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Abstract

We introduce bisemivalues for bicooperative games and we also provide an interesting
characterization of this kind of values by means of weighting coefficients in a similar way
as it was given for semivalues in the context of cooperative games. Moreover, the no-
tion of induced bisemivalues on lower cardinalities also makes sense and an adaptation of
Dragan’s recurrence formula is obtained. For the particular case of (p,q)–bisemivalues,
a computational procedure in terms of the multilinear extension of the game is given.
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1 Introduction
Cooperative games in a finite set of players are often defined in terms of a characteristic func-
tion, which specifies the worth that each coalition can achieve for itself. It can be interpreted
as the maximal gain or minimal cost that the inner players of the coalition can achieve them-
selves against the best offensive threat by the complementary coalition. Most applications of
cooperative games are found in economics and politics. In these games we are interested in
what players can achieve by cooperation. In these games, each player has only two options:
either to join a coalition or to stay aside. For a player who chooses the first option, he or she is
supposed to cooperate in order to obtain the maximum worth of the coalition. However, there
are many economical or political situations that cannot be described by using this classical
model.
Let us consider the following example. Two insurance companies are always in competition
in order to obtain the maximum number of clients in a region. Each one of the insurance
agents has an owner clients’ list. We are interested in study the benefits when some agents
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work for the first company, whereas another agents work for the second company and the
remaining agents do not work for either one of them. This kind of situations can be described
by using bicooperative games, introduced by Bilbao [2] as a generalization of classical coop-
erative games, where each player can participate positively to the game, negatively, or do not
participate. Then, in these games ordered pairs of disjoint coalitions of players are consid-
ered. Thus, each such pair yields a partition of the set of players in three groups: (i) players in
the first coalition are defenders of an option; (ii) players in the second coalition do not agree
with it and they will take another option; and (iii) the remaining players are not in favour of
adopting either option.
One may think that bicooperative games can be seen as a particular case of games with n
players and r alternatives (for r = 3), introduced by Bolger in [8] and [9]. On the other hand,
such games are also considered to be isomorphic to multichoice games, proposed by Hsiao
and Raghavan [22]. In these games, each player has several possible levels of participation
(among a finite number of possible levels that are ordered from non–participation to com-
plete participation) to the game. The contribution of a player to a game depends on his level
of participation. However, bicooperative games cannot be seen as a particular case of multi-
choice games because, for instance, the worth of a multichoice game if all players choose the
lowest level of participation is zero, whereas the worth of a bicooperative game if all players
are against is nonpositive. For an interesting discussion about these two games, we refer the
reader to [20].
A central question in game theory is to define a solution concept for a game, that is, a func-
tion which assigns to every game a set of real–valued vectors, each one of them represents a
payoff distribution among the players. In the context of bicooperative games this concept has
also been studied and different solution concepts have been introduced. In 2008, Bilbao et al
[4] introduced the Shapley value for bicooperative games. In [3] and [7] Bilbao et al intro-
duced the core, the Weber set and the selectope for bicooperative games. In [5] Bilbao et al
defined and characterized biprobabilistic values for bicooperative games following Weber’s
characterization [28] of probabilistic values on cooperative games.
In 2010 Bilbao et al [6] analized ternary bicooperative games, which are a refinement of the
ternary voting games introduced in [13], and defined and axiomatized the Banzhaf power
index for these games. Several works by Freixas [16], [17] and Freixas and Zwicker [15]
have been devoted to the study of voting systems with several ordered levels of approval
in the input and in the output. In their model, the abstention is a level of input approval
intermediate between yes and no votes.
Other different definitions of values for bicooperative games can be found in Grabisch and
Labreuche [20] and [21]. In 2012, Borkotokey and Sarmah [10] introduce the notion of a
bicooperative game with fuzzy bicoalitions and an explicit form of the Shapley value as a
possible solution concept to a particular class of such games is also obtained.
The aim of this paper is to introduce and to characterize bisemivalues for bicooperative
games– as a particular family of biprobabilistic values– that parallels the existing statements
for semivalues on cooperative games given by Dubey et al in [12]. Moreover, a subfamily of
these values, called (p,q)–bisemivalues is also introduced and as a particular case of it, we
found the binomial bisemivalues, that extend the concept of binomial values to bicooperative
games. For more than a decade, our research group has been studying semivalues, a subfam-
ily of probabilistic values introduced by Dubey et al. [12], characterized by anonymity and
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including the Shapley value as the only efficient member. From this experience, we feel that
bisemivalues in general and (p,q)–bisemivalues in particular, can be also used in the study
of bicooperative games because they offer a deal of flexibility greater than the classical val-
ues, and hence many more possibilities to introduce additional information when evaluating
a game.
(p,q)–bisemivalues provide tools to study not only games in abstracto (i.e. from a merely
structural viewpoint) but also the influence of players’ personality on the issue. They are
assessment techniques that do not modify the game but only the criteria by which payoffs
are allocated. In the (p,q)–bisemivalue case two parameters are used to cope with different
attitudes the players may hold when playing a given game, even if they are not individuals
but countries, enterprises, parties, trade unions, or collectivities of any other kind. For all
player, we will attach to parameter p the meaning of generical tendency to support a player
in his decision and to parameter q generical tendency to go against him. We think that these
bisemivalues are suited for the study of bicooperative games where players show two different
tendencies to form coalitions.
Summing up, the paper tries to present bisemivalues in general and (p,q)–bisemivalues in
particular, as a consistent alternative or complement to the values defined up to now. Players’
tendencies can encompass a variety of situations that cannot be analyzed, without modifying
the game, by means of another values, which are concerned only with the structure of the
game.
The organization of the paper is as follows. In Section 2, we include a minimum of prelim-
inaries that refers to semivalues for cooperative games and biprobabilistics values for bico-
operative games. Section 3 is devoted to define bisemivalues for bicooperative games and
to give the main theorem of the paper, that clearly reminds the characterization obtained by
Dubey, Neyman and Weber [12] for semivalues on cooperative games. Moreover we deals
with induced bisemivalues on lower cardinalities and an adaptation of Dragan’s recurrence
formula [11] is obtained. In Section 4 we introduce the (p,q)–bisemivalues and prove that
their weighting coefficients lie in geometric progression, the simplest form of monotonicity.
We also give a computational procedure in terms of the multilinear extension (MLE) of the
game to calculate them. Finally, Section 5 contains an application of the bisemivalues to the
analysis of an example.

2 Preliminaries

2.1 Cooperative games and semivalues
Let N be a finite set of players and 2N be the set of its coalitions (subsets of N). A cooperative
game on N is a function v : 2N → R, that assigns a real number v(S) to each coalition S⊆ N,
with v( /0) = 0. A game v is monotonic if v(S) ≤ v(T ) whenever S ⊆ T ⊆ N. A player i ∈ N
is a dummy in v iff v(S∪{i}) = v(S)+ v({i}) for all S ⊆ N\{i}. Endowed with the natural
operations for real–valued functions, i.e. v+v′ and λv for all λ ∈R, the set of all cooperative
games on N is a vector space GN .
By a value on GN we will mean a map Ψ : GN → RN , that assigns to every game v a vector
Ψ[v] with components Ψi[v] for all i ∈ N.
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According Weber’s [28] axiomatic description, Ψ : GN →RN is a semivalue iff it satisfies the
following properties:
(i) linearity: Ψ[αv+βv′] = αΨ[v]+βΨ[v′], for all v,v′ ∈ GN and α, β ∈ R;
(ii) anonymity: Ψπi[πv] = Ψi[v] for all permutation π on N, where πv(πS) = v(S) and πS =
{πi : i ∈ S}, i ∈ N, and v ∈ GN ;
(iii) positivity: if v is monotonic, then Ψ[v]≥ 0;
(iv) dummy player property: if i ∈ N is a dummy in game v, then Ψi[v] = v({i}).
There is an interesting characterization of semivalues, by means of weighting coefficients,
due to Dubey, Neyman and Weber [12]. Set n = |N|. Then: (a) for every weighting vector

{pk}n−1
k=0 such that

n−1
∑

k=0
pk
(n−1

k

)
= 1 and pk ≥ 0 for all k, the expression

Ψi[v] = ∑
S⊆N\{i}

ps[v(S∪{i})− v(S)] for all i ∈ N and all v ∈ GN ,

where s = |S|, defines a semivalue Ψ; (b) conversely, every semivalue can be obtained in this
way; (c) the correspondence given by {pk}n−1

k=0 7→ ψ is bijective.
Thus, the payoff that a semivalue allocates to every player in any game is a weighted sum
of his marginal contributions in the game. If pk is interpreted as the probability that a given
player i joins a coalition of size k, provided that all the coalitions of a common size have
the same probability of being joined, then Ψi[v] is the expected marginal contribution of that
player to a random coalition he joins.
Well known examples of semivalues are the Shapley value ϕ (Shapley [27]), for which pk =
1/n
(n−1

k

)
, and the Banzhaf value β (Owen [24]), for which pk = 21−n. The Shapley value ϕ

is the only efficient semivalue, in the sense that ∑
i∈N

ϕi[v] = v(N) for every v ∈ GN .

Notice that these values are defined for each N. The same happens with the binomial semival-
ues, introduced by Puente [26] (see also Giménez [18] or Amer and Giménez [1]) as follows.
Let p ∈ [0,1] and pk = pk(1− p)n−k−1 for k = 0,1, . . . ,n− 1. Then {pk}n−1

k=0 is a weighting
vector and defines a semivalue that will be denoted as Ψp and called the p–binomial semi-
value. Using the convention that 00 = 1, the definition makes sense also for p = 0 and p = 1,
where we respectively get the dictatorial index Ψ0 and the marginal index Ψ1, introduced by
Owen [25] and such that Ψ0

i [v] = v({i}) and Ψ1
i [v] = v(N)− v(N\{i}) for all i ∈ N and all

v ∈ GN . Of course, p = 1/2 gives Ψ1/2 = β —the Banzhaf value.
Finally, the multilinear extension 1 of a game v ∈ GN , introduced by Owen [23], is the real–
valued function defined in Rn by

f (x1,x2, . . . ,xn) = ∑
S⊆N

∏
i∈S

xi ∏
j∈N\S

(1− x j)v(S).

As is well known, both the Shapley and Banzhaf values of any cooperative game v can be
obtained from its multilinear extension. Indeed, ϕ[v] can be calculated by integrating the
partial derivatives of the multilinear extension of the game along the main diagonal x1 = x2 =
· · · = xn of the cube [0,1]n [23], while the partial derivatives of that multilinear extension,

1The term “multilinear” means that, for each i ∈ N, the function is linear in xi, that is, of the form
fv(x1,x2, . . . ,xn) = gi(x1,x2, . . . ,

∧
xi, . . . ,xn)xi +hi(x1,x2, . . . ,

∧
xi, . . . ,xn).
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evaluated at point (1/2,1/2, . . . ,1/2), give β[v] [24]. This latter procedure extends well to any
p–binomial semivalue (see Puente [26], Freixas and Puente [14] or Amer and Giménez [1])
by evaluating the derivatives at point (p, p, . . . , p).
In 1988, Weber [28] went further, dropped anonymity, and defined the family of probabilis-
tic values, each one of which requires weighting coefficients pi

S for each player i and each
coalition S⊆ N\{i} (of course, anonymity characterizes semivalues within this new family).
The payoff that a probabilistic value allocates to each player is thus, again, a weighted sum
of his marginal contributions in the game. We quote from Weber [28]. As we will see in
the following section, Bilbao et al [5] defined and characterized biprobabilistic values for
bicooperative games.

2.2 Bicooperative games and biprobabilistic values
Let N be a finite set of players and 3N = {(S,T ) : S,T ⊆ N, S∩ T = /0} be the set of all
ordered pairs of disjoint coalitions. Grabisch and Labreuche [19] proposed a relation in 3N

given by
(A,B)v (C,D)⇔ A⊆C, B⊇ D.

Following [2], a bicooperative game on N is a function b : 3N→R, that assigns a real number
b(S,T ) to each pair of coalitions (S, T )∈ 3N , with b( /0, /0)= 0. For each (S,T )∈ 3N , the worth
b(S,T ) represents the maximal gain (if b(S,T )> 0) or the minimal loss (if b(S,T )< 0) that is
obtained when players in S are in favor of a change in the situation, players in T are against the
change and players in N \ (S∪T ) are indifferent. Then b( /0,N) is the cost obtained when all
players are against the change and b(N, /0) is the maximal gain obtained when all players want
to change the initial situation. Endowed with the natural operations for real–valued functions,
the set of all bicooperative games on N is a vector space BGN . For every (S,T ) ∈ 3N such
that (S,T ) 6= ( /0, /0), the identity game δ(S,T ) is defined by

δ(S,T )(A,B) =

{
1 if (A,B) = (S,T )
0 otherwise

and it is easily checked that the set of all identity games is a basis for BGN , so that dim(BGN)=
3n−1 if n = |N|.
A bicooperative game is monotonic if b(S,T )≤ b(S′,T ′) whenever (S,T )v (S′,T ′). A player
i ∈ N is a dummy in b if b(S∪ {i},T ) = b(S,T ) + b({i}, /0) and b(S,T ∪ {i} = b(S,T ) +
b( /0,{i}) for all (S,T ) ∈ 3N\{i}, and null in b if, moreover, b({i}, /0) = b( /0,{i}) = 0.
By a value on BGN we will mean a map Ψ : BGN → RN , that assigns to every game b a
vector Ψ[b] with components Ψi[b] for all i ∈ N.
In [5] Bilbao et al defined and characterized biprobabilistic values for bicooperative games
as follows.

Definition 2.1 A value φ for player i on BGN is a biprobabilistic value if there exist two
collections of real numbers {pi

(S,T ) : (S,T ) ∈ 3N\{i}} and {qi
(S,T ) : (S,T ) ∈ 3N\{i}} satisfying
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pi
(S,T ) ≥ 0, qi

(S,T ) ≥ 0, ∑
(S,T )∈3N\{i}

pi
(S,T ) = 1 and ∑

(S,T )∈3N\{i}
qi
(S,T ) = 1 such that,

φi[b] = ∑
(S,T )∈3N\{i}

[
pi
(S,T )(b(S∪{i},T )−b(S,T ))+qi

(S,T )(b(S,T )−b(S,T ∪{i}))
]

for every game b ∈ BGN .

Notice that φi[b] is a weighted sum of his marginal contributions b(S∪ {i},T )− b(S,T ),
whenever i joins coalition S ⊆ N \{i} and his marginal contributions b(S,T )−b(S,T ∪{i})
whenever i leaves coalition T ∪{i}, where pi

(S,T ) is the probability that player i joins S and
qi
(S,T ) is the probability that player i leaves T ∪{i}.

Following the axiomatic description given by Bilbao et al [5], a value φ on BGN is a proba-
bilistic value if and only if it satisfies the following properties:
(i) linearity: φ[αb+βb′] = αφ[b]+βφ[b′], for all b,b′ ∈ GBN and α, β ∈ R;
(ii) positivity: if b is monotonic, then φ[b]≥ 0;
(iii) dummy player property: if i∈N is a dummy in game b, then φi[b] = b({i}, /0)−b( /0,{i}).
Among biprobabilistic values the Shapley value [4], denoted here by ϕ, for which

pi
s,t =

(n+ s− t)!(n+ t− s−1)!
(2n)!

2n−s−t and qi
s,t =

(n+ t− s)!(n+ s− t−1)!
(2n)!

2n−s−t ,

for all i ∈ N and for all (S,T ) ∈ 3N\i with s = |S| and t = |T |, was characterized by Bilbao et
al [4] as the only efficient bisemivalue –in the sense that its total power for every b ∈ BGN is
∑
i∈N

ϕi[b] = b(N, /0)−b( /0,N)– satisfying the structural axiom.

From now on we will denote S∪{i} by S∪ i, S\{i} by S\ i and |S|= s for all S⊆ N.

3 Bisemivalues for bicooperative games
In this section we introduce and study bisemivalues for bicooperative games. This includes,
besides the axiomatic description, a characterization of them by means of weighting coeffi-
cients that parallels the existing characterization of semivalues given by Dubey, Neyman and
Weber [12] in the context of cooperative games.
In a similar way as the cooperative case, for the comparison of roles in a game to be mean-
ingful, the evaluation of a particular position should depend on the structure of the game but
not on the labels of the players.
In order to define this family we need a new axiom, introduced by Bilbao et al in [4].

Definition 3.1 Anonymity axiom. φπi[πb] = φi[b] for all permutation π over N, i ∈ N, and
b ∈ BGN , where πb(πS,πT ) = b(S,T ) and πS = {πi : i ∈ S}.

Now we are ready to introduce bisemivalues on bicooperative games following Weber’s ax-
iomatic description of semivalues on cooperative games.
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Definition 3.2 A bisemivalue on BGN is a map ψ : BGN → RN that satisfies linearity,
anonymity, positivity and dummy player property.

As we will see, anonymity characterizes bisemivalues within the family of biprobabilistic
values.

Theorem 3.3 A value ψ on BGN is a bisemivalue if and only if there exist two collections of
real numbers {ps,t} and {qs,t} satisfying:

ps,t ≥ 0,qs,t ≥ 0,
n−1

∑
s=0

(
n−1

s

)[n−s−1

∑
t=0

(
n− s−1

t

)
ps,t

]
= 1,

n−1

∑
t=0

(
n−1

t

)[n−t−1

∑
s=0

(
n− t−1

s

)
qs,t

]
= 1,

(1)

such that

ψi[b] = ∑
(S,T )∈3N\i

[ps,t(b(S∪ i,T )−b(S,T ))+qs,t(b(S,T )−b(S,T ∪ i))]

for all i ∈ N and all b ∈ BGN , where s = |S| and t = |T |.

Proof (⇐) Taking into account that bisemivalues are a particular case of biprobabilistic val-
ues, linearity, dummy and positivity are proved in [5]. Anonimity follows from the fact that
the weighting coefficients only depend of the cardinality of S and T .
(⇒) Following [4], it is easy to prove that if a biprobabilistic value satisfies the anonymity
axiom then pi

(S,T ) = ps,t and qi
(S,T ) = qs,t for all (S,T ) ∈ 3N\i with s = |S| and t = |T |, for all

i ∈ N. �

Remark 3.4 (a) The payoff that a bisemivalue allocates to every player in any game is a
weighted sum of his marginal contributions b(S∪ i,T )− b(S,T ) whenever i joins coalition
S⊆N \ i and his marginal contributions b(S,T )−b(S,T ∪ i) whenever i leaves coalition T ∪ i,
where ps,t is the probability that player i joins S in presence of the players in T and qs,t is
the probability that player i leaves T ∪ i in presence of the players in S, provided that all the
coalitions of a common size have the same probability of being joined and lived. Notice that
among biprobabilistic values, bisemivalues are characterized by the fact that all coalitions of
a given size share common weights with regard to all players.
(b) Among bisemivalues, we found the Shapley value [4] – whose weighting coefficients
defined in Section 2 are independent of player i and only depend on cardinalities of S and

T – and the Banzhaf value [6] denoted here by β, for which ps,t = qs,t =

(
1
3

)n−1

is the

only bisemivalue with constant weighting coefficients, that is, weighting coefficients do not
depend on the size of the coalitions S and T .
(c) As it is well known, semivalues for cooperative games are defined on cardinalities rather
than on specific player sets: this means that a weighting vector {pk}n−1

k=0 defines a semivalue
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Ψ on all N such that n = |N|. When necessary, we shall write Ψ(n) for a semivalue on
cardinality n and pn

k for its weighting coefficients. A semivalue Ψ(n) induces semivalues Ψ(t)

for all cardinalities t < n, recurrently defined by the Pascal triangle (inverse) formula given
by Dragan [11]:

pt
k = pt+1

k + pt+1
k+1 for 0≤ k < t, (2)

A series Ψ = {Ψ(n)}∞
n=1 of semivalues, one for each cardinality, satisfies Dragan’s recurrence

formula. and we will say that Ψ is a multisemivalue. Particularly, the Shapley, the Banzhaf
values and all binomial semivalues are multisemivalues.
As we will see, things are very similar to bisemivalues on bicooperative games.

Following Theorem 3.3, analogously to the cooperative case, bisemivalues are also defined
on cardinalities rather than on specific player set: that is, two weighting vectors ps,t and qs,t

define a bisemivalue ψ on all N such that n = |N|. When necessary, we shall write ψ(n) for a
bisemivalue on cardinality n, pn

s,t and qn
s,t for its weighting coefficients.

Proposition 3.5 Given a bisemivalue ψ(n) on BGN with weighting coefficients pn
s,t and qn

s,t ,
the recursively obtained numbers

pm−1
s,t = pm

s+1,t + pm
s,t + pm

s,t+1,

qm−1
s,t = qm

s+1,t +qm
s,t +qm

s,t+1
(3)

for 0≤ s, t < m≤ n, define a induced bisemivalue ψ(m) on the space of bicooperative games
with m players.

Proof Let ψ(n) be a bisemivalue with weighting coefficients pn
s,t and qn

s,t .
It suffices to prove that if ψ(n) is a bisemivalue on BGN then the induced weighting coeffi-
cients pn−1

s,t and qn−1
s,t obtained from (3) define a bisemivalue ψ(n−1) on bicooperative games

with n−1 players.
We have to check that the induced weighting coefficients satisfy (1). It is straightforward to
verify pn−1

s,t ≥ 0 and qn−1
s,t ≥ 0. The remaining condition for the weighting coefficients pn−1

s,t
follows from the fact that:

n−2

∑
s=0

(
n−2

s

)[n−s−2

∑
t=0

(
n− s−2

t

)
pn−1

s,t

]

=
n−2

∑
s=0

(
n−2

s

)[n−s−2

∑
t=0

(
n− s−2

t

)
(pn

s+1,t + pn
s,t + pn

s,t+1)

]

=
n−2

∑
s=0

(
n−2

s

)[n−s−1

∑
t=0

(
n− s−1

t

)
pn

s,t +
n−s−2

∑
t=0

(
n− s−2

t

)
pn

s+1,t

]

=
n−1

∑
s=0

(
n−1

s

)[n−s−1

∑
t=0

(
n− s−1

t

)
pn

s,t

]
= 1.

And analogously for the weighting coefficients qn−1
s,t . �
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Definition 3.6 A series ψ = {ψ(n)}∞
n=1 of bisemivalues, one for each cardinality, is a multi-

bisemivalue if and only if it satisfies (3).

Proposition 3.7 The expression of the weighting coefficients of any induced bisemivalue ψ(m)

in terms of the coefficients of the original bisemivalue ψ(n), are

pm
s,t =

n−m

∑
i=0

(
n−m

i

) n−m−i

∑
j=0

(
n−m− i

j

)
pn

s+i,t+ j,

qm
s,t =

n−m

∑
i=0

(
n−m

i

) n−m−i

∑
j=0

(
n−m− i

j

)
pn

s+i,t+ j

(4)

for 0≤ s, t < m < n.

Proof It follows by applying (3) repeatedly. �

4 (p,q)–bisemivalues
In this section we introduce a subfamily of bisemivalues, called (p,q)–bisemivalues. As
we will see, for each one of them, the weighting coefficients depend on two parameters
p, q∈ [0,1]. These bisemivalues are suited for the study of bicooperative games where players
show two different tendencies to form coalitions. These tendencies are defined for all players
by parameters p and q. From now on we assume that p is the probability to support a player
in his decision and q is the probability to go against him.

Proposition 4.1 Let p, q ∈ [0,1] with p+ q ≤ 1, then the coefficients ps,t = psqt(1− p−
q)n−s−t−1 and qs,t = ptqs(1− p−q)n−s−t−1 define a bisemivalue for the bicooperative games.

Proof We have to prove that the weighting coefficients satisfy (1). It is straightforward to
verify that ps,t ≥ 0 and qs,t ≥ 0. The remaining condition for the weighting coefficients ps,t
follows from the fact that:

n−1

∑
s=0

(
n−1

s

)[n−s−1

∑
t=0

(
n− s−1

t

)
ps,t

]
=

n−1

∑
s=0

(
n−1

s

)[n−s−1

∑
t=0

(
n− s−1

t

)
psqt(1− p−q)n−s−t−1

]

=
n−1

∑
s=0

(
n−1

s

)
ps

[
n−s−1

∑
t=0

(
n− s−1

t

)
qt(1− p−q)n−s−t−1

]
=

n−1

∑
s=0

(
n−1

s

)
ps(1− p)n−s−1 = 1

The case of qs,t follows similarly. �

Definition 4.2 (i) The family of dictatorial indices D, for player i ∈ N is given by

Di[b] = ∑
(S,T )∈3N\i

pi
T [b(i,T )−b( /0,T )]+qi

S [b(S, /0)−b(S, i)] , for all b ∈ BGN ,

where pi
T ≥ 0, ∑

T⊆N\i
pi

T = 1 and qi
S ≥ 0, ∑

S⊆N\i
qi

S = 1.
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Particularly, the super-dictatorial index SD for player i ∈ N is given by

SDi[b] = b(i,N \ i)−b( /0,N \ i)+b(N \ i, /0)−b(N \ i, i) for all b ∈ BGN .

(ii) The marginal index M for player i ∈ N is given by

Mi[b] = b(N, /0)−b(N \ i, /0)+b( /0,N \ i)−b( /0,N) for all b ∈ BGN .

Definition 4.3 Let p, q ∈ [0,1] with p+ q ≤ 1. The (p,q)–bisemivalue ψpq on BGN is de-
fined by the coefficients ps,t = psqt(1− p−q)n−s−t−1 and qs,t = ptqs(1− p−q)n−s−t−1.

Using the convention 00 = 1, in case of p = 0 we obtain a subfamily of dictatorial indices Dq,
q ∈ [0,1], given by

Dq
i [b] = ∑

(S,T )∈3N\i
qt(1−q)n−t−1 [b(i,T )−b( /0,T )]+qs(1−q)n−s−1 [b(S, /0)−b(S, i)] , for all b∈BGN .

If moreover q = 1, we obtain the super-dictatorial index SD. Finally, for p = 1 and q = 0 the
marginal index M is obtained.

Remark 4.4 Notice that for all p, q∈ (0,1) with p+q < 1, the weighting coefficients of ψpq

are in geometric progression
ps+1,t

ps,t
=

qs,t+1

qs,t
=

p
1− p−q

. That is, technically they are given

by the (simplest form of) monotonicity of the weighting coefficients.

In 2000, Puente [26] (see also Giménez [18] or Amer and Giménez [1]) defined a special
family of semivalues on cooperative games, binomial semivalues: for each one of them, the
weighting coefficients depend on a unique parameter p ∈ [0,1]—the Banzhaf value corre-
sponds to p = 1/2. These semivalues are especially suited for the study of cooperative games
where the players show some (common) tendency to form coalitions. This tendency is defined
by parameter p.
Which is reason for letting p range from 0 to 1? Notice that a reasonable regularity as-
sumption on players’ behavior is that the probability to form coalitions follows a monotonic
(increasing or decreasing) behavior. Then, the only semivalues such that pk+1 = λpk for all k
are precisely the p–binomial semivalues, in which case λ = p/(1− p) for each p ∈ [0,1].
Following this idea, we introduce in the following definition a subfamily of (p,q)–bisemivalues,
obtained when p = q, and called binomial bisemivalues. As we will see, they ”extend” the
concept of binomial semivalues to bicooperative games.

Definition 4.5 Let p ∈ [0,1/2]. The p–binomial bisemivalue ψp on BGN is defined by the
coefficients ps,t = qs,t = ps+t(1−2p)n−s−t−1. Of course, p = 1/3 gives the Banzhaf bisemi-
value.

Remark 4.6 The only (p,q)–bisemivalues satisfying ps,t = qs,t , that is, which weights in a
same way the marginal contributions of players in favor or against the change are for: (i)
p = q, corresponding to the binomial bisemivalues; (ii) p = 0, corresponding to the family of
dictatorial indices; (iii) q = 0 and (iv) p+ q = 1. The Marginal index is obtained when the
two last cases are given simultaneously.
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4.1 Computational procedure
The MLE technique has been a useful tool for the calculus of values on cooperative games: it
applies to e.g. the Shapley value (Owen [23]), the Banzhaf value (Owen [24]) and all binomial
semivalues (Puente [26]). In this section first we introduce the multilinear extension of a
bicooperative game that parallels the existing multilinear extension of a cooperative game
given by Owen in [23] and then, we provide a method to compute (p,q)–bisemivalues by
means of the multilinear extension of the game.
We identify each (S,T )∈ 3N by vectors (X ,Y ) of R2n such that X =(x1, . . . ,xn), Y =(y1, . . . ,yn),
and

xi =

{
1 if i ∈ S
0 otherwise

and yi =

{
1 if i ∈ T
0 otherwise

For instead, if N = {1,2,3} the coalitions ({1,3},{2}) and ({1,2}, /0) are identified by
(X ,Y ) = (1,0,1,0,1,0) and (X ,Y ) = (1,1,0,0,0,0) respectively.

Definition 4.7 The multilinear extension of a game b ∈ BGN is the real-valued function
defined on R2n by

f (X ,Y ) = ∑
(S,T )∈3N

[
∏
i∈S

xi ∏
j∈T

y j ∏
k∈N\(S∪T )

(1− xk− yk)

]
b(S,T ). (5)

It is easy to prove that f coincides with b where b is defined.

Proposition 4.8 If ψpq is a (p,q)–bisemivalue and f is the multilinear extension of a game
b ∈ BGN then

ψ
pq
i [b] =

∂ f
∂xi

(
P,Q

)
− ∂ f

∂yi

(
Q,P

)
for all i ∈ N, where P = (p,

n
.̂ . ., p) and Q = (q,

n
.̂ . .,q).

Proof From Definition 4.7 the partial derivatives of f with respect to xi and yi are:

∂ f
∂xi

(X ,Y ) = ∑
(S,T )∈3N\i

[
∏
j∈S

x j ∏
k∈T

yk ∏
l∈N\(S∪T∪i)

(1− xl− yl)

]
[b(S∪ i,T )−b(S,T )] , (6)

∂ f
∂yi

(X ,Y ) = ∑
(S,T )∈3N\i

[
∏
j∈S

x j ∏
k∈T

yk ∏
l∈N\(S∪T∪i)

(1− xl− yl)

]
[b(S,T ∪ i)−b(S,T )] . (7)

Finally, valuating (6) at point (P,Q) and (7) at point (Q,P) and by subtracting these two
results, we obtain the (p,q)–bisemivalue

ψ
pq
i [b] = ∑

(S,T )∈3N\i
psqt(1− p−q)n−s−t−1(b(S∪ i,T )−b(S,T ))

+ptqs(1− p−q)n−s−t−1(b(S,T )−b(S,T ∪ i)).�
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Corollary 4.9 Let p ∈ [0,1/2]. If ψp is the p–binomial bisemivalue and f is the multilinear
extension of a game b ∈ BGN then

ψ
p
i [b] =

∂ f
∂xi

(P,P)− ∂ f
∂yi

(P,P).

Notice that this result extends well the result obtained by Puente [26] for binomial semivalues
on cooperative games.

5 An example
In this section we present an example of bicooperative game. The allocations obtained by the
players will be analyzed by using (p,q)–bisemivalues and we will compute them by using
the MLE technique given in Proposition 4.8.

Example 5.1 Two insurance companies, A1 and A2, are always in competition in order to
obtain the maximum number of clients in a region. If N is the set of insurance agents, each
one of them with an owner clients’ list, we can define the bicooperative game b(S,T ) as A1’s
benefits when players in S work for A1, players in T work for A2 and players in N \ (S∪T )
do not work for A1 neither A2.
Consider N = {1,2,3} the number of insurance agents and assume that players 1 and 3 are the
agents with the biggest and the smallest clients’ list respectively. If an agent leaves company
A1, he can go to A2 and take part or the whole list of his clients or, on the contrary, go to
another type of company unrelated to insurances, to be retired, ... In the first case company
A1 is more damaged than in the second one.
In this situation, let b be the bicooperative game defined by

b({1,2,3}, /0) = 100, b( /0, /0) = 0, b( /0,{1,2,3}) =−60,
b({1,3}, /0) = 85, b({2,3}, /0) = 75, b({1,2}, /0) = 90,
b({1,3},{2}) = 50, b({2,3},{1}) = 20, b({1,2},{3}) = 60,
b({3}, /0) = 65, b({2}, /0) = 70, b({1}, /0) = 80,
b({3},{1}) = 5, b({3},{2}) = 15, b({2},{1}) = 10,
b({2},{3}) = 35, b({1},{2}) = 40, b({1},{3}) = 50,
b({3},{1,2}) =−25, b({2},{1,3}) =−20, b({1},{2,3}) = 5,
b( /0,{1}) =−30, b( /0,{2}) =−15, b( /0,{3}) =−10,
b( /0,{2,3}) =−30, b( /0,{1,3}) =−40, b( /0,{1,2}) =−50.

From Definition 4.7 the MLE of b is

f (X ,Y ) = 80x1 +70x2 +65x3−30y1−15y2−10y3−60x1x2−60x1x3−25x1y2−20x1y3

−60x2x3−30x2y1−25x2y3−30x3y1−35x3y2−5y1y2−5y2y3 +65x1x2x3

+25x1x2y3 +40x1x3y2 +35x2x3y1 +5x2y1y3 +25x3y1y2 +5y1y2y3

We compute (p,q)–bisemivalues by using the MLE technique for each player i:
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ψ
pq
1 [b] = 60p2 +35pq−35q2−115p+15q+110

ψ
pq
2 [b] = 60p2 +35pq−35q2−110p+5q+85

ψ
pq
3 [b] = 60p2 +70pq−115p−20q+75

Table 1 shows the (p,q)–bisemivalues for each player i and for several values of p and q.

ψ
pq
i [b] (p,q) = (0.1,0.7) (p,q) = (0.2,0.6) (p,q) = (0.6,0.2) (p,q) = (0.7,0.1)

i = 1 94.9 (44.49%) 90.0 (44.82%) 68.4 (47.24%) 62.5 (48.34%)
i = 2 63.4 (29.72%) 60.0 (29.88%) 44.4 (30.66%) 40.0 (30.93%)
i = 3 55.0 (25.79%) 50.8 (25.30%) 32.0 (22.10%) 26.8 (20.73%)

Table 1: (p,q)–bisemivalues for each player i and for several values of p and q

If q= p we obtain the p–binomial bisemivalues. Figure 1 shows the p–binomial bisemivalues
for each player i and Table 2 shows the p–binomial bisemivalues for each player i and for
several values of p.

Figure 1: p–binomial bisemivalues for each player i
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i ψ
p
i [b] ψ0.1

i [b] ψ
1/3
i [b] (Banzhaf) ψ0.4

i [b]
1 60p2−100p+110 100.6 (42.18 %) 83.3333 (45.18 %) 79.6 (45.75 %)
2 60p2−105p+85 75.1 (31.49 %) 56.6667 (30.72 %) 52.6 (30.23 %)
3 130p2−135p+75 62.8 (26.33 %) 44.4445 (24.10 %) 41.8 (24.02 %)

Table 2: p–bisemivalues for each player i and for several values of p

From Figure 1, it follows that ψ
p
1 [v]≥ψ

p
2 [v]≥ψ

p
3 [v] for all p ∈ [0,1/2] and the three players’

maximum and minimum allocations, ψ
p
i [v], i = 1,2,3, are obtained when p = 0 and p = 1/2,

respectively. The ratio among players’ allocations varies in a significant way, as it is showed
in Table 2 for values p = 0.1, 1/3 and 0.4.
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[7] Bilbao, J.M., Jimenez, N. and López, J.J. [2010]: “The selectope for bicooperative
games.” European Journal of Operations Research 204, 522–532.

[8] Bolger, E.M. [1993]: “A value for games with n playerts and r alternatives.” Interna-
tional Journal of Game Theory 22, 319–334.

[9] Bolger, E.M. [2000]: “A consistent value for games with n playerts and r alternatives.”
International Journal of Game Theory 29, 93–99.

[10] Borkotokey, S. and Sarmah, P. [2012]: “Bicooperative games with fuzzy bicoalitions.”
Fuzzy Sets Systems 198, 46–58.

[11] Dragan, I. [1997]: “Some recursive definitions of the Shapley value and other linear
values of cooperative TU games.” Working paper 328, University of Texas at Arlington,
United States of America.

14



[12] Dubey, P., Neyman, A. and Weber, R.J. [1981]: “Value theory without efficiency.” Math-
ematics of Operations Research 6, 122–128.

[13] Felsenthal, D. and Machover, M. [1997]: “Ternary voting games.” International Journal
of Game Theory 26, 335–351.

[14] Freixas, J. and Puente, M.A. [2002]: “Reliability importance measures of the compo-
nents in a system based on semivalues and probabilistic values.” Annals of Operations
Research 109, 331–342.

[15] Freixas, J. and Zwicker, W.S. [2003]. “Weighted voting, abstention, and multiple levels
of approval.” Social Choice and Welfare 21, 399–431.

[16] Freixas, J. [2005]. “The Shapley–Shubik power index for games with several levels of
approval in the input and output.” Decision Support Systems 39, 185–195.

[17] Freixas, J. [2005]. “Banzhaf measures for games with several levels of approval in the
input and output.” Annals of Operations Research 137, 45–66.
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