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1 Introduction

Lipid bilayers are unique soft materials operating in general in the low
Reynolds limit. While their shape is predominantly dominated by curva-
ture elasticity as in a solid shell, their in-plane behavior is that of a largely
inextensible viscous fluid. These two behaviors, however, are tightly coupled
through the membrane geometry. Indeed, shape transformations necessar-
ily induce lipid flows that bring material from one part of the membrane
to another (Evans and Yeung, 1994). On the other hand, fluid flows in
the presence of curvature generate out-of-plane forces, which modify the
shape of the membrane and elicit elastic forces (Rahimi et al., 2013). This
mechanical duality provides structural stability and adaptability, allowing
membranes to build relatively stable structures that can nevertheless un-
dergo dynamic shape transformations. These transformations are critical
for the cell function; they are required in vesicular and cellular trafficking
(Sprong et al., 2001; Rustom et al., 2004), cell motility and migration (Ar-
royo et al., 2012; Yamaguchi et al., 2015), or in the mechano-adaptation of
cells to stretch and osmotic stress (Kosmalska et al., 2015).

In addition to this solid-fluid duality, lipid membranes are extremely re-
sponsive to chemical stimuli. They transiently respond for instance to pH
gradients by developing tubules and pearled protrusions (Khalifat et al.,
2014, 2008; Fournier et al., 2009). Furthermore, a myriad of proteins inter-
act with lipid bilayers through curvature, either to generate it or to sense
it (McMahon and Gallop, 2005; Zimmerberg and Kozlov, 2006; Sens et al.,
2008; Shibata et al., 2009; Antonny, 2011). A number of quantitative exper-
iments on synthetic reconstituted systems have examined this interaction,
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notably using tethers pulled out of vesicles and exposed to curvature-active
proteins delivered from either the bulk solution or a membrane reservoir
(Sorre et al., 2009; Heinrich et al., 2010a,b; Sorre et al., 2012). More re-
cently, the interplay between membrane tension and curvature generation
by adsorbed curving proteins has been examined, with implications in cell
mechanosensing and mechanoadaptation (Sinha et al., 2011; Shi and Baum-
gart, 2015).

While there is a very large body of theoretical and computational litera-
ture covering different aspects of bilayer mechanics, current models and sim-
ulation techniques fail to capture the dynamical and chemically responsive
nature of bilayer membranes. We highlight below some of the requirements
of a sufficiently general modeling framework that can quantify and predict
the behavior of lipid bilayer membranes:

Capture the out-of-equilibrium response. Indeed, bilayers are highly
dynamical, but due to the complexity of the chemical and hydrody-
namical effects involved, theory and experiments have focused on equi-
librium. For instance, the classical bending model of Helfrich (Hel-
frich, 1973; Lipowsky, 1991; Jülicher and Lipowsky, 1993; Staykova
et al., 2013) has been very successful in understanding equilibrium
conformations (Steigmann, 1999; Capovilla and Guven, 2002; Tu and
Ou-Yang, 2004; Feng and Klug, 2006; Rangarajan and Gao, 2015;
Sauer et al., 2017), but is insufficient to understand the reconfigura-
tions of membranes when subjected to transient stimuli. To address
this challenge, models and simulations coupling membrane hydrody-
namics and elasticity (Arroyo and DeSimone, 2009; Arroyo et al., 2010;
Rahimi and Arroyo, 2012; Rahimi et al., 2013; Rangamani et al., 2013;
Rodrigues et al., 2013; Barrett et al., 2016) or elasticity and the phase-
separation of chemical species (Embar et al., 2013; Elliott and Stinner,
2013) are emerging in recent years, but only provide initial steps to-
wards a general dynamical framework.

Capture the bilayer architecture. The classical Helfrich model treats
bilayer membranes as simple surfaces. Subsequent refinements in equi-
librium, such as the Area Difference Elasticity (ADE) model (Seifert,
1997), acknowledge the bilayer architecture, by which bending com-
presses one monolayer and stretches the other but, since monolayers
can slip relative to each other, this mechanism of elastic energy stor-
age can be released to a certain degree in a nonlocal manner. In real
biological membranes, however, the ADE effect is though to play a
minor role because of fast cholesterol translocation between mono-
layers. Beyond equilibrium, the work of Seifert and Langer (1993)
and Evans and Yeung (1994) demonstrated that the bilayer architec-
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ture is crucial to understand the dynamics of lipid membranes. In
particular, these works highlighted the role of inter-monolayer fric-
tion as a “hidden” but significant dissipative effect. When it comes
to the interaction of bilayers with proteins, the bilayer architecture is
bound to play an important role since proteins can merely scaffold the
membrane, shallowly insert into one monolayer, or pierce through the
entire bilayer. Elasto-hydrodynamical models capturing the bilayer
architecture have been developed under the assumption of linearized
perturbations (Seifert and Langer, 1993; Fournier et al., 2009; Callan-
Jones et al., 2016), or in a fully nonlinear albeit axisymmetric setting
(Rahimi and Arroyo, 2012). In the present Chapter, we will not focus
on this aspect.

Capture mechanical and chemical nonlinearity. Nonlinearity is essen-
tial to understand many soft matter systems such as lipid membranes.
On the mechanics side, these systems experience very large deforma-
tions that elicit geometric nonlinearity. On the chemical side, bilayers
exhibit nonlinear chemical effects as a result of molecular crowding,
such as nonlinear adsorption (Sorre et al., 2012) or nonlinear sort-
ing of proteins between vesicles and tubules (Zhu et al., 2012; Aimon
et al., 2014; Prévost et al., 2015). Thus, linearized chemo-mechanical
models can only provide information about the onset of transitions
(Shi and Baumgart, 2015), about dilute concentrations of protein on
the surface (Góźdź, 2011), or about the response under very small
perturbations (Callan-Jones et al., 2016).

Consistently treat multiple physics. As argued above, the function of
lipid bilayers is mediated by the tight interplay between elasticity, hy-
drodynamics, molecular diffusion, and chemical reactions. All these
phenomena act in concert and depend on each other. For instance, the
concentration of adsorbed proteins modifies the preferred curvature of
the membrane and conversely curvature modulates the adsorption re-
action. Application of a force may change the shape, inducing lipid
flows that advect proteins, drive diffusion and feedback into shape.
Although several models have coupled mechanical and chemical phe-
nomena resulting from the interaction between membranes and pro-
teins, these focus on equilibrium (Zhu et al., 2012; Singh et al., 2012;
Lipowsky, 2013), on the linearized setting (Callan-Jones et al., 2016),
or consider simplistic models for the mechanical relaxation dynamics
(Liu et al., 2009).

In this Chapter, we do not attempt to address all these requirements.
Instead, we will focus on the last point. More specifically, our main ob-
jective is to introduce an emerging variational modeling framework for the
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dissipative dynamics of soft-matter and biological systems, which provides
a systematic and transparent approach to generate complex models cou-
pling multiple physics. This approach is founded on Onsager’s variational
principle, by which the dynamics result from the interplay between ener-
getic driving forces and dissipative drag forces, each of them deriving from
potentials that are the sum of individual contributions for each physical
mechanism. Models coupling different physics can be assembled by just
adding more terms to the energy and dissipation potentials, and encoding
in them the interactions between the different physical mechanisms. In this
way, this framework provides a flexible and thermodynamically consistent
method to generate complex models. The goal of the Chapter is to convey
Onsager’s variational principle through examples. Some of these examples
are directly relevant to bilayer mechanics. In the second part of the Chapter,
we emphasize models relevant to the adsorption of proteins on membranes.
We avoid, however, the general formulation of a complete model for bilayers
coupling elasticity, bulk and interfacial hydrodynamics, bulk and interfacial
diffusion, and adsorption in a deformable membrane, which requires many
pages and extensive use of differential geometry, but does not significantly
contribute to our goal here.

While going through the Chapter, some readers may find some of the
material close to trivial or irrelevant. We encourage them to read further
because the beauty and importance of Onsager’s principle manifests itself
when confronted with systems involving multiple physics. We also note that
much of the material presented here is standard textbook material or can
be found scattered in the recent and not so recent literature. The unified
view of Onsager’s principle as a powerful and general approach to model
nonlinear dissipative systems, however, is an emerging idea. Furthermore,
we present some original applications of this principle to model nonlinear
adsorption phenomena, and curvature sensing and generation by proteins.
The interested reader may find recent applications of Onsager’s principle
to lipid membranes elsewhere (Arroyo and DeSimone, 2009; Rahimi and
Arroyo, 2012; Rahimi et al., 2013; Fournier, 2015; Callan-Jones et al., 2016).

The Chapter is organized as follows. In Section 2 we introduce On-
sager’s variational principle by way of elementary mechanical models. We
also revisit common models such as Stokes incompressible flow, linear diffu-
sion, diffusion coupled with hydrodynamics in the presence of a rigid semi-
permeable membrane, or a linear reaction-diffusion system involving two
species. See Peletier (2014) for a related pedagogical work. By deriving
all these problems using Onsager’s principle, we frame them into a unified
framework and provide the elements to build more complex models. In
Section 3, we focus on the adsorption and diffusion of a chemical species
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from the bulk onto a surface of fixed shape. This allows us to identify
the variational structure behind common linear and nonlinear adsorption
models including Langmuir model. Finally, in Section 4, we provide a min-
imal model to examine curvature sensing and generation, by introducing a
coupling between protein concentration and spontaneous curvature.

2 Onsager’s variational principle

2.1 Background

Variational principles underly many mechanical and thermodynamic the-
ories. These principles provide a systematic procedure to generate governing
equations, and provide an additional mathematical structure that highlights
qualitative properties of the solutions not apparent from the Euler-Lagrange
equations. For instance, the principle of minimum potential energy provides
information about the stability of equilibria, not accessible from the mere
equilibrium equations. Hamilton’s principle for the inertial mechanics of
particles and continua characterizes variationally trajectories otherwise sat-
isfying “F = mA”. This variational principle provides a natural framework
to Noether’s theorem and to derive variational time-integrators (Lew et al.,
2004).

Towards an analogous framework to model soft-matter and biological
systems, we introduce here Onsager’s variational principle (Onsager, 1931a,b),
in a terminology introduced by Doi (2011). This variational framework
describes the dynamics of dissipative systems and is an extension of the
principle of least energy dissipation, first introduced by Rayleigh (1873)
(Goldstein, 1980). Onsager’s relations are generally invoked in the con-
text of linear irreversible thermodynamics (Prigogine, 1967). As argued
earlier, however, nonlinearity is essential in many soft matter systems. Im-
portantly, as noted by Doi (2011), Onsager’s relations emerge from a more
general variational principle applicable in fully nonlinear settings. This fact
was exploited to derive the geometrically nonlinear equations for an inex-
tensible interfacial fluid with bending rigidity coupled to a bulk viscous
fluid (Arroyo and DeSimone, 2009), or to derive the governing equations
for a phase-field model of membranes coupled to a viscous bulk fluid (Peco
et al., 2013). This formalism assumes that inertial forces are negligible (see
Öttinger (2005) for an extension), but otherwise encompasses the classes of
problems encountered in soft matter and biological physics, tightly coupling
chemistry, hydrodynamics and nonlinear solid mechanics.

Besides soft matter physics, variational principles of the Onsager type
were introduced in solid mechanics, in particular invoking time-incremental
discretized principles to generate algorithms (Ortiz and Repetto, 1999) or to
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develop mathematical analysis (Mielke, 2011a,b, 2012). Along similar lines,
Jordan et al. (1998); Otto (2001) identified a variational formulation for dif-
fusion equations as gradient flows of entropy functionals, providing mathe-
matical and physical insight and highlighting the importance of adequately
parametrizing the processes that modify the state of the system. This led to
a further formalization of Onsager’s variational principle by Peletier (2014)
introducing the so-called process operators, which were independently used
by Doi (2011) to model viscoelastic fluids and by Rahimi and Arroyo (2012)
to derive the equations of a nonlinear dynamical model for lipid bilayers.
More recently, the gradient structure of reaction-diffusion systems has been
identified (Mielke, 2011a), allowing us to couple such problems with other
phenomena through Onsager’s principle.

We introduce next Onsager’s principle through simple mechanical and
chemical models. Our goal is to emphasize that this principle provides a sys-
tematic way to derive the governing equations for complex systems starting
from elementary energetic and dissipative ingredients, which act as build-
ing blocks of the theory. Here, we do not address an additional important
benefit of Onsager’s principle: the fact that it provides a privileged starting
point for time and space discretization of the resulting systems of partial
differential equations.

2.2 Onsager’s principle for elementary systems

We consider a spring of elastic constant k coupled in parallel with a dash-
pot of drag coefficient η and under the action of a force F (see Fig. 1A).
It may seem an overkill to invoke Onsager’s principle to describe such an
elementary model. However, we shall see that the treatment of more com-
plex systems follows the same rationale, and therefore this and subsequent
examples provide a simple physical picture to understand the essential ideas.

The state of the system is characterized by the displacement of the spring
with respect to its natural elongation, x. The force generated by the spring
is

Fcons = −kx, (1)

where the label “cons” identifies that this force is conservative. The system
is also experiencing a viscous force opposing its motion

Fvisc = −µv, (2)

where v = ẋ. If the drag is sufficiently large, inertia can be neglected. Then,
balance of forces reads

Fcons + Fvisc + F = 0, (3)
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A B

Figure 1. Diagrams of two elementary mechanical systems. (A) A spring
with constant k is in parallel with a dashpot with drag coefficient η and a
force F is applied. The system is characterized by the displacement of the
point of application of the force from its equilibrium position, x. (B) The
spring is now in series with the dashpot and the force is applied to the dash-
pot; the system in this case is characterized by x1, the displacement of the
spring relative to its equilibrium position, and x2, the relative displacement
of the dashpot with respect to the spring.

leading to
ηẋ+ kx = F. (4)

This is an ordinary differential equation that can be easily integrated in time
to obtain x(t) given an initial condition. But let us focus on the structure
of this equation rather than on its solution; this equation follows from a
variational principle. Indeed, on the one hand, the spring and external
forces derive from a potential, which includes the stored elastic energy in
the spring and the potential for the external force

Fcons + F = −dF
dx

where F(x) =
k

2
x2 − Fx. (5)

On the other hand, the viscous force also derives from a potential, usu-
ally referred to as the dissipation potential or as the Rayleigh dissipation
function, depending on v

Fvisc = −∂D
∂v

where D(v) =
η

2
v2. (6)

The rate of change of the energy can be written, using the chain rule, as

d

dt
[F(x(t))] =

dF
dx

(x(t)) ẋ(t) = (kx− F ) v, (7)

and therefore Ḟ depends on the state of the system x and on the rate of
change of the state v. Now, let us define the function

R(x, v) = Ḟ(x, v) +D(v) = (kx− F ) v +
1

2
ηv2. (8)

7



It is clear that the governing equation for this system (4) follows from 0 =
∂R/∂v. Furthermore, because η > 0, R is a convex function of v. Thus, we
conclude that the governing equation follows from the variational principle

v = argmin
w

R(x,w). (9)

This is Onsager’s variational principle and the function R(x, v) is called the
Rayleighian of the system. The minimization is performed over the rate of
change of the state of the system, v, rather than on the state of the system,
x, in contrast with the classical equilibrium principle of minimum potential
energy. This is a genuinely dynamical principle establishing a competition
between the energy release rate and dissipation (Onsager, 1931a; Doi, 2011).
Focusing on linear response theory, Onsager showed that this principle holds
for general irreversible processes, where the key assumptions are that (i)
dissipation dominates over inertia and (ii) viscous forces are derived from
a dissipation potential. This principle, however, is still valid if F or D are
general non-harmonic potentials for the spring or for the dashpot.

Before showing the application of Onsager’s variational principle to con-
tinuous systems, we consider another discrete example consisting of a spring
in series with a dashpot loaded with a force (see Fig. 1B). The system is
characterized by the displacement of the spring from its equilibrium posi-
tion, x1, and by the displacement of the dashpot with respect to the spring,
x2. We denote the rate of change of these coordinates by vi = dxi/dt. Let
us proceed directly following Onsager’s variational principle. The energy of
this system is just the energy stored by the spring and the potential energy
of the load, whose application point is displaced by x1 + x2

F(x1, x2) =
k

2
x2

1 − F (x1 + x2). (10)

The rate of change of the energy is

Ḟ(x1; v1, v2) = kx1v1 − F (v1 + v2), (11)

which here happens not to depend on x2. On the other hand, the dissipation
potential can be written in terms of v2 only

D(v2) =
η

2
v2

2 . (12)

Thus, the Rayleighian is

R(x1; v1, v2) = kx1v1 − F (v1 + v2) +
η

2
v2

2 (13)
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and Onsager’s variational principle states that

v1, v2 = argmin
w1,w2

R(x1;w1, w2). (14)

The stationarity necessary conditions for the minimizer, 0 = ∂R/∂vi, lead
to

F = kx1 = ηv2, (15)

which coincides with the result obtained from direct force balance for this
system.

We end this Section with a variation of the model in Fig. 1B, in which
we have two dashpots in series with constants η1 and η2. This example is
intended to make a more subtle point and may be skipped in a first reading.
In this case, F = −F (x1 +x2) and we simply add the dissipation potentials
of each of the dashpots to form

D =
η1

2
v2

1 +
η2

2
v2

2 . (16)

Applying Onsager’s principle, we immediately find vi = F/ηi. Now, let us
define the total displacement of the right-end of the system x = x1 +x2 and
its velocity v = v1 + v2. A simple manipulation shows that the following
relation holds

v =
η1 + η2

η1η2
F, (17)

and therefore, the viscous force of the composite system consisting of two
dashpots in series derives from the following dissipation potential

D̂(v) =
1

2

η1η2

η1 + η2
v2. (18)

This potential exhibits a non-additive structure in that the effective drag
coefficient is not the sum of the individual drag coefficients. In contrast,
the corresponding dual dissipation potential obtained through a Legendre
transform

D̂∗(F ) = min
v

[
Fv − D̂(v)

]
=

1

2

(
1

η1
+

1

η2

)
F 2 (19)

does exhibit an additive structure for this model. This point has been raised
in a different but related context (Mielke, 2012) to favor a formalism relying
on the dual dissipation potential. This simple example shows, however, that
the dissipation potential retains an additive structure, see Eq. (16), provided
sufficient detail is kept in the formulation describing the rate of change of
the system and how these changes dissipate energy.
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2.3 Incompressible Stokes flow

We formulate next the governing equations for a Newtonian incompress-
ible fluid in the low Reynolds limit, the familiar Stokes equations, within the
framework of Onsager’s principle. This formalization will be useful later,
when coupling low Re hydrodynamics with different physics. We consider
a fluid in a fixed volume Ω with boundary ∂Ω. The motion of material
particles in the fluid is characterized by a velocity field v(x). The field v(x)
is the continuous equivalent to v in the previous example. The dissipation
potential characterizes the energy dissipated as the fluid deforms. For an
incompressible Newtonian fluid, it takes the form

D[v] = η

∫
Ω

d : d dV, (20)

where d is the rate-of-deformation tensor d = 1
2

(
∇v + (∇v)T

)
and η is the

shear viscosity of the fluid. Recalling that the viscous shear stress is 2ηd
for a Newtonian fluid, then η d : d can be identified as half of the rate of
dissipation per unit volume.

We split ∂Ω = ΓD ∪ ΓN into two disjoint subdomains, the Dirichlet
boundary ΓD, where a velocity field is prescribed v(x) = v̄(x), and the
Neumann boundary ΓN , where a traction t(x) is applied. The traction
at the Neumann boundary is supplying power to the system. This power
supply can be introduced through a potential of the form

P[v] = −
∫

ΓN

t · vdS. (21)

In this problem there is no energetic ingredient, and therefore the system is
oblivious to any variable encoding the state system. Thus the Rayleghian
accounting for internal dissipation and power supply through boundary trac-
tion is simply R[v] = D[v] + P[v].

Onsager’s principle states that the system evolves in such a way that
the Rayleghian is minimized with respect to v. However, it is important
to realize that the velocity field is subjected to constraints. On the one
hand, it should satisfy the Dirichlet boundary conditions. On the other
hand, since the fluid is incompressible, it should satisfy ∇·v = 0 in Ω. The
variational principle allows us to easily incorporate constraints, for instance
using a field of Lagrange multipliers and forming the Lagrangian

L[v, p] = R[v]−
∫

Ω

p∇ · v dV

= η

∫
Ω

d : d dV −
∫

ΓN

t · vdS −
∫

Ω

p∇ · v dV,
(22)
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where p can be interpreted as the pressure in the fluid. Now, the constrained
Onsager’s principle can be stated as a saddle problem

v, p = argmax
q

argmin
w

{L[w, q]} . (23)

The variation of the Lagrangian with respect to the velocity field along
δv consistent with Dirichlet boundary conditions, i.e. δv = 0 at ΓD, leads
to the stationarity condition

2η

∫
Ω

d : ∇δv dV −
∫

ΓN

t · δv dS −
∫

Ω

p∇ · δv dV = 0. (24)

Variations with respect to p lead to∫
Ω

δp∇ · v dV = 0. (25)

Eqs. (24) and (25) are the weak form of the problem. The strong form
follows after integration by parts and taking into account the arbitrariness
in δv and δp,

∇ · σ = 0 in Ω,

∇ · v = 0 in Ω,

v = v̄ on ΓD,

σ · n = t on ΓN ,

(26)

where σ = 2ηd−pI is the stress tensor of the fluid, I is the identity tensor,
and n is the unit outward normal to ∂Ω. Thus, the equations characterizing
an incompressible Newtonian fluid in the low Re limit can be obtained from
Onsager’s variational principle. This example also illustrates the treatment
of constraints in this formalism.

Note that by replacing v by a displacement field u (now a state vari-
able), d by the linearized strain tensor ε = (∇u + ∇uT )/2, and η by the
shear modulus µ, these equations are those of linear isotropic elasticity for
an incompressible material. These equations also follow from Onsager’s
principle, starting from the free energy

F [u] = µ

∫
Ω

ε : ε dV −
∫

ΓN

t · udS. (27)

Since we do not have a dissipation source, and noting that v = ∂tu, the
constrained Rayleighian becomes

L[u;v, p] = 2µ

∫
Ω

ε : ∇v dV −
∫

ΓN

t · vdS −
∫

Ω

p∇ · v dV. (28)
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2.4 Diffusion of a solute in a fluid

Further building our catalog of models amenable to Onsager’s principle,
we consider now the diffusion equation. Let Ω be a region of space occu-
pied by a quiescent fluid with a dilute distribution of non-interacting and
neutrally buoyant solute molecules. This region is delimited by an imper-
meable container. We denote by c(x, t) the molar concentration field of this
substance at time t. A classical model to describe the time-evolution of this
field is based on the diffusion equation, ∂tc = D∆c, where D is the diffusion
coefficient and ∆ is the Laplacian, supplemented by appropriate boundary
and initial conditions. Furthermore, the Stokes-Einstein equation provides
a microscopic expression for the diffusion coefficient as

D =
kBT

f
(29)

where kB is the Boltzmann constant, T is the absolute temperature, and f
is the hydrodynamic drag coefficient, that is the proportionality coefficient
between the drag force experienced by a solute molecule and the speed at
which it is moving relative to the fluid. For an incompressible Newtonian
fluid at low Re and a spherical solute or radius a,

f = 6πηa (30)

where η is the shear viscosity of the fluid (Happel and Brenner, 2012).
As discussed by Jordan et al. (1998), a direct calculation shows that the

diffusion equation can be formally derived from Onsager’s principle using
as free energy

F [c] =
D

2

∫
Ω

|∇c|2dV, (31)

characterizing the changes of state of the system simply by ∂tc, and consid-
ering as dissipation potential

D[∂tc] =
1

2

∫
Ω

(∂tc)
2dV. (32)

This approach, however, is not satisfactory for several reasons. First, these
potentials do not admit a compelling physical interpretation, nor provide a
connection with the microscopic physics. Second, and this cannot be fully
appreciated yet, these potentials are not meaningful building blocks that
can be combined with elasticity, chemistry or hydrodynamics.

Instead, the main driving force for molecular diffusion is mixing entropy
maximization (or minimization of entropic free energy). For a dilute solution
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at concentration c, it can be motivated from various points of view (Peletier,
2014; Pauli and Enz, 2000) that the entropy density per unit volume due
to mixing between the solute and the solvent is given by −RTc log(c/c0),
where c0 is an arbitrary normalization constant and R is the universal gas
constant. Therefore, the free energy of the system will be given by the
so-called ideal gas mixing entropy

F [c] = RT

∫
Ω

c log
c

c0
dV. (33)

It is easy to see that c0 is an arbitrary constant. Indeed, using the properties
of the logarithm, the free energy can be written as · · · − RT log c0

∫
Ω
c dV .

Because the container is impermeable, conservation of solute molecules im-
plies that this integral is a constant, and therefore c0 only modifies an
additive constant in the energy. If part of the boundary was capable of
exchanging solute molecules with a reservoir at fixed chemical potential,
then the constant c0 would not be arbitrary. We leave this as an exercise.
An alternative way to express the normalization constant common in the
literature is

F [c] = RT

∫
Ω

c (log c− 1) dV +

∫
Ω

cµ0dV, (34)

where µ0 is called standard chemical potential. As we shall see later, the
governing equations will not depend on this arbitrary normalization con-
stant.

The state of the system, and hence its free energy, is characterized at
time t by the field c(·, t). Then, the free energy functional evaluated at this
time-dependent field F [c(·, t)] generates a function that depends only on
time. Its rate of change, noting that the boundary of Ω is impermeable and
therefore Reynolds transport theorem only involves a bulk term, can then
be computed as

d

dt
(F [c(·, t)]) =

∫
Ω

(µ0 +RT log c) ∂tc dV, (35)

where

µ(c) =
δF
δc

= µ0 +RT log c (36)

is the chemical potential at concentration c, defined as the functional deriva-
tive of the free energy with respect to the concentration (here it is simply
the partial derivative of the free energy density). The chemical potential
µ(c) locally measures the free energy cost of adding one mole of solutes per
unit volume at a given concentration. Therefore, it is natural that gradients
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in the chemical potential will drive migration of the solutes to reduce the
free energy. From this expression we see that µ0 is the chemical potential
at a reference concentration, here c = 1.

Now, let’s think about the dissipation involved in the diffusive migra-
tion of the solutes. Imagining a single solute molecule moving a velocity
w relative to the quiescent fluid, we have seen that the drag force is given
by F = −fw, and therefore the dissipation potential for this single so-
lute would be (f/2)|w|2. Now, in a unit of volume we have NAc of such
molecules, where NA is Avogadro’s number. Let us think ofw as an effective
collective velocity of the solutes relative to the quiescent fluid–a diffusive
velocity–in a given region in space. Then, assuming that the solution is
dilute, and therefore the drag on a solute molecule is not affected by the
presence of other solute molecules, it is reasonable to write the dissipation
potential per unit volume as (fNA/2)c|w|2 and therefore

D[w] =
fNA

2

∫
Ω

c|w|2dV. (37)

Towards applying Onsager’s principle, we can combine Eqs. (35) and (37)
to form the Rayleighian. However, we immediately note that Ḟ is expressed
as a functional of ∂tc, but D is instead a functional of w, and therefore it
is not clear what should we minimize with respect to. How to proceed?

The first important observation is that not only ∂tc but also w charac-
terize the rate of change of the state of the system. Indeed, if solutes move
with diffusive velocity w, they will rearrange in space and the concentra-
tion field will be modified. The second observation is that these two ways
of expressing the rate of change of the state are not independent. Indeed,
they are related by the continuity equation

∂tc+∇ · (cw) = 0 (38)

expressing locally the conservation of solute molecules (Landau and Lifshitz,
2013). The product jD = cw is the molar diffusive flux of solute molecules.
We will call w the process variable for this system because it describes
the rate of change of the system, and allows us to express the dissipation.
Plugging this equation into Eq. (35), we can express the rate of change of
the energy, after integration by parts, as

Ḟ [c;w] = −
∫

Ω

µ(c)∇ · (cw) dV

= −
∫
∂Ω

µ(c)cw · n dS +

∫
Ω

c∇µ(c) ·w dV. (39)
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Since we have assumed that the solute molecules cannot cross the boundary
of the container, and therefore jD · n = 0 over ∂Ω, the boundary integral
term vanishes and the Rayleighian takes the form

R[c;w] =

∫
Ω

c∇µ(c) ·w dV +
fNA

2

∫
Ω

c|w|2dV. (40)

Recalling Eq. (36) and minimizing this functional with respect to w we
obtain the stationarity condition

0 =

∫
Ω

RT∇c · δw dV + fNA

∫
Ω

cw · δw dV, (41)

which should hold for all admissible variations δw. This allows us to localize
the relation

jD = cw = − RT

fNA
∇c = −kBT

f
∇c. (42)

Thus, not only do we identify Fick’s law of diffusion. We also recover the
Stokes-Einstein equation for the diffusion coefficient, see Eq. (29). Plugging
this expression into the continuity equation, we recover the classical diffusion
equation

∂tc =
kBT

f
∆c in Ω, (43)

with homogeneous Neumann boundary conditions ∂c/∂n = 0 in ∂Ω. Thus,
we have seen that Fick’s law, the Stokes-Einstein equation, and the diffusion
equation can be derived using Onsager’s principle from physically motivated
expressions for the free energy and the dissipation potential. We also see
that the resulting governing equations are independent of the normalization
constant µ0.

2.5 Abstract statement of Onsager’s principle

The previous example has shown that the rate of change of the energy
and the dissipation potential may be expressed in terms of different de-
scriptions of the rate of change of the system. Ḟ was a functional of ∂tc
while D was a functional of the diffusive velocity w. To place the rate of
change of the energy and the dissipation potential on an equal footing in the
Rayleighian, we needed a relation between these two quantities (the continu-
ity equation), termed process operator in the terminology of Peletier (2014).
We follow this reference in this Section to formalize an abstract statement
of Onsager’s principle. The objective of this formal exercise is to conceptu-
alize the procedure and guide our formulation of more complex problems.
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It remains a nontrivial task, however, to map a particular physical model
into this formalism.

In the examples examined so far, we have seen that the main ingredients
in Onsager’s modeling framework are (1) the state variables, such as x or c,
which identify the state of the system, (2) the free energy F , which depends
on the state variables, (3) the process variables, such as v, v or w, which
describe how the system changes its state and generates dissipation, (4)
the process operator P , which relates the rate of change of the state vari-
ables and the process variables, (5) the dissipation potential D, measuring
the energy dissipated by the process variables, and possibly (6) potentials
accounting for the externally supplied power P and (7) constraints such
as the incompressibility condition. Constraints may be formulated on the
state or on the process variables, but the former can always be linearized
and expressed as constraints on the process variables. Collecting all these
ingredients, we can abstractly state Onsager’s variational principle as fol-
lows.

Let us describe a dissipative system through some state variables X(t)
evolving in a suitable space (possibly a nonlinear manifold), a free energy
F(X), some process variables V (living in a vector bundle and therefore
with a clear notion of 0), a dissipation potential D(X;V ), and a potential
for the external power supply P(X;V ). Suppose also that the process vari-
ables are linearly constrained by 0 = C(X)V during the time-evolution of
the system. F is often a nonlinear function of X, D may be a nonlinear
function of X but is generally quadratic in V , and P is generally linear in
V . However, D does not need to be quadratic in V in Onsager’s formalism
as described here. As motivated below, the thermodynamic requirements
we will need on D are (1) that it is nonnegative, (2) that D(X, 0) = 0 and
(3) that it is convex as a function of V . We will also assume here that the
dissipation potential is differentiable. This is not necessarily the case, for in-
stance in rate-independent dissipative processes such as dry friction, which
can nevertheless be framed in Onsager’s principle. The differentiability as-
sumption is justified here because soft and biological matter is generally wet
and rate-dependent.

To form the Rayleighian, we need to evaluate the rate of change of the
energy, which can most of the times be obtained by the chain rule

Ḟ(X; ∂tX) =
d

dt
[F(X(t))] = DF(X) · ∂tX, (44)

where DF(X) denotes the derivative of the free energy. The situations
is slightly complicated when considering free energy integrals over non-
material domains (open systems), where Reynolds transport theorem pro-
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duces an explicit dependence of Ḟ on the process variables V . This is the
case in the example in Section 2.6. This dependence, however, does not
complicate the application of Onsager’s principle in any way.

In general, the process variable V (w in the previous example) will not
be simply the time-derivative of the state variable ∂tX (∂tc in the previous
example), although this was the case in the examples of Section 2.2. To
relate these two descriptions of the evolution of the state of the system, we
need a process operator, which we consider here to be linear

∂tX = P (X)V. (45)

This operator will often be either trivial, i.e. ∂tX = V , or a statement of
conservation of mass. Importantly, as noted by Otto (2001); Peletier (2014),
V often contains redundant information to describe ∂tX, which is however
required to properly model dissipation. This is the case in the previous
example, where ∂tc is a scalar field but w is a vector field.

The process operator allows us to express the rate of change of the system
in terms of the process variable V , and thus form the Rayleighian as

R(X;V ) = DF(X) · P (X)V +D(X;V ) + P(X;V ). (46)

Onsager’s variational principle then states that the system evolves such that

V = argmin
W

R(X;W ) (47)

subject to the constraints on W

C(X)W = 0. (48)

The constrained dynamics can be equivalently characterized as stationary
(saddle) points of the Lagrangian

L(X;V,Λ) = DF(X) · P (X)V +D(X;V ) + P(X;V ) + Λ · C(X)V, (49)

where Λ are the Lagrange multipliers. Once V is obtained from this varia-
tional principle, we can then integrate ∂tX in time recalling Eq. (45).

Let us now formally examine an important qualitative property of the
resulting dissipative dynamics. For this, we will consider a “homogeneous”
system with P(X;V ) = 0. The stationarity condition 0 = δΛL simply leads
to 0 = C(X)V . The stationarity condition 0 = δV L results in the dynamical
equilibrium equation

0 = DXF(X) · P (X) +DVD(X;V ) + Λ · C(X). (50)
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Multiplying this equation by the actual V along the dissipative dynamics
and rearranging terms, we obtain

DXF(X) · P (X)V︸ ︷︷ ︸
Ḟ

= −DVD(X;V )V − Λ · C(X)V︸ ︷︷ ︸
0

. (51)

Now, since D is convex and differentiable in V and we have required that
D(X; 0) = 0, we conclude that

0 = D(X; 0) ≥ D(X;V ) +DVD(X;V )(0− V ). (52)

Since we have required D(X;V ) ≥ 0, we conclude from this equation that

0 ≥ −D(X;V ) ≥ −DVD(X;V )V. (53)

This equation, together with Eq. (51), show that during the dynamics

Ḟ ≤ 0, (54)

and DVD(X;V )V is the rate of dissipation. For quadratic dissipation po-
tentials, it is easily checked that DVD(X;V )V = 2D(X;V ). Therefore, the
free energy F is a Lyapunov function of the dynamics. This also shows that
Onsager’s principle complies with the second law of thermodynamics by
construction, as long as D satisfies a set of minimal requirements. Finally,
we note that this notion of stability is fully nonlinear and does not assume
a quadratic form for the dissipation or free energy potentials.

2.6 Diffusion, low Re hydrodynamics and osmosis in a fluid with
a solute interacting with a semipermeable membrane

We consider now a simple problem coupling diffusion, hydrodynamics,
and mechanics. This problem also exemplifies the treatment of moving
interfaces. The physical model is described in Figure 2. Because of the
presence of a semipermeable membrane, that selectively blocks the passage
of solute molecules (red dots in the figure) but lets solvent molecules go
through (blue background medium), this model will allow us to examine
osmotic effects. The semipermeable membrane is rigid, but can move later-
ally at the expense of storing elastic energy in a spring. Thus, this model
conceptually recapitulates a number the ingredients relevant to membrane
physics. Indeed, lipid bilayers are semipermeable membranes embedded in
a solution at high osmolar strength, and their deformation stores elastic
energy. Because the impermeable barrier does not allow solute molecules
to pass, the concentration of these molecules may be discontinuous across
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Figure 2. Impermeable fluid container Ω with a semipermeable membrane
dividing the container in two sub-domains. The semipermeable membrane
is rigid but can move laterally and is connected to a spring. The fluid
contains solute molecules.

Γ. On the other hand, the solvent can cross the semipermeable barrier, but
this passage involves some friction characterized by a permeation coefficient
(Staykova et al., 2013).

Let us address this problem using Onsager’s principle, and let us try to
follow the systematic procedure outlined in the previous Section. First, we
need to identify suitable state variables, which in this case are the concen-
tration field c of solute molecules, which can be discontinuous across Γ (and
for this reason we distinguish between c+ and c− on the membrane), and the
position of the moving semipermeable membrane x. Combining ingredients
introduced in the previous examples, we can form the free energy depending
on X = {c, x} as

F(X) = RT

∫
Ω

c (log c− 1) dV +

∫
Ω

cµ0dV +
k

2
x2. (55)

Let us discuss the process variables. These include the diffusive velocity
w characterizing changes in c and the velocity of the semipermeable mem-
brane vm = ẋ. Furthermore, it is clear that the motion of this membrane
will displace the fluid, which cannot be assumed to be quiescent as in Section
2.4. Therefore, the velocity of the fluid v will also be part of the process

19



variables. Now, since the background fluid is moving, we need to decide
whether w describes the absolute velocity of the solutes or their velocity
relative to the fluid. We choose the latter, since this relative velocity is the
one that is meaningful to describe dissipation during diffusion. Thus, the
process variables are V = {w, vm,v}.

Let us discuss now the constraints affecting the process variables. We
shall assume that the solution is dilute, and therefore the solute molecules
occupy a negligible volume fraction. The condition of molecular incom-
pressibility then leads to the common condition for an incompressible fluid
(here the solvent) ∇ · v = 0 in Ω. For the fluid, we adopt no slip bound-
ary conditions at the boundary of the container, v = 0 on ∂Ω. The fluid
can cross the membrane, but tangentially, we impose a no-slip condition
v − (v ·N)N = 0 on Γ. By conservation of mass of solvent v ·N must
be continuous across Γ. Since its normal and tangential components are
continuous, v is continuous across Γ. Since the container is impermeable to
the solute molecules, we have w · n = 0 on ∂Ω.

The two dissipation potentials in Eq. (20) for viscous flow and in Eq. (37)
for diffusion are relevant to the present situation. There is an additional
source of dissipation associated to solvent permeation through the semiper-
meable membrane. In agreement with commonly used models for perme-
ation, we postulate that the dissipation potential density per unit area is
quadratic in the normal component of the velocity of fluid across the inter-
face v ·N − vm. Thus, the dissipation potential for this problem can be
written as

D(X;V ) = η

∫
Ω

d : d dV +
fNA

2

∫
Ω

c|w|2dV +
η̄

2

∫
Γ

(v ·N − vm)
2
dS, (56)

where η̄ is a permeation coefficient.
Following the systematic procedure outlined in the previous Section,

we now turn to the process operator. This operator relating ∂tX and V
contains the trivial component ẋ = vm, and another component stating the
conservation of solute molecules, which now takes the form

0 = ∂tc+∇ · (jD + cv) = ∂tc+∇ · [c(w + v)] , (57)

since the solute molecules can be transported either diffusively or by advec-
tion. In addition to these two equations, there is another important process
relation at the semipermeable membrane. Because the solutes cannot cross
the membrane, their diffusive velocity needs to coincide with the membrane
velocity on either side of the domain

vm = (w± + v) ·N . (58)
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Since v ·N is continuous across the interface, we conclude that w ·N is
continuous across the interface. Therefore, the process operator can be
summarized by the three relations

ẋ = vm, 0 = ∂tc+∇· [c(w + v)] in Ω, vm = (w+v) ·N on Γ. (59)

Now, we are in a position to compute the rate of change of the free
energy, a key point in the theory. Recalling the definition of the chemical
potential in Eq. (36) and applying Reynolds transport theorem in Ω− and
Ω+ separately to account for the internal moving boundary, we obtain

Ḟ =
d

dt

∫
Ω−

[RTc(log c− 1) + cµ0] dV +
d

dt

∫
Ω+

[RTc(log c− 1) + cµ0] dV + kxẋ

=

∫
Ω−

µ∂tc dV + vm

∫
Γ

[
RTc−(log c− − 1) + c−µ0

]
dS+∫

Ω+

µ∂tc dV − vm
∫

Γ

[
RTc+(log c+ − 1) + c+µ0

]
dS + kxẋ

=

∫
Ω−

µ∂tc dV +

∫
Ω+

µ∂tc dV − vm
∫

Γ

[[RTc(log c− 1) + cµ0]] dS + kxẋ

=

∫
Ω−

µ∂tc dV +

∫
Ω+

µ∂tc dV − vm
∫

Γ

([[cµ]]−RT [[c]]) dS + kxẋ, (60)

where [[f ]] denotes the jump of a function f across an interface f+ − f−.
Now, using the first and second process equations in Eq. (59), the divergence
theorem, the boundary conditions on ∂Ω, and the fact that n− = −n+ = N
on Γ, we have

Ḟ =−
∫

Ω−
µ∇ · [c(w + v)] dV −

∫
Ω+

µ∇ · [c(w + v)] dV

− vm
∫

Γ

([[cµ]]−RT [[c]]) dS + kxvm

=

∫
Ω

c∇µ · (w + v)dV +

∫
Γ

[[cµ]] (w + v) ·NdS

− vm
∫

Γ

([[cµ]]−RT [[c]]) dS + kxvm (61)

Finally, using the third process equation in Eq. (59), we obtain

Ḟ =RT

∫
Ω

∇c · (w + v)dV + vm

(
RT

∫
Γ

[[c]] dS + kx

)
. (62)

In the abstract formalism of the previous Section, the equation above is a
workable expression of DF(X) · P (X)V . The second term already shows
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that, in addition to the elastic force kx, the semipermeable membrane ex-
periences an osmotic force that agrees with the classical van’t Hoff formula,
which naturally follows from the present formalism.

We can now form the constrained Rayleighian (accounting for solvent
incompressibility), which takes the form

L[c, x;w, vm,v, p] =RT

∫
Ω

∇c · (w + v)dV + vm

(
RT

∫
Γ

[[c]] dS + kx

)
+ η

∫
Ω

d : d dV +
fNA

2

∫
Ω

c|w|2dV

+
η̄

2

∫
Γ

(v ·N − vm)
2
dS −

∫
Ω

p∇ · v dV. (63)

Making this functional stationary with respect to w leads, as in the pure
diffusion example, to Fick’s law

cw = −kBT
f
∇c in Ω. (64)

The variation with respect to vm leads to balance of forces acting on the
semipermeable membrane

0 = RT

∫
Γ

[[c]] dS + kx+ η̄

∫
Γ

(vm − v ·N)dS. (65)

Variation with respect to p recovers the incompressibility condition 0 = ∇·v.
Finally, variation with respect to v leads to

0 =RT

∫
Ω

∇c · δvdV + 2η

∫
Ω

d : ∇δv dV −
∫

Ω

p∇ · δv dV

+ η̄

∫
Γ

(v ·N − vm)δv ·NdS. (66)

Performing integration by parts carefully over the two subdomains, and
recalling the homogeneous boundary conditions on ∂Ω and the fact that v
(and hence δv) is continuous across Γ, we find

0 =

∫
Ω

(RT∇c− 2η∇ · d+∇p) · δv dV −
∫

Γ

N · [[2ηd− pI]] · δv dS

+ η̄

∫
Γ

(v ·N − vm)δv ·NdS. (67)

Thus, identifying the stress tensor as σ = 2ηd − pI, the above equation
leads to

0 = ∇ · σ −RT∇c in Ω (68)
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and to

N · [[σ]] = η̄(v ·N − vm)N on Γ. (69)

Finally, we can eliminate w from the formulation by plugging Fick’s law in
Eq. (64) into the two process relations in Eq. (59) encoding mass conserva-
tion to obtain

∂tc−
kBT

f
∆c+ v · ∇c = 0 in Ω, (70)

and the two equations

kBT

f

∂c

∂N

±
= c±(v ·N − vm) on Γ. (71)

In summary, we have deduced using Onsager’s principle the govern-
ing equations for the system depicted in Figure 2. These equations are
a Stokes/advection-diffusion system in the bulk reflecting conservation of
mass of solutes and solvent and balance of linear momentum in the fluid,
together with Fick’s law and the constitutive relation for a Newtonian fluid:

0 =∂tc−
kBT

f
∆c+ v · ∇c

0 =∇ · v
0 =∇ · σ −RT∇c

 in Ω,

where σ = 2ηd− pI with boundary conditions

v = 0 and
∂c

∂n
= 0 on ∂Ω. (72)

These equations are supplemented with conditions at the moving semiper-
meable membrane. These conditions are a no-slip condition in the tangential
direction

v − (v ·N)N = 0 on Γ, (73)

a global force balance on the membrane involving permeation, osmotic and
elastic forces

η̄

∫
Γ

(v ·N − vm)dS = RT

∫
Γ

[[c]] dS + kx. (74)

a local force balance in the fluid at the interface involving the jump of fluid
tractions and the permeation tractions

η̄(v ·N − vm)N = N · [[σ]] on Γ, (75)
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and interface conditions resulting from conservation of solute and solvent

[[v]] = 0, [[w]] ·N = 0, and
kBT

f

∂c

∂N

±
= c±(v ·N − vm) on Γ.

(76)

We note that, at the interface, we impose simultaneously Dirichlet and
Neumann-like jump conditions for v, and Dirichlet and Robin-like jump
conditions for c. This is possible because the interface is moving.

We could have directly arrived at this set of equations with sufficient
physical insight and invoking constitutive relations such as Fick’s law, van’t
Hoff’s relation, or that of a Newtonian fluid. It is also clear that one can
easily make errors in such a direct derivation. Instead, all these relations
have followed systematically from the rather simple modeling assumptions
behind F and D, the use of conservation of mass for solvent and solute to
define the process operator, and Reynolds transport theorem. Furthermore,
just by looking at the final equations, it is not easy to see how is F driving
this system and decreasing during the dynamics or how is energy being
dissipated. Finally, Onsager’s principle allows us to systematically construct
more complex models by adding additional building blocks. For instance,
the membrane could be made flexible and endowed with tension or curvature
elasticity. Or, using the elementary models presented in the next Sections,
the solute molecules could be chemically active and react with other species,
adsorb to surfaces, or preferentially react while adsorbed on a catalyzer.

We would like to make a final point regarding this example. We discussed
earlier that the diffusion equation can be formally derived from Onsager’s
principle starting from the energy and dissipation potentials in Eqs. (31)
and (32), not founded on the microscopic physics of diffusion. The reader
can easily become convinced that these functionals, however, dramatically
fail when diffusion acts in concert with other physics. Indeed, they can-
not be meaningfully combined in a Rayleighian with the functionals encod-
ing additional ingredients such as hydrodynamics or permeation through a
semipermeable membrane. Instead, the approach described above naturally
produces, for instance, entropic effects such as osmotic forces.

2.7 Reaction-diffusion of two species in a quiescent fluid

We introduce next a new item into our catalog of phenomena amenable
to Onsager’s principle: chemical reactions. As a minimal model system,
we want to identify the variational structure of a system of two coupled
linear reaction-diffusion equations for two chemical species. We consider a
domain Ω, whose boundary is assumed for simplicity to be impermeable to
both substances.
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Let us first describe this simple model. The state of the system is de-
scribed by two molar concentration fields c1 and c2, one for each one of the
species X1 and X2, which transform through the simple reaction

X1

kf−−⇀↽−−
kb

X2. (77)

We assume that this reaction follows the law of mass action, by which in this
simple example the molar rate per unit volume of transformation of species
X1 to species X2, the forward rate rf , is proportional to the concentration of
the reactant, rf = kfc1. Conversely, the backward rate is given by rb = kbc2,
and thus the net forward rate is r = kfc1 − kbc2. Then, the dynamics of
this system can be modeled through the linear system of reaction-diffusion
equations

∂tc1 =D1∆c1 − kfc1 + kbc2

∂tc2 =D2∆c2 + kfc1 − kbc2

}
in Ω, (78)

where D1 and D2 are the diffusion coefficient of each chemical species, sup-
plemented by initial and boundary conditions. In equilibrium, the concen-
trations will be uniform and r = 0, and thus ceq1 /c

eq
2 = kb/kf = K is a

constant called equilibrium constant of the reaction.
In the previous Sections, we showed that molecular diffusion can be

understood as a process of entropic free-energy minimization, dragged by
the resistance exerted by the solvent. Can we integrate this phenomenology
with that of chemical reactions between the diffusing species? In other
words, can we find the appropriate dissipation and free energy potentials so
that the diffusion-reaction dynamics emerge from Onsager’s principle? The
answer is yes and due to Mielke (2012). Let us develop such a model.

We first model the free energy of the system. Assuming that the concen-
trations are dilute, we write the chemical free energy of the system building
on that of an ideal gas in Eq. (34) as a function of X = {c1, c2}

F(X) =RT

∫
Ω

c1 (log c1 − 1) dV +

∫
Ω

c1µ0,1dV

+RT

∫
Ω

c2 (log c2 − 1) dV +

∫
Ω

c2µ0,2dV, (79)

where µ0,i are the standard chemical potentials for each species. In the
single-species diffusion case, this was an irrelevant constant. We shall see
that for two reacting species, the difference between these two constants
determines the equilibrium constant of the reaction.

Now, in addition to the diffusive velocitiesw1 andw2 for each substance,
the concentrations can evolve as a result of chemical reactions quantified for
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instance by the net forward reaction rate r. Thus, the process variables are
now V = {w1,w2, r}. Note that, in 3D, we need only two scalar fields to
describe the state of the system and as many as 7 (two vector fields and
a scalar field) to describe the rate of change of the system. As we show
later, we do need that many degrees of freedom in V to properly model
dissipation.

Accounting for chemical reactions, the process operator is then given by
the equations

∂tc1 +∇ · (c1w1) + r = 0,

∂tc2 +∇ · (c2w2)− r = 0,
(80)

encoding balance of mass for the dissolved species. The conditions 0 = wi ·n
in ∂Ω, reflecting the fact that ∂Ω is impermeable, can also be viewed as part
of the process operator. With the free energy and the process operator at
hand, and following a similar calculation as in Section 2.4, we can write the
rate of change of the energy as

Ḟ(X;V ) =−
∫

Ω

µ1∇ · (c1w1) dV −
∫

Ω

µ2∇ · (c2w2) dV

+

∫
Ω

(µ2 − µ1)r dV (81)

with the chemical potentials given by

µi(c) = µ0,i +RT log ci. (82)

After integration by parts using the fact that ∂Ω is impermeable, we obtain

Ḟ(X;V ) =RT

∫
Ω

∇c1 ·w1 dV +RT

∫
Ω

∇c2 ·w2 dV

+

∫
Ω

(µ2 − µ1) r dV. (83)

This expression already contains interesting information about equilibrium.
Indeed, the equilibrium state should minimize the free energy, and from the
expression above three stationary conditions can be extracted. Stationar-
ity with respect to diffusive velocities wi implies that in equilibrium both
concentrations are uniform. Stationarity with respect to the reaction rate
r implies that µ2 = µ1, and thus

K =
ceq1
ceq2

= exp
∆µ0

RT
, (84)
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where ∆µ0 = µ0,2 − µ0,1 is the difference of reference chemical potentials.
Thus, K = kb/kf is a purely thermodynamic quantity (although both kb
and kf contain kinetic information).

Having examined equilibrium, we introduce the dissipation potential,
which accounts for the dissipation during diffusion and reaction. Recalling
Eq. (37), we consider

D(X;V ) =
f1NA

2

∫
Ω

c1|w1|2dV +
f2NA

2

∫
Ω

c2|w2|2dV +
1

2

∫
Ω

1

k̄
r2dV, (85)

where fi are the molecular drag coefficients of the two species. We postulate
that the dissipation potential is quadratic in the rate r (all the dissipation
potentials examined so far have been quadratic), and leave the coefficient
k̄ unspecified for the moment. This parameter should be non-negative for
consistency with the second law of thermodynamics, as discussed in Section
2.5.

Forming the Rayleighian R = Ḟ +D and minimizing it with respect to
wi, we recover Fick’s law for each species

ciwi = −kBT
fi
∇ci in Ω. (86)

Minimization with respect to r leads to

r = k̄(µ1 − µ2). (87)

Now, let’s remember that our goal here was to identify Onsager’s varia-
tional structure for the reaction-diffusion system in Eq. (78). We can di-
rectly established the diffusion part by introducing Eq. (86) into the process
equations in (80). To establish the reaction part, we need to express the
reaction rate in Eq. (87) in the form r = kfc1 − kbc2. Examining the ex-
pression of the chemical potentials in Eq. (82), it is clear that k̄ will need
to be a complicated function of the concentrations.

Consider now the following choice for the concentration-dependent ki-
netic coefficient

k̄(c1, c2) =k
c1 − e∆µ0/(RT )c2

µ1 − µ2

=
ke−µ0,1/(RT )

RT

eµ1/(RT ) − eµ2/(RT )

µ1/(RT )− µ2/(RT )
, (88)

where k > 0 is a kinetic constant not depending on the concentrations. Us-
ing Eq. (82) it is easily shown that these two expressions for k̄ are equivalent.
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The first form is useful because when plugged into Eq. (87), we immediately
find the sought after expression

r = k︸︷︷︸
kf

c1 − ke∆µ0/(RT )︸ ︷︷ ︸
kb

c2, (89)

which furthermore shows that we recover Arrhenius equation. The second
form of the kinetic coefficient in Eq. (88) is important because, since the
exponential function is monotonically increasing, it clearly shows that k̄ ≥ 0
for any choice of concentrations.

Thus, we have recovered the reaction diffusion system in Eq. (78) using
Onsager’s principle. This derivation has showed that both reaction and dif-
fusion are driven by the same chemical energy in Eq. (79), which decreases
during the dynamics. This free energy contains an entropic component, but
also an enthalpic one given by the difference of reference chemical potentials
between the reacting species ∆µ0. The newest and maybe surprising ingre-
dient in this model has been the form of the coefficient encoding dissipation
during the chemical reaction in Eq. (88). In the numerator, we have “∆c”
measuring the deviation from the equilibrium condition in Eq. (84), and in
the denominator we have ∆µ. This expression can be generalized to more
complex chemical reactions obeying the law of mass action (Mielke, 2012).
By understanding the basic structure of the reaction dissipation potential,
we have a new building block for modeling that can be easily adapted to dif-
ferent settings and combined with different physics, as shown in subsequent
Sections. We are not aware of a compelling microscopic interpretation of
Eq. (88).

During the derivation of the equations, we have identified the diffusion
constants as Di = kBT/fi. Furthermore, we have understood that the
forward and backward rates contain not only kinetic information, but also
thermodynamic information in that their ratio depends on ∆µ0. Onsager’s
principle has allowed us to untangle the kinetic and thermodynamic compo-
nents of the reaction dynamics. Thus, this example further exemplifies two
benefits of Onsager’s principle: (1) it provides a systematic method to de-
rive models for dissipative systems from a library of building blocks, and (2)
it highlights the energetic-dissipative structure of such systems, providing
physical insight into the model parameters.

3 Surface sorption and diffusion

Having considered reaction-diffusion systems in the bulk, we are in a posi-
tion to examine chemical adsorption. We consider diffusing solutes in a bulk
fluid adsorbing or desorbing on the surface enclosing it and also diffusing
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on it. For simplicity, we assume that the surface has a fixed shape and the
fluid is quiescent. The bulk fluid is represented by Ω and the surface by
Γ = ∂Ω as shown in Fig. 3. The bulk fluid can exchange solutes with the
surrounding surface through sorption–the process encompassing adsorption
and desorption.

⌦

�

N

Figure 3. Elementary model for sorption-diffusion. The solutes and adsor-
bates are labeled with red and green dots respectively. The bulk domain
representing quiescent fluid is Ω and the surface of fixed geometry is Γ = ∂Ω.

In the context of biological membranes, adsorption from the bulk is a
possible mechanism for protein incorporation. Another important mecha-
nism involves fusion with vesicles loaded with membrane proteins. Proteins
may adsorb by weakly scaffolding the membrane or by inserting amphiphilic
domains into one leaflet or the entire bilayer. Irrespective of whether the
process of adsorption induces a conformational change or not, we consider
that the chemical reaction is the transformation from a molecule in solu-
tion to one bound to the surface. Thus, we treat the solute molecules in
the bulk XB and those on the surface XS–the adsorbate–as two different
species transforming through the elementary reaction

XB −−⇀↽−− XS . (90)

We will denote by c the molar concentration of solute molecules in the
bulk. To adhere with the literature, we will express the concentration of
adsorbates on the surface through the area fraction of surface covered by
adsorbed molecules φ. Thus, the state variables are the bulk and surface
fields X = {c, φ}. The molar surface concentration can then be recovered
as φ/a0, where a0 is the molar area of the adsorbate.
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In this Section, we will assume that c is small, which allows us to safely
consider the ideal gas mixing entropy introduced earlier. However, we will
consider the possibility that the area fraction is finite, and even large. Large
area coverage of membrane proteins is common in synthetic systems (Sorre
et al., 2012; Zhu et al., 2012) and in cell organelles (Shibata et al., 2009;
Terasaki et al., 2013). Molecular crowding of proteins on the membrane can
then lead to nonlinear chemical effects as discussed in the introduction. If
the adsorbates modify the preferred curvature of the bilayer by any of the
proposed mechanisms such as scaffolding, wedging, or crowding (Shibata
et al., 2009; Stachowiak et al., 2012), then adsorption may induce significant
shape transformations. In the present Section, however, we ignore such a
coupling between chemistry and mechanics, which we only examine in a
simple model in Section 4, and focus here on the sorption/diffusion system.

3.1 Onsager’s principle for linear sorption-diffusion

First, we assume that adsorbates are very dilute. This situation is very
similar to that in Section 2.7, and therefore we will provide a concise presen-
tation highlighting the main differences. In close analogy with that Section,
we write the chemical energy in the surface and the bulk as

F =
RT

a0

∫
Γ

φ( log φ− 1) dS +
1

a0

∫
Γ

µ0,aφdS

+RT

∫
Ω

c

(
log

c

c0
− 1

)
dV +

∫
Ω

µ0,sc dV,

(91)

where the molar area of adsorbate a0 is introduced in the first line because
the standard form of the chemical energy is for a concentration, not an area
fraction. To maintain dimensional consistency of the formulation, we have
explicitly introduced a reference concentration c0 at which the chemical po-
tential of the solute is precisely µ0,s. This does not involve a real additional
parameter in the model because µ0,s is defined relative to c0.

The state of the system in the bulk can change due to the solute diffusive
velocity ws according to the continuity equation

∂tc+∇ · (cws) = 0 in Ω. (92)

In the surface, the surface fraction can change due to the adsorbate diffusive
velocity wa, a vector field tangent to the surface Γ, and also due to the
rate of adsorption r, which we express as a rate of change of area fraction.
Therefore, the statement of conservation of adsorbate becomes

∂tφ+∇s · (φwa) = r on Γ, (93)
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where ∇s denotes here the covariant derivative on the surface. Besides these
two equations, we need an additional equation expressing the fact that the
rate of adsorbed molecules is balanced by a flux of molecules in solution
exiting Ω:

cws ·N =
r

a0
on Γ, (94)

where a0 is required to convert r into rate of change of molar areal con-
centration. Equations (92-94) are the process equations relating the state
variables X = {c, φ} and the process variables V = {ws,wa, r}.

Since the surface does not have boundary and the fluid is quiescent, the
rate of change of the free energy takes the form

Ḟ(X;V ) =
1

a0

∫
Γ

µa∂tφdS +

∫
Ω

µs∂tc dV, (95)

where the chemical potentials for adsorbate and solute resulting from this
calculation are

µa(φ) = µ0,a +RT log φ,

µs(c) = µ0,s +RT log
c

c0
.

(96)

Using the process equations and the divergence theorem, we obtain

Ḟ(X;V ) =
RT

a0

∫
Γ

∇sφ ·wa dS +RT

∫
Ω

∇c ·ws dV

+
1

a0

∫
Γ

r(µa − µs) dS
(97)

We note from this expression that the chemical potential of the solute plays
a role only at the interface, where it undergoes a reaction. Making the free
energy stationary, we conclude that in equilibrium µa = µs, and therefore
the equilibrium constant of the reaction is

ceq

φeqc0
= exp

∆µ0

RT
, (98)

where ∆µ0 = µ0,a − µ0,s.
Similar to the previous Section, the dissipation potential accounting for

diffusion of solute, of adsorbate and the sorption reaction is given by

D(X;V ) =
fsNA

2

∫
Ω

c|ws|2 dV +
faNA
2a0

∫
Γ

φ|wa|2 dS+
1

2a0

∫
Γ

1

k̄
r2 dS, (99)

where fa, the drag coefficient of an adsorbed molecule on the membrane, will
depend strongly on the membrane interfacial viscosity and weakly on the
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molecule size according to the theory by Saffman and Delbruck (1975). We
consider now a concentration-dependent kinetic coefficient with the same
structure as in the previous Section and taking the form

k̄ = k
c/c0 − e∆µ0/(RT )φ

µs(c)− µa(φ)
(100)

To prove that, as thermodynamically required, k̄ ≥ 0, we recall Eqs. (96)
and (98). Then, a direct calculation shows that

k̄ =
ke−µ0,s/(RT )

RT

eµs/(RT ) − eµa/(RT )

µs/(RT )− µa/(RT )
, (101)

which is manifestly non-negative because the exponential function is strictly
increasing.

Forming the Rayleighian combining Eqs. (97) and (99), and making it
stationary with respect to r, Onsager’s principle leads to

r = k̄(µs − µa). (102)

Recalling our choice for kinetic coefficient in Eq. (100), we immediately
conclude that

r =
k

c0︸︷︷︸
kA

c− ke∆µ0/(RT )︸ ︷︷ ︸
kD

φ, (103)

which allows us to identify the adsorption and desorption rates kA and kD
for a model obeying the law of mass action. As in the previous example,
we recognize that their ratio is a thermodynamic quantity, while the purely
kinetic information about the reaction is given by the rate constant k.

Stationarity of the Rayleighian with respect to the surface and bulk
diffusive velocities leads to Fick’s law in the bulk and the surface. Finally,
replacing these relations in the process equations we obtain the diffusion-
sorption equation on the surface

∂tφ =
kBT

fa
∆sφ+ kAc− kDφ on Γ, (104)

where ∆s is the surface Laplacian, the diffusion equation in the bulk

∂tc =
kBT

fs
∆c in Ω, (105)

and a condition on the surface matching bulk flux and surface reaction

kBT

fs

∂c

∂N
=

1

a0
(kDφ− kAc) on Γ. (106)
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These are the equations that we could have postulated a priori, but now we
have a clear understanding of the free energy driving the system and of the
dissipative mechanisms dragging the dynamics. This example shows that
Onsager’s principle naturally deals with interfacial phenomena coupled to
bulk phenomena.

While this linear sorption-diffusion model is reasonable in a dilute limit,
that is for small values of c and φ, an obvious conceptual drawback apparent
from Eq. (98) is that φeq can be made arbitrarily large by either increasing
ceq at fixed ∆µ0, or by considering a negative ∆µ0 of increasing the magni-
tude at fixed ceq. However, the area fraction of adsorbates cannot be larger
than 1.

3.2 Onsager’s principle for Langmuir sorption-diffusion

The above limitations of the linear sorption model can be overcome with
the classical Langmuir model (Masel, 1996). In a nutshell, this model intro-
duces the notion that, for a molecule in solution XB to become adsorbed,
XS , it needs to react with a free site on the surface XF , which is thus viewed
as an additional reactant/product in the adsorption/desorption reaction

XB +XF −−⇀↽−− XS . (107)

In this way, as the area coverage of adsorbate increases, fewer free sites be-
come available, which slows down the adsorption reaction and fixes the issue
of unbounded area coverage in the linear sorption model. In a continuum
model, if φ is the area fraction of adsorbates, then the free area fraction is
1 − φ. Because in some systems the maximum area fraction of adsorbates
φm saturates before reaching unity, we can slightly generalize the area frac-
tion of free sites as φm − φ. Then, from the reaction above and the law of
mass action, we can postulate the following form of the adsorption reaction
rate

r = kAc(φm − φ)− kDφ, (108)

where kA and kD are adsorption/desorption rate coefficients. It is clear that
in a dilute limit φm − φ ≈ φm and we essentially recover the reaction rate
in Eq. (103). In equilibrium, r = 0, which leads to the following expression
for the equilibrium area fraction of adsorbates

φeq =
kAφmc

eq

kAceq + kD
. (109)

It is now clear that as the bulk concentration becomes larger, ceq → +∞,
the area fraction tends to the saturation value φeq → φm as expected. To
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couple this adsorption model with diffusion in the bulk and the surface,
it seems reasonable to replace the reaction rate in Eq. (103) by that in
Eq. (108), which results in simply replacing kAc by kAc(φm−φ) in Eqs. (104)
and (106). The reaction-diffusion system that follows from this reasonable
modeling approach is nonlinear in the reaction terms.

Our question now is whether Langmuir’s sorption model can be derived
from Onsager’s principle, and if so, what is the appropriate notion of free
energy and dissipation potential. If this is the case, Onsager’s principle
provides a natural way to couple the sorption reaction with diffusion. Then,
a second question is whether the resulting sorption-diffusion system is indeed
that discussed in the previous paragraph.

Let us focus on the mixing entropy on the surface. In the ideal gas model
in Eq. (91), we accounted for the entropy of the adsorbates with a term of
the form φ log φ (up to normalization factors). Now, since we view empty
sites as a new reacting species, it makes sense to consider also their entropic
contribution, which will be of the form (φm − φ) log(φm − φ). Since the
empty sites are immaterial, it does not make sense to include an enthalpic
term analogous to µ0,aφ. This argument leads to following expression for
the free energy of the system

F [c, φ] =
RT

a0

∫
Γ

[φ log φ+ (φm − φ) log(φm − φ)] dS +
1

a0

∫
Γ

µ0,aφdS

+RT

∫
Ω

c

(
log

c

c0
− 1

)
dV +

∫
Ω

µ0,sc dV.

(110)
The first term is in fact the well-known Flory-Huggins expression for the
entropy of mixing (Huggins, 1941; Flory, 1942), introduced originally in
the context of polymer blends. In the Flory-Huggins theory, an additional
enthalpic term is added to the free energy density to account for the inter-
action between the mixing species of the form (RT/a0)χφ(φm − φ), where
χ is a dimensionless parameter. In the present context, it makes more sense
to interpret this term as a self-interaction term of adsorbate molecules of
the form −(RT/a0)χφ2 plus a term proportional to φ that can be included
in µ0,a. Such a free energy has been invoked to examine equilibrium in the
context of adsorption of curving proteins on lipid membranes (Sorre et al.,
2012; Singh et al., 2012).

Let us examine next the consequences of considering this free energy in
the framework of Onsager’s principle. The process equations of the previous
Section remain unchanged. Likewise, a direct calculation shows that the rate
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of change of the free energy adopts the form

Ḟ(X;V ) =
1

a0

∫
Γ

∇sµa · (φwa) dS +

∫
Ω

∇µs · (cws) dV

+
1

a0

∫
Γ

r(µa − µs) dS,
(111)

where now the chemical potentials of the adsorbate in the surface and of
the solute in the bulk are

µa(φ) = µ0,a +RT log
φ

φm − φ
,

µs(c) = µ0,s +RT log
c

c0
.

(112)

From the first expression, we recognize that µ0,a is the chemical potential of
the adsorbate when the area fractions of adsorbate and free sites are equal.
Noting that now

∇sµa = RT
φm

φm − φ
∇sφ
φ

(113)

we find that

Ḟ(X;V ) =
RT

a0

∫
Γ

φm
φm − φ

∇sφ ·wa dS +RT

∫
Ω

∇c ·ws dV

+
1

a0

∫
Γ

r(µa − µs) dS
(114)

In equilibrium, µa = µs and therefore, similarly to earlier, we find that

φm − φeq

φeq
ceq

c0
= e∆µ0/(RT ), (115)

where ∆µ0 = µ0,a − µ0,s.
We adopt the same structure of dissipation potential as in Eq. (99) with

the following natural choice for the kinetic coefficient

k̄ = k
1
c0
c(φm − φ)− e∆µ0/(RT )φ

µs(c)− µa(φ)
, (116)

which can be shown to be nonnegative with analogous arguments to those
leading to Eq. (101). Invoking Onsager’s principle and making the Rayleighian
stationary with respect to r, we recover Langmuir’s adsorption model and
identify the thermodynamic/kinetic components behind the reaction rates

r =
k

c0︸︷︷︸
kA

c(φm − φ)− ke∆µ0/(RT )︸ ︷︷ ︸
kD

φ. (117)
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Therefore, this derivation establishes that the Langmuir’s adsorption model
can be viewed as a consequence of the Flory-Huggins form of the mixing
entropy. Now, making the Rayleighian stationary with respect to wa, we
find that the adsorbates undergo non-Fickian transport in that

ja = φwa = −kBT
fa

φm
φm − φ

∇sφ. (118)

The term multiplying ∇sφ can be interpreted as a diffusion coefficient de-
pendent on area fraction. When plugged into the corresponding process
operator, this relation leads to the nonlinear diffusion equation on the sur-
face

∂tφ =
kBT

fa
∇s ·

(
φm

φm − φ
∇sφ

)
+ kAc(φm − φ)− kDφ on Γ. (119)

Thus, according to this derivation, the nonlinear Langmuir adsorption model
would be paired with a nonlinear diffusion of adsorbates, both following from
the Flory-Huggins entropy of mixing.

It is instructive to note that we can recover Fickian diffusion on the
surface by defining the surface contribution to the dissipation potential as

faNAφm
2a0

∫
Γ

φ

φm − φ
|wa|2 dS. (120)

Without a compelling physical interpretation, however, this remains nothing
but a mathematical trick. As we argue next, removing the nonlinearity with
such a trick is artificial and does not seem justified from a physical point of
view.

Indeed, something unsettling about the nonlinear diffusion equation in
(119) is that it has been obtained from a free energy that tries to account
for the finite area coverage of the adsorbates to deal with inconsistencies in
the dilute limit. However, the dissipation contribution due to adsorbates
has the structure

Naφ

a0
· fa

2
|wa|2 (121)

where the first factor represents the number of molecules per unit area and
the second factor is the dissipation potential for a single molecule. Thus,
it is the superposition of the effect of an isolated molecule, which can be
expected to be valid only in a dilute limit. A more pertinent modeling
approach would be to couple the Flory-Huggins entropy to a better approx-
imation of dissipation in a crowded solution of adsorbates. It is natural
to expect that accounting for crowding will introduce an additional source
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of nonlinearity in the dissipation, which will not be in general of the form
of that in Eq. (120). For instance, in a bulk solution and accounting for
first-order interaction effects, the hydrodynamic drag coefficient of spherical
solutes of radius a can be approximated as

fs(c) = 6πηa
(

1 +Bv
1/3
0 c1/3

)
, (122)

where v0 is the molar volume of solute molecules and B is a non-dimensional
positive constant (Happel and Brenner, 2012). Such a concentration de-
pendent drag will introduce additional nonlinear effects and lead to non-
Fickian diffusion. We are not aware of similar approximations capturing
the influence of area coverage and applicable to molecules moving on a two-
dimensional fluid, that is an expression for fa(φ) extending the theory by
Saffman and Delbruck (1975) to crowded membranes.

Thus, Onsager’s approach vividly shows that a concentration-dependent
diffusion coefficient (Ramadurai et al., 2009) can have its origin in both
the free energy driving diffusion and in the dissipation dragging it. Fur-
thermore, Onsager’s approach provides a framework to model systems at
multiple scales, in that it connects effective coefficients such as diffusivity or
reaction rates to microscopic thermodynamic and kinetic quantities, which
can in principle be estimated with microscopic theories or experiments.

4 A minimal model for curvature sensing and
generation in a membrane tube

Having established the Onsager variational structure behind the Langmuir
adsorption model, in this Section we study the coupling between adsorption
and mechanics. Rather that consider a general model with concentration
gradients and general shapes, we focus on a uniform tubular lipid membrane
to highlight how this coupling allows us to understand curvature sensing and
generation by membrane proteins.

We consider membrane tube of length ` and radius ρ, subjected to a
longitudinal force F . We will assume that the membrane is inextensible,
and therefore the product `ρ is constant. We will consider two different
ensembles, one in which the length (and therefore the radius) is fixed and the
force can adjust, and another in which the force is fixed and the length and
radius are allowed to adjust. In neither of these situations the membrane
tension is constant. A constant membrane tension ensemble would require
changes in membrane area and therefore lipid flows from a reservoir, which is
at odds with a simple uniform dynamical model. Zhu et al. (2012); Prévost
et al. (2015) have developed models that allow for exchange of lipids and
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proteins with a reservoir, albeit in equilibrium. We further assume that both
the osmolarity and the hydraulic pressure are the same inside and outside
of the tube. Therefore there is no pressure difference across the membrane.

When proteins are dissolved in the bulk fluid, only those closest to the
membrane will adsorb, thereby creating a gradient in concentration followed
by diffusion of dissolved proteins towards the membrane. Thus, if we assume
that the concentration of proteins in bulk is uniform, we are assuming that
the timescale associated with equilibration of bulk protein gradients by dif-
fusion is much smaller than the timescale of the adsorption reaction. Let’s
check if this is reasonable. The typical diffusion coefficient for proteins in
the bulk is in the range of D ≈ 1− 10 µm2/s, (Elowitz et al., 1999). There-
fore the timescale for radial diffusion can be estimated as τd = ρ2/D. The
timescale associated with protein adsorption on membranes is typically of a
few tens of minutes, τa ≈ 600 s (Sorre et al., 2012). Requiring that τd � τa
is then tantamount to requiring that ρ� 25− 80 µm, which is the case in
most situations of interest where tubules have radii of tens of nanometers.
Therefore, it is reasonable to assuming a uniform concentration in the bulk.

The state of the system is hence characterized by the area fraction of pro-
teins on the surface, the radius of the cylinder and the length of the cylinder,
X = {φ, ρ, `}. We will model the bending elasticity of the membrane using
Helfrich’s curvature model (Helfrich, 1973; Lipowsky, 1991). According to
this classical model, the free energy density takes the form κ

2 (H−C0)2 where
κ is the bending rigidity, H is the mean curvature (here H = 1/ρ), and C0

is the spontaneous curvature. Thus, it penalizes deviations of the mean
curvature from the spontaneous curvature. As discussed earlier, membrane
proteins can change the preferred curvature of the bilayer in various ways
(McMahon and Gallop, 2005; Zimmerberg and Kozlov, 2006; Sens et al.,
2008; Shibata et al., 2009; Antonny, 2011). This effect is generally mod-
eled by considering that C0 is a function of the area coverage of proteins,
the simplest model being that it is proportional to φ (see Breidenich et al.
(2000) for a microscopic justification). Thus, the free energy of the system
considering the elastic and chemical contributions and the potential of the
longitudinal force is

F(X) =2π`ρ

{
κ

2

(
1

ρ
− C0φ

)2

+
RT

a0
[φ log φ+ (φm − φ) log (φm − φ)]

+
µ0,aφ

a0

}
− F`.

(123)
Note that in this simple uniform example, F is an algebraic function of the
state variables. We chose to impose the inextensibility constraint `ρ =constant,
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or equivalently ˙̀ρ + `ρ̇ = 0, later using a Lagrange multiplier, which will
allow us to identify the membrane tension. The nontrivial process equation
is the balance of adsorbed molecules analogous to Eq. (93). Because the
system is uniform, this equation does not involve diffusive fluxes. However,
because we are not imposing yet the inextensibility condition of the surface,
this equation includes a second term involving the rate of change of area
(Rahimi et al., 2013):

φ̇ = r − φ
˙̀ρ+ `ρ̇

`ρ
. (124)

Following a lengthy but direct calculation that uses the process equation
above, the rate of change of the free energy can be computed as

Ḟ =
2πρ`

a0

{
µ0,a +RT log

φ

φm − φ
− a0κ

(
1

ρ
− C0φ

)
C0

}
r

+ 2π`

{
RT

a0
φm log(φm − φ)− κ

2

(
1

ρ
− C0φ

)2
}
ρ̇

+ 2πρ

{
RT

a0
φm log(φm − φ) +

κ

2

(
1

ρ2
− C2

0φ
2

)}
˙̀− F ˙̀.

(125)

During this calculation, we identify the chemical potential of adsorbates as

µa = µ0,a +RT log
φ

φm − φ︸ ︷︷ ︸
µchem
a

−a0κ

(
1

ρ
− C0φ

)
C0︸ ︷︷ ︸

µmech
a

, (126)

involving a chemical component, but also a mechanical component.

To model the effect of the fixed bulk concentration of proteins c̄, which
are thus at a fixed chemical potential µ̄s = µ0,s+RT log(c̄/c0), we introduce
the external chemical power

P = −2π`ρµ̄s
a0

r, (127)

where we recall that a0 allows us to dimensionally reconcile a chemical
potential per unit mole with a reaction rate measuring the rate of change of
adsorbate area fraction. Finally, the only dissipative mechanism operative
here is the sorption reaction, and therefore

D =
π`ρ

a0k̄
r2. (128)
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With these ingredients, we can form the constrained Rayleighian as

L = Ḟ +D + P + 2πσ
(

˙̀ρ+ `ρ̇
)
. (129)

Let us focus first on adsorption. The optimality condition ∂L/∂r = 0
resulting from Onsager’s principle leads to

r = k̄(µ̄s − µa). (130)

Now, we are confronted with the modeling choice of defining the coefficient
k̄ characterizing dissipation during reaction. A direct analogy with the
previous Section would suggest

k̄ = k
c̄
c0

(φm − φ)− e∆µ0/(RT )φ

µ̄s − µa
, (131)

where as before ∆µ0 = µ0,a − µ0,s. Combining the two equations above, a
direct calculation shows that this leads to an adsorption rate of the Lang-
muir form r = kAc̄(φm−φ)− kDφ. However, the choice in Eq. (131) has at
least two important drawbacks. First, such a model does not capture the
phenomenology by which curving proteins bind at a higher rate to curved
membranes–curvature sensing. Second, because µa depends also on the
curvature of the membrane, see Eq. (126), it is not possible to express k̄
as defined in Eq. (131) as a positive coefficient times a term of the form
(ea− eb)/(a− b), and therefore, in general, we will not be able to guarantee
that k̄ ≥ 0 as thermodynamically required. Therefore, a standard Lang-
muir adsorption model insensitive to curvature r = kAc̄(φm − φ) − kDφ is
thermodynamically inconsistent with our form of free energy in Eq. (123).
Therefore, we discard Eq. (131).

One way around thermodynamic inconsistency is to define the reaction-
dissipation coefficient as

k̄ =k
c̄
c0

(φm − φ)− e∆µ0/(RT )φ

µ̄s − µchema

(132)

=
ke−µ0,s/(RT )(φm − φ)

RT

eµ̄s/(RT ) − eµchem
a /(RT )

µ̄s/(RT )− µchema /(RT )
, (133)

which has the right structure to guarantee its non-negativity. Importantly,
with Eq. (132) we are postulating that dissipation due to the adsorption
reaction does not depend on membrane curvature. This choice for k̄ does
lead to a reaction rate sensitive to curvature because, when combined with
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Eq. (130), we find

r = [kAc̄(φm − φ)− kDφ]

1 +
a0κ

(
1
ρ − C0φ

)
C0

µ̄s − µchema (φ)


= [kAc̄(φm − φ)− kDφ]

1 +
a0κ

(
1
ρ − C0φ

)
C0

RT log kAc̄(φm−φ)
kDφ

 (134)

with kA and kD defined as in Eq. (117). We recover the Langmuir equation
when C0 = 0. In the dilute limit, the second term between brackets becomes
1, φm − φ ≈ φm, and we recover the linear adsorption model.

Therefore, we conclude that the model emanating from Eq. (132) is ther-
modynamically acceptable and physically meaningful. Of course, there are
other possible choices. One could be replacing the two instances of µchema

in Eq. (133) by µa, which leads to positive dissipation, introduces an ex-
plicit curvature dependence in k̄, but strangely, this dependence has a struc-
ture dictated by thermodynamics. Therefore, it would be a rather artificial
choice. A more realistic model accounting for the curvature sensitivity in
the dissipation could consider k to be a function of curvature. To our
knowledge, none of these issues have been examined before. Again, we see
how Onsager’s principle provides a systematic framework to think about
modeling.

Variations of the constrained Rayleighian with respect to ρ̇ and ˙̀ lead
to the radial and longitudinal equilibrium equations

0 =
RT

a0
φm log(φm − φ)− κ

2

(
1

ρ
− C0φ

)2

+ σ, (135)

0 =
RT

a0
φm log(φm − φ) +

κ

2

(
1

ρ2
− C2

0φ
2

)
− F

2πρ
+ σ. (136)

Not being dragged by any dissipative mechanism, these equations are in-
stantaneously satisfied by the system at any value of φ by adjusting σ and
F in the first ensemble, or σ, ` and ρ in the second ensemble. Subtracting
these two equations, we can relate the applied force to the shape and area
fraction of protein as

F = 2πκ

(
1

ρ
− C0φ

)
. (137)

4.1 Protein sorption at fixed shape of the tube

Suppose that the length of the tube is held fixed. As a result of the
inextensibility of the membrane, the radius is also fixed, However, the force
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required to maintain the fixed length will depend on protein area coverage.
Recalling the expression for the sorption rate, we have

φ̇ = [kAc̄(φm − φ)− kDφ]

1 +
a0κ

(
1
ρ − C0φ

)
C0

RT log kAc̄(φm−φ)
kDφ

 . (138)

We consider the parameters reported in (Sorre et al., 2012) for amphiphysins
interacting with a model lipid membrane: C0 = 10 nm−1, c̄ = 100 nMolar,
kD/kA = 35 nMolar. This is a first order nonlinear differential equation,
which can be solved numerically.

Figure 4 (top) shows the results for φ(t) assuming no initial area coverage
of protein, φ(0) = 0 for tubes of varying curvature between 0.001 C0 and
1.5 C0. The figure shows that the adsorption dynamics strongly depends on
curvature. Both the initial adsorption rate and the saturation area fraction
in equilibrium increase with increasing curvature. This curvature-dependent
adsorption of proteins is generally referred to as curvature sensing, and
generally quantified by ratios of the equilibrium area coverage for various
curvatures. Curvature sensing may provide a mechanism for the chemical
organization of membrane organelles.

Even though shape is fixed in the present Section, the adsorbing proteins
have a mechanical manifestation in the force required to maintain the tubule
shape, see Fig. 4 (bottom). Force is computed using Eq. (137). The
decrease of required force needed to maintain a tube as adsorption proceeds
is an expected consequence of the scaffolding effect of the curving proteins
and is consistent with experiments in tethers pulled out of vesicles. Along
with this, our simple model provides an explanation for observations of no
retraction of membrane tubules covered with proteins upon removal of the
applied force (Sorre et al., 2012). Beyond equilibrium, the model can also
predict the time and area fraction of protein at which we can observe no
retraction upon force removal or even compressive buckling.

Figure 5 represents the adsorption isotherms for tubes of various curva-
tures. These curves represent the equilibrium area coverage–the horizontal
asymptotes in Figure 4 (top)– as a function of the bulk concentration. In
equilibrium, φ̇ = 0, and therefore the right-hand-side in Eq. (138) is equal
to zero. In the Langmuir model, recovered when C0 = 0, the first factor
is zero and the isotherm is given by φeq(c̄) = φm/[1 + (kD/kAc̄)]. If the
adsorbed molecules are mechanically active, however, the isotherm φeq(c̄)
is implicitly defined by the relation

0 = RT log
kAc̄(φm − φeq)

kDφeq
+ a0κ

(
1

ρ
− C0φ

eq

)
C0. (139)
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Figure 4. (Top) Area fraction of adsorbed proteins as a function of time
for various fixed curvatures of the membrane. We observe a curvature-
dependent adsorption response: both the initial rate of change of φ (slope
of the curve at t ∼ 0) and the equilibrium area coverage increase with
increasing curvature of tube (1/ρ). (Bottom) Tube longitudinal force F as
a function of time. The force decreases with time due to increased area
fraction of the protein. The unit of force is in kBT/nm ≈ 4.1 pN
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Figure 5. Adsorption isotherms in tubules of different curvature, i.e. equi-
librium values φeq as a function of concentration of proteins in the bulk in a
semi-log scale. The legend ‘LA’ stands for the Langmuir adsorption model.

The figure shows how, for proteins with preferred curvature (C0 6= 0), the
isotherms significantly deviate from the Langmuir model. Notably, when
the membrane is nearly planar (a similar model can be derived for spherical
shapes more pertinent to tense vesicles, yielding similar results), the behav-
ior closely follows the Langmuir model at very small concentrations, but
strongly deviates from it at large concentrations. Yet, Langmuir’s model is
still used to interpret adsorption experiments onto large vesicles of proteins
with preferred curvature (Sorre et al., 2012). The present model suggests
a methodology to interpret similar experiments, where in addition to the
parameters kD/kA and φm present in the Langmuir isotherm, the addi-
tional parameters a0, κ, and C0 could be fit from equilibrium or dynamical
observations at different bulk concentration and curvature.

4.2 Protein sorption at fixed force

While the fixed shape ensemble of the previous Section allowed us to
examine the curvature sensing capability of proteins with preferred cur-
vature, it did not provide insight about their ability to generate curvature.
Towards an elementary model for shape generation, we consider now a mem-
brane tube at fixed force, which can adapt its radius and length to meet the
mechanical equilibrium equations and the inextensibility constraint during
adsorption.

Now, we integrate in time the differential-algebraic system for φ and ρ
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Figure 6. Area fraction of proteins on the membrane (top) and mean curva-
ture 1/ρ (bottom) as a function of time. The bulk concentration of proteins
is c̄ = 100 nM and the unit of force is kBT/nm ≈ 4.11 pN.
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given by Eqs. (137) and (138). Equation (135) allows us to compute the
tension σ. By plugging Eq. (137) into (138), we find that

φ̇ = [kAc̄(φm − φ)− kDφ]

[
1 +

a0C0F/(2π)

RT log kAc̄(φm−φ)
kDφ

]
, (140)

and therefore the Langmuir model is recovered for F = 0.
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Figure 7. Adsorption isotherms for fixed force adsorption of proteins. The
isotherms deviate from the Langmuir isotherm with increase in area fraction
as a function of concentration. The unit of force is kBT/nm ≈ 4.11 pN.

Figure 6 shows the dynamics of area coverage and of tube curvature. We
observe that both quantities increase in time up to an equilibrium value.
Thus, as molecules adsorb, they modify the shape of the membrane. The
rate of increase and magnitude of area coverage and curvature increase
with the magnitude of the applied load, consistent with experiments. The
adsorption isotherms are shown in Fig. 7. As predicted theoretically, the
low force limit approaches the Langmuir model. The figure also shows a
very large sensitivity of the equilibrium area coverage to the applied force,
particularly at intermediate bulk concentrations.

To highlight the chemo-mechanical coupling captured by our simple
model, we consider that during adsorption, and close to the equilibrium
plateau, the force F is suddenly increased (decreased), see Fig. 8. It can
be observed how, to adapt to such a disturbance, the protein coverage,
tube curvature and tension increase (decrease). Interestingly, the mechani-
cal quantities F and σ adjust discontinuously but the area fraction adjusts
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Figure 8. Dynamics of a tubule during adsorption in response to a sudden
increase (decrease) of the applied force. (a) Area fraction, (b) mean curva-
ture and (c) surface tension as a function time. The bulk concentration of
proteins is c̄ = 100 nM and the unit of force is kBT/nm ≈ 4.11 pN.
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continuously, since the rate of adsorption/desorption is penalized by the
dissipation potential.
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Nada Khalifat, Nicolas Puff, Stéphanie Bonneau, Jean-Baptiste Fournier,
and Miglena I Angelova. Membrane deformation under local pH gradient:
mimicking mitochondrial cristae dynamics. Biophys. J., 95(10):4924–33,
nov 2008.

Nada Khalifat, Mohammad Rahimi, Anne-Florence Bitbol, Michel
Seigneuret, Jean-Baptiste Fournier, Nicolas Puff, Marino Arroyo, and
Miglena I. Angelova. Interplay of Packing and Flip-flop in Local Bi-
layer Deformation. How Phosphatidylglycerol Could Rescue Mitochon-
drial Function in a Cardiolipin-deficient Yeast Mutant. Biophys. J., 107
(4):879–890, 2014.

49



Anita Joanna Kosmalska, Laura Casares, Alberto Elosegui-Artola,
Joseph Jose Thottacherry, Roberto Moreno-Vicente, Vı́ctor González-
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