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SUMMARY

Diana Lucia Huerta Munoz.

Candidate for the degree of Philosophy Doctor in Statistics and Operations Research.
Universitat Politecnica de Catalunya.

Department of Statistics and Operations Research.

Thesis title:

THE FLEXIBLE PERIODIC VEHICLE ROUTING PROBLEM:

MODELING ALTERNATIVES AND SOLUTION TECHNIQUES

ABSTRACT: In this thesis the Flexible Periodic Vehicle Routing Problem is introduced
and studied. In this problem a carrier must establish a distribution plan to serve a given
set of customers over a planning horizon using a fleet of homogeneous capacitated vehicles.
The total demand of each customer is known for the time horizon and it can be satisfied by
visiting the customer in several time periods. There is, however, a limit on the maximum
quantity that can be delivered at each visit. The aim is to minimize the total routing cost.
This problem can be seen as a generalization of the Periodic Vehicle Routing Problem
which, instead, has fixed service schedules and fixed delivered quantities per visit. On the
other hand, the Flexible Periodic Routing Problem shares some characteristics with the
Inventory Routing Problem in which inventory levels are considered at each time period,
the delivery of product is a decision of the problem and, typically, an inventory cost is
involved in the objective function. The relation among these periodic routing problems is
discussed and a worst-case analysis, which shows the advantages of the studied problem
with respect to the problems with periodicity mentioned above, is presented. Furthermore,
alternative mixed-integer programming formulations are described and computationally

tested.
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Given the difficulty to optimally solve the studied problem for small size instances, a
matheuristic is developed, which is able to solve large size instances efficiently. Extensive
computational experiments illustrate the characteristics of the solutions of the problem
and show that, also in practice, allowing flexible policies may produce substantial savings
in the routing costs in comparison with both the Periodic Vehicle Routing Problem and

the Inventory Routing Problem.

MOTIVATION:

e The importance in real-world applications: Vehicle Routing Problems are con-
sidered one of the most important class of problems in combinatorial optimization
due to their variety of real-world applications. Focusing on versions where customers
have periodic demand throughout a given time horizon, the study of Periodic Ve-
hicle Routing Problems has increased, mostly in the last years, as many real-world
applications related to recycling, periodic deliveries of products to customers, and

periodic visits for providing specific services have a substantial impact nowadays.

e The benefit of incorporating flexible service policies: According to Campbell
and Wilson (2014), one of the future directions of growth in the study of Periodic
Vehicle Routing Problems is the increase of operational flexibility in their definitions.
This is largely motivated by the increment of the real-world applications with peri-
odic demand, which are usually addressed by limiting service visits to a predefined
set of schedules, which, if it is not well defined, it can severely affect the quality of
the final solution. Since one of the most important criteria in this type of problems is
the minimization of transportation costs, incorporating flexible service policies may
produce significant savings. In this thesis the term flexible service policy refers to
service policies where the frequency of the visits to each customer as well as the
delivered quantities are not determined a priori. Thus the time periods when each
customer will be served and the quantity to be delivered in each visit have to be

decided.

SCOPE:

e A new generalization of vehicle routing problems with periodic demands where flex-

ible service policies are allowed is introduced and studied.
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e Flexible service policies involve two types of decisions concerning when and how
to satisfy the customers demands: those related to the frequency of visits to each

customer and those related to the quantities to be delivered at each visit.

e This research includes an analysis of the mathematical properties and suitable mixed—
integer programming formulations for the studied problem, as well as the develop-

ment of exact and approximate solution methods.

OBJECTIVES:

e General:

— To introduce and study a new vehicle routing problem with periodicity criteria
and thus generate knowledge related to this area of research.

— To analyze the effects of flexible service policies in vehicle routing problems
with periodic demand, i.e., when visits and deliveries to customers can be de-
termined by the decision maker instead of fixing them a priori (as they are

usually managed in the literature).
e Specific:
— To offer alternatives for addressing periodic vehicle routing problems by means

of new mathematical models in which this type of flexibility is allowed.

— To design and implement exact and approximate solution algorithms for solving

the new problem.

— To provide a significant analysis based on extensive computational experiments

to show the advantages of the proposed approaches.

METHODOLOGY TO ACHIEVE OBJECTIVES:

1. Analysis of the state of the art on the related field to show the advantages and

disadvantages of the existing models and solution methods.

2. Worst—case analysis for determining the potential savings obtained when flexible

service policies are included.

3. Proposal of mathematical programming formulations for modeling the new vehicle

routing problem with periodic demand.



SUMMARY XIII

4. Design and implementation of exact and approximate solution methods for the pro-

posed problem.

5. Evaluation and analysis of the performance and efficiency of the solution algorithms,

particularly for the case of large-size instances.

SCIENTIFIC DISCLOSURE: The research developed in this thesis has produced several
publications and participations in conferences, workshops, PhD schools and research stays.

All of them are briefly listed below.
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— Archetti, C., Fernandez, E., and Huerta-Mufioz, D.L. (2017a). The Flexible
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e Presentations
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CHAPTER 1

INTRODUCTION

Finding better vehicle routes in the management of freight transportation and distribution
is an aspect of crucial relevance. A mismanagement can generate high increments in
operational costs, affecting competitiveness of companies and the perception of the service
quality in customers. Some of the most significant costs that a company incurs include
the transportation costs (mainly generated by the price of fuel) and the associated wage
costs. The main aim is to minimize them. Some applications of this type of problems
arise in product distribution companies, transportation services, periodic deliveries, waste
collection, and many others (Golden et al., 2002).

The Vehicle Routing Problem (Toth and Vigo, 2014, VRP), is the name given to a class
of problems that incorporate optimization tools in order to reduce routing costs. Early
studies focus on the Traveling Salesman Problem (Shmoys et al., 1985, TSP) that assumes
one single vehicle without any type of capacity limitation as well as on the most basic VRP
models that integrate capacity constraints on an available fleet of vehicles. Recent works
progressively incorporate more complex elements, trying to increase the similarity between
the theoretical VRP models and the real-world applications. Some added elements are
time windows, priorities, service frequencies, and inventory costs (Goel and Gruhn, 2006;
Hashimoto et al., 2006; Lee, 2013).

Several methods proposed in the literature to address VRPs define a mathematical
formulation to represent the problem and apply an exact solution algorithm for solving
instances to optimality. Due to the limitation on the size of the instances that can be
solved to optimality, an alternative for dealing with larger instances is to implement an
approximate solution algorithm. Some works in the literature propose a combination of
exact and approximate methods for addressing different parts of the original problem.
These methods are known as matheuristics and have been successfully applied in VRPs

(Archetti and Speranza, 2014).
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This thesis introduces and studies a generalization of the VRP, called the Flexible Pe-
riodic Vehicle Routing Problem (FPVRP), which extends the Periodic Vehicle Routing
Problem (Campbell and Wilson, 2014, PVRP) and focuses on flexible service policies. The
term flexible service policy refers to a service policy where the frequency of the visits to
each customer, as well as the quantities to be delivered in each visit, are not fixed in ad-
vanced and are part of the decision making process. The main objective of this thesis is
to develop new modeling alternatives and appropriate solution methods that outperform,
from a cost minimization perspective, the existing models where the frequency of visits
and the amount to be delivered to customers are fixed. We define, model and develop
formulation alternatives for the FPVRP. A first formulation uses a vehicle-index repre-
sentation of the decision variables. An alternative formulation represents vehicle routes
through their loads using a set of continuous variables. In addition, we propose two types
of solution methods for solving the FPVRP. The first method is based on exact techniques
applied to the proposed formulations. It includes several inequalities and optimality cuts
to strengthen the formulations, as well as separation procedures for the families of con-
straints of exponential size. The second solution method, which is a matheuristic, is a
two—phase algorithm integrating a mixed—integer linear programming (MILP) formulation
and a Tabu Search (Glover and Laguna, 1997, TS) heuristic to obtain efficiently good
quality solutions of large size FPVRP instances. Extensive computational experiments
have been run in order to evaluate and compare the performance of the proposed solution
algorithms.

This thesis is organized as follows. In Chapter 2, an extensive review of the literature
related to the studied problem is carried out. Chapter 3 gives the formal definition of the
FPVRP and studies its relation to other VRPs with periodic demand. Two illustrative ex-
amples and the theoretical worst-case analysis of the FPVRP with respect to other related
problems are also presented. Several MILP formulations for the FPVRP as well as for the
PVRP and IRP are proposed in Chapter 4. In Chapter 5 the exact solution algorithms
developed for solving the FPVRP to optimality, the benchmark instances used in the com-
putational experience and a summary of the analysis of the extensive tests performed to
evaluate the proposed solution methods, are presented. Chapter 6 shows the description of
a two—phase solution algorithm developed to solve medium and large size instances of the

problem efficiently. Also, the analysis of the results of the corresponding computational
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experience is provided. Finally, in Chapter 7, the conclusions and future directions of the
work done are presented. Some appendices are included to provide complementary results

obtained during the development of this thesis.



CHAPTER 2

LITERATURE REVIEW

2.1 THE VEHICLE ROUTING PROBLEM

VRP (Toth and Vigo, 2014) is the term used to identify a class of problems focused on
designing optimal routes for a fleet of capacitated vehicles that depart from a given depot
in order to satisfy the demand of a set of customers. The minimization of the total
transportation cost is one of the objectives most often considered in these problems. VRP
constraints include those that model the assumption that vehicles have a limited capacity,
so that the overall demand satisfied by a vehicle route does not exceed the capacity of
the vehicle. These problems were introduced by Dantzig and Ramser (1959) in the work
The Truck Dispatching Problem in which a set of routes was sought for a fleet of fuel
dispatching vehicles, which should travel from a depot to several service stations to satisfy
their demand.

The VRP is an NP-Hard problem (Garey and Johnson, 1979) because it is a generaliza-
tion of two well-known combinatorial problems: the Traveling Salesman Problem (Shmoys
et al., 1985, TSP) and the Bin Packing Problem (Coffman et al., 1984, BPP). In practice
VRPs are much more difficult to solve than TSPs, due to the difficulty of the additional
constraints. According to Laporte (2009) and Uchoa et al. (2017), the best—known exact
algorithms can solve to optimally instances with up to 100 nodes. Because of the difficulty
of finding good quality solutions in small computing times for real-world applications, a
considerable amount of current work on VRPs deals with approximate methods to handle
large size instances.

Different variants and extensions have been proposed for modeling several real-world
applications. For example, the Multi—-Depot VRP (Salhi et al., 2014, MDVRP), which
considers two or more depots that must attend customer demands through their vehicles.

Another VRP extension is the one that considers a heterogeneous fleet (Baldacci et al.,
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2008, HVRP). The Split Delivery VRP (Archetti et al., 2008a, SDVRP), allows that the
demand of each customer is met by two or more vehicles. The VRP with Time Windows
(Lau et al., 2003, VRPTW) assumes that deliveries to each customer must be attended
within a certain time interval, which varies among customers. In Dynamic VRPs (Pillac
et al., 2013; Albareda-Sambola et al., 2014, DVRP), some delivery orders are known but
during the day new orders arrive, which must be incorporated into the current plan.
Additionally, there are other interesting research areas that study VRPs with multiple
decision criteria called multiobjective VRPs (Alabas-Uslu, 2007; Garcia Calvillo, 2010),
which involve more than one objective to be optimized simultaneously. In practice, several
elements of the input data of VRPs may be uncertain (Zhang et al., 2013). On the other
hand, VRPs with Pickup and Delivery (Coté et al., 2012; Hernandez-Pérez et al., 2016,
VRPPD) allow routes with two different types of customers: customers who require loading
product and customers who require unloading product. The book by Toth and Vigo (2014)
overviews a good number of VRPs that have been studied by different authors.

This thesis focuses on a VRP variant that considers periodic customers demands
throughout a specific time horizon. Some of the problems related to the one that we

study are overviewed below.

2.2 VEHICLE ROUTING PROBLEMS WITH PERIODIC DEMAND

Some real-world VRP applications require to serve the customers demand throughout a
given time horizon. The vehicle capacity constraints as well as inventory limitations at
the customers locations usually suggest to address this type of problems resorting to some
periodicity in the visits to customers. Periodic routing problems have been studied for over
forty-three years since the idea of introducing periodicity was first proposed by Beltrami
and Bodin (1974).

According to Campbell and Wilson (2014), the most common applications of routing
problems with periodicity can be classified in terms of how customers demands are satisfied,
i.e., by picking up a product (garbage, recyclable, wastes, autoparts, oil, factory goods,
etc.), by delivering it (groceries, blood, vending machines, hospitals, etc.), or by giving on-
site service (maintenance of equipment, home health care, quality inspectors, etc.). Two

comprehensive surveys that show such applications are Francis et al. (2008) and Campbell
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and Wilson (2014).

Three important groups of VRPs with periodic demand, which are related to the
problem studied in this thesis are the classical Periodic VRP (PVRP), the PVRP with
Service Choice (PVRP-SC) and the Inventory Routing Problem (IRP).

2.2.1 THE PERIODIC VEHICLE ROUTING PROBLEM

Five years after the seminal work of Beltrami and Bodin (1974), Russell and Igo (1979) used
the name “Assignment Routing Problems” to refer to this family of problems. Christofides
and Beasley (1984) used the name “Period Routing Problem”, and provided the first
mathematical formulation, while the current name “Periodic Vehicle Routing Problem”
was coined by Gaudioso and Paletta (1992).

The PVRP (Campbell and Wilson, 2014) is a generalization of the classical VRP in
which vehicle routes must be constructed over a given time horizon using predefined sched-
ules that indicate the time periods when customers should be visited. Feasible schedules
for a given customer reflect the frequency with which the customer should be visited ac-
cording to its service demand. Each day of the time horizon vehicles travel along routes
starting and ending at a specific depot depending on the selected schedule. According to
Christofides and Beasley (1984), three important considerations must be taken into ac-
count in PVRPs: define a schedule for the set of customers, assign customers to vehicles
and find the best route that each vehicle must take in order to serve their demands. De-
pending on the frequency of visits to a given customer, a fraction of its total demand will
be delivered at each time visit. The aim is to select a feasible schedule for each customer,
and to find a set of routes that minimize the total travel cost satisfying vehicle capacity
and customer visit requirements.

Several extensions of the original PVRP have been addressed over the last forty-three
years: Periodic TSPs (PTSP), PVRPs with Time Windows (PVRPTW), Multi-depot
PVRPs (MDPVRP), PVRPs with Intermediate Facilities (PVRP-IF), and many others.

2.2.2 THE PERIODIC VEHICLE ROUTING PROBLEM WITH SERVICE CHOICE

The PVRP-SC is a variation of the PVRP in which the visit frequency is a decision
variable and it is allowed to visit customers more often than their predefined frequencies.

This problem was proposed and formulated as an integer programming (IP) formulation
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by Francis et al. (2006) and a continuous approximation model was presented by Francis
and Smilowitz (2006). In Francis et al. (2006) the objective function combines routing and
service decisions. They propose a solution method based on a Lagrangian relaxation of
the formulation, which allows to obtain tight lower and upper bounds. If the bounds do
not coincide, a branch and bound method is applied to close the gap between them. A
variation of this algorithm is used as a heuristic in order to obtain high quality solutions
to large instances. In Francis and Smilowitz (2006) the authors show that the proposed

continuous approximation is useful using a set of benchmark instances.
2.2.3 THE INVENTORY ROUTING PROBLEM

The IRP (Coelho et al., 2013) is a VRP with periodic demand that includes inventory
management and delivering—scheduling decisions, which depend on the inventory levels
at each time period. This family of problems was introduced by Bell et al. (1983) as
the Vendor-Managed Inventory (VMI). Three decisions must be made: when to serve
customers, the amount of product to deliver at each visit, and the design of the service
routes at each day of the time horizon. The aim is to minimize the total inventory holding
cost plus the total routing cost.

According to Coelho et al. (2013), variants of the IRP allow alternative replenishment or
inventory handling policies, or different criteria related to inventory and routing decisions.
Two common replenishment policies are: the Maximum-—Level policy and the Order—Up—to
level policy. In the first one the quantity to replenish can be any amount that does not
exceed the capacity available per customer, while in the second one the total inventory
capacity level of each visited customer is filled at each visit. The inventory handling policies
include alternative options like allowing (or not) stock—out, avoiding negative inventory
(back—orders), or undelivered demand. Archetti et al. (2014) analyzed and evaluated
different formulations and valid inequalities for a Multi—Vehicle IRP. An extensive review
of the IRP literature is given in Coelho et al. (2013).

Different matheuristics have been used for solving large size IRP instances. Accord-
ing to Bertazzi and Speranza (2012b), some of the most common matheuristics for IRPs

correspond to the following classification:

o Routing—based: The aim is to minimize only the routing costs. However, considering

only routing costs may result in solutions of low quality when inventory costs are



CHAPTER 2. LITERATURE REVIEW 8

added to the final solution.

o Inventory—first routing—second: First, a subproblem that focuses on the inventory

criterion is solved. Then routing is obtained by solving a TSP for each time period.

o (luster—first inventory—routing second: First, customers are grouped into segments,

then a small inventory—routing model is solved to optimality for each segment.

e Intensified T'S: Combines a TS scheme with MILP formulations to intensify the search

of the solution space.

2.3 STATE OF THE ART FOR PERIODIC VEHICLE ROUTING

Several solution methods have been proposed for solving different classes of PVRPs. Given
the difficulty of exact methods for finding optimal solutions for large size instances, most
of them are approximate approaches. The most relevant methods use sophisticated tech-
niques to obtain high quality solutions. Those considered state of the art are shown in

Figure 2.1 and are explained below according to their year of publication.
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Figure 2.1: State-of-the-art approaches for PVRPs.

Christofides and Beasley (1984) provided the first IP formulation for the PVRP. How-
ever, this formulation was not used for solving the problem. Instead, a heuristic was used
to initially assign visit days to customers and then the VRP resulting for each time period
was solved.

Chao et al. (1995) proposed a heuristic consisting of an initialization, an improvement

phase and a feasibility recovery step. In the initialization phase, an IP formulation is
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solved in order to obtain the assignment of customers to schedules. Then, in the second
phase, a record to record improvement heuristic is applied to obtain better solutions. If the
final solution is infeasible a procedure is applied to recover feasibility. In order to analyze
its effectiveness, the heuristic was applied to existing benchmark instances and to new
instances generated by the authors. In particular, the heuristic improved the best—known
solutions for most of the benchmark instances tested.

Cordeau et al. (1997) proposed a TS algorithm for solving three generalizations of
PVRPs. This algorithm generates an initial solution in which feasibility is not required.
The initial solution is then modified by applying different moves and by avoiding recent
ones. The heuristic was tested with the PVRP instances used by Chao et al. (1995). The
results showed that in 24 out of the 32 considered instances, the proposed TS produced bet-
ter solutions than the best—known results of the literature. In Cordeau and Maischberger
(2012) this TS heuristic was improved by adding a local search as well as diversification
and parallelization tools.

Hemmelmayr et al. (2009a) developed a hybrid Variable Neighborhood Search (VNS)
heuristic for solving the PVRP. This VNS generates a new solution from an initial random
solution by applying different neighborhoods sequentially. Then, a 3—opt local search is
applied in order to further improve it. A worse solution can be accepted with a certain
probability using a Simulated Annealing (SA) criterion. This algorithm produced 24 new
best—known solutions for the considered PVRP benchmark instances.

Concerning exact solution methods, the algorithm of Baldacci et al. (2011) is considered
as state of the art for the classical PVRP and two of its generalizations. In this algorithm,
three relaxations of a set-partition formulation are solved in order to obtain tight lower
bounds of the problem. Moreover, five bounding procedures are developed, outperforming
some of the best—known upper bounds of Hemmelmayr et al. (2009a) and producing very
high quality solutions, which, on average, have a 1% deviation with respect to the obtained
lower bounds.

Vidal et al. (2012) proposed a metaheuristic based on a Genetic Algorithm (GA) and a
local search. This GA operates with both feasible and infeasible solutions. This heuristic
was tested using benchmark PVRP instances used in Baldacci et al. (2011) improving 20
of them within 0.02% of optimality precision.

Cacchiani et al. (2014) developed a hybrid optimization algorithm for solving the
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PVRP. This algorithm integrates the solution of a MILP within a heuristic framework.
A relaxation of a set-covering formulation of the PVRP is solved by column generation
and then a local search is applied considering a fix—and-relax procedure and a TS heuristic.
Results on benchmark instances showed that good quality solutions can be obtained by

the proposed algorithm. Some best—known solutions of the literature were improved.

2.4 FLEXIBLE SERVICE POLICIES IN PERIODIC VEHICLE ROUTING

According to Francis et al. (2008) flexible service policies may produce great savings in
the routing cost of a PVRP. Several works have studied these policies in PVRPs in order
to improve the solutions in comparison with those obtained with standard models in the
literature.

For example, Rusdiansyah and Tsao (2005) integrated IRP and PVRPTW features
to solve a problem for the delivery of products in vending—machine supply chains. They
developed a mathematical formulation that combined both inventory and periodic routing
with the difference that the objective function attempts to minimize routing, inventory
holding and visit frequency costs. However, due to the complexity of the problem, they
developed four variants of heuristics to solve it. These heuristics were evaluated and the
obtained results were compared with the best—-known PVRPTW solutions in the litera-
ture. They were able to obtain relevant savings for most of the instances through the
incorporation of inventory and vehicle routing decisions in their model.

Francis et al. (2006) introduced the PVRP-SC. In the PVRP-SC flexibility in service
frequency is considered as a decision of the model. The authors proposed a mathematical
formulation and an exact solution algorithm. Computational results showed that adding
service choice (flexibility in visit frequency) can improve the system efficiency. In order
to compare the quality of the final solution, Francis and Smilowitz (2006) evaluated their
formulation considering different service levels. They also compared the advantages and
disadvantages of considering the service choice term in the objective function. They noticed
that savings are greater when customers with high frequency of visits are closer to the
depot. In general, their results showed that adding service choice can help to provide
better designs of service options.

Francis et al. (2007) developed a T'S for a PVRP that incorporates different operational
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flexibility options: flexible service choice, crew flexibility, greater number of schedule op-
tions, and delivery strategies. They analyzed the trade-off between operational flexibility
and operational complexity through the incorporation of a set of quantitative measures.
They concluded that adding operational flexibility increases the operational complexity to
find the solutions, that the location of customers affects the savings obtained, and that
the reduction of the crew flexibility reduces the operational complexity. Their proposed
TS produced solutions within 3% of optimality for instances from the literature.

Hemmelmayr et al. (2009b) developed several solution approaches based on an IP
formulation and VNS to evaluate delivery strategies for blood products supplies. For their
IP formulation they combined IRP and PVRP features and considered two alternative
delivery strategies: regionalization (creation of regions with fixed routes) and delivery
reqularity (repeating delivery patterns for each hospital). The aim was to minimize the
traveling costs. The results of the computational experiments showed that allowing more
flexible strategies it is possible to obtain about 30% of savings.

Pacheco et al. (2012) proposed a MILP formulation and a two—phase method based
on a Greedy Randomized Adaptive Search Procedure (Feo and Resende, 1995, GRASP)
and Path Relinking (Glover et al., 2000, PR) for a real-world problem of a bakery com-
pany. They addressed the problem as a generalization of the Capacitated Vehicle Routing
Problem (Ralph et al., 2003, CVRP) because preliminary experiments showed that mod-
eling the problem as a PVRP was more complex to handle. They introduced flexibility on
the delivery dates in their approximate method and solutions were compared with those
produced by state—of-the—art metaheuristics. Their results showed that adding flexibility
to their model made it possible to obtain high quality solutions (about 20% of reduction
of the total traveling costs in real-world instances) in much less time than other solution
methods proposed in the literature.

Aksen et al. (2012) proposed two different flow commodity formulations that combined
PVRP and IRP features for a waste vegetable oil collection problem. The aim was to
minimize the total collection, inventory and purchasing costs. Neither of the proposed
formulations assumed fixed visit frequencies or predetermined schedules. Some valid in-
equalities were proposed to strengthen them obtaining about 3.28% optimality gaps on
average on small size instances.

Archetti et al. (2015) studied a multi-—period vehicle routing problem in city logistics
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where customers have to be served considering due dates. In this work, alternative flow-
based and load-based formulations that combine PVRP and IRP features are proposed
and the benefit of incorporating flexibility in the due dates and in the number of vehicles
is analyzed. Results showed that the load-based formulation outperforms the flow-based

formulation and more savings can be obtained when due dates are extended.

Table 2.1 shows the relation among works that include flexibility in the models that
are addressed. Other works found in literature where flexibility criteria are applied, can

be found in Hashimoto et al. (2006), and Ha et al. (2014).
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. - Model and solution L. .
Reference Application Type of flexibility thod Objective (Min)
metho

IRP model based on ~ Sum of the average
PVRPTW and five inventory holding and

heuristics travel costs

Rusdiansyah and Vending-machine Visit frequency is a

Tsao (2005) supply chains decision variable

PVRP-SC: exact
X . L Visit frequency is a  algorithm and heuristic Total travel cost plus
Francis et al. (2006) Library deliveries o . o )
decision variable variation of the exact service benefit

method

Continuous PVRP-SC

. o . L. i . Total travel cost plus
Francis and Periodic distribution  Visit frequency is a reduced by geographic .
. . . . . . . . service benefit of each
Smilowitz (2006) with Service Choice decision variable decomposition and .

subregion

variable substitution

Visit frequency, crew
. o flexibility, schedule =~ PVRP embedded in a Total travel cost plus
Francis et al. (2007) Periodic distribution . ) .
options, delivery Tabu Search method service benefit

strategy

. . IP formulation based
Routing decisions: .
Hemmelmayr et al. . . on IRP, a basic .
Blood product supplies regions/fixed routes L . Total traveling cost
(2009b) heuristic and a Variable

and delivery regularity .
Neighborhood Search

CVRP: metaheuristic
Bakery company Dates of delivery (GRASP & Path  Total distance traveled
Relinking)

Pacheco et al.
(2012)

Visit frequency is not Two MILPs based on

. fixed nor a limited IRP and PVRP and . .
Waste vegetable - oil o costs, vehicle operation
. number of partial linear .
collection . . costs, holding costs,
predetermined relaxations to generate

Total transportation
Aksen et al. (2012)

. and purchasing costs
schedules is assumed lower bounds

Three formulations

reinforced with valid

inequalities: Flow Transportation costs,
Archetti et al. . e Due date, crewsize, based formulation inventory costs and
City logistics . . .
(2015) vehicle capacity (FF), FF with penalty costs for
assignment variables postponed service
and load-based
formulation

Table 2.1: Literature review of flexible service policies in periodic delivery operations.



CHAPTER 3

THE FLEXIBLE PERIODIC ROUTING PROBLEM

The Flexible Periodic Vehicle Routing Problem can be seen as a new generalization of the
PVRP that allows service policies that are flexible with respect to the frequency of visits
and the amount delivered at each visit. The motivation for this research stems from the
variety of real-world PVRP applications that have been constrained to deliver for each
customer a fixed amount of product with a pre-established frequency. As it will be seen,
allowing flexible service policies for these two criteria may produce considerable operational
savings, both theoretically and empirically. The general aim of this research is to provide a
suitable mathematical and algorithmic framework for PVRPs in which flexible distribution
plans are allowed to improve the quality of the final solutions.

This chapter is organized as follows. The FPVRP, the PVRP and the IRP are formally
defined in Section 3.1 and their relation is described in Section 3.2. Two illustrative
examples are given in Section 3.3 to highlight the main advantages of FPVRPs over PVRPs
and IRPs. These potential advantages are formalized in Section 3.4 with a theoretical
worst-case analysis for the savings that can be obtained with the FPVRP with respect to

these related problems.

3.1 FORMAL DEFINITION AND RELATED PROBLEMS

3.1.1 THE FLEXIBLE PERIODIC VEHICLE ROUTING PROBLEM

Consider a complete and directed network G = (N, A) with set of nodes N = {0} UC and
set of arcs A. Node {0} denotes the depot and C' = {1,...,n} the set of customers. Let
T ={1,...,H} be a discrete set of time periods. Each customer i € C has a total demand
W; over T and a storage capacity w;. A homogeneous fleet of vehicles K = {1,...,m}, with
capacity @ is available to perform the service. In order to satisfy the customers demand

a distribution plan must be defined, indicating the quantity of product to be delivered to

14
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each customer at each time period. The quantity delivered to customer i € C at each visit
cannot be greater than w; and the sum of the quantities delivered over T' must be equal to
W;. A cost ¢;; > 0 is associated with each arc (7, j) € A and is paid every time a vehicle
traverses the arc.

The FPVRP is the problem of finding the quantity to be delivered to each customer
at each time period that, together with the set of routes that satisfy customer demands at

the end of the time horizon, minimize the total routing cost.
3.1.2 THE PERIODIC VEHICLE ROUTING PROBLEM

In the PVRP, as defined in Christofides and Beasley (1984), a set of schedules, S, is given.
Each schedule consists of a set of days in which customers receive service. This implies
that each customer will be visited, receiving the same amount of product w; at each visit,
in every day of the schedule, i.e., S; = {s € S : ) ,.ras = fi} where S; is the schedule

chosen for customer i, f; is the visit frequency for customer ¢, and

1 if day t € T belongs to schedule s € S,

e 0 otherwise.

Three sets of decisions have to be made: select a schedule from all the predefined
options for each customer, assign customers to vehicles, and generate the routes to be
performed in each period of the time horizon.

The PVRP is the problem of selecting a schedule for each customer and finding a set
of routes consistent with the selected schedules of minimum total routing cost.

The relation between the FPVRP and the PVRP can be established by defining the
storage capacity w; as the ratio between the total demand W; and the expected frequency
of visits f; as defined in the PVRP. Thus, w; = %:. This way, in the FPVRP customer

i
i has to be visited at least f; times (the frequency defined in the PVRP). The customer

may be visited more frequently if this leads to cost savings.

3.1.3 THE PERIODIC VEHICLE ROUTING PROBLEM WITH SERVICE CHOICE

The PVRP-SC is a generalization of the PVRP in which service frequency is a decision of
the model. Similarly to the FPVRP, the PVRP-SC is defined on the same network G and
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the service frequency f; is a lower bound on the number of days that a customer ¢ € C
must be visited. However, the amount of product to deliver to each customer at each visit
is established by the selected schedule, which comes from the set S of possible options
known beforehand. The number of days for each schedule s € S is denoted by ~°. A
stopping cost 77 is defined for each customer i € C' and each schedule s € S. Furthermore,
a service benefit o® and a demand accumulation factor 8°, s € S, are defined.

The aim of the PVRP-SC is to find a set of routes, for each vehicle and each time
period, that minimizes the total travel cost plus the service benefit, satisfying the vehicle

capacities and the minimum service requirements.
3.1.4 THE INVENTORY ROUTING PROBLEM

The IRP is defined on the same network GG as the FPVRP. The difference with respect to
the FPVRP setting is that customers are no longer associated with a total demand W;.
Instead, a demand d! is defined for each customer i € C and each time period t € T.
Moreover, a starting inventory level 1Y is associated with each customer, together with a
capacity w;. The distribution plan has to be such that each customer is able, at each time
period, to satisfy the demand d!, thus the customer must have a sufficient quantity I} in
inventory. Moreover, the quantity delivered at each visit plus the inventory available when
the visit is performed should not exceed the capacity w;. Similarly to Archetti et al. (2014)
it is assumed that, at each customer, the inventory level at time ¢ € T is the inventory
level at time t — 1 plus the amount delivered at time ¢ minus the amount consumed at
time £. No shortages are allowed.

The aim of the IRP is to determine the quantity of product to deliver to each cus-
tomer and the corresponding service routes, guaranteeing that there is no shortage at each
customer in each time period, of minimum total routing cost.

Note that the IRP, as defined in Bertazzi and Speranza (2012a, 2013) and Coelho et al.
(2013), includes inventory holding costs in the objective function and inventory constraints
at the supplier. In order to have a fair comparison with the FPVRP, none of these elements
will be considered from now on. Such a version of the IRP will be referred to as the FPVRP
with Inventory Constraints (FPVRP-IC).
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3.2 RELATIONSHIP AMONG PERIODIC ROUTING PROBLEMS

PVRPs, PVRPs—SC and IRPs share some characteristics: they perform periodic visits to
customers in order to deliver a certain quantity of product along a time horizon. These
visits incur some costs mostly related to the routing of the vehicles. There are however
important differences among these classes of problems as well.

In the PVRP, every customer must be visited with a known periodicity on a specific
time horizon. This periodicity (or frequency) must be chosen from a set of schedule
plans which are known initially. At each visit the quantity delivered is exactly the same,
according to the selected schedule. In the PVRP-SC, the frequency of visits is modeled
as a decision variable. In particular, it is allowed to visit customers more often than a
minimum predefined frequency. However, the PVRP-SC still depends on a previously
known reference schedule for each customer, which determines the amount of product
to deliver to each customer at each time visit. A service benefit, which mainly depends
on the demand of each customer, is considered to determine the solution cost. On the
other hand, the IRP incorporates inventory management and a distribution route design
decisions simultaneously. It is not based on a predefined schedule, and customers are
visited according to their replenishment policy. In this type of problems, the frequency of
visits is implicit and there is no minimum service requirement as in the PVRP-SC. The
amount of product to deliver to each customer depends on the customer inventory at that

time and it is modeled as a decision variable. Table 3.1 summarizes the main differences

among these three types of problems.

Problem Periodicity Delivered quantity Objective
Predefined set of Same quantity at each . .
PVRP d o Minimize routing cost
schedules visit
Depends on the
Predefined schedule Maximize net profit:
PVRP- | . * | selected schedule and prowt
visit frequency modeled . balance between service
SC . . . the delivery strategy at .
as a decision variable benefit and routing cost
each customer
Modeled as a decision
No predefined schedule . . .
. variable. Depends on Minimize holding plus
IRP and unconstrained . .
.. the replenishment routing costs
number of visits .
policy

Table 3.1: Comparison among PVRP, PVRP-SC and IRP.
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3.3 ILLUSTRATIVE EXAMPLES

In this section we present two examples that motivate the study of the FPVRP and show
the potential savings that can be obtained with respect to both the PVRP and the IRP.
The first example refers to the comparison between the FPVRP and the PVRP while the
second compares the FPVRP and the FPVRP-IC.

Example 1. Consider a PVRP instance with a number of customers |C| = 4, a time
horizon |T'| = 6, a vehicle capacity Q@ = 8 and a fleet of |K| = 2 vehicles. Suppose that
distances are as indicated in Figure 3.1 where ¢ < M and a < M. In addition, for each

1 € C, a total demand W; = 12 and a number of visits f; = 2 are assigned.

M —¢€

Figure 3.1: Input network for Example 1.

In the classical PVRP each customer has to be visited every third day and the quantity
to be delivered at each visit is w; = 12—2 = 6. The set of feasible schedules for each customer
is Si = {(1,4),(2,5),(3,6)}, i € C. Since the capacity of each vehicle allows to serve one
customer per route, any solution minimizing the number of vehicles is optimal for this
PVRP instance. The minimum number of routes is (4 x 1)+ (2 x 2) = 8 (4 days with one
route and 2 days with two routes). An optimal PVRP solution is the one that is shown in

Figure 3.2 and is described below:

3.2a Periods 1 and 4: One vehicle delivers 6 units to Customer 1 and another vehicle
delivers 6 units to Customer 2. The traveled distance is 8M (2M per vehicle at each

time period).
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3.2b Periods 2 and 5: One vehicle delivers 6 units to Customer 3. The traveled distance

is 4AM (2M for each time period).

3.2¢ Periods 3 and 6: One vehicle delivers 6 units to Customer 4. The traveled distance

1s 4M — 4e

The overall distance traveled by the 8 vehicles is 16 M — 4¢.

M —e¢

S1 =52 ={(1,4)},
(a)  qt=g*=6, — —
Dist =2 x (2 x 2M.) Dist = 2 x 2M Dist = 2 x (2M — 2¢)

Figure 3.2: Optimal PVRP solution. Total distance traveled: 16 M — 4e.

For the FPVRP, the following schedule is optimal:

3.3a Periods 1 and 4: One vehicle delivers 6 units to Customer 1 and 2 units to

Customer 4. The traveled distance is 4M (2M at each time period).

3.3b Pertiods 2 and 5: One vehicle delivers 6 units to Customer 2 and 2 units to

Customer 4. The traveled distance is 4M +2a—2e (2M +a —¢€ at each time period).

3.3¢ Pertods 3 and 6: One vehicle delivers 6 units to Customer 38 and 2 units to

Customer 4. The traveled distance is 4M +2a—2¢ (2M +a —¢€ at each time period).

The total traveled distance is 12M + 4(« — €), which is much smaller than 16M — 4e
when e K M and o < M. Figure 3.3 shows the FPVRP solution.
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M—e

o (L S PR
(a) ¢ =6, =2, (b) @ =06,q," =2, (c) g3 =06,q, =2,
Dist =2(2M) Dist =2(2M + a —¢) Dist =2(2M + a — ¢)

Figure 3.3: Optimal FPVRP solution. Total distance traveled: 12M + 4o — 4e.

Example 2. Consider now a FPVRP-IC instance with |C| =5 customers, time horizon
|T'| = 3, a vehicle capacity Q = 228 and a fleet of | K| = 2 vehicles. Distances between each
pair of nodes 1,5 € N are shown in Figure 3.4. It is assumed that each customer i € C' has
a fived demand at all time periods, i.e., d = d; for allt € T. Information about the demand
per period (d;), the initial inventory levels (I?) and the mazimum inventory levels at each

customer (w;) is presented in Table 3.5. Note that for the FPVRP W; = di x |T| — I?.

i dp 19w W

)

1 87 87 174 174
8 86 172 172
65 65 130 130
53 106 159 53
13 26 39 13

[ L \V)

Figure 3.4: Input network for Ex-

ample 2. Table 3.5: Initial data for Example

2.

An optimal FPVRP-IC solution for this example is:

3.6a Period 1: One wvehicle delivers 65 units to Customer 3. The traveled distance is

106.98. The customers inventory levels are I} = {0,0,65,53,13}.

3.6b Period 2: One vehicle delivers 13 units to Customer 5 and 172 units to Cus-

tomer 2. Another vehicle delivers 58 and 174 units to Customers 4 and 1, re-
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spectively. The traveled distance is 2088.86. The customers inventory levels are

12 = {87,86,0,53,13}.

3.6c Period 3: One wvehicle delivers 65 units to Customer 3. The traveled distance is

106.98. The final inventory levels are all zero.

®

® @ @ @

(a) Period 1: Dist 106.98 (b) Period 2: Dist 2088.86 (c) Period 3: Dist 106.98

Figure 3.6: Optimal FPVRP-IC Solution. Total distance traveled: 2302.82.

The total distance of the optimal FPVRP-IC solution is 2302.82.

If the FPVRP associated with this instance is considered, then W; = dt x |T| — I? as

inventory levels are no longer considered at the customers. Then, an optimal solution for

the FPVRP is as follows:

3.7a Period 1: No deliveries are performed. The traveled distance is 0.

3.70 Period 2: One vehicle is used to deliver 10 units to Customer 2 and 174 units to
Customer 1. The traveled distance is 1058.47.

3.7c Period 3: One vehicle delivers 130 units to Customer 3 and another vehicle delivers

18, 58 and 162 units to Customers 5, 4 and 2, respectively. The distances traveled
by the vehicles are 106.97 and 944.05, respectively.
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@ @ 1 @ @

® ® 5 ® @. ....................... @

(a) Period 1: Dist 0 (b) Period 2: Dist 1058.47 (c) Period 3: Dist 1051.03

Figure 3.7: Optimal FPVRP Solution. Total distance traveled 2109.51.

The total distance of the optimal FPVRP solution is 2109.51. Therefore, in this exam-
ple, the FPVRP produces an improvement of more than 8% with respect to the FPVRP-IC
(Cost = 2302.82).

3.4 WORST-CASE ANALYSIS

In the examples of Section 3.3 it was shown that substantial savings can be obtained by
the FPVRP with respect to both the PVRP and the FPVRP-IC. This section quantifies
and formalizes the maximum potential savings in each case. Let z(P) denote the optimal
value to a given instance of problem P.

z(PV RP)
=(FPVRP)"

Theorem 1. There exists no finite bound for the ratio

Proof. Consider the following instance of the PVRP in which |T| = 2, |K| = @ and
fi = 1 for each customer i. There are three sets of customers. The first set is composed
by @ customers with w; = W; = . In the second set there are () customers with
w; = W; = @ — 1 and the third set have ) customers with w; = W; = 1. Moreover,
all customers can be visited either in ¢ = 1 or in ¢ = 2. Customers and depot locations
are as follows. Each customer in the first set is co-located with a customer of the second
set and they are spread around a circle centered at the depot with radius § < 1 and a
distance € apart. Customers of the third set are spread around a circle centered at the
depot with a radius 1, perfectly aligned along the radius with the customers of the first
and second set, with a distance § apart (Figure 3.8a). Note that, as the fleet is composed
by @ vehicles and |T'| = 2, the maximum number of routes during 7" is 2Q). Moreover, as

the total demand of customers is 2Q?, all vehicles must be used and fully loaded in both

periods.
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The optimal and only solution of the PVRP is the one where () routes are used to
serve the customers in the first set with direct trips to the depot and the other () routes
serve one customer in the second set and one customer in the third set each. The cost of
this solution is 2Q0 + 2Q) (Figure 3.8b).

The optimal solution of the FPVRP is the following (Figure 3.8¢c). In ¢ = 1 one route
is used to serve all customers in the third set. There remains @Q — 1 routes in ¢t = 1 and
Q@ routes in t = 2. They are constructed as follows. Without loss of generality, choose
one customer of the second set as the first customer. Number all customers in a clockwise
direction as i1, ..., 7| if they belong to the second set and ji, ..., jig| if they belong to the
first set. The first route delivers @ — 1 units to customer ¢; and 1 unit to customer j;.
The second route delivers ) — 1 units to customer j; and 1 unit to customer io. The third
route delivers delivers () — 2 units to customer io and 2 units to customer jo, and so on.
We obtain ) + @ — 1 routes where the last route delivers () units to customer jjg. The
odd routes are performed in ¢ = 2 while the even routes are performed in ¢ = 1 (as no
customer can be served more than once in the same period). The cost of this solution is
24+ (Q—-1)(5)+2Q5+ (Q —1)(20 +¢).

The ratio between z(PV RP) and 2(FPV RP) is therefore 5 290420

(Q@-1)(5)+2Q0+(Q-1)(20+¢) "
When @ goes to infinity and €, § and § go to 0 this ratio tends to infinity.
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(c) FPVRP Solution

Figure 3.8: Worst—case analysis

The proof presented above is quite similar to the one proposed by Gueguen (1999) for
the analysis of the benefits of the SDVRP with respect to the VRP.
We now compare the FPVRP with the FPVRP-IC as defined in Section 3.1.4. The

following result holds.

2(FPVRP—IC)

Theorem 2. There exists no finite bound for the ratio “(FPVEP)

Proof. Let us consider the instance introduced in the proof of Theorem 1. In the
FPVRP-IC, initial inventory levels at customers must be defined. We define them as
follows: the initial inventory level is equal to 0 for the customers in the first set, to Q@ — 1
for the customers in the second set and to 1 for the customers in the third set. The

customers demands are equal to Q — 1 and 1, at time ¢t = 1 and ¢ = 2, for customers of the
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second and third set, respectively. For the customers in the first set, demand at time ¢t = 1
is equal to @ and demand at ¢ = 2 is equal to 0. Note that the customers of the second
and third set cannot be served at time ¢ = 1 as their initial inventory level is equal to the
storage capacity. On the other side, customers of the first set have to be served at time
t = 1 as their initial inventory level is 0 and the demand at t = 1 is positive. Thus, the
only feasible solution for the FPVRP-IC corresponds to the solution of the PVRP shown
in the proof of Theorem 1, i.e., () routes are used to serve the customers in the first set
with direct trips to the depot at time ¢ = 1 and () routes serve one customer in the second
set and one customer in the third set each at time ¢t = 2. The cost of this solution is
2Q6 4+ 2@Q. The solution of the FPVRP does not change. Thus the ratio is the same and

tends to infinity.



CHAPTER 4

MIXED INTEGER LINEAR PROGRAMMING

FORMULATIONS

Traditional VRP formulations with multiple vehicles use decision variables with a vehicle
index to indicate the arcs traversed by each vehicle. This involves a high number of decision
variables, particularly in problems where decisions must be made at different periods of
a given time horizon, like those studied in this thesis. In order to mitigate this difficulty,
recent works on several VRP variants have proposed the use of the so-called load-based
formulations, in which decision variables identify the arcs used in the solutions without
making explicit the vehicles that traverse them (Letchford and Salazar-Gonzélez, 2015;
Archetti et al., 2014). For this, an additional set of continuous commodity flow variables
is needed to guarantee that routes are properly defined. Such formulations tend to be
quite effective in practice, although their linear programming (LP) relaxations are usually
weaker than their traditional counterpart. On the one hand they have a smaller number of
variables. On the other hand their implementation does not require the use of sophisticated
techniques, like branch-and-cut or column generation.

In this chapter, a vehicle-index and a load-based MILP formulations are proposed for
the FPVRP. Load-based formulations are also presented for the FPVR-IC and the PVRP,
since they have been used in the computational experiments, for comparative purposes.
Alternative vehicle-index formulations for the FPVRP-IC and the PVRP, are given in the

Appendices.

4.1 VEHICLE-INDEX FORMULATION FOR THE FPVRP

For the vehicle-index FPVRP formulation, we define two sets of binary variables to rep-

resent the routes and the visits to customers, and one set of continuous variables for the

26
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quantities delivered by the vehicles to customers at each time period.

Decision Variables:

y 1 if arc (i,j) € A is traversed by vehicle k € K at time period ¢t € T,
® Yy =
’ 0 otherwise.

1 if node i € N is visited by vehicle k € K at time period t € T,

0 otherwise.

e ¢ Quantity delivered to customer i € C by vehicle k € K at time period
tefl.

The vehicle-index MILP formulation for the FPVRP is the following:

D30 9 SV <4.1>

teT keK (i,j)eA

st qM <wil 1eClkeKteT (4.2)
> gt < Qs keKiteT (4.3)
ieC
PR ieCteT (4.4)
keK

> ok =2f ie N ke KteT (4.5)
jl(i.j)eA

Sook= Y M ie NkeKiteT (4.6)
jl(i)eA ilG.ieA

Z yffgz,zft—zst SCC,seSkeKteT (4.7)
(i,5)€A €S

1,j€S

YN gt =w, iecC (4.8)
teT keK
M e {0,1} i€ NkeK,teT (4.9)
M >0 icCkeK,teT (4.10)
yt e {0,1} (i,j) e Ake Kt eT. (4.11)

The objective function (4.1) minimizes the routing costs. Constraints (4.2) im-

pose that, at each time period, no vehicle delivers any customer ¢ € C' a quantity
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that exceeds w;. Constraints (4.3) establish that the total quantity delivered by
each vehicle k at time period ¢ does not exceed the vehicle capacity. Constraints
(4.4) ensure that, at each time period, at most one vehicle serves the demand of
customer . Constraints (4.5) state that, for every vehicle and time period, one arc
has to exit from the node of every visited node. Constraints (4.6) are flow conserva-
tion constraints on the entering and leaving arcs at each customer, vehicle and time
period. Constraints (4.7) are a reinforcement of the classical subtour elimination
constraints (SECs) Y jjeaytf < |S| — 1. These enhanced SECs are better than
the classical SECs duellcjg their stronger linear programming relaxation, i.e., when z
variables are fractional, the solution space is better delimited by using Constraints
(4.7). Constraints (4.8) impose that the total quantity delivered to each customer at
the end of the time horizon is equal to W;. Finally, Constraints (4.9)—(4.11) define
the domain of the variables.

This formulation has |K||T| (|A| + |N|) binary variables and |K||7T'||C| continuous
variables. The size of the family of constraints (4.7) is exponential in the number of

customers. All other families of constraints are of polynomial size.
4.1.1 VALID INEQUALITIES AND OPTIMALITY CUTS

In order to strengthen formulation (4.1)—(4.11), several families of inequalities have
been proposed and tested. Note that classical inequalities that can be used when
the amount of product delivered to each customer at each time period is fixed, like
the ones described in Letchford and Salazar-Gonzélez (2015), cannot be applied to
these formulations because this amount is a decision variable. Then, the following

inequalities have been considered for the proposed formulation. They are similar to

the ones used by Archetti et al. (2014) for the IRP.

Valid Inequalities I11: Consistency constraints. They strengthen the routing part.

Constraints (4.12) avoid to use vehicles if they do not depart from the depot.

<k jeCteT ke K (4.12)

Valid Inequalities I2: Symmetry-breaking for vehicles. They are used to avoid
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replicating a given solution by just interchanging the indices of some of the vehicles.
Constraints (4.13) establish that vehicle k£ + 1 cannot be used unless vehicle k is
also used. Constraints (4.14) are called the lexicographic ordering constraints in
which a number is given to each customer and vehicles are assigned according to

the order of these.

2kt > PRt 1<k<m-1,teT (4.13)
D 20T > N Tl jeCc1<k<m-1LteT (4.14)
=1 =1

Valid Inequalities I3: Fractional Capacity-Cut Constraints (FCCCs) are similar
to those used in Archetti et al. (2014). These constraints differ from the classical
FCCCs (Letchford and Salazar-Gonzélez, 2015) in that the capacity cannot be

rounded since the delivered quantities are modeled as decision variables.

Q§ yffZE ¢  SCCkeKteT. (4.15)
€S €S
JEC\S

4.2 LOAD-BASED FORMULATION FOR THE FPVRP

For the load-based formulation of the FPVRP two sets of binary decision variables
are introduced, which identify the arcs that are traversed and the customers that
are visited at each time period. In addition, a set of integer decision variables that
indicate the number of vehicles that are used at each time period is defined. This
can be easily computed by counting the number of arcs leaving the depot at each
time period. Finally, two additional sets of continuous variables are used. The first
one indicates the load of the vehicles when they traverse the arcs while the second
one, shows the amount of product delivered to each visited customer.

The definition of the decision variables is the following:

. 1 if customer i is visited at time period ¢,
o 2l = (ieCitel)
0 otherwise.
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1 if arc (¢,7) is traversed at time period t,
° ;= ) ((1,5) e AteT)
J .
0 otherwise.

e 2': Number of vehicles used at time period t € T'.
e [{;: Load of the vehicle traversing arc (4,j) € A, at time period ¢ € T'.

e ¢! Quantity delivered to customer ¢ € C at time period t € T

The formulation of the FPVRP is as follows:

Z Z CijYiy (4.16)

teT (i,j)eA
st ¢ <wz ieCiteT (4.17)
qu < Q7 teT (4.18)
icC
> oyl =2 icCteT (4.19)
ilG.5)eA
o= > ieNteT (4.20)
jlE.5)eA ilGieA
_val el
l = e N,teT 4.21
2 e 2 > ghi=0" 42
Jjli,5)eA Jl(Gi)eA ieC
t t . .
lzg S Qyz] (Zaj) € A7t eT (422)
> b <m teT (4.23)
71(0,5)eA
="l teT (4.24)
ieC
> d =W iecC (4.25)
teT
g >0 i€eCteT (4.26)
el teT (4.27)
zi € {0,1} ieCiteT (4.28)
y;; €10,1},0;; >0 (1,7) e At € T. (4.29)

The objective function (4.16) minimizes the routing costs. Constraints (4.17) im-

pose that none of the quantities delivered to each customer exceeds w;. Constraints
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(4.18) establish that the total quantity delivered at time ¢ does not exceed the total
capacity of the vehicles used at time ¢. Constraints (4.19) state that, at each time
period, one arc has to exit from the node of every visited customer. Constraints
(4.20) are flow conservation constraints on the entering and leaving arcs at each
customer and time period. Constraints (4.21) are the load conservation constraints,
which are imposed for each customer and time period. Constraints (4.22) impose
that the vehicles loads do not exceed their capacity; they also link the y and the
[ variables. Constraints (4.23) ensure that the number of vehicles used is at most
m. Constraints (4.24) guarantee that the value of variables z' coincides with the
number of vehicles used at each time period. Constraints (4.25) impose that the
total quantity delivered to each customer at the end of the time horizon is equal to
W;. Finally, Constraints (4.26)—(4.29) define the domain of the variables.

The above formulation has |T'|(|C|+ |A|) binary variables, |T'| general integer
variables, and |T'| (|C| + |A|) continuous variables. The number of constraints is

IT) (6|C| + 2|A| + 6) + |C|.
4.2.1 VALID INEQUALITIES AND OPTIMALITY CUTS

The families of inequalities proposed to strengthen formulation (4.16)—(4.29) are
listed below.

Inequalities I1. Sum of final loads: All vehicles return to the depot with an empty
load. Indeed, these inequalities are not valid, since there are feasible FPVRP
solutions that do not satisfy them. Instead, they are optimality cuts, since there
is at least an optimal solution that satisfies them. Therefore, they can be used to

reduce the domain of the solutions that are explored.

YNt =0 (4.30)

teT jeC

Inequalities 12. Symmetry-breaking of routes: The following inequalities partially
break the symmetry of the routes by exploiting the fact that arc costs are symmetric.

According to them only the routes with a certain orientation will be considered (as
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the same route in the opposite orientation will have the same cost). Among the two
possible orientations for a route, the one that starts with the lowest-index customer

is chosen. For this, it is imposed that

Yo <D vh,  VieCVteT (4.31)

r<i

That is, if arc (¢,0) enters the depot at time period ¢, then there must be a lowest
index arc (0, r) with r < i which exits the depot at this time period. The symmetry-

breaking inequalities are also optimality cuts, but not valid inequalities.

Valid Inequalities 13: The relation between variables y and z can be imposed in
several ways. In the FPVRP formulation this is done in a two-step fashion. On
the one hand, the flow balance constraints (4.21) relate the load variables [ to the
g, which, in turn, activate the z. On the other hand, constraints (4.22) relate the
load variables [ to the arc variables y. Nevertheless, this relation can be stated in
a more direct way, similarly to the constraints imposed in Christofides and Beasley
(1984) for the PVRP. In particular, no arc y;; can be used at time period ¢ unless
customers ¢ and j are visited at the same time period. Therefore, the following

inequalities are valid:

2E+ 2t
. 5 . Vi,je C,VteT (4.32)

t
Yij <

Taking into account that no arc will be traversed in both directions in the same

time period the above inequalities can be reinforced to:

5 Vi<jeCNteT (4.33)

Yij T Y <

4.3 LOAD-BASED FORMULATION FOR THE FPVRP-1C

Below a load-based formulation for the FPVRP-IC is presented, which is largely
based on the formulation for the IRP proposed by Archetti et al. (2014). The

inventory levels are evaluated after the delivery of ¢/ and the consumption of d..
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Note that inventory levels cannot exceed w; — ¢!.

In addition to the I, ¢, y, and

z variables used in the FPVRP formulation (4.16)—(4.29), the formulation for the

FPVRP-IC uses another set of continuous variables that represent the customers

inventory levels at each time period.

e [!: Inventory level at customer i € C' at the end of time period t € T.

The FPVRP-IC formulation is the following:

s.t.

Z Z Cijliy

teT (i,j)eA
=1 —did
g <w; — I

t t
¢ < wiz;

> d<Q

icC

t .t
E Yij = =i

JlGE5)eA

>

Jl(i.g)eA
t t
lz] < Qyij
to_
> =
Jl(i,5)eA

Y. v <m

il(0.5)eA

2= Zyéz

ieC

t
—q;,

>

1eC

- ) U=

Jli)eA

>l

JlGeA

I >0
g >0
2t € {0,1}
s eZ

yfj = {07 1}7&] >0

1eC
1=0

1€CiteT
1€eCiteT
1eCiteT

tetT

1€CiteT

i€ N,teT

(i,j) e A,teT

i€ENteT

tefT

teTl

teEN,teT
1eCiteT
1eC,teT

teTl

(1,7) e At e T.

(4.40)

(4.41)
(4.42)

(4.43)
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The objective function (4.34) is the minimization of the total routing cost.
Constraints (4.35) and (4.45) determine the inventory levels over time and avoid
stock—out situations. Since T'= {1,...,H}, when ¢t = 1, If’l = I? corresponds to
the initial inventory at customer i. Constraints (4.36) ensure that delivered quan-
tities do not exceed the maximum quantity needed by each customer at each time
period. The remaining constraints have the same meaning as in the FPVRP formu-

lation.

4.4 LOAD-BASED FORMULATION FOR THE PVRP

A new formulation for the PVRP, which has been used in the computational ex-
periments is presented. To the best of our knowledge this is the first load-based
formulation in the literature for the classical PVRP. It uses the same y, z and [ vari-
ables as the FPVRP formulation. In addition, the following set of binary decision

variables is defined to determine the schedule that is chosen for each customer:

1 If customer 7 € C' is visited according to schedule s € S;,

0 otherwise.

Then, the load-based formulation for the PVRP is:

min Z Z Cili; (4.50)

tel (i,j)€A
st Y vi=1 icC (4.51)
SES;
4= viay teTiecC (4.52)
SES;
PAR .
yfngj teT;i#jeC (4.53)
Sow= Y L ieN,teT (4.54)
jl(ij)eA ilGiea
> oyl=4 ieCteT (4.55)
ilGj)eA

dooui- > U= S L lENTET (4.56)
j?
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li; < Qyi; (i,j) € A,teT (4.57)
> b <m teT (4.58)
jec

v; € {0,1} ieC,seS; (4.59)
2b e {0,1} iceCiteT (4.60)
yi; €{0,1} (i,j) € A,t €T (4.61)
li; >0 (i,7) € A,t € T. (4.62)

The objective function (4.50) minimizes the total routing costs. Constraints
(4.51) ensure that a schedule is assigned to each customer. Constraints (4.52) relate
the selected schedules with customer visits. Constraints (4.53) allow to connect two
customers only if both are served in the same period. Constraints (4.54) are the
flow conservation constraints. Constraints (4.55) ensure that exactly one arc leaves
each visited customer at each time period. Constraints (4.56) are load conservation
constraints. Constraints (4.57) ensure that the load of vehicles does not exceed
their capacity. Constraints (4.58) indicate that the number of vehicles used must
be at most the maximum number of vehicles available at each time period. Finally,

Constraints (4.59)-(4.62) determine the domain of variables.



CHAPTER 5

EXACT SOLUTION ALGORITHMS FOR THE

FPVRP

This chapter describes the exact methods developed to solve the MILP formulations
for the FPVRP presented in Chapter 4, as well as some valid inequalities and op-
timality cuts added for their reinforcement. Furthermore, the benchmark instances
and the computational experiments performed for the proposed exact solution algo-

rithms are described.

5.1 DESCRIPTION OF THE ALGORITHMS

Figure 5.1 shows the general scheme of the exact algorithms that are proposed for
solving the FPVRP formulations.

The vehicle-index FPVRP formulation requires the set of constraints (4.7) to
avoid the creation of subtours. Adding SECs directly to the formulation becomes
impracticable, since their number grows exponentially with the number of customers.
Therefore, only the SECs that are needed are incorporated to the formulation. For
this we apply an iterative algorithm that solves at each iteration the LP relaxation
of formulation (4.1)—(4.6), (4.8)—(4.11) reinforced with only a subset of inequalities
(4.7), and applies a separation procedure that identifies whether or not any not yet
considered inequality (4.7) is violated by the current solution. If so, the violated
inequality is added to the current formulation and the process is repeated. Further-
more, in order to strengthen the formulation, other families of inequalities are also
included.

On the contrary, SECs are not needed for the load-based formulation, since its

feasible solutions already satisfy them. Hence the load-based formulation is only

36
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reinforced with valid inequalities and optimality cuts.

------
! Integer Connected
solutions Components

_______________
. Subtour Elimination I
1 Constraints ' » Separation
N e - —-—-—— Fractional > Gusfield /
Vehicle Index solutions L—3  Shrinking
______ ! heuristics
’
1 Inequalities and 1
1 optimal cuts 1

Formulation

4
1 Inequalitesand !
Load-based ——>, optimal cuts !

Figure 5.1: Exact solution method for the FPVRP.

Below we describe the separation of SECs and the valid inequalities and optimal-

ity cuts used to reinforce the formulations.

5.1.1 SEPARATION OF SECs

The separation procedure applied to identify violated SECs differs depending on
whether or not the current LP solution is integer or fractional. For each each vehicle
k € K and time period t € T', let G** = (S*, A*") denotes the subgraph induced by
the solution of the LP relaxation of the current formulation, where S¥* C N denote
the set of nodes visited by vehicle k (i.e. z¥ > 0), and A* the set of arcs used by

vehicle k (i.e. y;f > 0). Figure 5.2 shows an example of an induced graph.

9
“ & o

Figure 5.2: Induced graph G** (visited {0,1,3}, non visited {2}).

e Integer solution:

When the current LP solution is integer, violated SECs can be obtained by
identifying the connected components of each graph G**. If there are two or

more components, a violated SEC is associated with each of them. To find
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these connected components, the disjoint—set data structures (Galler and Fisher,

1964) are used.

e Fractional solution:

When the current LP solution is fractional, violated SECs can be found, if
they exist, from the tree of min—cuts of each subgraph G*. In particular, each
cut-set of value strictly smaller than 1, defines a violated SEC (Drexl, 2013).
It is well-known that the tree of min—cuts of a given graph can be found by
solving a series of Maz—Flow problems (Ford and Fulkerson, 1956). In our case
we apply the Gusfield algorithm (Gusfield, 1990). Figure 5.3 shows an example
of the graph G** and the min-cuts tree T obtained after applying the Gusfield

algorithm.

zZ0 = 1 zZ0 = 0.7

0.5
0.5 0.7
1 0.2

0.3

=1 20 =0.5 Qﬁ AQ

(a) Induced graph G*t. ) Cut tree 7.

Figure 5.3: Generation of a Gusfield tree of min—cuts.

The set of constraints (4.15) is of exponential size in the number of customers,
so it must be handled in a similar way as SECs. We have implemented three al-
ternative algorithms to find violated cuts from this family: a Greedy Shrinking
heuristic (Augerat et al., 1998), an Extended Shrinking heuristic (Nagamochi
and Ibaraki, 1992), and the Gusfield algorithm (Gusfield, 1990) as a last option.
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5.2 BENCHMARK INSTANCES

In the development of this thesis several series of computational experiments have
been run in order to test the proposed formulations and the performance of the
solution algorithms. Before presenting the numerical results we describe the sets of

benchmark and new instances used in the experiments.
5.2.1 DESCRIPTION OF THE SET OF INSTANCES

We have classified the instances into five different sets:

e Set 1 (S1): The IRP instances proposed by Archetti et al. (2014). This set
consists of 40 benchmark instances with |C| € {5, 10, 15,20} and a 3-period

time horizon, i.e. |T| = 3.

e Set 2 (S2): The PVRP instances proposed by Francis et al. (2006). This set
consists of 24 instances with |C| € {7,9,11,15,49} and time horizon |T'| = 5.
Instances were generated in a similar way to those used by Francis et al. (2006)
and according to the database provided by one of the authors. Schedules for
each customer are assigned according to their frequency of visits as explained

in the following.

e Set 3 (S3): A newly generated set of 35 PVRP instances of medium size
with clustered customers. The time horizon used in the whole set is |T'| = 5.
Other parameters are: the number of customers |C/|, the vehicle capacity @, the
number of clusters p, a radius r, which determines the coverage area of each
cluster, and a parameter [, which together with r determines the minimum
distance 8 x r among the centers of the clusters. Five instances were generated
for each combination of |C| € {10,15,20} and r € {0.15,0.30}, plus five more
instances with |C| = 20 and r = 0.50. Vehicles capacities, @), have been set to
200, 250 and 300 for 10, 15 and 20 customers, respectively. For |C| = 10, the
number of clusters is set to p = 2, whereas for instances with |C| € {15,20} is

set to p = 3. When r € {0.15,0.30}, the value of 5 has been set to 2, which
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avoids clusters overlapping. Instead, for » = 0.50 is fixed to f = 1, allowing

customers to belong to more than one cluster.

e Set 4 (S4): A set of 10 larger instances, generated in a similar way to the

ones in S3, with |C| € {50,100}, r € {0.15} and vehicle capacity of @ = 500.

e Set 5 (S5): A set of 5 PVRP benchmark instances from the literature (Chao
et al., 1995; Baldacci et al., 2011) and available in http://neumann.hec.ca/

chairedistributique/data/pvrp/old/.

Section 5.2.2 shows the procedure of generating instances of sets S3 and S4.
5.2.2 GENERATION OF FPVRP INSTANCES

The generation of instances of the sets S3 and S4 is done according to the following

steps (see Figure 5.4 for a graphical example):

e The depot is located at the center of the unit square.

e p centers (one for each cluster) are randomly generated from a uniform distri-
bution in the unit square. Each generated center must satisfy the minimum

distance condition 3 x r with respect to the others.

e Once all the centers have been fixed, the customers are generated in such a
way that clusters are balanced, i.e. each cluster contains up to {%1 cus-
tomers. Clusters are progressively filled: first, one customer is generated for
each cluster; then, a second one; and so on, until |C| customers have been
randomly generated using an uniform distribution in the circles around the

clusters’ centers of radius 7.

e A storage capacity w;, ¢ € C is randomly generated from an integer uniform

distribution in [1, Q)].

e A number of visits is randomly associated with each customer according to the

following options: f; =5, 3 or 2.


http://neumann.hec.ca/chairedistributique/data/pvrp/old/
http://neumann.hec.ca/chairedistributique/data/pvrp/old/
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e A set of schedules S; is assigned to each customer according to its frequency f;,
which is randomly selected. The number of visits associated with each schedule
is f; = 5, 3 or 2. This step is needed because the comparisons with the PVRP
require a predefined schedule. For FPVRP tests, this is not necessary as the
FPVRP does not depend on predefined schedule.

— Schedules for S2, S3 and S4: Different schedule options are considered
for the tests.

* f’L =2 S@ = {(0707170)1>7(071707071)7(071707170)7(170707170)’<1’0’1’0,0)}’
% fz — 3 : SZ — {(07170’171)7(0’]_’1’0’1),(1,0,17071),(170717150)’(1;1707170)}7
* fl =5 Sl = {(1,1>1>1>1)}'

e Once all the customer demands are generated, the number of vehicles is set to

m = [—ZIEQC“JW for S3 and to m = 1+% for S4.

Figure 5.4 shows an example of an instance with |C| = 10, Q@ = 10 and p = 4. As
it can be seen, two clusters have three customers each and the remaining ones have
two customers each. Nodes with the same color represent customers with the same
assigned schedule. The number inside each node represents the assigned storage

capacity w;.

1.0

05 | - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1 x
0 05 1.0

Figure 5.4: Clustered instance with |C| = 10, @ = 10, p = 4, and |S| = 3.



CHAPTER 5. EXACT SOLUTION ALGORITHMS FOR THE FPVRP 42

5.3 COMPUTATIONAL EXPERIENCE

In this chapter we present and discuss the numerical results obtained with the exact
algorithms. The aim of the experiments that were run was twofold: on the one hand
to analyze the computational difficulty of the FPVRP and the effectiveness of the
proposed formulations. On the other hand, to highlight the benefits derived from
allowing flexibility in the PVRP and the FPVRP-IC, by comparing the solutions
produced by the proposed models.

For the computational experiments, all formulations were implemented in
Cr+with ILOG Concert Technology API and CPLEX 12.5.0.0, running on a HP
Intel(R)-Xeon(R) 2.4GHz Workstation with 32GB RAM (Win Server 2012, 64 bits).
Default parameters were used. All computing times were limited to 14400 seconds.

The sets of instances used for these tests were S1, S2, and S3.
5.3.1 VEHICLE-INDEX VS LOAD—BASED FORMULATIONS

A preliminary test was performed in order to compare the effectiveness of the pro-
posed vehicle-index and load-based FPVRP formulations. The one with the best
performance was considered for later experiments. Table 5.1 shows the results ob-
tained for both formulations. They were applied to a small subset of instances of S3
(r = 0.15). The vehicle-index formulation includes all the valid inequalities proposed
in Chapter 4.1.1.

It is clear that the load—based formulation is much better than the vehicle-index
version as it was able to obtain feasible solutions for all instances (Status column)
and the optimality gaps were much better (Gap% column). Thus, the vehicle-index

formulation was excluded from any further consideration in our experiments.
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‘ I Vehicle—index ‘ Load—based ‘
nstance

Status  BestSol Gap% Time | Status BestSol Gap% Time
nl0k5t5_1 F 20.79 2.03 14399 F 20.78 2.31 14400
nl10k4t5 2 F 12.44 7.64 14399 F 12.44 2.58 14400
nl10k5t5_3 F 13.45 4.66 14400 F 13.23 2.71 14400
nl10k4t5 4 F 13.53 5.75 14399 F 13.53 3.55 14400
nl10k8t5 5 F 26.64 2.69 14399 F 25.91 1.28 14400
nl15k10t5 1 F 35.26 13.23 14400 F 34.26 2.53 14403
nl5k6t5 2 F 18.44 12.54 14401 F 17.42 5.23 14400
nl15k10t5_3 I — — 14401 F 25.25 3.17 14400
nl15k8t5 4 F 32.72 11.15 14402 F 32.11 2.66 14400
nl5k7t5_5 F 24.21 9.12 14400 F 23.89 4.39 14400
n20k10t5_1 I — — 14400 F 24.58 4.06 14402
n20k12t5_2 I — — 14400 F 36.10 1.82 14400
n20k11t5 3 I — — 14400 F 23.70 3.82 14404
n20k10t5_4 I — — 14400 F 35.35 2.32 14401
n20k10t5_5 I — — 14400 F 29.45 1.91 14399

Table 5.1: Comparison between vehicle-index and load-based FPVRP formulations.

5.3.2 EVALUATION OF INEQUALITIES AND OPTIMALITY CUTS FOR THE FPVRP

The first set of experiments was focused on the evaluation of the effectiveness of the
different inequalities for the load—based FPVRP formulation.

Initially, several variants of the formulation presented in Chapter 4.2 were tested
and the obtained results indicated that the best performance was attained with
formulation (4.16)-(4.29). Then, a comparison of this base formulation against al-
ternative reinforcements resulting from the addition of different combinations of
inequalities presented in Chapter 4.2.1 was made. For this test, a subset of bench-
mark instances whose optimality was particularly difficult to prove with the base
formulation was selected. This subset consists of 16 S2 instances (with |K| € {3,4})
plus the 35 new S3 instances.

Average results (over all instances in each group) of the percentage optimality

gaps at termination are summarized in Table 5.2. These optimality gaps have been

BestSol—LB

22oe=, where BestSol is the best-known feasible solution

computed as 100 x
value for each instance (among all tested versions), and LB is the lower bound at

termination of the tested version. Each row corresponds to a group of instances. The
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first column indicates the set to which the group of instances belongs. The next three
columns give some characteristics of the instances of each group: r (for instances
in S3 ), |C] and @ (an average value is reported for S2). The number of instances
in each group is given in column Inst. Average results over all the combinations
tested are given in the following six columns: entries in column Base correspond to
the base formulation (4.16)-(4.29), whereas under 1, 12, I3, the results of the base
formulation reinforced respectively with (i) the empty load return inequalities (4.30);
(17) the symmetry breaking inequalities (4.31); and, (ii7) the valid inequalities (4.33)
are shown. The last two columns correspond to the combinations of (¢) with (iz) and
of (7) with (iéi). In each case, the number of instances optimally solved, within the
allowed computing time, is given in parenthesis next to the percentage optimality
gap. These values are only given for the groups of instances of S2 because it was
never possible to prove the optimality for any of the instances in S3.

Other combinations of inequalities were also tested but did not give significantly

different results (see Appendix C.1).

Set r |C] Q Inst. | Base I1 12 I3 Ii+12  Ii+ 13
S2 15 8 |043(3) 030(3) 0.38(5) 045(3) 0.26(5) 0.36 (3)
5 0 g os (3) 0.29(4) 0.31(5) 052(3) 0.26(5) 0.35(3)

S3 0.15 10 200 5 2.58 2.78 2.65 3.16 2.49 2.93
15 250 5 3.83 3.82 3.76 4.15 3.95 3.90

20 300 5 5.71 5.71 5.67 5.68 5.65 5.57

0.30 10 200 5 1.51 1.56 1.54 1.92 1.51 1.71

15 250 5 1.97 1.97 1.94 2.15 1.89 2.05

20 300 5 2.09 2.15 2.16 2.35 2.15 2.26

0.5 20 300 5 2.59 2.50 2.55 2.97 2.49 2.85

Table 5.2: Summary of results of FPVRP for different combinations of inequalities.

Results show that strengthened formulations reduced the percentage gap in nearly
all cases. Broadly speaking, both the empty load return inequalities (4.30) and the
symmetry breaking inequalities (4.31) are effective. The effectiveness of inequalities

(4.33) that relate y and z variables is not so clear and in some cases the base formu-
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lation alone gives better results than if they are used. This behavior may be due to
the high number of inequalities of this family (O(|C|*|T|)). As can be seen, the best
results are those of column I7+12, which corresponds to the base formulation rein-
forced with (4.30) and (4.31). Therefore, all subsequent tests used the corresponding
strengthened FPVRP formulation.

The results obtained with the strengthened FPVRP formulation for the full set
of benchmark instances are summarized in Table 5.3. Again, rows correspond to
groups of instances with similar characteristics. The first five columns describe the
characteristics of the instances: r (for instances in S3), |C|, | K|, @, and D; (the total
demand that must be distributed at each time period). When not all the instances in
the group have the same parameters, minimum and maximum values are displayed.
In the following columns, Inst. gives the number of instances in each group, and
O/F gives the number of instances of the group that terminated with a solution with
proven optimality (O) and with only a feasible solution (F). The average percentage
optimality gaps at termination are given in column %Gap. Finally, the last two
columns refer to the computing times: avrg. for the average times and range for the

minimum and maximum of such values.
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Set | r | |K| ) D: Inst. O/F | %Gap Time
avryg. range
s1 5  2-3  79-175  193-304 | 10 10/0 | 000 | 140 0-7
10 2-3 272 - 480 458 - 640 10 10/0 0.01 202.90 7 -942
15 2-3  340-619  681-845 | 10 9/l | 0.34 | 3086.80 101 - 14400
20  2-3  512-867  999-1156 | 10  6/4 | 2.32 | 721450 147 - 14400
s2 7 3 496 - 871 699 4 40 | 000 | o025 0-1
9 3 1037-1208 1206 4 40 | 000 | 27.25 9-57
13 546-1521 851 8 7/l | 026 | 196550 22 - 14400
15 3 757-1240 1360 8 5/3 | 024 | 631388 17- 14400
9 4 111 4443 1 o/ | 4976 | 14400 14400
s3 o015 10 4-s 200 664-1401 | 5 o/5 | 249 | 14400 14400
15 6-10 250 1495 - 2484 5 0/5 3.55 14400 14400
20 10-12 300 2813-3408 | 5 0/5 | 565 | 14400 14400
030 10 5-8 200 820-1436 | 5  0/5 | 151 | 14400 14400
15 6-9 250 1488-2225 | 5 0/5 | 189 | 14400 14400
20 10-13 300 2824-3691 | 5 0/5 | 215 | 14400 14400
050 20 7-14 300 2050-4076 | 5 0/5 | 249 | 14400 14400

Table 5.3: Summary of results of the FPVRP for the complete set of instances.

The obtained results highlight the difficulty of the FPVRP. This will become
more evident when the results of the FPVRP are compared with the results of the
FPVRP-IC and the PVRP. Still, it was possible to optimally solve 35 out of the
40 S1 instances and 20 out of the 24 S2 instances. For the set S1, the percentage
optimality gap at termination was always below 5%, except for one 20 customer
instance (abs1n20_2). Optimality gaps of unsolved S2 instances were always below
1%, except for a 11 customer instance (Instnl12t5k3_1), with a 2.11% gap, and the
largest 49 customer instance for which the relative percentage deviation between
the upper and lower bounds at termination was of nearly 25%. The results of the
individual instances in S1 and S2 (see Tables 5.4, 5.5, and 5.6 below) show that, when
all other parameters are similar, a clear indicator of the difficulty of an instance is
the fleet size.

As can be seen, the new instances of set S3 are considerably harder to solve than
those of sets S1 and S2 of similar sizes. This is possibly due to two factors. The first

one is the fleet size which is much larger in S3 than in S1 and S2. The second one
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is the proximity of the clustered customers (particularly for the small radius 0.15),
which makes it particularly difficult to discriminate among solutions that permute

the order in which neighboring customers are visited.

5.3.3 COMPARISON OF THE FPVRP wIiTH OTHER VRPS WITH PERIODIC

DEMAND

The following series of experiments was oriented to analyze the potential advantage
of the FPVRP relative to the FPVRP-IC and the PVRP. Since all three models focus
on the overall routing costs throughout the time horizon, potential advantages can
be quantified in terms of the percentage relative reduction in the objective function

value of the compared models. In particular, this value will be computed as follows:

ntod — Z
%I'mp = max {o, Mod FPVRP} x 100,

ZMod
where Zrpyrp and Zyjoq are the best-known values for the FPVRP and the compared

model, respectively.

COMPARISON BETWEEN THE FPVRP AND THE FPVRP-IC

For the comparison between the FPVRP and the FPVRP-IC, the set of benchmark
instances S1 was used. Each instance was run with both the strengthened FPVRP
formulation and the FPVRP-IC formulation with a time limit of 14400 seconds.
The results are shown in Table 5.4 where the first five columns show the name of
the instances and their characteristics. The next two blocks of four columns each
correspond to the FPVRP and to the FPVRP-IC results, respectively. Column
Status, indicates whether the instance was solved to proven optimality (O), or a
feasible solution was found but its optimality was not proven (F); BestSol gives
the value of the best solution obtained in the run, BestLB is the lower bound at
termination, and Time is the computing time consumed (in seconds). The last

column of the table, %Imp, gives the percentage relative improvement obtained

with the FPVRP with respect to the FPVRP-IC.
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‘ FPVRP FPVRP-IC
%Imp

Instance | |C| |K| @ D ‘ Status  BestSol BestLB  Time | Status BestSol BestLB Time
absln5_1 5 2 144 193 O 1301.85 1301.85 0 (6] 1301.85 1301.85 0 0.00
absln5_2 3 96 193 O 1335.88 1335.86 0 (6] 1335.88 1335.88 0 0.00
abs2n5_1 2 118 158 (6] 1088.72  1088.72 0 (6] 1088.72  1088.72 0 0.00
abs2n5_2 3 79 158 O 1494.37 1494.37 2 O 1494.37 1494.23 4 0.00
abs3n5_1 2 228 304 O 2109.51 2109.51 1 (0] 2302.82  2302.82 2 8.39
abs3n5_2 3 152 304 O 2864.95 2864.87 1 (0] 2864.95 2864.95 0 0.00
abs4n5_1 2 134 179 (6] 1504.27  1504.27 7 (6] 1650.73  1650.59 0 8.87
abs4n5_2 3 89 179 (@] 2224.13  2223.94 3 O 2224.13  2224.13 1 0.00
abs5n5_1 2 175 234 O 1091.97 1091.97 0 (6] 1091.97  1091.97 0 0.00
abs5n5_2 3 117 234 O 1386.18 1386.18 0 (0] 1386.18 1386.18 4 0.00
abslnl0_1 | 10 2 476 635 O 1936.15 1936.01 96 (6] 1960.99  1960.82 18 1.27
abslnl0_2 3 317 635 O 2369.40 2369.16 737 (0] 2429.55  2429.55 31 2.48
abs2n10_1 2 408 545 (6] 2491.71 2491.52 7 (6] 2554.79  2554.79 14 2.47
abs2n10_2 3 272 545 (6] 3194.02 3193.71 185 (6] 3214.05 3213.88 19 0.62
abs3n10_1 2 343 458 O 1980.71  1980.71 17 O 1980.71  1980.71 6 0.00
abs3n10_2 3 229 458 O 2372.91 2372.73 13 (0] 2410.50  2410.50 39 1.56
abs4n10_1 2 411 548 (6] 2115.97 2115.78 9 (6] 2240.93  2240.73 35 5.58
abs4n10_2 3 274 548 (6] 2756.47 2756.20 942 (6] 2943.14  2942.87 279 6.34
abs5n10_1 2 480 640 O 1746.02 1746.02 11 O 1848.20 1848.20 14 5.53
abs5n10_2 3 320 640 O 2014.42  2014.42 12 (@] 2151.45 2151.45 19 6.37
abslnl5_1 | 15 2 619 826 O 1915.91 1915.77 175 O 1915.91 1915.89 21 0.00
abslnl5_2 3 413 826 O 2349.28 2349.05 5437 (0] 2402.36  2402.14 295 2.21
abs2nl5_1 2592 790 (6] 2161.09 2160.89 898 (0] 2185.68 218546 194 1.13
abs2n15_2 3395 790 (6] 2388.97 2388.73 719 (6] 2388.97 2388.97 39 0.00
abs3nl5_1 2 633 845 O 2373.10 237290 101 O 2373.10 2373.10 11 0.00
abs3nl5_2 3 422 845 O 2646.11  2645.86 116 (0] 2646.11 2646.11 20 0.00
abs4nl5_1 2 538 718 O 2064.15 2063.95 455 (6] 2199.78 2199.57 188 6.17
abs4nl5_2 3 359 718 (6] 2403.11 2402.87 7297 (6] 2572.55 2572.30 705 6.59
abs5n15_1 2 510 681 O 2192.45 2192.23 1271 O 2309.75  2309.53 88 5.08
abs5n15_2 3 340 681 F 2678.85 2634.11 14399 (0] 2959.31 2959.02 5829 9.48
absln20_1 | 20 2 799 1066 O 2345.27 2345.04 6768 O 2410.91 2410.70 6343 2.72
abs1ln20_2 3 533 1066 F 3004.62 2741.40 14399 F 3103.40 2867.75 14399 3.18
abs2n20_1 2 782 1043 O 2148.82 2148.63 156 (0] 2148.82 2148.82 18 0.00
abs2n20_2 3 521 1043 (6] 2365.64 2365.40 4511 (6] 2393.13 239290 658 1.15
abs3n20_1 2 768 1024 O 2283.53 2283.31 615 O 2283.53 2283.53 23 0.00
abs3n20_2 3 512 1024 O 2529.42  2529.19 147 (0] 2529.42  2529.28 16 0.00
abs4n20_1 2 749 999 F 2888.29 2858.71 14399 (0] 3136.22  3135.91 2782 7.91
abs4n20_2 2 499 999 F 3408.32  3287.19 14399 F 3664.52 3602.53 14399 6.99
abs5n20_1 3 867 1156 O 2854.24 2853.96 2352 (6] 2859.60 2859.35 379 0.19
abs5n20_2 3 578 1156 F 3562.11  3403.85 14399 F 3567.47  3507.53 14399 0.15

Average Improvement 2.56

Table 5.4: Comparison between FPVRP and FPVRP-IC with S1 instances.
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The results of Table 5.4 show that, except for the small instances with only five
customers, in general, the computing times required by the FPVRP are substantially
greater than those of the FPVRP-IC. This becomes more evident as the size of the
instances increases and is reflected by the fact that five instances were not optimally
solved for the FPVRP within the maximum computing time, whereas this number
reduces to three for the FPVRP-IC. The entries in column %Imp show that there are
instances where both models have the same optimal value, although in most cases
the FPVRP produces an improvement (up to 9.48%) with respect to the FPVRP-
IC, which increases with the size of the instances. It is worth noting that, even
for the two instances that were not optimally solved with the FPVRP but were
optimally solved with the FPVRP-IC, the best FPVRP solution at termination was
considerably better than the optimal FPVRP-IC solution. These results show that,
if possible, it is worthwhile to increase flexibility and not consider inventory levels,

as done in the FPVRP, as this may lead to remarkable savings.

COMPARISON BETWEEN THE FPVRP AND THE PVRP

For the comparison between the FPVRP and the PVRP, instances of both S2 and S3
were used. Each instance in these two sets was run with the strengthened FPVRP
formulation (4.16)-(4.29) and with the PVRP formulation (4.50)-(4.59). Again, the
time limit for each run was 14400 seconds. The results for the instances of set S2
are presented in Table 5.5, where instances with the same number of customers are
ordered by decreasing capacity of the vehicles. The columns labeled as %Gap show
the relative percentage optimality gap at termination of each optimization.

Most of the instances with |C| = 7, |C] = 9 and |C] = 11 were solved to opti-
mality with both the FPVRP and the PVRP formulations. Once more, it can be
observed that, in terms of the computing times, the FPVRP formulation is more
demanding than that for the PVRP. This could be expected as the FPVRP incor-
porates additional decisions to the ones of the PVRP. While the computing times
to optimally solve the PVRP instances remain negligible, they become significant
for the FPVRP as the size of the instances increases. In particular, for five of the

instances the optimality of the best solution found could not be proven within the
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allowed computing time. Concerning the improvement of the FPVRP with respect
to PVRP, it is noticed that no improvement can be perceived related to the flex-
ibility in the delivered quantities since the total vehicles capacities are enough to
cover the demand of all customers in the same day. Nevertheless, the FPVRP still
shows slight improvements related to the non-dependency of schedules. Moreover,
although the FPVRP produced no improvement in the large 49 customers instance,
it was able to find a feasible solution within the time limit. On the contrary, the

PVRP produced no solution for that instance.

‘ FPVRP ‘ PVRP ‘
%Imp
Instance |C] |K| Dy Q ‘ Status BestSol BestLB %Gap Time ‘ Status  %Gap Time

Instn8t5k3_1 7 3 699 871 (0] 5.82 5.82 0 0 (0] 0 0 0.00
Instn8t5k3_3 765 (0] 5.82 5.82 0 1 (0] 0 0 0.00
Instn8t5k3_2 705 (0] 5.82 5.82 0 0 (0] 0 0 0.00
Instn8t5k3_4 496 (0] 6.30 6.30 0 0 (0] 0 0 0.00
Instn10t5k3.3 9 3 1206 1208 (0] 6.76 6.76 0 9 (0] 0 6 0.05
Instn10t5k3_1 1058 (0] 6.86 6.86 0.01 17 (0] 0.01 7 0.57
Instn10t5k3_2 1045 (0] 6.90 6.90 0.01 26 (0] 0 6 0.00
Instn10t5k3_4 1037 (0] 6.90 6.90 0.01 57 (0] 0 7 0.00
Instn12t5k3 6 11 3 851 1521 (0] 4.47 4.47 0.01 22 (0] 0 6 0.00
Instn12t5k3_5 1491 (0] 4.47 4.47 0.01 31 (0] 0 7 0.00
Instn12t5k3_7 1399 (0] 4.47 4.47 0.01 37 (0] 0 9 0.00
Instn12t5k3_8 1146 (0] 4.47 4.47 0.01 26 (0] 0 9 0.00
Instn12t5k3_4 925 (0] 4.47 4.47 0.01 44 (0] 0 8 0.00
Instn12t5k3_2 802 (0] 4.50 4.50 0.01 102 (0] 0.01 30 0.67
Instn12t5k3_3 748 (0] 4.54 4.54 0.01 1062 (0] 0.01 29 0.47
Instn12t5k3_1 546 F 4.83 4.73 2.01 14400 (0] 0.01 1404 0.59
Instn16t5k3_3 15 3 1360 1240 (0] 5.62 5.62 0.01 52 (0] 0 22 0.00
Instn16t5k3_4 1232 (0] 5.62 5.62 0 17 (0] 0 26 0.00
Instn16t5k3_1 1056 (0] 5.62 5.62 0 31 (0] 0 33 0.00
Instn16t5k3_2 1030 (0] 5.63 5.63 0.01 2100 (0] 0.01 1743 0.40
Instn16t5k3_8 1027 (0] 5.63 5.63 0.01 5113 (0] 0.01 1356 0.40
Instn16t5k3_7 851 F 5.74 5.70 0.73 14400 (0] 0.01 8054 0.38
Instn16t5k3_5 802 F 5.76 5.72 0.76 14400 (0] 0 37 0.07
Instn16t5k3_6 57 F 5.78 5.75 0.45 14399 (0] 0 26 0.00
Instn50t5k4 49 4 4443 1111 F 18.69 12.48 33.25 14400 I — — 0.00
Average Improvement 0.14

Table 5.5: Comparison between FPVRP and PVRP formulations with S2 instances.



CHAPTER 5. EXACT SOLUTION ALGORITHMS FOR THE FPVRP 51

On the other hand, Table 5.6 shows the results of the comparison between the
FPVRP and the PVRP with the S3 instances. For the PVRP instances, computing
times increased significantly in some of them. The exception was instance n10k5t5_1,
for which no feasible PVRP solution could be found in the 14400 seconds allowed.
The strengthened FPVRP formulation was not able to prove the optimality of the
best solution found for any of the instances in the set, although it was always able
to find a feasible solution. In general, the percentage optimality gaps at termination
are small, with higher values (up to 5.51%) for the instances with the smallest radius
r = 0.15. Despite not knowing whether or not the best-known FPVRP solutions
are optimal, in all cases they produce substantial improvements in the routing costs
with respect to the optimal PVRP solutions. In these instances the benefit of using
FPVRP is more noticeable for instances of S2 because of their structure. In fact, the
improvement is significant since it is allowed to partition customers demands into
several periods. The range of such improvements is 3.03%- 12.27%, with an average

improvement of 7.43% in comparison to the PVRP.
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FPVRP PVRP
%Imp

Instance ‘ r |C| |K] Q D ‘ Status BestSol BestLB % Gap Time ‘ Status % Gap  Time
nl0k5t5.1 | 015 10 5 200 938 F 20.78  20.30 236 14400 | 1 — 14399 —
n10k4t5_2 4 664 F 1244 1212 264 14400 | O 0.01 145 4.37
n10k5t5_3 5 874 F 13.23  12.87 280 14400 | O 0 11 4.10
n10k4t5_4 4 738 F 1353 13.05  3.68 14400 | O 0.01 35 10.81
n10k8t5_5 8 1401 | F 2591 2558 129 14400 | O 0 1 6.60
n15k10t5_1 15 10 250 2317| F 34.26 3339 261 14403 | O 0.01 2445 5.55
nl5k6t5_2 6 1495 | F 1742 1651 551 14400 | F 1.69 14399 | 12.27
n15k10t5_3 10 2484 | F 25.25 2445  3.27 14400 | O 0.01 1213 | 10.12
nl5k8t5_4 8 1767 | F 3211 3125 275 14400 | O 0.01 4587 5.81
nl15k7t5_5 7 1606 | F 23.80 2284  4.60 14400 | F 1.54 14399 | 7.28
n20k10t5_1 20 10 300 2813 | F 2458 2358 424 14402 | F 233 14399 | 5.25
n20k12t5_2 12 3408 | F 36.10 3545  1.83 14400 | F 0.48 14399 | 7.71
n20k11t5_3 11 3138 | F 2370 2279 399 14404 | F 247 14399 | 11.03
n20k10t5_4 10 2057 | F 35.35 3453 237 14401 | F 4.81 14399 | 10.34
n20k10t5_5 10 2874 | F 2945 2889  1.94 14399 | F 431 14399 | 6.36
nl0k6t5.1 | 0.3 10 6 200 1028 | F 19.04 1897  0.37 14400 | O 0.01 79 5.58
n10k6t5_2 6 1176 | F 13.89 1359 221 14399 | O 0.01 122 11.05
n10k5t5_3 5 922 F 1450 1416 240 14400 | O 0.01 269 7.03
n10k5t5_4 5 820 F 14.38  14.04 242 14400 | O 0 19 4.39
n10k8t5_5 8 1436 | F 1940 1934 031 14400 | O 0.01 8 10.08
nl15k9t5_1 15 9 250 2116| F 27.16  26.64  1.95 14400 | O 0.01 105 3.03
n15k9t5_2 9 2225 | F 2072 29.19 182 14401 | O 0.01 161 9.60
nl15k7t5_3 7 1692 | F 27.84 2738  1.68 14400 | F 1.68 14399 | 457
nl5k7t5_4 7 1530 | F 1743 17.06 217 14401 | O 0.01 8992 | 4.58
n15k6t5_5 6 1488 | F 2059 20.18  2.03 14400 | F 0.88 14399 | 7.70
n20k10t5_1 20 10 300 2824 | F 2057 2897 207 14400 | F 344 14399 | 9.41
n20k12t5_2 12 3537 | F 31.55 3078 250 14400 | F 0.58 14399 | 5.94
n20k10t5_3 10 2849 | F 26.07 2518 353 14400 | F 427 14399 | 8.89
n20k13t5_4 13 3691 | F 42.61  41.62 238 14407 | F 147 14399 | 8.07
n20k12t5_5 12 3308 | F 34.05 3376 086 14400 | F 230 14403 | 8.41
n20k14t51 | 0.5 20 14 300 4076 | F 3230 3157 231 14400 | F 0.69 14400 | 6.32
n20k10t5_2 10 2786 | F 2933 2877  1.95 14400 | F 546 14399 | 9.55
n20k7t5_3 7 2059 | F 2325 2268 251 14400 | F 1.61 14399 | 5.12
n20k10t5_4 10 2825 | F 24.80 2402  3.25 14400 | F 4.09 14399 | 11.45
n20k11t5_5 11 3043 | F 36.45 3550  2.68 14400 | F 2.38 14399 | 4.22

Average Improvement | 7.43

Table 5.6: Comparison between FPVRP and PVRP formulations with S3 instances.
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5.3.4 ANALYSIS OF THE FPVRP BENEFITS

This section focuses on the analysis of the benefits of the FPVRP with respect to
the FPVRP-IC and to the PVRP that emerged in the computational experiments
described in the previous section. To this aim, the improvements of the FPVRP
objective function relative to the compared models are summarized for different
instance parameters. First we focus on the comparison between the FPVRP and the
FPVRP-IC on the instances of set S1. Results are shown in Table 5.7 where instances
are clustered on the basis of the number of customers, first, and fleet size, second.
For each cluster of instances, the average and maximum improvements achieved by

the FPVRP are reported.

|C| | Avrg. Improvement | Max. Improvement

5 1.73% 8.87%
10 3.22% 6.37%
15 3.07% 9.48%
20 2.23% 7.91%

|K| | Avrg. Improvement | Max. Improvement
2 3.11% 8.87%
3 2.02% 9.48%

Table 5.7: Improvement of FPVRP versus FPVRP-IC on S1 instances.

Table 5.7 shows that the improvements increase with the number of customers
except for the case with |C| = 20, while they slightly decrease when the number of
vehicles increases. The maximum improvement is 9.48%.

Now, the benefits of the FPVRP with respect to the PVRP are analyzed. Table
5.8 summarizes the results for the instances of set S2. Instances are clustered by
number of customers only as all instances have the same number of vehicles. Instance

Instn50t5k4 is not considered in this analysis.
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|C| | Avrg. Improvement | Max. Improvement
7 0.00% 0.00%

9 0.16% 0.57%

11 0.43% 0.67%

15 0.21% 0.40%

Table 5.8: Improvement of FPVRP versus PVRP on S2 instances.

The results show that the FPVRP benefits are quite fluctuating with respect to
the number of customers. Nevertheless, the FPVRP still shows slight improvements
with respect to the PVRP.

Finally, Table 5.9 focuses on the comparison between the FPVRP and the PVRP
on the instances of Set S3. Instances are clustered by the number of customers and
radius. The number of vehicles for these instances is not considered as it varies with

the number of customers.

|C| | Avrg. Improvement | Max. Improvement

10 7.11% 11.05%
15 7.05% 12.27%
20 7.87% 11.45%

r Avrg. Improvement | Max. Improvement

0.15 7.69% 12.27%
0.30 7.22% 11.05%
0.50 7.33% 11.45%

Table 5.9: Improvement of FPVRP versus PVRP on S3 instances.

For the instances of set S2 it can be noticed that the benefits are quite fluctuating
with respect to the number of customers and the radius. The maximum savings are
12.27%.

When comparing the benefits of the FPVRP versus the FPVRP-IC and PVRP,
respectively, it can be noticed that much larger improvements are achieved by the
FPVRP with respect to the PVRP than with respect to FPVRP-IC. This is clearly
due to the way the instances are constructed and also to the fact that the PVRP
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suffers from the rigidity derived from fixed schedules and fixed delivery quantities.
Part of this rigidity is overcome with the FPVRP-IC. However, the improvements of
the FPVRP versus the FPVRP-IC show that inventory constraints may remarkably
affect solution costs.

Finally, additional computational experiments were run in order to investigate the
impact of customer demands on the benefits produced by the PVRP. The results
confirm that the highest savings can be attained when the capacity is tight and
demands are rather homogeneous, whereas the smallest savings are obtained with
larger capacities and high variations in the demands. A similar observation was
made in Archetti et al. (2008b) concerning the benefits of the SDVRP with respect
to the VRP.



CHAPTER 6

A TWO-PHASE SOLUTION ALGORITHM

As it was seen in the previous chapter, the exact solution algorithms based on the
mathematical formulations can be highly demanding in terms of the computing time
they may require, particularly as the size of the instances increases. In this chapter,
an approximate solution method that can be used to solve medium to large size

FPVRP instances is proposed.

6.1 DESCRIPTION OF THE ALGORITHM

We developed a two—phase solution algorithm, classified as a matheuristic, that
operates according to an iterative scheme. At each iteration a MILP is solved to
determine a plan for the periods to visit the customers and their corresponding quan-
tities. Then suitable routes consistent with the distribution plan are designed with

a TS heuristic. Figure 6.1 shows the main components of the proposed approach.

Initial solution

/ v \
Distribution Plan (MILP): - Neighborhoods intra/

- Schedule of visits . /—\pply Tabu inter period
- Quantity to deliver DP-Generation Search - Two tabu lists
- Number of routes - Tenure

New solution
(LK)

- -

Update approximization
costs according to the
current solution

Figure 6.1: A two-phase heuristic scheme to solve the FPVRP.

56
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These two main phases are described below:

1. Phase 1 — Distribution Plan (DP) Generation: Builds an initial feasible solution
by solving independent subproblems limited to only a subset of the FPVRP

decisions.

2. Phase 2 — Tabu Search: Improving phase, which applies a TS algorithm taking
as input the solution produced by Phase 1.

Algorithm 1 shows the general framework of the proposed approach.

Algorithm 1 Two-phase matheuristic

1:Ct=1 ieCteT

2 M=1 teT

3 s* 0

4: BestSolCost = BigNumber

5: while a stopping condition is not true do
6: 5 DP—Generation(C’, A)

7: 5§+ TS(s)

8: if f(5) < BestSolCost then
9: BestSolCost = f(5)

10: § 4§

11: end if

12: Update C

13: end while

14: return (s*)

The two main phases (lines 6 and 7) are applied iteratively until a stopping
criterion is met. At each iteration, in the first phase, an initial solution s is obtained
by applying the DP-Generation. Then, in the second phase, a TS procedure is
applied to s to obtain a new solution §. If 5 improves the solution cost of s*, then

s* is updated. Values of C' and \, where

° (f’f is the approximated routing cost for visiting customer ¢ in period ¢, and

e )\, is a parameter greater than or equal to 1 used to penalize infeasibility at

time ¢,

are set as follows. At the beginning of the matheuristic they are set to 1. At the
following iterations (line 12), if the solution cost f(S) is different from the solution
cost obtained in the previous iteration, then the removal savings are computed, i.e.,

if 4 is visited in period ¢ then éf = ¢ps — (Cpi + Cic), where p and ¢ denote the
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predecessor and successor of customer ¢ in its route in period ¢. If ¢ is not visited
at t, éf is equal to the cheapest insertion cost of ¢ at time ¢. On the other hand, if
f(5) remains the same, the values of C' are generated randomly between [-1,-100].
The rationale for this is to provide different initial solutions to the TS performed
in Phase 2. The value of coefficients A remains the same as the ones computed in
the last call to the DP-Generation phase. At the end of the matheuristic, the best
solution found is reported as the final solution. Below, each phase is described in

detail.
6.1.1 PHASE 1: DP-GENERATION

The first phase aims at building an initial feasible solution to the problem. Note

that three main decisions have to be taken when dealing with the FPVRP:

1. Visiting periods: The periods at which each customer is visited.

2. Delivered quantities: The quantity to deliver to each customer at each visit.

3. Routing: Vehicle routes at each time period, i.e., determining the assignment
of customers to vehicles and, for each vehicle, the sequence in which customers

must be visited.

The DP-Generation phase works in two steps. In the first step, it builds a
distribution plan handling the first two decisions, i.e., it determines the visiting
periods for each customers and the delivered quantities. The DP is then taken as
input to the second step which builds vehicle routes.

In particular, the first step consists in solving a MILP called, from now on,
DP-MILP, which determines the visiting periods (calendar) and the quantities to be
delivered to all customers.

The formulation of the DP-MILP is as follows:

min Z Z Ctat 4 2'QN (6.1)

teT ieC
st. g <wzl ieCiteT (6.2)
Y d< L%J A teT (6.3)
t

icC
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Y d=W, ieC (6.4)
teT

2 <m teT (6.5)
2 <1 icCteT (6.6)
¢ >0 icCiteT (6.7)
zi € {0,1} ieCiteT (6.8)
el teT. (6.9)

Variables z and ¢ have the same meaning as described in Chapter 4.2. The
objective function (6.1) aims at minimizing the sum of the approximated routing
costs and the number of vehicles used. Constraints (6.2) establish the maximum
deliverable quantity to each customer while (6.3) are vehicle capacity constraints.
In particular, constraints (6.3) are aggregated vehicle capacity constraints that fix
the maximum quantity that can be delivered in each time period. This maximum
amount corresponds to L\%J multiplied by the number of vehicles used, with A, >
1. Note that a solution satisfying constraints (6.3) may not produce a feasible
FPVRP solution because it may not exist a feasible way to pack quantities ¢ into z*
vehicles. The total demand of each customer is satisfied through constraints (6.4).
Constraints (6.5) fix the maximum number of vehicles used to m while split deliveries
are forbidden through (6.6) since at most one vehicle can serve each customer demand
at each time period. Constraints (6.7)—(6.9) define the variable domain.

The solution of the DP-MILP determines, for each time period, the subset of visited
customers and the amount delivered to each of them. This information provides the
distribution plan. The DP is then taken as input to the second step which aims at
building vehicle routes. In particular, the second step consists in solving a CVRP
for each time period on the basis of the information provided by the DP. Each
CVRP is solved by applying the Clarke and Wright (1964) heuristic implemented
with the VRPH package of the Coin OR library (Groér et al., 2010). Given that this
algorithm works for the case where there is no limit for the fleet size, it may obtain

a solution where the number of vehicles used in a given period is higher than m. In

this case, another iteration is made by updating the values of C and X and solving
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the DP-MILP again. Finally, if after a certain number of iterations the solution is still
infeasible, a procedure to recover feasibility in which customers of the surplus routes
are reallocated in different periods, is applied. The scheme of the DP-Generation

phase is sketched in Algorithm 2 where

. DP—MILP(O , A) returns the optimal solution of the DP-MILP when the values of
the approximated routing costs and the infeasibility penalties are specified by
C and A, respectively.

e Routing(DP) returns the solution of the CVRP for each time period on the
basis of the distribution plan DP obtained through the VRPH package (Groér
et al., 2010).

e RecoverFeasibility(s) transforms an infeasible solution s into a feasible one.

This procedure works as follows.

— Select one of the periods in which the number of routes is more than m.

— Select the route with fewer customers and sequentially remove customers

by redistributing in other periods the quantity they received.

— If all customers of the selected route are reallocated, remove the empty
route and follow the same procedure until the number of vehicles used is

at most m for all periods.

e LX(s) returns an improved solution by applying the Lin-Kernighan algorithm
(Lin and Kernighan, 1973, LK) to each route of the solution s. The implemen-
tation code for this routine is provided in http://www.akira.ruc.dk/~keld/
research/LKH/ (Helsgaun, 2000).

e s is the solution obtained at the end of the second step.

As shown in Algorithm 2, if an infeasible solution is obtained, the values of C

and A are updated (line 7) as follows:

a) C: if customer i is visited at time t, then C’f is equal to the removal savings
éf = (¢pi + ¢ic) — ¢y, where p and ¢ denote the predecessor and successor of

customer 7 in its route at period t. Instead, if customer 7 is not visited at time

t, then é’f is equal to the cheapest insertion cost of ¢ at time ¢.


http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/
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Algorithm 2 DP—Generation(C’, A)
1: while a stopping condition is not true do
2:  DP «DP-MILP(C,\)
3 s < Routing(DP)
4: if s is a feasible FPVRP solution then
5: Stop and Go to line 13
6
7
8
9:

else
Update the values of C and A
end if
end while

10: if s is not feasible then
11: RecoverFeasibility(s)
12: end if
13: Return LK(s)

b) A: if at ¢ the number of vehicles is not greater than m, then the value of
A+ remains unchanged, otherwise it is increased by e, ie., Ay, = N\ + €. If

the DP-MILP becomes infeasible (because of a very large value of \;), then,

At = max {1, \; — €}.

Note that, once a feasible solution s is obtained, the LK algorithm is applied to

each route in s in an attempt to reduce the routing cost (line 13).
6.1.2 PHASE 2: TABU SEARCH HEURISTIC

The aim of the Phase 2 is to improve the solution obtained at the end of the first
phase. The idea is to define different neighborhoods and embed them in a T'S scheme
where each selected move is recorded and considered tabu for a certain number of it-
erations (tenure) to avoid cycling. Each neighborhood is explored exhaustively (best
improvement), unless a selected move improves the incumbent (aspiration criterion).
In that case the exploration stops and the improved solution is chosen as the next
solution. Otherwise, the best non-tabu move found among all neighborhoods will
be chosen. The selected move is considered tabu for a certain number of iterations.

Let N' = {Ny,..., N;} be the set of neighborhoods with |[N| = I. The proposed

TS scheme is shown in Algorithm 3.
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Algorithm 3 TS(s)

Require: Initial Solution s

Ensure: Best solution found s*
1: BestSolCost = f(s), Iter = 1
2: s < SplitOperator(s)
3: while a stopping condition is not true do

4: BestLocalCost = BigNumber

5: Tenure = computeTenure ()

6: =1

T repeat

8: s" <= Explore Neighborhood Nj(s)
9: if f(s') < BestLocalCost then
10: BestLocalCost=f(s')

11: S+ ¢

12: if f(5) < BestSolCost then
13: Go to line 18

14: end if

15: end if

16: I=1+1

17: until 1 < lpax

18: Update tabu list TL(s) = Iter + Tenure
19: § < LK(S), Iter = Iter + 1

20: if f(5) < BestSolCost then

21: BestSolCost = f(§)
22: ¥+ 5
23: end if

24: end while

25: Return s*

The TS begins with an initial feasible solution obtained in Phase 1. If possible,
the routes of this solution are split using the SplitOperator in order to increase the

possibility of applying moves which may improve the solution during the search. The
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resulting solution is taken as the initial solution to be applied for all neighborhoods
in A/. The neighborhoods are explored independently and the best solution among
all of them is selected. The corresponding move is considered tabu for a certain
number of iterations (line 18). Then, the LK algorithm is applied to the best solution
found (line 19). This procedure stops when a stopping criterion is reached (line 3).
The three main ingredients of the proposed TS are: the SplitOperator, the set of
neighborhoods N and the tabu lists. They are explained below.

A) The SplitOperator: This operator splits one route into two without increasing
the solution cost. This situation happens when a route travels through an edge (3, j)
whose cost ¢;; is equal to c;p + ¢g;. In this case, the route is split in two smaller
routes, traversing the edge (i,0) (first route) and the edge (0,7) (second route).
This is done only if the total number of routes used is lower than mH. The idea
behind this operator is to create routes with a larger residual capacity to allow a
wide range of modifications when the neighborhoods described in the following are

applied. When a route at time ¢ is split, two situations may happen:

e The number of routes used at time period t is lower than m. In this
case, the two new routes are both performed at time period ¢ and no further

change is made.

e The number of routes used at time period t is m. In this case, we
cannot assign both new routes to time period ¢. Thus, at least one route must

be performed in a different day. Let us define:
— 71 and ro: the two routes obtained from the splitting.
— 5,: subset of customers served in route 7.
— S(t): subset of customers served at time period t.
— ¢,: residual capacity of route r.

t

— r7: route serving customer ¢ at time period t.

Then, a route r can be moved from period ¢ to period ¢’ # t if S, N S(¢') =0
or the following holds for each customer i € S, U S(t'):

L. ¢! +¢' <w; and
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2. either ¢! < ¢’v or ¢¢ < g,

Thus, if either r; or ry satisfies the above conditions the split is performed,

otherwise it is discarded.

B) Neighborhoods N: They are listed in the order they are applied according to

Algorithm 3.

1. Intra-period moves: The following moves are applied to each period indepen-

dently.

(a)

I-move (Ny): Consider a customer visited in period t. Remove the cus-
tomer from the route that currently serves it and insert it in another route,
using the cheapest insertion rule. The best route (in terms of insertion cost)
that can feasibly accommodate the quantity delivered to the customer is
chosen.

1-swap (N3): Consider two customers i and j served in two different routes,
r and »/, in period ¢ and swap the two customers. The swap is made as
follows. First, remove both customers from their current route and then
insert them in the new route through the cheapest insertion method, as

done in the 7-mowe.

2. Inter-period moves: These moves are applied to pairs of periods ¢ and ¢’ in

order to change the visit plan of customers. Similarly to the intra-period

moves, there are two neighborhoods considered.

(a)

I-move (N3): Consider a customer visited in period t. Remove the cus-
tomer from the route that currently serves it and insert it in a route in
period t', using the cheapest insertion rule as done in the 7-mowve intra-
period.

1-swap (N4): Consider customer ¢ served in ¢ and customer j served in
t" and swap them. The swap is made as follows. First, remove both
customers from their current route. The insertion is made by applying the
cheapest insertion criterion to all routes performed in the period where the

customer has to be inserted choosing the best one.
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In any of the above mentioned neighborhoods, every time a customer is removed
from a route and inserted into another one, the same quantity delivered in the
original route is moved to the newly assigned route, if this is feasible. If this is not
feasible (either because the vehicle capacity or the customer capacity are exceeded),
then the excess quantity is assigned to the other customer visits if feasible, i.e., if
neither vehicle capacity nor customer capacity are exceeded and the move made in
the corresponding period is not tabu. The assignment is done in chronological order,
i.e., from the first to the last visit. If the excess quantity cannot be reassigned, then

the move is infeasible and, thus, discarded.

For each neighborhood, all feasible non-tabu moves are evaluated and the best one is
chosen, unless there is a move which improves the incumbent (aspiration criterion).
In that case, the evaluation stops (for all neighborhoods) and the solution obtained
with that move is chosen as the best one. That is, the algorithm exits from the loop
in lines 7-17 in Algorithm 3 and goes to line 19. If this is not the case, once all the
neighborhoods are explored, the best non-tabu solution is chosen and it becomes

tabu for a certain number of iterations as detailed in Algorithm 3.

C) Tabu lists: There are two different tabu lists, one for intra-period moves and

another one for inter—period moves:

e Intra—period list TL(7,r,t): If customer 7 is removed from route r in period t,

then it is tabu to reinsert ¢ in 7 in period ¢ for a certain number of iterations.

e Inter—period list TL(¢,¢): If customer 7 is removed from period ¢, then it is tabu

to reinsert 7 in period t for a certain number of iterations.

The number of iterations for which a move remains tabu is determined by the tabu

tenure.

6.2 COMPUTATIONAL EXPERIENCE

In this chapter, we present and analyze the results obtained with the computational

experiments that were performed in order to test the behavior of the matheuristic
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with different sets of instances. The computational environment and the benchmark
instances used for the tests are first described in Section 6.2.1. Then, Section 6.2.2
describes the tests run in order to calibrate the parameters of the matheuristic.
Finally, Section 6.2.3 presents and analyzes the results of several tests that were run

to show the efficiency of the proposed solution approach.
6.2.1 INITIAL DATA

The matheuristic was implemented in C++and for the DP-MILP the ILOG Concert
Technology API (CPLEX 12.5.0.0) was used. All tests were carried out on a HP
Intel(R)-Xeon(R) 2.4GHz Workstation with 32GB RAM (Win Server 2012, 64 bits).
The set of instances used for the tests of this chapter are S3, S4, and S5. Note that

for S3, all the instances have been slightly modified, in particular, they differ in the

2iccwifi
QH

. The reason for this change

number of available vehicles which is now computed as m =1+ (the same

as S4) while in Chapter 5.3 it was set to m = ZGTCw
is that the number of vehicles used in the optimal solutions was much smaller than
the number of available vehicles. Table 6.1 shows the detailed information about

instances used in this chapter including the modifications made for S3.
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Set | r | [Instance ||N| |T| f; Q |K| Y,ccWi
nl0k5t5_1 ) 3760
nl0k4t5_2 4 2640
nl10k5t5_3 11 5 2,35 200 4 2869
nl0k4t5_4 4 2363
nl10k8t5_5 7 5107
nl5k10t5_1 9 9015
nl15k6t5_2 5 4684
nl15k10t5_3 16 5 235 250 7 7202

0.15 | n15k8t5.4 7 7175
nl5k7t5.5 6 5526
n20k10t5_1 7 8842
n20k12t5_2 9 11334
n20k11t5_3 21 5 235 300 9 10957
n20k10t5_4 9 11102
n20k10t5_5 7 8976
nl0k6t5_1 ) 3562
nl0k6t5_2 ) 3922
nl10k5t5_3 11 5 235 200 5 3114

S3 nl0k5t5_4 5 3038
nl0k8t5_5 7 5139
nl5k9t5_1 7 6877
nl5k9t5_2 8 7642
nl5k7t5_3 16 5 2,35 250 6 5973

0.3 | n15k7t5.4 5 4621
nl5k6t5_5 6 4947
n20k10t5_1 8 9551
n20k12t5_2 9 11675
n20k10t5_3 21 5 235 300 7 8047
n20k13t5_4 10 12723
n20k12t5_5 9 11996
n20k14t5_1 10 13225
n20k10t5_2 7 8862

0.5 n20k7t5_3 21 5 235 300 6 7490
n20k10t5_4 7 8373
n20k11t5_5 9 11437
n50k10t5_1 10 22226
n50k8t5_2 8 15690
n50k9t5_3 51 5 235 500 9 19145
n50k9t5_4 9 19737
n50k11t5_5 11 23282

S4 ' 0.15
nl100k17t5_1 17 38700
nl100k18t5_2 18 40870
nl00k20t53 | 101 5 23,5 500 20 46018
nl100k21t5 4 21 48959
nl100k18t5_5 18 40782

pO1 51 2 1 160 2 937
pl4 21 4 124 20 2 120
S5 pl5 39 4 1,24 30 2 200
pl6 57 4 124 40 2 280
p32 154 6 2,35 20 9 1134

Table 6.1: Instance information.
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6.2.2 CALIBRATION OF PARAMETERS

Several preliminary tests were run in order to establish the best setting for the

matheuristic. The following parameter values were used:

e Overall parameters:

— The overall solution algorithm is repeated for five global iterations, pro-
vided that it does not exceed a maximum computing time of 14400 seconds.

That is, the algorithm stops when one of the two conditions is verified.

e DP-Generation:

— The maximum number of DP-MILP solved in Algorithm 2 is set to 5.
— The maximum number of iterations of the initialization is set to 5.
—e¢=0.1.

e TS:

— The maximum number iterations without improvement is IterNImp =

15n.

— Tenure=10.

The maximum number of DP-MILP solved in Algorithm 2 indicates the maximum
number of times the loop in lines 1-9 of Algorithm 2 is repeated. The limit will not
be reached if the current DP-MILP produces a feasible solution. Parameter € is used
when updating the value of \; as specified in Section 6.1.1. Concerning the TS,
the stopping criterion is reached when the maximum number of iterations without

improvement is equal to 15n or when the time limit is reached.

TEST 1: NEIGHBORHOOD PERFORMANCE

A first test was carried out to analyze the performance of each of the neighborhoods
used in the TS. Only a small subset of the benchmark instances was used. The re-
sults are summarized in Table 6.2. Columns in blocks (N - N,) show the frequency
of use (Freq), computed as the number of iterations when a move from that neighbor-
hood was chosen as the best one, and the computing time ( Time) required by each

neighborhood in the overall computation. According to the results, N, is the most
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resource-consuming neighborhood for the TS, with a small average frequency of use
of 77.43 but a high computation time requirement of 2143.21 seconds on average.
This is more than 8 times the computing time of using N3, more than 7 times of N,

and more than 64 times of Nj.

‘ N1 ‘ N2 ‘ N5 ‘ N4 ‘ Total

Instance ‘ |N| ‘ Freq  Time ‘ Freq Time ‘ Freq Time ‘ Freq Time ‘ Freq Time
pO1 51 665  25.42 279  431.12 4901 51.31 79 3888.8 5924  4396.64
pl4 21 0 1.17 0 22.70 1714 10.79 21 291.25 1735 325.91
pl5 39 0 12.29 0 198.70 3053 65.33 32 2731.50 3085 3007.81
pl6 57 0  36.09 0 854.75 4575 193.47 26 10775.00 4601 11859.30
p32 154 212 88.11 95 1563.71 1451 2282.47 36 6952.50 1794 10886.79
nl0k5t5_1 11 197 3.42 347 7.76 651 10.24 46 46.18 1241 67.60
nl15k10t5 1 16 764 29.07 255 43.09 642 67.57 41 138.76 1702 278.50
n20k10t5_1 21 292 52.71 96 153.56 2269 162.98 47 1178.06 2704  1547.31
nl0k6t5_1 11 182 3.73 50 4.55 780 7.21 37 51.44 1049 66.93
nl5k9t5_1 16 422 16.11 352 39.82 913 53.61 116 281.14 1803 390.67
n20k10t5_1 21 61 54.00 17 120.97 1742 123.96 11 673.29 1831 972.21
n20k14t5_1 21 89 55.99 26 113.64 1540 164.27 425 1108.97 2080 1442.86
n20k10t5_2 21 264 28.58 141 117.68 1738 88.87 111 852.90 2254 1088.02
n20k7t5_3 21 417  60.41 19 177.30 2235 137.02 56  1035.09 2727  1409.82
Average 254.64 33.36 | 119.79 274.95 | 2014.57 244.22 | 77.43 2143.21 | 2466.43 2695.74
Total 3565 467.08 1677 3849.33 28204 3419.08 | 1084 30005.37 34530 37740

Table 6.2: Individual neighborhood performance.

Given the above results, another set of tests was run, excluding neighborhood Ny.
The results, which are summarized in Table 6.3, allow to compare the performance
of the two-phase algorithm with and without the use of N,. Column labeled Best-
Known gives the value of the best-known solution for each instance. These values
were obtained with the FPVRP formulation of Archetti et al. (2017a), except for
instance p32, for which it was taken from Baldacci et al. (2011). The next two
columns give the best solution values (BestSol) and the best lower bounds (BestLB)
produced by the FPVRP formulation of Archetti et al. (2017a). Then, there are two
blocks of three columns each, one labeled N and another one N\ Ny, corresponding
to the results of TS with and without the use of the interperiod swap neighborhood
(Ny). Each block gives the values of the best solution produced by the corresponding

version of TS, the computing times and the percentage gaps between the values of
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the best solutions obtained and the best-known values of column Best—Known. The

latter are computed as follows.

Z eur Z
Gap = 21 7 BEST  100%, (6.10)

where Zggst and Zye.r are the best—known solution value and the one produced by
the heuristic, respectively.

The results of Table 6.3 clearly indicate that removing N, from the TS reduces
significantly the computing time (almost 44%) and the average solution quality is not
affected; on the contrary, it improves. Therefore, all subsequent tests were carried

out with TS without Ny.

FPVRP N N\ Ny

Instance |N| Best— BestSol BestLB | BestSol Time Gap | BestSol Time Gap
Known

p01 51 524.61 524.93  510.46 533  6389.90 1.57% 538.12  2699.76 2.51%
pl4 21 954.81 954.81  954.71 954.80 525.41 0.00% 954.80 587.96 0.00%
pl5 39 1862.63 1862.63 1825.04 | 1916.90  3797.25 2.83% | 1890.70  1920.70 1.48%
pl6 57 2875.24 2875.24  2814.29 | 2939.29 13705.90 2.18% | 2981.45 3764.68 3.56%
p32 154 | 78072.88 — — | 86371.20 14454 9.61% | 84763.20 14451.70 7.89%
n10k5t5_1 11 20.79 20.79 20.27 21.90 98.85 5.10% 21.48 54.26 3.24%
nl15k10t5_1 16 34.28 34.28 33.48 35.08 324.41 2.29% 35.05 168.31 2.21%
n20k10t5_1 | 21 24.58 24.58 23.57 25.62  1653.20 4.03% 25.58 471.83 3.89%
nl10k6t5_1 11 19.04 19.04 18.99 19.63 92.18 2.99% 19.57 54.00 2.72%
n15k9t5_1 16 27.16 27.16 26.65 27.17 425.34 0.07% 27.53 14275 1.37%
n20k10t5_1 | 21 29.59 29.59 29.06 31.77  1021.75 6.86% 31.05 391.41 4.71%
n20k14t5.1 | 21 32.30 32.30 31.61 33.06  1484.67 2.27% 32.98 423.16 2.05%
n20k10t5_2 | 21 29.37 29.37 28.78 30.46  1419.93 3.58% 30.47 615.46 3.61%
n20k7t5_3 21 23.25 23.25 22.65 24.09 182629 3.49% 24.14 705.16 3.68%

Average 3372.79 3.35% ‘ 1889.37 3.07%

Table 6.3: TS performance with/without Ny.

TEST 2: TENURE SELECTION

Another preliminary test was run to analyze the impact of the Tenure value in the

performance of the TS. The following options of Tenure were considered:

e Tenurel = 10.
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e Tenure2 = 5+ |[randN(1, « - \/W)J, similar to the proposed by Archetti
et al. (2012).

e Tenure3 = |« - (|N| +randN(1, \/|C|R(s")))].

e Tenure4 = [randN(1, - IterNImp)].

In all cases @ = 0.5. Table 6.4 shows that the best average results are obtained
using Tenure3 with 2.44% in 1984.87 seconds on average. Tenure4 is the second
best option with a percentage gap of 2.55% in 1740.23 seconds. Even though the
results of instance p32 are not considered (the atypical values), Tenure3 is still the
best option among all candidates. It is clear that Tenurel and Tenure2 produced
worse results in terms of average percentage gaps. Moreover, unlike the remaining
tenure values considered, Tenure3 only needs the calibration of the value of «, and
does not depends on any constant apart from those related to the instance, which
reduces the complexity of its calibration process. Hence, the formula for the Tenure3

is the one considered for further tests.

‘ FPVRP ‘ Tenurel ‘ Tenure2 ‘ Tenure3 ‘ Tenure4
Instance |N| Best BestSol BestLB | BestSol Time Gap | BestSol Time Gap | BestSol Time Gap | BestSol Time Gap
Known

po1 51 524.61 524.93  510.46 538.12  2699.76 2.51% 530.32  3835.95 1.08% 532.60  2528.45 1.50% 555.37 855.19  5.54%
pl4 21 954.81 954.81 954.71 954.80 587.96 0.00% 956.69 711.65 0.20% 954.80 943.83 0.00% 958.58 264.81 0.39%
pl5 39 1862.63 1862.63 1825.04 | 1890.70  1920.70 1.48% | 1915.01  1624.55 2.74% | 1888.82 212545 1.39% | 1898.05 1990.75 1.87%
plé 57 2875.24 2875.24 281429 | 2981.45  3764.68 3.56% | 2961.99  4075.00 2.93% | 2875.24 3856.35  0.00% | 2902.29  3796.90 0.93%
p32 154 | 78072.88 — — | 84763.20 14451.70 7.89% | 89303.70 14453.30 12.58% | 88813.70 14439.80 12.09% | 86712.20 14444.20 9.96%
nl0k5t5_1 11 20.79 20.79 20.27 21.48 54.26  3.24% 21.48 53.44 3.24% 21.55 61.72 3.53% 21.15 60.48 1.70%
nl15k10t5_1 16 34.28 34.28 33.48 35.05 168.31 2.21% 34.99 195.79 2.02% 34.83 191.03 1.58% 34.94 207.46 1.89%
n20k10t5_1 | 21 24.58 24.58 23.57 25.58 471.83 3.89% 24.86 508.36  1.13% 24.87 597.14  1.15% 24.94 536.79 1.43%
nl0k6t5_1 11 19.04 19.04 18.99 19.57 54.00 2.72% 19.54 77.88 2.58% 19.58 57.48 2.76% 19.43 59.07 2.03%
n15k9t5_1 16 27.16 27.16 26.65 27.53 142.75 1.37% 27.24 192.75  0.32% 27.27 209.55  0.43% 27.18 162.94 0.07%
n20k10t5_1 | 21 29.59 29.59 29.06 31.05 39141 4.71% 31.09 51427  4.84% 30.26 719.13  2.23% 29.97 465.81 1.26%
n20k14t5.1 | 21 32.30 32.30 31.61 32.98 423.16  2.05% 32.98 634.8  2.05% 32.60 665.33  0.90% 32.93 448.35 1.90%
n20k10t5_2 | 21 29.37 29.37 28.78 30.47 615.46 3.61% 30.69 658.06  4.30% 30.44 763.94  3.52% 29.91 496.46 1.79%
n20k7t5_3 21 23.25 23.25 22.65 24.14 705.16 3.68% 24.61 1057.32 5.51% 24.00 628.99 3.11% 24.47 574.00 4.98%

Average 1889.37 3.07% 2042.37 3.25% 1984.87 2.44% 1740.23  2.55%

Average! 923.03  2.69% 1087.68  2.53% 1026.80  1.70% 763.00 1.98%

! Average values without considered the atypical results obtained for the p32 instance.

Table 6.4: Comparison among different Tenure options.

TEST 3: CALIBRATION OF «

Finally, an evaluation of different values of o was considered to calibrate Tenure3.
Five different values were compared, o € {0.10,0.30,0.50,0.70,1.0}. The results

presented in Table 6.5 show that o = 0.7 outperforms the remaining options, with
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an average percentage gap of 1.92%. Thus, a = 0.7 was the value selected for the

following tests.

|  FPVRP | @ =010 | a =030 | @ =050 | a=0.70 | a=10
Instance | [N| | Best BestSol BestLB | BestSol  Time  Gap | BestSol — Time  Gap| BestSol — Time  Gap| BestSol — Time Gap| BestSol — Time Gap
Known

po1 51| 52461 | 52493 51046 | 54931 196355 4.50% | 53114 381042  1.28% | 53260 262845 1.50% | 53590 206423 2.11% | 55036 145450 4.68%
pla 21| 954.81 | 95481 95471 | 95858 26011 0.39% | 956.60  443.93  0.20% | 954.80  043.83  0.00% | 95480  487.96 0.00% | 95480  532.91 0.00%
pl5 30 | 1862.63 | 1862.63 1825.04 | 191501 1509.20 2.74% | 1924.24  1668.07 3.20% | 1888.82 212545 1.39% | 186262 210134 0.00% | 186262 2607.20 0.00%
p16 57| 2875.24 | 2875.24 281420 | 2060.87 304032 2.89% | 200229 3351.63 0.93% | 2875.24 385635 0.00% | 2875.24 348594 0.00% | 287524 721040 0.00%
p32 154 | 78072.88 8645830 1445040 9.70% | 8818150 1443630 11.46% | 85813.70 14439.80 12.09% | 86380.80 14452.30 9.63% | 8660470 1445190 9.85%
n10k5t5_1 11 20.79 20.79 20.27 22.01 49.66 5.55% 22.01 51.12 5.55% 21.55 61.72 3.53% 21.34 56.89 2.61% 21.34 55.00 2.61%
nl5k10t5_1 16 34.28 34.28 33.48 35.28 151.59 2.84% 34.82 241.21 1.55% 34.83 191.03 1.58% 34.97 188.84 1.98% 35.14 24249 2.46%
n20k10t5_1 21 24.58 24.58 23.57 26.23 446.75  6.29% 24.95 498.77 1.47% 24.87 597.14 1.15% 24.83 767.49 1.01% 24.76 918.08  0.70%
n10k6t5.1 | 11| 19.04 1004 1899 | 1007 4115 4.68% | 1939 7928  1.83% | 1958 5748  276% | 1942 6462 1.95% | 1935 5733 1.60%
n15kot5 1 | 16| 27.16 2716 2665 | 27.05 12693 2.83% | 27.24 16115  0.32% | 27. 20055 0.43% | 27.24 17741 0.31% | 2718 15450 0.08%
n20k10t51 | 21| 29.59 2050 2006 | 3207 30128 7.74% | 3113 56154 4.94% | 3026 71913  2.23% | 3065 62325 3.48% | 3061 51278 3.35%
n20k14t5_1 21 32.30 31.61 34.05 406.41  5.14% 32.60 505.80 0.90% 32.60 665.33 0.90% 32.59 583.72  0.89% 32.72 163.25 1.27%
n20k10t5_2 21 29.37 28.78 30.65 460.35 4.19% 30.09 473.00 2.40% 30.44 763.94 3.52% 29.78 562.79 1.37% 30.19 537. 2.71%
n20k7t5_3 21 23.25 22.65 24.81 538.86  6.28% 23.91 555.56 2.76% 24.00 628.99 3.11% 23.61 997.25 1.52% 23.86 669.87 2.57%
Average 170060 4.70% 191698 2.77% 198487 2.44% 196529 1.92% 213344 2.28%

Table 6.5: Calibration of « value (Tenure3).

6.2.3 MATHEURISTIC PERFORMACE

The final computational test was carried out with the calibrated two-phase algo-
rithm, using the complete set of benchmark instances. The main objective was to
assess the effectiveness of the heuristic and to compare the results it produces with
the results of the FPVRP formulation. Table 6.6 summarizes this comparison.
Again, column Best—Known shows the value of the best-known solution for each
instance, columns in block FPVRP reproduce the results obtained with the FPVRP
formulation, columns in Heur-FPVRP give information related to the performance
of the proposed algorithm, and the two columns of block Gap, give the percent-
age deviation gaps of the best solution produced by the heuristic with respect to
best-known solutions (column BK), and to the lower bound (LB) produced by the
FPVRP formulation of Archetti et al. (2017a) after four hours of computing time.
The entries of column BK have been computed with the expression (6.10). Note
that negative entries in this column indicate that the heuristic results improve the
solutions obtained with the formulation. Percentage deviations in column LB have
been computed with the expression W x 100%. Average BK gaps range
between -7.96% and 2.75%, with a total average gap of 0.69%. No BK gaps are
reported for the largest instances since CPLEX is not able to obtain any feasible

solution within the allowed computing time. Percentage deviations relative to lower
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| FPVRP | Heur-FPVRP | Gap

Instance ‘ r ‘ |N| ‘ Best Knoum‘ BestSol ~ BestLB  Time ‘ BestSol Time ‘ BK LB
po1 51 524.61 524.93 51046 14399 | 535.90  2964.23 | 2.11% = 4.98%
pl4 20 954.81 954.81 95471 11525 | 954.80  545.83 | 0.00%  0.01%
pl5 28 | 1862.63 | 1862.63 1825.04 14399 | 1862.62 2137.65 | 0.00%  2.06%
pl6 56 | 287524 | 2875.24 2814.29 14399 | 2875.24  3080.64 | 0.00%  2.17%
p32 154 | 78072.88 —40990.75 14400 | 86389.80 1444870 | 9.63%  110.75%
Avg. 2.35% 2.30%

n10k5t5_1 11 20.79 2079 20.27 14400 | 21.34 5629 | 2.61% = 5.29%
n10k4t5_2 12.44 1244 1235 14400 | 12.44 4985 | 0.00%  0.74%
n10k5t5_3 13.23 1323 1291 14400 | 1345 20581 | 1.65%  4.18%
n10k4t5_4 13.53 1353 13.05 14400 | 13.93 7857 | 291%  6.71%
n10k8t5_5 25.91 2591 2558 14400 | 27.74 58.44 | 6.59%  8.44%
Avg. 2.75% 5.07%

n15k10t5_1 16 34.28 3428 3348 14400 | 3497 20290 | 1.98% = 4.45%
n1skets 2 | 010 17.41 1741 1654 14400 | 17.43 48324 | 0.10%  5.42%
n15k10t5_3 25.24 2524 2442 14400 | 25.33 39246 | 0.34%  3.71%
n15k8t5_4 32.12 3212 30.97 14400 | 3273 41456 | 1.88%  5.68%
n15k7t5.5 23.92 2392 2287 14400 | 2444 21801 | 2.12%  6.86%
Avg. 1.29% 5.22%

n20k10t5_1 21 24.58 2458 2357 14400 | 24.83  836.93 | 1.01%  5.36%
n20k12t5_2 36.08 36.08 3549 14400 | 3627  986.62 | 0.51%  2.19%
n20k11t5_3 23.69 23.69 2276 14400 | 25.36 72079 | 6.57%  11.41%
n20k10t5_4 35.36 3536 34.60 14400 | 36.23  557.28 | 241% = 4.73%
n20k10t5_5 29.44 2944 2883 14400 | 3027 53846 | 2.76%  4.81%
Avg. 2.65% 5.70%

n10k6t5_1 11 19.04 19.04 1899 14400 | 19.42 67.07 | 1.95% = 2.28%
n10k6t5_2 13.89 13.80  13.63 14400 | 13.89 7490 | 0.02%  1.90%
n10k5t5_3 14.50 1450 1410 14400 | 14.67 69.08 | 1.19%  4.06%
n10k5t5_4 14.39 1439 1411 14400 | 14.42 86.32 | 0.27%  2.19%
n10k8t5.5 | .o 19.39 1939 19.33 14400 | 19.83 64.39 | 2.18%  2.56%
: Avg. 1.12% 2.60%

n15k9t5_1 16 27.16 2716 26.65 14400 | 27.24 19337 | 0.31% = 2.19%
n15k9t5_2 29.72 2972 2920 14400 | 3028  309.82 | 1.87% = 3.70%
n15k7t5_3 27.84 27.84  27.38 14400 | 28.12 32531 | 1.02%  2.72%
n15k7t5_4 17.42 1742 17.07 14400 | 17.42 30275 | 0.01%  2.07%
n15k6t5_5 20.58 2058 20.22 14400 | 20.63 20645 | 0.24% = 2.03%
Avg. 0.69% 2.54%

n20k10t5_1 21 29.59 2959 29.06 14400 | 30.65  674.94 | 3.48%  5.48%
n20k12t5_2 31.50 3150 30.82 14400 | 3238  591.02 | 2.72%  5.06%
n20k10t5_3 26.09 26.09 2517 14400 | 2634  549.93 | 0.95% = 4.67%
n20k13t5_4 42,62 42,62 4169 14400 | 43.31 67645 | 1.60%  3.88%
n20k12t5_5 34.07 3407 3380 14400 | 34.60  480.37 | 1.52%  2.36%
Avg. 2.05% 4.29%

n20k14t5_1 21 32.30 3230 3161 14400 | 3259 63537 | 0.89%  3.10%
n20k10t5_2 29.37 29.37  28.78 14400 | 20.78 62437 | 1.37%  3.47%
n20k7t5.3 | 0.50 23.25 2325 2265 14400 | 23.61  1211.97 | 1.52% = 4.22%
n20k10t5_4 24.81 2481 2412 14400 | 2529  921.68 | 1.91% = 4.87%
n20k11t5_5 36.45 3645  35.60 14400 | 36.74 79152 | 0.79%  3.19%
Avg. 1.30% 3.77%

n50k10t5_1 51 44.65 44.65  36.04 14400 | 3856  14440.30 | -15.78%  7.00%
n50k8t5_2 32.91 3291 30.36 14400 | 32.26  14430.50 | -2.01%  6.26%
n50k9t5_3 33.13 3313 2884 14400 | 31.55  14438.80 | -5.01%  9.39%
n50k9t5_4 29.61 29.61  27.04 14400 | 29.42 1444510 | -0.65%  8.77%
n50k1165.5 | 39.29 39.29 3104 14400 | 3377  14433.80 | -16.36%  8.79%
: Avg. -7.96% 8.04%

n100k17t5_1 101 — — 61.78 14400 | 67.22  14457.70 | — 8.80%
n100k18t5_2 — — 72.28 14400 | 78.04  14465.70 | — 7.97%
n100k20t5_3 — — 75.39 14400 | 82.83 1445770 | — 9.87%
n100k21t5_4 — — 68.57 14400 | 74.00  14460.60 | — 7.91%
n100k18t5_5 — — 84.44 14400 | 91.10 1449260 | — 7.89%
Avg. 8.49%
Total Average Gap 0.69%  4.85%

Table 6.6: Performance of the two-phase algorithm.
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bounds, given in column LB, range between 2.30% and 8.49%, with a total average
gap of 4.85%. These values indicate that the two-phase algorithm produces high
quality solutions. In addition, the lower bounds produced by the FPVRP formula-
tion of Archetti et al. (2017a) are, in general, pretty tight. The only exception is the
lower bound for the largest instance, p32, which is an atypical case that has been
left out of the calculation of the average.

In general, the computing times required by the heuristic are moderate, taking
into account the difficulty and dimensions of the considered instances. Still, it was
able to find good quality feasible solutions for all the considered benchmark instances,
whereas the FPVRP formulation was not.

To illustrate the evolution of the optimization process, two large instances, one
with 50 customers and one with 100 customers, are used. Figure 6.2 shows the
reduction in the value of the objective function of the incumbent solution found by
the TS during the computation for the two considered instances. Figure 6.2a refers
to the instance with 50 customers, whereas Figure 6.2b to the instance with 100
customers. On the vertical axis, the objective function value of the best solution
found by the TS is reported, while on the horizontal axis the number of iterations
performed by the TS is shown. Also, the value of the objective function of the best
solution found by the TS for each DP generation is provided. In particular, for the
instance with 50 customers, 3 DP generations (DP1, DP2 and DP3 in Figure 6.2a)
were performed before the maximum computing time was reached. For the instance
with 100 customers, the maximum computing time was reached during the first
run of the TS. It can be observed that large improvements occur before iteration
1000, which is reached after 4108 seconds for the 100 customer instance. For the
50 customer instance, 1000 iterations are reached after 861 seconds for DP1, 841
seconds for DP2 and 969 seconds for DP3. Note that, for the 50 customer instance,
the incumbent solution after 1000 iterations is better than the solution produced
by the FPVRP formulation after 4 hours of optimization. For the 100 instance no
comparison can be done since the formulation does not produce any feasible solution

within 4 hours of computation.



CHAPTER 6. A TWO-PHASE SOLUTION ALGORITHM

75

45.00

44.00

43.00

42.00

41.00

Solution cost

40.00

39.00

38.00

76.00

75.00

74.00

73.00

72.00

71.00

Solution cost

70.00

69.00

68.00

67.00

1000

500

n50k10t5_1

—~DP-1 -« DP-2 -+ DP-3

2000 3000

TS Iterations

(a) 50 customers

n100k17t5_1
+ DP-1

1000 1500 2000

TS-Iterations

(b) 100 customers

4000

2500

5000

3000

6000

3500

Figure 6.2: Value of the incumbent solution for a 50/100 customers instance.



CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Many real-world situations give rise to vehicle routing problems in which it is neces-
sary to deliver products to customers in different days over a specific time horizon.
Such problems are usually addressed with classical PVRP models. Multiple elements
may give rise to various extensions, which, broadly speaking, usually differ on how
strictly delivery schedules are defined. As could be seen in Chapter 2.4, several works
in the literature have considered models that allow some flexibility as for when to
provide service to customers. In general, most of these works resort to inventory
levels or service choice to incorporate flexible service policies.

In this thesis we have defined the Flexible Periodic Vehicle Routing Problem in
which flexible service policies are considered to decide the frequency of the visits
to each customer as well as the quantities delivered at each time visit. Unlike
previous work in the literature, our problem addresses these service policies without
considering inventory levels or service choice, and it does not depend on predefined
schedules and fixed delivery quantities at each visit. In the FPVRP, three important
decisions are simultaneously addressed: when to visit customers (schedule), what
amount of product to deliver at each visit (delivery), and what are the routes that
vehicles must perform in order to visit those customers (routing). The aim of the
FPVRP is to minimize the total routing cost over the time horizon.

In Chapter 3.4, a worst-case analysis that shows the theoretical advantages of
allowing flexible service policies in periodic routing problems, has been presented.
According to this analysis, the savings provided by the FPVRP are significant with
respect to both the PVRP and the IRP. In the remainder of the thesis we have
presented formulations and developed algorithmic proposals for dealing with this

type of models and analyzed their respective performance.

76



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 77

In Chapter 4, we have proposed two different MILP formulations for the FPVRP
and families of inequalities to reinforce them. The main difference between both
formulations is the way in which vehicle information is represented. The first for-
mulation uses decision variables with a vehicle index and includes a family of SECs
of exponential size, which need to be separated. In the second one, instead, decision
variables identify the arcs used in the solutions without making explicit the vehicles
that traverse them, at the expenses of using an additional set of continuous variables
to indicate the load of the vehicles when traversing the arcs. Such load-based formu-
lations tend to be quite effective in practice. On the one hand, they have a smaller
number of variables. On the other hand, the number of constraints is polynomially
bounded. An adapted version of the IRP called FPVRP-IC has been proposed in
order to compare the FPVRP with IRP instances in which an inventory level is
defined. Furthermore, a new formulation for the classical PVRP has been proposed
in order to compare the FPVRP with this classical problem in which schedules and
delivery quantities are known.

The results of the computational experiments that have been carried out show
that, also in practice, the FPVRP may produce substantial improvements in the
routing costs in comparison to both the PVRP and the IRP. Even if, in practice,
the LP relaxation of load-based formulations is in general weaker than its classical
counterpart, the computational results show that the lower bounds obtained for the
load-based FPVRP are very good.

Given the difficulty of solving to optimality FPVRP instances of relatively small
sizes, an efficient matheuristic, able of producing high quality solutions in small
computing times, has been proposed to handle medium and large size instances.

The proposed matheuristic consists of two main phases: the DP-Generation and
the Improvement phase. In the DP-Generation, the original problem is divided in
two subproblems. The solution of the first subproblem produces the schedule of visits
or calendar and the quantity to be delivered to each customer at each visit. The
second subproblem takes the solution of the first subproblem to obtain a consistent
set of routes to be performed by the vehicles. It applies a Tabu Search which explores

different neighborhoods. The results obtained with the matheuristic showed that it
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can produce good quality solutions efficiently. The total average percentage gap with
respect to the best-known solutions is 0.69% and the average gaps for the groups
of instances of different sizes range within -7.96% and 2.75%, where negative values
indicate that the solutions produced by the two—phase algorithm are better than
the ones obtained with the formulations. The greater savings are obtained with
the larger instances, for which the FPVRP formulation is not able to find a better
solution after 4 hours of optimization 50 customers instances, and is not even able
to find at least one feasible solution for instances with 100 customers.

Future research directions aim at considering similar types of formulations for
other periodic VRPs like, for instance, the multi-depot PVRP, the PVRP with
heterogeneous fleet of vehicles, PVRPs with Time Windows, and PVRPs with Inter-
mediate Facilities, to mention just a few. Given that most real-world applications
of the VRPs with periodic demands are highly related to the collection of garbage,
recyclables, wastes, oil, etc., another avenue for future research is to extend the
FPVRP to a closely related problem, called the Green VRP (Lin et al., 2014), which
extends the classical VRP taking into account environmental and social impacts

rather than just transportation costs.



APPENDIX A

ALTERNATIVE FORMULATION FOR THE PVRP

Christofides and Beasley (1984) developed the first mathematical programming for-
mulation for the PVRP, defined as the problem of designing a set of routes for each
day of a given |T'|-day planning period to meet the required customer visit frequency.
Recall from Chapter 3.1.2 that it is assumed that the set of possible schedules for
each customer ¢ € C, S; is known. Furthermore, each schedule s € S;, i € C consists
of the set of days when customer i is visited according to schedule s, and is repre-
sented by a set of binary coefficients ay;, indicating whether or not day t € T" belongs
to schedule s. The formulation that we propose uses three sets of decision variables:
one for the selection of the schedule, one for the visits to customers, and the other one
for the routing criterion. Given that the PVRP formulation proposed by Christofides
and Beasley (1984) uses several aggregated variables and constraints, we propose a

disaggregate formulation, which includes, in addition, the stronger version of the

SECs (4.7).

A.1 VEHICLE-INDEX FORMULATION FOR THE PVRP

The following sets of variables are considered:

1 If vehicle k € K visits customer i € C' on schedule s € S,

® Pi =
0 otherwise.
y 1 If vehicle k € K traverses arc (i,j) € Aonday t € T,
[ ] y’L e
’ 0 otherwise.
y 1 If customer i € C is visited on day t € T per vehicle k € K,
e =

0 otherwise.
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The disaggregated PVRP formulation (PVRP-D) is as follows:

min Z Z Zcijyfjt (A.1)

teT (i,j)cA keK

st Y Y ph=1 icC (A.2)

seS; keK
P prkast ke K,teT,ieC (A.3)

SES;

R
yffﬁ% ke KiteT;i,jeC(i#j) (A.4)
nyf:nyf 1eEN;ke K;teT (A.5)
JEN jev

2 5eC

dy=35 " .‘7 keKteT (A.6)
ieN L, 7=0
Dyt <y -2t PCCiePkeKteT (A7)
1,JEP i€EP
Zwinyf/gQ ke K;teT (A.8)
i€C  jEN
2F e {0,1} icCkeK,teT (A.9)
i € {0,1} seSieCkekK (A.10)
Yt € 0,1} (i,j)e A ke K,teT. (A.11)

The objective function (A.1) minimizes the total travel costs. Constraints (A.2)
ensure that there is a feasible schedule for each customer. Constraints (A.3) define
the days within the assigned schedule in which each customer will be visited by
vehicle k. Constraints (A.4) restrict arc traversals to those where both end-nodes
are customers visited by vehicle k € K at day ¢t € T. Constraints (A.5) are the
flow conservation constraints. Constraints (A.6) relate the y and z variables. Con-
straints (A.7) are the SECs. Constraints (A.8) are the capacity constraints. Finally,
Constraints (A.9)—(A.11) define the domain of the variables.
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A.2 COMPARISON AMONG PVRP FORMULATIONS

For this test, we compare the results obtained with the aggregated formulation of
Christofides and Beasley (1984) (PVRP-A) and the proposed disaggregated (PVRP—
D) and load-based formulations (PVRP) using a small subset of the FPVRP in-
stances (r = 0.15). The time limit was set to 4 hours (14400 sec).

According to results shown in Table A.1, formulations PVRP-D and PVRP pro-
duced better quality solutions than those produced by formulation PVRP-A. More-
over, formulation PVRP also outperformed PVRP-D. One of the reasons is that
PVRP does not impose that all vehicles must be used at each time period (Figures
A.1-A.2), while in PVRP-D it is constrained by (A.6) when j = 0. This set of
constraints represents the disaggregated form of those used in PVRP-A.

\ ! \ PVRP-A \ PVRP-D \ PVRP
nstance

Status BestSol Gap% Time | Status BestSol Gap% Time | Status BestSol Gap% Time
nl10k5t5_1 I — — 0.8 I — — 44.98 I — — 14400
nl10k4t5_2 F 15.46 5.49 14400 o 15.63 0.01 1080 o 13.01 0.01 145
nl0k5t5.3 F 16.36 3.87 14400 o 16.82 0.01 1301 (0} 13.80 0.00 11
n10k4t5 4 F 17.80 2.84 14400 o 17.95 0.01 869 o 15.17 0.01 35
nl10k8t5.5 I — — 0.08 I — — 0.14 o 27.74 0.00 1
nl5k10t5_1 F 36.77 7.93 14400 F 37.04 8.52 14400 o 36.27 0.01 2445
nl5k6t5 2 I — — 14400 F 22.21 15.91 14400 F 19.86 1.69 14400
nl5k10t5_3 I — — 0.17 I — — 0.53 o 28.09 0.01 1213
nl15k8t5 4 F 37.00 1.12 14400 o 37.00 0.01 206 o 34.09 0.01 4587
nl5k7t5 5 F 31.18 941 14400 F 30.89 6.43 14400 F 25.77 1.54 14400
n20k10t5_1 F 31.32 1.32 14400 F 31.40 1.04 14400 F 25.94 2.33 14400
n20k12t5 2 F 47.02 2.75 14400 F 47.49 3.52 14400 F 39.12 0.48 14400
n20k11t5_3 F 29.56 3.59 14400 F 31.53 9.39 14400 F 26.64 2.47 14400
n20k10t5_4 F 42.61 12.26 14400 F 43.69 14.34 14400 F 39.43 4.81 14400
n20k10t5 5 F 40.72 4.96 14400 F 42.28 8.42 14400 F 31.45 4.31 14400

Table A.1: Comparison among PVRP formulations.
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Figure A.2: Optimal solution obtained using the load-based PVRP formulation.
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ALTERNATIVE FORMULATION FOR THE

FPVRP-IC

T 3D 3 SR

teT keK (i,j)eA

s.t. [it = [f_l — dit + Z (]ft

keK

Z%kt <w; — I

keK
kt kt
¢ < wiz;

kt kt
E q; SQZ'O
1eC

sztgl

keK

kt _ _kt
E Yis = %

jl(i.j)eA

Yoouli= Y

jl(i.5)eA ilGi)eA

kt kt kt
E Yij SE R T Rs

(3,5)€A ics
1,j€S

I; >0

M e {0,1}
¢' >0

yfjt € {0,1}
yor €{0,1,2}
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B.1 VEHICLE-INDEX FORMULATION FOR THE FPVRP-IC

1eCiteT
1eCiteT

1€eClke K, teT
ke K,teT

1eCiteT

1€ Nke K,iteT

1€ Nke K,teT
seS,SCC keK,teT
1eCiteT

1€ Nke K,teT
1€eClke K,teT

(1,j) e Ak e K,teT
jelC ke K teT.
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The objective function (B.1) minimizes the total routing costs. Constraints (B.2)
and (B.10) determine the inventory level over time and avoid stock—out. Constraints
(B.3) impose that, at each time period, no vehicle delivers customer i € C' a quantity
that exceeds w; — I/™!. Constraints (B.5) impose that the vehicle capacity is not
violated. Constraints (B.6), (B.7), (B.8), and (B.9) are the number of vehicles
used for each visited customer, the node degree constraints, the flow conservation

constraints, and the SECs for each vehicle route and each time period, respectively.

B.2 CoMPARISON BETWEEN FPVRP-IC FORMULATIONS

Table B.1 shows the comparison between both vehicle-index and load—based
FPVRP-IC formulations. The set S1 of instances is used and a time limit was
set to 2 hours (7200 sec). It can be observed that in most of the instances the
load—based formulation outperformed its vehicle-index version. The optimality gap
of feasible solutions is much smaller than the vehicle-index counterpart (except for

instance absbnl15_2).
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Vehicle-index FPVRP-IC

Load—based FPVRP-IC

Instance
Status Time TotCuts* BestSol BestLB Gap % | Status Time TotCuts BestSol BestLB Gap %
absln5_1 (0] 2 13 1301.85 1301.85 0.00 (0] 0 0 1301.85 1301.85 0.00
absln5_2 o 1 10 1335.88 1335.88 0.00 (0] 0 0 1335.88 1335.88 0.00
abs2n5_1 o 1 9 1088.72  1088.72 0.00 (0] 0 0 1088.72  1088.72 0.00
abs2n5_2 (0] 9 24 1494.37  1494.37 0.00 (0] 4 0 1494.37  1494.23 0.01
abs3n5_1 (0] 4 25 2302.82 2302.82 0.00 (0] 2 0 2302.82  2302.82 0.00
abs3n5_2 o 2 20 2864.95 2864.95 0.00 (0] 0 0 2864.95 2864.95 0.00
abs4n5_1 o 1 6 1650.73  1650.73 0.00 (0] 0 0 1650.73  1650.59 0.01
abs4n5_2 (0] 4 9 2224.13  2224.13 0.00 (0] 1 0 2224.13  2224.13 0.00
abs5n5_1 (0] 1 12 1091.97 1091.95 0.00 (0] 0 0 1091.97  1091.97 0.00
absb5n5_2 o 5 19 1386.18 1386.18 0.00 (0] 4 0 1386.18 1386.18 0.00
abslnl0_1 o 56 462 1960.99  1960.99 0.00 (0] 18 0 1960.99 1960.82 0.01
abslnl0_2 (0] 184 844 2429.55 2429.37 0.01 (0] 31 0 2429.55 2429.55 0.00
abs2n10_1 (0] 19 117 2554.79  2554.79 0.00 (0] 14 0 2554.79  2554.79 0.00
abs2n10_2 (0] 100 277 3214.05 3213.77 0.01 (0] 19 0 3214.05 3213.88 0.01
abs3n10_1 o 10 59 1980.71  1980.71 0.00 (0] 6 0 1980.71 1980.71 0.00
abs3nl10_2 (0] 81 387 2410.50 2410.26 0.01 (0] 39 0 2410.50 2410.50 0.00
abs4n10_1 (0] 60 384 2240.93 2240.93 0.00 (0] 35 0 2240.93 2240.73 0.01
abs4n10_2 (0] 338 844 2943.14  2942.90 0.01 (0] 279 0 2043.14  2942.87 0.01
abs5n10_1 o 7 23 1848.20 1848.20 0.00 (0] 14 0 1848.20 1848.20 0.00
abs5n10_2 (0] 17 38 2151.45 2151.45 0.00 (0] 19 0 2151.45 2151.45 0.00
abslnl5_1 (0] 19 86 1915.91 1915.91 0.00 (0] 21 0 1915.91 1915.89 0.00
abslnl5 2 (0] 279 678 2402.36  2402.18 0.01 (0] 295 0 2402.36 2402.14 0.01
abs2n15_1 o 115 229 2185.68 2185.51 0.01 (0] 194 0 2185.68 2185.46 0.01
abs2n15_2 (0] 229 905 2388.97 2388.97  0.00 (0] 39 0 2388.97 2388.97 0.00
abs3nl5_1 (0] 93 410 2373.10 2373.10 0.00 (0] 11 0 2373.10 2373.10 0.00
abs3nl5_2 (0] 129 436 2646.11 2645.91 0.01 (0] 20 0 2646.11 2646.11 0.00
abs4nl5_1 o 87 255 2199.78 2199.78 0.00 (0] 188 0 2199.78 2199.57 0.01
abs4nl5_2 o 296 349 2572.55 2572.55 0.00 (0] 705 0 2572.55 2572.30 0.01
abs5n15_1 (0] 164 520 2309.75 2309.75 0.00 (0] 88 0 2309.75  2309.53 0.01
abs5n15_2 o 903 1003 2959.31 2959.04  0.01 F 7199 0 2959.31 2846.19 3.82
absln20_1 (0] 1388 3413 2410.91 2410.91 0.00 (0] 6343 0 2410.91  2410.70 0.01
abs1ln20_2 F 7200 10538 3118.53 2562.24 17.84 F 7199 0 3138.27 2885.98 8.04
abs2n20_1 (0] 57 206 2148.82 2148.82 0.00 (0] 18 0 2148.82 2148.82 0.00
abs2n20_2 (0] 852 1199 2393.13  2392.92 0.01 (0] 658 0 2393.13  2392.90 0.01
abs3n20_1 o 125 209 2283.53 2283.53 0.00 (0] 23 0 2283.53 2283.53 0.00
abs3n20_2 o 127 309 2529.42  2529.42 0.00 (0] 16 0 2529.42  2529.28 0.01
abs4n20_1 (0] 5680 10894 3136.22  3135.91 0.01 (0] 2782 0 3136.22 313591 0.01
abs4n20_2 F 7200 13530 3874.55 3083.57 20.41 F 7200 0 3664.52 3566.13 2.68
abs5n20_1 o 1370 4638 2859.60 2859.46 0.00 (0] 379 0 2859.60 2859.35 0.01
abs5n20_2 F 7200 11252 3738.12 3171.80 15.15 F 7200 0 3567.47 3473.76 2.63

Gap: Cplex MIP gap %. *SECs and FCC.

Table B.1: Comparison between vehicle-index and load-based FPVRP-IC formulations.



APPENDIX C

ADDITIONAL COMPUTATIONAL EXPERIENCE

FOR THE FPVRP

In this Appendix, results from additional computational experiments are provided

to complement the results shown in Chapter 5.3.

C.1 COMPARISON OF INEQUALITIES FOR THE LOAD-BASED

FPVRP FORMULATION

We present detailed results of the tests carried out to evaluate the effect of the
inequalities and optimality cuts described in Chapter 4.2.1 and discussed in Chapter
5.3.2.

Column description:

e FPVRP: load—based FPVRP formulation without valid inequalities.

1

FPVRP + inequalities (4.30)

):
2): FPVRP + (yf; + vl <1+ >, vbni € Ot €T).
):

3

FPVRP + inequalities (4.32).

e (2S): FPVRP + inequalities (4.31).

):
):

)
FPVRP + inequalities (4.33).
1&2): Combination of (1) and (2).

)

1&3): Combination of (1) and (3

(
(
(
(
. (35
(
(
o (1&2S): Combination of (1) and (29).
(

e (1&3S): Combination of (1) and (3S).
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e Relative percentage optimality gap (RGap)

_ ILB — Best_UB|
o RGa'p% " (1e—10 + |Best_UB|) x 100.
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