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Small aspect ratio Taylor-Couette flow: Onset of a very-low-frequency three-torus state
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The nonlinear dynamics of Taylor-Couette flow in a small aspect ratio aniiwloere the length of the
cylinders is half of the annular gap between thes investigated by numerically solving the full three-
dimensional Navier-Stokes equations. The system is invariant to arbitrary rotations about the annulus axis and
to a reflection about the annulus half-height, so that the symmetry group is 8@¢2)in this paper, we
systematically investigate primary and subsequent bifurcations of the basic state, concentrating on a parameter
regime where the basic state becomes unstable via Hopf bifurcations. We derive the four distinct cases for the
symmetries of the bifurcated orbit, and numerically find two of these. In the parameter regime considered, we
also locate the codimension-two double Hopf bifurcation where these two Hopf bifurcations coincide. Second-
ary Hopf bifurcations(Neimark-Sacker bifurcationsleading to modulated rotating waves, are subsequently
found and a saddle-node-infinite-period bifurcation between a sfabt® and an unstablésaddle modulated
rotating wave is located, which gives rise to a very-low-frequency three-torus. This paper provides the com-
puted example of such a state, along with a comprehensive bifurcation sequence leading to its onset.
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I. INTRODUCTION ture that at small aspect ratigess than 0.5 the steady
axisymmetric flow is unique, and yet they report observing
Taylor-Couette flow between two concentric rotating cyl- time dependence and disorder at higher Reynolds number Re
inders continues to provide a canonical physical system thand claim that an understanding of the evolution remains an
has been instrumental in developments in nonlinear dynansutstanding challenge. In this paper we investigate numeri-
ics, routes to chaos, and equivariant dynamical systengs, cally the dynamics at aspect ratido=0.5 using a three-
Refs. [1-3]). The study of the influence of endwalls and dimensional Navier-Stokes spectral solver. At snid we
reflection symmetry at the annulus half heid#t5] opened found the steady-state pitchfork bifurcation that breaks the
up a new perspective into the importanceZof symmetry  Z, symmetry, as well as the inverse pitchfork where the bi-
(reflection in Taylor-Couette flow, as well as in many other furcated states revert toZ-symmetric state, as reported in
equivariant problems. Ref. [14]. At slightly higher Re, the flow becomes unstable
The impact ofZ, symmetry is enhanced as the aspectvia two Hopf bifurcations that break,, one leading to an
ratio of the annulus is reducg@]. Most theoretical and nu- axisymmetric limit cycle and the other to a non-
merical studies of short annulus Taylor-Couette flow haveaxisymmetric rotating wave. In fact, we have located a
been restricted to an axisymmetric subspace and have primaedimension-two bifurcation point where both Hopf bifurca-
rily considered steady,-symmetry breaking. Experimen- tions occur simultaneously. By carefully following the vari-
tally however, very rich and complex spatiotemporal dynam-ous bifurcated states, we have constructed a fairly complete
ics, including global bifurcations, have been observed, whictbifurcation picture that culminates in the onset of a very-low-
are intrinsically associated with the&, equivariance of the frequency three-torus state via a saddle-node-infinite-period
system(e.g., Refs[7-10)). Equivariant bifurcation theory global bifurcation.
[11-13 provides a classification of possible bifurcation sce-
narios that_may occur in the presence of symmetries_. TWQ gasic EQUATIONS, SYMMETRIES, AND NUMERICAL
recent studies on short annulus Taylor-Couette flow ith METHOD
reflection symmetry have identified two of the ways the basic
state can become unstable, both breakingZhesymmetry; We consider an incompressible flow confined in an annu-
in Ref.[14] the symmetry breaking is via steady-state pitch-lus of inner radiusR;, outer radiusR,, and length_, driven
fork bifurcations and in Ref.15] it is via a Hopf bifurcation. by the constant rotation of the inner cylinder at angular speed
In both investigations, the analyses of the results were re€), while the outer cylinder and the top and bottom end walls
stricted to an axisymmetric SO(2) subspace. remain at rest. Figure 1 shows the annular geometry and
One of the main conclusions from R¢L4] is the conjec- includes a meridional plane with a typical streamline plot of
a basic state; this meridional plane is used in subsequent
figures. The system is nondimensionalized using the [@ap
*Electronic address: lopez@math.asu.edu =R,—R; as the length scale and the diffusive time across
"Electronic address: marques@fa.upc.es the gapD?/v as the time scaléwherev is the fluid’s kine-
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K(u,v,w)(r,0,2)=(u,v,—w)(r,0,—2). 3
SinceR, andK commute, the symmetry group of the prob-
m lem isG=S0O(2)X Z,. The basic state, i.e., the unique solu-
&> | tion of the Navier-Stokes equations for small values of Re, is
[(=>») ’ steady and invariant to the grogp
' Using the spectral code, it is straightforward to consider
/ the dynamics in a number of invariant subspaa@s:the
D | SO(2)X Z,-invariant subspace, where all solutions are axi-
symmetric and reflection symmetric abomt0, (ii) the
R, SO(2)-invariant subspace, where all solutions are axisym-

metric but the midplanez=0) need not be a symmetry
lane, (iii) the Z,-invariant subspace, where the mid-plane
z=0) is a symmetry plane but the solutions need not be
axisymmetric, and finally(iv) the full problem where no
symmetry conditions are imposed. The restriction to the axi-
symmetric S@2)-invariant subspace is accomplished by set-
Reynolds number: ReQDR, /v, ting to zero .aII but the zero_th Eourier mode; t.he restriction_ to
the Z,-invariant subspace is simply accomplished by setting
to zero all the odd Legendre polynomials in thbasis foru
andv and all the even Legendre polynomials in thbasis
for w. This enforces the condition

FIG. 1. Schematic of the annular flow geometry. The inset illus-
trates typical streamlines of a steady axisymmetric flow determine
by numerical simulation, projected onto a meridional plane.

matic viscosity. The governing parameters are

Aspectratio: I'=L/D,

Radius ratio: 7=R;/R,.

; : . u,=v,=w=0 (4)
The equations governing the flow are the Navier-Stokes

equations together with initial and boundary conditions; all; the midheight planez&0), which means that on this
boundaries are no-slip. In cylindrical coordinates&z),  plane there is no flow-througimaintaining it flay and there
the nondimensional velocity vector is=(u,v,w). The do-  are no tangential stresses. The restriction to the
main is (,6,2) e[ri=7/(1—7),ro=1(1-7)]x[0,27]  50(2)x Z,-invariant subspace is accomplished by the dual
><[—.1“./2I/2]. The discontinuities in. these ideal boundary yestriction to both SO(2) and, invariance. For a recent
conditions at (=r;,z=*T/2) physically correspond to appjication of this numerical technique and symmetry meth-

small but finite gaps between the rotating cylinder and theygs, to a problem with similar geometry, see Ha8].
stationary end walls. For an accurate use of spectral tech-

niques, a regularization of these discontinuities is imple-

mented of the form Ill. THE BASIC STATE

The basic state is steady, axisymmetric and reflection
symmetric about the half-height plane. It is driven by the
' @ constant rotation of the inner cyli ichi
ylinder, which imparts angular
momentum to the fluid adjacent to it. In the Stokes limit
forre[r;,r,] and wheree is a small parameter that mimics (Re—0), the angular momentum is distributed throughout
the small gapgwe have used&=0.005). The use ot#0  the annular gap by diffusion, and as Re is increased, this
regularizes the otherwise discontinuous boundary conditiongedistribution is also accomplished by advection. For the ba-
See Refs[16,17] for further details of the use of this regu- sic state, the advection of angular momentum results in es-
larization in spectral codes. tablishing a jet flow from the inner cylinder and centered on
The three-dimensional Navier-Stokes equations are solvetthe half-height plane. A typical basic state in a regime domi-
numerically using a Galerkin spectral scheme for spatial disnated by advection of angular momentum is shown in Fig. 2,
cretization and a second-order projection scheme for timat Re=540, »=0.675, and"=0.5. The structure of this jet
evolution. Legendre polynomial bases are used in the radia$ clear from the contours of the radial and azimuthal veloc-
and axial directions and a Fourier basis is used in the perity components in part&) and(b) of the figure. The flow is
odic azimuthal direction. The details of the numericalvirtually stagnant in the outer one-third of the annulus, and a
method are given in Refl17]. For all the computed results two-cell counter-rotating meridional flow is established to
presented here, 48 Legendre modes iand z, 32 Fourier  balance the fluid advected by the jet. These cells return swirl-
modes ing, and a time step of 10 * have been used. ing fluid back towards the inner cylinder along the stationary
The governing equations and boundary conditions arend walls, as illustrated by the radial velocity in péat of
equivariant to rotation®,,, of arbitrary anglew, around the the figure. The meridional flow is concentrated in the inner
cylinder axis, and also to a specular reflectibrabout the  one-third of the annulus, as seen in the axial veloggyt 0,

r—r;

u=w=0, v=Reex%—

midplanez=0. Their action on the velocity vectar is which is directed in towards the midheight plane0 to
feed the jet.
R, (u,v,w)(r,8,z)=(u,v,w)(r,0+ a,z), (2 As Re is increased beyond about 550, in the parameter
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for all t, from which the standard normal form for the Hopf
bifurcation (to third ordej is easily derived:

A=A(iwg+ n—alA]?). 7

The symmetries of the system impose additional conditions
on the normal form. If the governing equations are equivari-
ant with respect t@;, then so is the normal form. The action
of G on the amplitudéA is (see Ref[12] for detail9

R,A=€e™MA  KA=SA 8

wherem is an integer and=*1. Whenm=0 the eigen-
vector is SO(2) invariant, i.e., axisymmetric; whes +1,
the eigenvector i€, invariant, i.e.,u, andv are even func-
tions of z, andw is odd.

The additional conditions imposed by the symmetry
groupg on P are

p(eimaA,e*imD‘K,,u,)=eimaP(A,KuU«), 9

P(sAsAu)=sP(AAu). (10

However, since these conditions can be obtained from Eq.
(6), i.e., lettingt=—mal/w, gives Eq.(9), and lettingt
=7/ w gives Eq.(10) (whens= —1), there are no additional
restrictions on the normal form due to the symmetry group
SO(2)XZ,. The action ofG on the periodic bifurcated solu-

FIG. 2. Contours of velocity components v, andw for the  tion vy is the following: ifm=0, SO(2) leaves every point of
steady SO(2XZ, symmetric basic state at R&40, »=0.675, v invariant. If m#0, the action ok, on v is equivalent to
and I'=0.5. Contour levels are uniformly spaced in the rangesa time translatiort—t+ma/wg, and vy is a rotating wave
ue[—55,55, ve[0,540, andwe[—30,30; the positive(nega-  with precession frequency,=wq/m. If s=1, Z, leaves
tive) contours are soliddotted and the zero contour is dashed. every point ofy invariant. Ifs=—1, the action of the-flip

K is equivalent to a time translation af/ vy, which is half

regimel’=0.5 and» e (0.65,0.70), we have found that the the period ofy.
basic state loses stability as the jet described above becomesThe bifurcated limit cycley, as a set, igj-invariant, but
unstable. It loses stability in two distinct ways via Hopf bi- the individual points ony (the solution at a given timeare

furcations. only invariant to a subgroupn of G, called the group of
spatial symmetriesf the bifurcated periodic solution. That
IV. HOPE BIFURCATIONS FROM THE BASE STATE is, taking a point ony at a particular time and applying the

symmetry grouf; generally does not leave the point invari-

For a generic Hopf bifurcation, a pair of complex conju- ant, but results in anothel-conjugate point ony. If instead
gate eigenvaluestiwg, cross the imaginary axis as a pa- the subgroup\ is applied to the point, it remains invariant.
rametery is varied throughu=0. According to the center The remaining elements ¢f are calledspatiotemporal sym-
manifold theorem(for infinite-dimensional systems, certain metriesof y, and their action is equivalent to a specified time
technical requirements must be satisfied in order to invokgransiation along the orbit. The quotient groGf is always
the theorem; e.g., see RgL9] for details; the Navier-Stokes 5O(2) orz,, (see Ref[20] for a much more general and
equations fulfill these requiremeiytsthere exists a two- complete discussion of the symmetries of periodic solutions
dimensional center manifold; and a normal form on it and their possible bifurcationsHereZ,,, also calledC,,, is
describing the dynamics of the system in a neighborhood ofne cyclic group ofm elements.

the bifurcation point. Using the complex amplitude of the  There are four different possibilities for the symmetries of
eigenvector corresponding to the eigenvailug to param-  the bifurcated orbity:

etrize M., the normal form has the form m s A GIA
. _ | 0 +1 SO(2)X Z, 1
A=iwoA+P(AA 1), ® 0 -1 SO(2) Z,
hereP satisfi 1] #0 +1 ZnXZy S0O(2)
whereP satisfies
v #0 -1 Zn SO2)
P(e '“'A,e'A,u)=e"“'P(A,A,p), (6) (D
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wherel is the trivial group with a single elemefthe iden- t w Wp
tity), Z,, is the discrete group of rotations generated by
Ry.m,» and Z,,, is generated byKR_,,; the notation
Zn(Romm) @andZ, (KR m) is often used to indicate simul- 7
taneously the group and the corresponding gendgator

In the Taylor-Couette problem considered here, we have
found Hopf bifurcations from the basic state of types Il and
IV (with m=1). They both break thg&, generated b¥, the
flip z— —z. The physical mechanism responsible is the in-
stability of the compound jet emanating from the inner cyl-
inder at the midplane. The velocity field here has jetlike
structure in both the radial and the azimuthal direction. When
the radial component of the jet is unstable, an axisymmetricjm
limit cycle results, and when the azimuthal component is
unstable, a rotating wave with azimuthal wave numtrer
=1 results.

The axisymmetric limit cycle Lg, is the type-Il solution
and it is pointwise SO(2) invariant to arbitrary rotations 476
about the axis. It breaks the pointwige symmetry, but
retains a spatiotemporal symmetry consistingkofogether
with a half-period time translation; this symmetry generates
the spatiotemporat, symmetry. The rotating wave, RWSs
a type-1V solution which breaks both the rotational add
symmetries, but retains a pointwise symmetry, the product of
the axial flip K with a half-period rotatiorKR,; this sym-
metry generates the group of spatial symmetrles,Z,. The
spatiotemporal symmetries of RVdre arbitrary rotationR,, T
combined with the corresponding time translationsaob.
This corresponds to the rotating wave structure, a rigid spa-
tial pattern rotating with angular velocity. RW; also has
the spatiotemporal symmetiy together with a half-period FIG. 3. Contours of(left column axial velocity w and (right
time translation, as does ,C column its perturbation(i.e., wp=w—wy), over six phases of the

Figures 3 and 4 show contours of the axial velogitand ~ period T~0.0644 for the axisymmetric limit cycle Lfat Re
its perturbationw, (i.e., the axial velocity minus the axial =571 and#%=0.700. Contour levels are uniformly spaced in the
velocity of the basic stajgover one period, in time or azi- rangesl—32,33 for w and[—16,1§ for w,; the positive(nega-
muth, of LG, and RW,, respectively. The two solutions tive) contours are soliddotted and the zero contour is dashed.
shown are at the same point in parameter space-{4,

L, ; . 27 (T2 (1(1-7)

7=0.70,I"=0.5), which is in a wedge region delineated by Em:f f f Up- U rdrdzde, (12)
Neimark-Sacker bifurcations in which both periodic states o J-rr)ya-y
are stable. The Neimark-Sacker bifurcations originate at a
codimension-two double Hopf point. The period of {C whereu,, is themth Fourier mode of the velocity field.
shown in the figure i ~0.0644 and this period varies little For the axisymmetric Lg; only E, is nonzero and it os-
with parametergabout 2%, over the region of parameter cillates with a frequency» that varies only to second order
space explored here. The figure illustrates the symmetries o¥ith parameters from the Hopf frequency. We refer to the
the two periodic states. They also show that the perturbatioamplitude of the oscillation il asAZ. . In Fig. 5,A? for
has small magnitude at outer radii, propagates radially inI'=0.5 and »=0.650, 0.655, 0.660, 0.667, 0.670, 0.675,
wards with time for LG and with @ for RW;, and intensifies 0.680, 0.685, 0.690, 0.695, and 0.700 is plotted as a function
substantially at smaller radii. Although the perturbation,of Re, showing that this squared amplitude grows linearly
which destroys the pointwisg, reflection symmetry of the with Re from zero at the Hopf bifurcatiortl . For 7
solution, is small at large radii, the deflection of the zero>0.675, LG is unstable to nonaxisymmetric disturbances at
axial velocity contour off thez=0 plane is greatest at large onset, but we can still compute this unstable state by restrict-
radii as the axial velocity is small there, and so the relativeéng the computations to an axisymmetric subspace. The un-
perturbation is large. stable LG becomes stable at a Neimark-Sacker bifurcation

The two Hopf bifurcations are supercritical. This is evi- N ¢.
dent from the variation of the squared amplitudes of the pe- For RW,, there are nonzero modal energieg and E;
riodic solutions with parameters. As measures of the square(E,,#0 for n>1, but these are simply harmonics Bf).
amplitudes, we use the modal energies However, unlike for the case with LG Eq andE; for RW,

2776

5T/6
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FIG. 4. Contours of{left column axial velocity w and (right
column its perturbation(i.e., wp=w—wj), in six meridional
planes(at angled), for the RW, state at Re571 and»=0.700.
Contours levels are uniformly spaced in the range82,32 for w
and[—16,16 for w,; the positive(negative contours are solid

(dotted and the zero contour is dashed.
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FIG. 5. Variation ofA%., a measure of the squared amplitude of
the axisymmetric limit cycle Lg with Re for '=0.5 and »
=0.650, 0.655, 0.660, 0.667, 0.670, 0.675, 0.680, 0.685, 0.690,
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FIG. 6. Variation ofE;, a measure of the squared amplitude of
the m=1 rotating wave RW, with Re forI'=0.5 and»=0.660,
0.667, 0.670, 0.675, 0.680, 0.685, 0.690, 0.695, 0.700; the small
curves start at small Re.

are both constant in time. As a direct measure of the squared
amplitude of RW, we useE;. In Fig. 6,E, for RW; atI’
=0.5 and »=0.660, 0.667, 0.670, 0.675, 0.680, 0.685,
0.690, 0.695, and 0.700 are plotted as functions of Re, also
showing linear growth with Re from onset, i.e., we again
have a supercritical Hopf bifurcatioHg,,. For »<<0.675,
RW; bifurcates supercritically from a basic state that is al-
ready unstable to Lg Unlike with the case of unstable ;C
we do not have a subspace in which the unstable, RW
stable, and so have difficulty in following this unstable time-
periodic state using the time-evolution code. The unstable
RW; becomes stable at a Neimark-Sacker bifurcatiy, .

The two curves of Hopf bifurcation${ ¢ andHpgy, in-
tersect at a codimension-two double Hopf bifurcation at
(Reyy~=541, n4y=~0.676) for'=0.5.

V. DOUBLE HOPF BIFURCATION FROM THE BASIC
STATE

The two periodic solutions Lg£and RW bifurcate simul-
taneously at a codimension-two double Hopf bifurcation
point. The double Hopf bifurcation with SO(2) symmetry
has been described in R¢21], and the one considered here
is of a nonresonant simple type. The corresponding normal
form, including the effect of S@), is

A=iweA+P(AB,AB,u)=Aliwg+P(|A]|B|% )],
(13)

B=iw,B+Q(A,B,A,B,u)=Bliw,+Q(|A]%[B[? )],
(14)

whereA andB are the complex amplitudes of the eigenfunc-
tions corresponding to LLand RW, andu are parameters.
The additional symmetry,(K) imposes further conditions

onP andQ:
P(—-A,—B,—A,—B,u)=—P(A,B,AB,n), (15

Q(-A,—B,—A,—B,u)=—Q(A,B,AB,u). (16)
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VI. NEIMARK-SACKER BIFURCATION TO A

620 1 1 MODULATED ROTATING WAVE
] Both LG, and RW, have a space-timg, symmetry, the
600 . spatial reflectiorK followed by a half-period time transla-
1 tion. The PoincarenapP is the square of the half-period flip
I map:
15;0 i i H: E — E
e |
I X — Hx =Ko¢(T/2;)x), (17
560 |- 1 , . . :
I whereE is a local Poincaresection of RW, T is approxi-
mately the precession period of RWH is the first hit map
[ of E), and ¢ is the flow of the system. The theory of bifur-
540 | ; - . ;
I cations from limit cycles withZ, symmetry can be found in
Ref.[22], and it relies mainly on the properties of the half-
[ period flip mapH. In the present case, both limit cycles are
2000 T of Stype in Kuznetsov's notatiofwhich means thaK is not
065 066 067 068 069 0.7 a space symmetry, but a space-time symmetry for the
n cycles. Due to the presence ¢f, period-doubling bifurca-

tions are inhibited23], and for bifurcations with eigenvalues
FIG. 7. Stability diagram in 4,Re) parameter spad@ith I'  of multiplicity 1, there remain three possible cases:
=0.5, showing the various bifurcation curves,c and Hgy, are (1) The eigenvector is invariant tél, and the critical
Eopf bifurcations to LG and RW, respectivelyN.c, New, and  loquet multiplier ofP, \p, and the critical Flogquet multi-
mrw are Neimark-Sacker bifurcations, and SNIC is the saddleyjiar of 1y, )\,,, are both 1. This is a saddle-node bifurcation
node-on-invariant-circle bifurcation leading to the VLF. of periodic solutions, and the bifurcated solutions retain the
space-time symmetrii.
These conditions are satisfied ByandQ, and the symmetry (2) The eigenvector is not invariant td, A\y=—1, and
groupG=SO(2)X Z, does not modify the normal form from )\p=)\ﬁ= 1. This is a pitchfork bifurcation of periodic solu-
that of the generic double Hopf bifurcation; the symmetriestions for the mapH, and the bifurcated solutions break the
only manifests themselves in the symmetry properties of thepace-time symmetrid; the two bifurcated limit cycles are

bifurcated solutions. symmetrically related biK. These still correspond to a single
The analysis of the double Hopf normal form, E¢s3)  T-periodic state for th(_a map, which is not ofStype.
and(14), follows exactly the same lines as in RE21], and (3) There are a pair of complex conjugate eigenvectors,

results in a wedge-shaped region emerging from the doubl@nd a complex conjugate pair of eigenvalues for both maps
Hopf point where both bifurcated solutions j@nd Rw,  H andP. This is a Neimark-Sacker bifurcation, and the bi-
coexist and are simultaneously stable. This region is sepdurcated two-torus i invariant, although both and H
rated from the regions where only one of the bifurcated soiransform a given solution on the two-torus into a different
lutions is stable by Neimark-Sacker curves, where one of th§°lution on the same two-torus. ,

two stable coexisting solutions become unstable. At the 1he bifurcations of Lg and RW in our system have
Neimark-Sacker curvel,c andNgy, the unstable Lgand been observeql to be_z of N_elmark-Sacker type. CIo_se to the
the unstable RWhbecome stable, respectively, as an unstablglouble Hopf bifurcation point, where the two solutions co-
mixed mode(a modulated rotating wayés spawned in the exist and are stable_, an unstab_le modulated rotating wave
wedge region. Since this mixed mode is unstable, it canndf'SO_€xists, as previously mentioned. Far from the double

be observed experimentally, or computed with a time-HOPf bifurcation point, LG loses stability in a Neimark-
evolution code. In our problem, in the neighborhood of theSacker bifurcationNygy, and a stable modulated rotating

double Hopf point, the two Hopf curves and two Neimark- Wave (.MR\.N) emerges. This Neimark-Sacker curve is indi-
Sacker curves vary linearly with parameters, as indicated ifat€d in Fig. 7. _ _ , o

the stability diagram in Fig. 7, fof =0.5. In the neighbor- The Neimark-Sacker bifurcatiolygy is supercritical.
hood of the double Hopf bifurcation, the two Hopf curves Figure 8 shows the linear growth &; with Re forI'=0.5
H.c andHgy and the two Neimark-Sacker curvdgc and — and 7=0.650, 0.655, 0.660, 0.667, 0.670, 0.675, 0.680,
Ngw are close to being tangent. As we folloMgy away  0.685, 0.690, 0.695, 0.700; wheg is the time average of
from the double Hopf point, it curves around so that there isE, for MRW. Over the range of Re that MRW exists, it is the
no stable RW for <<0.658; also at fixedy>0.658, as Reis only stable state. By increasing Re in small increments,
increased RW loses stability as the unstable mixed mode iSMRW is followed until beyond a critical valuéor a given
re-absorbed alg,,. For higher Re, the only stable state is value of ), the solution switches from being a two-torus to
LC,, until it undergoes another Neimark-Sacker bifurcationa three-torus solution, consisting of two periods that are ap-
Nurw . Which is not related to the local dynamics associatechroximately the same as those of MRW, plus a third much
with the double Hopf bifurcation. longer period. We surmise that the stable MRW which had
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FIG. 8. Variation ofE,, the mean kinetic energy in the azi-
muthal modem=1 of MRW, with Re atI'=0.5 and »=0.650,
0.655, 0.660, 0.667, 0.670, 0.675, 0.680, 0.685, 0.690, 0.695, 0.700;
the curves at lower Re correspond to lowgr

bifurcated from the stable LLat Nygrw, collides with an

unstable(saddl¢ MRW which bifurcated from the unstable Neoo .
RW; at anotheNygy , following the destabilization of RW N MY oo
atNgy . This saddle-node bifurcation between the stable and  (¢) 7 > N RW-=" el

saddle MRW results in a saddle-node-infinite-period bifurca-
tion, which spawns the three-torus very-low-frequency state
VLF. Schematics of the whole bifurcation sequences, with
increasing Re fory at either side and at the double Hopf
bifurcation, are shown in Fig. 9.

VIl. SADDLE-NODE-INFINITE-PERIOD BIFURCATION

SNIC stands for saddle-node on an invariant cycle, also FIG. 9. Schematic bifurcation diagrams, using Re as the bifur-
known as saddle-node-infinite-period bifurcation. In this bi_cat(;on par_amete:_,' f'X'”@d:HO'S and gor(?b_’f Tan: (b)t"f Tane
furcation, studied by Andronov, Leontovich, and Shil'nikov 2" (©) 7= Hic andHgy are Hopf bifurcations to Lgan
(see Ref[22]), a saddle-node bifurcation takes place on anRWl’ respectively, anddH is the codimension-two bifurcation

. . . - . where bothH, - and Hgy, occur simultaneouslyN, ¢, Ngw, and
|_nvar|ant (.:yclez as |IIlustraFed n F'g' 10' Befqre the blfur_ca-NMRW are Neimark-Sacker bifurcations, and SNIC is the saddle-
tion, the invariant circle is a periodic solution. Its period

P . . o node-on-invariant-circle bifurcation leading to the VLF state. Stable
grows to mflnlty as the bifurcation pomt IS gpproached,(unstam solution branches are solidashed curves.
obeying an inverse square-root law with the distance to the

bifurcation in parameter spa¢g2,24. After the bifurcation, éaable and robust three-torus, that exists in an extensive

range of parameter space. It has two frequencies which cor-
respond to the axisymmetric oscillation of MRW and the
precession of then=1 component of MRW. The third new
eriod Ty, g becomes unbounded at the SNIC bifurcation.
igure 11 shows the variation dfy,  with Re forI'=0.5

nd »=0.650, 0.655, 0.660, 0.667, 0.670, 0.675, 0.680,

via two heteroclinic curves, which form the invariant circle
that continues existing after the bifurcation. SNIC bifurca-
tions usually occur in conjunction with Neimark-Sacker bi-
furcations and form the boundaries of the Arnold tongue
that are present in a neighborhood of a Neimark-Sacker bi-

furcation. However, they can also exist without associate

resonant dynamics, as is the case in the problem present .0685’ 0.690, 0'69.5’ 0.700. The circles are the computed pe-
here. riods and the lines are fits of the fornTy =4,

In our problem, the bifurcation takes place as Re is de-" @1/ VR&~Re&, ¢ Sample time series @&, (the modal en-

creased: i.e., we have a stabi®de MRW that collides with ~ €9y in the axisymmetric component of the flpvior VLF

an unstablgsaddlé MRW in a saddle-node bifurcatiofwe ~ @r® shown in Fig. 12. As Re approaches the SNIC bifurca-
do not directly compute the unstable MRWAfter the colli-  tion, the time series approaches that corresponding to MRW,
sion, but in its neighborhood, what is left at higher Re is a€XCept for the rapid periodic excursions.

very long period solution that we have termed the VLF. In

t_he stand_ard SNI_C bifurcation,_th_e saddle_ and no_de_that col- VIIl. DISCUSSION AND CONCLUSION

lide are fixed points, and the limit cycle is a periodic solu-

tion. In our case, the solutions that collide are two-tori, The short aspect ratio of the annulus investigated here
modulated rotating waves, and the emerging VLF state is @esults in a basic state with a single outward jet at the mid-
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& (a) Re =5824
1.25x10° T
(a) Re < Regnie 2
1.15x10° |
\\ 105x10° ¢
0
(b) Re = Resne (b) Re = 584.0

125)(105 T T T T

(¢) Re > Regyre

105x10° € ' ' ' '
0 5 10 15 20 25
FIG. 10. Schematic of the SNIC bifurcation.
1.25x10°
height plane; much larger aspect ratios lead to states with
Taylor vortexlike flows with multiple jets. From group theo-
retic considerations, we describe the four ways in which thez.;sxi¢°
basic state can become unstable via primary symmetry
breaking bifurcations. Three of these are identified as solu-
tions for this particular geometry. One is a steady axisym-; ,s.;s° . . . .
metric pitchfork bifurcation, which has been previously in- 0 3 0, 5 20 25
vestigated[14]. The other two are via Hopf bifurcations ] .
producing either an axisymmetric limit cycle or a rotating F!G- 12. Time series oE, for the VLF state a’'=0.5, 7
wave with azimuthal wave number= 1, which are system- =0.667, and _Re as indicatéd dot7|4s drawn every 20th time step in
atically investigated here. The two Hopf bifurcation curvesth® computation, wherét=2x10").
intersect at a double Hopf bifurcation, at which point an
unstable mixed mode also bifurcates. The role of this mixedions at higher Reynolds numbers. It is staljigstable
mode is to either stabilize or destabilize the periodic soluwhen it bifurcates from a stabl@unstable periodic state.
tions from the two Hopf bifurcations at Neimark-Sacker bi- These stable and unstable modulated rotating waves are het-
furcations. A second mixed mode the form of a modu- eroclinically connected, and with increasing Reynolds num-
lated rotating wavg not directly associated with the double ber, collide and vanish in a saddle-node bifurcation. Follow-
Hopf bifurcation, also bifurcates from the two periodic solu-ing the collision, all that remains is an invariant manifold
consisting of the previous heteroclinic connections. This in-
variant manifold is a stable three-torus, with two frequencies
corresponding to those of the modulated rotating waves, and
a third very low frequency that vanishes at the SNIC. This
very-low-frequency state has been previously observed in
1 experimentd6,25], but here we present the first computed
example of such a state, together with a comprehensive bi-
furcation sequence leading to its onset.

The very-low-frequency states have been observed ex-
perimentally in a number of Taylor-Couette flows where end
wall effects are important, i.e., in short aspect ratio systems,
although they have also been observed in experiments with

L . aspect ratios of order 10. Also, the appearance of the VLF
560 580 600 620 640 state has not only been associated with a saddle-node-
ke infinite-period bifurcation, but has also been associated

FIG. 11. Variation ofT,,r with Re atl’=0.5 and»=0.650,  With cycle-saddle homoclinic collisions in the same experi-
0.655, 0.660, 0.667, 0.670, 0.675, 0.680, 0.685, 0.690, 0.695, 0.7009ents but in different parameter regimg&25]. The two
Ty r— at lower Re for lowery. The open circles are computed global bifurcations are distinguished by the scaling law de-
periods and the lines are fits of the fornTy =a, scribing how the associated perio@,,  becomes un-
+a,/VRe—Reyf. bounded. With the saddle-node-infinite-period bifurcation,

E,

30

VLF
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TVLF~1/,/|Re_ Re\/LF|! and for the homoclinic collision recently. been.reporte[:ﬂ.O]. All thlS suggests that the two
Ty~ 1/InRe—Rey, ¢|; which one is observed seems to de- g!obal p|furcat|on.s may be orgamzed_ by a Takens—B_ogdanov
pend on the path through parameter space taken. If the badwfurcation at which a Hopf and a pitchfork bifurcation co-
state first loses stability via a Hopf bifurcation where theincide. Recently, Rucklidg¢26] has studied the dynamics
resulting periodic state is setwis® invariant, then it ap- associated with the normal form of a Takens-Bogdanov bi-
pears that the onset of a VLF state occurs via the saddidurcation with D, symmetry and has identified a scenario
node-infinite-period bifurcation. If on the other hand, the ba-that spawns both types of global bifurcations. Although the
sic state loses stability via a steady pitchfork bifurcation,sSymmetries of his problem differ from those of ours, there
producing two Conjugate Steady states that Subsequent'y b@[e sufficient features in common that SuggeSt that the VLF
come unstable via Hopf bifurcations that result in a pair ofStates may well be organized by such a bifurcation. Investi-
limit cycles that are noZ,, invariant, but are conjugate under 9ations into this conjecture are currently underway.

a Z, reflection, then these may undergo a gluing bifurcation
where the two cycles simultaneously collide homoclinically
with the unstablésaddle basic state. This gluing bifurcation
produces a newZ,-invariant cycle with an associated very  This work was supported by the NSF through Grant No.
low frequency that obeys a|Re— Re | law. Such a gluing CTS-9908599USA) and MCyT Grant No. BFM2001-2350
bifurcation in a short annulus Taylor-Couette experiment hagSpain.
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