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Small aspect ratio Taylor-Couette flow: Onset of a very-low-frequency three-torus state
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The nonlinear dynamics of Taylor-Couette flow in a small aspect ratio annulus~where the length of the
cylinders is half of the annular gap between them! is investigated by numerically solving the full three-
dimensional Navier-Stokes equations. The system is invariant to arbitrary rotations about the annulus axis and
to a reflection about the annulus half-height, so that the symmetry group is SO(2)3Z2. In this paper, we
systematically investigate primary and subsequent bifurcations of the basic state, concentrating on a parameter
regime where the basic state becomes unstable via Hopf bifurcations. We derive the four distinct cases for the
symmetries of the bifurcated orbit, and numerically find two of these. In the parameter regime considered, we
also locate the codimension-two double Hopf bifurcation where these two Hopf bifurcations coincide. Second-
ary Hopf bifurcations~Neimark-Sacker bifurcations!, leading to modulated rotating waves, are subsequently
found and a saddle-node-infinite-period bifurcation between a stable~node! and an unstable~saddle! modulated
rotating wave is located, which gives rise to a very-low-frequency three-torus. This paper provides the com-
puted example of such a state, along with a comprehensive bifurcation sequence leading to its onset.

DOI: 10.1103/PhysRevE.68.036302 PACS number~s!: 47.20.Ky, 47.15.Fe, 47.54.1r, 47.32.2y
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I. INTRODUCTION

Taylor-Couette flow between two concentric rotating c
inders continues to provide a canonical physical system
has been instrumental in developments in nonlinear dyn
ics, routes to chaos, and equivariant dynamical systems~e.g.,
Refs. @1–3#!. The study of the influence of endwalls an
reflection symmetry at the annulus half height@4,5# opened
up a new perspective into the importance ofZ2 symmetry
~reflection! in Taylor-Couette flow, as well as in many oth
equivariant problems.

The impact ofZ2 symmetry is enhanced as the asp
ratio of the annulus is reduced@6#. Most theoretical and nu
merical studies of short annulus Taylor-Couette flow ha
been restricted to an axisymmetric subspace and have pr
rily considered steadyZ2-symmetry breaking. Experimen
tally however, very rich and complex spatiotemporal dyna
ics, including global bifurcations, have been observed, wh
are intrinsically associated with theZ2 equivariance of the
system~e.g., Refs.@7–10#!. Equivariant bifurcation theory
@11–13# provides a classification of possible bifurcation sc
narios that may occur in the presence of symmetries. T
recent studies on short annulus Taylor-Couette flow withZ2
reflection symmetry have identified two of the ways the ba
state can become unstable, both breaking theZ2 symmetry;
in Ref. @14# the symmetry breaking is via steady-state pitc
fork bifurcations and in Ref.@15# it is via a Hopf bifurcation.
In both investigations, the analyses of the results were
stricted to an axisymmetric SO(2) subspace.

One of the main conclusions from Ref.@14# is the conjec-
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ture that at small aspect ratios~less than 0.5!, the steady
axisymmetric flow is unique, and yet they report observi
time dependence and disorder at higher Reynolds numbe
and claim that an understanding of the evolution remains
outstanding challenge. In this paper we investigate num
cally the dynamics at aspect ratioG50.5 using a three-
dimensional Navier-Stokes spectral solver. At smallRe we
found the steady-state pitchfork bifurcation that breaks
Z2 symmetry, as well as the inverse pitchfork where the
furcated states revert to aZ2-symmetric state, as reported i
Ref. @14#. At slightly higher Re, the flow becomes unstab
via two Hopf bifurcations that breakZ2, one leading to an
axisymmetric limit cycle and the other to a non
axisymmetric rotating wave. In fact, we have located
codimension-two bifurcation point where both Hopf bifurc
tions occur simultaneously. By carefully following the var
ous bifurcated states, we have constructed a fairly comp
bifurcation picture that culminates in the onset of a very-lo
frequency three-torus state via a saddle-node-infinite-pe
global bifurcation.

II. BASIC EQUATIONS, SYMMETRIES, AND NUMERICAL
METHOD

We consider an incompressible flow confined in an an
lus of inner radiusRi , outer radiusRo , and lengthL, driven
by the constant rotation of the inner cylinder at angular sp
V, while the outer cylinder and the top and bottom end wa
remain at rest. Figure 1 shows the annular geometry
includes a meridional plane with a typical streamline plot
a basic state; this meridional plane is used in subseq
figures. The system is nondimensionalized using the gaD
5Ro2Ri as the length scale and the diffusive time acro
the gapD2/n as the time scale~wheren is the fluid’s kine-
©2003 The American Physical Society02-1
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matic viscosity!. The governing parameters are

Reynolds number: Re5VDRi /n,

Aspect ratio: G5L/D,

Radius ratio: h5Ri /Ro .

The equations governing the flow are the Navier-Sto
equations together with initial and boundary conditions;
boundaries are no-slip. In cylindrical coordinates (r ,u,z),
the nondimensional velocity vector isu5(u,v,w). The do-
main is (r ,u,z)P@r i5h/(12h),r o51/(12h)#3@0,2p#
3@2G/2,G/2#. The discontinuities in these ideal bounda
conditions at (r 5r i ,z56G/2) physically correspond to
small but finite gaps between the rotating cylinder and
stationary end walls. For an accurate use of spectral te
niques, a regularization of these discontinuities is imp
mented of the form

u5w50, v5Re expF2S r 2r i

e D 2G , ~1!

for r P@r i ,r o# and wheree is a small parameter that mimic
the small gaps~we have usede50.005). The use ofeÞ0
regularizes the otherwise discontinuous boundary conditio
See Refs.@16,17# for further details of the use of this regu
larization in spectral codes.

The three-dimensional Navier-Stokes equations are so
numerically using a Galerkin spectral scheme for spatial
cretization and a second-order projection scheme for t
evolution. Legendre polynomial bases are used in the ra
and axial directions and a Fourier basis is used in the p
odic azimuthal direction. The details of the numeric
method are given in Ref.@17#. For all the computed result
presented here, 48 Legendre modes inr and z, 32 Fourier
modes inu, and a time step of 231024 have been used.

The governing equations and boundary conditions
equivariant to rotationsRa , of arbitrary anglea, around the
cylinder axis, and also to a specular reflectionK about the
midplanez50. Their action on the velocity vectoru is

Ra~u,v,w!~r ,u,z!5~u,v,w!~r ,u1a,z!, ~2!

FIG. 1. Schematic of the annular flow geometry. The inset ill
trates typical streamlines of a steady axisymmetric flow determi
by numerical simulation, projected onto a meridional plane.
03630
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K~u,v,w!~r ,u,z!5~u,v,2w!~r ,u,2z!. ~3!

SinceRa andK commute, the symmetry group of the pro
lem isG5SO(2)3Z2. The basic state, i.e., the unique sol
tion of the Navier-Stokes equations for small values of Re
steady and invariant to the groupG.

Using the spectral code, it is straightforward to consid
the dynamics in a number of invariant subspaces:~i! the
SO(2)3Z2-invariant subspace, where all solutions are a
symmetric and reflection symmetric aboutz50, ~ii ! the
SO(2)-invariant subspace, where all solutions are axisy
metric but the midplane (z50) need not be a symmetr
plane, ~iii ! the Z2-invariant subspace, where the mid-pla
(z50) is a symmetry plane but the solutions need not
axisymmetric, and finally~iv! the full problem where no
symmetry conditions are imposed. The restriction to the a
symmetric SO(2)-invariant subspace is accomplished by s
ting to zero all but the zeroth Fourier mode; the restriction
the Z2-invariant subspace is simply accomplished by sett
to zero all the odd Legendre polynomials in thez basis foru
andv and all the even Legendre polynomials in thez basis
for w. This enforces the condition

uz5vz5w50 ~4!

at the midheight plane (z50), which means that on this
plane there is no flow-through~maintaining it flat! and there
are no tangential stresses. The restriction to
SO(2)3Z2-invariant subspace is accomplished by the d
restriction to both SO(2) andZ2 invariance. For a recen
application of this numerical technique and symmetry me
ods, to a problem with similar geometry, see Ref.@18#.

III. THE BASIC STATE

The basic state is steady, axisymmetric and reflect
symmetric about the half-height plane. It is driven by t
constant rotation of the inner cylinder, which imparts angu
momentum to the fluid adjacent to it. In the Stokes lim
(Re→0), the angular momentum is distributed througho
the annular gap by diffusion, and as Re is increased,
redistribution is also accomplished by advection. For the
sic state, the advection of angular momentum results in
tablishing a jet flow from the inner cylinder and centered
the half-height plane. A typical basic state in a regime dom
nated by advection of angular momentum is shown in Fig
at Re5540, h50.675, andG50.5. The structure of this je
is clear from the contours of the radial and azimuthal vel
ity components in parts~a! and~b! of the figure. The flow is
virtually stagnant in the outer one-third of the annulus, an
two-cell counter-rotating meridional flow is established
balance the fluid advected by the jet. These cells return sw
ing fluid back towards the inner cylinder along the stationa
end walls, as illustrated by the radial velocity in part~a! of
the figure. The meridional flow is concentrated in the inn
one-third of the annulus, as seen in the axial velocity~part c!,
which is directed in towards the midheight planez50 to
feed the jet.

As Re is increased beyond about 550, in the param

-
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regimeG50.5 andhP(0.65,0.70), we have found that th
basic state loses stability as the jet described above beco
unstable. It loses stability in two distinct ways via Hopf b
furcations.

IV. HOPF BIFURCATIONS FROM THE BASE STATE

For a generic Hopf bifurcation, a pair of complex conj
gate eigenvalues,6 iv0, cross the imaginary axis as a p
rameterm is varied throughm50. According to the cente
manifold theorem~for infinite-dimensional systems, certa
technical requirements must be satisfied in order to inv
the theorem; e.g., see Ref.@19# for details; the Navier-Stoke
equations fulfill these requirements!, there exists a two-
dimensional center manifoldMc and a normal form on it
describing the dynamics of the system in a neighborhood
the bifurcation point. Using the complex amplitude of t
eigenvector corresponding to the eigenvalueiv0 to param-
etrizeMc , the normal form has the form

Ȧ5 iv0A1P~A,Ā,m!, ~5!

whereP satisfies

P~e2 ivtA,eivtĀ,m!5e2 ivtP~A,Ā,m!, ~6!

FIG. 2. Contours of velocity componentsu, v, and w for the
steady SO(2)3Z2 symmetric basic state at Re5540, h50.675,
and G50.5. Contour levels are uniformly spaced in the rang
uP@255,55#, vP@0,540#, andwP@230,30#; the positive~nega-
tive! contours are solid~dotted! and the zero contour is dashed.
03630
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for all t, from which the standard normal form for the Hop
bifurcation ~to third order! is easily derived:

Ȧ5A~ iv01m2auAu2!. ~7!

The symmetries of the system impose additional conditi
on the normal form. If the governing equations are equiva
ant with respect toG, then so is the normal form. The actio
of G on the amplitudeA is ~see Ref.@12# for details!

RaA5eimaA, KA5sA, ~8!

wherem is an integer ands561. Whenm50 the eigen-
vector is SO(2) invariant, i.e., axisymmetric; whens511,
the eigenvector isZ2 invariant, i.e.,u, andv are even func-
tions of z, andw is odd.

The additional conditions imposed by the symme
groupG on P are

P~eimaA,e2 imaĀ,m!5eimaP~A,Ā,m!, ~9!

P~sA,sĀ,m!5sP~A,Ā,m!. ~10!

However, since these conditions can be obtained from
~6!, i.e., letting t52ma/v0 gives Eq. ~9!, and letting t
5p/v gives Eq.~10! ~whens521), there are no additiona
restrictions on the normal form due to the symmetry gro
SO(2)3Z2. The action ofG on the periodic bifurcated solu
tion g is the following: if m50, SO(2) leaves every point o
g invariant. If mÞ0, the action ofRa on g is equivalent to
a time translationt→t1ma/v0, and g is a rotating wave
with precession frequencyvp5v0 /m. If s51, Z2 leaves
every point ofg invariant. If s521, the action of thez-flip
K is equivalent to a time translation ofp/v0, which is half
the period ofg.

The bifurcated limit cycleg, as a set, isG-invariant, but
the individual points ong ~the solution at a given time! are
only invariant to a subgroupD of G, called the group of
spatial symmetriesof the bifurcated periodic solution. Tha
is, taking a point ong at a particular time and applying th
symmetry groupG generally does not leave the point invar
ant, but results in anotherG-conjugate point ong. If instead
the subgroupD is applied to the point, it remains invarian
The remaining elements ofG are calledspatiotemporal sym-
metriesof g, and their action is equivalent to a specified tim
translation along the orbit. The quotient groupG/D is always
SO(2) or Zm ~see Ref.@20# for a much more general an
complete discussion of the symmetries of periodic solutio
and their possible bifurcations!. HereZm , also calledCm , is
the cyclic group ofm elements.

There are four different possibilities for the symmetries
the bifurcated orbitg:

m s D G/D
I 0 11 SO(2)3Z2 1
II 0 21 SO(2) Z2

III Þ0 11 Zm3Z2 SO(2)
IV Þ0 21 Zm SO~2!

~11!

s
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where1 is the trivial group with a single element~the iden-
tity!, Zm is the discrete group of rotations generated
R2p/m , and Z2m is generated byKRp/m ; the notation
Zm(R2p/m) andZ2m(KRp/m) is often used to indicate simul
taneously the group and the corresponding generator~s!.

In the Taylor-Couette problem considered here, we h
found Hopf bifurcations from the basic state of types II a
IV ~with m51). They both break theZ2 generated byK, the
flip z→2z. The physical mechanism responsible is the
stability of the compound jet emanating from the inner c
inder at the midplane. The velocity field here has jetli
structure in both the radial and the azimuthal direction. Wh
the radial component of the jet is unstable, an axisymme
limit cycle results, and when the azimuthal component
unstable, a rotating wave with azimuthal wave numberm
51 results.

The axisymmetric limit cycle LC0, is the type-II solution
and it is pointwise SO(2) invariant to arbitrary rotatio
about the axis. It breaks the pointwiseZ2 symmetry, but
retains a spatiotemporal symmetry consisting ofK together
with a half-period time translation; this symmetry genera
the spatiotemporalZ2 symmetry. The rotating wave, RW1 is
a type-IV solution which breaks both the rotational andK
symmetries, but retains a pointwise symmetry, the produc
the axial flip K with a half-period rotationKRp ; this sym-
metry generates the group of spatial symmetries,D5Z2. The
spatiotemporal symmetries of RW1 are arbitrary rotationsRa

combined with the corresponding time translations ofa/v.
This corresponds to the rotating wave structure, a rigid s
tial pattern rotating with angular velocityv. RW1 also has
the spatiotemporal symmetryK together with a half-period
time translation, as does LC0.

Figures 3 and 4 show contours of the axial velocityw and
its perturbationwp ~i.e., the axial velocity minus the axia
velocity of the basic state!, over one period, in time or azi
muth, of LC0 and RW1, respectively. The two solution
shown are at the same point in parameter space (Re5571,
h50.70, G50.5), which is in a wedge region delineated
Neimark-Sacker bifurcations in which both periodic sta
are stable. The Neimark-Sacker bifurcations originate a
codimension-two double Hopf point. The period of LC0

shown in the figure isT'0.0644 and this period varies littl
with parameters~about 2%!, over the region of paramete
space explored here. The figure illustrates the symmetrie
the two periodic states. They also show that the perturba
has small magnitude at outer radii, propagates radially
wards with time for LC0 and withu for RW1, and intensifies
substantially at smaller radii. Although the perturbatio
which destroys the pointwiseZ2 reflection symmetry of the
solution, is small at large radii, the deflection of the ze
axial velocity contour off thez50 plane is greatest at larg
radii as the axial velocity is small there, and so the relat
perturbation is large.

The two Hopf bifurcations are supercritical. This is ev
dent from the variation of the squared amplitudes of the
riodic solutions with parameters. As measures of the squa
amplitudes, we use the modal energies
03630
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um•um* rdrdzdu, ~12!

whereum is themth Fourier mode of the velocity field.
For the axisymmetric LC0, only E0 is nonzero and it os-

cillates with a frequencyv that varies only to second orde
with parameters from the Hopf frequency. We refer to t
amplitude of the oscillation inE0 asALC

2 . In Fig. 5,ALC
2 for

G50.5 and h50.650, 0.655, 0.660, 0.667, 0.670, 0.67
0.680, 0.685, 0.690, 0.695, and 0.700 is plotted as a func
of Re, showing that this squared amplitude grows linea
with Re from zero at the Hopf bifurcation,HLC . For h
.0.675, LC0 is unstable to nonaxisymmetric disturbances
onset, but we can still compute this unstable state by rest
ing the computations to an axisymmetric subspace. The
stable LC0 becomes stable at a Neimark-Sacker bifurcat
NLC .

For RW1, there are nonzero modal energiesE0 and E1
(EnÞ0 for n.1, but these are simply harmonics ofE1).
However, unlike for the case with LC0, E0 andE1 for RW1

FIG. 3. Contours of~left column! axial velocity w and ~right
column! its perturbation~i.e., wp5w2w0), over six phases of the
period T'0.0644 for the axisymmetric limit cycle LC0 at Re
5571 andh50.700. Contour levels are uniformly spaced in t
ranges@232,32# for w and @216,16# for wp ; the positive~nega-
tive! contours are solid~dotted! and the zero contour is dashed.
2-4
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FIG. 4. Contours of~left column! axial velocity w and ~right
column! its perturbation ~i.e., wp5w2w0), in six meridional
planes~at angleu), for the RW1 state at Re5571 andh50.700.
Contours levels are uniformly spaced in the ranges@232,32# for w
and @216,16# for wp ; the positive~negative! contours are solid
~dotted! and the zero contour is dashed.

FIG. 5. Variation ofALC
2 , a measure of the squared amplitude

the axisymmetric limit cycle LC0, with Re for G50.5 and h
50.650, 0.655, 0.660, 0.667, 0.670, 0.675, 0.680, 0.685, 0.
0.695, 0.700; the smallh curves start at small Re. Open~filled!
circles denote stable~unstable! states.
03630
are both constant in time. As a direct measure of the squa
amplitude of RW1, we useE1. In Fig. 6, E1 for RW1 at G
50.5 and h50.660, 0.667, 0.670, 0.675, 0.680, 0.68
0.690, 0.695, and 0.700 are plotted as functions of Re,
showing linear growth with Re from onset, i.e., we aga
have a supercritical Hopf bifurcationHRW. For h,0.675,
RW1 bifurcates supercritically from a basic state that is
ready unstable to LC0. Unlike with the case of unstable LC0,
we do not have a subspace in which the unstable RW1 is
stable, and so have difficulty in following this unstable tim
periodic state using the time-evolution code. The unsta
RW1 becomes stable at a Neimark-Sacker bifurcationNRW.

The two curves of Hopf bifurcations,HLC andHRW, in-
tersect at a codimension-two double Hopf bifurcation
(RedH'541, hdH'0.676) forG50.5.

V. DOUBLE HOPF BIFURCATION FROM THE BASIC
STATE

The two periodic solutions LC0 and RW1 bifurcate simul-
taneously at a codimension-two double Hopf bifurcati
point. The double Hopf bifurcation with SO(2) symmet
has been described in Ref.@21#, and the one considered he
is of a nonresonant simple type. The corresponding nor
form, including the effect of SO(2), is

Ȧ5 iv0A1 P̃~A,B,Ā,B̄,m!5A@ iv01P~ uAu2,uBu2,m!#,
~13!

Ḃ5 iv1B1Q̃~A,B,Ā,B̄,m!5B@ iv11Q~ uAu2,uBu2,m!#,
~14!

whereA andB are the complex amplitudes of the eigenfun
tions corresponding to LC0 and RW1, andm are parameters
The additional symmetryZ2(K) imposes further conditions
on P̃ andQ̃:

P̃~2A,2B,2Ā,2B̄,m!52 P̃~A,B,Ā,B̄,m!, ~15!

Q̃~2A,2B,2Ā,2B̄,m!52Q̃~A,B,Ā,B̄,m!. ~16!

0,

FIG. 6. Variation ofE1, a measure of the squared amplitude
the m51 rotating wave RW1, with Re for G50.5 andh50.660,
0.667, 0.670, 0.675, 0.680, 0.685, 0.690, 0.695, 0.700; the smah
curves start at small Re.
2-5
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These conditions are satisfied byP andQ, and the symmetry
groupG5SO(2)3Z2 does not modify the normal form from
that of the generic double Hopf bifurcation; the symmetr
only manifests themselves in the symmetry properties of
bifurcated solutions.

The analysis of the double Hopf normal form, Eqs.~13!
and~14!, follows exactly the same lines as in Ref.@21#, and
results in a wedge-shaped region emerging from the do
Hopf point where both bifurcated solutions LC0 and RW1

coexist and are simultaneously stable. This region is se
rated from the regions where only one of the bifurcated
lutions is stable by Neimark-Sacker curves, where one of
two stable coexisting solutions become unstable. At
Neimark-Sacker curvesNLC andNRW, the unstable LC0 and
the unstable RW1 become stable, respectively, as an unsta
mixed mode~a modulated rotating wave! is spawned in the
wedge region. Since this mixed mode is unstable, it can
be observed experimentally, or computed with a tim
evolution code. In our problem, in the neighborhood of t
double Hopf point, the two Hopf curves and two Neimar
Sacker curves vary linearly with parameters, as indicate
the stability diagram in Fig. 7, forG50.5. In the neighbor-
hood of the double Hopf bifurcation, the two Hopf curv
HLC andHRW and the two Neimark-Sacker curvesNLC and
NRW are close to being tangent. As we followNRW away
from the double Hopf point, it curves around so that there
no stable RW1 for h,0.658; also at fixedh.0.658, as Re is
increased RW1 loses stability as the unstable mixed mode
re-absorbed atNRW. For higher Re, the only stable state
LC0, until it undergoes another Neimark-Sacker bifurcati
NMRW , which is not related to the local dynamics associa
with the double Hopf bifurcation.

FIG. 7. Stability diagram in (h,Re) parameter space~with G
50.5, showing the various bifurcation curves.HLC and HRW are
Hopf bifurcations to LC0 and RW1, respectively.NLC , NRW , and
NMRW are Neimark-Sacker bifurcations, and SNIC is the sadd
node-on-invariant-circle bifurcation leading to the VLF.
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VI. NEIMARK-SACKER BIFURCATION TO A
MODULATED ROTATING WAVE

Both LC0 and RW1 have a space-timeZ2 symmetry, the
spatial reflectionK followed by a half-period time transla
tion. The Poincare´ mapP is the square of the half-period flip
map:

H: E ° E

x ° H x 5Kf~T/2;x!, ~17!

whereE is a local Poincare´ section of RW1, T is approxi-
mately the precession period of RW1 (H is the first hit map
of E), andf is the flow of the system. The theory of bifu
cations from limit cycles withZ2 symmetry can be found in
Ref. @22#, and it relies mainly on the properties of the ha
period flip mapH. In the present case, both limit cycles a
of S type in Kuznetsov’s notation~which means thatK is not
a space symmetry, but a space-time symmetry for
cycles!. Due to the presence ofH, period-doubling bifurca-
tions are inhibited@23#, and for bifurcations with eigenvalue
of multiplicity 1, there remain three possible cases:

~1! The eigenvector is invariant toH, and the critical
Floquet multiplier ofP, lP , and the critical Floquet multi-
plier of H, lH , are both 1. This is a saddle-node bifurcati
of periodic solutions, and the bifurcated solutions retain
space-time symmetryH.

~2! The eigenvector is not invariant toH, lH521, and
lP5lH

2 51. This is a pitchfork bifurcation of periodic solu
tions for the mapH, and the bifurcated solutions break th
space-time symmetryH; the two bifurcated limit cycles are
symmetrically related byK. These still correspond to a singl
T-periodic state for the mapP, which is not ofS-type.

~3! There are a pair of complex conjugate eigenvecto
and a complex conjugate pair of eigenvalues for both m
H andP. This is a Neimark-Sacker bifurcation, and the b
furcated two-torus isK invariant, although bothK and H
transform a given solution on the two-torus into a differe
solution on the same two-torus.

The bifurcations of LC0 and RW1 in our system have
been observed to be of Neimark-Sacker type. Close to
double Hopf bifurcation point, where the two solutions c
exist and are stable, an unstable modulated rotating w
also exists, as previously mentioned. Far from the dou
Hopf bifurcation point, LC0 loses stability in a Neimark-
Sacker bifurcation,NMRW , and a stable modulated rotatin
wave ~MRW! emerges. This Neimark-Sacker curve is ind
cated in Fig. 7.

The Neimark-Sacker bifurcationNMRW is supercritical.
Figure 8 shows the linear growth ofĒ1 with Re for G50.5
and h50.650, 0.655, 0.660, 0.667, 0.670, 0.675, 0.6
0.685, 0.690, 0.695, 0.700; whereĒ1 is the time average o
E1 for MRW. Over the range of Re that MRW exists, it is th
only stable state. By increasing Re in small incremen
MRW is followed until beyond a critical value~for a given
value ofh), the solution switches from being a two-torus
a three-torus solution, consisting of two periods that are
proximately the same as those of MRW, plus a third mu
longer period. We surmise that the stable MRW which h

-
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bifurcated from the stable LC0 at NMRW , collides with an
unstable~saddle! MRW which bifurcated from the unstabl
RW1 at anotherNMRW , following the destabilization of RW1
at NRW. This saddle-node bifurcation between the stable
saddle MRW results in a saddle-node-infinite-period bifur
tion, which spawns the three-torus very-low-frequency st
VLF. Schematics of the whole bifurcation sequences, w
increasing Re forh at either side and at the double Ho
bifurcation, are shown in Fig. 9.

VII. SADDLE-NODE-INFINITE-PERIOD BIFURCATION

SNIC stands for saddle-node on an invariant cycle, a
known as saddle-node-infinite-period bifurcation. In this
furcation, studied by Andronov, Leontovich, and Shil’niko
~see Ref.@22#!, a saddle-node bifurcation takes place on
invariant cycle, as illustrated in Fig. 10. Before the bifurc
tion, the invariant circle is a periodic solution. Its perio
grows to infinity as the bifurcation point is approache
obeying an inverse square-root law with the distance to
bifurcation in parameter space@22,24#. After the bifurcation,
we have a saddle and a node bifurcated solutions, conne
via two heteroclinic curves, which form the invariant circ
that continues existing after the bifurcation. SNIC bifurc
tions usually occur in conjunction with Neimark-Sacker b
furcations and form the boundaries of the Arnold tongu
that are present in a neighborhood of a Neimark-Sacker
furcation. However, they can also exist without associa
resonant dynamics, as is the case in the problem prese
here.

In our problem, the bifurcation takes place as Re is
creased; i.e., we have a stable~node! MRW that collides with
an unstable~saddle! MRW in a saddle-node bifurcation~we
do not directly compute the unstable MRW!. After the colli-
sion, but in its neighborhood, what is left at higher Re is
very long period solution that we have termed the VLF.
the standard SNIC bifurcation, the saddle and node that
lide are fixed points, and the limit cycle is a periodic so
tion. In our case, the solutions that collide are two-to
modulated rotating waves, and the emerging VLF state

FIG. 8. Variation of Ē1, the mean kinetic energy in the az
muthal modem51 of MRW, with Re atG50.5 andh50.650,
0.655, 0.660, 0.667, 0.670, 0.675, 0.680, 0.685, 0.690, 0.695, 0.
the curves at lower Re correspond to lowerh.
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stable and robust three-torus, that exists in an exten
range of parameter space. It has two frequencies which
respond to the axisymmetric oscillation of MRW and t
precession of them51 component of MRW. The third new
period TVLF becomes unbounded at the SNIC bifurcatio
Figure 11 shows the variation ofTVLF with Re for G50.5
and h50.650, 0.655, 0.660, 0.667, 0.670, 0.675, 0.6
0.685, 0.690, 0.695, 0.700. The circles are the computed
riods and the lines are fits of the formTVLF5a0

1a1 /ARe2ReVLF. Sample time series ofE0 ~the modal en-
ergy in the axisymmetric component of the flow!, for VLF
are shown in Fig. 12. As Re approaches the SNIC bifur
tion, the time series approaches that corresponding to MR
except for the rapid periodic excursions.

VIII. DISCUSSION AND CONCLUSION

The short aspect ratio of the annulus investigated h
results in a basic state with a single outward jet at the m

0;

FIG. 9. Schematic bifurcation diagrams, using Re as the bi
cation parameter, fixingG50.5 and for~a! h,hdH , ~b! h5hdH ,
and ~c! h5hdH. HLC and HRW are Hopf bifurcations to LC0 and
RW1, respectively, anddH is the codimension-two bifurcation
where bothHLC and HRW occur simultaneously.NLC , NRW , and
NMRW are Neimark-Sacker bifurcations, and SNIC is the sadd
node-on-invariant-circle bifurcation leading to the VLF state. Sta
~unstable! solution branches are solid~dashed! curves.
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height plane; much larger aspect ratios lead to states
Taylor vortexlike flows with multiple jets. From group theo
retic considerations, we describe the four ways in which
basic state can become unstable via primary symm
breaking bifurcations. Three of these are identified as s
tions for this particular geometry. One is a steady axisy
metric pitchfork bifurcation, which has been previously i
vestigated@14#. The other two are via Hopf bifurcation
producing either an axisymmetric limit cycle or a rotatin
wave with azimuthal wave numberm51, which are system-
atically investigated here. The two Hopf bifurcation curv
intersect at a double Hopf bifurcation, at which point
unstable mixed mode also bifurcates. The role of this mix
mode is to either stabilize or destabilize the periodic so
tions from the two Hopf bifurcations at Neimark-Sacker b
furcations. A second mixed mode~in the form of a modu-
lated rotating wave!, not directly associated with the doub
Hopf bifurcation, also bifurcates from the two periodic sol

FIG. 10. Schematic of the SNIC bifurcation.

FIG. 11. Variation ofTVLF with Re at G50.5 andh50.650,
0.655, 0.660, 0.667, 0.670, 0.675, 0.680, 0.685, 0.690, 0.695, 0.
TVLF→` at lower Re for lowerh. The open circles are compute
periods and the lines are fits of the formTVLF5a0

1a1 /ARe2ReVLF.
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tions at higher Reynolds numbers. It is stable~unstable!
when it bifurcates from a stable~unstable! periodic state.
These stable and unstable modulated rotating waves are
eroclinically connected, and with increasing Reynolds nu
ber, collide and vanish in a saddle-node bifurcation. Follo
ing the collision, all that remains is an invariant manifo
consisting of the previous heteroclinic connections. This
variant manifold is a stable three-torus, with two frequenc
corresponding to those of the modulated rotating waves,
a third very low frequency that vanishes at the SNIC. T
very-low-frequency state has been previously observed
experiments@6,25#, but here we present the first compute
example of such a state, together with a comprehensive
furcation sequence leading to its onset.

The very-low-frequency states have been observed
perimentally in a number of Taylor-Couette flows where e
wall effects are important, i.e., in short aspect ratio syste
although they have also been observed in experiments
aspect ratios of order 10. Also, the appearance of the V
state has not only been associated with a saddle-n
infinite-period bifurcation, but has also been associa
with cycle-saddle homoclinic collisions in the same expe
ments but in different parameter regimes@8,25#. The two
global bifurcations are distinguished by the scaling law d
scribing how the associated periodTVLF becomes un-
bounded. With the saddle-node-infinite-period bifurcatio

0;

FIG. 12. Time series ofE0 for the VLF state atG50.5, h
50.667, and Re as indicated~a dot is drawn every 20th time step i
the computation, wheredt5231024).
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TVLF;1/AuRe2ReVLFu; and for the homoclinic collision
TVLF;1/lnuRe2ReVLFu; which one is observed seems to d
pend on the path through parameter space taken. If the b
state first loses stability via a Hopf bifurcation where t
resulting periodic state is setwiseZ2 invariant, then it ap-
pears that the onset of a VLF state occurs via the sad
node-infinite-period bifurcation. If on the other hand, the b
sic state loses stability via a steady pitchfork bifurcatio
producing two conjugate steady states that subsequently
come unstable via Hopf bifurcations that result in a pair
limit cycles that are notZ2 invariant, but are conjugate unde
a Z2 reflection, then these may undergo a gluing bifurcat
where the two cycles simultaneously collide homoclinica
with the unstable~saddle! basic state. This gluing bifurcatio
produces a newZ2-invariant cycle with an associated ve
low frequency that obeys a lnuRe2ReVLFu law. Such a gluing
bifurcation in a short annulus Taylor-Couette experiment
A

e

,

03630
sic

e-
-
,
e-

f

n

s

recently been reported@10#. All this suggests that the two
global bifurcations may be organized by a Takens-Bogda
bifurcation at which a Hopf and a pitchfork bifurcation co
incide. Recently, Rucklidge@26# has studied the dynamic
associated with the normal form of a Takens-Bogdanov
furcation with D4 symmetry and has identified a scenar
that spawns both types of global bifurcations. Although t
symmetries of his problem differ from those of ours, the
are sufficient features in common that suggest that the V
states may well be organized by such a bifurcation. Inve
gations into this conjecture are currently underway.
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