, so each processing of the code would be around 0.05

seconds. When the gesture takes place the computational speed of the

pipeline could decrease to 0.1 seconds. By this way, it will have to process

around 10-20 images for the sequence of the gesture taking into account

that a duration between 1 and 2 seconds of real time video is proposed.

Results

31

Comparing the desired time with the one obtained in the face detection

part, we see that our actual system is not viable because it cannot be

implemented on real time on a processor similar than the one used, the

time to process the code is too slow. It will need more improvements to

achieve a computational speed, being able to run the program on real

time.

Design of a gesture detection system at real time

32

Conclusions and future work

33

4. Conclusions and future work

4.1. Conclusions

The purpose of this project was to develop the idea of creating a gesture

detection system working at real time. This idea was thought to improve

technology methods to work in situations where it is not possible to do it

with sound (too noisy places, far distance between the user and the

system, mute people, etc.). In order to develop this method, the general

structure of the pipeline has been designed and some methods to improve

its accuracy and timing have been studied.

The creation of this gesture recognition method requires a lot of

optimization to be able to work at real time. Moreover, it would require

many improvements and tests to have enough level to be implemented in

commercial devices.

The first task was to make a market study to search for similar apps or

projects about that. We found that although it was a new idea, there were

very close projects, like detecting the position of the hand and fingers to

make a translator of sign language at real time. However, these projects

used specific methods of optimization and we made a search in order to

find out better ones that we could use.

The realization of this project made me realize that the creation of real

time systems is very difficult due the fact that we need to optimize the

code to reduce the time in all the computations. This requires lots of tests

and improvements.

Finally, I must say that although I have not been able to complete the

final part of the project, I have been capable to plan and think deeply on

the idea. By this way, I have developed planning skills that I consider that

are indispensable for Engineers. In addition, I have acquired problem-

Design of a gesture detection system at real time

34

solving abilities, that have allowed me to find the best way to solve the

problems found.

By working through these changes, I have grown into something new,

better, stronger.

Conclusions and future work

35

4.2. Future work

As the final results were only half of the initial objectives, there are

several measures that have been taken to obtain the desired objectives.

The main thing to focus on is to find or make a database composed of

several frames that are time continued and with a face gesture present. It

is not necessary to be the blinking of an eye, this was chosen because it

was a good an easy way to activate a system, but it depends on the

dataset found.

Once we have a dataset of a face gesture, the next step is to code the

convolutional neural network that has an input of several time continued

frames at real time and exits the output if the gesture takes place. This

will require to train the CNN with the dataset said before.

Another thing to modify is to code how the images of the region of

interest (the faces) become the input of the second CNN. As it is said on

previous sections, once the image background takes place, the cropped

images are saved into an array where are ordered by time. The way to do

so it is also a future modification on the desired pipeline.

In the case a face is detected on a frame, in the next one the position will

be closer to that one, so it is not going to be necessary to scan all the

image again to do background subtraction. It is only necessary to take

into account the position of where the face was and the zones that are

close to it. During milliseconds it is not possible to change the position of

the face radically. This will be a complementary method of background

subtraction.

In addition, we can adapt the type and number of bits of all the variables

so it will reduce the processing time. A general resolution of 8 bits could

be good for a neural network.

Design of a gesture detection system at real time

36

There are other ways of background subtraction and optimization of

operations that can be used. Some more research could show us the

methods and how to apply them.

Applying all these methods should reduce the processing time enough to

be applied on real time to be useful.

Finally, another good idea is to add an option to the code, so the system

only will recognize a particular gesture of a particular person. This can be

used as a security system.

References

37

5. References

Alliance, E. V. (2017). CEVA. Obtenido de Design Guidelines for Embedded

Real-Time Face Detection Aplications: https://www.embedded-

vision.com/platinum-members/ceva/embedded-vision-

training/documents/pages/design-guidelines-face-detect

Calacanis, J. (2009). Angel - How to invest in Technology Startups -

Timeless Advice from an Angel Investor. USA: Harper Business.

Chen, G., Parada, C & Heigold, G. (2017). Small-footprint keyword

spotting using deep neural networks. Retrieved from

https://static.googleusercontent.com/media/research.google.com/en//pub

s/archive/42537.pdf

COCO. (2016). Common Objects in Context. Retrived from

http://mscoco.org/

Corporation, N. (2017). Nvidia Accelerated Computing. Retrived from

CUDA Toolkit Download: https://developer.nvidia.com/cuda-downloads

Deshpande, A. (2016) A Beginner’s Guide to Understanding Convolutional

Neural Networks. Retrieved from

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-

Guide-To-Understanding-Convolutional-Neural-Networks/

Heeger, D. (2003-2007) Signal Detection Theory. Department of

Psychology: New York University. Retrieved from

http://www.cns.nyu.edu/~david/handouts/sdt/sdt.html

Jain, V. & Learned-Miller, E. (2010). FDDB: A Benchmark for Face

Detection in Unconstrained Settings . Technical Report UM-CS-2010-009,

Dept. of Computer Science, University of Massachusetts, Amherst.

Retrived from http://vis-www.cs.umass.edu/fddb/

https://www.embedded-vision.com/platinum-members/ceva/embedded-vision-training/documents/pages/design-guidelines-face-detect
https://www.embedded-vision.com/platinum-members/ceva/embedded-vision-training/documents/pages/design-guidelines-face-detect
https://www.embedded-vision.com/platinum-members/ceva/embedded-vision-training/documents/pages/design-guidelines-face-detect
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/42537.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/42537.pdf
http://mscoco.org/
https://developer.nvidia.com/cuda-downloads
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
http://www.cns.nyu.edu/~david/handouts/sdt/sdt.html
http://vis-www.cs.umass.edu/fddb/

Design of a gesture detection system at real time

38

Jefkine (2016) Backpropagation in Convolutional Neural Networks.

Retrieved from

http://www.jefkine.com/general/2016/09/05/backpropagation-in-

convolutional-neural-networks/

JetBrains. (2017). PyCharm. Retrived from Python IDE for Professional

Developers https://www.jetbrains.com/pycharm/

Koestinger, M., Wohlhart, M.Roth, P. and Bischof, H. (2011). Annotated

Facial Landmarks in the Wild: A Large-scale, Real-World Database for

Facial Landmark Localization. Retrived from

https://www.tugraz.at/institute/icg/research/team-

bischof/lrs/downloads/aflw

Kuwajima, H. (2014) Memo: Backpropagation in Convolutional Neural

Network. Retrieved from http://es.slideshare.net/kuwajima/cnnbp

Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A Convolutional Neural

Network Cascade for Face Detection. Open Class Version - Computer

Vision Fundation, 5325-5334.

Mazur, M. (2015). A Step by Step Backpropagation Example. Retrieved

from https://mattmazur.com/2015/03/17/a-step-by-step-

backpropagation-example/

MSI (2017) GT62VR 7RE Dominator Pro. Retrieved from

https://www.msi.com/Laptop/GT62VR-7RE-Dominator-Pro.html#hero-

overview

Nagi, J., Ducatelle, F., Di Caro G., Ciresan D., Meier, U., Giusti. A, Nagi,

F., Schmidhuber, J & Gambardella, L.M. (2011). Marx-Pooling

Concolutional Neural Networks for Vision-based Hand Gesture Recognition.

IEEE- International Conference on Signal and Image Processing

Applications. pp.342-347

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://www.jetbrains.com/pycharm/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw
http://es.slideshare.net/kuwajima/cnnbp
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://www.msi.com/Laptop/GT62VR-7RE-Dominator-Pro.html#hero-overview
https://www.msi.com/Laptop/GT62VR-7RE-Dominator-Pro.html#hero-overview

References

39

Nvidia Corporation (2017) Modules and Developer Kits. Retrieved from

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html

Patil, R. [RahulPatil]. (2014, May 19). Viola Jones Face Detection

Explained [Video File] Retrieved from

https://www.youtube.com/watch?v=_QZLbR67fUU

Ramsrigouthamg [Ramsrigouthamg]. (2012, September 16). Viola Jones

face detection and tracking explained [Video File]. Retrieved from

https://www.youtube.com/watch?v=WfdYYNamHZ8

Rohrer, B. [BrandonRohrer]. (2016, August 18). How Convolutional

Networks Work [Video file]. Retrieved from

https://www.youtube.com/watch?v=FmpDIaiMIeA&=&t=1193s

Smaridge, Z. [ZackSmaridge]. (2013, December 10). Viola-Jones Rapid

Object Detection Project [Video File]. Retrieved from

https://www.youtube.com/watch?v=Wwn81tVIR10

TensorFlow. (2017). Installing TensorFlow. Retrived from

https://www.tensorflow.org/install/

Wang, Y. (2014) An Analysis of the Viola-Jones Face Detection Algorithm.

IPOL (Image Processing On Line), 5Vol, pp. 128-148.

http://dx.doi.org/10.5201/ipol.2014.104

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.youtube.com/watch?v=_QZLbR67fUU
https://www.youtube.com/watch?v=WfdYYNamHZ8
https://www.youtube.com/watch?v=FmpDIaiMIeA&=&t=1193s
https://www.youtube.com/watch?v=Wwn81tVIR10
https://www.tensorflow.org/install/
http://dx.doi.org/10.5201/ipol.2014.104

Design of a gesture detection system at real time

40

Images index

41

IMAGES INDEX

Figure 1: CNN algorithm [Source : Rohrer, B. (2016) How Convolutional Networks work] 5

Figure 2: Non-linear functions [Source : Michael A. Nielsen (2015) Neural Networks and Deep

Learning, Determination Press] ... 6

Figure 3: CNN training dataset. [Own Source] .. 10

Figure 4: Region of interest. [Own source] ... 12

Figure 5: Graphique representation of Cascade Filters [Source : Alliance, E. V. (2017). CEVA. Obtenido

de Design Guidelines for Embedded Real-Time Face Detection Aplications: https://www.embedded-

vision.com/platinum-members/ceva/embedded-vision-training/documents/pages/design-guidelines-

face-detect] ... 18

Figure 6: Test pipeline of the detector - detection windows.[Source : Li, H. Lin, Z. Shen, X. Brandt, J. &

Hua, G. (2015). A Convolutional Neural Network Cascade for Face Detection. Open Class Version -

Computer Vision Fundation, 5327] ... 21

Figure 7: 12-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A

Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision

Fundation, 5328] ... 22

Figure 8: 12-calibration-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G.

(2015). A Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer

Vision Fundation, 5328] .. 23

Figure 9: 24-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A

Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision

Fundation, 5328] ... 23

Figure 10: 24-calibration-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G.

(2015). A Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer

Vision Fundation, 5328] .. 24

Figure 11: 48-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G. (2015). A

Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer Vision

Fundation, 5328] ... 25

Figure 12: 48-calibration-net CNN test pipeline [Source: Li, H. Lin, Z. Shen, X. Brandt, J. & Hua, G.

(2015). A Convolutional Neural Network Cascade for Face Detection. Open Class Version - Computer

Vision Fundation, 5328] .. 25

Figure 13: Face detection example 1 [Own Source]..27

Figure 14: Face detection example 2 [Own Source]..27

Design of a gesture detection system at real time

42

Figure 15: Face detection example 3 [Own Source]..27

Figure 16: Face detection example 4 [Own Source]..27

Figure 17: Face detection example 5 [Own Source]..27

Figure 18: Face detection example 6 [Own Source]..27

Figure 19,20 : Face detection example 6 & 7 [Source: Jain, V. & Learned-Miller, E. (2010). FDDB: A
Benchmark for Face Detection in Unconstrained Settings . Technical Report UM-CS-2010-009, Dept.
of Computer Science, University of Massachusetts, Amherst. Retrived from http://vis-
www.cs.umass.edu/fddb/]..28

Figure 21,22 : Face detection example 8 & 9 [Source: Jain, V. & Learned-Miller, E. (2010). FDDB: A
Benchmark for Face Detection in Unconstrained Settings . Technical Report UM-CS-2010-009, Dept.
of Computer Science, University of Massachusetts, Amherst. Retrived from http://vis-
www.cs.umass.edu/fddb/]..28

Figure 23 : Face detection example 10 [Source: Jain, V. & Learned-Miller, E. (2010). FDDB: A
Benchmark for Face Detection in Unconstrained Settings . Technical Report UM-CS-2010-009, Dept.
of Computer Science, University of Massachusetts, Amherst. Retrived from http://vis-
www.cs.umass.edu/fddb/]..28

