UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aguesta és una copia de la versid author’s final draft d'un article
publicat a la revista Computers & Fluids.

URL d'aquest document a UPCommons E-prints:

http://hdl.handle.net/2117/116810

Article publicat / Published paper-

Alvarez, X., i altres. HPC? - A fully-portable, algebra-based framework
for heterogeneous computing. Application to CFD. A: Computers and
Fluids, Setembre 2018, wvol. 173, p. 285-292. DOI:
10.1016/j.compfluid.2018.01.034.

© <2018>. Agquesta versio esta disponible sota la llicencia CC-BY-
NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://hdl.handle.net/2117/116810
http://creativecommons.org/licenses/by-nc-nd/4.0/

.Qz

—_

O 0 N O WA WN

5 RRKZOTH WKy

Contents lists available at Scienceldirpot

Computers and Fluids

journal homepage: wiwww.sls

ser.comiio

cate/comptiuid

HPC?—A fully-portable, algebra-based framework for heterogeneous
computing. Application to CFD

A. Gorobets*", EX. Trias®, R. Borrell*~,

#Heat and Mass Transfer Technological Center, Technical University of Catalonia, C/ Colom 11, Terrassa (Barcelona) 08222, Spain
b Keldysh Institute of Applied Mathematics RAS, Miusskaya Sq. 4, Moscow 125047, Russia
¢Termo Fluids, S.L., C/ Magi Colet 8, Sabadell (Barcelona), 08024, Spain

X. Alvarez G. Oyarzun*

T

ARTICLE INFO ABSTRACT .

Article history:

Received 2 November 2017
Accepted 23 January 2018
Available online xxx

The variety of computing architectures competing in the exascale race makes the portability of codes of
major importance. In this work, the HPC? code is presented as a fully-portable, algebra-based framework
suitable for heterogeneous computing. In its application to CFD, the algorithm of the time-integration
phase relies on a reduced set of only three algebraic operations: the sparse matrix-vector product, the
linear combination of vectors and the dot product. This algebraic approach combined with a multilevel
MPI+0OpenMP-+OpenCL parallelization naturally provides portability. The performance has been studied
on different architectures including multicore CPUs, Intel Xeon Phi accelerators and GPUs of AMD and
NVIDIA. The multi-GPU scalability is demonstrated up to 256 devices. The heterogeneous execution is
tested on a CPU+GPU hybrid cluster. Finally, results of the direct numerical simulation of a turbulent flow
in a 3D air-filled differentially heated cavity are presented to show the capabilities of the HPC2 dealing

Keywords:

Heterogeneous computing
MPI+0penMP+OpenCL

Hybrid CPU+GPU systems

CFD

Symmetry-preserving discretization

with large-scale CFD simulations.

© 2018 Published by Elsevier Ltd.

1. Introduction

Massively-parallel devices of various architectures are being
adopted by the newest supercomputers in order to overcome the
actual power constraint in the context of the exascale challenge
i1l This trend is being reflected in most of the fields that rely
on large-scale simulations such as computational fluid dynam-
ics (CFD). Examples of CPRapplications using accelerators can
be found, for instance, in"{%} (single-GPU, portable, OpenCL), {3-
%1 (multi-GPU, vendor-locked, CUDA) and {#] (petascale, multi-GPU,
portable, CUDA+4-OpenCL)."

Although the majority of problems in the field of mathematical
physics involve sparse matrix and vector operations and hence al-

gorithms with very low arithmetic intensity, most of the emerging -

HPC architectures are FLOP-oriented, i.e. FLOPS to memory band-
width ratio is very high. Consequently, the achievable performance
is usually reduced to a small fraction of the peak performance as
proven by the HPCG Benchmark {7! results.

Therefore, in the design of]arge scale simulation tools, ‘soft-
ware portability and efficiency are of crucial importance. The com-
puting operations that form the algorithm, so-called kernels, must

* Corresponding author.
E-mail addresses:
Gorobets),

s

=
st - -

be compatible with distributed- and shared-memory MIMD par-
allelism and, more importantly, with stream processing, which is
a more restrictive parallel paradigm. Consequently, the fewer the
kernels of an application, the easier it is to provide portability. Fur-
thermore, if the majority of kernels represent linear algebra op-
erations, then standard optimized libraries (e.g. ATLAS, cIBLAST)
or specialized in-house implementations can be used and easily
switched.

-In this context, we proposed in a previous work {%} a portable
algebraic implementation approach for direct numerical simula-
tions (DNS) and large eddy simulation (LES) of incompressible tur-
bulent flows on unstructured meshes. Roughly, the implementation
consists in replacing classical stencil data structures and sweeps by
algebraic data structures and kernels. As a result, the algorithm re-
lies on a reduced set of only three algebraic operations: the sparse
matrix-vector product (SpMV), the linear combination of vectors
(axpy) and the dot product (dot).

On the other hand, the hybridization of HPC systems makes the
design of simulation codes a rather complex problem. Heteroge-
neous implementations such as an MPI+OpenMP-+OpenCL paral-
lelization {4] can target a wide range of architectures and combine
different kinds of parallelism. Hence, they are becoming increas-
ingly necessary in order to engage all available computing power
and memory throughput of CPUs and accelerators. Examples of
CFD codes capable of heterogeneous computing can be found, for

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
79
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

JID: CAF

" [m5G:February 2, 2018;20:21]

2 X. Alvarez et al./ Computers and Fluids xxx (2018) Xxx-xxx

Computing domain

Subdomain‘ 1

Subdomain 2

Device 0

B Device 1

A Inner Elements A{:l Interface 1level /\ Halo 1-level A Interface 2-level

... Halo 2-level

Fig. 1. Multi-level decomposition example for a cell-centred scheme among two dual-CPU nodes with one and two acceleration devices, respectively.

instance, in {10} the performance of the PyFR framework is tested
on a hybrid node with a multicore CPU, NVIDIA and AMD GPUs.
Further, in {11} the scalability of the HOSTA code is tested on up
to 1024 TianHe-1A hybrid nodes.

Following the spirit of Oyarzun et al. {#i, and increasing the
level of abstraction, we present in this paper the HPC? (Hetero-
geneous Portable Code for HPC). It is a fully-portable, algebra-
based framework capable of heterogeneous computing with many
potential applications in the fields of computational physics and
mathematics. This framework aims to provide a user-friendly en-
vironment suitable for writing numerical algorithms in terms of
portable linear algebra kernels.

2. Multi-level domain decomposition

The computational domain is essentially a graph, ie. a set of
objects in which some pairs are in some sense related (such as
mesh nodes, cells, faces, vertices, etc.), which may be subject to
calculations. It typically arises from the spatial discretization of the
physical domain, forming a fundamental part of many applications.
The optimal distribution of the workload of the conmiputational do-
main across the HPC system is of great importance in heteroge-
neous computing for attaining maximum performance.

By way of example, let us consider a generic numerical algo-
rithm which operates on a computational' domain. The algorithm
is to be executed on an HPC system that consists of computing
nodes interconnected via a- communication infrastructure. Hence,
a traditional first-level domain decomposition approach with MPI
parallelization is used in ordq-to distribute the workload among
multiple nodes. In doing so, domain elements are assigned to sub-
domains using a partitioning library (e.g. ParMETIS { 71) that fulfils
the requested load balancing and minimizes the number of cou-
plings between cells of different subdomains. As a result, first-level
subdomain elements are classified into Inner and Interface cate-
gories (see g 1). Namely, Interface elements are those coupled
with elements from other subdomains. Consequently, those other’s
neighbouring elements form a Halo. A communication between
parallel processes is needed in order to update the data in Halo el-
ements needed by a kernel when processing Interface elements.
The Halo update is represented with non-blocking point-to-point
MPI communications between neighbouring processes. An overlap
of these communications with computations partially eliminates
the data transfer overhead. In such a case, the Halo update is car-
ried out simultaneously to the execution of the kernel only for the
Inner elements. Afterwards, once the Halo is updated, the Inter-
face elements are computed. .

Similarly, first-level subdomains are decomposed further in or-
der to distribute the workload of each node among its computing
devices, such as multiple CPUs (called host) and co-processors of
different kinds (called devices), as shown in the right part of ¥ig. i,

Applicationg

Fig. 2. Representation of the HPC? code structure,

This second-lével ’d&omposi’tion must conform to the actual per-
formance of devices for the sake of load balancing. As a result, at
the second level, the Halo and Interface elements are classified as
(1) external ones that need MPI communications because are cou-
pled with other subdomains of the first-level decomposition, and
(2) internal ones that only participate in the intra-node exchanges.
The external Interface and Halo elements which are assigned to a
device with a separate memory space need more expensive multi-
stage device-host-MPI-host-device communications. The volume of
this expensive Interface is reduced several times with the two-level
partitioning since in the one-level case the internal Interface would
become external.

Finally, the third-level decomposition among NUMA nodes of
the host (e.g. CPU sockets or parts of a multicore CPU grouped
in a shared L3 inner cache ring) allows allocating data in accor-
dance with the physical resources to which a group of threads is
assigned.

3. The HPC? framework

In this section, we present the HPC?: a fully-portable, algebra-
based framework suitable for heterogeneous computing with the
aim of providing a user-friendly environment for writing algo-
rithms in the fields of computational physics and mathematics.

3.1. Structure of HPC?

The code is structured following a multi-layer design repre-
sented in tig 2 as concentric rings. In this scheme, the layers

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

m

112
113
114
115

116

n7
118

19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

17

172
173
174
175
176
177
178
179
180
181
182

" [m5G:February 2, 2018;20:21]

X. Alvarez et al./Computers and Fluids xxx (2018) xxx-xxx 3

are defined to be detached maintaining the object dependency re-
stricted to the inner layers. Therefore, each outer layer represents
a higher level of abstraction.
The first layer (centre) is composed of the Set and Topology ob-
jECtS This layer represents the computational domain (detailed in
1 2) hence it is the core of any numerical simulation. Firstly,
the Set is a basic data structure which aims to mimic the algebraic
concept of a set ie. a collection of objects of some kind. It is de-
signed to be automatically distributed in the system and assigned
to devices at runtime according to the execution parameters. Thus,
it becomes generic and architecture-independent from the outer
layers’ point of view. Secondly, the Topology is designed to be in
agreement with a Set. It consists of the representation of the cou-
plings between the objects of the Set. Therefore, it contains the re-
quired information to perform the data exchanges (Halo updates).
Note that the Topology is bounded to a Set, then it-can only man-
age the data exchanges of objects belonging to that Set. However,
different Topology may be assigned to the same Set depending on
the numerical schemes (e.g. the second- and fourth-order schemes
define different couplings between the same set of unknowns).

In the second layer, two more complex algebraic objects, the .
Vector and the Matrix, are derived from Set. The Vector object rep- -
resents discrete functions on the computational domain (e.g. pres-
sure, velocity, temperature). To comply with the algebraic concept
of vector it must be equipped with the algebraic operations: dot
product, scalar multiplication, vector addition, and linear combina-
tion. These operations are contained in the dot and axpy kernels.
The Matrix object is provided with the matrix multiplication, rep-
resented by the SpMV kernel, in order to perform linear transfor-
mations.

The third layer contains linear and non-linear algorithms. These

algorithms are written using only Matrix andVector kernels, and
hence they only maintain an inner-layer dependency. Some exam-
ples of algorithms already implemented are the Conjugate Gradi-
ent. solver, the Adams-Bashforth time integrator and the Courant-
Friedrichs-Lewy (CFL) condition.

The fourth layer consists of the preprocessing mechanisms
which can be defined for different numerical methods. Namely,
given a mesh, the preprocessing constructs the Set and Topol-
ogy objects. Then, it generates the coefficients of the operators
such as Gradient, Divergence or Laplacian. Additionally, this layer
can involve external simulation codes which generate the opera-
tors as an input for the HPC? time integration core.

Finally, the outermost layer s left for applications. The prepro-
cessing mechanisms are usgg to generate the required Matrix and
Vector objects. The combination of these objects, and its kernels,
together with the algorithms described in the third layer allows
the implementation of complex algorithms in the fields of compu-
tational physics and mathematics. By way of example, the reader
is referred to the Algorithm t (in Section 4) for modelling DNS of
incompressible turbulent flows with heat transfer is composed of
only three linear algebra kernels: SpMV, dot, axpy.

3.2. Software implementation details

The structure of HPC? aims to restrict the implementation
specifics to the inner layers, i.e. the core and algebraic layers. Our
heterogeneous implementation relies on MPI, OpenMP and OpenCL
frameworks. Firstly, the non-blocking MPI point-to-point commu-
nications are used for distributed-memory parallelization. Sec-
ondly, OpenMP is used for shared-memory MIMD parallelization
for multicore CPUs and manycore accelerators. The dynamic loop
scheduling is mostly used in order to avoid imbalance between
threads that may appear due to the interference with OpenCL
and MPI processes. Additionally, vectorization for SIMD extensions
on the lowest level is achieved with compiler-specific directives,

Algorithm 1 Time-integration step.

1. Compute the convective, the diffusiveand the source term of
momentum kg, (¥t
R(uf,uf. 07) = —C3 (uyu? — DIl + f(60)

2, Compute the predictor velocity: ul =u? +

At{3R@I, ul) - JR(uIT 1)}

3. Solve the Poisson equation given in Eq. (4): L“”” = Mu? where
ul =T.uf

4. Correct the staggered velocity field: ul*! = uf — Gpi*!
G=-0;'™mT

5. Correct the cell centered velocity field: u*! =uP — Gci’é1+I
where
Ge = -0 IMT

6. Compute the convective and. the diffusive terms intemperature
transport £q. (23
Ry (e, 06) = —cc uMo; —pr DO}

7. Compute temperature at the next time-step:
o = 97 4 At{%Rg (u2, 07) - 1R, (ug—ln,e;’—‘)}

where

Communication Computation
thread ‘——-‘—;thread OpenCL computing

ki | N
[D2H: interface] | clEnqueue—}—fml—a—ﬂeu—esl inner
¥ L cells
. {Hostl'mner Bavi DewNt | &
MPI Waitall | i inner inner
|—_J—lH2D: halo {HostN inner|
7
Computing clEnqueue
interface
1l
cells Devl DevN
) interface| |interface

clFinish

Fig. 3. Heterogeneous execution of a kernel over a multi-level decomposed domain.

such as #pragma ivdepfor the Intel compiler. Finally, OpenCL im-
plementation provides the kernels portability across various stream
processing-based accelerators, including AMD and NVIDIA GPUs,
FPGA accelerators and ARM-based systems-on-a-chip (SoCs).

The heterogeneous execution mode is implemented using
nested OpenMP regions (¥ig. 3). The outer parallel region spawns
two threads: one for handlmg communications and another for
computations. The communication thread executes device-to-host
(D2H), MPI, and host-to-device (H2D) transfers. The computing
thread submits kernels for the background OpenCL execution, then
OpenMP-parallel processing is carried out within the inner paral-
lel region. In doing so, the OpenMP and OpenCL computations are
carried out simultaneously with the data exchanges engaging all
available computing resources and hiding the communication over-
head.

In order to optimize the matrix data structures and kernels, it is
necessary to reorder the rows and provide it with a proper storage
format depending on its sparsity pattern and the target architec-
ture. The reordering aims to improve the data locality by reduc-
ing the matrix bandwidth {3} The implemented storage formats
include the standard Compressed Sparse Row (CSR) and different
variants of the ELLPACK (sliced and block-transposed). Further de-
tails on the implementation and the performance of these formats
can be found in our previous work [%!. Note, this reordering and

s computing. Application

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

202
203
204
205
206

207
208

209

210

211

212
213
214

216

240

242
243
244
245
246
247

JID: CAF

[m5G;February 2, 2018:20:21]

4 X, Alvarez et al./Computers and Fluids xxx (2018) xxx-Xxx

45

GFLOPS

foverall

40

35 B 5pMV
3 axpy
Zidot

30

25
20

15

i
;

Intel Xeon Intel Xeon Intel Xeon N

NVIDIA

250

GFLOPS

200 L :
. [3GPU-only
| mCPU+GPU

150

100

S0

MD 1 node 8 nodes

E5-2660 8160 Phi 7290 2090 K40 Radeon R9 Nodes: two GPU NVIDIA 2090 +

8 cores 24 cores 72 cores 178 GB/s 288GB/s Nano two 8-core CPU Intel Xeon E5-2660
51GB/s 120GB/s 400GB/s 0.67TF 1.5TF 512 GB/s

140GF 1.6TF 3.4TF : 0.5TF

Fig. 4. Left: performance of the overall DNS algorithm (#igoriths
DNS algorithm vs GPU-only.

storage adaptation are internal routines that are hidden from the
outer layers.

3.3. Performance study

Firstly, the performance of HPC? depends mainly on the alge-
braic kernels that compose its core. It must be noted that these al-
gebraic operations have very low arithmetic intensity. For double-
precision values, the FLOP per byte ratio is typically around 1/8
(one operation per 8-byte argument). Therefore, it is clearly a
memory-bounded application that requires a lot of attention to
memory access optimization. For this reason, the theoretically
achievable performance can hardly reach several few percents of
the device's theoretical peak. For instance, for NVIDIA 2090 GPU
this limit is around 3% (i.e. (0.125FLOP/Byte - 178GB|s)/670GFLOPS).
This performance level is rather consistent with the results of
the well-known HPCG benchmark {7} that reproduces a memory-
bounded sparse algebraic application.

Single device tests have been run to study the performance of
the HPC? on the following devices: Intel Xeon E5-2660, Intel Xeon
E5-2620 v2, Intel Xeon 8160; Intel Xeon Phi 7290, NVIDIA Tesla
2090, NVIDIA Tesla K40, and‘.A_MD Radeon R9 Nano. Single-device
results shown in #ig 4 (left). illustrate the performance compari-
son for the overall DNS algorithm (see / b 1in Section 4)
and its three major kernels on different kinds of devices: several
generations of multicore and manycore CPUs and GPUs of AMD
and NVIDIA. Additionally, performance on ARM-based SoCs can be
found in our previous work i i4i The mesh size per device was
around 1 million cells unstructured and hexa-dominant). As ex-
pected, the achieved performance is directly related to the band-
width capacity of the devices. Consequently, the AMD GPU outper-
forms the FLOPS-oriented high-end computing devices due to its
higher memory bandwidth. On the other hand, the attained per-
formance and its ratio between devices differ for each kernel. This
requires a careful workload balancing based on the performance of
the overall algorithm but not the separate kernels.

The benefits of the heterogeneous CPU+GPU execution have
been measured on a hybrid cluster using two 8-core CPUs (E5-
2660) and two GPUs (NVIDIA 2090). Comparison with the GPU-
only execution in shown in #ig. 4 (right) for an unstructured hexa-
dominant mesh with 1 million cells per node. The performance
gain compared to the GPU-only mode was 19%. Furthermore, the
heterogeneous efficiency (i.e. the ratio between the heterogeneous

i and the three basic kernels tested on different devices. Right; heterogeneous execution of the overall

X
)

performance and the sum of the CPU-only and the GPU-only per-
formance) appeared to be near 100% on 8 nodes. This efficiency
was expected to reduce since the CPUs should be more involved in
communications. However, the communication overhead appears
to be much more efficiently hidden when overlapping with ‘GPUs.

Finally, multi-GPU strong and weak scaling results are shown in
Fig. 5 for hexahedral meshes that represent the computational do-
main of the DNS configuration described in the following section.
The HPC5 supercomputer of the Kurchatov Institute was used for
these tests. Its nodes are equipped with two dual-GPU NVIDIA K80
devices. It can be observed that the parallel efficiency goes down
rather rapidly in the strong speedup tests, allowing to speed-up
around 8 x at a reasonable efficiency level. This is due to the natu-
ral fact that tHe GPUs decrease throughput notably when the work-
load per device goes down. In contrast, the weak scaling efficiency
with a sufficient workload per device appears rather high. For the
mesh of 1.3 billion cells, it is 94% on 256 GPUs when scaling from
one 4-GPU node to 64 nodes with the load of 5 million cells per
device. At the smaller workload of 1 million cells per device it is
lower, 67% (around 1.5 times slowdown), when scaling from 1 to
256 devices because, firstly, the computing load is not sufficient to
hide all the communications, and, secondly, the scaling range is 4
times bigger.

4. Challenging HPC2: DNS of a turbulent differentially heated
cavity

A DNS of a turbulent air-filled differentially heated cavity (DHC)
has been chosen as a first CFD case to show the capabilities of the
HPC? dealing with large-scale CFD simulations. Firstly, the descrip-
tion of the case in conjunction with the numerical methods is de-
tailed. Then, the DHC results are briefly presented.

4.1. Mathematical model and numerical method

We consider a cavity of height H, width L and depth D filled
with an incompressible Newtonian viscous fluid of kinematic vis-
cosity v, thermal diffusivity @ and density p. The geometry of the
problem is displayed in Fig. #(left). The Boussinesq approximation
is used to account for the density variations. Thermal radiation is
neglected. Under these assumptions, the velocity, u, and the tem-
perature, 6, are governed by the following set of dimensionless

248
249
250
251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272

273
274
275
276
277

278

279
280
281
282
283
284
285

286

287

288
289
290

292
293
294
295
296
257
298
299
300
301
302
303
304
305
306
307

X. Alvarez et al./Computers and Fluids xxx (2018) xxx-xxx

25 l — Linear Speedup Lt
—&— 5M cells, overlap d
20 | —3= 5M cells, no overlap v =
-
=|:°' «+0-- 5M cells, no overlap A~
. -
g 15| i
2 Bt
20
g ¥
a 10 1
e 1
5 10 15 20 25 30
Number of GPUs

[m5G:February 2, 2018;20:21]

5
1.6 T T T
14+
1.2 ;
& |doo e Bistiodiesns i s thudn] 4
B
3
2 08
i
<
g 06
0.4 —— Ideal
02 ~—&— M cells per GPU * |
--0-- 5M cells per GPU
0 L L L s i
50 100 150 200 250
Number of GPUs

.

Fig. 5. Strong (left) and weak (right) scaling on multiple GPUs for different mesh sizes.

'l_lu
13
©

13
)
o
(9]

81 035 02 02

-

Fig. 6. From left to right: DHC schema, instantaneous schlieren-like snapshot from the DNS and the averaged temperature field at the cavity mid-depth (the isotherms are
uniformly distributed between —0.5 and 0.5), the airflow map in the upper part of the cavity.

PDEs

du+ (u-Vyu = PrRa"2V?u - Vp + f, (1)
30+ (u-V)§ = Ra/2¥eg, (2)
where Pr=v/o, Ra=(gBAOH3)/(va) and f=(0,Pro,0)

(Boussinesq approximation) -are the Prandtl and Rayleigh num-
ber (based on the cavity height), and the body force vector,
respectively. Notice that with the reference quantities, Les=H
and t,,; = (H?/a)Ra~'/2, the vertical buoyant velocity, Pr'/?, and
the characteristic dimensionless Brunt-Viisild frequency, N, are
independent of the Ra. The configuration considered here resem-
bles the experimental set-up performed by Saury et al. i and
Belleoud et al. i: the height, H/L, and depth, DJL, aspect ratios
are 3.84 and 086 whereas the Rayleigh and Prandtl numbers
are Ra=12x10" and Pr=0.71 (air), respectively. The cavity
is subjected to a temperature difference Af across the vertical
isothermal walls (6(0,y,z) = 0.5, 8(L/H,y,z) = —-0.5). The temper-
ature at the rest of walls 1s glven by the “Fully Realistic” boundary
conditions proposed in {17!, They are time-independent analytxcal
functions that fit the expenmenta] data of Salat et al. i. The
no-slip boundary condition is imposed on the walls.

The governing fqs. {1 and (2} are discretized using a
symmetry-preserving discretization { 14}, Shortly, the temporal evo-
lution of the spatially discrete velocity vector, u., is governed

by the following operator-based finite-volume discretization of
Bas. (1)

3adle | aq 3d 3d
Q; TR C(us)ue + Du. + Q2Gep. = f.. Mug =0,

where the p. e R and u. € R3" are the cell-centred pressure and
velocity fields. For simplicity, u, is defined as a column vector and
arranged as ue = (uq, up, u3)T, where u; = ((14;)1, (U)a, ..., (up)n)T
are the vectors containing the velocity components corresponding
to the x;-spatial direction. The auxiliary discrete staggered velocity
Us = ((Us)1, (Us)a, ..., (us)m)T € R™ is related to the centered ve-
locity field via a linear shift transformation (interpolation) I'c_s €
R™3" yo =T, suc. The dimensions of these vectors, n and m, are
the number of control volumes and faces on the computational
domain, respectively. The subindices c and s refer to whether the
variables are cell-centered or staggered at the faces. The matrices
Q34 e R33N C3d () e R3M¥30 apd D3d € R3m3n are plock diago-
nal matrices given by

Q=1e0, CU)=1eCm), D¥=18D,

where I3 e R3*3 is the identity matrix. Cc(us) € R™" and D e
R™" are the collocated convective and diffusive operators, respec-
tively. The temporal evolution of the discrete temperature 6. .c
R" (see g, (23) is discretized in the same vein. For a detailed
explanatlon of the spatial discretization, the reader is referred to

308
309

310
31
312
313
314
315
316
317
318
319
320
321
322

323
324
325
326
327

328
329
330
331
332
333
334
335

336
337
338
339
340
341
342
343
344
345
346

348
349
350
351
352
353
354
355

357
358
359
360
361
362
363
364
365
366
367

JID: CAF

[m5G;February 2, 2018;20:21]

6 X. Alvarez et al./ Computers and Fluids xxx (2018) xxx-xxx

Table 1

Physical and numerical simulation parameters of the DNS of the turbulent DHC displayed in ¥z, #.

From

left to right: number of control volumes and concentration factors for each spatial direction, the size of
the first off-wall control volume in the x-direction (also in wall-units), the non-dimensional time-step,
the starting time for averaging and the time-integration period.

Ny Ny N, Yy ¥y Yz (AX)min (Ax)r At to Atayg
450 900 256 2 1 1 4.28 x 107> 505 3.65x107* ~300 ~300
i 1
——— <O> i1 <05 -9<®>/0dxly=p =05
08 0.8 4
0.6 06 « 4
z Y
- >
0.4 04 1
0.2 02}
0 . 0 - . : :
-0.4 0.3 0.2 0.1 0 0.1 0.2 03 04 0 100 200 300 400 500
<@> Nusselt

Fig. 7. Left: average temperature profiles at the cavity mid-depth at Hid-width, Right: averaged Nusselt number at the cavity mid-depth,

Trias et al. {121 Regarding the temporal discretization, a second-
order explicit one-leg scheme is used for both the convective and
the diffusive terms [2¢\. Finally, the pressure-velocity coupling is
solved by means of a classical fractional step projection method
211 a predictor velocity, u?, is explicitly evaluated without con-
sidering the contribution of the pressure gradient. Then, by im-
posing the incompressibility constraint, Mul*! = 0., it leads to a
Poisson equation for f'*' to be solved once each time-step,
Lpr! = Mu? w1th L=-M'™MT, (3)
where p. = Atp, and the discrete Laplacian operator, L, is repre-
sented by a symmetric negative semi-definite matrix.

In summary, the method is based on only five basic (linear) op-
erators: the cell-centered and staggered control volumes, Q. and
Qs, the matrix containing the face normal vectors, Ng, the cell-to-
face scalar field interpolation, I, s and the divergence operator,
M. Once these operators are constructed, the rest follows straight-
forwardly from them. The algorithm to solve one time-integration
step in outlined in Al i, At this point, it must be noted that,
except the non-lineat convective term, C3(ul)u? and C.(ul)og,
all the operations correspoiaqro sparse matrix-vector products
(SpMV), most of the them sharing the same matrix portrait. Re-
garding the convection (steps 1 and 2 in Alganvithun 1), it can also
be reduced to SpMV operations by simply noticing that the coef-
ficients of the convective operator, C.(u}), must be re-computed
accordingly to the adopted numerical schemes | Moreover, the
computation of these coefficients can also be viewed as a SpMV.
Therefore, the convective operator is represented as a concate-
nation of two SpMVs: (i) firstly, to compute the coefficients of
the convective operator, C.(u?), (ii) then, to compute the matrix-
vector product to obtain the resulting vector, e.g. Cc(u?)dr.

Regarding the time-integration scheme (steps 2 and 7 in
Algorithn 1), and without loss of generality, a second-order
Adams-Bashforth has been adopted here. Since it is a fully explicit
schemes a CFL-like condition is required in order to keep the nu-
merical scheme inside the stability region {?{|. This necessarily
leads to rather small time-steps, At and subsequently to a good
initial guess for the Poisson equation. This justifies the fact that a
relatively simple linear solver for the Poisson equation (step 3 in
{) suffices to maintain the norm of the divergence of
the velocity field, Mu*!, at a low enough level {22}, Furthermore,
since the matrix, —L, is symmetric and positive- cleﬁmte, a Pre-

Algorithm

conditioned Conjugate Gradient is used with a simple SpMV-based
preconditioner (either the Jacobi or the approximate inverse). In
conclusion, the overall Algorithin 1 relies on the set of three basic
algebra operations: SpMV, dot and axpy.

4.2. Results and discussion

Since no-subgrid-scale model is used in the computation, the
grid resolution and the time-step, At, have to be fine enough to
resolve all the relevant turbulence scales. Furthermore, the starting
time for averaging, to, and the time-integration period, Atgyg, must
also be long “&nough.-to properly evaluate the flow statistics. The
procedure followed to verlfy the simulation results is analogous to
our previous DNS work {234,241 In this case, the averages over the
three statistically invariant transformatlons (time, mid-depth plane
and central point symmetry) have been carried out for all fields
and- the grid points in the three wall-normal directions are dis-
tributed usm XPerbohc tangent function, i.e. for the x-direction
%=+ Shis 261N D)). For details about the physical and

tanh
numerical parametergxsee fable 1. Hereafter, the angular brackets
operator (-) denotes averaged varlables.

Instantaneous flow fields displayed in ¥ig. € illustrate the in-
herent flow complexity of this configuration. Namely, the vertical
boundary layers remain laminar only in their upstream part up to
the point where the waves traveling downstream grow up enough
to disrupt the boundary layers ejecting large unsteady eddies. An
accurate prediction of the flow structure in the cavity lies on the
ability to correctly locate the transition to turbulence while the
high sensitivity of the thermal boundary layer to external distur-
bances makes it difficult to predict (see results for a similar DHC
configuration in {24.25}, for instance). In this case, the transition
occurs around y=0.2 (see the peak of the averaged local Nusselt
number displayed in the right part of Fig.).

The average temperature field and the airflow map are dis-
played in Fig. & (right). The cavity -is almost umformly stratified
with a dimensionless stratification of S~ 0.45 (see ¥ig. 7, left). This
value is in a rather good agreement with the expenmental results
obtained by Saury et al. {15} (§=0.44+0.03 with € =0.1 and

§=0.57+0.03 with € = 0.6, where ¢ is the wall emissivity). The
averaged Nusselt number at the cavity mid-depth is displayed in
Fig. 7 (right). The profile is again rather similar to the experimen-

368
369
370
7

372

373
374
375
376
377
378
379
380

382
383
384
385
386

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

407
408

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

ary 2, 2018:20:21]

X. Alvarez et al./Computers and Fluids xxx (2018) xxx-xxx 7
285 T T T T T 0.096
280 : i ; ; i i 5 5 T
275 ! : p— : J 1
I A2 E
270 H 1 i
it ! e Wit L]
255 | 4
||| I”
250 | : } . é
] H .
25 1]
240 4
8 I
235 i I ; i L] i
200 250 300 350 400 450 500 S50 600 0 1 2 3
Time Frequency

.

Fig. 8. Time evolution of the Nusselt number at the vertical mid-plane (left) and its normalized density power spectrum (right).

tal results obtained by Saury et al. {151, In this case, the transition
point occurs at a slightly more upstream position. The peak of the
averaged local Nusselt number is located at y~ 0.2 whereas in the
experimental results this point is at y~0.3. Integrating the aver-
aged local Nusselt number over the y-direction, the overall Nusselt
is determined. In this case, (Nu) = 2592 a sllghtly higher value
that the one obtained by D. Saury et al. i, ie. (Nu)=231+30
but very similar to the value obtained by means of LES, ie. (Nu) =
254 (see Fig. 11 in {151).

Another important feature of this kind of configuration is the
presence of internal waves. Although in the cavity core the av-
eraged velocity (and its fluctuations) are much smaller compared
with those observed in the vertical boundary layers, simulations
show that in this region isotherms oscillate around the mean hor-
izontal profile. As mentioned-above, the cavity core remains well
stratified (see ¥igs. & and 7, left); therefore, this phenomenon can
be attributed to internal waves. This can be confirmed by analysing
the Nusselt number through the vertical mid-plane, Nuc. The time
evolution and the normalized density power spectrum are respec-
tively displayed in Figs. 8. The peak in the spéctrum is located at
0.096 which is in a good agreement with the dimensionless Brunt-
Viisild frequency, N = (SPr)%5/(2m), where § is the dimensionless
stratification of the time-averaged temperature, i.e. N~0.09. Both
values are very similar confirming that internal waves are perma-
nently excited by the eddies ejected from the vertical boundary
layer. Detailed results including turbulent statistics can be down-
loaded in the following lmk 201

5. Conclusions

Motivated by the constant evolution of HPC architectures, the
aim of this paper was to design a fully-portable, algebra-based
framework suitable for heterogeneous computing with the aim of
providing a user-friendly environment for writing algorithms in the
fields of computational physics and mathematics. As a computing
novelty, the heterogeneous MPI4+OpenMP+OpenCL implementation
of kernels has been combined with a multi-level domain decom-
position strategy for distributing the workload among heteroge-
neous computing resources. Results have shown that the hetero-
geneous performance of the HPC? on a hybrid CPU+GPU cluster is
nearly identical to the sum of the CPU-only and the GPU-only per-
formance. The multi-GPU scalability of a CFD simulation has been
demonstrated on up to 64 nodes equipped with 4 GPU devices.
In addition, the performance has been studied on various architec-
tures including different generations of multicore-CPUs, AMD and
NVIDIA GPUs, manycore accelerators (with the same kernel code,
only changing the local workgroup sizes). These results demon-
strate the portability of the proposed approach.

“supported by the &

Acknowledgments

The work has been financially supported by the iste ¢
Economia y Competitividad, Spain (114650). X A s sup—
ported by a FI predoctoral contract (FI_B-2017-00614). A. G. i
sian Science Foundation (grant 15- §¥v‘3i}£_}f%<‘a).
E X. T. is supported by a Ramén y-Cajal postdoctoral contract (RYC-
2012-11996). R. B. is supported by a Juan de la Cierva posdoctoral

* grant (1JC1-2014-21034). This work has been carried out using com-

puting resources of the federal collective usage center Complex for
Simulation and Data Processing for Mega-science Facilities at NRC
Kurchatov Institute, http://ckp.nrcki.ru/; the Barcelona Supercom-
puting Center; the Center for collective use of HPC computing re-
sources at Lomonosov Moscow State University; the Joint Super-
computer Center of the Russian Academy of Sciences; the KIAM
RAS. The authors thankfully acknowledge these institutions.

References

[1] Dongarra J, et al’ Phe international exascale software project roadmap. Int]
High Perform Comput Appl 2011;25(1):3-60.

[2] Rossi R, Mossaiby F, Idelsohn SR. A portable openCL-based unstructured edge-
based finite element Navier-Stokes solver on graphics hardware. Comput Flu-
ids 2013;81:134-44.

[3] Jacobsen DA, Senocak I. Multi-level parallelism for incompressible flow com-
putations on GPU clusters. Parallel Comput 2013;39(1):1-20.

[4] Khajeh-Saeed A, Perot JB. Direct numerical simulation of turbulence using GPU
accelerated supercomputers.] Comput Phys 2013;235:241-57,

[5] Zaspel P, Griebel M. Solving incompressible two-phase flows on multi-GPU
clusters. Comput Fluids 2013;80(1):356-64.

[6] Vincent P, Witherden FD, Vermeire B, Park]S, lyer A. Towards green aviation
with python at petascale. In: International conference for high performance
computing, networking, storage and analysis, SC; November 2017. p. 1-11.

[7] Dongarra], Heroux M. HPCG benchmark: a new metric for ranking high per-
formance computing systems. Technical Report June; 2013.

[8] Oyarzun G, Borrell R, Gorobets A, Oliva A. Portable implementation model for
CFD simulations. Application to hybrid CPU/GPU supercomputers. Int. J. Com-
put. Fluid Dyn. 2017;31(9):396-411.

[9] Gorobets A, Trias FX, Oliva A. A parallel MPl+openMP+openCL algo-
rithm for hybrid supercomputations of incompressible flows. Comput. Fluids
2013;88:764-72.

[10] Witherden FD, Vermeire B, Vincent P. Heterogeneous computing on mixed un-
structured grids with pyFR. Comput Fluids 2015;120:173-86.

[11] Xu C, Deng X, Zhang L, Fang J, Wang G, Jiang Y, Cao W, Che Y, Wang Y, Wang Z,
Liu W, Cheng X. Collaborating CPU and GPU for large-scale high-order CFD
simulations with complex grids on the tianhe-1a supercomputer.] Comput
Phys 2014;278(1):275-97.

[12] LaSalle D, Karypis G. Multi-threaded graph partitioning. In: Proceedings - IEEE
27th international parallel and distributed processing symposium, IPDPS 2013;
2013. p. 225-36.

[13] Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the 1969 24th national conference on -; 1969. p. 157-72.

[14] Oyarzun G, Borrell R, Gorobets A, Mantovani F, Oliva A. Efficient CFD code im-
plementation for the ARM-based mont-blanc architecture. Future Gener Com-
put Syst 2018;79:786-96.

[15] Saury D, Rouger N, Djanna F, Penot F. Natural convection in an air-filled cav-
ity: experimental results at large rayleigh numbers. Int Commun Heat Mass
Transfer 2011;38:679-87.

453

454
455
456
457
458
459
460
461
462
463
464
465

467

468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

'499

500
501
502
503
504
505
506
507

508
509
510
51
512
513
514
515
516
517
518
519
520
521
522
523

8 X. Alvarez et al./ Cbmputers and Fluids xxx (2018) xxx-Xxx

[16] Belleoud P, Saury D, Lemonnier D. Coupled velocity and temperature measure-
ments in an air-filled differentially heated cavity at ra=1.2e11. Int] Therm Sci
2018;123:151-61. ?

[17] Sergent A, Joubert P, Xin S, Le Quéré P. Resolving the stratification discrepancy

- of turbulent natural convection in differentially heated air-filled cavities. part
[I: end walls effects. Int] Heat Fluid Flow 2013;39:15-27.

[18] Salat J, Xin S, Joubert P, Sergent A, Penot F, Le Quéré P. Experimental and nu-
merical investigation of turbulent natural convection in a large air-filled cavity.
Int j Heat Fluid Flow 2004;25:824-32.

[19] Trias FX, Lehmkuhl O, Oliva A, Pérez-Segarra CD, Verstappen RWCP. Symmetry-
preserving discretization of Navier-Stokes equations on collocated unstruc-
tured meshes.] Comput Phys 2014;258:246-67.

[20] Trias FX, Lehmkuhl O. A self-adaptive -strategy for the time-integration of
Navier-Stokes equations. Numer Heat Transfer Part B 2011;60(2):116-34,

‘[21] Chorin A]. Numerical solution of the Navier-Stokes equations. Math ‘Comput

1968:22:745-62.

Ty .

[22] Gorobets A, Trias FX, Soria M, Oliva A. A scalable parallel poisson solver
for three-dimensional problems with one periodic direction. Comput Fluids
2010;39:525-38.

[23] Trias FX, Gorobets A, Soria M, Oliva A. Direct numerical simulation of a
differentially heated cavity of aspect ratio 4 with ra-number up t6 10" -
part i: Numerical methods and time-averaged flow. Int] Heat Mass. Transfer
2010;53:665-73.

[24] Trias FX, Gorobets A, Pérez-Segarra CD, Oliva A. DNS and regularization model-
ing of a turbulent differentially heated cavity of aspect ratio 5. Int] Heat Mass
Transfer 2013;57:171-82.

[25] Barhaghi DG, Davidson L. Natural convection boundary layer in a 5:1 cavity.
Phys Fluids 2007;19(12):125106.

[26] The DNS results presented in this paper are publicly available in hitp:/fwww

eitcupeedufdownio

5!
%

524
525
526
527
528
529
530
531
532
533 °
534
535
536
537

	caratula_authorsfinaldraft1.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és una còpia de l’accepted manuscript d'un article publicat a Computers and fluids.
	URL d'aquest document a UPCommons E-prints:
	http://hdl.handle.net/2117/116810
	Article publicat / Published paper:
	Álvarez, X., i altres. HPC² - A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD. A: Computers and Fluids (2018), DOI: 10.1016/j.compfluid.2018.01.034.

	Caratula_authorsfinaldraft-1.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista Computers & Fluids.
	URL d'aquest document a UPCommons E-prints:
	http://hdl.handle.net/2117/116810
	Article publicat / Published paper:
	Álvarez, X., i altres. HPC² - A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD. A: Computers and Fluids, Setembre 2018, vol. 173, p. 285-292. DOI: 10.1016/j.compfluid.2018.01.034.
	© <2018>. Aquesta versió està disponible sota la llicència CC-BY-NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/

