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Abstract. Wireless mobile networks and devices are becoming increasingly popular to provide users the access anytime
and anywhere. We are witnessing now an unprecedented demand for wireless networks to support both data and real-time
multimedia traffic. The wireless mobile systems are based on cellular approach and the area is covered by cells that overlap
each other. In mobile cellular systems the handover is a very important process. Many handover algorithms are proposed in the
literature. However, to make a better handover and keep the QoS in wireless networks is very difficult task. For this reason,
new intelligent algorithms should be implemented to deal with this problem. In this paper, we carried out a comparison study
of two handover systems based on fuzzy logic. We implement two Fuzzy-Based Handover Systems (FBHS) called FBHS1
and FBHS2. The performance evaluation via simulations shows that FBHS2 has better behavior than FBHS1 and can avoid
ping-pong effect in all simulation cases.

1. Introduction

The wireless mobile networks and devices are becoming increasingly popular to provide users the
access anytime and anywhere. The mobile systems are based on cellular approach and the area is covered
by cells that overlap each other. In mobile cellular systems the handover is a very important process,
which refers to a mechanism that transfers an ongoing call from one Base Station (BS) to another. The
performance of the handover mechanism is very important to maintain the desired Quality of Service
(Qos).

The QoS in cellular networks is defined as the capability of the cellular service providers to provide
a satisfactory service which includes voice quality, signal strength, low call blocking and dropping
probability, high data rates for multimedia and data applications [1,2]. Due to host mobility, scarcity
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of bandwidth, and an assortment of channel impairments, the QoS provisioning problem is far more
challenging in wireless networks than in their wireline counterparts [3]. To guarantee the QoS, a good
handover strategy is needed in order to balance the call blocking and call dropping for providing the
required QoS [4,5]. In the future, the wireless networks will adopt a micro/pico cellular architecture.
However, smaller cell size naturally increases the number of handoffs a Mobile Station (MS) is expected
to make. As the new call arrival rate or load increases, the probability of handoff failure increases.
This phenomenon combined with the large number of handoffs before completion of a call increases the
forced termination probability of calls [6,7].

Many metrics have been used to support handover decisions, including Received Signal Strength
(RSS), Signal to Interference Ratio (SIR), distance between the mobile and BS, traffic load, and mobile
velocity, where RSS is the most commonly used one. The conventional handover decision compares the
RSS from the serving BS with that from one of the target BSs, using a constant handover threshold value
(handover margin). However, the fluctuations of signal strength associated with shadow fading cause the
ping-pong effect [8]. The selection of this margin is crucial to handover performance. If the margin is
too small, numerous unnecessary handovers may be processed. Conversely, the QoS could be low and
calls could be dropped if the margin is too large.

Many investigations have addressed handover algorithms for cellular communication systems. How-
ever, it is essentially complex to make handover decision considering multiple criteria. Sometimes,
the trade-off of some criteria should be considered. Therefore, heuristic approaches based on Neural
Networks (NN), Genetic Algorithms (GA) and Fuzzy Logic (FL) can prove to be efficient for wireless
networks [9-20]. In [17] a multi-criteria handover algorithm for next generation tactical communication
systems is introduced. The handover metrics are: RSS from current and candidate base transceivers, ratio
of used soft capacity to the total soft capacity of base transceivers, the relative directions and speeds of
the base transceivers and the mobile node. In [18], a handover algorithm is proposed to support vertical
handover between heterogeneous networks. This is achieved by incorporating the mobile IP principles
in combination with FL concepts utilizing different handover parameters. In [19,20], we proposed and
implemented a Fuzzy-Based Handover System (FBHS). We showed that the proposed system has a good
behavior for handover enforcement, but in some cases can not avoid the ping-pong effect.

In this paper, we carried out a comparison study of two FBHS: FBHS1 and FBHS2. The performance
evaluation via simulations shows that new implemented system FBHS2 has better behavior than FBHS1
and can avoid ping-pong effect in all simulation cases.

The structure of this paper is as follows. In Section 2, we present the handover decision problem. In
Section 3, we give a brief introduction of RW model. In Section 4, we present the application of FL for
control. In Section 5, we introduce the implemented FBHSs. In Section 6, we discuss the simulation
results. Finally, some conclusions are given in Section 7.

2. Handover decision problem

Handoffs which are consistently both accurate and timely can result in higher capacity and better
overall link quality than what is available with today systems [21,22]. Now with increasing demands
for more system capacity, there is a trend toward smaller cells, also known as microcells. Handoffs are
more critical in systems with smaller cells, because for a given average user speed, handoff rates tend to
be inversely proportional to cell size [6].

The main objectives of handover are link quality maintenance, interference reduction and keeping the
number of handoffs low. Also, a handover algorithm should initiate a handoff if and only if the handoff



G. Mino et al. / Implementation and performance evaluation of two fuzzy-based handover systems 341

is necessary. The accuracy of a handover algorithm is based on how the algorithm initiates the handover
process. The timing of the handoff initiation is also important. There can be deleterious effects on link
quality and interference if the initiation is too early or too late. A timely handover algorithm is one which
initiates handoffs neither too early nor too late.

Because of large-scale and small-scale fades are frequently encountered in mobile environment, it is
very difficult for handover algorithm to make an accurate and timely decision. Handover algorithms
operating in real time have to make decisions without the luxury of repeated uncorrelated measurements
or the future signal strength information. It should be noted that some of handover criteria information
can be inherently imprecise, or the precise information is difficult to obtain. For this reason, we propose
a FL-based approach, which can operate with imprecision data and can model nonlinear functions with
arbitrary complexity.

3. RW Model

The Monte Carlo (MC) method is a technique that uses random numbers and probability to solve
problems. It is often used when the model is complex, nonlinear, or involves more than just a couple
uncertain parameters.

The MC method can be used for analyzing uncertainty propagation, where the goal is to determine
how random variation, lack of knowledge, or error affects the sensitivity, performance, or reliability of
the system that is being modeled. MC simulation is categorized as a sampling method because the inputs
are randomly generated from probability distributions to simulate the process of sampling from an actual
population. The data generated from the simulation can be represented as probability distributions (or
histograms) or converted to error bars, reliability predictions, tolerance zones, and confidence intervals.

We use the MC method for realizing RW model. We consider a 2-dimensional field. The initial
position is considered as a origin point and we decided based on MC method the moving pattern for
each walk. If we consider n user movements and the angle ¢ and distance d for each walk are generated
by general or Gaussian distribution, when the movement changes in = and y directions are Az and Ay,
respectively, then we have the following relations.

Az, = dycosl,, Ay, = d,sinb, @
Tpyl = Tp + Axm Yn+l = Yn + Ayn (2)

The BS position can be expressed by Cartesian coordinates. By converting Cartesian coordinates to
polar ones, we can calculate the angle 6.

We consider that in the cellular system each cell has a hexagonal shape and the BS is located in the
center of the cell. The angle 6 between Dipole Antenna (DA) and vector r is D(f) = sin6. If we
consider the transmission power as W, the antenna radiation intensity can be calculated as follows:

—JRT

E= \/45Wsin9€Tn o 3)

where, the DA gain is G = 1.5 and wu,, is the unit vector that shows DA direction. In Fig. 1, the u,, is
in Z direction.
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Fig. 1. Dipole antenna.
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Fig. 2. Beam tilting.

In Eq.(3), when 6 = 90°, the E value will be maximal in horizontal direction. However, in real
situations, the direction of antenna is set up as shown in Fig. 2 in order to cover better the cell area. If
we consider the beam tilting angle and the distance, the E can be calculated by the following equation.

—JKT

E = V45W sin (6 — gb)er—nuo 4

4. FL applied for control

FL is the logic underlying modes of reasoning which are approximate rather then exact. The importance
of FL derives from the fact that most modes of human reasoning and especially common sense reasoning
are approximate in nature. FL is based on the concepts of linguistic variables and fuzzy sets. The fuzzy
sets are used for representing linguistical labels. This can be viewed as expressing an uncertainty about
the clear-cut meaning of the label. But important point is that the valuation set is supposed to be common
to the various linguistic labels that are involved in the given problem.

The fuzzy set theory uses the membership function to encode a preference among the possible inter-
pretations of the corresponding label. A fuzzy set can be defined by examplification, ranking elements
according to their typicality with respect to the concept underlying the fuzzy set [23,24]. The prototypical
element receives the greater membership grade. Fuzzy set naturally appears in non-strict specification. It
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may be soft constraints or flexible requirements for which slight violations can be tolerated (e.g., the dead
line is today, but tomorrow is still acceptable although less good), or elastic classes of objects, approx-
imate descriptions of types of situation to which a given procedure can be applied, or even procedures
with fuzzy stated instructions. In each case fuzzy sets preserve a gradual and smooth transition from one
category into another and avoid abrupt discontinuities that would be caused by the assignment of precise
boundaries for the considered subsets. The specification thus becomes more robust and adaptive. In this
case, fuzzy sets provide a tool for bridging the gap between the perceived continuity of the world and
human discrete cognitive representation [23].

The ability of FL to model gradual properties or soft constraints whose satisfaction is matter of degree,
as well as information pervaded with imprecision and uncertainty, makes them useful in a great variety
of applications. The most popular area of application is fuzzy control. In the fuzzy control systems,
expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for
different classes of situations represented by fuzzy sets. An interpolation mechanism provided by the
fuzzy control methodology is then at work. The current situation encountered by the system partially
resembles two or more prototypical situations for which recommended control actions are known, and
a control action that is intermediary between these recommended ones is computed on the basis of the
resemblance degrees.

A fuzzy control unit can do the same work as a PID controller, since it implicitly defines a numerical
function tying the control variables and the observed control variables together. The difference between
classical and fuzzy control methods lies in the way this control law is found. In the context of classical
automatic control, especially optimal control theory, the control law is calculated using a mathematical
model of process, whereas the FL approach, consistent with artificial intelligence, suggests that the
control law be built starting from the expertise of a human operator. In applications of PID controllers,
the philosophy is close to FLC controllers, since the tuning of the PID parameters is usually done in an
ad hoc way. However, only linear control laws can be attained with a PID, while the fuzzy controller
may capture non-liner laws, which may explain the success of the fuzzy controllers over PID controllers.
In fact, any kind of control law can be modelled by the fuzzy control methodology, provided that this
law is expressible in terms of “if ...then ...” rules, just like in the case of expert systems. However,
FL diverges from the standard expert system approach by providing an interpolation mechanism from
several rules. In the contents of complex processes, it may turn out to be more practical to get knowledge
from an expert operator than to calculate an optimal control, due to modelling costs or because a model
is out of reach.

Fuzzy systems promise to offer a rich language for traffic control by providing soft and flexible control
action, characterizing imprecise quantities (e.g., signal strength, speed, angel and mobile user movement
prediction), and capturing linguistic, rule based control strategies. The philosophy on which the FL based
handover systems are built exploits the FL capability to deduce a system model on the basis of linguistic
variables, fuzzy sets and fuzzy inferences. The rules are expressed in approximate terms, but at the
same time corresponding to an expert description. This allows the rules to be translated into a rigorous
fuzzy inferential system, which has a good performance. The inferential system which describes the
proposed handover systems is simple and can be implemented in hardware, thus improving both the cost
and processing speed.
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5. Implemented system models

5.1. FLC structure

The Fuzzy Logic Controller (FLC) is the main part of the FBHS and its basic elements are shown in
Fig. 3. They are the fuzzifier, inference engine, Fuzzy Rule Base (FRB) and defuzzifier. As membership
functions we use triangular and trapezoidal membership functions because they are suitable for real-time
operation [23,24]. They are shown in Fig. 4 and are given as:

%+1f0rwo—ag<x<xg
f(x;20,a0,a1) = % +1forzg <z <29+ aq
0 otherwise

x;—f“—l—lformo—ao<x<xo

(23 70, 71, a0, @1) = 1 forzg < <oy
g\x;xo,x1,00,01) = xz:x + 1f0l‘ x1 < T < r1 4 aq
0 otherwise

where x in f(.) is the center of triangular function; zq(x1) in g(.) is the left (right) edge of trapezoidal
function; and ag(a1) is the left (right) width of the triangular or trapezoidal function.

5.2. Design of FBHSL

The FBHS1 model is shown in Fig. 5. The Node_B shows the wireless transmitter and receiver of BS
and RNS indicates Radio Network System.
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Fig. 5. FBHS1 model.

As the input linguistic parameters for FBHS1, we consider: Signal Strength from the Present BS
(SSP), Signal Strength from the Neighbor BS (SSN), and the distance of MS from BS (D). The output
linguistic parameter is Handover Decision (HD).

The term sets of SSP, SSN and D are defined respectively as:

T(SSP) ={Weak, Not So Weak, Normal, Strong} = {W1, NSW1,N1,S1};
T(SSN) = {Weak, Not So Weak, Normal, Strong} = {W2, NSW2, N2, 52};
T(D) = {Near, Not So Near, Not So Far, Far} = {NR,NSN,NSF,FA}.

The output linguistic parameter T'(H D) is defined as {Very Low, Low, Little High, High} =
{VL,LO,LH, HG}.

The membership functions of FBHS1 are shown in Fig. 6. The FRB1 forms a fuzzy set of dimensions
|T(SSP)| x |T(SSN)| x |T'(D)|, where |T'(z)| is the number of terms on 7'(x). The FRB1 is shown
in Table 1 and has 64 rules. The control rules have the following form: IF “conditions” THEN “control
action”.

5.3. Design of FBHS2

The FBHS2 model is shown in Fig. 7. In this system, the same as FBHS1 model, the Node _B shows
the wireless transmitter and receiver of BS, RNS indicates Radio Network System. While, the POTLC
stands for Post Test-Loop Controller and PRTLC for Pre Test-Loop Controller.

Different from FBHSL1, in FBHS2 we consider as the input parameter the Change of the Signal Strength
of Present BS (CSSP). While two other parameters: Signal Strength from the Neighbor BS (SSN), and
the distance of MS from BS (DMB) are kept the same. The output linguistic parameter is Handover
Decision (HD).

The FBHS2 operates as follows. First, after receiving the control information from MS, the POTLC
check the quality of the signal. If the signal strength is still good enough the handover is not carried
out. If the signal strength is lower than a predefined value, then based on CSSP, SSN and DMB, the FLC
decides whether the handover is necessary or not. If the handover is not necessary the control is returned
to the present BS, otherwise another check of the signal strength is carried out in PRTLC and the present
signal strength is compared with the previous signal strength. When the present signal strength is lower
than the strength of the previous signal, the handover procedure is carried out.
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Table 1
FRB1

Rules SSP SSN D HD Rules SSP  SSN D HD

32 NSW1 S2 FA  HG 64 S1 S2 FA LH

The term sets of CSSP, SSN and DMB are defined respectively as:
T(CSSP) = {Small, Little Change, No Change, Big} = {SM,LC, NC, BG};
T(SSN) = {Weak, Not So Weak, Normal, Strong} = {WK, NSW,NO, ST};
T(DMB) = {Near,Not So Near, Not So Far, Far} = {NR,NSN,NSF,FA}.

The output linguistic parameter T(H D) is defined as {Very Low, Low, Little High, High} =
{VL,LO,LH, HG}. The membership functions of FLC are shown in Fig. 8 and the FRB2 is shown in
Table 2.

6. Simulation results

In both simulation systems, the cell shape is hexagonal and the coordinates of BSs are indicated as
shown in Fig. 9. The antenna power distribution is shown in Fig. 10. The BS is located in the center
of the cell, the transmission antenna power is 10 W, and cell radius is 2 km. In Table 3 are shown the
simulation parameters.
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Scenariol and Scenario2.

347

In Scenariol, the MS

moves in the boundary of cells, so the ping-pong effect may happen. While in Scenario2, the MS
moves inside the cells, so the handover becomes necessary. In Fig. 11, the MS moves in the cells:
(0,0)—(2,—1)—(0,0)—(1,—2), while in Fig. 12 in the cells: (0,0)—(—1,2)—(—2,1)—(—1,2). Thus,
we evaluate FBHS1 and FBHS2 in the scenario of avoiding the ping-pong effect and for handover

enforcement.

In Fig. 13 is shown the aggregated received power for Scenariol, while in Fig. 14, Fig. 15 and Fig. 16
are showing the received power from the BS(0,0), BS(2,—1), and BS(1,—2) in Scenariol. As can be
seen from Fig. 14, when the MS is going far from the BS the received power is decreased, while when
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Table 2
FRB2

Rules CSSP SSN DMB HD Rules CSSP SSN DMB HD
SM WK NR LO 33 NC WK NR VL

Table 3

Simulation parameters
Distribution law Gaussian distribution
Number of walks 5,10
Random types 100, 200
Cell radius 1 km, 2 km
Transmission power 10W, 20 W
Frequency 2000 MHz
Transmission antenna beam tilting  3°
Transmission antenna height 40m
Receiving antenna height 15m
Average value for a walk 0.6 km
n 11

the MS is approaching neighbor BS the received power from these BSs is increased (see Fig. 15 and
Fig. 16). In Fig. 17 is shown the aggregated received power for Scenario2, while in Figs 18, 19 and 20
are showing the received power from the BS(0,0), BS(—1,2), and BS(—2,1) in Scenario2.

For evaluation of the FBHS1 and FBHS2, we carried out the measurement for 3 points, where the MS
is in the boundary of the 3 cells. In Figs 21 and 22 are shown the measurement points for Scenariol
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Fig. 10. Antenna power distribution.

Cell Layout and Random Walk

Random Walk ==
1 Cell Layout —
I

Distance [km]
o

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Distance [km]

Fig. 11. RW pattern for Scenariol.
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Fig. 22. 3 measurement points for Scenario?2.

and Scenario2, respectively. In Fig. 21, the handover should not be carried out, because we will have
the ping-pong effect, while in Fig. 22 the handover is necessary because the MS is moving inside the
neighbor cells.

In both system, we consider that the handover is carried out when the output value is bigger than 0.7.
We assume that during the RW for each 10 km/h the signal strength is decreased 2 db. We carry out
10 times simulations and calculate the average values. The simulation results of FBHS1 for Scenario 1
and Scenario2 are shown in Tables 4 and 5, respectively.

In the case of Scenariol, the MS moves in the boundary of cells. Thus if the handover will be carried
out, we will have the ping-pong effect. As can be seen from Table 4, in most of the cases FBHS1 shows a
good behavior. However, there are two values in the Measurement Point 3 that the value is more than 0.7.
In this case, the FBHS1 carries out an un-necessary handover. In the case of handover enforcement, the
FBHS1 shows a very good behavior. In all 3 measurement points, the FBHS1 carried out 3 handovers.

In the case of Scenario2, the FBHS2 has an ideal behavior. As shown in Table 6, all the average
values are smaller than 0.7, therefore the FBHS2 system can avoid the ping-pong effect. For handover
enforcement, the FBHS2 has a good performance because in all cases has done 3 handovers (see Table 7).

All our simulation results show that the selection of the parameters for making the handover decision
is very important.

7. Conclusions

We are witnessing now an unprecedented demand for wireless networks to support both data and
real-time multimedia traffic. But, in order to support the multimedia traffic, the cellular networks need
to guarantee the QoS. To maintain the QoS, a good handover strategy is needed in order to balance the
call blocking and call dropping for providing the required QoS.
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Table 4
Simulation results of FBHS1 for Scenariol
Measurement points Point 1 Point 2 Point 3
Speed 0 km/h
Present BS —93.06 —94.11 —92.86 —92.47 —94.01 —95.28
Neighbor BS —93.36 —92.49 —92.77 —93.98 —93.99 —91.28
Distance 0.8804 0.9431 0.8684 0.8466 0.9367 1.0183
System output value 0.595 0.629 0.602 0.576 0.623 0.704
Speed 10 km/h
Present BS —95.06 —96.11 —94.86 —94.47 —96.01 —97.28
Neighbor BS —95.36 —94.49 —94.77 —95.98 —95.99 —93.28
Distance 0.8858 0.9431 0.8684 0.8466 0.9367 1.0183
System output value 0.598 0.649 0.600 0.578 0.623 0.728
Speed 20 km/h
Present BS —97.06 —98. —96.86 —96.47 —98.01 —99.28
Neighbor BS —97.36 —96.49 —96.77 —97.98 —97.99 —95.28
Distance 0.8804 0.9431 0.8684 0.8466 0.9367 1.0183
System output value 0.568 0.621 0.572 0.538 0.590 0.696
Speed 30 km/h
Present BS —99.06 —100.11 —98.86 —98.47 —100.01 —101.28
Neighbor BS —99.36 —98.49 —98.77 —99.98 —99.99 —97.28
Distance 0.8804 0.9431 0.8684 0.8466 0.9367 1.0183
System output value 0.522 0.585 0.531 0.482 0.542 0.662
Speed 40 km/h
Present BS —101.06 —102.11 —100.86 —100.47 —102.01 —103.28
Neighbor BS —101.36 —100.49 —100.77 —101.98 —101.99 —99.28
Distance 0.8804 0.9431 0.8684 0.8466 0.9367 1.0183
System output value 0.534 0.597 0.521 0.497 0.590 0.672
Speed 50 km/h
Present BS —103.06 —-104.11 —101.86 —104.47 —104.01 —105.28
Neighbor BS —103.36 —102.49 —102.77 —103.98 —103.99 —101.28
Distance 0.8804 0.9431 0.8684 0.8466 0.9367 1.0183
System output value 0.576 0.625 0.566 0.549 0.600 0.668
Table 5
Simulation results of FBHS1 for Scenario2
Measurement points Point 1 Point 2 Point 3
Speed 0 km/h
Present BS —105.23 —108.70 —104.64 —107.96 —103.95 —111.93
Neighbor BS —105.55 —102.07 —103.52 —96.763 —103.85 —88.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.596 0.706 0.615 0.748 0.601 0.800
Speed 10 km/h
Present BS —107.23 —110.70 —106.64 —109.96 —105.95 —113.93
Neighbor BS —107.55 —104.07 —105.52 —98.763 —105.85 —90.442
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.595 0.715 0.616 0.799 0.601 0.800
Speed 20 km/h
Present BS —109.23 —112.70 —108.64 —111.96 —107.95 —115.93
Neighbor BS —109.55 —106.07 —107.52 —100.76 —107.85 —92.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.592 0.701 0.699 0.799 0.602 0.800
Speed 30 km/h
Present BS —111.23 —114.70 —110.64 —113.96 —109.95 —117.93
Neighbor BS —111.55 —108.07 —109.52 —102.76 —109.85 —94.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.632 0.705 0.618 0.733 0.603 0.800
Speed 40 km/h
Present BS —113.23 —116.70 —112.64 —115.96 —111.95 —119.93
Neighbor BS —113.55 —110.07 —111.52 —104.76 —111.85 —96.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.602 0.711 0.660 0.711 0.647 0.800
Speed 50 km/h
Present BS —115.23 —118.70 —114.64 —117.96 —113.95 —121.93
Neighbor BS —115.55 —112.07 —113.52 —106.76 —113.85 —98.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.693 0.746 0.694 0.748 0.683 0.800
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Table 6
Simulation results of FBHS2 for Scenariol
Measurement points Point 1 Point 2 Point 3
Speed 0 km/h
CSSP BS —2.710 —3.697 —1.289 0.3877 —1.189 —1.270
Neighbor BS —93.36 —92.49 —92.77 -92.77 —-94.01 —95.28
Distance 0.8858 0.9453 O 8684 0.8466 0.9367 1.0183
System output value 0.693 0.600 0.497 0.571 0.600
Speed 10 km/h
CSSP BS —2.710 —3.697 —1.289 0.3877 —1.189 —1.270
Neighbor BS —95.36 —94.49 —94.77 —94.77 —96.01 —97.28
Distance 0.8858 0.9427 0.8684 0.8466 0.9367 1.0183
System output value 0.693 0.600 0.583 0.542 0.600 0.618
Speed 20 km/h
CSSP BS —2.710 —3.697 —1.289 0.3877 —1.189 —1.270
Neighbor BS —97.36 —96.49 —96.77 —96.77 —98.01 —99.28
Distance 0.8858 0.9401 0.8684 0.8466 0.9367 1.0183
System output value 0.693 0.600 0.614 0.574 0.624 0.640
Speed 30 km/h
CSSP BS —2.710 —3.697 -1.2 0.3877 —1.189 —1.270
Neighbor BS —99.36 —98.49 —98. 77 —98.77 —100.0 —-101.3
Distance 0.8858 0.9376 0.8684 0.8466 0.9367 1.0183
System output value 0.693 0.600 0.632 0.584 0.645 0.657
Speed 40 km/h
CSSP BS —2.710 —3.697 —1.289 0.3877 —1.189 —1.270
Neighbor BS —101.4 —100.5 —100.8 —100.8 —102.0 —103.3
Distance 0.8858 0.9351 0.8684 0.8466 0.9367 1.0183
System output value 0.693 0.600 0.631 0.582 0.656 0.662
Speed 50 km/h
CSSP BS —2.710 —3.697 0.3877 —1.189 —1.270
Neighbor BS —103.4 —102.5 —102 8 —102.8 —104.0 —105.3
Distance 0.8858 0.9327 0.8684 0.8466 0.9367 1.0183
System output value 0.693 0.600 0.631 0.582 0.656 0.663
Table 7
Simulation results of FBHS2 for Scenario2
Measurement points Point 1 Point 2 Point 3
Speed 0 km/h
CSSP BS —2.0149 —3.4731 —2.1681 —3.7153 —7.1891 —7.9733
Neighbor BS —105.55 —102.07 —103.52 —96.763 —103.85 —88.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.645 0.745 0.634 0.740 0.692 0.730
Speed 10 km/h
CSSP BS —2.0149 —34 —2.1681 —3.7153 —7.1891 —7.9733
Neighbor BS —107.55 —104. 07 —105.52 —98.763 —105.85 —90.442
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.632 0.780 0.634 0.710 0.671 0.730
Speed 20 km/h
CSSP BS —2.0149 —3.4731 —2.1681 —3.7153 —7.1891 —7.9733
Neighbor BS —109.55 —106.07 —107.52 —100.76 —107.85 —92.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.616 0.777 0.620 0.726 0.633 0.730
Speed 30 km/h
CSSP BS —2.0149 —3. 1681 —3.7153 —7.1891 —7.9733
Neighbor BS —111.55 —108.07 —109.52 —102.76 —109.85 —94.422
Distance 1.9597 2.4628 1.8367 2.3453 1.8021 3.0449
System output value 0.596 0.743 0.597 0.756 0.606 0.730
Speed 40 km/h
CSSP BS —2.0149 —3.4731 —2.1681 —3.7153 —7.1891 —7.9733
Neighbor BS —113.55 —110.07 —111.52 —104.76 —111.85 —96.422
Distance 0.3536 0.4821 0.6824 0.9047 1.3158 1.4976
System output value 0.576 0.715 0.574 0.794 0.591 0.728
Speed 50 km/h
CSSP BS —2.0149 —3.4731 —2.1681 —3.7153 —7.1891 —7.9733
Neighbor BS —115.55 —112.07 —113.52 —106.76 —113.85 —98.422
Distance 0.3536 0.4821 0.6824 0.9047 1.3158 1.4976
System output value 0.545 0.703 0.553 0.713 0.579 0.703
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Due to host mobility, scarcity of bandwidth, and an assortment of channel impairments, the QoS
provisioning problem is far more challenging in wireless networks than in their wireline counterparts.

Many investigations have addressed handover algorithms for cellular communication systems. How-
ever, it is essentially complex to make handover decision considering multiple criteria. Sometimes, the
trade-off of some criteria should be considered.

Because of large-scale and small-scale fades are frequently encountered in mobile environment, it is
very difficult for handover algorithm to make an accurate and timely decision. Handover algorithms
operating in real time have to make decisions without the luxury of repeated uncorrelated measurements.
Some of handover criteria information can be inherently imprecise, or the precise information is difficult
to obtain.

During handover decision in cellular networks, there is a risk of making incorrect decision based on
incomplete or outdated information. For this reason, we use Fuzzy Logic (FL) which can operate with
imprecision data.

In different from other works, we used Random Walk (RW) model and FL to design the FBHS1
and FBHS2. We evaluated the performance of the proposed FL-based handover systems by computer
simulations. We considered two scenarios: un-necessary handover and enforced handover. As scenario
of un-necessary handover, we considered the case when the MS moves in the boundary of cells. While,
as enforced handover we considered the case when MS moves inside the cells. The simulation results
have shown that the FBHS2 has a better behavior than FBHSL1.
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