
DECK: A new model for a distributed executive kernel
integrating communication and multithreading for support of

distributed object oriented application with fault tolerance
support.

Marcos E. Barreto� Philippe O. A. Navauxy Michel P. Rivière z

September 21, 1998

Abstract

DECK (Distributed Executive Communication Kernel) is a communication layer that provides support for
multithreading and fault tolerance. The approach retained in DECK is close to other distributed communi-
cation kernels like PM2, Athapascan, Nexus, TPVM or Chant in its way to integrate communication and
multithreading to efficiently overlap communication by computation and provide low latency remote thread
creation mechanisms. However, DECK differs from these communication kernels from the services offered
and its modular architecture.

The main goal of DECK is to implement a new model for the design of distributed executive kernel
to efficiently use the new underlying hardware architectures (SMP architectures and fast communication
adapters like Myrinet or memory oriented adapter like SCI) and provide a portable layer that abstract the
problems linked with the integration of communication and multithreading while offering support for het-
erogeneity.

A great lack in the current implementation of communication libraries or distributed executive kernel
is the support for basic services at the thread level and support for fault tolerance. Indeed, communication
library like PVM or MPI are often used as communication layer to ensure portability and take benefits of
specific implementation to ensure a good efficiency on specific architectures however the support for fault
tolerance, multithreading, scalability and interoperability are usually not offered.

In the case of DECK, we propose a model where a distributed application can dynamically instantiate
clusters of processes among an heterogeneous network of computers or parallel machines and this using
multiple communication protocols or communication interfaces to ensure good performances regarding the
underlying hardware architecture. The programming model proposed offer both classic synchronous and
asynchronous remote service calls for thread creation and message passing for synchronization and data
exchange.

These basic functionalities, that form the low level communication and execution layer of DECK, are
enforced by a service layer that propose the basic fault tolerant services like naming and group services or
data management services for the marshaling and un-marshalling of complex data structures. The layered
and modular approach followed by DECK enable many other extensions while keeping a high degree of
portability and efficiency.

Keywords : distributed systems, communication and executive kernels, multithreading, fault tolerance.

�Professor do Centro Educacional La Salle de Ensino Superior e Mestrando do CPGCC/UFRGS: Processamento
Paralelo e Distribuı́do, Tolerância a Falhas em Sistemas Distribuı́dos. e-mail: barreto@inf.ufrgs.br

yProfessor CPGCC/UFRGS: Dr. Eng. em Informática (Instituto Nacional Politécnico de Grenoble - França 1979):
Arquitetura de Computadores, Processamento Paralelo, Avaliação de Desempenho. e-mail: navaux@inf.ufrgs.br

zPesquisador CNPq-CPGCC/UFRGS: Dr. em Informática (Universidade Joseph Fourier de Grenoble - França
1997): Arquitetura de Computadores, Processamento Paralelo, Sistemas Distribuı́dos. e-mail: riviere@inf.ufrgs.br

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15781201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Cluster of workstations are very often used as virtual parallel machines to execute distributed
applications as they offer a good ratio performance price. This tendency has increased with the
availability of powerful multiprocessors architectures (or SMP) and high-performance communi-
cation interfaces such as Myrinet [15], ATM [19], SCI (IEEE 1596).

To support such distributed architectures, many environments have been developed to help
programmers to express the parallelism of their applications. Message passing libraries such as
PVM [9] or MPI [5] are know available for a wide range of operational systems and architectures.
In parallel, specific MSA (Messaging System Architecture) has been developed to support the
characteristics of the new generation of high-performance communication interface [15].

An important effort has also been made to use efficiently SMP architectures [18]. Multithread-
ing libraries are now proposed by most systems such as Unix or Window/NT and they are often
the key to achieve good performance on these multiprocessor architectures as they begin to be
included directly at the system level [6, 1].

However, the integration of communication libraries and multithreading kernel are not an easy
task. This is why many distributed executive kernel [13, 10, 11, 3] have been developed to re-
solve this problems and offer basic functionalities to simplify the creation of threads on multiple
nodes of a cluster of workstations and express their interactions by means of communications or
synchronizations.

If these distributed executive kernel have succeeded to integrate communication and multi-
threading to efficiently overlap communication by computation and provide low latency remote
thread creation mechanisms they do not support very well scalable high-performance communi-
cation network or heterogeneous environment that involve different processor architectures and
systems.

The problem is to abstract the utilization of multiple communication devices in the same ap-
plication using different protocol of communication. In fact, they usually rely on IP to resolve this
problem but this solution is not acceptable for many communication sub-systems because the over-
head involved in the stack IP is far to high in comparison of native (ad-hoc) communication library
(the same argumentation is also valid for distributed executive kernel that use portable communi-
cation libraries such as MPI or PVM). Also many communication libraries do not support threads
or are not thread aware. This lead to inefficient integration of thread and communication because
every access to the communication layer has to be trapped and serialized and communication
handling has generally to be done by a dedicated thread [13]

Another problem is that these distributed kernel do not provide support for fault-tolerance.
As an example, many communication libraries like MPI [5] or distributed executive kernels that
lye on top of MPI as to deal with the fact that if a single process crash all the other application
processes have to be terminated.

To resolve these problems we propose a new model for a distributed executive kernel, DECK,
that respects the following constraints:

� support for heterogeneity

– offer a portable platform for heterogeneous distributed computing that abstracts the
underlying communication devices, the architecture and the operational system.

� good efficiency

– use efficiently the underlying architecture, the operational system, the communication
and thread libraries using an abstract system interface. This include the support for
SMP architectures via multithreading and new MSA architectures such as Myrinet or
SCI.



� aim scalability and reusability

– enhance the kernel facilities with basic services to extend the functionalities of the
DECK kernel to provide a useful higher level services for the end user or a distributed
programming environment.

This paper is divided in three parts and presents the global architecture of DECK, the pro-
gramming model it offers and the design of a first prototype.

2 Heterogeneous architectures and fault tolerance

This section is dedicated to the presentation of the global DECK architecture. We focus this pre-
sentation on the properties needed in order to interconnect an heterogeneous network of computers
through a distributed executive kernel and offer a minimum support for fault tolerance.

First, we present our approach to resolve the support of an heterogenous distributed system
that is composed of different operating systems and hardware in order to build portable applica-
tions that could be compiled without modifications on every machine. We follow this presentation
with the definition of the problems generally involved with the support of fault tolerance in dis-
tributed executive kernel system like DECK and finally conclude with our solution to integrate
such heterogeneous distributed portable kernels and fault tolerance.

2.1 The heterogeneity problem

Support for heterogeneity has usually to be solved at two level in the case of distributed appli-
cations. The first level is linked with the interoperability of heterogeneous nodes of a distributed
platform. This require generally the design of a common communication protocol or a same com-
munication medium (the most famous examples are IP and Ethernet). The second level has to
resolve the problems related to the heterogeneity of the different operational systems and proces-
sor architecture that are involved.

Thus, to be able to build a portable application and resolve the problems involved with the
heterogeneity the programmer have to ensure the interoperability of the distributed system com-
ponents and use common systems functionalities. This later point, could be achieved by building
an abstract system library that offer a subset of functions that are available on all the systems (or
can be simulated) and resolve problems like endianims conversion or 64bits architectures.

This abstract system library, in the case of DECK, could be viewed for example as a collection
of module like a thread module, an I/O module or any other basic system functionalities module
that are required by the implementation of DECK. Depending on the system, the thread module
could use a native thread system library, a POSIX thread library (IEEE 1003.1c) or any other
thread library but it exports at the API level a common set of functions on every systems. Using
this solution, a programmer can make portable programs and put on the back of the abstract system
library the work to solve the problems linked with the heterogeneity. This is the same approach that
is used by communication library, like PVM, because they offer a common set of primitives but
with different possible implementations whether the system is UNIX or Window/NT for example.

Another interesting point of this approach is that the abstract layer library could benefit from
specific system library in order to achieve good performances. If we considered the Solaris systems
that offer two thread packages, a native thread package and a POSIX thread compliant library, it
is more efficient to use the native thread package [6] rather than the POSIX one (it offers more
support for SMP architecture as it is included in the Unix kernel and the system libraries).

2.2 Support for fault tolerance

Support for fault tolerance in distributed systems may be considered from many point of view. In
the case of DECK, we do not aim to provide support for fault tolerance directly but rather we want



to offer functionalities and basic properties to be able to build on top of this kernel fault tolerant
services.

Indeed, we estimate that services like reliable group communication using specific communi-
cation protocol and supporting fault tolerance have to be offered by a higher services layer [20].
However, this layer could expect that some basic support like reliable point to point message pass-
ing is available. Also, some services to create or restart a process of an application should be
offered to leave the fault tolerant services concentrate its work on the implementation of a fault
tolerancy rather than deal with the basic services that it needs and resolve all the problems that we
have exposed for the support of heterogeneity for example.

In the case of DECK, we want to integrate support for at least these points:

� reliable point to point communication,

� dynamic creation or restart of process and the corresponding naming system facilities,

� basic system facilities to save and restore persistent data.

Other extensions such as reliable collective group communications or checkpoint and rollback
facilities are not included in the DECK kernel but may be in the future offered as services by the
service layer (cf. section The DECK services layer).

2.3 Integrating fault tolerance and heterogeneity

Support for native communication and specific hardware architecture are the key for performance
issues in distributed systems specifically if they lye on top of SMP architectures and proprietary
communication interfaces. If it is possible to abstract the low level hardware with an abstract
interface like Chameleon [5] it is however more complex to provide at the same time the basic
needs to support fault tolerant in distributed executive kernel.

The principal problem comes from the high performance communication libraries (MSA) that
usually offer a SPMD programming model. According to this model a single process is usually
executed on a node and if a process crash the entire application has to terminate. This is also
the case for MPP computer like the IBM-SP2 or the Cray-T3D/E and their native communication
libraries (cf. PVMe [2] for the IBM SP series or the shared memory facilities for the Cray).

It is very difficult in this case to build a crash tolerant application if each time a process fail the
entire application stop and have to be executed again. The solution we propose to be able to support
specific communication devices and their native communication library with fault tolerancy is a
clustering approach. In this model each cluster is composed of multiple nodes that may use specific
communication facilities and each cluster may communicate through hubs with the other clusters.
An interesting point is that a cluster may use multiple communication devices to communicate.
Thus, if a communication failure occurs with a network or communication interface a node may
still be able to use another gateway to communicate. We also partially resolve the problem of
the failure of processes by the fact that if a process fail it will in the worst cases only crash an
entire cluster but not the whole application. The failing cluster could then be started again and
reintegrate the application dynamically. This assumption however is possible only if a cluster
could use multiple interface of communication at the same time and if one of them support failure
of processes. To resolve this problem we suppose that the IP protocol is usually available and use
it as a standard communication medium for control messages between clusters.

The figure 1 presents the proposed architecture model. The described configuration is com-
posed of three clusters with their respective processes that are interconnected by an IP net-
work for inter-communication and use different internal cluster communication network for intra-
communication.

To provide a standard interface to the programmer and hide the underlying communication
devices a standard API has been designed (abstract layer) and a multiplexer/demultiplexer is used



FastEthernet Network

Myrinet Network

Shmem Network

MPI cluster

Shmem Cluster

Myrinet cluster

Processes

Threads

MPI
Network

SMP
Station

non SMP
Station

MPP
Architecture

Figure 1: The cluster approach of DECK.

to received and send message according to their destination using the correct interface. The imple-
mentation and related problems are described in more details in the implementation of the DECK
prototype.

3 A multithreaded architecture approach

SMP architectures and clusters of SMP are nowadays a common distributed platform for dis-
tributed applications. Even parallel supercomputers, like the SP3, integrates multiprocessors nodes
in their last configurations. These architectures could be efficiently used if multiple activities of
an application share the processors available. To do so, a process approach could be retained,
however, the latency and the complexity involved in such approach for the local interactions be-
tween the processes are usually high. To resolve this problem, a second solution is to design
multithreaded processes where different threads are included in a unique process that execute
them concurrently over the physical processors and use the shared memory offered by the process
to express their interaction (communications of data or local synchronization) as illustrated on
figure 2.

Another motivation comes from the characteristics of some distributed applications and par-
allel or distributed languages that require efficient multithreading support in order to achieve
good performance. This is the case for irregular applications [8] and distributed languages like
DPC++ [4]. Parallel irregular applications for example are applications where the amount of ac-
tivities depend from dynamic computations of the input data. Thus, the number of threads that
may be generated could not be precalculated and their number could be very high. To encapsulate
each thread of execution in a process would lead to poor performances due to their number and the
fact that each time a thread of execution will have to be created a process have to be instantiated,
also the life cycle of the process could be very short (the computation time could in some cases be
lower than the time required to create a process).

This is why, current distributed executive kernels usually offer two level of concurrency. The
first level is defined by the concurrent execution of processes on different machines while the
second correspond to the creation and execution of multiple concurrent threads of control inside
a same process. In this model, the first level of concurrency offers a coarse to medium grain of
parallelism and the second a fine grain parallelism.



Machine A Machine B

Application
Threads

Processes

Communication
Device handler

Communication
dedicated threads

Data

Data

Read/Write access
to local data (i.e process)

Figure 2: The two level of concurrency.

Multithreading capacities are also motivated in many cases by the possibilities to increase
performance and the expression of the parallelism (it is sometimes much more easier to express
different thread of control than build a complex automata).

The performance benefits that result from the integration of communication and multithread-
ing come generally from the possibility to overlap communications by computations and the low
latency associated with the creation of remote threads. The consumption of memory resources
are lower as the latency of intra- process communications made by the threads. The complexity
of these local communications are also greatly reduced as no conversions are needed (specifically
pointer conversions).

However, many problems are involved in such integration. The first problem to resolve is
to protect the communication libraries from the side effect involved in the execution of multiple
threads that could call the communication libraries at the time. The second problem is to integrate
efficiently the multithreading kernel with the communication kernel to provide a thread aware
multithreaded communication environment that could handle directly the threads that are calling
the communication library. For example, if a thread is suspended on a completion of communica-
tion the communication kernel could re-schedule directly the thread upon reception of the awaited
message. Also, as the communication kernel is aware of the presence of the threads so it could
support communications from a thread to another one and not only inter-process communications.

The last problem to resolve also known as the pooling problem [12] appears as the communi-
cation kernel could not be called for a while if no thread are calling it. However, communication
messages may be received and processed. To avoid such situation it is important to ensure that
communication kernel is called periodically or to trigger an interruption when a packet or message
is received. Another solution is to associate a thread dedicated to the pooling task in each device
modules (cf. figure 2).

4 The programming model of DECK

We have exposed in the previous section the two level of concurrency that DECK offers and
also the cluster model adopted to use multiple communication devices and fault tolerance. In
this section we present the programming model introduced by DECK to support efficiently this
architecture at both level and manage the clusters of nodes.

4.1 Processes and clusters management

The processes and cluster of processes (or nodes) are the primary entities that DECK have to sup-
port. For this, it offers a variety of functionalities to create, destroy and permit basic interactions
between processes and clusters. Indeed, a DECK application is constituted of processes that are



distributed among a collection of nodes and attached to a cluster that represents a specific context
of communication generally coupled to a specific hardware architecture (i.e MPP architecture) or
ad-hoc communication libraries like (i.e. MSA Myrinet) as shown on the figure 1.

A cluster of communication could be compared as an open group in the sense that a process
could dynamically integrate it even if it is not previously known by the cluster. The management
of every cluster is centralized in dedicated process. This process is responsible to maintain the
coherence of the group and process the request of processes that want to leave on enter the cluster.

In the case of MPI cluster for example, the root process is responsible for the creation of the
node that made the cluster. If a process fail the entire cluster has to terminate. To restart the
cluster, only the root process has to be restarted. In the case of a fault-tolerant cluster, if a process
fail it could be restarted by a dedicated process (the cluster manager) or by third parties (manually
by the user for example) however it is its task to recontact and integrate the cluster again. To
accomplish this, any process could always contact a naming service to retrieve the address of a
particular process or a cluster manager.

Every processes (or node) are given an identification address during their startup by the naming
service. This address is unique and global and the naming service do not forge twice a same
address. Thus, if a process crash it could be restarted and reuse its previous address if it had saved
it.

4.2 A fine grain parallelism programming model

If a DECK application is primary a collection of distributed process, the computation and com-
munication are done by thread of execution. This is why each time a DECK process is created
a main thread of execution is also created. This thread could then create new thread locally or
remotely and interact with the others processes of the application. This model is the model usually
adopted by many other executive distributed kernel[13, 10, 11, 3]. However, they offer different
programming model to express the thread activities and the interactions that are allowed between
them.

The problems involved with distributed fine grain parallelism are coming from the fact that
the life cycle of the threads could be very short and that they could be dynamically instantiated
randomly in different nodes. How to instantiate a distant thread and how to interact with it are
the first problems to be solved. If we adopt only a message passing programming paradigm (if
we suppose that it is possible to create threads on every nodes) then the programmer have to keep
track of each threads and its execution site and have to ensure that a remote thread is present on
a distant node before accomplishing any communication with it. This complexity could lead to
difficulties in the design of fine grain distributed application.

This is why these kernels offer usually functionalities to create remotely thread of control us-
ing a paradigm close to the RPC model or RSR model [11] if a remote thread is not allowed to
return directly results to its creator (it usually has to use the same mechanism to do so). These
mechanisms are also coupled with a message passing paradigm and in some case with other pro-
gramming model like shared memory (TPVM [7] or Cid [14]).

The DECK programming model offer a remote service creation as a basic mechanism to exe-
cute remotely a thread. Each time a thread is created via such mechanism it inherits the address of
its creator and could then communicate with it using a message passing operation or by executing
a RSR in the process referenced by the address. A service in the case of a RSR, is a C function
that has been declared to the DECK kernel as an entry point. A variant of this call is also proposed
to execute a remote service as a regular function call and to avoid the overhead of a thread creation
(in this last case the function calls are executed by the DECK kernel in sequential).

The DECK kernel offers also some functionalities to create locally a thread in a node and ex-
press local synchronization mechanisms (mutex) to realize mutual exclusion and resolve problem
such as race condition [16]



Process-0

R/W local shared memory

remote
thread
creation

R/W local shared memory

IPC SysV facilities

R/W local shared memory

Network

Process-1

Process-2

Machine A

Machine B

write
using message

passing
R/W local shared memory

main thread
remote process
creation

remote

Process-3

Figure 3: Interactions in DECK.

The figure 3 presents the different interactions that are allowed by the DECK model. Each
thread of control could create thread locally or on a remote node. The exchange of data between
two threads are done through point to point message passing operations. Each message are emit-
ted to destination of a port (or a mail box). A port as to be declared by the user in order to accept
incoming message. A port is reference by a portid that is only local to a node. A context of com-
munication has to be created (like communicator in MPI or context in the last release of PVM)
in order to dispatch the communications in different communication spaces that could be handled
separately (a context per cluster for example). Thus, a valid address to issue a communication is
constituted by the triplet (node-id, port-id, context-id) as it is global and unique. Each communi-
cation are asynchrone but associated to a request structure (like MPI) thus a thread could test if a
message has been sent and if it can reuse the buffer allocated for a communication (send) and test
or wait if a message has been received using the same kind of request structure.

The messages that could be sent and received are limited to the basic C data types and the
communications are issued only between two processes. However, future extensions are planed to
integrate as extension services support for complex data (list, complex structure, tree) and collec-
tive communications.

4.3 Extension of the programming model of DECK

The programming model offered by DECK itself is dedicated to support the two basic entities of
DECK that are the distributed processes and the threads. The functionalities provided are limited
to the life cycle of these execution units (creation and destruction) and the management of the
interactions involved between them (message passing, synchronizations,...).

More complex operations involved between threads or processes like group communications,
complex data management or dynamic load balancing of the thread are not offered directly by
DECK itself. However, the philosophy of the DECK environment is to build an open environment
where extension could be provided by means of services that lye on top of the basic functionalities



enumerated in this section. Indeed, as the services are not included directly in the low level kernel
of DECK it increases the modularity of the environment and contribute to parallel developments
and portability.

5 The DECK services layer

Some basic services that may be required by some applications are tightly coupled to the DECK
kernel and thus it may be difficult to a simple user to implement such services as they may have
to interact with many components of the DECK architecture. To avoid this problem and extend
the functionalities of the DECK kernel we propose a service layer that lie on top of the basic
mechanisms offered by DECK. The kind of services provided may be dedicated to answer basic
requirements of an application (group communication, complex data management support, etc.)
or extend the functionalities of existing services (secure communications, fault tolerant group
communications, etc.).

The service layer should indeed contains only the required functionalities needed by an appli-
cation and also answer dynamically to specific needs. To provide such requirements, the DECK
kernel proposes two kind of services. Local services are modules that may be built separately
from the DECK kernel and have to be linked with the application during the compilation phase (if
they are needed). The second kind of services or Global services are services that are independent
from the application by the fact that they are provided by specific processes. This is useful if an
application want to dynamically access specific services that are provided by third parties compo-
nents and also to build fault tolerant services. This could be the case for a naming service facility
that want to be implemented with two independent processes to ensure a backup if one the naming
server crash.

To illustrate this architecture and present two of the basic services actually offered by DECK,
we described in the following subsections the naming and group services.

5.1 The naming service

The naming service is a basic service module that has been implemented over the DECK ker-
nel in order to resolve the main problem encountered by our model when dealing with multiple
communication interface (or network) or involved with the threads support.

The main role of the naming service of DECK is to abstract the hardware or specific com-
munication libraries addressing scheme in order to provide a uniform addressing model. This
kind of services are essential in order to support the multiplexing and demultiplexing of packets
or messages that could be received or send from different communication devices with specific
addressing mechanisms. This kind of services also provide routing servicing if a node have to
re-route a message if it plays a hub or gateway role in a cluster for example.

To achieve such requirements we have adopted a three level addressing architecture that ab-
stract completely the physical addresses used by a communication device. This architecture is
presented in detail in the subsection The case study of the naming service and may be compared
to the approach use by [21]. Basically this architecture model permits to a process to reference
another process using a high level address reference that could be a name (i.e. string) or a process
id (i.e. a simple integer). This address could be translated into an abstract physical address which
reference a physical address. As the logical address (or high level address) does not reference
directly the physical address it is possible to change the execution node of a process (migration)
or in a case of a crash to re-create it on a new node and still use the same logical address. This is
also useful in some fault tolerant protocol when a backup process has to replace a primary process.
The coherency of the data base that contains the different addresses and their relations is ensured
by the naming service.



The last functionality offered by the naming service is the possibility to manipulate complex
address that are not only related to a process or a node but also to a thread or a communication
port. This kind of support has been also proposed via extensions by some communication libraries
in order to support more efficiently multiple threads per process [22, 17]

5.2 The group service

The group services facility is the second module service that has been defined for DECK. It has
been designed to offer the basic services to build collective communications. Thus, it does not, cur-
rently, offer collective communication functionalities but rather aims to provide basic mechanisms
to build and manage group of processes and communication context. Theses structures could then
be used to build collective communications like barrier, broadcast or reduction. To provide such
kind of communication is also one of the main goal of DECK as there are few communication
libraries or distributed executive kernels that offer such mechanisms at the thread level [3].

For example, Chant [10] proposes like DECK an extension (that could be viewed as a service
module) that offer very basic group support at the thread level. The interactions are limited to the
group members and only the barrier function is provided as a collective communication. TPVM [7]
as also made an attempt to include thread support to the PVM communication libraries but like
Chant the operations that could be achieved over a group are limited. Some distributed executive
kernel as also proposed some functional extensions to the classic RPC and thread duplication in
order to simulate group of thread and global synchronizations [13, 3].

In the case of DECK, the policy is to distinguish the group facilities from the operation that
could be achieved over it. Indeed, group management (open or closed group) and structure prop-
erties (hierarchical, equality group,...) could be different and depends from the application needs.
Also, protocol over these groups may differ and follow specific semantic [20]. This why, we have
adopted for DECK a service approach where the basic group management functionalities are of-
fered (and soon basic collective communications) instead of include directly theses services in the
DECK kernel.

From the performance point of view, this should not be a real problem as most of the commu-
nication libraries use point-2-point communication library in order to build collective communica-
tion [5] and specifically if they have support fault tolerance as properties such as atomic broadcast
are usually not offered by regular communication devices.

The services offered by the DECK environment will be extended in the future. And services
such as complex data management, transaction or timing will also be added. These implemen-
tations will follow the same goal towards portability, hardware abstraction, interoperability and
scalability.

6 The DECK prototype implementation

The DECK prototype is still in an early stage of development. Currently, the low level abstract de-
vice layer has been defined and implemented. Basic device modules such as a UDP device and an
IPC SYS/V device are available. Other devices, like PVM and MPI devices will be implemented.

The DECK API offers the basic remote invocation mechanisms and message passing but the
implementation of contexts and clusters functionalities are still under development. Support for
heterogeneity is provided at the communication layer using a home made a la XDR data encoding
and decoding facilities. However, further tests for 64 bits architectures and more exotic architec-
tures has to be done and XDR services should also be included in the next releases.

The integration of the multithreading kernel has been made but fine tuning and implementation
of different pooling policies have to be done in order to achieve good performance specifically for
the case of SMP architecture. It should be transparent from the user point of view and be able to
adapt itself dynamically upon the network state.



Support for fault tolerance is also in early stage of development. The UDP device has been
built using a modified ACK/NACK protocol to handle unreliable communications and server
crash. The protocol has to be tuned for specific architectures and systems dynamically. It is
possible, in fact, to change the timing value of the communication protocol algorithm and interact
with the buffering management policy at runtime. This part will be studied in the future to provide
a dynamic and reconfigurable communication protocol at least for IP networks.

6.1 The Deck internal architecture

The internal modular architecture of DECK, presented on the figure 4, is based on an abstract
communication device (DEVICE HANDLER module) that may encapsulate several physical
communication devices while offering a single (and simple API) to the upper layers of DECK.
The abstract communication device could be compared to the Chameleon device of MPIch [5] but
in the case of DECK multiple communication devices could be integrated at the same time in a
same abstract device.

IP
DEV.

IPC
SYS5
DEV

OTHER
COMM.
DEV

NAMED
File

APPLICATION LAYER

DEVICE module

MESSAGE
module

ACTION
module

DEVICE_HANDLER module

Communication

Non dependent

Physical dependent
Communication
Layer

Layer

module
THREAD

NAMING PROCESS
Facilities

Repository
Name

DEVMUX module
module

NAMING

Figure 4: Internal view of DECK.

An important point to outline, is that in comparison of architecture similar to MPIch
Chameleon or most communication libraries it is no more possible to rely on a uniform addressing
mechanism (i.e. an integer number to reference every process). Also, general communication ad-
dressing schemes such as IP is also not usable because an IP address is not a standard addressing
ID for communication library such as MPI or PVM (at least from the process point of view). To
handle this problem we have built a three level addressing architecture that may be compared to
the Globe resolution system [21].

The first level correspond to the low physical address manipulated by a communication device
module (i.e. a global pointer for shared memory libraries, an IP:PORT address in the case of IP
networks or a taskid for message passing communication libraries like PVM or MPI).

The second level is a global physical address that is manipulated only by the upper layers of
DECK. It is useful to have two levels of physical addressing as a process referenced by a global
physical address may crash and have to change its low physical address so if it is started on an
another node it still could use the same global physical address.

The last level is a logical process address that is used to reference a destination process at
the end-user level (i.e. application). The send and receive message passing functions accept such



addresses. It could be compared to a task-id or process-id used by regular communication libraries
and is implemented as integer number. In the next subsection we present the naming service that
is responsible for the coherency handling and the management of these addressing architecture.

The abstract communication device layer is also referenced as the physical communication
layer as it could be specific to an architecture or a system. However, the upper layer or independent
communication layer is portable over any abstract communication device layer and this without
any modifications.

The upper layers of DECK are composed of kernel modules that are responsible, in a nutshell,
for the management of higher level communication functionalities like message passing, remote
service requests and the management of the threads. Basically, it is composed of five modules that
interacts to process incoming (or sending) messages from (to) the abstract communication device
(as shown on the figure 4 according to the dotted lines).

� The DEVMUX module is reponsible for the dispatching of the different packets or messages
that are received by the physical communication layer. This include also specific message
such as CONTROL messages or ACTION messages. It is in fact the core communication
multiplexer and demultiplexer of the DECK kernel.

� The NAMING module handles address resolutions that may occurred when a message has
to be sent or is received.

� The MESSAGE module takes care of the message passing operations like the management
of the communication contexts or the buffers associated to the messages.

� The ACTION module manages the handlers that could be triggered remotely to instantiate
a thread of execution or a local function.

� The THREAD module offers the basic functionalities required to create, destroy or synchro-
nize the threads. It could be called by any other module in order to create a new thread of
control or acquire a lock over a shared variable of the DECK kernel.

If any physical device modules have to interact with the upper layers they have to call the
DEVICE HANDLER module that will then call the DEVICE module which finally will dis-
patch the call to the corresponding upper layer module. This process enhance the portability and
the reusability of both layers. Indeed, the DEVICE and DEVICE HANDLER modules offer an
opaque interface to each others. To write a communication module for example, the programmer
has simply to respect the interface of the DEVICE module without knowing the implementation
details of the upper layer.

Another important issue that have to be considered in the implementation of communication
systems is the policy of buffering management they offer. Indeed, new MSA architectures such
as [15] try to reduce to the minimum the number of copies needed for the transmission of a mes-
sage. The ultimate goal is usually to offer a zero copy architecture. However, in the case of DECK,
such implementation may not be feasible as it is not possible to change the implementation of some
underlying communication modules that it may have to support. This is the case for most IP com-
munication implementation (TCP/UDP) and many communication libraries (MPI,PVM,P4). To
be able to support MSAs that offer zero copy mechanism, DECK’s communication buffers are
always referenced through pointers from the upper layers to the device communication modules.
In fact, it is up to the device communication modules to allocate the buffers when the data are
received. The allocated buffer is then exported to the upper layers via a global pointer. The same
mechanism is adopted by the MESSAGE module when a buffer corresponding to a message has to
be sent.



6.2 The case study of the naming service

The service layer of the DECK environment consists of a set of independent and dependent mod-
ules that are implemented on top of the DECK kernel. Thus, they can not access directly the
DECK modules and they have to use the standard API offered by the DECK kernel as a regular
application has to do. Independent services are simple services that call only the functionalities
offered by the DECK kernel (i.e. a complex data manager). A dependent service is a service that
depend of the functionalities offered by other services to work properly. This is the case for ex-
ample of most services that have to access the naming services. These last kind of services could
also be local or global. They are considered as local if they produce no side-effects over distant
processes and global if they interact with other processes or are implemented as a distributed ser-
vices. Hybrid implementations could also be implement using a global service, that is distributed,
and local services to process local requests given by the global services.

As an example, of such hybrid distributed services, we present in the next paragraphs the
naming service.

Query
Retrieve

Action module

Device module

VDEV/resolver

Global repository

Insert/Retrieve

DATA Base
Cache module

Repository
sub-module sub-module

Query

query request

Insert
Retrieve

moduleNaming

modify request

requestquery

Device
Device_handler module

Devmux module
query request

query request

resolver
HDev

query
request

facilities
naming
HDEV

naming
facilities

VDEV

request

modify

modify

request

request

request
modify

query

Naming
service

Naming facilities
modules

Figure 5: The naming service implementation.

The figure 5 presents the architecture of the naming service. The implementation of this ser-
vice illustrates the modular architecture of DECK and the possibility to build and use dynamically
services on demand. The name service described correspond to the naming service presented in
the DECK services layer section of this article. The main goal of this service is to provide an
abstract and fault tolerant naming service system that will be used by the DECK kernel and also
by the application layer.

It is responsible, in a nut shell, for the management of a global name repository that is used
to translate the different addresses manipulated by DECK (low physical address), global physical
address, logical process address. As it has been pointed out, all the interactions from a device
module to upper layers have to transit through the device and device handler module each time it
wants to call services from upper layers.

The interactions of a device module with the naming module appear for example generally in
two cases. The first case corresponds to the creation of a process. The device module reports to
the naming module the address of the corresponding process (low physical address. The naming
module records the address and allocate a global physical address for the new process if it is its
first creation else it links the former global physical address to the new low physical address. The
naming service stores all the entries of the naming module and could export (or import) to (from)
other processes it’s local data base (their local data base to update its global repository). The
second case appears each time a message is received or has to be sent. The different module of the
upper layers and also the involved communication device modules have to translate different kind
of addresses (cf. figure 5).



The fact that a service module is independent from the DECK service permits that it could be
changed and this dynamically. In the case of the naming services if a fault tolerant naming service
is required, this could be achieved simply by making a re-compilation of application with the fault
tolerant naming service library. Another policy that could be applied is to use global services that
are independent from the applications. In the case of the naming service, a dedicated process could
ensure the administration and the coherency of the different addresses manipulated by DECK (cf.
figure 4). Also, multiple global naming services could be created to provide more support for fault
tolerance. In the current DECK implementation a primary global naming service may be extended
by a backup global naming service that will replace the former in a case of a crash.

6.3 DECK in the DPC++ environment

Currently, DECK is being integrating in the DPC++ distributed oriented object programming en-
vironment [4]. Some functionalities of DPC++ required more extensions from the DECK layer
such as the management of complex data and for the services that implement fault-tolerant pro-
tocols for group of processes. However, a primary implementation is under development and the
DPC++ environment currently used the multithreading facilities offered by DECK to encapsu-
late the execution of multiple active object in a single process and the internal concurrency of
the active objects (parallel execution of multiple methods of an object). This implementation also
benefits from the fact that DECK offers support for thread to thread communication and thus every
distributed objects could be associated to a port of communication.

7 Conclusion

The first goal of the DECK distributed executive kernel was to design a portable and efficient
environment to support efficiently new hardware architectures such as multiprocessor SMP ar-
chitectures and high-performance communication networks and their specific MSA. The second
objective of DECK was to provide a minimum support for fault tolerance and this without relying
on a specific implementation or design dedicated exclusively to fault tolerance.

These primaries objectives have been successfully integrated in our architecture model for the
DECK environment. We have proposed an open executive environment where multiple heteroge-
neous communication devices could be used in conjunction with multithreading facilities in order
to efficiently support the characteristics of these new hardware architectures.

The programming model offered provides support for both coarse and fine grain parallelism
and multiple paradigm of programmation in order to provide a convivial programming environ-
ment to express the parallelism and the involved communications or synchronizations required by
distributed applications.

The current implementation of DECK is still in an early stage of development. The first step
was to build the core components of the DECK architecture and validate the modular approach.
This have been made with the implementation of a primary prototype that support basic commu-
nication devices such as UDP or IPC SysV shared memory facilities with a naming and group
services.

The second phase of the implementation and validation of DECK will be to integrate high-
performance MSA for local area network such as Myrinet, support more efficiently SMP archi-
tectures and to offer more complex services in order to match the requirements of the distributed
applications we want to support and the constraints and functionalities needed by some higher-
level specific services.



References

[1] F. ARMAND, F. HERRMAN, J. KIPKIS, AND M. ROZIER, Multi-threaded processes in chorus-mix,
in in ’Proc. EEUG Spring’ 90 Conf’, 1990, pp. 1–13.

[2] M. BERNASCHI AND G. RICHELLI, Development and results of pvme on the ibm 9076 sp1, Journal
of Parallel and distributed Computing, 29 (1995), pp. 75–83.

[3] J. BRIAT, M. CHRISTALLER, AND M. RIVIÈRE, Athapascan0: Concepts structurants simples pour
une programmation parallèle efficace, Calculateurs Parallèles, 7(2) (1995), pp. 173–196.

[4] G. G. H. CAVALHEIRO, R. C. KRUG, S. J. RIGO, AND P. O. A. NAVAUX, DPC++: an object-
oriented distributed language, in Conferencia Internacional de la Sociedad Chilena de Ciencia de
la Computación, 1995, pp. 92–103.

[5] N. DOSS, W. GROPP., E. LUSK, AND A. SKJELLUM, Using MPI, Portable Parallel Programming
with the Message Passing Interface, MIT Press, 1993.

[6] J. EYKHOLT, S. KLEIMAN, S. BARTON, R. FAULKNER, A. SHIVALINGIAH, M. SMITH, D. STEIN,
J. VOLL, M. WEEKS, AND D. WILLIAM, Beyond multiprocessing - multithreading the sunos
kernel, in in ’Proc. of Usenix Conference’, SunSoft Inc., 1992, pp. 11–18.

[7] A. FERRARI AND V. SUNDERAM, Tpvm: Distributed concurrent computing with lightweight pro-
cesses, in IEEE High Performance Distributed Computing 4, 1995, pp. 211–218.

[8] T. GAUTIER, J. ROCH, AND G. VILLAR, Regular versus irregular problems and algorithms, in In
proc of IRREGULAR 95, 1995.

[9] A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG, R. MANCHECK, AND V. SUNDERAM, PVM:
Parallel Virtual Machine, MIT press, 1994.

[10] M. HAINES, D. CRONK, AND P. MEHROTA, Chant: lightweight threads in a distributed memory
environment, in Journal of Parallel and Distributed Programming, 1996.

[11] F. I., K. C., AND T. S., The nexus approach to integrating multithreading and communications,
in Parallel Programming Env. for High Performance Computing, 2nd European School of Com-
puter Science, ed., ESPPE96, 1996, pp. 53–67.

[12] K. LANGENDOEN, J. ROMEIN, R. BHOEDJANG, AND H. BAL, Integrating pollling, interrupts, and
thread management, in Proc. of the 6th Symposium on the Frontiers of Massively Parallel Com-
putation (Frontiers ’96), 1996.

[13] R. NAMYST AND J. MÉHAULT, Pm2 : Parallel multithreaded machine. a computing environment on
top of pvm, in In 2nd Euro PVM UG Meeting, 1995, pp. 179–184.

[14] R. NIKHIL, Parallel symbolic computing in cid, Springer-Verlag LNCS., (1995).

[15] S. PAKIN, M. LAURIA, AND A. CHIEN, High performance messaging on workstations with fast
message for myrinet, in In Proceedings of SuperComputing ’95, 1996.

[16] A. G. R., Concurrent Programming: Principles and Practice, Benjamin/Cummings, Redwood City,
CA, 1991.

[17] A. SKJELLUM, N. DOSS, AND K. VISHWANATHAN, Inter-communicator extensions to mpi in the
mpix (mpi extension) library, tech. rep., Missipi State University, 1994.

[18] N. SUZUKI, Shared Memory Multiprocessing, MIT Press, 1992.

[19] A. TUBTIANG, Un commutateur ATM pour le réseau numérique à intégration de service large bande,
PhD thesis, Univerisité de Paris 6, 1993.

[20] R. VAN RENESSE, P. KENNETH, K. BIRMAN, AND S. MAFFEIS, Horus, a flexible group communi-
cation system, in Communications of the ACM, 1996.

[21] M. VAN STEEN, F. HAUCK, AND A. TANENBAUM, A model for worldwide tracking of disttibuted
objects, tech. rep., Vrije Universiteit, 1997.

[22] H. ZHOU AND A. GEIST, Lpvm, a step towards multithreaded pvm, Concurrency - Practise and
Experience, (1997).


