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Summary 

 

This thesis focuses on the control methods applied to current source resonant 

converters, especially in two different applications of switching power supplies and wire-

less power transfer systems. In fact, the existing applications are mostly working with 

voltage source resonant converters. For voltage-source resonant converters, many control 

strategies have been analyzed and investigated, turning this into a mature technology 

nowadays. The current-source resonant converter is an alternative solution as they offer 

well-known advantages such as non-pulsating input current, low stress for switches, 

simple driving circuitry, and short circuit protection capabilities.  

However, there is an obvious lack of control methods applicable to current-source 

resonant converters. In addition, obtaining an appropriate dynamic model to be used in 

control design is the other challenging issue in this field. Hence, the objectives of this 

thesis are used to fill these gaps. The proposed control schemes are:  

• Frequency modulation control scheme applied to a DC/DC current-source parallel 

resonant converter. 

• Sliding mode control scheme with amplitude modulation applied to a DC/DC 

current-source parallel resonant converter. 

• A control scheme for a multiple-output DC/DC current-source parallel resonant 

converter. 

• A communication-less control scheme for a variable air-gap wireless energy transfer 

system using a current-source resonant converter. 
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Resumen 

 

 Esta tesis doctoral está centrada en los métodos de control aplicados a los convertidores 

resonantes con fuente de corriente, especialmente en dos aplicaciones distintas como son 

fuentes de alimentación conmutadas y sistemas de transferencia de energía sin hilos. De 

hecho, las aplicaciones existentes trabajan principalmente con convertidores alimentados 

mediante fuentes de tensión. Hasta hoy en día, en la literatura especializada se han analizado 

muchas estrategias de control para convertidores resonantes con fuente de tensión, lo que 

hace que esta sea una tecnología madura.  El convertidor resonante con fuente de corriente 

es una solución alternativa, que ofrece ventajas conocidas como corriente de entrada no 

pulsante, bajo estrés para los interruptores, circuitos de disparo sencillos y protección contra 

cortocircuitos.  

 Sin embargo, existe una falta evidente de métodos de control aplicables a los 

convertidores resonantes con fuente de corriente. Además, otro desafío en este tema es la 

obtención de modelos dinámicos apropiados para el diseño del control. Por lo tanto, los 

objetivos de esta tesis se utilizan para llenar estos vacíos. Los esquemas de control 

propuestos son: 

• Esquema de control en frecuencia aplicado a un convertidor resonante paralelo con 

fuente de corriente para reguladores de tensión en continua. 

• Esquema de control en modo de deslizamiento con modulación de amplitud aplicado 

a un convertidor resonante paralelo con fuente de corriente para reguladores de 

tensión en continua. 

• Esquema de control para un convertidor resonante paralelo con fuente de corriente 

para la regulación de tensión en continua de varias salidas. 

• Esquema de control sin comunicaciones para un sistema de transferencia de energía 

sin hilos con un transformador con entrehierro variable basado en un convertidor 

resonante con fuente de corriente. 
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This chapter introduces the concept of resonant converters. From a historical review to 

the description of the typical applications, the chapter classifies the resonant converters 

according to their topologies and the commonly-used switching networks for each topology. 

Likewise, a problem formulation is presented in order to highlight the present unsolved 

problems for each application. Moreover, the main objectives of this thesis is also presented. 
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1.1. HISTORICAL BACKGROUND AND CURRENT STATUS 

 Conventional pulse-width modulated (PWM) converters [l]-[5] are well studied in the 

literature and are still widely used as a part of low and medium-power applications. 

However, the turn-on and turn-off losses caused by PWM rectangular voltage and current 

waveforms limit the operating frequency and produces hard switching. This yields in power 

losses and electrical stress in switches. Furthermore, hard switching leads to sharp changes 

of voltage and current (dv/dt and di/dt) that are the major source of broad-band 

electromagnetic energy and thus increase the potential for electromagnetic interference 

(EMI). The inefficient operation of PWM converters at very high frequencies imposes a limit 

on the size of reactive components of the converter and consequently, on power density. 

 The adverse effects of hard switching – i.e., power losses, electrical stresses, and EMI – 

are more and more important as the switching frequency increases. Several papers have 

studied the effects of hard switching [6] along with circuitry arrangements to modify the 

current and voltage at the switches during the commutations to eliminate or at least mitigate 

its effects [7], [8]. These proposals are based on circuitry that forces at zero either the voltage 

across the switches (ZVS) when they are turned on, or the current through the switches (ZCS) 

when they are turned off, or both. In addition, the converters with the switches commutating 

in such a soft way are called soft-switching converters [9]. The principle of operation and 

design of these converters are widely studied in the literature [10]– [11] for both ZVS and 

ZCS converters. Switching losses, electrical stresses on the devices, and EMIs are 

significantly decreased in these soft-switching converters. The loss decrease can be utilized 

to raise the working frequency of the converters, when permitted by the application. This 

allows a reduction in the size of the magnetic components of the converters, such as 

transformers and passive filters.  

Basically, depending on the operating principle, soft switching converters are categorized 

in three different families 1) quasi-resonant converters and multi-resonant converters, 2) 

resonant-transition converters, and 3) resonant converters. The general schematic of these 

converters is shown in Fig. 1.1. 

 Fig. 1.2. shows the details of various types of soft-switching converters. As shown in Fig. 

1.2.(a) and Fig. 1.2.(b), the quasi resonant converters are built by inserting reactive elements 

in a hard-switching converter. To ensure soft switching, two auxiliary devices composed of 
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reactive elements of different kinds (Lr, Cr) are used in these converters, while in multi-

resonant converters, three reactive elements are normally used [12], as shown in Fig. 1.2.(c) 

and Fig. 1.2.(d). The principle of operation and characteristic analysis of these group of 

              

 
Fig.  1.2. Schematic diagram of  (a) ZVS quasi resonant converter, (b) ZCS quasi resonant converter, (c) 

ZVS multi resonant converter, (d) ZCS multi resonant converter, (e) ZVS resonant-transition converter, and 

(f) ZCS resonant-transition converter 
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Fig.  1.1. General diagram of a typical soft-switching converter 
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converters are well studied in [13], [14]. These converters have been applied in induction 

cooker [15] and induction heating [16] applications.  

 To achieve soft switching in resonant-transition converters four auxiliary devices 

including two reactive elements of different kinds and two auxiliary switches are applied, as 

shown in Fig. 1.2.(e) and Fig. 1.2.(f). During commutation, either zero-voltage transition or 

zero-current transition can be obtained. The characteristics of these converters was 

investigated in [17], [18]. 

 To work as a soft-switching converter, the third family, i.e., resonant converters, follow 

a quite different method: inserting the auxiliary devices in cascade with the converters 

instead of connecting them around the switches [19]. The structure of these converters is 

shown in Fig. 1.3. The input inverter takes the energy from a dc source and generates a high 

frequency ac voltage or current, depending on the input source type. 

 The task of the resonant tank (RT) is to provide the resonance conditions for the voltage/ 

current across/ through switches of the input inverter to ensure a soft commutation. The RT 

output supplies the conditioning circuit (CC) that delivers energy to the load. The CC 

contains a unidirectional converter normally a diode rectifier (DR) when no inversion of the 

power flow is required; otherwise it contains a bidirectional converter. Finally, the CC 

contains a filter, low-pass (LPF) or band-pass (BPF), used to meet the power quality required 

by the load. The inductive or capacitive kind of filter defines the current- or voltage sink 

nature of the load. Between the input stage and the CC, resonant converters often include an 

HF-transformer either to change the input-to-output voltage level or to assure an input-to 

output galvanic isolation.  

 Nowadays, among the mentioned soft switching converters, resonant converters are more 

interesting due to their high performance in terms of power density and efficiency [19]. In 

addition, resonant converters have wide input and output voltage range characteristics, their 

 
Fig.  1.3. Schematic diagram of resonant converters 

 
 

 

Load
Input 

Source

HF 
TransformerInverter RT DR Filter

Conditioning Circuit



Chapter one 

 

6 

 

output voltage and current present low ripple, and they do not require a complicated filter 

design [19]. Hence, this thesis focuses on them. 

 

1.2. RESONANT CONVERTER TOPOLOGIES  

The arrangement of different types of stages (input source, inverter, RT, and even the 

output filter) determines the features of a resonant converter topology. Of course, the various 

stages must be compatible with each other. A typical resonant converter can be generalized 

based on four different input source and output sink excitations as listed below [19]: 

 Voltage source/Voltage sink (V-V) 

 Voltage source/Current sink (V-C) 

 Current source/Voltage sink (C-V) 

 Current source/Current sink (V-V) 

1.2.1. Input source topologies 

As a whole, depending on the characteristic of the input source, resonant converters are 

divided into two categories of voltage and current source converters. Unlike voltage source 

resonant converters, in current source ones, a choke inductor must be inserted in series with 

the input voltage source to get a practical current source. 

In voltage source resonant inverters, the shape of the current injected to the resonant tank 

is a sinusoidal waveform. in current source resonant inverters, the current drawn from the dc 

voltage supply is constant and continuous, leading a square shape current to be injected to 

the resonant tank. The reason is that the choke inductance value is much larger than the 

resonant inductor, so under normal steady-state operation the input current is approximately 

constant. 

1.2.2. Switching network topologies 

For current-source resonant converters, taking into account the input converter, different 

main switching topologies have been investigated, as detailed in the next subsections. Note 

that since the focus of this thesis is on the current source converters, the voltage source 

switching networks are not presented. 
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1.2.2.1. Class D topology 

As can be seen from Fig. 1.4, the class D switching topology is composed of two switches 

which both are driven with respect to the ground, therefore make the driving easy [23]. The 

switches are driven by a rectangular signal at the operating frequency and with a duty cycle 

of slightly higher than 50%. To provide a path for the dc input current, either one or both 

switches should be ON. Therefore, a slightly overlapping in the ON states of both switches 

should be used to obtain the simultaneous conduction of switches. When the switch S1 is 

OFF and S2 is ON, input current flows through the resonant tank. Therefore, energy will be 

transferred from dc input source to the resonant tank. On the contrary, if S1 is ON and S2 is 

OFF, the input current passes through S1 and the energy is kept in the resonant tank is 

partially discharged to the load. 

1.2.2.2. Full-bridge topology 

In this topology like previous one, the inductance of input inductor is much larger than 

the resonant inductor, so under normal steady-state operation the dc-link current is 

approximately constant and the inverter injects a square-wave current, into the resonant tank 

through S1–S4 and S2–S3 [23]. In this circuit as illustrated in Fig. 1.5, this current is injected 

to the parallel load and return to the source when switch S1 and S4 are ON on the half of the 

period T (0<t<T/2). This process repeats for S2 and S3 during second half period (T/2<t<T). 

Note that, the peak current of each switch is the same as in the Class-D switching topology. 

On the other hand, in full bridge topology, the switching is more complex as a result of 

floating source pins of the top switch. 

1.2.2.3. Push-pull topology 

The circuit diagram of a typical push-pull current source resonant converter is depicted 

in Fig. 1.6. As shown, the current of L2 is injected to the parallel load and return to the source 

 

Fig.  1.4. Circuit diagram of Class D current source resonant converter 
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when switch S1 is ON (0<t<T/2). This process repeats for S2 during the second half period 

(T/2<t<T). In this topology, the current injected to the resonant tank is half of the current in 

Class-D topology (considering a same power rate). Therefore, this topology is recommended 

for some special applications, for instance in residential inductive contactless energy transfer 

systems. In this application, this current follows through the primary side cable, so a 

noticeable reduced power loss can be ensured by using push-pull topology [24]. On the other 

hand, in comparison with full bridge topology, the main difference refers to that a phase 

splitter (two input inductors instead of one) used in the push-pull inverting network. This 

topology changes the ratio between input voltage and the resonant voltage. In steady state, 

as the average voltage of the input inductor is zero, the average resonant voltage of the full 

bridge topology is equal to the input voltage. But for the push-pull topology, the completely 

coupled phase splitter: equally divides the resonant voltage, so its resonant voltage doubles 

that of the full bridge topology. Thus, the push-pull topology is more suitable for applications 

that require a higher resonant voltage for a limited input voltage. Another advantage of the 

push-pull topology is that both switches are grounded. The other advantage of the push-pull 

 

Fig.  1. 5. Circuit diagram of full-bridge current source resonant converter 
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Fig.  1.6. Circuit diagram of push-pull current source resonant converter 
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method is the reduction in the number of switches in comparison with the full bridge 

topology. 

1.2.3. Resonant tank 

The number of elements for a RT and their configuration also differentiates the topology. 

The more elements in an RT, the more topologies that can be obtained. However, not all the 

combinations of the elements produce a resonant condition. According to the analysis in 

[20], for an RT with two elements, there are eight possible topologies, with three elements 

there are 36, with four elements there are 182, and with five elements there are several 

hundred possible topologies. 

Two-element RT is the simplest of various possible configurations. All possible circuit 

combinations for second-order resonant tank is shown in Fig. 1.7. As already mentioned, not 

all the combinations can provide resonant condition. Hence, these combinations are 

classified as below: 

 Resonant Coupled converter topologies (R) 

 Non-resonant Coupled converter topologies (N) 

 Unrealizable converter topologies (U) 

Based on the analysis done in [20], following rules of thumb can be concluded: 

 When a current source is in series with a capacitor, the resultant topology is non-

resonant coupled; 

 When a voltage source is in parallel with an inductor, the resultant topology is 

also non-resonant coupled; 

 The dual of a resonantly coupled topology is also resonantly coupled; 

 
Fig.  1.7. Two-element RT combinations 
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 The dual of a non-resonantly coupled is an unrealizable topology. 

Table 1.1 classifies all topologies given in Fig. 1.4, for different combinations of input and 

output excitations. 

Applying the mentioned rules to the higher order resonant tanks, Table 1.2 determines the 

number of topologies which provide resonant condition. 

1.2.4. Output sink 

The dc output voltage sink or current sink are typically implemented by using a diode 

rectifier DR circuit in order to rectify and couple the resonant current or voltage from 

resonant tank to the output circuit. The output circuit also consists of a LPF of either 

capacitive or inductive type. Fig. 1.8 and 1.9 show the voltage and current waveforms 

characterizing the DR–LPF set, with RT current and voltage output and, respectively, 

capacitive and inductive LPF. 

1.2.5. Examples 

  1.2.5.1.  V-V series resonant converter 

The topology of Fig. 1.10 leads to the well-known voltage source-voltage sink series 

resonant converter (SRC), one of the oldest and most widely presented in the literature [21], 

[22]. The topology stands out due to the fact that both elements are in series with the load. 

Consequently, as the load increases, the current through the RT and inverter switches 

decreases and vice versa. Due to its current filtering, the RT delivers a sinusoidal current, 

and the DR–LPF set must be of a capacitive nature. Voltage and current waveforms involved 

in the DR–LPF circuit of the SRC are shown in Fig. 1.8. 

Table.1.1. Classification of the second order resonant tank topologies  

Source/Sink R converters N converters U converters 

V-V a, h - Other 6 combinations 

V-C d, c, b, h g Other 3 combinations 

C-V d, h, f, g c Other 3 combinations 

C-C d, e - Other 6 combinations 

 
 

 

Table. 1.2. Number of resonant topologies  

Resonant Converters V-V V-C C-V C-C 

3rd order 6 7 7 6 

4th order 17 44 - - 
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1.2.5.2.  C-C parallel resonant converter  

The parallel resonant converter (PRC) topology of Fig. 1.11 differs from the SRC 

topology in two points: 1) the resonant capacitor Cr and inductor Lr are in parallel with the 

 
Fig.  1.8. The voltage and current waveforms of a capacitive LPF. 

 
 

 

 
Fig.  1.9. The voltage and current waveforms of an inductive LPF. 

 
 

 

 
Fig.  1.10. V-V SRC circuit diagram 
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DR and, hence, with the load, and 2) the DR has an in-cascade inductive LPF. Moreover, 

the voltage across the resonant tank increases as the load decreases. Due to its voltage 

filtering, the RT delivers a sinusoidal voltage and the DR–LPF set must be of an inductive 

nature. Voltage and current waveforms involved in the DR–LPF circuit of the PRC are 

shown in Fig. 1.9. 

1.3. MODES OF OPERATION 

Generally, a resonant converter can be operated in two different modes: continuous and 

discontinuous modes. As a whole, the ratio of switching frequency to resonant frequency 

determines the mode of operation [25]. In series resonant converter, this ratio decides if 

the input current of the resonant tank flows continuously or discontinuously. However, in 

parallel resonant converters, instead of resonant current, its voltage has the continuous or 

discontinuous property. 

1.3.1. Discontinuous mode 

This mode of operation occurs both above and below resonance when switching 

frequency is less than the half of the resonant frequency or more than twice. This mode 

occurs when the load of the converter is low. 

A discontinuous conduction mode mechanism can occur in the parallel resonant 

converter. In this mode, a discontinuous subinterval occurs in which all four output bridge 

rectifier diodes are forward-biased, and the tank capacitor voltage remains at zero. Due to 

its high conduction losses, it is not the preferred mode of operation. 

 

1.3.2. Continuous mode 

This mode of operation is also divided in two sub-modes: leading and lagging power factor. 

 
Fig.  1.11. C-C PRC circuit diagram 
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1.3.2.1. Continuous conduction mode with leading power factor 

If RT presents capacitive input impedance, resonant current leads the voltage across the 

resonant tank. This mode is not also the preferred mode of operation for neither series nor 

parallel resonant converter. For example, for parallel resonant converter, in this mode, the 

switches of the input inverter experience soft switching and zero turn-off switching loss and 

the series diodes experience zero turn-on switching loss. However, there is turn-on switching 

loss in each switch and reverse-recovery turn-off loss in each series diode. For these two 

reasons, the efficiency in this case is less than that with lagging power factor.  

1.3.2.2. Continuous conduction mode with lagging power factor 

If RT presents inductive input impedance, resonant current lags the voltage across the 

resonant tank. This mode is the preferred mode of operation for both series and parallel 

resonant converters. Note that, in this case, the series resonant converter works in above 

resonance (switching frequencies slightly higher than resonant frequency), while the parallel 

resonant converter works in below resonance (switching frequencies slightly lower than 

resonant frequency). 

 

1.4. MODES OF CONTROL 

The control strategy has been one of the challenging research keys in resonant power 

converters. For voltage source series resonant converters, many control strategies have been 

analyzed and investigated [26] - [31], turning this into a mature technology nowadays. Some 

of these control techniques are briefly explained in this Section. 

1.4.1. Phase modulation control 

The basic idea behind this modulation technique is to apply a change in duration of the zero 

interval of the RT input voltage in order to reach the output voltage value required by the 

application. This technique was introduced to control the SRC in [23]. An extension to the 

series-parallel resonant converter was presented in [26]. 

1.4.2. Quantum modulation control 

The main concept behind this technique is to force the switching network to follow the 

resonant frequency and change the state of the switches exactly at the zero-crossing of the 

current or voltage, depending on the topology i.e., voltage or current source one. This method 
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has been treated extensively to voltage source resonant converter in for example [27] and 

[28]. 

1.4.3. Frequency modulation control 

The fundamental concept behind this technique is to adjust the output voltage via changing 

the switching frequency. This controller has been widely applied to the voltage source 

resonant converter [24].    

1.4.4. Clamped Mode Control 

The clamped mode (CM) operation is possible with full-bridge resonant converter circuit 

and was developed as the functional equivalent of phase controlled resonant converters. In 

this method, output voltage is controlled by phase-shift pulse width modulation.  

The CM control, complete steady state analysis, investigation of different operating modes 

and mode boundaries has been extensively reported for SRC [29], and a three-elements 

resonant tank topology [30]. 

1.4.5. Self-Sustained Oscillating Control 

The phase angle between the bridge output voltage and current can be controlled for ZVS 

operation by generating the bridge output voltage and by sensing the phase of the current. In 

this case, the converter is said to be operating in so called self-sustained oscillating mode 

[31], [32]. 

1.4.6. Control strategies applied to current source resonant converter 

In [33], a simple modulation technique has been proposed for this type of converter and then 

applied to an induction heating system [34]. This method is then further developed in [35]. 

In [36], the modulation technique has been applied to an inductive contactless energy 

transfer system. A delta-sigma modulator is also applied to a class-D current-source parallel 

resonant converter (CSPRC) in [37]. In all these works, the current-source converters operate 

in open loop and thus they exhibit a high sensitivity to external disturbances and parameter 

variations. 

1.5. APPLICATIONS  

Resonant converters are more often used in emerging applications due to the mentioned 

advantages in Section 1.1. This subsection gives an overview of the most significant 
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technology areas where resonant converters are being researched and applied. Some of this 

applications are power supplies, electric and plug-in hybrid vehicle charging through either 

wired or wireless power transfer, grid-connected converters of renewable energies such as 

photovoltaic (PV), wind, and fuel cells, and induction cookers. 

1.5.1. Power supplies 

The main requirements for power supplies of electric equipment are high reliability, high 

efficiency, small size, long life, and low cost [38]. The technical solution devised to set up a 

highly efficient power supply is soft switching, which is implemented through on-purpose 

developed power circuitry, i.e., by resonant converter. The topology selection depends on 

parameters such as output power, input voltage, and the output/input voltage ratio. The 

selection of the topology also influences the size, price, and efficiency of the power supply, 

which is one of the most important challenges of its design.  

1.5.2. Electric and plug-in Hybrid Vehicle Charging 

By 2020, more than half of new-vehicle sales are expected to be electric vehicle (EV) models 

[39]. The enabling technology to this revolutionary change is the battery. Charging the 

batteries of electric and plugin hybrid vehicles can be done by wire or wirelessly. Although 

a wired battery charger has the advantage of exploiting a rather simple and well-grounded 

technology, it obliges users to fumble with cables and plugs, even under adverse weather 

conditions or while they are hindered by bags, parcels, and so on. With wireless power 

transfer (WPT) technology, EV charging is more user friendly and opens the possibility of 

recharging vehicles while they are running, thus solving the problem of the short range 

achievable with currently available batteries. The inductive WPT systems to charge EV 

battery packs have been growing in recent times due to their advantages with respect to their 

wired counterpart [42]. Therefore, WPT charging is playing a major role in EV charging. 

Several WPT technologies such as electric, magnetic, and electromagnetic are available. 

However, technologies using magnetic coupling with resonant circuits offer the highest 

power transfer efficiency and higher wireless transmission power at near-field distances. In 

the transmitter section, a high-frequency resonant inverter feeds the transmitting side of the 

coil coupling. This encompasses a transmitting coil, a reactive power compensating network 

formed by one or more capacitors, and possibly inductors that are connected in series and/or 

in parallel. The transmitting coil generates a variable magnetic flux that links the receiving 

coil and induces an alternate voltage across its terminals. The receiving side of the coil 
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coupling in turn encompasses the receiving coil and another reactive power compensating 

network. The induced voltage, once conditioned by a receiving rectifier and a chopper, is 

applied to the EV battery pack to charge it. Consequently, the use of resonant converter 

circuits in the transmitter and the receiver sections allows for maximizing the magnetic field 

coupling and achieves the highest power transfer capability at the resonance frequency. 

Several resonant converter topologies for charging electric and plug-in hybrid vehicles are 

documented in the literature, both in the wired [39]–[41] and WPT [42]–[44] modes. 

1.5.3. Renewable Energy sources and Their integration into the Grid 

Renewable energy technologies have been recognized as the most effective solutions to the 

increasingly serious energy crisis and environmental pollution. Overall, in renewable and 

alternative energy sources such as photovoltaic, wind, and fuel cells, the output voltage 

varies over a wide range with climate, weather, and operational conditions. On the other 

hand, small current ripple and high power conversion efficiency are usually required for 

long-term, reliable, and efficient operation. Integration of these sources into the grid with 

high efficiency is the major research area where power electronics converters and their 

controls play a critical role. DC/DC converters are usually the front-end stage of integration 

of renewable energy into the grid, and they need to be highly efficient to enhance the overall 

system. Among the various possibilities for the dc/dc converter, resonant converters have 

been attracting more attention due to their aforementioned inherent merits. As a result, 

resonant converters are used in electrolyzers [45], PVs [46], fuel cell systems [47], [48], and 

interfaces with the grid [49], [50]. 

1.5.4.  Induction Cookers 

Domestic induction cookers (also known as induction heaters) have become very popular 

today due to advantages such as efficiency, fast heating, cleanliness, and safety. To achieve 

high efficiency, induction cooktops usually feature resonant converters in which the 

inductor-vessel system is a part of the resonant tank. Thus, the inductor vessel system 

impedance sets the point of operation of the power converter. Due to the variability of the 

load, with multiple parameters such as temperature, geometry, and material, the resonant 

converters must work with highly variable operating conditions. The energy is first filtered 

electromagnetically to fulfill the EMC regulations; then, by a rectifier and a filter, the AC 

mains voltage is converted to a DC bus; and finally an inverter converts the bus voltage into 
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a medium-frequency AC current that flows through the inductor coil, heating up the vessel. 

Improvements in this field by the adoption of resonant converters are presented in [51]–[53]. 

1.6. STATE OF THE ART CHALLENGES 

As mentioned in previous sections, voltage-source converters have been widely analyzed 

and investigated, turning this into a mature technology nowadays. However, the profits of 

the current-source resonant converter have made it a better option to apply the enhanced 

features of resonant converters to practical applications, ranging from low to high power.  

On the other hand, compared to the series resonant topologies, parallel resonant converters 

absorb a continuous smooth current from the input source, offering low current stress to 

switches [23]. Likewise, the reactive power circulates inside the parallel resonant tank and 

only the active power is supplied through the switches. This feature provides the capability 

of generating high current and voltage levels by using low VA-rated switches, reducing 

conduction losses. In addition, these converters provide more facilities such as simple 

driving circuitry, short-circuited protection and paralleling capabilities. Note that short-

circuit ability is important in applications where short-circuit is happening on the load from 

time to time. So this ability is essential in protecting system from breaking down. For the 

reasons outlined above, the research on the current source resonant converters  has recently 

attracted more interest [33]-[37]. 

In this thesis, the application of current source resonant converters on DC/DC converters as 

switching power supplies and wireless energy transfer system is investigated. To do this, in 

this Section, the challenges in each application is first presented. 

1.6.1. DC/DC converter 

DC-DC conversion category is an industry example of great importance for resonant 

converters. Battery charging, electronic air purifiers, and switching power supplies are 

among these applications, ranging from low to high power [54]-[55].   

The functions of DC-DC converters are as follows: 

• To convert a DC input voltage Vi into a DC output voltage Vo;  

• To regulate the DC output voltage against load and line variations; 

• To reduce the AC voltage ripple on the DC output voltage below the required level; 

• To provide isolation (if required) between the input source and the load; 

• To protect the supplied system from electromagnetic interference (EMI); 
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• To satisfy various international and national safety standards. 

A great interest has been taken in resonant converters due to their generated high frequency 

sinusoidal waveforms, reducing the electromagnetic interference and switching losses [56]. 

The control strategy has been one of the challenging research keys in this field. For voltage-

source resonant converters, many control strategies have been analyzed and investigated 

[26]-[31], turning this into a mature technology nowadays. However, due to the reasons 

stated in previous section, the research on the current source ones has recently attracted more 

interest [33]-[37]. In this field, the current-source converters operate in open loop and thus 

they exhibit a high sensitivity to external disturbances and parameter variations. So, there is 

a need to find a closed loop control system to cover all the mentioned issues in this field.  

1.6.2. Wireless energy transfer system 

During the last decade, WPT systems have attracted remarkably interest on industry 

sectors such as smartphone charging platforms, electric vehicle charging, and medical 

implants [57]–[59]. This technology has created new possibilities to transfer electrical 

energy in a spark-less way and with no electric shock hazard. In these works, the air gap has 

been considered constant while in certain applications using WPT systems, it is not possible 

to assume working conditions in which the length of the air gap would remain unchanged, 

e.g. charging of electric vehicles [63], [64]. This condition yields in a variation in magnetic 

coupling and even circuit parameters. This problem from one-side and load variations from 

the other side lead to a resonant frequency drift in the contactless system and the output 

voltage differs from its main reference value. This issue causes challenges especially in 

applications where a constant regulated output voltage is required. To avoid this problem 

and to have a soft switching, i.e., to ensure ZVS, some compensation topologies and control 

mechanisms have been explored in the literature [65], [66]. Normally, to have a good control 

in the receiver circuit, a feedback control is required. The typical control method in this case 

is primary-side control. In this method, some information from the secondary side of the 

transformer are directly sensed and sent to the primary control system via wireless 

communication networks [67], [68]. The other conventional way is to estimate the mutual 

coupling between two coils of the transformer [69]. With this estimation, the output voltage 

can be indirectly calculated and used in the closed-loop control. But the estimation is based 

on the nominal component values. Hence, this method is not accurate due to the tolerance of 

the components and the temperature effect during operation. 
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1.7. RESEARCH OBJECTIVES  

In this section the main objectives of this thesis are introduced. The main focus of this thesis 

is the application of current source resonant converter in DC/DC converters and wireless 

energy transfer systems. According to the mentioned problems, several challenges are 

identified which will be address in this thesis. 

1.7.1. Dynamic model for the current source parallel resonant converter 

The first issue missed in literature is introducing the mathematical formulation of the system, 

i.e. mathematical equations of the current source resonant converter. Therefore, the first open 

topic is to derive an averaged circuital model for the system which allows us to describe the 

dynamic behavior of the converter. This model will be used for designing the controller and 

its parameters.  

1.7.2. Designing a closed loop control for CSPRC 

The next topic is to design and compare different closed loop controls for the current source 

resonant converter based on different modulation techniques. As mentioned in previous 

section, there are some modulation techniques to govern a current source parallel resonant 

converter. But majority of them are working in open loop.  Therefore, in this thesis what is 

more interesting and also critical for the system is to find a closed loop robust control 

approach to overcome all the constraints associated with the control objectives. For example, 

one of the purposes is a strategy to simultaneously fix the output voltage, while ensuring 

ZVS condition and with a fast transient response. 

1.7.2.1. Frequency-Modulation Control of a DC/DC Current-Source Parallel-Resonant 

Converter 

The first control scheme introduced in this thesis is based on the frequency modulation 

technique for the DC/DC Class-D CSPRC intended for switching power supplies. This 

control is responsible for both regulating the output voltage and providing zero voltage ZVS 

conditions as the main control objectives. On the other hand, once, the dynamic model for 

the closed-loop system is formulated, a systematic procedure to design the control gains is 

also necessary. 
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1.7.2.2. Robust and Fast Sliding-Mode Control for a DC-DC Current-Source Parallel-

Resonant Converter 

Sliding-mode control offers robust operation and fast transient response. The next aim of 

this thesis is to propose a robust sliding-mode control with a fast transient response for a 

DC-DC current-source parallel-resonant converter. This control scheme is based on an 

amplitude modulation technique. The idea is to fulfill all objectives mentioned in previous 

subsection. 

1.7.3. Control Scheme for a Multiple-Output DC/DC CSPRC 

The next purpose of this thesis is to present a proper control scheme for a multiple-output 

DC/DC class-D CSPRC. In order to charge electric devices such as laptop PC and smart 

phone or other electronic loads without using AC adapters, a simple and low cost DC/DC 

converter using a multi-output current source resonant converter is proposed.  

The idea is to extend all the theoretical parts of the single-output converter in previous 

subsection for a multiple-output converter. To do this, the theoretical analysis must include 

the derivation of the averaged large-signal model and the synthesis of the control scheme. 

The control scheme is responsible for both regulating the output voltage and providing ZVS 

condition in all different operation conditions including load step changes or resonant 

parameter variations.  

 
1.7.4. A Communication-less Control Scheme for a Variable Air-gap Wireless Energy 

Transfer System using Current Source Resonant Converter 

The last aim of this thesis is to propose a robust control method for a variable air-gap wireless 

energy transfer system using current source resonant converter 1) to provide a constant 

output voltage, 2) to track the resonant frequency, and 3) to ensure ZVS condition, regardless 

of any changes in system parameters or/and load variations. In this method, there is no need 

to use neither a wireless communication system nor mutual coupling estimation.  

 

1.8. STRUCTURE OF THE THESIS 

This thesis has been written as a compendium of publications, including 4 papers that present 

the most relevant works in the field of research. 

The structure of the thesis is divided into 3 major parts: 
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 Introduction (Chapter 1) 

 Publications (Chapter 2, 3, 4 and 5) 

 Analysis of the results (Chapter 6) and Conclusions (Chapter 7) 

The first part of the thesis is the introduction (Chapter 1). This part of the thesis has been 

introduced the fundamental aspects of the thesis, including different resonant converter 

topologies, their modes of operation, control strategies and related applications. 

The second part of the thesis is the central nucleus of this work, including chapters 2, 3, 4 

and 5. In these chapters, the papers published in different journals and conferences are 

presented. In chapter 2 and 3, two different control strategies are proposed for a DC-DC 

CSPRC. The control strategy presented in chapter 4 is then developed to be applied to a 

multiple load DC-DC CSRC. Chapter 5 presents a robust control method for wireless energy 

transfer systems using current source resonant converter without any communication 

network. 

Finally, the third part of the thesis is devoted to the analysis of the results obtained in the 

thesis (Chapter 6) and to the conclusions and future works derived from these works 

(Chapter 7). The chapter of analysis of the results tries to include the different strategies of 

control and to discuss critically the advantages, disadvantages and their fields of application. 
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1.10. CONCLUSIONS 

The state of the art related to resonant converters has been presented in this chapter including 

different resonant converter topologies, their modes of operation, control strategies and 

related applications. According to these studies, several unsolved problems have been 

mentioned. In fact, the main focus of this thesis is to find the best solutions for these 

problems. These solutions will be presented in detail in the next chapters. 
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This chapter analyzes the results obtained in the four publications in chapter 2 to 5. It 

presents the advantages and disadvantages of the proposed control schemes. New control 

solutions are also presented. These control solutions are the preliminary steps to reach the 

final solutions presented in publications 1 and 2. In addition, new relevant results that were 

already obtained but were not included in the publications due to space limitations, are 

included to complement this chapter. 
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6.1. INTRODUCTION 

In this chapter, some preliminary control solutions are presented for the publications I 

and II. It is worth mentioning that these solutions were the first control methods studied in 

this thesis. These solutions were necessary in order to reach the final control solutions 

presented in the publications I and II. For instance, a preliminary non-linear control solution 

is presented for frequency-modulation control scheme. Afterward, the non-linear control was 

replaced by the cascaded two-loop control system presented in Chapter 2.  

Furthermore, some other preliminary sliding surfaces are presented for sliding mode 

control presented in chapter 3. These surfaces are based on the second method of Lyapunov. 

In addition, the Class-D CSPRC is developed in this chapter by adding a new switch between 

diode bridge rectifier and the output load. Afterward different sliding mode control schemes 

with two configurations based on Lyapunov and linear sliding curves are presented for this 

topology. As stated, all these control methods were the initial attempts to achieve the control 

solution in publication II. So as will be explained in section 6.3, among all these control 

solutions, the final control solution presented in chapter 3 is selected for the publication. 

This chapter also conducts a comparison among the final proposed control methods for 

Class-D CSPRC presented in the publications I and II. This comparison will be performed 

in two cases of static and dynamic analysis. The other analysis will be performed on the 

impacts of the sliding mode control in other applications of current source resonant 

converter, i.e., multiple-output power switching supply (Chapter 4) and wireless power 

transfer system (Chapter 5).  

Finally, new relevant simulation results that were already obtained but were not included 

in the publications due to space limitations, are included to complement this chapter. 

 

6.2. FREQUENCY MODULATION CONTROL SYSTEMS (PUBLICATION I) 

In this section, different aspects of the publication presented in chapter 2 are developed. 

In addition, a non-linear control structure is presented for the Class-D CSPRC. Then a brief 

comparison is presented to highlight the benefits and drawbacks of the control solutions 

based on the frequency modulation control system. 
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6.2.1 EXTENSION OF THE SIMULATION RESULTS 

In this section, some results of the Chapter 2, which were not included in the paper due 

to the lack of space are included. For instance, to have a clear understanding about the 

robustness of the proposed control solution, this section is extended. In the publication I, the 

transient response against load step changes has been presented for different values of the 

input voltage. However, the robustness against variations in some variables such as resonant 

components, the output voltage reference and the input voltage were not presented. So, in 

this subsection, some new results are presented to cover this issue. Fig. 6.1 shows the 

transient response of the proposed control scheme against step variations in the resonant 

inductor. Although this type of changes is not usual in practice, the idea here is to evaluate 

this extreme disturbance. Even in this case, the output voltage is perfectly regulated and the 

 
(a) 

 
(b) 

Fig. 6.1. Transient response of the converter against resonant inductor step changes from 5.3µH to 10.6 

µH for: a) full-load condition, b) 10% of the full-load condition  
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swiching frequency is lower but close to the resonant freuqncy, as expected by the theoretical 

analysis in chapter 2.  

Fig. 6.2 shows the transient response against the changes in the output voltage reference. 

As can be seen, the output voltage reference is perfectly tracked by changing the switching 

frequency based on the curves plotted in Fig. 2 in Chapter 2. 

Finally, input voltage step changes are applied to the converter. As shown in Fig. 6.3, the 

robustness of the control solution in this case is also proved. 

6.2.2. PRELIMINARY CONTROL SOLUTION 

6.2.2.1.  Synthesis of the non-linear control system 

In this subsection, a non-linear frequency modulation control structure is proposed for the 

Class-D current source resonant converter. The proposed control scheme is shown in Fig. 

6.4. 

 
(a) 

 
(b) 

Fig. 6.2. Transient response of the converter against output voltage reference changes for: a) full-load 

condition, b) 10% of the full-load condition  
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The first step is to obtain the energy function. So, applying the method presented in [70] 

to the Class-D current source resonant converter, the measured and reference energy 

functions are obtained: 

𝐸𝑚 =
1

2
𝐶𝑒𝑞�̅�𝑐

2 +
1

2
𝐿𝑖i�̅�

2
 (6.1a) 

𝐸𝑟𝑒𝑓 =
1

2
𝐶𝑒𝑞𝑉𝑐𝑟𝑒𝑓

2 +
1

2
𝐿𝑖

𝑉𝑐𝑟𝑒𝑓
2

𝑅𝑉𝑖
 (6.1b) 

To eliminate the energy error, this signal is then passed through a PI controller. 

The next step is to find an adequate equation for signal m. Note that as stated in Chapter 

2, m is a variable that contains information about the system state in an averaged sense 

(through the �̅�𝑐 and ii̅) and the control action ωs. Taking into consideration an ideal switching 

converter, the following expression is obtained by assuming zero power losses: 

 
Fig. 6.3. Transient response of the converter against input voltage step changes in full load condition  

 

 

Fig. 6.4. Proposed non-linear control scheme 
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𝑉𝑖ii̅ =
𝑛𝑠

𝑛𝑝
𝑣�̅�i�̅� (6.2) 

Differentiating the above equation along the variables, we obtain: 

𝑉𝑖

𝑑ii̅
𝑑𝑡

=
𝑛𝑠

𝑛𝑝
(𝑣�̅�

𝑑io̅
𝑑𝑡

+ i�̅�
𝑑𝑣�̅�

𝑑𝑡
) (6.3) 

Applying the energy compensation into account, a new term is added to (6.3) as below: 

𝑉𝑖

𝑑ii̅
𝑑𝑡

− PI(𝐸𝑟𝑒𝑓 − 𝐸𝑚) =
𝑛𝑠

𝑛𝑝
(𝑣�̅�

𝑑io̅
𝑑𝑡

+ i�̅�
𝑑𝑣�̅�

𝑑𝑡
) (6.4) 

So, inserting the averaged model equations obtained in chapter 2 in (6.4), the variable m 

is achieved as below: 

𝑚 =

𝑉𝑖
2

𝐿𝑖
+ (

𝑛𝑠

𝑛𝑝
)

2
i�̅�

2

𝐶𝑒𝑞
−

𝑛𝑠

𝑛𝑝
(𝑣�̅�

𝑑io̅
𝑑𝑡

) − PI(𝐸𝑟𝑒𝑓 − 𝐸𝑚)

𝑛𝑠

𝑛𝑝
(

𝑣�̅�𝑉𝑖

𝐿𝑖
+

i�̅�ii̅
𝐶𝑒𝑞

)

 (6.5) 

The variable m is then used for obtaining the input signal of the modulator (𝛾) based on 

the equation (10) in chapter 2 : 

𝛾 =
𝜔𝑠

𝜔𝑟
=

𝐴 + √𝐴2 + 4

2
 (6.6) 

where A is defined as below: 

𝐴 =
𝜔𝑠

𝜔𝑟
−

𝜔𝑟

𝜔𝑠
=

−4𝑍0

𝜋2

ii̅

𝑣�̅�

√1 − 𝑚2 (6.7) 

 

6.2.2.2.  Simulation results 

The objective of this subsection is to verify, by simulation, the validity of the proposed 

non-linear controller with the system parameter values listed in Table 6.1.  

Fig. 6.5. shows the start-up results of the resonant voltage for different reference voltage 

values Vcref. As can be seen, there is a steady state error in the voltage. 
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6.2.2.3.  Comparison with the control solution in publication I 

To sum up, the practical use of this non-linear controller is limited due to some 

drawbacks: complexity of implementation of the control and appearance of an error in the 

output voltage in steady state. These problems are then solved in the control solution 

presented in publication I by proposing a cascaded two-loop control scheme. 

6.3. SLIDING MODE CONTROL SYSTEM (PUBLICATION II) 

In this section, various sliding surfaces are analyzed to be applied first to the Class-D 

CSPRC and then to an alternative developed topology. The alternative topology is composed 

of an additional switch between the diode rectifier and the load. In this case, an additional 

control input is required. This issue is discussed later in the next subsections. 

6.3.1 EXTENSION OF THE SIMULATION RESULTS 

In this section, some results of the Chapter 3, which were not included in the Publication 

II are presented. These results are presented to prove the robustness of the proposed control 

solution.  

TABLE 6.1. VALUES OF THE POWER COMPONENTS 

Symbol Quantity Value 

Vi Input voltage 12 V 

Li Input filter inductor 300 μH 

Cr Resonant capacitor 470 nF 
Lr Resonant inductor 5.3 μH 

np:ns Transformer turns ratio 1:1 

Lo Output filter inductor 100 μH 
Co Output filter capacitor 470 μF 

R Full-load resistor 20 Ω 

 

 

Fig. 6.5. Startup simulation of the resonant capacitor voltage 
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Fig. 6.6 shows the excellent transient response of the proposed control scheme against 

the variation in the resonant inductor. In this case, the output voltage is regulated fast and 

the resonant frequency is tracked by the switching frequency, as expected by the theoretical 

analysis in chapter 3.  

Fig. 6.7 shows the transient response against the changes in the output voltage reference. 

As can be seen, both the output voltage reference and resonant frequency are perfectly 

tracked.  

Finally, an input voltage step change is applied to the converter. As shown in Fig. 6.8, 

both the fast transient response and the robustness of the control solution in this case is also 

proved. 

 

 
(a) 

 
(b) 

Fig. 6.6. Transient response of the converter against resonant inductor step changes from 5.3µH to 10.6 

µH for: a) full-load condition, b) 10% of the full-load condition  
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(a) 

 
(b) 

Fig. 6.7. Transient response of the converter against output voltage reference changes for: a) full-load 

condition, b) 10% of the full-load condition  

 

 
Fig. 6.8. Transient response of the converter against input voltage step changes in full load condition  
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6.3.2. PRELIMINARY CONTROL SOLUTIONS  

 In this section, various preliminary sliding surfaces are presented for the sliding mode 

control scheme for the Class-D CSPRC in chapter 3. These surfaces are based on the second 

method of Lyapunov. In addition, another alternative is proposed in this section by 

developing the Class-D CSPRC shown in Fig. 6.9 by adding a new switch between the diode 

bridge rectifier and the output load. Afterward different sliding surfaces are tested for this 

topology including the Lyapunov and linear sliding curves. As mentioned, all these control 

solutions were the initial attempts to achieve the control solution in publication II. Hence, at 

the end of this section, a brief comparison with the control solution in publication II is 

presented to show the superiority of the control solution in chapter 3. 

6.3.2.1. Alternative Class-D CSPRC topology with two control actions 

The converter shown in chapter 3 has a unique control action, associated with the energy 

transfer between the input source and the resonant tank. Adding a new switch as shown in 

Fig. 6.9 provides greater flexibility to the converter, since it allows to separate the energy 

transfer between the tank and the load from the operating mode selected for the output 

converter switches. In particular, the resonant tank transfers energy to the load when the 

switch S3 is in conduction, otherwise, the power supply to the load is interrupted.  

However, this topology increases the complexity of the control and reduces the total 

efficiency of the system, as will be shown in the next subsections. 

6.3.2.2 Basic Lyapunov-based sliding mode control system 

The Lyapunov-based systematic approach presented in [70] is developed for the sliding 

mode control design of the Class-D CSPRC. 

 

Fig. 6.9. Class-D CSPRC with an additional switch  
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A. Class-D CSPRC with one control action 

By applying the method presented in [70], Lyapunov sliding surface for Class-D CSPRC 

with one control action and its associated control law result in: 

𝑆 =
V𝑜𝑟𝑒𝑓

𝑅V𝑖
�̅�𝑐 − ii̅ 

(6.8) 

𝑢 = {
1     𝑆 > 0
0     𝑆 < 0

 (6.9) 

Fig. 6.10 shows the Lapunov based sliding mode control scheme proposed for the Class-

D CSPRC with one control action. In general, the control system is composed of a sensing 

circuitry, a stage for generating the sliding surface, the control law, and a switching logic 

block. In this control scheme, the regulation is based on only two measurements of input 

current and resonant voltage. These measurements are used to obtain the sliding surface 

based on the second method of Lyapunov designed as (6. 8). Afterward, the control signal u 

is assigned based on the control law defined in (6.9). This control signal is then applied to 

the amplitude modulator to generate the switching gate signals for the Class-D resonant 

inverter. 

B. Class-D CSPRC with two control actions 

Using the same methodology, the sliding surfaces and the design conditions for the 

converter with two control actions are obtained as below: 

𝑆1 =
V𝑜𝑟𝑒𝑓

2

𝑅V𝑖V𝑐𝑟𝑒𝑓
�̅�𝑐 − ii̅              𝑆2 =

V𝑜𝑟𝑒𝑓

𝑅V𝑐𝑟𝑒𝑓
�̅�𝑐 − io̅       

(6.10) 

 

Fig. 6.10. Proposed Lyapunov based sliding mode control scheme with only one control action 
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𝑢1 = {
0     𝑆1 > 0
1     𝑆1 < 0

                 𝑢2 = {
1     𝑆2 > 0
0     𝑆2 < 0

 (6.11) 

        V𝑐𝑟𝑒𝑓 > V𝑖                      0 < V𝑜𝑟𝑒𝑓 < V𝑐𝑟𝑒𝑓 (6.12) 

Fig. 6.11 shows the complete control structure for this case. Note that the state change of 

the new switch S3 is only occurred at the zero crossings of the resonant voltage, which 

guarantees zero switching losses in this switch, as well.  

C. Simulation results 

Fig. 6.12 and Fig. 6.13 shows transient responses using the proposed Lyapunov’s sliding 

mode control scheme for the Class-D CSPRC with one and two control actions, respectively. 

Note that the output voltage presents a load-dependent steady-state error, thereby causing a 

poor regulation of the output voltage. 

6.3.2.3.  Lyapunov-based sliding mode control with integral terms 

The theoretical studies carried out in previous subsection have not foreseen the 

appearance of an error in the output voltage in steady state. The steady state error can be 

observed clearly in the simulations. The existence of the error is basically due to the 

imperfections and delays that take place in the control loops. 

 
 

 
Fig. 6.11. Proposed Lyapunov based sliding mode control scheme with two control actions 
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A possible solution to eliminate this error is to include an integral term in the sliding 

 
Fig. 6.11. Load step change transient response and steady-state result of the output voltage in a Class-D 

CSPRC with one control action based on the presented Lyapunov-based control scheme. 

 
(a) 

 
(b) 

Fig. 6.12. Input voltage step change transient response and steady-state results of a Class-D CSPRC with 

two control actions based on the presented Lyapunov-based control scheme: (a) resonant capacitor voltage 

(b) output voltage 
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surface. This term memorizes the error that is being committed, in order to counteract it until 

it is being canceled. Hence, in this subsection a new sliding surface is presented to ensure 

the correct operation of the regulators without the presence of these errors. 

A.  Class-D CSPRC with one control action 

One of the additional advantages of the use of integral terms in the sliding surfaces is 

their dynamic nature so that the principle of operation of the integrators makes them to be 

adapted to each new situation taking at all times the necessary value to compensate the error 

in the output voltage. 

The new sliding surface containing integral term can be written as below: 

             𝑆 =
V𝑜𝑟𝑒𝑓

𝑅V𝑖
�̅�𝑐 + 𝑘𝑖 ∫(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜)𝑑𝑡 − ii̅       

(6.13) 

𝑢 = {
1     𝑆2 > 0
0     𝑆2 < 0

 
(6.14) 

The first term 
V𝑜𝑟𝑒𝑓

𝑅V𝑖
�̅�𝑐 is a feed-forward term that accelerates the converter dynamics 

while the integral term is in charge of eliminating the caused error. 

B. Class-D CSPRC with two control actions 

For the converters governed by two control inputs, the integrator is only added to the 

switching surface that regulates the output voltage. So, the sliding surfaces are 

𝑆1 =
V𝑜𝑟𝑒𝑓

2

𝑅V𝑖V𝑐𝑟𝑒𝑓
�̅�𝑐 − ii̅              𝑆2 =

V𝑜𝑟𝑒𝑓

𝑅V𝑐𝑟𝑒𝑓
�̅�𝑐 + 𝑘𝑖 ∫(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜)𝑑𝑡 − io̅       

(6.15) 

𝑢1 = {
0     𝑆1 > 0
1     𝑆1 < 0

                 𝑢2 = {
1     𝑆2 > 0
0     𝑆2 < 0

 (6.16) 

However, the utilization of such surfaces is strongly limited by some practical drawbacks. 

The problem is the complexity of the hardware required to implement these nonlinear 

functions, which usually depend on the input voltage, the load, and a considerable number 

of state variables. This is a general limitation shared by other Lyapunov based control 

schemes (in fact, the problem is in the feed-forward terms, not in the integral terms). 

6.3.2.4. Equivalent control-based sliding mode control system 

 In this subsection, an alternative approach for the synthesis of sliding surfaces is 

proposed. The focus will be on the use of linear stabilizing terms as a way of generating 
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easy-to implement control circuits. First, the sliding surface for the single-input converter is 

presented and next the case of multi-input converter is introduced. Then a comparison is 

done by providing some simulation results. 

A. Class-D CSPRC with one control action 

This case was already developed in Chapter 3 by first introducing a theoretical analysis 

on dynamic modeling and then by proposing a sliding mode control scheme with following 

sliding surface: 

𝑆 = 𝑘𝑝(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜) + 𝑘𝑖 ∫(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜)𝑑𝑡 − ii̅       (6.17) 

𝑢 = {
1     𝑆2 > 0
0     𝑆2 < 0

 (6.18) 

In addition, a design procedure for determining the values of the control parameters was 

presented. The theoretical contributions were experimentally validated by selected tests on 

a laboratory prototype. 

B. Class-D CSPRC with two control actions 

This section is dedicated to the control system of a Class-D CSPRC with two control 

actions. The sliding surfaces are defined as below: 

𝑆1 = 𝑘𝑝1(𝑣𝑐𝑟𝑒𝑓 − �̅�𝑐) + 𝑘𝑖1 ∫(𝑣𝑐𝑟𝑒𝑓 − �̅�𝑐)𝑑𝑡 − ii̅              

 𝑆2 = 𝑘𝑝2(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜) + 𝑘𝑖2 ∫(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜)𝑑𝑡 + 𝑘𝑑2
𝑑

𝑑𝑡
(𝑣𝑜𝑟𝑒𝑓 − �̅�𝑜)       

(6.19) 

𝑢1 = {
0     𝑆1 > 0
1     𝑆1 < 0

                 𝑢2 = {
1     𝑆2 > 0
0     𝑆2 < 0

 (6.20) 

Fig. 6.13 shows the control scheme of the Class-D CSPRC with two control actions based 

on the linear sliding surfaces (6.19).  

C. Simulation results 

The simulation results of the Class-D CSPRC are shown in this subsection. The common 

power-circuit parameters used in all simulations are the values listed in Table 6.1. Fig. 6.14 

shows the effect of integral term on the steady-state error of the output voltage by 

considering a fixed proportional term. Note that in both cases, a similar dynamic is obtained, 

but the presence of the integrator eliminates the output voltage steady-state error. 
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Figs. 6.15 and 6.16 compare simulation results of the Class-D CSPRC with one and two 

control actions using the linear sliding curves. Excellent agreement is obtained for steady 

state and large-signal transient responses against load step changes from full-load to 10% of 

 
 

 
 

Fig. 6.13. Proposed control scheme for the Class-D CSPRC with two control actions based on the linear 

sliding surfaces 
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(a) 

 
(b) 

Fig. 6.14. Proposed control scheme for the Class-D CSPRC with two control actions based on the linear 

sliding surfaces: (a) without the integral term in S2 and (b) with the integral term in S2 
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the full-load condition and vice-versa. Moreover, good output performances (such as 

nonzero steady-state errors, stable operation, low steady-state ripple, fast transient responses, 

and high robustness) are obtained in relation to results obtained for Lyapunov-based control 

systems. 

6.3.2.5.  Comparison with the control solution in publication II 

To sum up, compared to the enhanced control scheme is Publication II, for the case with 

two control actions, the same transient response is obtained. However, in this case there are 

five control parameters, i.e., kp1, ki1, kp2, ki2 ,and  kd2 . Hence, a more complex control design 

is necessary. In addition, the efficiency is lower, because there are two elements more in 

power circuit (S3 and D7).  

 

 
Fig. 6.16. Transient response of the Class-D CSPRC with two control actions based on the linear sliding 

surfaces 

 
Fig. 6.15 Transient response of the Class-D CSPRC with one control action based on the linear sliding 

surfaces 



Overview of the thesis and analysis of the results 

 

85 

 

6.4. COMPARISON AND ANALYSIS OF THE RESULTS IN PUBLICATIONS I AND 

II 

In this section, at first, a comprehensive comparison between the state-of-the-art and the 

proposals is presented in table 6.2. As shown in the table, the presented control schemes 

combine some interesting objectives: output voltage regulation, ZVS and the resonant 

frequency tracking. Furthermore, the proposals are robust against the variation in system 

parameters. In contrast, some of state-of-the-art schemes reach similar objectives but 

independently, without combining them in a single scheme. 

Then, a general comparison is performed between the proposed control schemes in 

Publications I and II as stated in Table 6.3.  

The modulation technique used in the first publication is a frequency modulation 

technique. Hence, the control signal is the switching frequency of the resonant inverter (fs). 

The idea is to change the switching frequency, but just below resonant, so close to resonant 

frequency to achieve the control objectives defined in previous sections. Furthermore, to 

model the system, harmonic linearization and harmonic balance method is used. For control 

design, the closed-loop transfer functions of the system are first obtained by using the 

Table. 6.2. General comparison with the state of the art 

Ref. 

objectives 
robustness 

against parameter 

variation 
ZVS 

resonant 

frequency 

tracking 

output voltage 

regulation 

[33], 2006 ✓ ✓ × × 

[71], 2010 ✓ ✓ × × 

[36], 2014 ✓ ✓ × × 

[34], 2012 ✓ ✓ × × 

[35], 2012 ✓ ✓ × × 

[72], 1997 ✓ ✓ ✓ × 

[37], 2010 ✓ ✓ ✓ × 

[73], 2014 ✓ ✓ × ✓ 

Proposal 
Pub. I ✓ × ✓ ✓ 

Pub. II ✓ ✓ ✓ ✓ 
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derived small-signal model. Afterward, the frequency-domain specifications of the closed-

loop system are fixed in terms of desired control bandwidth and phase margin. Finally, bode 

diagrams of different set of gain values are examined until the specifications are met. The 

gain values of the PI controllers satisfying the specifications are selected. 

In the second publication, i.e., the sliding mode control scheme, the control signal is the 

discrete parameter u. Actually this control scheme is based on amplitude modulation 

technique. So, signal u determines the operation mode of the converter, i.e., energizing or 

de-energizing modes to change the amplitude of the resonant voltage. The idea is to switch 

between these two modes, to satisfy the defined control objectives. In this publication, as in 

previous case, harmonic linearization and harmonic balance methods are applied to obtain 

the large signal average model of the system. In addition, to design the proposed robust 

control, closed-loop dynamics of the system is first obtained based on the equivalent control 

theory. This model is then linearized around its equilibrium point to be used in the stability 

analysis. 

Note that, in both proposed control schemes, three variables of input current, resonant 

capacitor voltage and output voltage are measured and send to the control platform. 

Moreover, for the enhanced control schemes, to have a fast transient response, an additional 

measurement, i.e., output current is also necessary.  

The next comparison is done in terms of static and dynamic analysis. The static term 

includes the analysis about steady state output voltage tolerance, range of switching 

frequency, variation of resonant voltage, and efficiency. The dynamic properties that are 

included in the analysis are transient response time, voltage deviation and robustness against 

some external disturbances. It is worth mentioning that the values of the input and output 

Table. 6.3. General comparison between proposed control methods 

 Modulation 
Control 

signal 
Modeling method Control design N of measurements 

Publication 

I 
Frequency fs 

Harmonic linearization 

& Harmonic balance 

Frequency-

domain method 

Basic Scheme: 3 

Enhanced Scheme:4 

Publication 

II 
Amplitude u 

Harmonic linearization 

& Harmonic balance 

Time-domain 

method 

Basic Scheme: 3 

Enhanced Scheme:4 
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voltages and the components of the CSPRC are maintained fixed during the comparison. 

These values are listed in table 6.1. 

6.4.1.  Static analysis 

Table 6.4 lists the static results obtained by the proposed control schemes. As can be seen, 

both control schemes provide a perfect output voltage regulation, so that there is no error in 

the output voltage in steady-state condition (Δvo= vo - voref =0). Furthermore, ZVS condition 

is guaranteed in both presented control schemes.  

The control scheme presented in publication I is based on the frequency modulation 

technique so the control signal is the switching frequency of the resonant inverter. So, by 

applying a load variation, the switching frequency fs changes in order to regulate the output 

voltage. The switching frequency varies between 94 to 100 kHz for full-load and 10% of 

full-load condition, respectively. Although the switching frequency is below resonance, it is 

so close to the resonant frequency, ensuring a good regulation without reducing the 

efficiency. 

Publication II uses an amplitude modulation technique. So the influenced parameter is 

the amplitude of the resonant capacitor voltage. As can be seen, the amplitude of the resonant 

voltage in publication I is somehow constant. While, in publication II, the resonant capacitor 

voltage is varying depending on the value of the control signal u. In this case the variation 

range of vc is approximately 25 V.  

Finally, taking efficiency into account, SMC has better response. For example, in full-

load condition, SMC gives an efficiency of about 4% more than frequency modulation 

control. In fact, the conduction losses are nearly the same for both control schemes. 

Table. 6.4. Static result comparison between proposed control methods 

Publication 
Δvo 

(V) 

fsmin 

(kHz) 

fsmax 

(kHz) 

vc (V) 

η (%) ZVS up down 

max min max min 

Pub. I 0 94 100 60 60 -60 -60 94 √ 

Pub. II 0 100.8 100.8 75 50 -50 -75 98 √ 
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However, the switching losses are lower with amplitude modulation than with frequency 

modulation. The reason is that the converter operates exactly at resonant frequency for all 

the load range with amplitude modulation while the switching frequency is slightly lower 

than the resonant frequency with frequency modulation. This issue is clearly shown in Table 

6.5 which is the summary of the Fig. 6.6 and Fig. 6.7. 

6.4.2. Dynamic analysis 

Table 6.6 presents the obtained results of some dynamic properties of the proposed 

control schemes such as transient response time Tr, voltage deviation VDF, and some 

robustness factors. 

The results show that SMC control provides slightly better transient response and voltage 

deviation. However, both control methods are robust against parameter variations. Actually 

both controls show a robust behavior against any parameter variations such as step changes 

in input voltage, output reference voltage and even in resonant circuit parameters. 

So, it can be concluded that, in majority of the cases, both control schemes ensure all the 

control objectives. So it is not easy to state which one is the best. 

Actually, both have some benefits and drawbacks. For example, in SMC control scheme, 

the resonant voltage is suffering from a variation in amplitude in steady-state which may 

limit its practical use in some applications.  

In contrary, in frequency modulation control, although the resonant capacitor voltage 

amplitude is constant in steady-state, the transient response is not much good as the SMC 

control. 

Therefore, depending on the application, one of these two control scheme can be used.  

Table. 6.5. Static result comparison between converter switching frequency 

Variable Value fr (kHz) 

Pub. I Pub. II 

fs (kHz) fs (kHz) 

FL 10% FL FL 10% FL 

Lr (µH) 
5.3 100.8 94 100 100.8 100.8 

10.6 71 67 70 71 71 

Vref (V) 

30 100.8 96 100 100.8 100.8 

35 100.8 94 100 100.8 100.8 

40 100.8 92 100 100.8 100.8 
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6.5. OVERVIEW OF PUBLICATION III 

In this section, different issues of the publication presented in chapter 4 are presented 

including a discussion on the objectives, proposed solution, most significant contributions 

and main results. 

6.5.1 OBJECTIVES 

The purpose of this publication is to present a proper control scheme for a multiple-output 

DC/DC class-D CSPRC. As in previous cases, the control objectives are regulating output 

voltages and ensuring ZVS condition. 

6.5.2 PROPOSED SOLUTION 

A cascaded control configuration is proposed to this end, including an outer voltage loop 

and an inner current loop. ZVS conditions are guaranteed by driving the switches with a 

robust amplitude modulation technique. The control scheme is responsible for both 

Table. 6.6. Dynamic result comparison between proposed control methods 

 Publication Pub. I Pub. II 

Step change  

Ro 

Tr  (ms) 

Basic control Ko = 0 1.8 1.6 

Enhanced control Ko = 2.9 0.4 0.3 

VDF (%) 
Basic control Ko = 0 2 1.7 

Enhanced control Ko = 2.9 0.7 0.5 

Step change 

 Lr 

Tr  (ms) 

FL 2 0.5 

10% of FL 2.1 0.7 

VDF (%) 
FL 4 2 

10% of FL 5 4 

Step change  

Vref 

Tr  (ms) 

FL 1.5 0.7 

10% of FL 1.7 0.9 

VDF (%) 
FL 0 0 

10% of FL 3 2.5 

Step change  

Vi 

Tr  (ms) FL 2.5 1.1 

VDF (%) FL 7.7 6 

Robustness against step change in Ro Yes Yes 

Robustness against step change in Lr Yes Yes 

Robustness against step change in Vref Yes Yes 

Robustness against step change in Vi Yes Yes 
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regulating the output voltage and providing zero voltage switching (ZVS) conditions in all 

different operating conditions including load step changes or resonant parameter variations.  

6.5.3. CONTRIBUTIONS 

In order to charge electric devices such as laptop PC and smart phone or other electronic 

loads without using AC adapters, a simple and low cost DC/DC converter using a multi-

output current source resonant converter is proposed. As an example, a three output regulator 

is considered in this study in which three level voltages of 5V, 9V and 12V are 

simultaneously provided. Theoretical analysis includes the derivation of the averaged large-

signal model and the synthesis of the control scheme. 

6.5.4. ANALYSIS OF THE RESULTS 

In chapter 4, the SMC control scheme presented in publication II is extended to be used 

in an application of multiple-output CSPRC. So this section covers the analysis of the 

benefits of SMC control in this new developed control scheme. 

To verify the effectiveness of the developed control schemes, their static and dynamic 

properties are analyzed. Table 6.7 shows the analysis results of some static parameters such 

as voltage regulation, range of switching frequency, amplitude of the resonant voltage and 

ZVS condition.  

As can be seen, the resonant inverter is always tracking the resonant frequency fr and ZVS 

condition is always guaranteed for different resonant inductor parameters proving the 

Table. 6.7. Static result of the proposed control method in Publication III 

Lm(µH) 
Δvo 

(V) 

fmin 

(kHz) 

fmax 

(kHz) 

vc (V) 

ZVS up down 

max min max min 

5.3 0 fr fr 22 18 -18 -22 √ 

20 0 fr fr 23 13 -13 -23 √ 
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robustness of the proposed control scheme. However, there is a variation of about 6 V in the 

amplitude of the resonant capacitor voltage in steady-state. 

Table 6.8 summarizes some detail data about transient time Tr and voltage deviation in 

load side for different load conditions. Note that the most significant voltage deviation and 

settling time (3.5% and 11ms, respectively) is obtained when R3 is changed from FL to its 

10% of FL or vice versa due to its higher voltage value. 

 

6.6. OVERVIEW OF PUBLICATION IV 

Control objectives, proposed solution, most significant contributions and analysis of the 

obtained results of the last publication is presented in this section. 

6.6.1 OBJECTIVES 

In this publication, a robust control method for a CSRC is proposed 1) to provide a 

constant output voltage, 2) to track the resonant frequency, and 3) to ensure ZVS condition, 

regardless of any changes in system parameters or/and load variations.  

6.6.2 PROPOSED SOLUTION 

The proposed method is based on a simple primary-side controller for governing the input 

power and a secondary-side sliding mode controller based on amplitude modulation 

technique to regulate the output voltage. Note that ZVS operation is guaranteed in voltages 

of both sides of the transformer. 

Table. 6.8. Dynamic result of the proposed control method in Publication III 

R1 R2 R3 

Tr (ms) VDF (%) 

Vo1 Vo2 Vo3 Vo1 Vo2 Vo3 

FL --> 10%FL FL FL  7 7 7 1 1.5 2 

10%FL FL --> 10%FL FL  9 9 9 1.25 1.75 2.5 

10%FL  10%FL  FL --> 10%FL 11 11 11 2 2.5 3.5 

10%FL --> FL 10%FL  10%FL  7 7 7 1 1.5 2 

FL  10%FL --> FL 10%FL  9 9 9 1.25 1.75 2.5 

FL  FL  10%FL --> FL 11 11 11 2 2.5 3.5 
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6.6.3. CONTRIBUTIONS 

In this method, unlike the conventional wireless energy transfer systems, there is no need 

to use neither a wireless communication system nor mutual coupling estimation. The reason 

is that the control system of each converter in both sides of transformer only uses data 

measured from their own sides. 

6.6.4. ANALYSIS OF THE RESULTS  

In Section 5, the control method proposed in the publication II is used. In this case, the 

original control scheme has been modified and adapted to be used in an application of 

wireless energy transfer system with variable air gap. So this section covers the analysis of 

the benefits of SMC control in this application. 

The effectiveness of the proposed control scheme in the last publication is validated 

through analyzing its static and dynamic properties. Table 6.9 contains the static results 

obtained from different operation conditions, i.e., different combination of the load value 

and air-gap length. Same as previous SMC control schemes in this thesis, the control 

provides a good output voltage regulation and ensures ZVS condition in all combinations. 

Furthermore, the converter is working in resonant frequency. However, there is an amplitude 

variation in secondary side resonant voltage vs. Note that, by changing the load from FL to 

Table. 6.9. Static result of the proposed control method in Publication IV 

Ro(Ω) Lg (mm) 
Δvo 

(V) 

fmin 

(kHz) 

fmax 

(kHz) 

Vs (V) 

ZVS up down 

max min max min 

20 5 0 fr fr 320 300 -300 -320 √ 

200 5 0 fr fr 330 270 -270 -330 √ 

20 50 0 fr fr 215 210 -210 -215 √ 

200 50 0 fr fr 200 260 -180 -280 √ 
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10% of FL, this amplitude variation increases. In addition, as air gap length is lower, the 

amplitude variation is higher.   

Table 6.10 shows dynamic results shown in the last publication. This results proves the 

effectiveness of the proposed SMC control scheme presented for this particular application. 

 

6.6. CONCLUSION 

To sum up, it can be concluded that: 

 Compared to frequency modulation control, the SMC control provides slightly 

better transient response and voltage deviation. However, both control methods 

are robust against the parameter variations including changes in the input voltage, 

output reference voltage and even in resonant circuit parameters. 

 The best and fast transient response can be achieved by the Class-D CSPRC with 

two control actions or the advanced control scheme proposed in Publication II. 

However, adding a new switch reduces the efficiency of the system. 

 In the SMC control scheme, the resonant voltage is suffering from a variation in 

amplitude in steady-state which may limit its practical use in some applications.  

 In frequency modulation control, the transient response of the control is not much 

fast as in SMC control, but the resonant capacitor voltage amplitude is constant in 

steady-state. 

 The control schemes developed for two applications of multiple-output CSPRC 

and WPT, provide all the benefits mentioned for the SMC. 

 

 

 

 

Table. 6.10. Dynamic result of the proposed control method in Publication IV 

Ro Tr (ms) VDF (%) 

FL --> 10%FL 10 7.3 

10%FL --> FL 12 5 
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7.1  CONCLUSION .................................................................................................................. 97 

     7.2 FUTURE WORKS .............................................................................................................97 

 

This chapter presents the most relevant conclusions obtained in the development of the 

thesis, and presents the future works that can be investigated to continue the outline initiated 

in this work. 
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7.1. CONCLUSION 

This thesis addresses the control methods applied to current source resonant converters, 

especially in two different applications of DC-DC and wireless power transfer system.  

In the introduction of this thesis, the state-of-the-art and current researches dealing with 

resonant converters have been presented. Also, a classification for the resonant converter 

applications are introduced according to the different types of input source, resonant tank 

and voltage sink. In fact, the existing applications are mostly working with voltage source. 

As mentioned, for voltage-source resonant converters, many control strategies have been 

analyzed and investigated, turning this into a mature technology nowadays. Hence, there is 

an obvious lack of control methods applicable to current source resonant converters. The 

objectives of this thesis are used to fill this gap. To achieve this goal, this thesis proposes 

two control methods, i.e., the frequency modulation control scheme presented in publication 

I and the sliding mode control scheme presented in Publication II. 

The results show that sliding mode control provides slightly better transient response and 

voltage deviation. However, in majority of the cases, both control methods are robust against 

any disturbance including step changes in input voltage, output reference voltage and even 

in resonant circuit parameters. So, it can be concluded that both control schemes ensure all 

the control objectives. So it is not easy to state which one is the best. Actually, both have 

some benefits and drawbacks. For example, in SMC control scheme, the resonant voltage is 

suffering from a variation in amplitude in steady-state which may limit its practical use in 

some applications. In contrary, in frequency modulation control, the transient response of 

the control is not much fast as in SMC control, but the resonant capacitor voltage amplitude 

is constant. So, depending on the application, one of these two control schemes can be used.  

The benefits of the proposed sliding mode control have been analyzed for two different 

applications of multiple-output power switching supply (Publication III) and wireless power 

transfer system (Publication IV). Both static and dynamic results prove the effectiveness of 

the proposed sliding mode controls in these applications by satisfying all the aforementioned 

control objectives. 

7.2. FUTURE WORKS 

Some possible future works related to this thesis are summarized in the following points: 
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 Analysis the effect of different resonant tank configurations: This thesis addressed 

the current source resonant converter with a LC parallel resonant circuit topology 

in Publications I, II, and III and a complex five-order resonant tank in Publication 

IV.  As we know, other configurations such as three or four elements resonant 

topologies could be implemented in resonant tank especially for the first three 

publications. The analysis of these configurations on converters with multiple 

output could be considered for future works. 

 

 Analysis of a wireless power transfer system with multiple-output: In this thesis, 

only a single output wireless power transfer system was studied. But there are 

many challengeable problems to solve in WPT systems with multiple outputs. So 

one of the open topics of this thesis is working in these applications with multiple-

output.  

 

 Prototype: Only a low power prototype has been implemented to validate the 

theoretical predictions of a class-D current source parallel resonant converter. It 

could be interesting to realize a medium or high power current source resonant 

converter. 

 

 Analyzing the usage of current source resonant converters in other applications: 

In this thesis, two applications of power supply and WPT system were 

considered. It could be interesting to analyze the effect of these converters in 

other applications. For instance, recently, inductive contactless energy transfer 

system in residential area has been gaining more and more success and reputation 

in industry and academic area. So, this application is strongly recommended due 

to its future widespread use. 
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