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Abstract 

The power conversion efficiency of colloidal PbS quantum dot based solar cells is significantly 

hampered by lower than expected open circuit voltage (VOC). The VOC deficit is considerably 

higher in QD based solar cells compared to other types of existing solar cells due to in-gap trap 

induced bulk recombination of photogenerated carriers. Here, we report ligand exchange 

procedure based on a mixture of zinc iodide and 3-mercaptopropyonic acid to reduce the VOC 

deficit without compromising the high current density. This layer-by-layer solid state ligand 

exchange treatment enhanced the photovoltaic performance from 6.62% to 9.92% with a 

significant improvement in VOC from 0.58V to 0.66V. We further employed opto-electronic 

characterization, XPS and PL spectroscopy to understand the origin of VOC improvement. The 

mixed ligand treatment reduces the sub bandgap traps and significantly reduces the bulk 

recombination in the devices.     
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Introduction 

In recent years, tremendous development of PbS colloidal quantum dots (CQDs) based 

photovoltaics (PV), have made this third generation PV technology promising for 

commercialization [1]. Some attractive features of this technology are its spectral coverage, its 

compatibility with flexible substrates and with solution-based and scalable fabrication 

techniques. The continuous research efforts in this field have improved the solar cell power 

conversion efficiency (PCE) of PbS CQD cells to more than 11% in 2016 (certified PCE 

11.3%) [2] from a PCE of less than 1% a decade ago[3]. This progress in device performance 

has been due to advanced understanding of the material properties as well as the device 

operation principles [4]. Understanding effects related to quantum confinement [5,6], surface 

passivation [7-10], band engineering [11,12], charge carrier mobility [13,14], charge collection[15,16], 

remote trap passivation [17,18] and carrier recombination dynamics [19,20] in CQD solids, have 

led to better CQD solar cells.       

Despite these improvements, the PCE of these solar cells are still below the expectations with 

one main limiting factor being the large open-circuit voltage (VOC) deficit. The VOC deficit, 

defined as the difference between the band gap and the open circuit voltage is higher for these 

devices (0.55 V to 0.75 V for 1.1 to 1.4 eV band gap) [21] compared to the c-Si (0.38 V for 1.12 

eV band gap), CIGS (0.35 V for 1.1 eV band gap), GaAs (0.3V for 1.42 eV band gap) and 

organometallic halide perovskite (0.4V for 1.5 eV bandgap) based solar cells [22]. Though the 

underlying reasons for this VOC deficit in the case of PbS QDs solar cells are not fully 

understood yet, the abundance of in-gap states, introduced by the presence of unpassivated 

surface sites and off-stoichiometries [21, 23] of QDs, are considered the main suspects.  The 

recent high efficiency devices using halide passivation (mainly organic iodide) show improved 

stability and high short-circuit current density (Jsc) around 25 mA/cm2 mainly due to improved 

charge carrier mobility but the Voc is limited to half the bandgap of the QDs.  In contrast, solar 
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cell devices with QDs passivated solely with organic ligands such as EDT, BDT, and MPA 

have shown higher Voc, yet they suffer from low mobility, poor charge transport and hence 

low PCE [8,11,24]. To reduce the amount of in-gap traps, as well as to improve charge collection, 

simultaneous organic and inorganic ligand treatment may be necessary as has been 

demonstrated by Ip et. al. [25]. In that report, the halide treatment of the QDs was performed in 

solution and was followed by the organic ligand treatment on the QD films during the layer-

by-layer (LbL) growth.  

Inspired by this approach we posited that a synergistic hybrid ligand treatment taking place 

simultaneously in-situ during the LbL growth of the films would offer a more balanced 

passivation of the surface of QDs and result in higher quality films. To implement this we 

decided to employ instead inorganic halide salts in order to circumvent the incompatibility 

challenges in mixing organic halide (such as TBAI or EMII) with organic ligands. Metal 

halides have been incorporated in the QD matrix using precursor solution during the synthesis 

[26] or using post-synthetic treatments [27]. Crisp et.al. showed reported an efficiency of 7% 

employing a layer-by- layer solid state metal iodide ligand treatment yet these devices suffered 

from lower VOC and fill factor (FF) due to sub-bandgap energy states introduced through 

uncharged Pb or undesired contamination during the ligand exchange process[28].  Recently, 

Ko et.al. have showed that a short treatment of metal halide on the PbS QDs before the organic 

ligand treatment improved the VOC by nearly 100 mV by balancing surface charge off-

stoichiometry, in turn reducing the mid-gap emissive trap density, yet the resultant efficiency 

was approximately 7.3% due to a VOC deficit of 0.72 V for 1.2 eV PbS QD[29]. These reports 

intrigued us to develop a layer by layer solid state ligand exchange method with mixed ligands 

comprising of metal iodide and organic acid to facilitate the advantages of both charge mobility 

improvement and trap state reduction.    
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Here we introduce a ligand treatment where we mix an inorganic halide (zinc iodide (ZnI2)) 

with 3-mercaptopropionic acid (MPA) before applying them to the layer-by-layer ligand 

treatment. MPA is chosen as it helps in reducing the mid-gap states by protecting the surface 

from being oxidised [14]. On the other hand, ZnI2 is chosen as the metal iodide for better charge 

transport and it does not form solid complexes with MPA when the two are mixed in solution. 

The PbS QDs were deposited over ZnO QDs to form depleted heterojunction solar cell 

structure with the final 2 layers treated with 1,2-Ethanedithiol (EDT) for electron blocking 

layer (details in experimental section). Effect of the mixed ligand treatment on the device 

performance compared to the ZnI2 salt based treatment is studied thoroughly and discussed 

below.   

Results & Discussions 

Photovoltaic performance 

The scanning electron microscope (SEM) cross-sectional micrographs of the ZnI2 and 

ZnI2_MPA mixed treated full devices are shown in Figures 1 (a) & (b) respectively. The 

optimized active layer thickness is almost the same for the two devices. We exclude the MPA 

treated devices performance from the subsequent discussion as they suffer from low current, 

high series resistance and low PCE (Supporting Figure S1) and we therefore focus on the 

comparison of the ZnI2 and ZnI2_MPA treated devices. The optimized device was achieved 

through mixing of MPA to 25 mmol ZnI2 in methanol solution (0.01% (v/v)). The effect of 

different ZnI2 and MPA mixing concentrations on the photovoltaic performance is summarized 

in supporting information (S2). The PV figures of merit for ZnI2 and ZnI2_MPA treated devices 

are summarised in Table 1. The average PCE improved from 6.34% to 9.62% when we mixed 

ZnI2 solution with MPA solution whereas the champion device showed an improved PCE of 

9.92% (showed in Figure 1(c)). The important factor behind the improvement of the device 
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efficiency comes from the improvement of both VOC and JSC (short-circuit current density) 

whereas the fill factor (FF) improved slightly due to some minor improvements in series 

resistance (decreased from 86.78 𝛺 to 76.94 𝛺) and shunt resistance (increased from 16.39 k𝛺 

to 20.30 k𝛺). The most notable change is observed in the VOC, which improves from 0.568 V 

to 0.654 V with addition of MPA to the ZnI2 solution. To our knowledge, this is the highest 

VOC observed in a PbS QD based depleted heterojunction solar cell with such a high JSC for a 

1.18 eV band gap PbS QD. Even larger VOC values have been reached with smaller QDs: when 

their bandgap is tuned to 1.26 eV the solar cell reached 0.7 V VOC. The VOC dependence on 

QD band gap is summarized in supplementary information (S3). The results point to a reduced 

VOC deficit of 0.5-0.6 V compared to previous reports with VOC deficit of 0.6-0.8V for energy 

band gap ranging from 1.1 to 1.4 eV [21,30,31]. The JSC also exhibited a significant rise from 

19.52 mA/cm2 to 24.37 mA/cm2 with MPA mixing reflecting also upon the external quantum 

efficiency (EQE) spectra with an overall improvement throughout the wavelength region and 

a significant rise in the near infra-red (IR) region for ZnI2_MPA treated device (Figure 1(d)). 

The stability of these devices was monitored over a period of 25 days from the device 

fabrication, left in air ambient conditions. The PCE improved for up to 5 days due to the initial 

enhancement of JSC and then decreased due to the constant degradation in FF (the figures of 

merit are summarised in supporting information (S4)). Nevertheless, the overall PCE still 

remain within nearly 90% of its initial value after 25 days.  

Intensity dependent VOC and JSC analysis 

To understand the charge generation-recombination mechanism and device operation principle 

under light, we measured the dependence of VOC and JSC over an intensity range from 0.1 to 1 

sun as depicted in Figure 2. The JSC-suns curve shows similar intensity dependence for both 

ZnI2 and ZnI2_MPA mixed ligand treated device. The curves were fitted with the relation JSC 

∝𝛷p, where 𝛷 is the intensity and p is the exponent for the dependence. The calculated p factor 
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from both curves shows a value of 0.96. This implies that photocurrent in both devices is 

determined by the generation rate of electron-hole pairs due to photon absorption and not by 

space-charge region formed due to unbalanced charge transport of electrons and holes [32]. The 

major difference is observed in the suns-VOC dependence for ZnI2 and mixed ligand treated 

devices. The logarithmic fitting of this dependence yields the ideality factor (𝛈) (supporting 

information S5). The fitting of the intensity dependent VOC curve shows that 𝛈 is reduced to 

1.05 from 1.41 with the application of MPA mixing. This value of 𝛈 ,approaching unity, is an 

exciting result, as most of the high efficiency depleted heterojunction solar cells with PbS QDs 

reported 𝛈 around 1.5 [21,33,34]. The value of 𝛈 in between 1 and 2 implies the presence of in-

gap traps and their influence in the recombination dynamics [35, 36]. The in-gap emissive states 

have been identified as one of the most relevant roadblock in achieving higher VOC. 𝛈 close to 

1 points to reduction of in-gap trap states in the QDs with ZnI2_MPA treatment. The cleaner 

band-gap results in band to band recombination and reduction in trap-mediated recombination 

losses. 

Recombination dynamics 

We further employ transient photovoltage (TPV) and photocurrent (TPC) techniques in order 

to gain more insights and quantitative information regarding charge transport, recombination 

dynamics, and trap state density. Small perturbation TPV measurements directly measure 

charge recombination in PbS QD solar cells. The lifetime (𝛕) calculated from the VOC decay 

curve with different light bias intensities is shown in Figure 3(a). The slower recombination 

lifetime for the ZnI2_MPA treated device compared to ZnI2 predicts a lower recombination 

loss. The recombination rate (R) (defined as the ratio between the excess carrier concentration 

with the pulse application and the recombination lifetime) plot vs VOC gives more insight about 

the charge recombination dynamics (see in Figure 3(b)). The ZnI2 treated device showed 

relatively higher R even at low VOC. Using the TPV and TPC techniques, we try to understand 
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trap states in QDs according to a reported procedure [25] (details in the supporting information 

S6). The result showed in Figure 3(c) confirms a cleaner in-gap trap density in case of 

ZnI2_MPA treated device. This direct evidence of lower in-gap state density is consistent with 

the evidence of improved ideality factor and lower recombination losses. 

We further plot together, in Figure 3(d), the TPC behaviour of these two devices to compare 

the charge transport behaviour inside the devices. The ZnI2_MPA treated device showed a 

much faster photocurrent transient (transit time 0.18 μs) compared to the ZnI2 treated one 

(transit time 1.16 μs). This nearly 10 times acceleration in transit time indicates higher charge 

carrier mobility and better charge transport in ZnI2_MPA treated QDs, consistent with the 

higher short-circuit current in these devices compared to ZnI2 treated ones. A rough idea of the 

transit mobility can be obtained considering built-in potential (Vbi) as the only source of electric 

field assisting in the charge transport through drift [37]. Vbi of the devices was obtained from 

the Mott-Schottky plot of the capacitance voltage characteristics (Supporting information S7). 

Vbi was found to be 0.72V in ZnI2_MPA treated device compared to 0.61V in case of ZnI2 

treated device. The calculated transit mobility was found to be increased to 3.67×10-3 cm2s-1V-

1 with the addition of MPA in the ligand from 6.84×10-4 cm2s-1V-1. This almost 5 times 

improvement in mobility further corroborates the improved surface passivation enabled via the 

hybrid ligand passivation over the ZnI2-only device. 

X-ray photoelectron spectroscopy analysis   

We further employ X-ray photoelectron spectroscopy (XPS) to correlate the physico-chemical 

effects of the ligand treatment on the PbS surface with the device performance and 

optoelectronic properties. Figure 4 shows analyzed high resolution S2p, O1s and Pb4f XPS 

spectra of MPA, ZnI2 and ZnI2_MPA treated PbS QDs. Similarly to different previous reports 

[8, 23, 38, 39], these spectra are deconvoluted by considering S attributed to PbS, bound and 
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unbound thiolates, Pb attributed to undercharged Pb, Pb-S and Pb-carboxylate, and O attributed 

to Pb-O, -OH, H2O and –COO-.The S2p spectra show increased contents of bound thiolates 

and suppressed presence of unbound thiolates when the hybrid ZnI2_MPA treatment is 

employed. The reduction of dangling thiolates signifies better surface passivation with mixed 

ligand treatment. For O1s spectra, ZnI2 treated QDs shows presence of atomic PbO along with 

–OH which introduce sub-bandgap states. With MPA treatment, the amount of atomic O 

diminished but the presence of –OH increased a lot. Cao et. al. showed device performance 

degradation that is correlated with –OH presence[8] . ZnI2_MPA treated dots showed reduction 

of both atomic O and –OH from the surface, species that are associated with the formation of 

traps in PbS QDs. Further, the reduction of carboxylate-Pb and metallic Pb in mixed ligand 

treated device compared to the ZnI2 treated and MPA treated devices endorse the fact of 

reduction of emissive sub-band gap states as with ZnI2 treated device undercharged Pb leads 

to the formation of emissive sub-band gap [23]. We summarize the quantitative analysis of the 

XPS spectra to understand the stoichiometry of the ligand treated devices in Table 1. The 

overall contamination of Zn, O, C are much less in ZnI2_MPA treated devices compared to the 

ZnI2 treated device. We attribute the presence of zinc in the films to the formation of undesired 

organometallic zinc complexes, most likely zinc oleate, and not to the presence of ZnI2. This 

can be further understood by examining the Zn and I ratio of the ZnI2 and ZnI2_MPA treated 

devices. In both ZnI2 and ZnI2_MPA treated samples, the I/Zn ratio is not 2 which would be 

expected if zinc is attributed to unreacted ZnI2. In fact, for the ZnI2 treated sample, excess Zn 

is observed whereas for ZnI2_MPA treated device, I/Zn ratio is higher than 2. Therefore, we 

propose that upon treating the films with ZnI2, iodide is exchanged with oleate on the surface 

of the dots and that leads to the formation organometallic zinc complexes onto the QD films. 

Washing away these zinc containing impurities is greatly facilitated by the presence of MPA. 

This hypothesis is further corroborated by the fact that the Zn 2p3/2 peak (supporting Figure 
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S6) shifts 0.3 eV for ZnI2_MPA treated sample compared to ZnI2 treated samples. Overall, the 

suppression of unwanted chemical species from the QD surface upon our mixed ligand 

treatment, can explain the improved optoelectronic properties and performance of the as made 

QD films and devices.         

Photoluminescence studies 

We employ photoluminescence (PL) spectroscopy to further support our claim about the 

reduction of emissive in-gap states with ZnI2_MPA treated device.  The unpassivated sites 

induce mid-gap states which in turn affect the PL spectra as they introduce different channels 

of radiative and non-radiative recombination. Figure 5(a) compares the emission intensity of 

ZnI2 and ZnI2_MPA treated mixed ligand treated PbS QDs. Massive improvement of the band-

edge PL intensity was observed when QDs were treated with mixed ligand compared to only 

ZnI2 treated ones, similar to MPA treated samples (supporting Figure S7). This suggests that 

with mixed ligand treatment the non-radiative emission channels are partially suppressed 

compared to ZnI2 treated QDs. Moreover, strong emission corresponding to 0.84 eV with ZnI2 

treated QDs was observed (Figure 5(b)). This sub-band gap emission is a clear evidence of the 

presence of poorly emissive in-gap states strongly present in the case of ZnI2 treated films. This 

sub-band gap emission was drastically supressed with the addition of MPA.  The PL spectra 

also suggests that ZnI2 treated dots have higher Urbach tail (EU) energies compared to mixed 

ligand treated ones. To verify this, we have calculated EU from the corresponding slope of EQE 

spectra of the devices as described by Hages et. al.[40]. The calculated EU reduced to 23 meV 

for mixed ligand treated device compared to 45 meV of the ZnI2 passivated device as shown 

in Figure 5(c). Likewise, the analytic calculation of the corresponding ideality factor [41] 

predicts similar kind of difference in EU (Supporting information S10). Importantly the EU is 

lower than room temperature thermal energy (26 meV) with mixed ligand treatment. This leads 
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to enhanced thermal de-trapping of minority carriers and thereby reduced trap assisted 

recombination.    

Conclusions 

We have shown that a mixed ligand treatment comprising hybrid inorganic metal iodide salts 

(ZnI2) and organic MPA improves drastically the PV performance in PbS QD solar cells. This 

approach exploits the complementary benefits of inorganic ligands for improved carrier 

transport and robustness with those of organic ligands for improved passivation and in-gap 

state suppression. The synergy of the two leads to the simultaneous achievement of high Voc 

and Jsc and an overall PCE of nearly 10%. To elucidate the origins of the synergistic 

mechanisms at play we have employed a very broad range of characterization techniques to 

show that the hybrid passivation suppresses dramatically the presence of in-gap states and the 

associated recombination mechanisms thereof and has therefore led to higher performance 

solar cells compared to those based on either of the two ligand treatments.  On a broader 

perspective this work paves the way towards new hybrid ligand engineering of QD solids as 

means to reach record performance QD solar cells.  

 

Experimental Section 

Synthesis of PbS QDs: Schlenk technique was used to synthesize PbS QDs following standard 

recipe. 2 mmol lead oxide (PbO), 4.7 mmol oleic acid, and 9.4 mmol 1-octadecene (ODE) were 

pumped overnight at 95 ⁰C. Then 15 mL of ODE was added and the temperature of the reaction 

was raised to 120 ⁰C. When this point is reached, 1 mmol hexamethyldisilathiane mixed with 

10 mL ODE was quickly injected. The heating was stopped (without removing the heating 

mantle) and the sample allowed to cool down slowly (~1 hour). The NCs were isolated by 

adding acetone and then centrifuging, purified by dispersion/precipitation with toluene/acetone 
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3 times, and finally dispersed in anhydrous toluene. The obtained QDs were further treated 

with n-butylamine ligand for 1 day in the glove box and then cleaned with methanol. The final 

QDs were dispersed in anhydrous toluene (30 mg ml-1) before applying for the device 

formation.    

Photovoltaic device fabrication: ITO coated glass substrates were cleaned thoroughly with 

soap water and acetone respectively before boiling in 2-propanol for 10 min. Then the 

substrates were dried using nitrogen gun prior to material deposition. ZnO nanocrystals were 

prepared using the standard method reported elsewhere [17]. The concentration of the prepared 

ZnO nanocrystal colloidal solution in chloroform was fixed at 45 mg ml-1. For ZnO bottom 

layer formation, the cleaned ITO coated substrates were fully covered with ZnO nanocrystal 

solution and were immediately spun at 3500 rpm for 30 sec. The substrates were then shifted 

to a hotplate with pre-set temperature of 250 ⁰C and left for 30 min to bake. After that, the heat 

source was switched off and the substrates were allowed to cool down to room temperature. 

The active layer of the device was formed by sequential layer by layer spin coating technique. 

For a single layer, cleaned PbS solution in anhydrous toluene (30 mg ml-1 concentration) was 

employed on the ZnO covered substrate and spun immediately with 2500 rpm for 15 sec. Then 

the rotation was stopped before applying 5 drops of ZnI2 (25 mM in methanol) or ZnI2_MPA 

mixed ligand (25 mM ZnI2 with 0.01% MPA (v/v) in Methanol) solution to the PbS layer and 

waited 5 sec for the ligand exchange. After that, the rotation was started immediately to dry the 

sample for 10sec. Then the unreacted ligands were washed twice with few drops of methanol 

solution and the film was dried with 10 sec more rotation. The process was repeated for 12 

times to get a thicker film. The final 2 layers were formed with EDT treatment. The PbS layer 

was treated with 0.02% EDT in acetonitrile for 30 sec and then was rotated for 10 sec to dry it 

before washed it twice with few drops of acetonitrile solution. The as synthesized films were 

kept in the glovebox for overnight prior to the metal electrode deposition. Au metal was 
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deposited in a Kurt J. Leskar Nano 36 system at a rate of 2 Å S-1 for the final thickness of 150 

nm. The active device area was determined by a circular shadow mask of 2 mm diameter. After 

the electrode deposition, the devices were transferred to glovebox to anneal at 80⁰C on a pre-

heated hotplate for 5 minutes. The devices were taken out of the glovebox and stored in air for 

further characterizations. 

Photovoltaic performance characterization: All the PV characterizations were performed in 

ambient conditions. The device I-V responses were performed using a Keithley 2400 source 

meter. Illumination intensity of AM 1.5 was maintained using a class AAA solar simulator 

(Oriel sol3A, Newport Corporation). The accuracy of the measurement was determined as 

±4%.  

EQE measurements: EQE measurements were performed with an in-house build experimental 

set-up by using chopped (220 Hz, Thorlab) monochromatic illumination. The power was 

measured with a calibrated Newport-UV power meter. The device response of the chopped 

signal was measured using a Stanford Research system lock-in amplifier (SR830) which was 

fed by a Stanford Research system low noise current pre-amplifier (SR570). The final EQE 

spectra were obtained with the help of LabVIEW program.  

Intensity dependent VOC and JSC measurements: The intensity depended VOC and JSC were 

measured with a LED lamp calibrated with Newport 818-UV power meter and an Agilent 

4000X oscilloscope. The intensity of the lamp was varied with the DC applied bias from the 

function generator of the oscillator. The voltage was recorded on the oscilloscope with input 

impedance 1 M𝛺 and the current with 50 𝛺. The accuracy of this measurement was estimated 

to be within ±8%. 

Transient photovoltage and photocurrent techniques: Transient photovoltage (TPV) and 

photocurrent (TPC) of the devices were measured with an in-house-built set-up. The set-up 
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comprises a LED lamp to provide steady state white bias light, a 637 nm wavelength laser 

(Vortran Stradus) and an Agilent 4000X oscilloscope. The LED lamp was used to get steady 

VOC of the device. The intensity of the lamp was controlled by the external applied DC bias 

and was attenuated with metal-mesh according to the necessity. The laser was controlled by 

the function generator with a frequency of 10 Hz and pulse width of 100 μs. The intensity of 

the laser was controlled to keep the voltage transient amplitude under 5% of the steady state 

light bias. The oscilloscope records the data using 1 M𝛺 input impedance for the TPV 

measurement and 50 𝛺 for TPC measurement. The VOC decay curves were fitted with 

exponential decay to find the recombination time. The TPC curve was integrated to get the 

charge generated (𝛥Q) in the devices due to the laser pulse. The capacitance (C) was calculated 

from the C= 𝛥Q/𝛥VOC relation. The total charge carrier was calculated from the integration of 

C vs VOC plot. Charge carrier density was calculated by dividing the total charge carriers with 

the device volume. 

X-ray photoelectron spectroscopy measurements: XPS experiments were performed in a PHI 

5500 Multitechnique System  with a monochromatic X-ray source (Aluminium  Kα line of 

1486.6 eV energy and 350 W power), placed perpendicular to the  analyser axis and calibrated 

using the 3d5/2 line of Ag with a full  width at half maximum (FWHM) of 0.8 eV. All 

measurements were performed in ultra-high vacuum chamber with pressure between 5×10-9 

and 2×10-8 torr. The samples were prepared with layer-by-layer method described above and 

each of them are with 5 layers. The collected data were processed with XPSPEAK41 software 

for quantitative analysis. The deconvolution of the XPS spectra was performed by fitting a sum 

of Lorentzian-Gaussian functions (always with 80% Gaussian weighting) to the experimental 

data. For consistency, the full-width-at half-maximum (FWHM) of all Gaussian-Lorentzian 

functions for the same spectral regions and peaks of different samples was kept the same.    
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Photoluminescence measurements: Photoluminescence measurements were carried out using 

a Horiba Jobin Yvon iHR550 Fluorolog system along with a Hamamatsu R5509-73 

photomultiplier tube detector. Samples were excited with a 637 nm laser (Vortran Stradus). 

The acquired raw data was processed first subtracting the dark counts and normalised with 

respect to the absorption peak of the corresponding films.    
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Tables 

 

 

Table 1: Summary of photovoltaic figures of merit for ZnI2 and mixed ligand treatments. The 

values in brackets indicate champion device. 

 

 

 

 

 

 

 

 

 

 

 

 

Devices VOC (V) JSC 

(mA/cm2) 

FF Efficiency 

(%) 

Rs (𝛺) Rsh (k𝛺) 

ZnI2 

treated 

0.568±0.006 

(0.58) 

19.52±0.30 

(19.7) 

0.572±0.010 

(0.58) 

6.34±0.16 

(6.62) 

86.78±5.01 16.39±3.16 

ZnI2_MPA 

treated 

0.654±0.005 

(0.66) 

24.37±0.18 

(24.48) 

0.603±0.007 

(0.613) 

9.62±0.23 

(9.92) 

76.94±3.57 20.30±2.69 
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Table 2: Stoichiometry of MPA, ZnI2, and ZnI2_MPA mixed ligand treated samples, based on 

quantitative analysis of S2p, Pb4f, I3d, Zn2p3/2, O1s, C1s XPS spectra.  

 

 

 

 

 

 

Elements Species MPA ZnI2 ZnI2_MPA 

Pb total 1.00 1.00 1.00 

 Pb-S 0.85 0.85 0.88 

          COO:Pb 0.13 0.09 0.09 

 Metallic Pb 0.02 0.06 0.03 

S total 1.02 0.54 0.87 

 S_PbS 0.60 0.54 0.59 

 S_bound thiol 0.13 0.00 0.23 

 S_unbound thiol 0.29 0.00 0.05 

O total 0.78 2.36 0.79 

 O_PbO 0.00 0.21 0.00 

 O_OH 0.70 0.60 0.08 

 O_COOH 0.08 1.41 0.61 

 O_H2O 0.00 0.16 0.1 

C  3.91 10.29 4.19 

I  0.00 0.96 0.83 

Zn  0.00 1.27 0.31 
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Figures 

 

 

 

 

 

 

Figure 1: FIB cross-sectional images of (a) ZnI2 treated and (b) ZnI2_MPA treated PbS QD 

device. (c) Current density-voltage characterizations for the PV devices to calculate efficiency. 

(d) EQE spectra of the ZnI2 and ZnI2 mixed with MPA treated devices.   
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Figure 2: Intensity dependent (a) current density and (b) VOC variation for ZnI2 and mixed 

ligand treated PV devices. 
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Figure 3:  Comparison of the (a) recombination lifetimes, (b) recombination rate, (c) mid-gap 

trap density, (d) photo-current transient at short-circuit condition of ZnI2 and ZnI2_MPA mixed 

ligand treated devices. All the comparisons shows the reduction of mid-gap trap states and 

improvement of recombination loss for ZnI2_MPA treated device.  
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Figure 4: Deconvoluted (a) S2p, (b) O1s, (c) Pb4f XPs spectra of MPA, ZnI2, and ZnI2_MPA 

treated QD layers. With ZnI2_MPA treatment, Pb-OH, atomic O, metallic Pb reduced whereas 

the bound thiol increased leading to better surface passivation.  
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Figure 5: (a) PL intensity normalized to the absorption of the film for ZnI2 and ZnI2_MPA 

ligand treated films. There is a huge improvement in the band-edge emission in case of 

ZnI2_MPA treated film. (b) Peak normalised PL intensity shows dominating sub-band gap 

emission in case of ZnI2 treated films. With MPA mixing with ZnI2 treatment, the mid-gap trap 

emission reduced. (c) Urbach tail energy (EU) calculated from the EQE spectrum of the PV 

devices. Significant EU reduction observed in case of mixed ligand treatment which is 

consistent with the PL spectra.    
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