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Abstract: This article states a condition monitoring strategy for wind turbines using a statistical
data-driven modeling approach by means of supervisory control and data acquisition (SCADA) data.
Initially, a baseline data-based model is obtained from the healthy wind turbine by means of multiway
principal component analysis (MPCA). Then, when the wind turbine is monitorized, new data is
acquired and projected into the baseline MPCA model space. The acquired SCADA data are treated
as a random process given the random nature of the turbulent wind. The objective is to decide if
the multivariate distribution that is obtained from the wind turbine to be analyzed (healthy or not)
is related to the baseline one. To achieve this goal, a test for the equality of population means is
performed. Finally, the results of the test can determine that the hypothesis is rejected (and the wind
turbine is faulty) or that there is no evidence to suggest that the two means are different, so the
wind turbine can be considered as healthy. The methodology is evaluated on a wind turbine fault
detection benchmark that uses a 5 MW high-fidelity wind turbine model and a set of eight realistic
fault scenarios. It is noteworthy that the results, for the presented methodology, show that for a wide
range of significance, α ∈ [1%, 13%], the percentage of correct decisions is kept at 100%; thus it is
a promising tool for real-time wind turbine condition monitoring.

Keywords: wind turbine; condition monitoring; fault detection; principal component analysis;
multivariate statistical hypothesis testing

1. Introduction

The capability to detect wind turbine (WT) faults is crucial to decrease the cost of wind energy.
Progress in fault detection should boost reliability and cutback operation and maintenance (O&M)
costs, particularly when WTs are installed in more remote locations such as offshore. One of the major
challenges indicated in the report “20% Wind Energy by 2030” [1] is the reduction in O&M costs,
on the grounds that after the capital costs of commissioning wind turbine generators, the biggest costs
are operations, maintenance, and insurance. Thus, reducing O&M costs can remarkably curtail the
payback period and provide the incentive for investment and widespread acceptance of this clean
energy source. In this concern, this paper proposes a WT condition monitoring strategy by means
of multiway principal component analysis (MPCA) and multivariate statistical hypothesis testing
(MSHT) that exploits on-line supervisory control and data acquisition (SCADA) data already collected
at the wind turbine controller.

Traditionally, condition monitoring for WTs has focused on two widely-used methods: vibration
analysis and oil monitoring [2]. These are standalone systems that require the expensive specific
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tailored installation of sensors and hardware. Due to the high costs of these specially dedicated
condition monitoring systems, the use of already available data from the turbine SCADA system is
appealing. Though most wind turbines have already installed these acquisition systems for system
control and logging data, in general the collected data are not used effectively. However, recently,
research on WT condition monitoring based on SCADA data has gained considerable attention.
Adaptive neuro-fuzzy interference systems from SCADA data are utilized in [3] to detect abnormal
behavior of the captured signals and indicate component malfunctions or faults using the prediction
error; and adaptive fuzzy control is employed in [4] for robust control of a variable speed wind turbine.
Furthermore, robust Takagi-Sugeno fuzzy fault-tolerant control is stated in [5] to deal with sensor
faults. Time series cointegration of residuals—obtained from cointegration process of wind turbine
SCADA data—has been implemented successfully in [6] for operational condition monitoring and
automated fault and/or abnormal condition detection. Machine learning methods have proven to
be effective in extracting information from large SCADA data sets, which has been demonstrated
in [7–9]. Furthermore, methods based on principal component analysis (PCA) have also proven
its capability to build WT fault detection strategies [10–12]. However, most of the aforementioned
literature concentrates in one, or at most two, faults at a time. Also in the field of wind enery, PCA is
a simple but powerful technique that can be used to assess the return of a wind farm in terms of
risk [13]. A different approach to model the normal behavior of a WT is presented by Lind et al. [14],
where a stochastic approach—the Langevin model—is used.

In this work, following the benchmark for WT fault detection proposed in [15], a group of eight
hard headed faults are contemplated to develop a WT condition monitoring technique that incorporates
a MPCA model—based on a healthy wind turbine—and multivariate hypothesis testing. MPCA and
multivariate hypothesis testing has already been used in [16] to detect structural changes under the
paradigm of guided waves in structural health monitoring. In the current paper, however, since the
only available excitation is the wind turbulence, a new paradigm is considered. This new paradigm
is considering that, despite the turbulent stochastic wind, the condition monitoring technique will
manage to accurately detect the faults. The benchmark challenge uses a 5 MW high-fidelity WT model
given by the aerolastic wind turbine simulator FAST [17], a comprehensive aeroelastic simulator code
developed by NREL for supporting research and development. Germanischer Lloyd issued a certificate
of evaluation for FAST in 2005. Nowadays, the FAST software is widely used for WT related research,
e.g., [18–20].

The remaining part of this paper is arranged as follows. In Section 2, the WT benchmark model
is briefly recalled. In Section 3, the condition monitoring strategy is stated. Simulation results are
examined in Section 4. Finally, Section 5 wraps the paper up with the main conclusions.

2. The Wind Turbine Benchmark Model and Fault Scenarios

This work takes up the WT benchmark model proposed in [15]. It considers a 5 MW turbine
proposed by the U.S. National Renewable Energy Laboratory (NREL) [21] modeled using FAST (fatigue,
aerodynamics, structures, and turbulence) [17]. Furthermore, the dynamics of sensors and actuators
as well as the fault scenarios are implemented separately within the Simulink environment. Finally,
it states the available measurements in a standard SCADA system, as given in Table 1.

A detailed description about the WT model, generator-converter model and actuators models can
be found in the mentioned paper [15]. Hereby, only the studied faults are recalled, see Table 2.
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Table 1. SCADA data assumed to be available [15].

Number Sensor Type Units

1 Generated electrical power kW
2 Rotor speed rad/s
3 Generator speed rad/s
4 Generator torque Nm
5 first pitch angle deg
6 second pitch angle deg
7 third pitch angle deg
8 fore-aft acceleration at tower bottom m/s2

9 side-to-side acceleration at tower bottom m/s2

10 fore-aft acceleration at mid-tower m/s2

11 side-to-side acceleration at mid-tower m/s2

12 fore-aft acceleration at tower top m/s2

13 side-to-side acceleration at tower top m/s2

Table 2. Fault scenarios.

Fault Type Description

F1 Pitch actuator Change in dynamics: high air content in oil
F2 Pitch actuator Change in dynamics: pump wear
F3 Pitch actuator Change in dynamics: hydraulic leakage
F4 Torque actuator Offset (offset value equal to 2000 Nm)
F5 Generator speed sensor Scaling (gain factor equal to 1.2)
F6 Pitch angle sensor Stuck (fixed value equal to 5 deg)
F7 Pitch angle sensor Stuck (fixed value equal to 10 deg)
F8 Pitch angle sensor Scaling (gain factor equal to 1.2)

2.1. Actuator Faults

The pitch and torque actuators are the most used actuators in the WT operation. Thus, in this
work pitch and torque actuator faults are studied.

Information regarding faults in pitch actuators is generally proprietary. However, an example
containing unexpected dynamics is given in [22]. In this work, the high air content in the oil (F1),
the pump wear (F2), and the hydraulic leakage (F3) faults are considered [15].

Finally, an offset fault of 2000 Nm in the generator torque actuator (F4) is studied. This severe
type of fault can appear as a result of a wrong initialization of the converter controller.

2.2. Sensor Faults

Sensor faults are more frequent compared to the turbine structure lifetime [23]. Usually they lead
to measurements that are mistakenly scaled or stuck from their true values.

The generator speed measurement fault (F5) is introduced when the encoder, that measures the
generator speed, reads more marks on the rotating part than actually present. This happens as a result
of dirt or other false markings on the rotating part. The simulated fault, F5, is a gain factor of 1.2 on
the generator speed.

Faults in the pitch position measurement (pitch position sensor fault) are also considered. This is
one of the most important failure modes found on actual systems [24,25]. The origin of these faults is
either electrical or mechanical, and it can result in a fixed value (faults 6 and 7) on the measurements.
Here, F6 and F7 model a stuck pitch measurement to 5◦ and 10◦, respectively.

Lastly, a fault of a 1.2 gain factor on the pitch measurement (F8) is also considered.
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3. Condition Monitoring Strategy

The proposed condition monitoring technique is based on three steps. Firstly, it builds a MPCA
model with the healthy WT SCADA data. Secondly, when a WT has to be analyzed, its SCADA data is
projected using the MPCA model. Thirdly, the final analysis is done through MSHT .

3.1. A New Paradigm

In structural health monitoring, a standard approach is the so-called vibration-based monitoring.
It is based on the fact that a structural damage will alter the dynamic response of the structure,
see Figure 1. In this approach, the structure to diagnose is excited by a prescribed and known signal.
However, in the WT on-line monitoring, the vibration is caused by the wind, which is an stochastic
unknown signal, see Figure 2. In this work, the obtained results given in Section 4 show that a change
in the behavior of the overall system is detected by the proposed strategy even with a distinct
(unkown) excitation.

excitation

excitation healthy structure dynamic response

pattern

new 
measurements

Figure 1. Vibration-based structural health monitoring. The structure is excited by a prescribed and
known signal.

wind

wind healthy structure dynamic response

pattern

new 
measurements

Figure 2. WT on-line monitoring. The WT is excited by a distinct (unkown) excitation.

3.2. Data Driven Baseline Modeling Based on MPCA

MPCA is a simple extension of conventional PCA to handle data in multi-dimensional
arrays [26,27]. A typical two-dimensional (2D) data matrix can be considered as a two-way array, with
experiments and variables (or discretization instant times) forming the two different ways. In some
applications, it is necessary to extend this scheme to multiway arrays, for instance if in different
experimental trials, several sensors are measuring at different time instants. MPCA is equivalent
to performing ordinary PCA to an unfolded version of the original multiway array. According to
Westerhuis et al. [28], there are six possible ways of unfolding a three-way data matrix. Out of the six
possible unfolded matrices, in this paper we have considered type E with respect to the classification
given by Ruiz et al. [29]. For the sake of clarity, in this paper, data is collected and arranged in
an already unfolded matrix as it will be detailed in the posterior paragraphs.
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The multiway PCA modeling in this paper starts by considering a healthy WT and measuring
a sensor during (nL− 1)∆ seconds, where both n and L are natural numbers and ∆ is the corresponding
sampling time. The discretized measures of the sensor can be arranged to form a vector of real values(

x11 x12 · · · x1L x21 x22 · · · x2L · · · xn1 xn2 · · · xnL

)
∈ RnL (1)

where xij ∈ R, i = 1, . . . , n, j = 1, . . . , L is the measure of the sensor at time ((i− 1)L + (j− 1))∆
seconds. The nL−dimensional vector in Equation (1) can be rewritten as a matrix as follows:

x11 x12 · · · x1L
...

...
. . .

...
xi1 xi2 · · · xiL
...

...
. . .

...
xn1 xn2 · · · xnL


∈ Mn×L(R) (2)

whereMn×L(R) represents the real vector space of n× L matrices. It is worth noting that L is the
number of columns of the matrix in Equation (2) and n is the number of rows of the same matrix.
The overall performance of the condition monitoring system is affected by the particular choice
of n and L as is discussed on [30]. In a more general case, when the measures come from N ∈ N
sensors, the assembled data can be disposed in matrix form as in Equation (2). Finally, for each sensor,
the matrices in Equation (2) are concatenated to create a larger matrix X ∈ Mn×(N·L) as follows:

X =



x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN

11 · · · xN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
x1

i1 x1
i2 · · · x1

iL x2
i1 · · · x2

iL · · · xN
i1 · · · xN

iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xN

n1 · · · xN
nL


(3)

= (v1|v2| · · · |vL︸ ︷︷ ︸
X1

| vL+1| · · · |v2L︸ ︷︷ ︸
X2

| · · · | v(N−1)L+1| · · · |vN·L︸ ︷︷ ︸
XN

)

=
(

X1 X2 · · · XN
)
∈ Mn×(N·L)(R)

Given a generic element xk
ij of matrix X, the superindex k ∈ {1, . . . , N} indicates the number of

sensor. As a summary, matrix X ∈ Mn×(N·L)(R) in Equation (3) includes the measures that come from
N sensors at nL discretization time instants. More precisely, the generic row vector

xT
i = X(i, :) ∈ RN·L, i = 1, . . . , n (4)

contains the measures from all the sensors at time instants ((i− 1)L + (j− 1))∆ seconds, j = 1, . . . , L.
Equivalently, the generic column vector

vj = X(:, j) ∈ Rn, j = 1, . . . , N · L

contains the measures from sensor number dj/Le at time instants ((i − 1)L + (j − 1))∆ seconds,
1 = 1, . . . , n, where d·e is the ceiling function.

The main goal of the subsequent sections is to build the multiway PCA model, that is, the square
matrix P ∈ M(N·L)×(N·L)(R) that has to be used to project the raw data stored in matrix X with the
corresponding matrix-to-matrix product:

T = XP ∈ Mn×(N·L)(R). (5)
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where the covariance matrix of matrix T in Equation (5) will be a diagonal matrix.

Group Scaling (GS) vs. Mean-Centered Group Scaling (MCGS)

Matrix X in Equation (3) includes the measures that come from several sensors. Consequently,
the magnitudes measured by these sensors may have different scales. Therefore, it is recommended to
apply some kind of pre-processing to rescale the collected data [31,32]. This pre-processing step can
be performed in several ways that mainly depend on how the collected data is disposed in a matrix.
In this case, we present two different alternatives: group scaling (GS) and mean-centered group scaling
(MCGS). In the first case (GS), the scaling is based on the mean and the standard deviation of all
measurements of the sensor. More precisely, we define

µk =
1

nL

n

∑
i=1

L

∑
j=1

xk
ij, k = 1, 2, . . . , N (6)

σk =

√√√√ 1
nL

n

∑
i=1

L

∑
j=1

(xk
ij − µk)2, k = 1, 2, . . . , N (7)

where µk and σk are the mean and the standard deviation of all the elements in matrix Xk, respectively.
More precisely, µk and σk are the mean and the standard deviation of all the measures of sensor k,
respectively. Consequently, the elements xk

ij of matrix X would be scaled –using GS– to create a new

matrix X̌ = XGS = (x̌k
ij) as

x̌k
ij :=

xk
ij − µk

σk , i = 1, . . . , n, j = 1, . . . , L, k = 1, . . . , N. (8)

In the second case (MCGS) the mean of all measurements of the sensor at the same column is
considered in the normalization. More precisely, we define

µk
j =

1
n

n

∑
i=1

xk
ij, j = 1, . . . , L, k = 1, 2, . . . , N (9)

where µk
j is the arithmetic mean of the measures located at the same column, that is, the mean of the n

measures of sensor k in matrix Xk at time instants ((i− 1)L + (j− 1))∆ seconds, i = 1, . . . , n. Therefore,
the elements xk

ij of matrix X would be scaled –using MCGS– to create a new matrix X̆ = XMCGS = (x̆k
ij) as

x̆k
ij :=

xk
ij − µk

j

σk , i = 1, . . . , n, j = 1, . . . , L, k = 1, . . . , N. (10)

where σk is defined as in Equation (7) using µk as in Equation (6). The arithmetic mean of each column
vector in the scaled matrix X̆ can be calculated as

1
n

n

∑
i=1

x̆k
ij =

1
n

n

∑
i=1

xk
ij − µk

j

σk =
1

nσk

n

∑
i=1

(
xk

ij − µk
j

)
(11)

=
1

nσk

[(
n

∑
i=1

xk
ij

)
− nµk

j

]
(12)

=
1

nσk

(
nµk

j − nµk
j

)
= 0 (13)

The scaled matrix X̆, whose elements are defined in Equation (10), is a mean-centered matrix.
Taking advantage of this mean-centered property, the covariance matrix of matrix X̆ in Equation (10)



Energies 2018, 11, 749 7 of 19

can be simply computed as a matrix-to-matrix multiplication of both X̆ and its transpose. Indeed,
the covariance matrix is computed as:

CX̆ =
1

n− 1
X̆TX̆ ∈ M(N·L)×(N·L)(R) (14)

Therefore, and since the calculation of the covariance matrix plays an important role in the
application that we present in this paper, the Mean-Centered Group Scaling (MCGS) is the method that
we have selected for the normalization. Throughout the rest of this work, matrix X̆, whose elements
are defined in Equation (10), is renamed as simply X.

The multiway PCA model is characterized by the eigenvectors pj, j = 1, . . . , N · L—also called
proper vectors or latent vectors—and the eigenvalues λj, j = 1, . . . , N · L—also called proper values or
latent roots—of the covariance matrix in Equation (14) as follows:

CXP = PΛ (15)

where

P = (p1|p2| · · · |pN·L) ∈ MN·L×N·L(R) (16)

Λ = (Λij) ∈ MN·L×N·L(R) (17)

and

Λjj = λj, j = 1, . . . , N · L (18)

Λij = 0, i, j = 1, . . . , N · L, i 6= j (19)

In Equations (16) and (18) it is assumed that the eigenvalues are organized in descending order
with respect to their absolute values, that is,

|λi| ≥ |λi+1|, i = 1, . . . , N · L− 1 (20)

The eigenvector p1—corresponding to λ1—is called the first principal component. Similarly,
the eigenvector p2—corresponding to λ2—is called the second principal component, and so on.

Matrix T in Equation (5) is the projected or transformed matrix onto the principal component
space –also called score matrix.

If we consider a reduced number

` < N · L (21)

of principal components, a simplified multiway PCA model is then built:

P̂ = (p1|p2| · · · |p`) ∈ MN·L×`(R) (22)

3.3. Condition Monitoring Strategy Based on MSHT

The WT that has to be diagnosed is subjected to a wind turbulence that is changing as it is
illustrated in Sections 2 and 3.2. If we consider that the measures come from N ∈ N sensors during
(νL− 1)∆ seconds, an assembled data matrix Y is constructed similarly as in Equation (3):
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Y =



y1
11 y1

12 · · · y1
1L y2

11 · · · y2
1L · · · yN

11 · · · yN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
y1

i1 y1
i2 · · · y1

iL y2
i1 · · · y2

iL · · · yN
i1 · · · yN

iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y1
ν1 y1

ν2 · · · y1
νL y2

ν1 · · · y2
νL · · · yN

ν1 · · · yN
νL


∈ Mν×(N·L)(R) (23)

= (w1|w2| · · · |wL︸ ︷︷ ︸
Y1

|wL+1| · · · |w2L︸ ︷︷ ︸
Y2

| · · · |w(N−1)L+1| · · · |wN·L︸ ︷︷ ︸
YN

)

=
(

Y1 Y2 · · · YN
)
∈ Mn×(N·L)(R)

It is very important to mention that, as stated by Pozo and Vidal [33], the number of rows of matrix
Y should not be necessarily equal to the number of rows of X in Equation (3). However, the number of
columns must agree.

The assembled data in matrix Y in Equation (23) is first scaled to create a matrix Y̆ = (y̆k
ij) as in

Equation (10):

y̆k
ij :=

yk
ij − µk

j

σk , i = 1, . . . , ν, j = 1, . . . , L, k = 1, . . . , N, (24)

where σk and µk
j are the values that have already been computed in Equations (7) and (9), respectively,

with respect to X in Equation (3). After this pre-processing step, the scores associated with each
row vector

ri = Y̆(i, :) ∈ RN·L, i = 1, . . . , ν (25)

are calculated through a vector-to-matrix multiplication:

ti = ri · P̂ ∈ R`, i = 1, . . . , ν (26)

where matrix P̂ is the simplified multiway PCA model in Equation (22).
Let {e1, e2, . . . , e`} ⊂ R` be the canonical basis. For each row vector ri, the scalar

ti
1 = ti · e1 ∈ R (27)

is called the first score. Similarly, the scalar

ti
2 = ti · e2 ∈ R (28)

is called the second score, and so on.
If more than one score is considered at the same time, we can build and s-dimensional vector as

ti
s =

[
ti
1 ti

2 · · · ti
s

]T
∈ Rs, s ≤ `. (29)

Vector ti
s in Equation (29) can be seen as an s−dimensional random vector [16]. As an interesting

example, we have depicted in Figure 3 some 50 element samples of the three dimensional random vector

ti
3 =

[
ti
1 ti

2 ti
3

]T
, i = 1, . . . , 50 (30)
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One corresponds to the baseline sample (Figure 3a) and the other is referred to faults 1, 4 and 7
(Figure 3b).
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Figure 3. (a) Baseline sample and (b) sample from the wind turbine to be diagnosed.

Testing a Multivariate Mean Vector

In order to classify the WT state (healthy or faulty) it is needed to decide if the distribution of
the multivariate random samples from the WT to be monitorized is related to the distribution of the
baseline. To reach this goal, a test for the plausibility of a value for a normal population mean vector is
carried out.

Let s ∈ N be the number of principal components to be employed. We assume that the baseline
projection is a sample of a multivariate random variable following a multivariate normal distribution
(MVND) with known population mean vector, µh ∈ Rs, and known variance-covariance matrix,
Σ ∈ Ms×s(R). Finally, we also assume that the sample to be monitorized follows a MVND with
unknown multivariate mean vector, µc ∈ Rs, and known variance-covariance matrix, Σ ∈ Ms×s(R).

We need to decide whether a given s-dimensional vector, µc, is a plausible value for the mean of
a MVND , Ns(µh, Σ). Thus, the next hypothesis test follows

H0 : µc = µh versus

H1 : µc 6= µh.

Here, the null hypothesis is ‘the sample of the WT to be monitorized is distributed as the baseline’.
Thus, when the null hypothesis is accepted, the current WT is classified as healthy. Otherwise, a fault
is present in the WT.

The hypothesis test is grounded on the Hotelling’s T2 statistic. When a sample of size ν ∈ N is
taken from a MVND Ns(µh, Σ), the random variable

T2 = ν (X̄− µh)
T S−1 (X̄− µh)

is distributed as

T2 ↪→ (ν− 1)s
ν− s

Fs,ν−s,

where Fs,ν−s denotes a random variable with an F-distribution with s and ν− s degrees of freedom,
X̄ is the sample vector mean as a multivariate random variable; and 1

n S ∈ Ms×s(R) is the estimated
covariance matrix of X̄.
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At a given level of significance, α, we reject H0 when the observed

t2
obs = ν (x̄− µh)

T S−1 (x̄− µh)

is greater than (ν−1)s
ν−s Fs,ν−s(α), where Fs,ν−s(α) is the upper (100α)th percentile of the Fs,ν−s distribution.

Namely, the quantity t2
obs is the fault indicator and the test is:

t2
obs ≤

(ν− 1)s
ν− s

Fs,ν−s(α) =⇒ Fail to reject H0, (31)

t2
obs >

(ν− 1)s
ν− s

Fs,ν−s(α) =⇒ Reject H0, (32)

where Fs,ν−s(α) is such that

P (Fs,ν−s > Fs,ν−s(α)) = α,

where P is a probability measure.
In a nutshell, we accept the null hypothesis if t2

obs ≤
(ν−1)s

ν−s Fs,ν−s(α), thus showing that the WT is
healthy. Otherwise, the alternative hypothesis is accepted, thus leading to a faulty WT diagnostic.

4. Simulation Results

The results of the condition monitoring strategy are presented and grouped in three different
subsections. Section 4.2 includes the quantity of samples that are correctly classified and the number of
missing faults and false alarms. Sections 4.3 and 4.4 present the results as a percentage. On one hand,
Section 4.3 comprises both the specificity and the sensitivity, together with the false-positive and the
false-negative rates. On the other hand, Section 4.4 contains the true rate of both false positives and
false negatives. Finally, Section 4.5 includes a discussion on the level of significance α of the test.
Based on that discussion, in the multivariate case, it will be seen that the level of significance can be
reduced—therefore reducing the ratio of false alarms—without affecting the overall performance of
the fault detection strategy.

4.1. Multivariate Normality

To properly apply the condition monitoring strategy described in Section 3, and more precisely,
the multivariate hypothesis testing outlined in Section 3.3, measured data should be compatible with
a multivariate normal distribution. To visually show the normality of the data used to validate the
condition monitoring strategy, we use both the Q–Q plots and the contour plots. With respect to the
Q–Q plots, it can be observed in Figure 4 that the points of the sample related to fault number 1—using
the first twelve principal components—are distributed closely following the bisectrix, thus indicating
the multivariate normality of the data. Moreover, a contour plot for the data we consider in this work
is given in Figure 5. More accurately, Figure 5 represents the contour plot for the sample corresponding
to fault number 4, and principal components 1 and 2. The contour lines are similar to ellipses of
a normal bivariate distribution that means that the distribution in this case is, again, consistent with
the assumption of multinormality. Although the graphical approaches can be useful to visually show
the normality, a formal test for multivariate normality should be applied. However, since there is
no single most powerful test it is recommended to perform several tests to assess the multivariate
normality. Consequently, we will consider the three most widely used normality tests:

(i) Mardia’s;
(ii) Henze-Zirkler’s; and
(iii) Royston’s
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multivariate normality tests. A brief explanation of these methods can be found in [16]. Table 3
summarizes the results of the three normality tests when considering the first two principal
components, the first seven principal components and the first twelve principal components.
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Figure 4. Q− Q plot corresponding to the sample related to fault number 1, using the first twelve
principal components. The points in this Q− Q plot are close to the line bisectrix y = x therefore
revealing the multivariate normality of the data.
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Figure 5. Contour plot for the sample corresponding to fault number 4, and principal components 1
and 2. The contour lines are similar to ellipses of a MVND. The distribution, in this case, is consistent
with the assumption of multinormality.
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Table 3. Results of the normality tests when considering the first two principal components, the first
seven principal components and the first twelve principal components. “−” means that all the
tests rejected multivariate normality while “+” means that at least one test indicated multivariate
normality. In this last case, the subindex shows the tests that indicated multinormality: 1 (Mardia’s test),
2 (Henze–Zirkler’s test), or 3 (Royston’s test).

Fault Number PC 1 to 2 PC 1 to 7 PC 1 to 12

1 +1,2,3 +1,2,3 +1,2,3
2 +1,2,3 +1,2,3 +1,2,3
3 +1,2,3 +1,2,3 +1,2,3
4 +1,2,3 +1,2,3 +2,3
5 +1,2,3 +2,3 +1,3
6 +1,2,3 +2,3 +3
7 +1,2,3 +2,3 +1,2,3
8 +1,2,3 +1,2,3 +1,2,3

4.2. Type I and Type II Errors

The condition monitoring strategy presented in Section 3 is carried out considering a total of
24 samples of ν = 50 elements each, according to the following distribution:

• 16 samples of a healthy wind turbine; and
• 8 samples of a faulty wind turbine (one sample for each one of the different fault scenarios

described in Table 2).

All samples are obtained with different wind data sets with turbulence intensity set to 10% and
generated with TurbSim [34]. The generated wind data has the following characteristics: Kaimal
turbulence model, logarithmic profile wind type, mean speed of 18.2 m/s simulated at hub height,
and a roughness factor of 0.01 m. Each sample of ν = 50 elements comes from the measures obtained
from the N = 13 sensors detailed in Table 1 during (ν · L− 1)∆ = 312.4875 s, where L = 500 and the
sampling time is ∆ = 0.0125 s. This sampling time represents a sampling ratio of 80 Hz. Although
Lind et al. [14] propose a more realistic sampling ratio of 1 Hz, they also agree with the fact that
a mixed system, combining SCADA and conventional high frequency sensors is expected in the
near future. The measures are arranged in a ν× (N · L) matrix Y as in Equation (23). As it can be
observed, the number of rows of matrix Y equals the number of elements in the sample. Therefore,
the first element of the sample is the projection of the first row of matrix Y into one or more principal
components; the second element of the sample is the projection of the second row of matrix Y into one
or more principal components, and so on. When the projection is performed into a single principal
component, the sample is then equivalent to a set of real numbers. However, when the projection
is performed into more than one principal component, the sample can be considered as a set of
s−dimensional vectors, where s ∈ N is the number of principal components that are considered jointly.
One of the main contributions of this paper is that the condition monitoring strategy is based on
multivariate statistical hypothesis testing applied to this set of s−dimensional vectors.

The main goal of this section is to show the benefits of the multivariate statistical hypothesis
testing with respect to the univariate case. To this end, we present the results when the measured data
is projected into the first, the second and the third principal component, separately. Basically, when the
sample is a set of real numbers, the condition monitoring is based on the univariate hypothesis testing
presented in [33]. These results will be compared with a new condition monitoring strategy where the
measured data is projected into: (i) the first and the second principal component, jointly; (ii) the seven
first principal components, jointly; and (iii) the twelve principal components, jointly.

These 24 samples plus the baseline sample of n = 50 elements are used to test for the equality of
means (in the univariate case) or to test for the plausibility of a value for a normal population mean
vector (in the multivariate case), with a level of significance α = 10% in both cases. Each sample of
ν = 50 elements is categorized as follows:
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(i) number of samples from the healthy wind turbine (healthy sample) which were classified by the
hypothesis test as ‘healthy’ (fail to reject H0 / accept H0);

(ii) faulty sample classified by the test as ‘faulty’ (reject H0 / accept H1);
(iii) samples from the faulty structure (faulty sample) classified as ‘healthy’; and
(iv) faulty sample classified as ‘faulty’.

The results –organized according to the scheme in Table 4– are presented in Table 5. It can
be stressed, from Table 5, that the sum of the columns is constant: 16 samples in the first column
(healthy wind turbine) and 8 more samples in the second column (faulty wind turbine).

Table 4. Guide for the presentation of the results in Table 5.

Healthy Sample (H0) Faulty Sample (H1)

Accept H0 Right decision Missing fault (type II error)
Accept H1 False alarm (type I error) Right decision

Table 5. Categorization of the samples with respect to the presence or absence of a fault and the result
of the test considering the first score, the second score, the third score (left); and scores 1 to 2 (jointly),
scores 1 to 7 (jointly), and scores 1 to 12 (jointly) (right), when ν = 50 and α = 10%.

H0 H1

Score 1
Accept H0 16 1
Accept H1 0 7
Score 2
Accept H0 13 7
Accept H1 3 1
Score 3
Accept H0 16 8
Accept H1 0 0

H0 H1

Scores 1 to 2
Accept H0 12 0
Accept H1 4 8
Scores 1 to 7
Accept H0 13 0
Accept H1 3 8
Scores 1 to 12
Accept H0 16 0
Accept H1 0 8

Table 5 includes the results using both the univariate hypothesis testing fault detection strategy
developed in [33] (for the first, second and third score) and the multivariate hypothesis testing
presented in this work (scores 1 to 2, 1 to 7 and 1 to 12, jointly). It is worth noting that, for a fixed
level of significance α = 10%, all decisions are correct when the first twelve scores are considered
jointly. In the other cases, two kinds of misclassifications are presented: (i) type I error; and (ii) type II
error. The type I error, also known as false positive or false alarm, occurs when the wind turbine is
working correctly but the condition monitoring strategy infers that there is some problem. The level
of significance α is , at the same time, the probability of committing this type of error. Additionally,
the type II error, also known as false negative or missing fault, appears when the wind turbine is not
working properly but the strategy classifies it as healthy. The probability of committing this type of
error is called γ. This value is closely related to the sensitivity of the test, as it will be seen in Section 4.3.
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4.3. Sensitivity and Specificity

As in [33], two more statistical measures are considered to examine the efficiency of the test.
On one hand, the sensitivity—or the power of the test—is defined as the fraction of samples from the
faulty wind turbine that are correctly classified as such. On the other hand, the specificity of the test is
defined as the fraction of samples from the healthy structure which are correctly classified. Both the
specificity and the sensitivity can be expressed in terms of the level of significance α and the real
number γ defined in Section 4.2, as it is specified in Table 6.

The specificity and sensitivity of both the univariate hypothesis testing and the multivariate case
with respect to the 24 samples—arranged as shown in Table 6—have been included in Table 7.

For the univariate case, the results in Table 7 show that the average value of the sensitivity is
33.33%, which is far from the desired value of 100%. The average value of the specificity is 93.67%,
which is very close to the expected value of 1− α = 90%. However, in the multivariate case, the average
values of the sensitivity and the specificity are 100% and 85.33%, respectively. Although the average
specificity in the univariate case is slightly greater than the average specificity in the multivariate case,
the sensitivity in the multivariate case is undoubtedly better than the sensitivity in the univariate case.
The proposed methodology thus surpasses the performance of the fault detection strategy based on
univariate hypothesis testing.

Table 6. Relationship between specificity and sensitivity, false-positive rate (FPR) and false-negative
rate (FNR).

Healthy Sample (H0) Faulty Sample (H1)

Accept H0 Specificity (1− α) FNR (γ)
Accept H1 FPR (α) Sensitivity (1− γ)

Table 7. Sensitivity and specificity of the test considering the first score, the second score, the third score
(left); and scores 1 to 2 (jointly), scores 1 to 7 (jointly), and scores 1 to 12 (jointly) (right), when ν = 50
and α = 10%.

H0 H1

Score 1
Accept H0 1.00 0.12
Accept H1 0.00 0.88
Score 2
Accept H0 0.81 0.88
Accept H1 0.19 0.12
Score 3
Accept H0 1.00 1.00
Accept H1 0.00 0.00

H0 H1

Scores 1 to 2
Accept H0 0.75 0.00
Accept H1 0.25 1.00
Scores 1 to 7
Accept H0 0.81 0.00
Accept H1 0.19 1.00
Scores 1 to 12
Accept H0 1.00 0.00
Accept H1 0.00 1.00

4.4. Reliability of the Results

Two more statistical measures that can be used to assess the performance of the proposed condition
monitoring strategy are the true rate of false negatives and the true rate of false positives. These two
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measures—rooted in Bayes’ theorem [35]—are described in Table 8. More precisely, the true rate of
false negatives is the fraction of samples from the faulty wind turbine that have been mistakenly
identified as healthy. Contrarily, the true rate of false positives is the fraction of sample from the
healthy wind turbine that have been mistakenly identified as faulty.

For the univariate case, the results in Table 9 show that the average value of the true rate of false
negatives is 24.67%, which is far from the desired value of 0%. The average value of the true rate of
false positives is 25.00%. However, in the multivariate case, the average values of the true rate of false
negatives and the true rate of false positives are 0.00% and 20.00%, respectively. Although the average
value of the true rate of false positives in the univariate case is similar to the same magnitude in the
multivariate case, the true rate of false negatives in the multivariate case is clearly better. Once more the
proposed methodology outperforms the fault detection strategy based on univariate hypothesis testing.

Table 8. Relationship between the proportion of false negatives and false positives.

Healthy Sample (H0) Faulty Sample (H1)

Accept H0 P(H0|accept H0)
true rate of false negatives
P(H1|accept H0)

Accept H1
true rate of false positives
P(H0|accept H1)

P(H1|accept H1)

Table 9. True rate of false negatives and true rate of false positives of the test considering the first score,
the second score, the third score (left); and scores 1 to 2 (jointly), scores 1 to 7 (jointly), and scores 1 to
12 (jointly) (right), when ν = 50 and α = 10%.

H0 H1

Score 1
Accept H0 0.94 0.06
Accept H1 0.00 1.00
Score 2
Accept H0 0.65 0.35
Accept H1 0.75 0.25
Score 3
Accept H0 0.67 0.33
Accept H1 0.00 0.00

H0 H1

Scores 1 to 2
Accept H0 1.00 0.00
Accept H1 0.33 0.67
Scores 1 to 7
Accept H0 1.00 0.00
Accept H1 0.27 0.73
Scores 1 to 12
Accept H0 1.00 0.00
Accept H1 0.00 1.00

4.5. Discussion on the Level of Significance

The performance of the proposed condition monitoring strategy through principal component
analysis and multivariate statistical hypothesis testing depends on:

• the number ν ∈ N of elements of each sample;
• the number L ∈ N of columns of each sub-matrix—corresponding to a sensor—in matrix Y in

Equation (23).
• the number s ∈ N of principal components considered jointly; and
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• the level of significance α ∈ [0, 1] of the multivariate hypothesis testing.

The effect on the overall performance of the proposed method of the choice of ν and L is
exhaustively discussed on [30] for the univariate case though the results can be easily extrapolated
to the multivariate case. The influence of the number s of principal components considered jointly
is also accurately examined in [16]. As it is expected, the more number of principal components are
considered, the better results are obtained.

The choice of the level of significance α is of an extreme importance too. Therefore, for the choice
of α, two considerations have to be taken into account:

• the level of significance α is the probability of committing a type I error (false alarm);
• type II errors (missing faults) should be reduced.

Consequently, a small level of significance is desired, but an excessively small level of significance
would lead to a higher rate of missing faults. For that reason, the question is: how small the level of
significance can be selected without affecting the rate of missing faults? In Figure 6 we have depicted
the percentage of correct decisions using the multivariate hypothesis testing fault detection strategy
with the first twelve principal components (jointly) and the univariate hypothesis testing, for the first,
the second and the third principal components (separately), as a function of the level of significance α.
It can be clearly observed that, in the univariate case, if the level of significance is reduced from α = 13%
to α = 1%, the overall performance is degraded. However, in the multivariate case, the reduction of
the level of significance—and thus the reduction of type I errors—does not affect the fault detection
strategy, keeping the percentage of correct decisions at 100%.
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Figure 6. Percentage of correct decisions using the multivariate hypothesis testing fault detection
strategy (scores 1 to 12, jointly) and the univariate hypothesis testing (for the first, second and third
score), as a function of α.

5. Concluding Remarks

This paper presents a condition monitoring system for WTs based on conventional SCADA data.
The results confirm the effectiveness of the methodology and its usefulness as a condition monitoring
tool through the study of eight realistic different faults (covering actuators, and sensors) in different
parts of the wind turbine following the WT fault detection benchmark proposed in [15].
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One main contribution of this work is to show the benefits of the multivariate statistical hypothesis
testing with respect to the univariate case, for PCA-based WT fault detection. Firstly, it is noteworthy
that, for a fixed level of significance α = 10%, all decisions are correct when the first twelve scores are
considered jointly while in all the other studied cases misclassifications are present (missing faults
and/or false alarms). Secondly, for the univariate case the average value of the sensitivity is only
33.33% and the specificity is 93.67% while for the multivariate case the average values are 100% and
85.33%, respectively. Thirdly, for the univariate case, the average value of the true rate of false negatives
is 24.67% and the average value of the true rate of false positives is 25% while for the multivariate
case the average values are 0% and 20%, respectively. Finally, in the univariate case, if the level of
significance is reduced (from α = 13% to α = 1%), the overall performance is degraded while in the
multivariate case, the percentage of correct decisions is kept at 100%.

Ultimately, note that access to real SCADA datasets is often proprietary. Therefore, it is not
accessible by the scientific community. However, in case experimental data sets could be fed to the
proposed inference machine, two shortcomings would be encountered: the sampling time and the
sensors measurement noise. With respect to the sampling time, in this work a 80 Hz sampling time is
used while traditionally sampling for SCADA is 1Hz frequency or lower. However, as noted in [14]
“a mixed system, combining SCADA data and conventional high frequency sensors is expected in the
future”. With regard to the real measurement noise, the robustness of the proposed strategy is given
by the multiway PCA used for pretreatment. Recall that PCA has the effect of concentrating much of
the data into the first few principal components, which can usefully be captured by dimensionality
reduction; while the later principal components may be dominated by noise, and so disposed of
without great loss. Furthermore, to enhance the strategy in this respect, future work replacing PCA
with robust PCA would be considered.
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Abbreviations

The following abbreviations are used in this manuscript:

FAST fatigue, aerodynamics, structures and turbulence
FD fault detection
FNR false-negative rate
FPR false-positive rate
GS group scaling
MCGS mean-centered group scaling
MPCA multiway principal component analysis
MVND multivariate normal distribution
O&M operation and maintenance
PCA principal component analysis
SCADA supervisory control and data acquisition
SHM structural health monitoring
WT wind turbine
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Nomenclature

α Level of significance for the test (probability of committing a type I error)
γ Probability of committing a type II error
L Number of time instants per row per sensor
N Number of sensors
ν Size of the samples to diagnose
P Principal components of the data set (loading matrix)
T Transformed (or projected) matrix to the principal component space (score matrix)
X Data matrix (original)
Y Data matrix to diagnose
{τi

j }i=1,...,n Baseline sample

{ti
j}i=1,...,ν Sample to diagnose
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