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1 Introduction

1.1 Aim of the Study

The primary aim of this study is to understand and implement in a computer program the basic
theory underlying model order reduction of Finite Element (FE) structural models. More con-
cretely, attention is focused on modal analysis via substructuring techniques, and the interest lies
in comparing the performance of such substructuring methods with the standard modal analysis
of linear elastodynamic FE models. The method is applied to 3 aeronautical structures, ranging
in complexity from a simple truss structure to a complete airframe of a private jet aircraft. For
the truss structure, all required operations are carried out with a Matlab code developed by the
author. For the other two structures, the finite element information ( mass and stiffness matrices
) is retrieved from an open source FE software called KRATOS, and then processed by a Matlab
script in order to determine the vibrational modes and the natural frequencies. It should be high-
lighted that the construction of the geometric models of the three tested airframes have been also

developed, from scratch, by the author.

1.2 State-Of-The-Art

1.2.1 Origins of Substructuring Methods

Substructuring methods were invented in the early 1960s by aircraft engineers to carry out a first-
level breakdown of complex systems such as a complete aircraft shown in Figure 1. The original

factors that motivated the development of this kind of techniques were, according to [1]:

e To Facilitate division of labor: Substructures with different functions are done by different
teams. This fact would allow different groups to work separately with different parts of the
project, this fact would allow to perform geometry modifications, nevertheless it is important

to remind that the interface nodes that each substructure contains must remain the same.

e Take advantage of repetition: It is usual for this kind of projects to have symmetric parts
in the structure, for instance, it is common to deal with aircrafts which contain symmetry
planes that split by the half the entire structure, recognizing repetitions, saves model creation

and, of course, time.

e Overcome computer limitations: This kind of techniques allow to analyze entire huge
models part by part, saving computational time and surpassing the memory limitations that

a usual machine may have.

ETSEIAT. Fabian Lajas Contreras 9
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Figure 1: Example of a substructured system; the complete structure has been broken down into
six different components. Image courtesy of [1].

1.2.2 Reduced Order Models based on substructuring

In this project, the reduced order models (ROMs) based on substructuring are intended to avoid
memory overload as well as to save computational time. Several ROMs of this type have been
developed during the 1960s and the 1970s. They differ from each other in the choice of the matrix
that is used in the reduction process. According to [7], some of the most important ROMs are:

e The Guyan-Irons reduction algorithm, 1965, this system can be seen both as a degree of

freedom economizer and as a substructuring method.

e The Craig-Bampton method, 1968, also commonly referred to as the component modes method
or the modal synthesis, which is mainly used as a dynamic substructuring method. This is
the strategy chosen for this project.

o The McNeal hybrid synthesis method, 1971, which uses a concept called general reduction

scheme, see [7] for further information. T

e Rubin method, 1975. This methodology is a modification of the McNeal hybrid synthesis

method, commented above.

1.3 Scope

As mentioned in Section 1.1, attention is confined to model order reduction via modal analysis in
the elastodynamic linear range. Therefore, nonlinear material behavior and buckling phenomena
are excluded in this study. Finite element discretization is carried out using beam and shell
elements —albeit the proposed methodology is general and can be applied also to finite element

models with solid elements.

1.4 Requirements

The minimum requirements for this project are the analysis of several aeronautical-like structures
in order to test the validity of the created code. This code will be able to compare the results
obtained for a standard modal analysis and a reduced order analysis. The expected results for such
kind of problems are the modal frequencies and the vibrational modes, as it has been commented

in Section 1.3 .

ETSEIAT. Fabian Lajas Contreras 10
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1.5 Employed tools

In this study, the following software is going to be used:

e SoLiD WORKS ™ v2016. Software used to edit and modify the geometries. This application
will be run in a WiNpows ™ machine.

e LIBRE CAD . As it was commented in the previous tool, this software is used to perform
CAD drawings; in this case, though, the software is going to be used to extract the geometry

points from a certain airplane, as it will be seen in Section 4.3 .

e GID ™ 13, Software in charge of meshing the previously edited geometry and prepare the
data for the FE software KRATOS. For this study, this application will be run in an Ubuntu
14.04 LTS machine.

e MATLAB ™ R2015a. Computerized platform optimized for solving engineering and scientific
problems. In this project, this software will be used in an Ubuntu 14.00 LTS machine.

e KRATOS. Open source framework for resolution of multiphysics finite element problems. Like

the previous programs, this software will be run in an Ubuntu 14.04 LTS machine.

1.6 Outline of the study

The main structure of this Final Master Project will begin with a complete explanation of the
theories used. The next part will describe some applications coded using housemade software in
order to test these theories. Three main problems will be tested: A beam geometry problem, a
Reissner-Mindlin Flat Shell Element problem, and a Reissner-Mindlin Flat Shell Element in an
aeronautical-like structure. After the resolution of these three problems, the following part is
reserved to comment possible research lines that can be started after this study. Finally, the final

conclusions for this project will be presented.

2 Theoretical Basis

First of all, it is required to define the concepts that take part each time a substructural anal-
ysis is done. This kind of techniques require the understanding of several disciplines: Advanced
Mathematical Concepts, Mechanical Analysis, FEM Theory and Computing Language Skills. In
this project it is intended to focus in the modal analysis, that can also be identified as a ROM
method. This method will be computed by the program. The selected FE elements for each kind
of problem are going to be also analyzed in this project. Finally, the implemented substructuring
method will be defined.

2.1 Modal Analysis

Modal Analysis is a common ROM technique that consists in the extraction of the vibrational
modes present in a structure. In this section the basic mathematical concepts underlying modal
analysis procedures are described. We begin by presenting the classical, semi-discrete finite element

equation governing the dynamic behavior of a solid body:

ETSEIAT. Fabian Lajas Contreras 11
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Given F :[0,T] — R", find d : [0,T] — R™ such that:

Md+Dd+Kd=F (1)
d(0) =d° (2)
d(0) = d° (3)

The following solution can be proposed for this equation:
d=dP +d? (4)
Where the d? : [0,7] — R™ is a general solution of the homogeneous equation,
Md+Dd+ Kd=0 (5)

The conditions for an undamped free vibration can be defined as (D = 0, F = 0). Considering

these conditions, the undamped equation can be established as:
Md* + Kd* =0 (6)
Once the main equation has been simplified, it is possible to define:
q(t) = Acos(wt) + Bsin(wt) (7)
The form of the solution can be expressed as follows:
d(t) = ¢q(t) = ¢(Acos(wt) + Bsin(wt)), where : ¢ € R® (8)

Applying this kind of solution, it is possible to modify the dynamic equation:

d?q(t
w (o712 ) + K gat) =0 Q
Due to the harmonic nature of the solution, it is possible to establish:
d*q(t) 2
LD — (1 (10)

So the dynamic equation can be now expressed as:
(—w?M + K) ¢a(t) = 0 (11)

As it can be seen in Eq. (11), the dynamic equation has become an eigenvalue problem. This kind

of problems have two main solutions:

e ¢ (t) =0, which is the trivial solution.

e The 4, nontrivial solutions, each one of them per every dynamic D.O.F. It consists of the
natural frequency of vibration w;, that can be related with its corresponding eigenvalue by the

following expression: w;2 = );, and its associated vibration mode ¢;, also called eigenvector.
Once the problem has been completely defined, several aspects should be commented:

e The natural frequency can also be called resonant frequency. The eigenvector can also be

ETSEIAT. Fabian Lajas Contreras 12



Escola Técnica Superior d’Enginyeries
Industrial i Aeronautica de Terrassa
UN

XSITAT POLITECNICA DE CATALUNYA

called a natural mode.
e The smallest frequency: w;, it is also called the fundamental frequency of vibration.

e Each one of the non-trivial solutions accomplish the following equation:

wiPM¢; = K ¢; (12)

It can be defined the complete problem such as the solution of the undamped free vibration prob-
lem (D =0,F =0).

Given d® € R®, find d : [0, 7] — R™, such that:
Md+Kd=0 (13)
d(0) = d° (14)
d(0) = d° (15)
Solution:
d= ; b; (q?cos(wit) + w:sin(wit)) (16)
where:
g = ¢/ d° and §) = ¢ d° (17)

More information regarding modal analysis can be found in [8].

2.2 Basic FEM concepts

Next we offer a quick review of the elements that will be employed in this project. If more
information is required, the reader is referred to [9] and [10]. For this project, the employed FE

elements are the Euler-Bernouilli beam element, and the Reissner-Mindlin Flat Shell Element .

2.2.1 The 2-Noded Euler Bernouilli Beam Element

The Euler-Bernouilli beam element is commonly used to solve structural problems in which the
models are composed by slender bodies. In Figure 2, the representation of a single element is
displayed. This theory relies on the following hypotheses:

1. The vertical displacement, also called deflection (w), of the points contained in a cross-section

of the element is small and equal to the displacement of the beam axis.

2. The lateral displacement, also refered as v (along the y axis in Figure 2) is considered as

zZero.

3. Cross-sections normal to the beam azis remain plane and orthogonal to the beam axis after

the deformation; this is usually called the normal orthogonality condition.

For this project the beams are formed by circular cross-sections. Once all the previous assumptions
have been made, by using the FEM theory, it is possible to compute the stiffness and mass matrix

ETSEIAT. Fabian Lajas Contreras 13
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for this kind of element —see equation Eq. (18) and Eq. (19). It is important to remember that the
beam element consist of 2-noded element with 6 DOF for each node, so the computed matrix will

be composed by 12 elements. For more information regarding this subject, the reader is referred
to [11], in [2], [12], and in [13].

Center of gravity: O
Area: A
Inertia: I

Figure 2: Two-noded Euler-Bernoulli beam element, image couurtesy of [2].
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413;11, 0 0 0 61;321y 0 21:;11, 0

S0 SRR 000 e

KeL - EA

£4 0 0 0 0 0

12lE3[z 0 0 0 o 6?212
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4Elly 0
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2.2.2 Reissner-Mindlin Flat Shell Element

For this study, the KRATOS environment will be in charge of computing the stiffness and the mass
matrix for each shell element —that is, KRATOS will act as some sort of black box. A graphic

representation of quadrilateral and triangular meshes is shown in Figure 3,

Quadrilateral element

Figure 3: Mesh discretization, it can be distinguished two kinds of shells, the quadrilateral mesh at
left, and the triangular mesh at right. For this study, the triangular element will be used. Image
courtesy of [2].

Shell elements are special elements that combine torque field with plane stress fields. They work
as the combination of a Kirchhoff Thin Plate, which captures bending, and a membrane, that
captures axial deflections [2]. We have used in all the simulations presented henceforth the TLLL
element, which refers to the Flat Shell Triangles combining 3-noded linear plane stress triangle;
theoretical details concerning this element can be found in [2]. This kind of element contains the

following features:

1. It consist in a 3-noded linear plane stress triangle.
2. The deflection is linearly interpolated in terms of the three corner values.

3. The Rotations are computed by using a linear interpolation in terms of mid-side values.

ETSEIAT. Fabian Lajas Contreras 15
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4. Linear assumed transverse shear strain field is assumed as in other Reissner-Mindlin element

formulation: the TLQL. More information about this shell model can be found in [2].

2.3 Substructuring Techniques

Substructuring methods are frequently used in dynamic analysis; the main reasons that motivated
the development of these methods are:

e The interest in lower frequency eigensolutions, which is common in structural analysis, and

it may prove to be advantageous to reduce the starting problem to a smaller dimension.

e In large projects, such as aircrafts, separate parts of the complete system can be analized
by each project team, later these parts will be used to reconstruct the model of the whole
system. Therefore, the interconnecting surfaces must be defined carefully in order to ensure

the compatibility of the different parts of the model, as it can be seen in Figure 4.

»>
»

Partitioning 3 B

Figure 4: Partitioning of a Structure into Two Substructures. In the figure I refers to the boundary
between two substructures. Image courtesy of [3].

2.3.1 Craig-Bampton Method

The Craig-Bampton method, (Craig and Bampton 1968), also commonly referred to as the com-
ponent modes method or the modal synthesis is mainly used as a dynamic substructuring method.
It consist in reducing the complexity —via standard modal analysis— of each part of the model.
The first step in the formulation of this method is the separation into inner nodes and boundary

nodes:

K K M M 0
X = *1 , K= a 1B , M = a 1B and F = (20)
XB Kpr Kpp Mp;r Mpp P

Considering the modal analysis equation, Eq. (21), the total system can be rewritten by using the

previously defined equations; the final result is Eq. (22).

Kx - w’Mx=F (21)
K K X M M b'e 0
bis IB e bis IB I _ (22)
Kpr Kpp| |xB Mp; Mpp| |xB P
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Considering that if there were no inertia forces, the internal degrees of freedom could be computed

by static condensation, it is possible to define the x; as:

X7 = _Kj_leIBxB (23)
Boundary DOFs xp will be considered as static DOFs, and an eigenvaule problem will be solved
by considering the internal DOF's as the free ones:

K[]X[ZLU%MHX] (24)

Of course, according to the modal problem, the fixed interface modes are stored in the columns of

matrix X so that:

X KX, =diag(w?, ... w?,;) =Q2 (25)
X;KpXr=1 (26)

It is possible to build the total DOF's x by using the following relation:

n
x = Reprm (27)
XB

where R is what it is called the Craig Bampton Transformation Matrix:

X; -K; 'Kz
Reprv = u (28)
0 I

and n refers to the intensity parameters of the substructure’s internal vibration modes. Once all
these elements have been defined, the initial model of each substructure will be reduced. Only a

certain number of internal modes I will be chosen:

X; = Xray - XI(m)] (29)

On the other hand, in this reduction process, it is necessary to maintain the boundary DOFs in

order to assure deformation compatibility at the interfaces; the final form of CBTM will be:

X; -K;'Kip
0 I

Rosru = (30)

The dimension of this matrix will be n x (m +npg). The reduced stiffness and mass matrix will be

extracted by performing the following operations:

~ —T — ~ —T —

For each submodel:
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0 Kpzs

- I
and K =

M3

1\7-[3 I’{BB

(32)

If a problem with N substructures is considered, every substructure will have a transformed stiffness
matrix and a transformed mass matrix. For the i-th substructure, it is defined as K; and M;. The
total number of boundaries present in the model can be defined as M. Then the final assembled

matrix for the entire system can be defined as: K7 and My:

_ Q2 0
Kp= I{1...m} ) (33)
0 KpB{1..np}
" I m M m n
Np— | T BB {1.m.1..nn} (34)
MpB{i..np,1..m} MpB(1..np}
These matrix will have the following expanded form:
Q7 0 0 0
_ 02 0
K= fme . (35)
0 . 0 Kgp1+ KBBj
o 0 0 Kpp1+Kps J]
L. 0 M | 0 ]
I : Mg ; ME 1
. 0 I, 0 M5B m,n
My= | ~ i ) bmne (36)
Mp; Mp; 0 Mpp1+Mpp; ... 0
| 0 Mg, Mpa,m 0 Mpg 1+ Mps ;|

Now that the entire system is assembled, the required analysis is applied. Then the modal analysis
is employed once the entire system is assembled. After that, it will be necessary to decompress
the obtained modal vectors . This process can be done by using the equation Figure 37. In this
equation u¢ refers to the compressed results, wp denotes the boundary results, and finally w are

the final decompressed results of the analysis.

[u] =Reprar | (37)
up
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3 Application for Beam Geometry

In this part, the main code structure required to solve a modal analysis using a substructured
technique will be introduced. It will be used MATLAB ™ in order to create the main algorithm.
On the other hand, GID ™ will be used for the meshing process. In the following section the code
structure will be deeply studied. Later, a beam problem will be solved and the results obtained

will be compared and commented.

3.1 Basic Code Structure

The program will compute the modal analysis of an aeronautic structure: the fuselage, the wings,
the stabilizers, the landing gears, or even entire body configurations. As it was said in Section 77
, the results obtained by two methods will be compared. It is for this reason that the created code

will contain the following algorithms:

e the Classic modal analysis algorithm, which consists in the analysis of the entire geometry
without using any kind of substructuring method. This process may prove slow, specially for

large geometries. Hereafter, we shall refer to this process as classical algorithm .

e The Craig-Bampton modal analysis algorithm. This algorithm will analyze the entire ge-
ometry using the substructuring method. Hereafter, it will be referred as Craig-Bampton

algorithm .

The code structure comprises several functions and subfunctions created using the vectorization
technique. According to [14], vectorization consists in the transformation of a code in order to use
nonscalar objects. Using this technique, speedup factors of almost 10 can be reached. In Figure 5,
the first code structure is presented, which is composed by the following kinds of objects:

1. ORANGE TAGS are used as starting and ending execution points, and do not refer to
functions. For this kind of tag the following parts are defined:

(a) START: This part is mainly used as the starting point of the program.

(b) END: As it was commented in the last item, this tag works as a state of the code. In

this case it works as the ending point of the program.

2. BLACK TAGS refer to decision points. These decision points are triggered by a boolean

object that must be correctly filled before starting the program execution.

(a) EDITMODE: Refers to a conditional state. Depending on the value of the boolean

object, it will take one or another path.

(b) SUBSTRUC: EDITMODE will behave in the same way as the previous tag.
3. RED TAGS are used to mark functions that perform an auxiliary functionality.

(a) VALIDATOR: Validator refers to an external functionality that assures that all the

inputs present in the program are correctly introduced.
4. BLUE TAGS refer to the main functionalities run by the program.

(a) INPUT SETTINGS: In this part, the main settings of the program are defined.
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(b)
()

(d)

()

(h)
(i)

INPUT GEOMETRY RECIPE: In this part, the geometry to analyze is defined.
CREATE GEOMETRY : This function is in charge of creating the geometry using the

information introduced in the previous state.

READMSH: In this part, the mesh of the problem and the main conditions (materials
and fixed DOFs), are extracted.

MATRIX ASSEMBLY : This part is only activated if the SUBSTRUC switch is turned-
off, it is in charge of computing the elemental stiffness and mass matrix, perform the
assembly and applying the conditions defined in READMSH.

SUBSTRUC ALGORITHM: This part is activated only if the SUBSTRUC switch is
turned-on. This part will divide the mesh components into different substructures; it

also will dump all the information into the hard drive in order to save memory.

MATRIX ASSEMBLY SUB: As in the previous tag, SUBSTRUC ALGORITHM, this
part can only be accessed by switching-on SUBSTRUC, it will read each one of the
substructures, perform the Craig-Bampton transformation, and finally, compute the

final assembly matrix.
EIGENVAL ALGORITHM: This part will solve an eivenvalue problem.

MODAL SHAPE ALGORITHM: This part will compute the modal shapes extracted
by the previous tag. EIGENVAL ALGORITHM.

5. GREEN TAGS This kind of tag refers to the external software that it is used to perform

special functionalities, such as the meshing algorithm, that is run by GID ™ and the matrix

computing and printing system, which is done by KRATOS.

(a)

(b)

GID MESHER: External functionality can only be accessed by switching-off EDIT-
MODE; it calls the software GID ™ in order to load the created geometry and perform

the meshing process.

GID VIEWER: External functionality that can only be accessed by switching-on ED-
ITMODE; it calls the software GID ™ in order to visualize the created geometry.
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INPUT SETTINGS

VALIDATOR

INPUT GEOMETRY RECIPE
B VALIDATOR

CREATE GEOMETRY

EDITMODE

GID: MESHER GID: VIEWER

EDITMODE

READMSH

SUBSTRUC

MATRIX ASSEMBLY SUBSTRUC ALGORITHM

MATRIX ASSEMBLY SUB

EIGENVAL ALGORITHM

MODAL SHAPE ALGORITHM

Figure 5: This is the first iteration of the code.

3.2 Beam Problem Definition

In this section, a modal analysis using the Craig-Bampton algorithm is performed. A 3D
beam structure will be tested using the models defined in Section 2.2.1 . The beam element is a
reasonable solution for truss-like geometries such as the helicopter fuselage or classic airplanes such
as those shown in Figure 6. This part will serve as a test for the Craig-Bampton algorithm .
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Figure 6: Fokker D.VII blueprints, it can be aprreciated the truss structure.

The geometry consists in a airplane-like structure composed by beams, as it can be seen in Figure
7. The model is formed by circular cross-section beams made of the same material. The physical
properties chosen for this element are displayed in Table 1.

Figure 7: Total model, the structure nodes appear in black.

Table 1: Materials Table Chosen for this first problem.

E[MPa] v G[MPa] Ry [m] A [m?] I, [m?] I, [m*] I, [m* p [Mkg/m?]

206900  0.29 80193.7984  0.025 0.196e-2  6.136e-007  3.068e-007  3.068e-007 7.85e-003
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Figure 8: The restricted nodes for this modal analysis will be located at the bottom of the structure.

Just before solving the problem all the substructures are defined. In Figure 9 the chosen substruc-

tures for this example are presented.

B wor

y\f’, O e

[

Figure 9: Complete model. Each substructure has been marked with a different colour: Green for
the first substructure, Yellow for the second substructure, Blue for the third substructure.

3.3 Results Extracted for a Beam Problem

The number of inner DOFs have been set to 6. In Table 2, the natural frequencies for each one of
the substructure are presented. The three lowest modal shapes for each substructure are shown in
Figure 10. On the other hand, the tenth lowest natural frequencies for the total analysis can be
found in Table 3. Finally the 4 lowest modal shapes are presented in Figure 11, Figure 12, Figure
13 and Figure 14.

Table 2: In this table, it can be seen the modal analysis performed at each substructure.

Freq [Hz| w1 wo w3 wy ws we
sub 1 2.2712 9.8239  14.2458 14.5011  15.5774 16.6988
sub 2 22.1827 524582 54.3966 81.5935 113.3861 124.2681
sub 3 2.4120 10.0043 14.4276 15.3735  16.2497 17.0245
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MODE 1 % MODE 1
i N .
‘J’.
MODE 2 % MODE 2
. P
MODE 3

o SUB 1

Figure 10: Modal Shapes Obtained for each substructure. It is important to comment that in
these analysis, the boundary DOF’s are considered as imposed DOFs.

Table 3: Natural Frequecies, CA refers to classical algorithm , whereas CB refers to Craig-
Bampton algorithm algorithm.

Freq [H 2] w1 wWo w3 W4 ws we wry wy wWo w10

CA 1.651 1.684 8.159 8.563 8.741 13.953 15.548 15.677 24.091 24.104

CB 1.647 1.676 8.530 8.550 11.791 15.532 15.647 18.330 23.958 24.089

|Displacement Result Mode 1]
019286

0064285
0042857
0021428
0
O\
| Displacement Result ‘Mode 1]
010837
0096329
0084288
0072247
0060206
z [ ooastes
0036124
x 0024082
0012041

0

Figure 11: First Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substructured
algorithm: CB.
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|Displacement Result'Mode 21|

0.19386
017232
015078
0.12924

01077
1 008616

0.06462
I 0.04308

0.02154
0

|Displacement Result Mode 2'|

0.099399
0.088355
007731

0066266
0055222

1 oosat7r
0033133
0022089
0011044
0

Lo

Figure 12: Second Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substruc-
tured algorithm: CB.

—_—
| Displacement Result'Mode 3|
011026
0.098006
0.085755
0073505

I 0061254

0.049003

z
x 0036752
I 0024502

0.012251

b) ’

|Displacement Result 'Mode 3|
\—\\ 01305
I 0116

01015

0.086997
0.072498
0.057998

x 0043499
"J, 0.028999
00145
o

Figure 13: Third Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substructured
algorithm: CB.
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|Displacement Result 'Mode 4'|
0.16221
l 014418
012616
010814
0090115
0072092
0054069
0036046
0018023

0

|Displacement Result Mode 4
0.15525
l 0.138
0.12075
0.1035
0.086249

0.068999

- 0051749
’&i} 0.0345
001725
0

Figure 14: Fourth Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substruc-
tured algorithm: CB.

3.4 Discussion of results

Inspection of the results shown in the foregoing reveals that, as expected, the natural frequencies
computed by the CA and the CB analyses are quite similar (errors below 1 % are obtained for
the first fifth modes). These low errors are also manifested in a significant resemblance between
the modal shapes predicted by both methods (see Figure 11, Figure 12 and Figure 13). The only
significant discrepancies are observed in the third mode. A plausible explanation for this notorious
difference may be the loss of precision due to the compression-decompression process present in
the Craig-Bampton algorithm .

4 Application for a Shell Geometry

Arriving at this point in the development the code, we decided to combine the flexibility of MATLAB
™ with the potential of KRATOS. A special module inside the original program was created in
order to launch KRATOS. If this option is enabled, the program calls the KRATOS environment.
This function computes and prints in a binary files each elemental mass and stiffness matrix. Once
this process finishes, MATLAB ™ reads each file’s information in order to continue with the modal

analysis.

To begin with, it is necessary to explain how a basic problem works. KRATOS is a framework
for building multi-disciplinary finite element programs. Several tools for easy implementation
programs and a common platform are provided. This framework requires the knowledge of C+-+
and PyTHON ™. The kernel has been coded using C++ ; the PyrHoN ™ scripting language,
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on the other hand, works as an interface that is used to define the main procedures of KRATOS.
This feature improves the flexibility of this framework when required. In Figure 15, it is possible

to see a diagram of this framework during a common runtime.

PYTHON INTERFACE:
USER — KERNEL

CPP KERNEL:

INNER FUNCTIONS: DEFAULT & HOMEMADE

POSTPROCESS FILES

GID:

POSTPROCESS RESULTS VIEWER

Figure 15: In this diagram it is shown the structure of a KRATOS simulation.

In order to launch a KRATOS problem, three basic files are required:

e The geometry file. This file has been encoded using a file extension called .mdpa, as it can
be seen in Figure 16. Each file contains the header, where the element is defined; the nodes,
which defines the 3D eulerian coordinates of the mesh; the connectivity, which defines the
mesh connections between nodes; and the conditions, which defines the nodes that contain

restrictions.

e The materials file consists in a PYTHON ™ script file that contains the definition of the

materials used for this problem.

o The main script file. This is a PyTHON ™ file that contains all the functionalities required
in order to run the KRATOS problem. This files have three main parts. The starting part
is where the required modules are imported. In the second part, the solver of the problem
and the postprocess files are configured. In the third part, the solver and the postprocess are
called.
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Begin ModelPartData
// VARIABLE NAME value
End ModelPartData
//we start by looping only in the materials used, GID does this automatically
Begin Properties 1
DUMMY MATERIAL 1.0
End Properties
Begin Nodes
1 06.15421 -2.88256 0.00000
2 -3.37484 -2.88256 0.00000
5 0.15421 2.12337 0.00000
4 -3.37484 2.12337 0.00000
5 -6.90389 -2.88256 0.00000
6 -6.90389 2.12337 0.00000
7 -18.43295 -2.88256 0.00000
8 -10.43295 2.12337 0.00000
9 -13.96200 -2.88256 0.00000
10 -13.96200 2.12337 0.00000
End Nodes
Begin Elements Poisson2D
11341
21685
31978
41524
51214
61465
718109
81758
End Elements
Begin NodalData DUMMY_UNKNOWN //be careful, variables are case sensitive
9 1 ]
<] 1 ]
End NodalData
Begin NodalData DUMMY POINT SOURCE //now we loop the loads
1 ] 453534

3 ] 453534
End NodalData

Figure 16: Basic input file mdpa, it can be appreciated the nodes tag, the connectivity tag and
the conditions tag. Image courtesy of [4].

4.1 Editing Kratos

As already mentioned, for a modal analysis in which Reissner-Mindlin Flat Shell Element is used,
KRrATOS will be employed for perform the FE analysis (determination of mass and stiffness ma-
trices). The basic idea is that MATLAB ™ will call KRATOS. Then the framework will run the
defined problem. At the end of the KRATOS simulation, the elemental matrices will be printed.

™

Finally, once the printing process has ended, the original MATLAB script will continue the

execution by reading and using the information printed by KRATOS.

KRATOS is an open-source environment devoted to FEM analysis. This framework contains several
modules, each one able to solve a different kinds of FEM problems. In this report, a LINUX version
of this framework has been used. In this kind of machines each module is contained inside the
directory applications, as can be seen in figure Figure 17. Unfortunately, KRATOS does not contain
a function that allows to dump objects from the RAM memory during the simulation runtime.

Therefore it becomes necessary to create a special function in C++ with this feature.
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apolications.
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L
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L
L

AdjointFluidApplica  ALEapplication constitutive_laws_  ContactMechanicsA  ContactStructuralM convection_ DamApplication DEM_application
tion application pplication echanicsApplication diffusion_
application

L
L
1
L

wd

freezing_soil_ Fslapplication gpu_solvers_ incompressible_
application application Fluid_application

L

empire_:
lication

NN

kratos_matrix_ LagrangianMPMAp  MeshingApplication meshless_ metis_application  MixedElementAppli mKL_solvers_ mpi_search_
method_ plication application i application application
application
multibody_ MultiScaleApplicati  nurbs_applicati OpenCLapplicati arti i pfem_2_applicati PFEMapplication  PFemBaseApplicati
application on pplication
PfemFluidDynamics ~ PfemsolidMechanic ~ PODApplication  PoromechanicsAppl  purediffusion_ python_scripts  ShapeOptimization), ~ SolidMechanicsApp
Application sApplication ication application Application ication
structural_ StructuralMechanic ~ swimming DEM_  ThermoMechanical ~ TopologyOptimizati trilinos_application  ULFapplication wind_turbine_
cture e ing.f fech ope dication
= e
ot
iapor secha
applications_ CMakelLists.txt

Figure 17: Applications folder inside the main KRATOS directory. In the upper part of the window,
it can be seen the installation directory, whereas the arrow, also in green is pointing towards the
SolidMechanicsApplications folder.

First of all, it is necessary to extract the Mass Matrix M and the Stiffness Matrix K. To do so, a
new PyTHON ™ utility will be added inside the KrAaTOS folders. These extra utilities are called
in the PYTHON ™ script that starts the application. The function will be implemented using the

following recipe:

1. The following file will be modified: KRATOS/applications/SolidMechanicsApplica-
tions/custom_python/add_custom_utilities_to_python.cpp, as it can be seen in Fig-
ure 18, marked with green. This part will be in charge of defining the new python utility,
and acts as some sort of interface that joins the PyTHON ™ layer with the C+4 kernel
code.

ETSEIAT. Fabian Lajas Contreras 29



Escola Técnica Superior d’Enginyeries

4 APPLICATION FOR A SHELL GEOMETRY Industrial i Aeronautica de Terrassa

UNIVERSITAT POLITECNICA DE CATALUNYA

custom_python

frHome KRATOS applications SolidMechanicsApplication custom_python

m 17 n
i i i

add_custom_ add_custom_ add_custom_ add_custom_ add_custom_
conditions_to_ conditions_to_ constitutive_laws_ constitutive_laws_ processes_to_
python.cpp python.h to_python.cpp to_python.h python.cpp

7 7 7
i i i
“ “

i i i

add_custom_ add_custom_ add_custom_ add_custom_ add_custom_
processes_to_ strategies_to_ strategies_to_ utilities_to_python. tilities_to_python.
python.h python.cpp python.h pp h

"
i
i
i
solid_mechanics_
python_application.
pp

“add_custom_utilities_to_python.cpp” selected (2,1 kB)

Figure 18: Location of the file add_custom_utilities_to_python.cpp inside KRATOS directory.

2. Then the KRATOS /applications/SolidMechanicsApplications/custom_utilities/print_matrix.h
is created, see Figure 19. In this part we include the C++ code that extracts and prints
the elemental mass matrix and the elemental rigidity matrix for each element. Every data

array computed is printed in an binary file.

custom_utilities

f Home KRATOS applicatio: dMechanicsApplication custom_utilities

7 o
7 7 Eath 7

7

it s it

o o o o
comparison_ energy_utilitiesh  isotropic_damage_ line_search_ print_matrix.hy solid_mechanics_
utilities.hpp utilities.hpp calculation_utilities. math_utilities.hpp

hpp

Figure 19: Location of the file print_matriz.h inside KRATOS directory.

3. The final modification consists in the addition of the printing instructions inside the main

PyraON ™ seript.
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barra.gid

[@INFO documents Academy Master

materials.py  ProjectParameters test
json

Figure 20: Application directory. The name of the application launcher is marked with green
MainKratos.py.

KRrATOS will be recompiled once the files have been successfully modified. Finally, the new func-
tionality will be called from the main PyTaHON ™ script.

4.2 Modified Code Structure

Once the custom utility has been edited, it is possible to run a problem composed by the Reissner-
Mindlin Flat Shell Element . The modified code structure is presented in Figure 37. For the
mentioned diagram, it has been decided to assign the same key scheme as in Section 3.1 . In

Figure 37, the following functionalities have been added:

1. BLACK TAG As it was commented in Section 3.1 , it refers to decision points.

(a) KRATOS This switch is used to enable the KRATOS process and to perform computa-
tions that require the use of data extracted from this framework.

(b) RECALMAT This switch is used to avoid the KRATOS process. This switch is spe-
cially useful if a geometry has to be relaunched using the classic algorithm and the

substructured algorithm in order to save time.

2. BLUE TAG It refers to the main functionalities run by the program, as it was referered in
Section 3.1 .

(a) KRATOS AUX FILES PRINTER. This part is in charge of printing the necessary input
files, defined in Section 4.1 required to execute KRATOS.

3. GREEN TAG As it was defined in Section 3.1 . This kind of tag refers to external software.

(a) LAUNCH KRATOS, This part is in charge of launching the KRATOS framework.

It has to be commented that the original functions were also modified in order to make possible
to read the Reissner-Mindlin Flat Shell Element . This modification consists in the addition of

conditional sintax if-else in several key points of the code.
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INPUT SETTINGS

VALIDATOR

INPUT GEOMETRY RECIPE
mmmmmm VALIDATOR

CREATE GEOMETRY

EDITMODE

GID: MESHER GID: VIEWER

EDITMODE

READMSH

VALIDATOR

KRATOS &&
RECALMAT

KRATOS AUX FILES PRINTER

LAUNCH KRATOS

SUBSTRUC

MATRIX ASSEMBLY SUBSTRUC ALGORITHM

MATRIX ASSEMBLY SUB

EIGENVAL ALGORITHM

MODAL SHAPE ALGORITHM

Figure 21: Substructural ALgorithm Diagram, including KRATOS module.
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4.3 Reissner-Mindlin Flat Shell Element Problem Definition

For this problem the same analysis that was done in Section 3.2 will be performed.

The chosen geometry corresponds to an approximation of the actual geometry of a Mustang P-51,
displayed in Figure 22. Several parts have been removed, such as the propeller, the landing gear,
the cockpit and the control surfaces. This decision was make in order to save editing time and

computational effort.

Figure 22: P51 mustang, chosen airplane for the second problem.

The geometric model has been created from scratch by using a GNU software called LIBRE CAD
. Several representative points of the surface of the plane were extracted from the picture shown
in Figure 22 by using such a software. The coordinates of such points were then imported into
MATLAB ™ by using a homemade script, and the final shape was drawn from such points using
simple geometric transformations. The final result can be seen in Figure 23. For this problem,
Reissner-Mindlin Flat Shell Element is also used. Based on the recommendation given in [15],
[16] and [17], an Aluminium 2014 has been chosen; its properties are displayed in Table 4. It
should be mentioned that the wings have been reduced into plates without considering nor the
wings thickness neither the airfoils. Internal structure such as frames and stringer have been also
washed out. To compensate for this lack of internal structure, a relatively high thickness has been
set for all shell elements (¢ = 23[mm]). The restricted nodes will be defined similarly as in the
previous problem, see Figure 24. Finally, the employed substructured model is depicted in Figure
25.

ETSEIAT. Fabian Lajas Contreras 33



4 APPLICATION FOR A SHELL GEOMETRY 333 I [ovaveeril | Acronam

Figure 23: Image Base imported into LIBRE CAD a). Points Extracted using the same software,
b) later this points are converted into .svg format, which can be read using MATLAB ™. The final
geometry is depicted in c).

Table 4: Reissner-Mindlin Flat Shell Element properties

E[MPa)] v  tlmm] plkg/m?]
185 0.29 23.62 2795.6704

Ve

Figure 24: Restricted nodes chosen for this problem are marked in red —the ones with lowest Z
coordinate.
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Figure 25: Substructured model chosen for this problem. Each color is identified with a different
substructure.

4.4 Results extracted for a Reissner-Mindlin Flat Shell Element

For this problem the inner DOFs have been reduced to 6, in Table 5, the natural frequencies for
each defined substructure are presented. Also the 3 lowest modal shapes for each substructure
are presented in Figure 26, Figure 27 and Figure 28. The tenth lowest natural frequencies for the
total analysis are presented in Table 6, while the 4 lowest modal shapes are presented in Figure
29, Figure 30, Figure 31 and Figure 32.
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Figure 26: Modal Shapes Obtained for the first and second substructures. Recall that boundary
DOF’s are considered as imposed DOF's.
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Figure 27: Modal Shapes Obtained for the third and fourth substructures.
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Figure 28: Modal Shapes Obtained for the fifth and sixth substructures.
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Table 5: Modal frequencies of each substructure.

Freq [Hz] w1 wo w3 Wy ws we
sub 1 1.048260 1.713267 1.795929 2.051887 2.119760 2.142968
sub 2 0.848251 1.967279 2.096361 2.837432 3.129295 3.348210
sub 3 0.692263 1.840554 2.112059 2.724539 2.945360 3.481899
sub 4 0.240465 0.627079 1.019696 1.034580 1.311245 1.427693
sub 5 0.237343 0.628036 1.016853 1.027050 1.300488 1.430072
sub 6 0.692263 1.840554 2.112059 2.724539 2.945360 3.481899

Table 6: Natural Frecuecies for the shell problem, CA refers to Classic Algorithm, whereas CB

refers to Craig-Bampton algorithm.

Freq [Hz] w1 wo w3 wy ws we wry wg wo w1o
CA 0.2306 0.2347 0.3720 0.5363 0.6200 0.6335 0.6873 0.7247 0.7341 0.8455
CB 0.2306 0.2347 0.3732 0.5386 0.6201 0.6337 0.6873 0.7315 0.7443 0.8931
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Figure 29: First Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substructured

algorithm: CB.
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Figure 30: Second Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substruc-
tured algorithm: CB.
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Figure 31: Third Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substructured
algorithm: CB.
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Figure 32: Fourth Modal Shape, a) refers to the classic algorithm: CA, b) refers to the substruc-
tured algorithm: CB.

4.5 Discussion of results

Inspection of the results shown in the foregoing reveals that, as expected, the natural frequencies
computed by the CA and the CB analyses are quite similar (errors below 1 % are obtained for the
first six modes). Concerning the deformed shapes associated to each mode, the only significant
difference is detected in the third mode, see Figure 13 (wing tail). This discrepancy can be
attributed to a simple decompression error, among others. Unfortunately, our analysis fails to

reveal the actual reason for such a discrepancy.

5 Application for a Complete Aircraft Configuration

5.1 Chosing the Geometry

The aim of this section is to apply the methodology explained in the foregoing section (in which
KRATOS and MATLAB are interconnected to automatically generate the required natural fre-
quencies and associated modes) to study the vibration behavior of an entire aircraft structure. To
minimize meshing problems, the geometry has been streamlined in several places of the airframe,
as explained later in Section 5.3.1 . In the following, we describe the criterion used to guide the

choice of the final geometry-.

e The geometry should be as close as possible to a conventional commercial airplane, because

the specifications are easily accessible —in contrast to military aircrafts .

e The geometric model should contain the basic elements present in a conventional airplane.
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Excessively detailed elements such as the landing gear, the engines, lights, control surfaces

and pneumatic system will be simply neglected.

e The geometry must have two differentiated parts: the inner structure (frames, stringers,
spars, ribs ...) and any kind of structural element present in a conventional aircraft. The
shell will be formed by the fuselage, the wing tail the stabilizer, and the engine fairings.

5.1.1 Kinds of Models

Several alternatives were considered when the project started. More than 10 geometries were
selected in order to perform the study. In the following section, the most suitable models will be

exposed. The selected geometries can be divided basically into three main kinds of CAD files:

e The first kind of geometries consist in classic propeller airplanes. Although there is a huge
amount of models available in the Internet, it has to be considered that these geometries
tend to contain a huge amount of unnecessary details. Also this kind of airplanes tend to be

old military models.
A) |I I B) . )
L
L
Figure 33: First kind of airplanes, classic models A), side view B), profile view C) top view

e The second kind of models refer to modern militar jet models. As the previous kind of
airplanes, there is also a lot of available material. Nevertheless, this kind of aircrafts have
not a trivial structure compared with commercial models. In fact, in this kind of designs,
the internal structure is one of the most secret parts.

A)

Figure 34: Second kind of airplanes, militar models A), side view B), profile view C) top view

e Finally the third kind of models consist in commercial airplanes. These are the preferred

models for this project, because as mentioned above, specifications are easier to obtain.
A) | B) ! (=
L =) i

Figure 35: Third kind of airplanes, private aviation A), side view B), profile view C) top view
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5.1.2 Chosen model

Following the guidelines provided in Section 5.1.1 , we choose the third kind of airplane. Specif-
ically, the selected model is a Cessna Citation, a jet commonly used for private aviation. The
specifications for this model are shown in Table 7 and correspond to a Cessna Citation XLS model,
which is the newest version of this airplane. This updated version contains new details such as
different wing configuration, and minor modifications in the rear fuselage. This data have been

extracted from [6]. In Figure 36, a representation of the chosen airplane can be seen.

Figure 36: Cessna Citation. More information of this product can be found in [5].

Table 7: Cessna Citations XLS Specifications, data courtesy of [6]

Exterior Dimensions

Wingspan 56 ft 4in  17.17 m
Length 52 ft 6in  16.00 m

Height 17ft2in  5.23 m

Interior Dimensions

Cabin Height 68 in 1.73 m

Cabin Width 66 in 1.68 m

Cabin Length 18ft 6in  5.64 m
Baggage Capacity 800 1b 362.9 kg

Weights

Maximum Takeoff 20200 1b 9163 kg
Basic Operating Weight 12860 Ib 5833 kg
Useful Load 7540 1b 3420 kg

Performance

Takeoff Field Length (MTOW) 3560 ft 1085 m

Time to Climb FL 450 in 29 min
Max Cruise Speed 441 ktas 817 km/h

Max Range (Ferry, LRC) 2100 nm 3889 km
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5.2 Final Code Structure

Once all the design concepts have been established, a last code modification is necessary to manage
the external geometry introduced by the user (see BLACK TAG in Section 37 ). The only condition

that the imported geometry has to meet is that its finite element mesh should be furnished in ASCII

DTM

format and written using GI sintax.

START

INPUT SETTINGS

VALIDATOR

IMPORT
NO

INPUT GEOMETRY RECIPE

VALIDATOR VALIDATOR

CREATE GEOMETRY

EDITMODE

NO YES

GID: MESHER GID: VIEWER

EDITMODE

NO
READMSH

VALIDATOR

KRATOS &&
RECALMAT

KRATOS AUX FILES PRINTER

LAUNCH KRATOS

SUBSTRUC
NO YES

MATRIX ASSEMBLY SUBSTRUC ALGORITHM

MATRIX ASSEMBLY SUB

EIGENVAL ALGORITHM

MODAL SHAPE ALGORITHM

Figure 37: Final code structure
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5.3 Complete Airplane Problem Definition

5.3.1 Design Process

In this section, we explain in more detail how we designed the final geometric model employed in
the simulations. Firstly, the original geometry was extracted from the website [5]. However, this
original geometry came with no specifications concerning the inner structure —only the outer shell
geometry was available. In view of such circumstances, we were forced to edit the original outer
geometry and incorporate a consistent (yet approximate) inner structure. We used SOLID WORKS
T for this task, and the design of the approximate inner structure were guided by specifications
extracted from [18]. For instance, the design of the wing structure were inspired in a scheme
contained in the Airbus A-220 guide (see Figure 39).

To simplify model edition, the structure was divided into several parts. Such a division served
later as the substructuring required for model order reduction. The final sketch of the partitioning
is displayed in Figure 38. It is tacitly assumed that each part includes both shell and structure, as
described below:

e Green Part: It contains the entire wing of the airplane

e Orange Part: It contains the fuselage structure

e Pink Part: It represents the tail structure (Horizontal Stabilizer)
e Grey Part: Tt includes the Vertical Stabilizers

e Blue Part: It consists in the Engine Fairings.

Figure 38: Airplane scheme. Five main parts can be distinguished: wings in Green, engine structure
and fairing in Blue, tail in Pink, Stabilizers in Grey.
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Several iterations were done before obtaining a basic structure and a more simplistic model of the

mesh. In what follows, we describe more in detail each of the employed partitions.

Green Part

The green part represents the wings. The resulting model has a front spar and a rear spar plus

ribs, see Figure 39.

AN LANDING.
BEAR ATTACHENY

Figure 39: Wing structure: on the RIGHT, scheme structure extracted from the Airbus A-220
guide: on the LEFT, designed wing structure. Notice that no control surface is included.

Orange Part

As it has been commented before, the orange part is the fuselage. The first, tentative design

consisted in:

e Frames: Entire solid pieces were created, with some simplifying assumptions such as consid-

ering the fuselage as a cylinder, as can be seen in Figure 40.

e Stringers. The solid stringers were generated by extrusion from two cross section profiles
plus a guide curve, see Figure 41. A T profile was used for the beam designs, which is a

common choice for standard airliners, see Figure 41. The final result is shown in Figure 41.

However, due to meshing problems in the interfaces, as well as in intricate places, the design
described above was partially abandoned in favor of a more simplified model —one in which the
structure and the shell are represented by the same geometry. In this design, the fuselage is divided
into several parts in order to capture the cone and nose shapes, as can be appreciated in Figure
42. Also, in order to add an extra of rigidity, the wing torsion box, and the fairing torsion box

were created and included in the inner structure.
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b)

~_ dr:1188.57 mm

dz :84357 mm

dy:837.31 mm

Figure 40: Scheme of the fuselage approximation into a cylinder: a) Scheme of the stringer creation
used in the geometry design. b) Stringers Cross Sections in BLACK, Guide Curves in RED, Frames
in BLUE.

w

Figure 41: Stringer sections designed: a) Original section, based upon a common stringer profile
extracted from a standard airliner. b) Chosen Approximation (T section with pointing upper side).
c¢) Extruded shape applied in the model, with the union between the stringer and the frames. d)
Cross section T.

a)
o ‘

c)

e @

Figure 42: a) Profile of the fuselage, b) Front view of the fuselage, c¢) Isometric view.

Pink Part

This part refers to the Horizontal Stabilizer. The same scheme of Section 5.5.1 is applied. First
of all, the surface surrounding the tail is created, then the surfaces that define the front and rear
spar, plus the ribs are drawn. The final result of this part can be seen in Figure 43.
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RGP, 88-12-00 REF. 861100 A

Figure 43: Horizontal Tail Structure: on the LEFT scheme structure extracted from the Airbus
A-220 guide, on the RIGHT, designed tail structure (control surfaces have been neglected).

Grey Part

This part represent the vertical stabilizer, it will be solved similarly to Section 5.3.1 and Section

5.3.1 . The same process givse as a result the solid shown in Figure 44.

Figure 44: Vertical Stabilizer: on the LEFT, scheme structure extracted from the Airbus A-220
guide, on the RIGHT, designed vertical stabilizer structure, control surfaces such as the rudder
have been neglected.

Blue Part

The blue part is related to the engine fairings and the pylons. As it was done with the lifting
surfaces, a surrounding surface was created from the primitive geometry, and then, using special

surface operations, we generated the structure of this part (see Figure 45).

Figure 45: Fairing Structure and Pylon: on the LEFT, schematic structure of the pylons extracted

from the Airbus A-220. On the RIGHT, representation of the model created with SoLID WORKS
T™
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5.3.2 Design Problems

Several problems appeared when trying to generate the mesh (using the commercial software GID).
This kind of problems appeared in excessively detailed parts present in the geometry. In order to
fix those problems, geometry simplifications were introduced (see Figure 77).
N S
SO
DD

IRy

e [k

‘%ﬁ%\w B
M |

Figure 46: Union between the wing and the fuselage. Mesh compatibility were achieved after
several iterations (geometry modifications).

5.3.3 Final Geometry Design

Figure 47: Main views of the final model.
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The final design is shown in Figure 47. Material properties are summarized in Table 8. Notice
that, given the lack of information concerning the exact geometry of the airplane —and also
because of simplicity reasons—, the thickness of all components is considered equal. The distinct

substructures employed in modal analysis are sketched in Figure 49.

Table 8: Material properties.

E[MPa) v  timm] plkg/m?]
185 0.29 12 2795.6704

Figure 48: Dirichlet boundary conditions.

. sub 1
|:| sub 2
. sub 3
. sub 4
|:| sub 5
. sub 6

L.,

Figure 49: Structure partition.

5.4 Results

As in the previous examples, the number of inner DOFs have been reduced to 6. In table 9, the
natural frequencies for each defined substructure are presented. On the other hand, the 3 lowest
modal shapes of each substructure are presented in Figure 50, Figure 51 and Figure 52, and the
10 lowest natural frequencies for the total analysis are shown in Table 10. Finally, the 4 lowest
modal shapes are displayed in Figure 53, Figure 54, Figure 55 and Figure 56.
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Figure 50: Modal Shapes for the first, and the second substructures.
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Figure 51: Modal Shapes for the third and fourth substructures.
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Figure 52: Modal Shapes for the fifth and sixth substructures.
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Table 9: Natural frequencies for each substructure

Freq [1072H 2] w1 wo w3 Wy ws we
sub 1 3.2843 3.2894  3.4046 3.6208 3.8247 4.2056
sub 2 1.7606 4.4526  4.4903 6.4212 6.5100 6.9598
sub 3 1.7506 4.4178  4.4790 6.4196 6.5049 6.9629
sub 4 4.2693 4.5386  4.6705 7.9333 8.9175  11.4050
sub 5 5.9430 6.3922 10.9259 13.2915 14.0920 14.5158
sub 6 5.8864 6.3430 11.1065 13.0727 13.8760 14.6839

Table 10: Natural frequencies. CA refers to Classic Algorithm, whereas CB refers to the Craig-
Bampton algorithm.

Freq [1072H 2] w1 wo w3 Wy ws we wry wg wo w1o
CA 0.2212 1.1885 1.4333 1.6685 1.7732 1.8537 2.7734 2.8878 3.3185 3.3326
CB 0.2212 1.1870 1.4284 1.6682 1.7709 1.8507 2.7607 2.8739 3.3122 3.3258
a) b)
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Figure 53: First Modal Shape
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0.0033583 -0.0052246
z I 0.0025867 - 0.0043538

0.002015 z | 0003483

0.0013433 - 0.0026123
y 0.00067166 0.0017415
0 v 0.00087076
0

Figure 54: Second Modal Shape

|Displacement Result 'Mode 3'| |Displacement Result 'Mode 3'|
0.0072586 0.008324
I 0.0064521 I 0.0073991
0.0056456 0.0064742
- 0.0048391 - 0.0055494
- 0.0040326 0.0046245
z | 0.003228 z | 0.0036996
- 0.0024195 t 0.0027747
0.001613 0.0018498
v I 0.00080651 y I 0.00092489
0 0

Figure 55: Third Modal Shape
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a)

|Displacement Result 'Mode 4'| | Displacement Result 'Maode 4'|
0.014348 0.0029617
I 0.012752 I 0.0026326
0.011158 0.0023035
0.0095638 0.0019744
0.0079698 0.0016454
z 0.0063758 z 0.0013163

0.0047818 0.00098722
0.0031878 0.00085815

¥y 0.001594 ¥ 0.00032907
0

0

Figure 56: Fourth Modal Shape

5.5 Discussion

Similarly to the cases studied in previous sections, the agreement between the natural frequencies
predicted by the complete and partitioned model is quite acceptable (errors are below 1 %, see table
10), a fact that provides definite evidence that the implementation of the Craig-Bampton algorithm
is correct. Concerning the deformed shapes associated to each vibration mode, the resemblance is
also rather reasonable —notice that sometimes the vibration modes exhibit the same “shape” yet

opposite sign (Figure 56).

6 Concluding remarks

e From the values of natural frequencies obtained in three sets of simulations, it may be con-
cluded that the implementation of the substructuring modal analysis methodology —the
primary goal of this project— is correct, for the errors in predicting the natural frequen-
cies are relatively low (less than 1 %) and in accordance to values reported in the related
literature. Admittedly, discrepancies have been detected in some cases when visually com-
paring the deformed shapes computed with the classical modal analysis algorithm and the
Craig-Bampton method. The exact reasons behind these discrepancies have not been, un-
fortunately, uncovered by our analyses. Future research should focus on trying to elucidate
possible reasons behind these differences. As suggested in the first example, perhaps the

causes may lie in the reconstruction process that allows one to plot the deformed shapes.

e All simulations carried out have been performed automatically by launching a single script
in Matlab. For the shell problems (examples 2 and 3), this script calls a Python program,
that in turns, calls the KRATOS software—which is programmed in C++. This software
writes the finite element information into binary files that are then read by Matlab again

to perform the required modal analysis. Finally, the deformed shapes are plotted by using
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GID’s postprocess facilities. In the substructuring version, this task is repeated for each
partition.

It should be noted that the simulation of the complete airplane model (design of the geometry,
the partitioning, and the final meshing) has required an amount of work and time way
higher than the devoted into coding and testing the substructuring algorithm. The geometry
developed in this project has been extracted from a private airliner geometry, in which basic
aeronautical structures have been added, such as spars, wings and even the torsion box.
Even so, the quality of the geometry and meshing cannot be regarded as optimal from a
engineering point of view. However, considering the amount of time assigned for this project,
it can be considered an acceptable approximation in order to compare the results between
the two algorithms studied in this project.

Future Lines of Research

This project can be the starting point for future research lines, namely

As a first attempt to improve the performance of the program, it could be worthy to check

the totality of the code and see if there are any bugs —mainly in the reconstruction process.

Another possible research line would be to optimize the developed code. First of all, some
MATLAB ™ operations are still programmed without vectorization —which is the recom-
mended programming style in matlab. Further improvement can be achieved by parallelizing
the modal vibration of all substructures. Another alternative could be simply to translate
the entire problem into a general purpose language such as C++ or FORTRAN . This
final solution would be, of course, a drastic one. It has to be also considered that, although
a general purpose language tend to be faster than MATLAB ™, these kinds of languages
lack the preimplemented functions that are commonly used in that platform, and this will

suppose an extra amount of time in order to implement these auxiliar functionalities.

Of course, it is also possible to simulate a more complex geometry than the ones treated in
this study. This kind of models could be obtained by simply creating a finer mesh, as it can
be seen in Figure 57, which would require more elements and so more computational effort.
The other option is to develop, using CAD technologies a more complex geometry which
would contain even more detailed structural components. If a better geometry is desired,
it is possible to follow one of the suggested paths or even both, depending on the available

resources for the researcher.

Figure 57: Mesh refinement: a) 17005 nodes with 36651 elements, b) 35599 nodes with 75739
elements, ¢) 128794 nodes with 268336 elements.

Trying to increase the flexibility of the code is also an interesting research line. It would

consist in changing the code structure at such a way that the geometry of each substructure
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may be exchangeable, allowing the simulation of models with different iterations for each
substructure, as it is common to see in professional simulations, such the ones performed in

the aeronautical industry.
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A Costs

A.1 Workings Hours

To calculate the cost of time, an hypothetical salary of 36000 € has been considered. Using a
working week of 40 hours, total hour-rate would be 18.75 €/h. Starting by this assumption and

the hours listed below, the total amount corresponding to working hours can be seen in Table 11.

Table 11: Working hours costs

Concept Time Cost

Information research 90 1687.5
Development of the Project Charter 10 187.5
CAD software development 333 6243.75
GID file reverse engineering 15 281.25
Kratos files reverse engineering 20 375
Generation of the first problem geometry 10 187.5
Generation of the second problem geometry 24 450
Generation of the third problem geometry 264 4950
Data preparation and postprocess 40 750
Generate the mesh 5 93.75
Prepare external geometry to import 5 93.75
Modify Kratos source to extract matrices 30 562.5
Program implementation 214 4012.5
Implement vectorized modal analysis 20 375
Implement Craig-Bampton code 100 1875
Create Kratos interface 16 300
Implement beam element 20 375
Implement GiD geometry creator 48 900
Implement Kratos reader 10 187.5
Final data analysis and postprocess 15 281.25
Extract the results for the first problem 10 187.5
Compare the results of both problems 5 93.75
Documents and others 50 937.5
TOTAL 752 hours 14100 €
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A.2 Software Licenses

For this project, the total cost related to software licenses has been computed. Most of the used

software consist in open source projects. Also, most of them have important discounts for students.

Table 12: Software licenses costs

Concept Unit Cost
Cimne’s kratos 1 open source
Cimne’s gid 1 550*
Matlab 1 35.0%
Librecad 1 open source
Solidworks 1 135%
Gimp 1 open source
Latex 1 open source
TOTAL 7 225 €

A.3 Hardware

All the software development has been done using the same laptop machine, with a few peripherals,

in order to improve work speed.

Table 13: Hardware costs

Concept Unit Cost

Laptop 1 840
Mouse 1 9.66
Keyboard 1 14.94
TOTAL 3 864.6 €

A.4 Total Budget

The total estimated budget cost of the project has been computed using the results of the previous

sections.

Table 14: Working hours costs

Concept Cost

Working hours costs 14100
Software licenses costs 225
Hardware costs 864.6
TOTAL 15189.6 €
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B Environmental Impact

This project has no direct implication on that regard. All the same, clusters used for executing
large FE simulations have high power consumption [19]. By reducing the computation time several

orders of magnitude, the power need is also decreased.
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