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Abstract—Elliptic Curve Cryptography (ECC) is a technol-
ogy for public-key cryptography that is becoming increasingly
popular because it provides greater speed and implementation
compactness than other public-key technologies. Calculations,
however, may not be executed by software, since it would be so
time consuming, thus an ECC co-processor is commonly included
to accelerate the speed.

Test infrastructure in crypto co-processors is often avoided
because it poses serious security holes against adversaries. How-
ever, ECC co-processors include complex modules for which
only functional test methodologies are unsuitable, because they
would take an unacceptably long time during the production test.
Therefore, some internal test infrastructure is always included to
permit the application of structural test techniques.

Designing a secure test infrastructure is quite a complex task
that relies on the designer’s experience and on trial & error
iterations over a series of different types of attacks. Most of the
severe attacks cannot be simulated because of the demanding
computational effort and the lack of proper attack models.
Therefore, prototypes are prepared using FPGAs. In this paper, a
Crypto-Test-Lab is presented that includes an ECC co-processor
with flexible test infrastructure. Its purpose is to facilitate the
design and validation of secure strategies for testing in this type
of co-processor.

I. INTRODUCTION

Since the publication of the public-key cryptography based
on ECC in 1985 independently by V. S. Miller and N. Koblitz
[1], its adoption has gradually grown. It presents advantages
with respect to other technologies like RSA [2], requiring
shorter key lengths for the same degree of security. For
example, to achieve the same degree of security as a symmetric
encryption such as AES (128 bits) [3], the key length for RSA
is 3072 bits and for ECC is just 256-283 bits [4].

One of the most extended infrastructures for production
testing are scan-paths, which have been the most extended
standardized technology for many years now [5]. Nevertheless,
from the point of view of security, scan-paths are a nightmare
[6]. It has been recognized that test infrastructures like
scan-paths [5] can be exploited by adversaries to retrieve
sensitive information of security chips [7]. In [5] an attack was
conceived to break the Data Encryption Standard (DES) [8]
implementation. The attack first identified the positions of the
intermediate registers in the scan-paths and then retrieved the
DES first round key by applying only three chosen plain-texts.
In [9] an attack on ECC cryptosystem was presented that first
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identified the position of the internal registers affected by the
elliptic scalar multiplication, working in test mode, and later
formed the attack by shifting-out the content of these registers
through scan-paths.

To avoid these problems, accesses are usually destroyed
physically or logically by some means after production testing,
so that they cannot be used anymore [10]. However, scan-paths
are not only an efficient technology for production testing,
but also for diagnosis in after-market maintenance and, as a
consequence, locks are not considered an interesting solution
to this problem.

In the last decade several strategies have been proposed
to improve the security of scan-paths. The motivation is
essentially to extend its operation in the field for diagnosis and
maintenance without seriously compromising the security [11].
Amongst many of the ideas that are applied, most of them are
not really secure but obscure, which means that once the trick
is discovered, it can be bypassed .

How to find the degree of security achieved by a new
trick is a very difficult question. Adversaries are continuously
improving their techniques to attack security chips and, what is
worse, is that they combine different techniques to improve the
penetration efficiency. Side-channel techniques are commonly
used whereby parameters such as the power consumption or
electromagnetic radiation are monitored to trace the point of
computation where the system is. Furthermore, once a point
of interest is detected, failures can be induced and/or data can
be extracted, e.g. using the scan-path.

One of the most dangerous points is time. Adversaries have
plenty of time, in particular when the trade-off time/revenue is
cost-effective. Over time, millions of attack iterations can be
executed.

At the design phase, a particular technique is selected.
The assessment of the degree of security, e.g. in scan-paths,
cannot be supported by simulation because of the low speed,
and the lack of adequate physical modeling of power or
electromagnetic emissions. Consequently, the only way to
conduct a comprehensive security analysis is to develop
prototypes, usually on FPGAs, which provide enough speed
and a close emulation of the electrical/electromagnetic behavior
of a real device [12].

In this paper, a platform Crypto-Test-Lab (CTL) is presented
whose purpose is to offer flexibility for the prototyping and
evaluation of security strategies applied in test infrastructures



oriented to ECC co-processors. CTL includes a fully functional
ECC co-processor with scan-paths. An attack manager commu-
nicates with a PC that allows it to control and emulate attacks
on the platform. The speed is significantly high, so millions of
iterations can be carried out in a reasonable amount of time.

The rest of the paper is structured as follows. In section (I),
a short description of the ECC cryptography is presented. In
section (III), the functional description and the implementation
of the ECC-core including an ECC co-processor is explained.
In section (IV), the implementation and the Crypto-Test-Lab
infrastructure is detailed. In section (V), the results of synthesis
and performance of the FPGA platform are summarized. Finally,
conclusions are discussed in section (VI).

II. ELLIPTIC CURVE CRYPTOGRAPHY

As described in [4], an elliptic curve over a field F is a
non-singular, plane curve of two variables x and y, with values
belonging to field F that satisfies a cubic equation f(z,y) = 0.
Non-singular means that the curve has neither double or triple
roots for y = 0. The field 7 may be any field, as the real
number field R, any finite field Z, or extended finite field
GF(p™), where p > 2 is a prime number and m > 2.

The set composed by all points P = (z,y) of an elliptic
curve over a field plus a point 0 in the infinity, together with
an appropriate addition operation between points in the set,
constitute an Abelian cyclic group C,, with order n (the order is
the number of points in the group). Each point P in the group
generates, by iterative addition, a cyclic subgroup Hp C C,.
P is named the generator of subgroup Hp.

In ECC, elliptic curves over finite fields delivering
finite Abelian cyclic groups C, are selected. According
to the recommendations of the National Institute of
Standards and Technology [13], there are several finite
fields, elliptic curves and generators of subgroups available
for ECC cryptography. In CTL, the Klobitz elliptic curve
y?+ay = x®+2+1 over GF(2'%3) with primitive polynomial
pla) = al% + a” + ab + a? + 1 is selected; any operation
o inside GF uses the regular modulus (¢ mod p(«)). Also,
the cyclic subgroup Hp generated by point P = (z,y) with
x = 2 fel3c053 7bbcllac aa07d793 dede6dde Hc94deee8
and y = 2 89070fb0 5d38{f58 321f2e80 0536d538 ccdaa3d9
in hexadecimal notation is selected. Point P = (0,1) does not
belong to this subgroup, and its order is a prime number a bit
higher than 2162 ~ 0.5846 10%.

The most crucial operation for the encryption is the addition
between points P in the cyclic group C,, which is defined as
follows and identified with the symbol 4 (dot over plus sign)
henceforth:

1) The point 0 in the infinity acts as the neutral or identity

element. Therefore, it is the inverse of itself.

2) The inverse of any other point P is the alternative point
having the same x. If there is no other point then, P is
the inverse of itself.

3) The addition of three aligned points is the point 0 at
the infinity. Therefore, the addition of two non-inverse
points is the inverse of the third point aligned with them.

In CTL in particular, the point 0 in the infinity is not used
in additions, since two inverse points will never be added. This
simplifies calculations. The inverse of a point P = (z,y) is
calculated as —P = (x,2+y), and the addition Py = P, + Py
is a complex operation that needs to follow the steps described
in the following paragraphs.

If x1 # x2, we have pure addition, while if ©1 = x5
(necessarily y; = y2 and P, = Pj), we will speak of doubling.

Step 1 The slope A of the line passing through P; and P is
calculated. If points are different, A\ = (y1 + y2)/(z1 + z2)
with &1 + 2o # 0. If points are the same, A = x1 +y1 /z1 with
x1 # 0. Notice that, here and in the next steps, the addition
and division are the regular operations in the finite field GF.

Step 2 The square \? is calculated.

Step 3 The x-coordinate of P; is calculated: z53 = A2 + \ +
x1 + 29 + 1. For doubling 3 = X\ + A+ 1.

Step 4 The y-coordinate of P is calculated: y3 = x3+ A(z5+
561) +y1.

A. Public and private keys

The central operation for the public key cryptography is the
scalar product (x, dot over times sign) that is defined as,

Q:kXP:[P+P++P]kt1mes (1)

where the subgroup Hp is of very high order. Operation (1)
is still quite easy to be computed, while the reverse operation
becomes extremely difficult. P is the generator point of the
subgroup and is obtained from a table of precomputed numbers
specified in the standard, k is the private key that is usually
generated at random, and () is the public key.

B. Public key cryptography

Consider two people, A and B, passing encrypted information
using a common secret key S 45 but without transmitting it.
Through an insecure channel, they agree on using a subgroup
Hp and a generator point P. A selects a private key k4
and generates the public key Q4 = k4 x P. A sends Q4 to
B through the same channel. B does the same with kp and
Qp = kp x P. Finally, A calculates the common secret key
from his private key and the public key of B, Sap = kaxQp =
(ka x k) x P, and similarly does B, producing the same
common secret key Sap = kg X Q4 = (kg x k) x P. Then,
using symmetric encryption, they can transmit information
through a secure channel. The crucial point is that knowing
P, Q4 and Qg is extremely difficult to discover the private
keys k4 and kp and, therefore, to discover S4p.

III. ECC CORE

The ECC core is a module based on an ECC co-processor
whose purpose is to perform all the actions related with ECC
data encryption and decryption. The full diagram of the ECC
core module is presented in Fig. 1. It includes the following
blocks:



Figure 1: Block diagram of the ECC core hardware.
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A random value generator. It is based on an array of 8
independent self-clock LFSRs of 22 bits each producing a
161 bit word.

An ECC co-processor. It performs the scalar product of a
private key k4 by a point P or by a public key Q)p; after
input start becomes active. It produces a public key Q4 or a
common secret key S4p;, respectively.

Mode selector DEMUX. Under the control of signal mode,
it returns the output of the ECC co-processor (when the public
key is generated) or keeps the common secret key internally
for the encrypting/decrypting module.

To begin a new scalar product, the ECC co-processor has two
control inputs, mode (registered) and start. For mode = 0, a
new random value is loaded in k-register = k4 when start is
asserted and a scalar product is executed taking input point P
(shared with the communicator counterpart) and the public key
Q@ 4 is returned. After receiving the public key of communicator
B (@B:), the common private key is generated by selecting
mode = 1. In this mode, the same private k4 stored in the
k-register is used. When start is asserted, the scalar product
is executed and the common secret key Sap; is obtained.
Now, the product is not output, but sent internally to the
encrypting/decrypting module running a symmetric encryption
algorithm. In this second mode, the common secret key is
hidden.

A. ECC co-processor

The ECC co-processor performs two sets of operations.
On the one side, the regular arithmetic addition, product,
squaring and division in the finite field GF(2'%3) with primitive
polynomial p(«) and, on the other side, the elliptic curve
arithmetic addition (+) and scalar multiplication (x) in the
cyclic subgroup #Hp over the points of the Koblitz elliptic
curve.

B. Regular arithmetic

Regular arithmetic is done in the finite field GF(2163).

Addition and squaring (A\?) are performed just using XOR
gates.

Figure 2: Euclidean division algorithm.

1: function DIVISION(a(«), b(a))

2 Rj «+ a(a)

3 Rp « b(Oé)

4: My <0

5: Mg + p(«)

6 while Rz > 1 do

7 if Isb(Rp) = 0 then

8 R4+ RA/a

9: Rp + RB/a

10: else

11: Ry« (Ra+My)/a
12: RB<—(RB+MB)/CV
13: end if

14: if (Isb(Rp) = 1)&&(deg(Rp) < deg(Mp)) then
15: My +— Ra

16: Mp <+ Rp

17: end if

18: end while

19: return R4

20: end function

The product A(z3+x1) is implemented using a shift-and-add
algorithm proceeding from the msb to the Isb. After the left
shifting of the accumulated value, the primitive polynomial
p(«) is used for the modulus operation to obtain the new partial
product. The operation can be completed in 164 clock cycles.

The division (y; + y2)/(x1 + x2) or y1 /a1 is implemented
using the Euclidean division algorithm , which considers that
the quotient of a polynomial d(«) by « is a right-shift of d(«)
if the 1sb is O or a right-shift of d(a) + p(«) if the Isb is 1.

In the Euclidean division algorithm, the quotient ¢(«) of
a(a)/b(«) is carried out using four registers that are cyclically
updated. These, namely R4, Rp, M4 and Mp, are initialized
with a(a), b(a), 0 and p(«) respectively. After each cycle in
the algorithm, the two following conditions are satisfied: 1)
the Isb of Mg is 1 and 2)
sy o _Ma_ Rat M

Rp Mp Rp+ Mp

The pseudo-code of the algorithm is shown in Fig. 2 and it
needs a maximum of 327 clock cycles to complete. After this,
Rp =1 and, therefore, g(a) = Ra.

C. Elliptic curve arithmetic

Addition (+) is implemented following the steps described in
Section II and the scalar product (x) is explained henceforth.

In security applications, the Montgomery ladder algorithm
[14] is usually used because of the low amount of information
leaked due to power consumption or electromagnetic radiation.
Despite the ones or zeros processed in the private key, in each
cycle it performs the same operations and, therefore, a power



Figure 3: The parallel Montgomery ladder algorithm for the
scalar product. (*) Q1 + Qg is always calculated, but @ is
not updated for ¢ = 161.

1: function SCALARPRODUCT(k, P)

2 Qo+ P; Q1+ P

3 for ¢ = 161 downto O do

4 if k; = 1 then

5: Qo < Q1+ Qo; Q1+ Q1+ Q1 (%)
6 else

7 Q1 Q1+ Qo; Qo « Qo+ Qo

8 end if

9 end for

10: return ()

11: end function

Figure 4: simplified scheme of the implementation of the scalar
product algorithm (Montgomery ladder).
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monitoring will not reveal the state of the private key internal
bits. The algorithm is based on the following decomposition,

Q=kxP=[([(ko-1Xx2+ky2)x2+...]
X2+ k1) x 2+ ko] x P =

([(Thw—1 X P] X 2+ Ky x P) x 2+ ...]
X2+ k) x P)x2+4ko x P

2

for a k of w bits and in which (x2) is a doubling operation.

In CTL, a simplification is used by restricting the scalar k to
the range [2161,2162 — 1]. This keeps the msb of the 162 bits
of k to 1 and avoids adding two inverse points. The parallel

pseudo-code of the implemented algorithm is presented in Fig.

3.

D. Hardware implementation

Point adding and doubling modules are the basis of the
hardware implementation running the Montgomery ladder
algorithm described in Fig. 3. Since the point doubling can
be easily generated with slight modifications of the adding
hardware, a versatile point adding/doubling module has been
conceived, both operations requiring exactly the same amount

Figure 5: Schematic of the crypto-attack analysis bank.
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of clock cycles to complete. The operation is selected on
the fly after point analysis. As illustrated in Fig. 4, a full
parallelized implementation has been selected for the synthesis
in the FPGA. While a module performs an addition, the other
performs a doubling. Multiplexers are controlled by the bits of
k. The controller of this processing unit is not shown. With this
implementation, the scalar product requires 492 clock cycles
per bit of k plus an initialization clock cycle that gives a total
of 79,705 clock cycles. Running at 100 MHz, this gives a time
lower than 800 pus.

E. ECC core test infrastructure

The production test is made easier by a test controller that
manages internal scan-paths. Two external signals, test and
nrst_osc, activate the test mode. Eight parallel scan-paths
provide access to most of the internal flip-flops and serial-data-
in/out is made through the same 8-bit data-in and data-out
ports. These parallel scan-paths give access to the QJg and Q4
registers. Any time the test signal is active, the content of
these registers can be output through the serial-data-out ports.
A total of 41 bytes (the plain content of the registers) are output
using the test countermeasures as described in paper [11]. The
FPGA allows for modification of the included countermeasures
if required.

For test = 1 and nrst_osc = 0 the test mode is selected.
The content of the random generators can be initialized using
the serial-data-inputs. The value that is initialized can be used
only once for executing a scalar product, since when the ECC
core is switched to normal mode, the contents of the random
generators are randomized immediately.

IV. CRYPTO-TEST-LAB

ECC core is designed as the core for the CTL platform
validating test strategies for crypto-cores. In this section the
wrapper organized around the ECC core is presented, whose
objective is to facilitate the mounting of attacks. CTL aims to
validate the security of scan-path modifications and auxiliary
units meant for this objective. The final goal is to avoid the
need of blowing up the scan-path ports and, therefore, to be
able of using them for diagnostics in after-marked failures.



Figure 6: State machine controller of the crypto-attack analysis
bank.
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A. The crypto-attack analysis bank

In Fig. 5 the crypto-attack analysis bank is presented. It
includes an ECC core and an attack manager that takes control
of the ECC core, always forcing mode = 0. Externally, the
attack manager is controlled by a serial communication link
using an UART interface. It manages the attack sessions as
described below.

When the attack session initializes, the attack manager waits
for a k4 value and stores it in its internal k_value register.
Then, the attack begins taking the following actions:

1) Waits for an elliptic curve point P and an aborting step of
the Montgomery ladder algorithm. After this, it initializes
registers (g and ()1 of ECC co-processor as described
in Fig. 3 and stores the aborting step value in the abort
register of the manager.

2) Initializes the content of random generators with the value
stored in the k_value register using the test infrastructure.

3) Starts the scalar product k4 x P.

4) Aborts the scalar product when the number of iterations
in the Montgomery ladder algorithm reaches the value
of the abort register. The value of k4 in the ECC co-
processor is lost.

5) Reads and sends to the serial channel txd the content of
registers Qo and @), (the address bus is expanded to 7
bits in order to include Q).

6) Reads again the content of Qg and ()7 through scan-paths
using the test infrastructure with countermeasures [11]
and the content is stored in sp_out register for further
reading through serial communication channel txd.

Fig. 6 presents the state diagram of the attack manager
controller. After power-on reset, it starts the attack session in
state rxd_b_k. From this state to state in_k, data reading from
the UART allows to initialize the ECC core. States wait_1 and
wait_2 allow synchronization. Signal start is asserted in state
ini_prod. The scalar product is calculated in state product. In
the following states, all the information is sent finally to the
UART serial channel txd as formerly described.

Figure 7: Block diagram of the Crypto-Test-Lab.
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B. The CTL platform

In Fig. 7 the block diagram of the Crypto-Test-Lab is
presented. It includes a desktop computer (PC) and the
crypto-attack analysis bank. They are connected through an
asynchronous serial link at 921.6 kBd.

The CTL executes attack sessions, one per run. An attack
session is defined in a binary input file and the results generated
after the attack are recorded in another output binary file. The
attack session starts with an initialization, in which the value of
k4 is preset, and follows with a number of attacks that use the
same k4. For each attack, the input file also includes the point
P and the aborting step of the Montgomery ladder algorithm.
All this information is copied to the output file together with
the results obtained from the Qg and ), registers as described
before. This file is later processed to evaluate the validity of
the secure test countermeasures.

V. RESULTS

A. Performance of the platform

The ECC core has been synthesized in an FPGA
EP3C16F484C6N device of the Cyclone III family from Altera
included in a DEO board from Terasic. The complete synthesis
requires 7053 logic elements (46% of the device capability),
including 2712 logic elements for registers. It can run up to
116.47 MHz.

Afterwards, the crypto-attack analysis bank including an
ECC core has been synthesized in the same device. It requires
8795 logic elements (57% of the resources), from which 3284
are used for registers. It can operate at a maximum speed of
118.76 MHz, but in the DEO board the system clock runs at
50 MHz.

A single attack takes a total time between 2.1 ms to 3.7 ms
depending on the aborting step. A session including 1 million
attacks is executed in 48 minutes on average.

B. Performance of the scan-path countermeasure

CTL platform has been used to evaluate the [11] countermea-
sure. It is meant for scan-path protection and thus the attack
has been mounted to discover k using the [15] methodology
but applied in the ECC core, as described by A. Das in [16].

In this attack it is assumed that the adversary has a limited
access to the system. He doesn’t have any direct access to
the registers containing k since they are not connected to the
scan-chain. He can input data to the ECC core but restricted to
elliptic curve points, either P or ()p; as described in Figure



1. Once the unit starts he can interrupt it at any iteration of
the Montgomery algorithm, see Figure 3, switch to test mode
and scan-out the content of (g and Q;. He also assumes that
scan-paths are compressed, as described in [15], and therefore
uses the parity evaluation of the output bits as a feedback for
carrying out the attack.

To prepare the attack the adversary builds a model in his
computer of the ECC core and calculates the parity of ()¢ and
(1 at the point of interruption. For each bit of %, he searches
for a pair of points Qpo and @ p; that, when applied to the
model, produce different parity bits when a particular bit of
the key, k;, is O or 1. Once the pair is found he applies it to
the real system and validates the hypotheses estimating the
real value of k;. This process is repeated for the 163 bits of
the key. In the attack methodology, points () p; are generated
randomly inside the elliptic curve and pairs may become valid
for estimating many bits of the key.

In our experiments we have repeated the attack for two
different configurations. In the first (SP), scan-paths with
standard compressing are used. In the second (DSP), scan-
paths in differential mode as described in [11] are used before
the compressing circuit. In this second case the differential
mode act as pre-compressor of (1:2) ratio that does not preserve
the parity property.

In Table I results are presented. Six different keys are used
(col-1). For each, the attack is repeated 50 times and averages
are presented in each row of the table. Columns (col-2&4)
show the average number of points selected successfully for
the attack, pairs are organized from these sets. Columns (col-
3&5) present the degree of success achieved by the adversary,
it counts the percentage of bits correctly estimated. It is
remarkable to see that in the DSP only half of the bits are
correctly estimated, which is the most secure scenario. Finally,
in (col-6) the difference in the number of points between the
attacks SP and DSP is evaluated. It is noticeable to see that
from the point of view of the adversary there is no significant
difference and therefore the presence of the DSP is disguised.

Table I: Results of the attacks performed in the scan-path and
differential scan-path implementation of the ECC core.

Sp DSP
Key k # points Bits # points Bits # points
estim. estim. | difference
OK OK SP - DSP
(%) (%) (%)
1 (avg. 50) 9.38 100 9.46 50.70 0.85
2 (avg. 50) 9.68 100 9.82 50.01 1.45
3 (avg. 50) 9.80 100 9.72 50.31 -0.82
4 (avg. 50) 9.90 100 9.66 49.22 -242
5 (avg. 50) 9.68 100 9.62 50.68 -0.62
6 (avg. 50) 9.78 100 9.80 48.85 0.20
Average 9.70 100 9.68 49.97 -0.24

VI. CONCLUSIONS

In this paper a Crypto-Test-Lab is presented. It is meant for
the design, prototyping and validation of solutions improving

the security of test infrastructures for ECC cryptographic appli-
cations. The platform includes an Elliptic Curve Cryptography
core using a test infrastructure of eight scan-paths. A number of
countermeasures to improve the testing security are included.
The platform is synthesized in an FPGA and is controlled
from a desktop computer that can organize attack sessions and
evaluate the effectiveness and validity of the countermeasures
applied. With this platform, 1 million attacks can be run in 48
minutes.
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