
A Connectivity Rating for Vertices in Networks

Marco Abraham1, Rolf Kötter23, Antje Krumnack1, and Egon Wanke1

1 Institute of Computer Science, Heinrich-Heine-Universität Düsseldorf, D-40225
Düsseldorf, Germany

2 C. & O. Vogt Brain Research Institute, Heinrich-Heine-Universität Düsseldorf,
D-40225 Düsseldorf, Germany

3 Institute of Anatomy II, Heinrich-Heine-Universität, Düsseldorf, D-40225
Düsseldorf, Germany

Abstract. We compute the influence of a vertex on the connectivity
structure of a directed network by using Shapley value theory. In gen-
eral, the computation of such ratings is highly inefficient. We show how
the computation can be managed for many practically interesting in-
stances by a decomposition of large networks into smaller parts. For
undirected networks, we introduce an algorithm that computes all ver-
tex ratings in linear time, if the graph is cycle composed or chordal.

1 Motivation and Introduction

This work is originally motivated by the analysis of networks that represent neu-
ral connections in a brain. The cerebral cortical sheet can be divided into many
different areas according to several parcellation schemes [4, 9, 20]. The primate
cortex forms a network of considerable complexity depending on the degree of
resolution. Information forwarding is usually accompanied by the possibility to
respond. Thus, the corresponding networks are generally strongly connected.
From a systems point of view, it is a great challenge to analyze the influence of
a single area to the connectivity structure of the hole system. Such information
could be helpful to understand the functional consequences of a lesion.

We measure the influence of a vertex on the connectivity structure of a
directed graph G = (VG, EG) by a function φ based on the Shapley value theory,
which was originally developed within game theory1, see [16]. Our function φ

is parameterized by a so-called characteristic function denoted by fG. It counts
for a set of vertices V ′ ⊆ VG the number of strongly connected components in
the subgraph of G induced by the vertices of V ′. In general, a characteristic
function is a mapping from the subsets of a set of abstract objects N to the
real numbers R. The application of Shapley value computations to graphs was
first done by Myerson in [10], who considered only undirected graphs. For a
characteristic function h : 2VG → R defined on vertex sets, Myerson analyzed

1 In game theory literature the argument of φ is a game (usually denoted by letter v)
over an abstract set of players N and the result is a vector of R

N . Since we consider
graphs, we prefer to use letter v for vertices rather for functions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15781176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

284 M. Abraham et al.

the function that computes for a given vertex set V ′ the sum of all h(V ′′), where
V ′′ is a vertex set of a connected component in the subgraph of G induced by
V ′. That is, for undirected graphs, our function φfG

is equivalent to the function
defined by Myerson (called Myerson value) for the case that h(V ′′) = 1 for all
V ′′ ⊆ VG.

Several authors have already analyzed the computation of Shapley values de-
fined for vertices in graphs. Owen shows in [12] how to compute Myerson values
for trees. Gómez et al. prove in [7] a simple separation property for undirected
graphs that can be used to compute some Myerson values more efficiently. Van
den Brink and Borm analyze in [18] a characteristic function for vertex sets
of directed graphs and show that the Shapley values for this function can be
computed efficiently. However, this characteristic function covers only a local
property of the vertices. Deng and Papadimitriou consider in [2] a characteristic
function that sums up the weights of all edges between two vertices of V ′.

The paper is organized as follows. In Section 2, we recall the definitions
we need from Shapley value theory [16]. In Section 3, we introduce a binary
relation on vertices called strong separability. If two vertices u, v are strongly
separable then the rating φfG

(u) is independent of the existence of v and vice
versa, that is, φfG

(u) = φfG−{v}
(u) and φfG

(v) = φfG−{u}
(v), where G−{u} is

graph G without vertex u and G−{v} is graph G without vertex v. This allows
us to decompose a directed graph into subgraphs such that the ratings of the
vertices in the original graph are computable by the ratings of the vertices in the
subgraphs (Theorem 1). We also show that deciding whether two vertices u, v

are not strongly separable is NP-complete (Theorem 2) and deciding φfG
(u) <

φfG
(v) for two given vertices u, v is NP-hard. This implies that an algorithm

for the computation of φfG
can be used to decide an NP-hard as well as a

co-NP-hard decision problem.
In Section 4, we consider undirected graphs as a special case of directed

graphs where undirected edges are represented by directed edges oriented
against each other. Definition 1 applied to undirected graphs yields that two
vertices are strongly separable if and only if there is no chordless cycle passing
u and v. The extension of Theorem 1 to undirected graphs (Theorem 4) allows
us to compute the rating φfG

(u) for all vertices in linear time if G is cycle
composed (Theorem 5) or chordal (Theorem 6).

Although some of the results shown in this paper can be extended to a much
more general case, we restrict ourself to the one characteristic function fG. This
reduces the mathematical notations and keeps the proofs as simple as possible.

2 The Shapley value

Let N be any set of abstract objects. A characteristic function f is a mapping
from the subsets of N to the real numbers R with f(∅) = 0. A carrier of f is
a set C ⊆ N such that f(S) = f(S ∩ C) for every S ⊆ N . Any superset of

A Connectivity Rating for Vertices in Networks 285

a carrier C of f is again a carrier of f . The objects outside a carrier do not
contribute anything to the computations by f .

The sum (superposition) of two characteristic functions f and g, defined
by (f + g)(S) = f(S) + g(S), is again a characteristic function. Let π be any
permutation of N , that is, π is a one to one mapping of N to itself. For a set
S ⊂ N let π(S) = {π(x) | x ∈ S) be the image of S under π. Let fπ be the
characteristic function defined by fπ(S) = f(π−1(S)).

To rate the objects of N with respect to a characteristic function f , we use a
function φ that associates with every characteristic function f a rating function

φf : N → R such that

(Axiom 1:) for every permutation π of N and all x ∈ N ,

φfπ
(π(x)) = φf (x),

(Axiom 2:) for every carrier C of f ,

∑

x∈C

φf (x) = f(C),

and
(Axiom 3:) for any two characteristic functions f and g,

φf+g = φf + φg .

Shapley has shown in [16] that function φ is uniquely defined by the three
axioms above. He has also shown that the rating of an object with respect to a
characteristic function f is computable by

φf (x) =
∑

S⊆N, x∈S

(|S| − 1)! (|N | − |S|)!

|N |!
(f(S) − f(S − {x})), (1)

where |S| and |N | denote the size of S and C, respectively, or alternatively by

φf (x) =
1

|N |!

∑

π∈ΠN

(f(m(π, x) ∪ {x}) − f(m(π, x))), (2)

where ΠN is the set of all one to one mappings (enumerations) π : N →
{1, . . . , |N |} and

m(π, x) = {y ∈ N | π(y) < π(x)}

is the set of all y ∈ N arranged on the left side of x.

3 A vertex rating for directed graphs

We now define a characteristic function fG to rate the vertices in directed
graphs. The rating will measure the influence of a vertex on the connectivity

286 M. Abraham et al.

structure. The smaller the rating of a vertex the greater its importance to the
connectivity.

Let G = (VG, EG) be a finite directed graph, where VG is a finite set of
vertices and EG ⊆ VG × VG is a finite set of directed edges. A path in G is a
sequence p = (v1, . . . , vk), k ≥ 1, of distinct vertices such that (vi, vi+1) ∈ EG

for i = 1, . . . , k − 1. We say, p is a path of length k from v1 to vk. A path is
called a cycle of G if G additionally has edge (vk, v1). We will consider only
simple paths and cycles in which all vertices are distinct.

For a vertex set V ′ ⊆ VG, let G|V ′ be the subgraph of G induced by the
vertices of V ′, that is, G|V ′ = (VG′ , EG′) where VG′ = V ′ and EG′ = E∩V ′×V ′.
G is strongly connected if for every pair of vertices u, v ∈ VG there is a path
from u to v in G. A strongly connected component of G is a maximal strongly
connected subgraph of G.

Let SCC(G) be the set of all strongly connected components of G, and fG

be a function from the subsets of VG to the real numbers R (here we need only
the set of non-negative integers) such that for every subset V ′ ⊆ VG,

fG(V ′) = |SCC(G|V ′)|.

That is, fG(V ′) is the number of strongly connected components in the subgraph
of G induced by the vertices of V ′. Note that fG is a characteristic function,
because fG(∅) is always zero. The complete vertex set VG is always the only
carrier of fG for every directed graph G. By Axiom 2, we have

∑

v∈VG

φfG
(v) = fG(VG) = |SCC(G)|.

Figure 1 shows an example of the vertex rating φfG
for a directed graph G

with vertex set VG = {v1, v2, v3, v4, v5, v6, v7, v8}. Since G is strongly connected,
we get fG(VG) =

∑

v∈VG
φfG

(v) = 1. Following the computation of φfG
by

Equation 2, vertex v8 has rating φfG
(v8) = 1

2 , because fG(m(π, v8) ∪ {v8}) −
fG(m(π, v8)) = 0 if and only if π(v6) < π(v8). Otherwise, we have fG(m(π, v8)∪
{v8})−fG(m(π, v8)) = 1, which happens for half of all 8! enumerations π. Vertex
v1 has rating φfG

(v1) = 2
3 , because fG(m(π, v1) ∪ {v1}) − fG(m(π, v1)) = 0 if

and only if π(v2) < π(v1) and π(v3) < π(v1). Otherwise, we have fG(m(π, v1)∪
{v1}) − fG(m(π, v1)) = 1. Here the second case happens for two third of all 8!
enumerations π.

Let G = (VG, EG) and G′ = (VG′ , EG′) be two directed graphs. We call G

and G′ isomorphic if there is a one to one mapping b : VG → VG′ such that for
every pair of vertices v1, v2 ∈ VG,

(v1, v2) ∈ EG ⇔ (b(v1), b(v2)) ∈ EG′ .

Such a mapping b is called an isomorphism between G and G′. If G and G′

are isomorphic then fG(V ′) = fG′(b(V ′)) for every vertex set V ′ ⊆ VG. Here

A Connectivity Rating for Vertices in Networks 287

15
2

2
3

1
2

10
−7

10
−7

15
2

15
2

5
6

2

1

3 5

4 6

7

8

Fig. 1. The vertex rating φfG
for a directed graph G with 8 vertices. The smaller

the rating of a vertex the greater its importance to the connectivity of the graph.

b(V ′) = {b(u) | u ∈ V ′} is the image of V ′ under b. This implies φfG
(v) =

φfG′ (b(v)) for all vertices v ∈ V . Let V ′ ⊆ VG be any set of vertices of G.
Graph G is called V ′-symmetric if for every pair of vertices v1, v2 ∈ V ′ there
is an isomorphism b of G to G itself such that b(v1) = v2. In V ′-symmetric
graphs all vertices v ∈ V ′ have the same rating. If two vertices v1, v2 have
the same neighborhood, i.e., if {u | (u, v1) ∈ EG} = {u | (u, v2) ∈ EG} and
{u | (v1, u) ∈ EG} = {u | (v2, u) ∈ EG}, then G obviously is {v1, v2}-symmetric.
Figure 2 shows some examples of partially symmetric graphs.

1
6

1
6

1
6

4
5

4
5

4
5

4
5

−16
20

−16
20

13
20

13
20

13
20

13
20

1
6

1
6

1
6

−11

−11 −11

−11
20

20 20

20

2

4

6
2

46

8

7

5

3

1

3

1
1 2

4 5

3

6
5

Fig. 2. The graph to the left is {v1, v3, v5, v7}-symmetric and {v2, v4, v6, v8}-
symmetric, the graph in the middle is {v1, v2, v3}-symmetric, and the graph to the
right is {v1, v2, v3, v4, v5, v6}-symmetric.

The computation of a vertex rating φfG
(v) by Equation 1 or Equation 2 is

highly inefficient. The number of subsets and the number of enumerations in-
crease exponentially in the number of vertices of G. To handle the computation
of φfG

for many practically interesting instances we will introduce a method to
decompose a large graph into smaller parts. This decomposition will allow us
to compute efficiently the ratings of vertices of the original graph by using the
ratings of the vertices of smaller subgraphs. Our decomposition method will be
introduced by the following two lemmas and Theorem 1.

The first lemma shows that the computation of a rating φfG
(v) for which

the arguments of fG are restricted to vertices of a subset V ′ ⊆ VG yields the
computation of φfG|

V ′
(v).

288 M. Abraham et al.

Lemma 1. Let G = (VG, EG) be a graph, V ′ ⊆ VG, and G′ = G|V ′ . Let ΠVG

be the set of all enumerations π : VG → {1, . . . , |VG|}. Then for every vertex

v ∈ V ′

φfG′ (v) =
1

|VG|!

∑

π∈ΠV

(fG((m(π, v) ∪ {v}) ∩ V ′) − fG(m(π, v) ∩ V ′)).

Proof. Let ΠV ′ be the set of all enumerations π′ : V ′ → {1, . . . , |V ′|}. First we
show that for every enumeration π′ ∈ ΠV ′ there are (|V ′|+1)·(|V ′|+2)·· · ··|VG|
unique enumerations π ∈ ΠVG

such that for every pair of vertices v1, v2 ∈ V ′,
π′(v1) < π′(v2) if and only if π(v1) < π(v2). Let p = (vi1 , . . . , vi|V ′|

) be the

sequence of vertices of V ′ in the order defined by π′, that is

π′(vi1) < π′(vi2) < . . . < π′(vi|V ′|
).

If we consider the vertices of VG−V ′ in an arbitrary order, then the first vertex
of VG−V ′ can be placed at |V ′|+1 positions at sequence p to get a sequence with
|V ′| + 1 vertices. After that the next vertex can be placed at |V ′|+ 2 positions
in the resulting sequence to get a sequence with |V ′|+2 vertices, and so on. The
final vertex of VG −V ′ can be placed at |VG| positions in the sequence obtained
by the preceding placement to get a sequence of all |VG| vertices of G. For all
these (|V ′|+ 1) · (|V ′|+ 2) · · · · · |VG| enumerations π defined for enumeration π′

we have
fG′(m(π′, v) ∪ {v}) − fG′(m(π′, v))

= fG′((m(π, v) ∪ {v}) ∩ V ′) − fG′(m(π, v) ∩ V ′)

for every vertex v ∈ V ′, and thus

φfG′ (v) = 1
|V ′|!

∑

π′∈ΠV ′
(fG′(m(π′, v) ∪ {v}) − fG′(m(π′, v)))

= 1
|V ′|!

∑

π∈ΠVG

(fG′ ((m(π,v)∪{v})∩V ′)−fG′ (m(π,v)∩V ′))
(|V ′|+1)·(|V ′|+2)·····|VG|

= 1
|VG|!

∑

π∈ΠVG
(fG′((m(π, v) ∪ {v}) ∩ V ′) − fG′(m(π, v) ∩ V ′))

= 1
|VG|!

∑

π∈ΠVG
(fG((m(π, v) ∪ {v}) ∩ V ′) − fG(m(π, v) ∩ V ′)).

The last equality follows from the fact that fG′(V ′′ ∩ V ′) = fG(V ′′ ∩ V ′) for
every subset V ′′ ⊆ VG. �

It is easy to see that the rating of a vertex in a graph G depends only
on the connectivity structure of the strongly connected component the vertex
belongs to, as the following observation shows. If G′ = (VG′ , EG′) is a strongly
connected component of G = (VG, EG) then for every vertex v ∈ VG′ and every
vertex set V ′′ ⊆ VG,

fG((V ′′ ∪ {v}) ∩ VG′) − fG(V ′′ ∩ VG′) = fG(V ′′ ∪ {v}) − fG(V ′′),

and thus by Lemma 1, φfG′ (v) = φfG
(v).

A Connectivity Rating for Vertices in Networks 289

We will now define a property of a vertex pair u, v that allows us to compute
independently the rating for two vertices u and v. That is, the rating of u in G

will be equal to the rating of u in graph G without v.

Definition 1. Let G = (VG, EG) be a directed graph and u, v ∈ VG be two non-

adjacent vertices, that is, neither (u, v) nor (v, u) is an edge of G. Vertex u and

vertex v are strongly separable in G if for every strongly connected induced sub-

graph H = (VH , EH) of G which contains u and v there is a strongly connected

subgraph J = (VJ , EJ) of H without u and v such that H |VH−VJ
has no path

from u to v and no path from v to u.

For the proof of the next lemma we need the notion of an undirected graph.
In an undirected graph G = (VG, EG) the edge set is a subset of {{u, v} | u, v ∈
VG, u 6= v}. Analogously to the definitions for directed graphs, an undirected

path of length k, k ≥ 1, is a sequence p = (v1, . . . , vk) of k distinct vertices
such that {vi, vi+1} ∈ EG for i = 1, . . . , k − 1. An undirected path is called an
undirected cycle if G additionally has edge {vk, v1} and the path has at least
three vertices. The subgraph of G induced by a vertex set V ′ ⊆ VG has edge set
EG∩{{u, v} | u, v ∈ V ′, u 6= v}. A graph is connected if there is a path between
every pair of vertices, a connected component is a maximal connected subgraph,
a forest is an undirected graph without cycles, and a tree is a connected forest.

Lemma 2. Let G = (VG, EG) be a directed graph and VH , VJ ⊆ VG be two

vertex sets such that VH ∪ VJ = VG and for every edge (v1, v2) ∈ EG both

vertices are in VH or in VJ , or in both sets. Let H = G|VH
, J = G|VJ

, and

I = G|VH∩VJ
. If every pair of vertices u ∈ VH − VJ , v ∈ VJ − VH is strongly

separable in G, then for every vertex set V ′ ⊆ VG,

fG(V ′) = fH(V ′ ∩ VH) + fJ(V ′ ∩ VJ) − fI(V
′ ∩ VI).

Proof. Let V ′ ⊆ VG be any set of vertices of G. Consider the following undi-
rected graph T = (VT , ET) with vertex set

VT = SCC(H |V ′) ∪ SCC(J |V ′)

such that two vertices of VT are connected by an undirected edge if and only
if the two strongly connected components have at least one common vertex. If
two distinct strongly connected components of VT are connected by an undi-
rected edge in T then one of them has to be from SCC(H |V ′) and the other
has to be from SCC(J |V ′). Furthermore, for every strongly connected compo-
nent C of SCC(I |V ′), there is exactly one strongly connected component C1 of
SCC(H |V ′) and exactly one strongly connected component C2 of SCC(J |V ′),
and the common vertices of C1 and C2 are exactly the vertices of C.

Since every pair of vertices u ∈ VH − VJ , v ∈ VJ − VH is strongly separable
in G, the undirected graph T has no cycles, that is, T is a forest. The number
of connected components of T (the number of trees of forest T) is equivalent to
the number of strongly connected components of G. The number of connected

290 M. Abraham et al.

components in a forest is always equivalent to its number of vertices minus its
the number of edges. Since T has exactly one edge for every strongly connected
component of SCC(I |V ′) and exactly one vertex for every strongly connected
component of SCC(H |V ′) and SCC(J |V ′), we get

fG(V ′) = fH(V ′ ∩ VH) + fJ(V ′ ∩ VJ) − fI(V
′ ∩ VI).

�

The following theorem states how ratings of vertices of G can be computed
by the ratings of the same vertices in certain subgraphs of G.

Theorem 1. Let G = (VG, EG) be a directed graph and VH , VJ ⊆ VG be two

vertex sets such that VH ∪ VJ = VG and for every edge (v1, v2) ∈ EG both

vertices vi, v2 are in VH or in VJ , or in both sets. Let H = G|VH
, J = G|VJ

,

and I = G|VH∩VJ
. If every pair of vertices u ∈ VH −VJ , v ∈ VJ −VH is strongly

separable in G, then

1. for every vertex w ∈ VH ∩ VJ , φfG
(w) = φfH

(w) + φfJ
(w) − φfI

(w),
2. for every vertex w ∈ VH − VJ , φfG

(w) = φfH
(w), and

3. for every vertex w ∈ VJ − VH , φfG
(w) = φfJ

(w).

Proof. Let w be any vertex of VG. By Lemma 2, for every vertex set V ′ ⊆ VG,

fG(V ′ ∪ {w}) − fG(V ′) = (fH((V ′ ∪ {w}) ∩ VH) − fH(V ′ ∩ VH))
+ (fJ ((V ′ ∪ {w}) ∩ VJ) − fJ(V ′ ∩ VJ))
− (fI((V

′ ∪ {w}) ∩ VI) − fI(V
′ ∩ VI)).

If w ∈ VH ∩ VJ , then by Lemma 1 we get

φfG
(w) = φfH

(w) + φfJ
(w) − φfI

(w).

If w is a vertex of VH −VJ , then (V ′∪{w})∩VJ = V ′∩VJ and (V ′∪{w})∩VI =
V ′ ∩ VI , and thus

fG(V ′ ∪ {w}) − fG(V ′) = fH((V ′ ∪ {w}) ∩ VH) − fH(V ′ ∩ VH),

which implies by Lemma 1

φfG
(w) = φfH

(w).

If w is a vertex of VJ − VH , then an analog argumentation yields φfG
(w) =

φfJ
(w). �

Figure 3 shows an example of a directed graph G in which all ratings φfG
(v)

are computed with Theorem 1 from the ratings of three subgraphs H , I , and
J .

We will show now that the problem to decide whether two vertices in a
directed graph are not strongly separable is NP-complete. See [6] for an in-
troduction to the theory of NP-completeness. This implies that there is no

A Connectivity Rating for Vertices in Networks 291

60
15

60
15

60
15

60
15

60
32

60
48

60
3

60
3

60
3

60
3

60
48

60
15

60
15

60
32

−25

−25

60

60

27

27

60

60

−13

−13
60

60

61

2 4

53

G

2 4

53

2 4

53

61

2 4

53

H I J

Fig. 3. Four graphs G = (VG, EG), H = G|VH
, J = G|VJ

, and I = G|VH∩VJ
such

that VH , VJ ⊆ VG, VH ∪ VJ = VG, and for every edge (v1, v2) ∈ EG both vertices are
in VH or in VG, or in both sets. Vertex pair v1 ∈ VH − VJ , v6 ∈ VJ − VH is strongly
separable in G.

polynomial time algorithms which decides whether two vertices in a directed
graph are not strongly separable, unless P = NP. The NP-hardness follows by a
simple reduction from the satisfiability problem. The terms we use in describing
this problem are the following.

Let X = {x1, . . . , xn} be a set of Boolean variables. A truth assignment for
X is a function t : X → {true, false}. If t(xi) = true we say variable xi is true

under t; if t(xi) = false we say variable xi is false under t. If xi is a variable
of X , then xi and xi are literals over X . Literal xi is true under t if and only
if variable xi is true under t; literal xi is true under t if and only if variable
xi is false under t. A clause over X is a set of literals over X , for example
{x1, x2, x4}. It represents the disjunction of literals which is satisfied by a truth
assignment t if and only if at least one of its literals is true under t. A collection
C of clauses over X is satisfiable if and only if there is a truth assignment t that
simultaneously satisfies all clauses of C.

The satisfiability problem, denoted by SAT, is specified as follows. Given
a set X of variables and a collection C of clauses over X . Is there a satisfying
truth assignment for C? This problem is NP-complete even for the case that
every clause of C has exactly three distinct literals (3-SAT, for short).

Theorem 2. The problem to decide whether two vertices u, v of a directed graph

G are not strongly separable is NP-complete.

Proof. Let us first illustrate that the problem belongs to NP. Two vertices u

and v are not strongly separable in G if and only if G has a strongly connected
induced subgraph G′ = (VG′ , EG′) that includes u and v such that G′|VG′−{u,v}

has no strongly connected subgraph G′′ = (VG′′ , EG′′) such that in G′|VG′−VG′′

there is no path from u to v and no path from v to u. Without loss of generality
we can assume that G′′ is a strongly connected component of G′|VG′−{u,v}. So we
can non-deterministically consider every strongly connected subgraph G′ of G

that includes u and v. Then we can verify in polynomial time for every strongly
connected component G′′ = (VG′′ , EG′′) of G′|VG′−{u,v} whether G′|VG′−VG′′

has no path from u to v and no path from v to u. Thus, the problem to decide
whether two vertices u, v are not strongly separable belongs to NP.

292 M. Abraham et al.

The NP-hardness follows by a simple transformation from 3-SAT. Let
X = {x1, . . . , xn} be a set of n Boolean variables and C = {C1, . . . , Cm} be
a collection of m clauses. We define a graph G(X, C) with two vertices u, v such
that there is a truth assignment t for X that satisfies every clause of C if and
only if u and v are not strongly separable in G(X, C). Figure 4 shows an ex-
ample of such a construction for four variables x1, x2, x3, x4 and four clauses
{x2, x3, x4}, {x1, x2, x4}, {x1, x2, x3}, {x1, x2, x3}.

Graph G(X, C) has six vertices u, a, b, v, c, d, two literal vertices xi, xi for
every variable xi, 1 ≤ i ≤ n, and three literal vertices cj,1, cj,2, cj,3 for every
clause Cj = {cj,1, cj,2, cj,3}, 1 ≤ j ≤ m. G(X, C) has the edges (u, a), (a, x1),
(a, x1), the edges (xi, xi+1), (xi, xi+1), (xi, xi+1), (xi, xi+1) for i = 1, . . . , n −
1, the edges (xn, b), (xn, b), (b, v), (v, c), (c, c1,1), (c, c1,2), (c, c1,3), the edges
(cj,k, cj+1,l) for j = 1, . . . , m − 1 and k, l ∈ {1, 2, 3}, and the edges (cm,1, d),
(cm,2, d), (cm,3, d), (d, u), and (d, a). Additionally, there are a so-called cross

edges from every literal vertex xi (xi) for variable xi to every literal vertex xi

(xi, respectively) for some clauses. In Figure 4, the cross edges are drawn as
dotted arcs.

X2 X3 X4

X1

X1

X2 X3 X4

vu

X1

X2

X3

X1 X1

X2X2

X3 X4

X2

X3

X4

a b

cd

literal vertices for clauses

literal vertices for variables

G

Fig. 4. The graph G(X, C) for X = x1, x2, x3, x4 and C = {x2, x3, x4}, {x1, x2, x4},
{x1, x2, x3}, {x1, x2, x3}.

Every cycle of G(X, C) that includes vertex u and v consists of two vertex
disjoint path p1 = (u, a, . . . , b, v) and p2 = (v, c, . . . , d, u). Path p1 passes exactly
one literal vertex for every variable, and defines in this way an assignment t for
the variables, where path p2 passes exactly one literal vertex for every clause.

Assume there is a truth assignment t for X that satisfies every clause. Then
there is an induced subgraph G′ of G(X, C) that includes vertex u and v but no
cross edge, for example the subgraph of G(X, C) induced by u, v, a, b, c, d and all
true literal vertices. In this case, it is not possible to destroy all paths between u

and v and all paths between v and u by removing a strongly connected subgraph
of G′. Thus u and v are not strongly separable.

Assume there is no truth assignment for X that satisfies every clause. Then
every strongly connected induced subgraph G′ of G that includes u and v has

A Connectivity Rating for Vertices in Networks 293

at least one cross edge (u′, v′). In this case it is easy to destroy all paths from u

to v and all path from v to u by removing a cycle that includes the edge (d, a)
and the cross edge (u′, v′). Thus u and v are strongly separable. �

Theorem 2 can be used to prove that deciding whether two vertices have
a different rating is NP-hard. Consider again the graph G(X, C) with the two
vertices u and v constructed for an instance (X, C) of 3-SAT as in the proof
of Theorem 2. Let G′(X, C) be the graph G(X, C) without the vertex v and its
incident edges. Then φfG(X,C)

(u) = φfG′(X,C)
(u) if u and v are strongly separable

in G, and φfG(X,C)
(u) < φfG′(X,C)

(u) if u and v are not strongly separable in G.

Theorem 3. The problem to decide whether φfG
(u) < φfG

(v) for two vertices

u, v of a directed graph G is NP-hard.

Thus, an algorithm for the computation of φfG
can be used to decide an

NP-hard as well as a co-NP-hard decision problem.

4 A vertex rating for undirected graphs

The vertex rating φfG
for directed graphs can simply be extended to undirected

graphs. For an undirected graph G let dir(G) be the directed graph we get if
we replace every undirected edge {u, v} by two directed edges (u, v) and (v, u).
Let fG now be the function from the subsets of VG to the real numbers R such
that for every V ′ ⊆ VG, fG(V ′) is the number of connected components in the
subgraph of G induced by the vertices of V ′. That is, the rating of a vertex v in
an undirected graph G is equal to the rating of v in the directed graph dir(G).

Figure 5 shows an example of the vertex rating φfG
for an undirected graph

G with vertex set VG = {v1, v2, v3, v4, v5, v6, v7, v8}.

1
12

1
4

1
3

1
2

1
6

0

−1 −1
412

2

1

3 5

4 6

7

8

Fig. 5. The vertex rating φfG
for an undirected graph G with 8 vertices.

It is easy to verify that two vertices u, v of dir(G) are not strongly separable
if and only if G has a chordless cycle that includes u and v. A chord for a
cycle c = (u1, . . . , uk) is an edge {ui, uj} such that 2 ≤ |i − j| ≤ k − 2. The
problem of determining whether an undirected graph G contains a chordless
cycle can be solved in linear time [3, 15, 17]. This is the well-known chordal

294 M. Abraham et al.

graph recognition problem. A graph G is a chordal graph if any cycle of G of
length at least four has at least one chord, or alternatively, if G has no chordless
cycle, see [8]. The problem of determining whether G contains a chordless cycle
of length k ≥ 5 can be solved in O(|VG| + |EG|2) time on O(|VG| · |EG|) space,
see [11].

Theorem 1 applied to undirected graphs yields the following theorem which
is a more general version of Proposition 2 of [7].

Theorem 4. Let G = (VG, EG) be an undirected graph and VH , VJ ⊆ VG be

two vertex sets such that VH ∪ VJ = VG and for every edge {v1, v2} ∈ EG both

vertices u1, u2 are in VH or in VJ , or in both sets. Let H = G|VH
, J = G|VJ

,

and I = G|VH∩VJ
. If G has no chordless cycle with a vertex of VH − VJ and a

vertex of VJ − VH , then

1. for every vertex w ∈ VH ∩ VJ , φfG
(w) = φfH

(w) + φfJ
(w) − φfI

(w),
2. for every vertex w ∈ VH − VJ , φfG

(w) = φfH
(w), and

3. for every vertex w ∈ VJ − VH , φfG
(w) = φfJ

(w).

Assume a connected graph G can be separated into k > 1 connected compo-
nents G1, . . . , Gk by removing a complete subgraph I of G. Let G′

i = G|VGi
∪VI

for i = 1, . . . , k be the subgraphs of G induced by the vertices of connected
component Gi and the vertices of the removed complete subgraph I . Then by
Theorem 4 for every i = 1, . . . , k the vertex rating for a vertex w of G′

i is
φfG

(w) = φfG′
i

(w) and the vertex rating for a vertex w of I is

φfG
(w) =

k
∑

j=1

φfG′
j

(w)

 − (k − 1) · φfI
(w).

An example of a class of graphs for which the rating φfG
is efficiently com-

putable is the class of cycle composed graphs which can recursively be defined as
follows. The cycle Cn with n ≥ 3 vertices is cycle composed. Let G = (VG, EG) be
a cycle composed graph and e1 = {u1, v1} be an edge of G. Let Cn = (VCn

, ECn
)

be a cycle with n ≥ 3 vertices and e2 = {u2, v2} be edge of Cn. Then the graph
obtained by the vertex disjoint union of G and Cn and the identification of u2

with u1 and v2 with v1 is cycle composed. That is, the composed graph has vertex
set VG ∪VCn

−{u2, v2} and edge set {{h(u), h(v)} | {u, v} ∈ EG ∪ECn
}) where

h(u) = u for every u ∈ VG ∪ VCn
− {u2, v2}, and h(u2) = u1 and h(v2) = v1.

Cycle composed graphs are biconnected and have tree-width at most 2, see
[13, 1] for a definition of tree-width. Graphs of tree-width at most 2 can be
recognized in linear time by removing vertices of degree at most 2. When a
vertex u of degree 2 is removed then the two neighbors of u will be connected
by an edge if they are not adjacent. A graph has tree-width 2 if and only if it
can completely be reduced by removing vertices of degree at most 2 in the way
described above, see for example [19].

Let C be the set of vertex sets of the cycles used to compose a cycle composed
graph G, that is, C has a vertex set C for every cycle used to compose G. The

A Connectivity Rating for Vertices in Networks 295

vertex rating φ(u) for all vertices u of G is computable in linear time by the
following simple procedure.

1. for every u ∈ V do {
2. let φfG

(u) := (deg(u) − 2) ∗ (− 1
2); }

3. for every C ∈ C do {
4. for every u ∈ C do {
5. let φfG

(u) := φfG
(u) + 1

|C| ; } }

Since a vertex u is involved in degr(u) − 2 vertex identifications, the rating
for u can be initialized by (deg(u) − 2) ∗ (− 1

2). After that the algorithm adds
for every cycle C the fraction 1

|C| to the ration of every vertex of C. Since the

number of vertices in the sets of C is
∑

C∈C |C| = 2|EG| − |VG|, the rating for
all vertices in cycle composed graphs can be computed in linear time, if C is
given.

The vertex sets of the cycles can be computed by the following algorithm.
We assume that an empty vertex list is initially assigned to every edge. That
is, every edge {u, v} is initially represented as a pair ({u, v}, ∅). An edge e =
({u, v}, L) with a non-empty vertex list L represents a path between u and v

passing the vertices of L. If G has a vertex u of degree 2 such that the two
neighbors v, w of u are not adjacent, we remove vertex u and its two incident
edges ({u, v}, L1), ({u, w}, L2) and insert a new edge ({v, w}, L1 ∪ L2 ∪ {u})
between u and v.

If G has a vertex u of degree 2 such that the two neighbors v, w of u are
adjacent, the vertices of a cycle can be reported. Let ({u, v}, L1), ({u, w}, L2),
({v, w}, L3) be the three edges between the vertices u, v and w. The algorithm
then reports vertex set L1 ∪ L2 ∪ L3 ∪ {u, v, w}. If graph G has no further
edges than the three edges above, then all cycles are reported and the algorithm
finishes. If graph G has some further edges and L3 is non-empty, then the graph
is not cycle composed. In any other case the algorithm removes the two edges
({u, v}, L1), ({u, w}, L2) and so forth. If this processing ends because there are
no further vertices of degree 2, then the graph is also not cycle composed.

This algorithm computes the vertex sets of all cycles used to compose a cycle
composed graph. The running time of this algorithm is O(|VG|2) because we
have to check for every vertex whether its two neighbors are adjacent. However,
this problem can be eliminated by a simple trick which is also used in [19] for
the recognition of outerplanar graphs. The trick is to check whether the two
neighbors v, w of u are adjacent at the time when one of these two vertices
v, w gets a degree of 2 or less. At that point the test can be done in a fixed
number of steps and either a new edge is inserted or a cycle is reported. This
modification yields a linear time algorithm for the computation of all cycles of a
cycle composed graph. The following example shows a possible implementation.

296 M. Abraham et al.

create-new-edge (vertex u)
{

let e1 = ({u, v}, L1), e2 = ({u, w}, L2) ∈ EG be the two edges incident to u;
insert ({v, w}, L1 ∪ L2 ∪ {u}) into Enew;
remove e1 and e2 from EG;
if (degEG

(v) = 2) then
insert v into M ;

if (degEG
(w) = 2) then

insert w into M ;
}

move-new-edge (edge enew = ({u, v}, Lnew))
{

if there is an edge e = ({u, v}, L) ∈ EG then {
output L ∪ Lnew ∪ {u, v};
remove enew from Enew;
if (|EG| = 1) and (|Enew| = 0) then

halt ”all cycles reported”;
else if (L 6= ∅) then

halt ”G is not cycle composed”;
else {

remove enew from Enew;
insert enew into EG;
if (degEG

(u) = 3) then
remove u from M ;

if (degEG
(v) = 3) then

remove v from M ; }
}

compute-cycles (graph G = (VG, EG))
{

let M := ∅;
for every u ∈ VG do {

if (degEG
(u) = 2) then {

insert u into M ; } }
while (M 6= ∅) {

let u ∈ M ;
if there is an edge enew ∈ Enew incident to u then

move-new-edge (enew);
else {

if (degEG
(u) = 2) then

create-new-edge (u);
remove u from M ; } }

halt ”G is not cycle composed”;
}

A Connectivity Rating for Vertices in Networks 297

The algorithm above stores in a set M all vertices of degree 2. Note that the
degree of a vertex is always determined by the edges of EG. For every vertex u

adjacent with exactly two vertices v, w a new edge is inserted into a set denoted
by Enew but not yet into edge set EG of graph G. Whenever a vertex u of M is
considered for processing it is first checked whether there are edges incident to
u in set Enew. If Enew has an edge e incident to u then e will either be inserted
into EG (if the two vertices of e are not adjacent by some edge of EG), or a
cycle is reported (if the two vertices of e are adjacent by some edge of EG). The
test whether the two vertices of e are adjacent by some edge of EG can be done
in time O(1) because u is one of the end vertices of e and has vertex degree 2.
This proves the following theorem.

Theorem 5. The vertex rating φfG
(u) for all vertices u of a cycle composed

graph G is computable in linear time.

The vertex rating φfG
is also computable in linear time for chordal graphs.

An interesting characterization of chordal graphs is the existence of a perfect

elimination order. Let p = (u1, . . . , un) be an order of the |VG| = n vertices of
G = (VG, EG), and let N(G, p, i) for i = 1, . . . , n be the set of neighbors uj of
vertex ui with i < j,

N(G, p, i) := {uj | {ui, uj} ∈ EG ∧ i < j}.

The vertex order p = (u1, . . . , un) is called a perfect elimination order (PEO) if
the vertices of N(G, p, i) for i = 1, . . . , n− 1 induce a complete subgraph of G.

Dirac [3], Fulkerson and Gross [5], and Rose [14] have shown that a graph
G is chordal if and only if it has a perfect elimination order. Rose, Tarjan, and
Lueker have shown in [15], that a perfect elimination order can be found in
linear time if one exists. If a perfect elimination order p = (v1, . . . , vn) of the
vertices of G = (VG, EG) is given, then the vertex rating φfG

can be computed
with Theorem 4 by the following algorithm. Note that, in a complete graph G

with n vertices, φfG
(v) = 1

n
for every vertex of G, because G is VG-symmetric.

1. let φfG
(vn) := 1;

2. for i = n − 1, . . . , 1 do {
3. let φfG

(vi) := 1
|N(G,p,i)|+1 ;

4. for all v ∈ N(G, p, i) do {
5. let φfG

(v) := φfG
(v) + 1

|N(G,p,i)|+1 − 1
|N(G,p,i)| ; } }

The running time of this algorithm is linear in the size of G, because the
assignment of Line 3 is done exactly |VG| − 1 times and the assignment of line
5 is done exactly |EG| times. Since the perfect elimination order can be found
in linear time, we get the following theorem.

Theorem 6. The vertex rating φfG
(v) for all vertices v of a chordal graph G

is computable in linear time.

298 M. Abraham et al.

References

1. H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-

oretical Computer Science, 209:1–45, 1998.
2. X. Deng and C.H. Papadimitriou. On the complexity of cooperative solution

concepts. Methods of Operations Research, 19(2):257–266, 1994.
3. G. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76,

1961.
4. D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the

primate cerebral cortex. Cerebral Cortex, 1:1–47, 1991.
5. D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific

J. Math., 15:835–855, 1965.
6. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.
7. D. Gómez, E. González-Arangüena, C. Manuel, G. Owen, M. del Pozo, and J. Te-

jada. Splitting graphs when calculating Myerson value for pure overhead games.
Mathematical Methods of Operations Research, 59:479–489, 2004.

8. A. Hajnal and J. Surányi. Über die Auflösung von Graphen in vollständige Teil-
graphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math., 1:113–121, 1958.

9. R. Kötter and E. Wanke. Mapping brains without coordinates. Philosophical

Transactions of the Royal Society London, Biological Sciences, 360(1456):751–
766, 2000.

10. R.B. Myerson. Graphs an cooperations in games. Methods of Operations Research,
2:255–229, 1977.

11. S.D: Nikolopoulos and L. Palios. Hole and antihole detection in graphs. In Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 850–859.
ACM-SIAM, 2004.

12. G. Owen. Values of graph-restricted games. SIAM Journal on Algebraic and

Discrete Methods, 7(2):210–220, 1986.
13. N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree

width. Journal of Algorithms, 7:309–322, 1986.
14. D.J. Rose. Triangulated graphs and elimination process. J. Math. Analys. Appl.,

32:597–609, 1970.
15. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimina-

tion on graphs. SIAM Journal on Computing, 5:266–283, 1976.
16. L.S. Shapley. A value for n-person games. In H.W. Kuhn and A.W. Tucker,

editors, Contributions to the Theory of Games II, pages 307–317, Princeton, 1953.
Princeton University Press.

17. R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13:566–579, 1984.

18. R. van den Brink and P. Borm. Digraph competitions and cooperative games.
Theory and Decision, 53:327–342, 2002.

19. M. Wiegers. Recognizing outerplanar graphs in linear time. In Proceedings of

Graph-Theoretical Concepts in Computer Science, volume 246 of LNCS, pages
165–176. Springer-Verlag, 1987.

20. K. Zilles. Architecture of the Human Cerebral Cortex. Regional and Laminar
Oganization. In G. Paxinos and J.K. Mai, editors, The Human Nervous System,
pages 997–1055, San Diego, CA, 2004. Elsevier. 2nd edition.

