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Abstract G protein-coupled receptors (GPCRs) are a large and diverse super-
family of eukaryotic cell membrane proteins that play an important physiolog-
ical role as transmitters of extracellular signal. In this paper, we investigate
Class C, a member of this super-family that has attracted much attention in
pharmacology. The limited knowledge about the complete 3-D crystal struc-
ture of Class C receptors makes necessary the use of their primary amino acid
sequences for analytical purposes. Here, we provide a systematic analysis of
distinct receptor sequence segments with regard to their ability to differentiate
between seven class C GPCR subtypes according to their topological location
in the extracellular, transmembrane or intracellular domains. We build on
the results from previous research that provided preliminary evidence of the
potential use of separated domains of complete class C GPCR sequences as
the basis for subtype classification. The use of the extracellular N-terminus
domain alone was shown to result in a minor decrease in subtype discrimina-
tion in comparison to the complete sequence, despite discarding much of the
sequence information. In this paper, we describe the use of Support Vector
Machine-based classification models to evaluate the subtype discriminating
capacity of the specific topological sequence segments.
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Jesús Giraldo
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1 Introduction

Research in biology and in the omics sciences in particular is quickly evolv-
ing towards increasingly data-driven models [1], in such a way that the cre-
ation, management and maintenance of publicly-available databases becomes
paramount. Such databases are usually curated by specialized scientists that
carry out some of these tasks in a process that has come to be known as
biocuration [2,3].

In this study, we analyze G protein-coupled receptors (GPCRs), which
are proteins of the eukaryotic cell membrane, where they have a function as
transmitters of extracellular signals to the inside of the cell. This key physio-
logical functionality has made them an interesting target for drugs in current
pharmacological research [4,5].

While GPCRs embrace a heterogenous super-family of receptors, the cur-
rent study specifically investigates its class C [6] (defined in accordance with
the IUPHAR1 convention). Class C receptors are relevant to the investiga-
tion of therapies for neurological diseases [7]. The functionality of proteins
is known to be determined primarily by their 3-D structural configuration,
which defines their ability for ligand binding. Despite recent discoveries of 3-D
GPCR crystal structures [8,9], the knowledge about tertiary and quaternary
structures is extremely limited in the case of class C GPCRs [10,11]. In the
face of such lack of knowledge, information about their primary amino acid se-
quences (in this case widely known and available from publicly, web-accessible
databases) is often a complementary approach for the investigation of receptor
functionality.

The unambiguous identification and characterization of biological entities is
an important challenge for biocurators. Addressing this challenge, the GPCRs
analyzed in this paper are characterized according to subtype labels at differ-
ent levels of organization. In previous research, we investigated the feasibility
of discrimination between the seven defined class C GPCR subtypes using
supervised machine learning classification approaches. These classifiers used
different alignment-free sequence transformations, including transformations
based on the physicochemical properties of the amino acids [12] and on short
n-gram features [13]. These experiments showed a reasonably clear differenti-
ation between subtypes, but also an evident upper threshold to classification
accuracy, as well as some consistent misclassification patterns [14]. Note that
these former experiments were based on the entire and unaligned primary
sequences of the receptors.

The GPCRs are built according to different structural domains, includ-
ing a seven-helix transmembrane (7TM) domain, as well as extracellular (N-

1 http://www.iuphar.org
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terminus) and intracellular (C-terminus) domains. For Class C GPCRs in par-
ticular, the extracellular domain of the receptor is large and consists of the
Venus Flytrap (VFT) domain, where the endogenous agonists bind, and a
cysteine-rich domain (CRD) connecting VFT and 7TM domains in many of
their subtypes [15].

In previous research, we also analyzed whether the extracellular N-terminus
domain of the sequences sufficed to distinguish between class C GPCR sub-
types [16]. These experiments revealed that, although the classification models
built using the isolated N-terminus domain did not achieve the subtype dis-
crimination capabilities of the entire sequence in full, the observed reduction
of classification performance was not too significant. Such results revealed the
importance of investigating the subtype-discrimination capacity of separate
structural domains further. Therefore, we build on these preliminary results
in the current paper to provide a systematic analysis of such capacity for the
complete set of different topological locations in the class C sequences (that is,
in the extracellular, transmembrane and intracellular domains), including their
combinations. The classification performances achieved with the sequence seg-
ments and the entire sequence are compared. These analyses should be under-
stood as part of a GPCR characterization process for biocuration assistance.

Note also that the research reported in this paper is a direct extension of
preliminary work reported in [17]. The remainder of the paper is structured
as follows: the analyzed class C GPCR data are summarily described in sec-
tion 2, followed, in section 3, by the description of the supervised classification
strategy, the sequential data transformation methods, the criteria for partition
of the sequence in domains and sub-domains and, lastly, the classification per-
formance metrics. Next, the experimental results are reported and discussed.
This is followed by a summary of conclusions.

2 Materials

The investigated data were gathered from a GPCR-specific curated informa-
tion repository, the GPCRdb [18]. This repository was created in 1993 and
it is now part of the GPCR Consortium2, an industry-academia partnership
and also part of the GLISTEN EU COST Action for the creation of a pan-
European multidisciplinary research network.

GPCRdb characterizes the GPCR superfamily as the union of five major
families (namely, A to E) based on functionality, ligand types and sequence
similarities. As previously introduced, the current paper only investigates one
of the GPCR families, namely class C, which has become popular in current
pharmaco-proteomics research due to the selection of some of its members as
drug development targets for human central nervous system therapies in areas
such as pain, anxiety, or neurodegenerative disorders [6,19].

Class C of GPCRs is further subdivided into seven subtypes: Metabotropic
Glutamate (MG) receptors, Calcium sensing (CS), GABA-B (GB), Vomeronasal

2 URL: http://gpcrconsortium.org
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(VN), Pheromone (Ph), Odorant (Od) and Taste (Ta). The analyzed data set
from version 11.3.4, released on March 2011, contains a total of 1,510 se-
quences from those seven subtypes. We limited our analyses to the subset of
1,252 sequences (approximately 83% of the total) that contain information
of the complete 7-TM domain. The distribution of sequences per subtype is
shown in Table 1, both for the original data set and for the subset comprising
only sequences with complete 7-TM structure.

Table 1 Number of sequences per subtype available in the original data set and in the
subset of sequences with complete 7-TM structure.

Class C subtype ] sequ. original dataset ] sequ. compl. 7-TM structure
MG 351 282
CS 48 45
GB 208 156
VN 344 293
Ph 392 323
Od 102 90
Ta 65 62

1510 1252

3 Methods

3.1 Supervised classification techniques

Class C GPCR subtype discrimination is addressed here as a supervised clas-
sification problem in which class labels are the assignments of each of the
sequences to one of the seven existing subtypes according to the information
available in the database. The first phase of the experiments reported in Sec-
tion 4 involved the use of several models for the classification of the alignment-
free complete sequences. These results were used to choose which classifier was
most adequate for the rest of analyses. The comparison was performed with a
similar selection of classifiers to that used in a previous study [12] and included
Näıve Bayes (NB) [20], Random Forest (RF) [21] and Support Vector Machine
(SVM) [22] classifiers.

NB is a simple probabilistic classifier that applies Bayes’ theorem under the
assumption of attribute independence, creating a probabilistic model for class
prediction. This is the baseline against which the other models’ performance
is compared.

RF is an ensemble based learning method [23] in which each of the elements
of the ensemble is a decision tree [24] and the classification decision is the result
of an internal voting system.

SVMs have been widely used in different variants in previous research for
protein classification from their primary sequences; some examples include
[25], [26], or [27]. Their underlying principles stem from statistical learning
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theory [22]. They map the D-dimensional vectors xi, i = 1, . . . , N , where
xi ∈ RD and N is the number of instances, into possibly higher-dimensional
feature spaces through a function φ . The use of non-linear kernel functions
allows SVMs to separate input data in higher dimensional spaces, in a way
that would not be possible in the observed data space.

This is a multi-class classification problem and the libsvm implementation
[28] of the SVM models was used. It entails a one-vs-one classification approach
and the use of the nonlinear radial basis function (RBF) kernel: K(xi, xj) =
e(−γ||xi−xj ||). The use of the RBF kernel requires adjusting two parameters
(the error penalty C and the γ parameter of the kernel) through grid search.

The classification results for all classifiers were obtained employing a 5-fold
cross validation (5-CV) procedure with stratification for fold generation. This
procedure was chosen due to limited data availability. In an ideal situation
with abundant data available for analysis, the classification results would have
more appropriately been evaluated using a test set of previously unseen data.
In the scenario of our analyses, though, a test set could only be obtained
through random sampling from the limited available data. This would be a
fairly arbitrary procedure, and the evaluation of our experiments on the basis
of such test would be a far less statistically reliable procedure than the 5-CV
procedure proposed.

3.2 Alignment free sequence transformations

The use of the supervised classification models described in the previous sec-
tion requires transforming the unaligned amino acid primary sequences of vary-
ing length into fixed-size matrix representations. In previous research [12], we
used transformations based on the physicochemical properties of the amino
acids that have been widely employed in proteomics research [29,26]. In the
current study, we use transformations that have their foundations in the field of
symbolic language analysis instead. They treat protein sequences as text from
a 20 amino acid alphabet [30,31]. Here, short sequence fragments known as
n-grams are understood as “words”. In [32], a successful application of class
A GPCR classification using text classification methods was reported. This
study used a discretization of n-gram features. In our research, we follow a
similar strategy and calculate the relative frequency of occurrence of n-grams
of sizes one and two, in which we call, in turn, AA and Digram transformations.
In previous research, these n-gram-based transformations achieved relatively
high classification performances in the analysis of the complete sequences of
the original data set [13]. In this study, we go one step further and do not
only calculate the frequencies of AA and Digram for all sequence segments
(called appended frequencies), but also the accumulated frequencies, which are
calculated as the occurrence of AA or Digram in all the segments under study,
divided by the sum of the lengths of these segments.
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Fig. 1 Graphical representation of the common structure of GPCRs.

3.3 Segmentation of Structural Sequence Domains

Class C GPCRs have a common complex structure due to their transmembrane
location: an extracellular domain comprising the N-terminus and 3 extracel-
lular loops (EL), the 7TM, and an intracellular domain consisting of three in-
tracellular loops (IL) and the C-terminus. Complete sequences, in accordance
to this catalogue of structural domains, are partitioned into 15 segments. For
this, we employed the Phobius transmembrane detection tool [33]. Table 2
summarizes some general information about the lengths (in number of amino
acids) of these segments.

Table 2 Statistical information in reference to the length of the segments.

Segment Mean Min Max StDev
Complete Sequence 861.7 250 1,768 181

N-terminus 532.2 6 1,502 148.3
EL1 11.6 5 329 10.4
EL2 27 5 70 10.4
EL3 9 5 31 3.9
TM1 24.7 16 34 1.9
TM2 21.8 17 31 1.7
TM3 23.5 17 34 2.3
TM4 22.3 18 33 2.9
TM5 23.5 17 34 2.3
TM6 21.3 17 27 1.3
TM7 23.6 16 31 1.6
IL1 17 6 567 39.9
IL2 18.9 11 69 4.2
IL3 11.9 6 85 3.3

C-terminus 73 0 1,044 113
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3.4 Performance Metrics

Several metrics were used to evaluate the classification models in the reported
experiments. First, at the subtype level, Precision (Prec), Recall (Rec) and
Matthews Correlation Coefficient (MCC) were used to evaluate the binary
classifier for each subtype (See Table 3). The MCC is considered to be a more
complete figure of merit as it encompasses all elements of the confusion matrix
[34] and is most robust for unbalanced data sets [35]. Being calculated as the
correlation coefficient between the observed and the predicted classification,
it ranges from -1 (for complete misclassification) to 1 (for perfect classifica-
tion). Prec describes the correctness of the predicted positives. It is therefore a
measure of quality, because it measures to which degree all predicted positives
are true. Finally, Rec measures the rate of discovery of true positives. It is
therefore a measure of completeness, because it measures to which degree all
true positives are detected.

At the global level, the quality of the multi-class models was evaluated
using classification accuracy, which is the proportion of correctly classified
receptors, and multi-class MCC (See Table 4).

Table 3 Performance measures for binary classifiers: These metrics build on the notion of
true and false predictions in binary classification with “positive” and “negative” classes [36].
True positives (tp) and true negatives (tn) are correctly classified cases of the positive and
negative classes respectively. Correspondingly, false positives (fp) an false negatives (fn)
are misclassified cases of the negative and positive classes on the other hand.

Measure Formula Meaning

Precision tp
tp+fp

(1) Measure of quality

Recall tp
tp+fn

(2) Measure of completeness

Accuracy tp+tn
tp+fn+fp+tn

(3) Measure of correctness

MCC tp∗tn−fp∗fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

(4) Correlation coefficient

4 Experiments

4.1 Experimental settings

Details of the choice of parameter values for the classifiers are provided here.
The RF was run with 10 trees of unlimited lengths. The SVM used a one-
vs-one classification approach. An RBF kernel (K(xi, xj) = e(−γ||xi−xj ||)) was
employed. It requires adjusting two parameters (the error penalty C and the
γ parameter of the kernel) through grid search. Such grid search was carried
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Table 4 Performance measures for multi-class classifiers: tpi, tni, fpi and fni stand for tp,
tn, fp and fn for class i [36]. The multi-class MCC involves all the entries of the confusion
matrix CK×K of all K classes.[37]. The ijth entry (cij) describes the number of instances
of the true class i assigned to the class j by the classifier.

Measure Formula

Accuracy

∑K

i=1

tpi+tni
tpi+fni+fpi+tni

K
(5)

MCC

K∑
k,l,m=1

CkkCml−ClkCkm√
K∑

k=1

[(

K∑
l=1

Clk)(

K∑
f,g=1f 6=k

Cgf )]

√
K∑

k=1

[(

K∑
l=1

Ckl)(

K∑
f,g=1f 6=k

Cfg)]

(6)

out with C values ranging from 1 to 5 and γ values from 2−16 to 23. Table 5
compiles the best parameter settings found through the grid search and used
to implement the SVM models in the reported experiments for the different
sequence segments.

4.2 Classifier performance comparison with complete sequences

As stated in Section 3.1, we first used several supervised models for the classifi-
cation of the complete sequences in order to select the most adequate classifier.
Table 6 shows the classification performance for the different classifiers (best
results are highlighted in bold). The results reveal that, when compared with
RF and NB, the best classification performance was achieved by SVM, both
for the AA and Digram transformations. For this reason, SVM was used in
the subsequent experiments.

Table 7 details the underlying subtype classification results by reporting
the per-subtype Prec, Rec and MCC obtained by the SVM classifier from the
Digram data. The best results were obtained for subtypes MG, CS, GB and
Ta, while the results for subtypes VN, Ph and Od were less accurate. The Od
subtype, in particular, yielded very poor results. Overall, these results are, in
any case, in line with those obtained in previous research [12], [13].

4.3 Experiments with topological sequence segments

The experiments reported in this Section concern the SVM classification mod-
els built for the different topological segments and their combinations. Table
8 shows the classification results for the segments in the extracellular domain.
Table 9 corresponds to the 7TM, and Table 10, in turn, to the four intracel-
lular regions IL1, IL2, IL3 and the C-terminus. Table 11, on the other hand,
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Table 5 Parameter settings for the SVM experiments: For each experiment on a sequence
segment, the error penalty C and the γ parameter of the RBF kernel are reported.

AA Digram

Segment C γ C γ

Complete Sequence 4 2−4 5 2−9

N-Terminus 5 2−4 5 2−9

EL1 5 2−4 4 2−11

EL2 4 2−4 4 2−10

EL3 5 2−4 5 2−11

All EL appended freq. 5 2−6 5 2−12

All EL accum. freq. 5 2−4 5 2−11

(Nterm + EL) app. freq. 5 2−7 5 2−12

(Nterm + EL) accum. freq. 5 2−10 5 2−10

TM1 5 2−4 5 2−9

TM2 5 2−4 4 2−10

TM3 5 2−4 5 2−9

TM4 5 2−4 4 2−10

TM5 4 2−4 4 2−11

TM6 5 2−3 5 2−10

TM7 5 2−3 5 2−9

TM append. frequency 4 2−9 5 2−13

TM accum. frequency 4 2−4 5 2−11

IL1 4 2−4 5 2−9

IL2 4 2−4 5 2−11

IL3 5 2−4 5 2−10

C-terminus 5 2−5 5 2−12

(IL+ C-term.) append. freq. 4 2−8 4 2−13

(IL + C-term.) accum. freq. 4 2−4 4 2−10

(7TM+NT) append. freq. 5 2−9 5 2−13

(7TM+NT) accum. freq. 4 2−4 5 2−9

(15 Segments) append. freq. 5 2−9 5 2−14

(15 Segments) accum. freq. 4 2−4 5 2−9

summarizes the classification results for the N-terminus combined with the
7TM region. Finally, Table 12 shows the classification results for all 15 seg-
ments of the complete sequence. Each table displays the name of the segments
considered in the experiment, the size of the feature set and the classification
performance as measured by MCC and accuracy.
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Table 6 Classification results for the complete sequences according to classifier.

AA Digram
Classifier Size MCC Accu Size MCC Accu

NB 20 0.625 0.703 400 0.792 0.834
RF 20 0.657 0.726 400 0.656 0.724

SVM 20 0.838 0.873 400 0.917 0.934

Table 7 Subtype classification results achieved with SVM from the Digram data transfor-
mation.

Class C subtype MCC Prec Recall
MG 0.946 0.975 0.949
CS 0.951 0.911 0.927
GB 1.0 0.981 0.989
VN 0.936 0.932 0.913
Ph 0.897 0.922 0.875
Od 0.810 0.675 0.722
Ta 1.0 1.0 1.0

Table 8 Classification results for the extracellular segments.

AA Digram
Segments Size MCC Accu Size MCC Accu

N-terminus 20 0.792 0.835 400 0.901 0.920
EL1 20 0.802 0.842 390 0.786 0.831
EL2 20 0.798 0.839 386 0.825 0.861
EL3 20 0.779 0.825 327 0.769 0.816

All EL appended freq. 60 0.839 0.873 1103 0.873 0.880
All EL accum. freq. 20 0.804 0.845 398 0.844 0.875

(Nterm + EL) app. freq. 80 0.878 0.904 1502 0.889 0.912
(Nterm + EL) accum. freq. 20 0.8089 0.849 400 0.901 0.921

4.4 Subtype specific classification results of topological sequence segments

In this Section, we extend the previous analysis by reporting the per-subtype
classification results for the sequence segments (and its combinations) found to
perform best as detailed in the previous sub-section. Table 13 shows these sub-
type classification results for the concatenation of all 15 segments (MCC=0.914,
Accu=0.932), the N-terminus (MCC=0.901, Accu=0.92), the extracellular seg-
ments, i.e. N-terminus + EL (MCC=0.901, Accu=0.921), the N-terminus +
7TM (MCC=0.909, Accu =0.928), the 7TM segments (MCC=0.873, Accu=0.902)
and the intracellular segments, i.e. IL+C-terminus (MCC=0.88, Accu=0.906).
For each data set, the types of transformation and frequency are reported in
the table.
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Table 9 Classification results for the transmembrane segments.

AA Digram

Segments Size MCC Accu Size MCC Accu

TM1 20 0.741 0.794 321 0.778 0.823

TM2 20 0.809 0.850 298 0.806 0.847

TM3 20 0.829 0.866 290 0.846 0.878

TM4 20 0.776 0.822 320 0.822 0.860

TM5 20 0.8181 0.859 293 0.817 0.856

TM6 20 0.794 0.836 262 0.81 0.848

TM7 20 0.755 0.808 281 0.801 0.843

TM append. frequency 140 0.873 0.902 2066 0.871 0.900

TM accum. frequency 20 0.847 0.879 384 0.864 0.894

Table 10 Classification results for the intracellular segments.

AA Digram

Segments Size MCC Accu Size MCC Accu

IL1 20 0.777 0.825 398 0.739 0.795

IL2 20 0.815 0.853 388 0.837 0.872

IL3 20 0.817 0.857 304 0.789 0.834

C-terminus 20 0.74 0.793 400 0.753 0.805

(IL+ C-term.) append. freq. 80 0.880 0.906 1490 0.874 0.895

(IL + C-term.) accum. freq. 20 0.795 0.837 400 0.854 0.885

Table 11 Classification results for the N-terminus concatenated with the 7TM regions.

AA Digram

Segments Size MCC Accu Size MCC Accu

appended frequency 160 0.897 0.919 2467 0.889 0.915

accumulated frequency 20 0.830 0.866 400 0.909 0.928

Table 12 Classification results for the concatenation of all 15 segments.

AA Digram

Segments Size MCC Accu Size MCC Accu

appended frequency 300 0.905 0.925 5058 0.888 0.911

accumulated frequency 20 0.840 0.875 400 0.914 0.932

4.5 Discussion

The results of our experiments for the sequence segments and their combina-
tions reveal a neat pattern of progressive deterioration of classification perfor-
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Table 13 Subtype classification results for different sequence segments and transformation
as described in the header. MCC best results over segment choices for each subtype shown
in bold.

Concaten. 15 segments N-terminus
(Digram accum. frequ.) (Digram)

Class C subtype Prec Recall MCC Prec Recall MCC
MG 0.947 0.982 0.953 0.962 0.951 0.943
CS 0.951 0.933 0.939 1.0 0.911 0.952
GB 1.0 0.981 0.989 1.0 0.968 0.982
VN 0.939 0.929 0.913 0.919 0.918 0.893
Ph 0.894 0.922 0.875 0.88 0.916 0.859
Od 0.853 0.688 0.722 0.751 0.725 0.712
Ta 1.0 1.0 1.0 1.0 0.967 0.982

N-terminus + EL N-terminus + 7TM
(Digram accum. frequ.) (Digram app. frequ.)

Class C subtype Prec Recall MCC Prec Recall MCC
MG 0.968 0.961 0.954 0.922 0.986 0.939
CS 0.980 0.889 0.928 0.933 0.889 0.906
GB 0.993 0.974 0.982 1.0 0.962 0.978
VN 0.912 0.908 0.882 0.917 0.894 0.877
Ph 0.865 0.919 0.851 0.878 0.904 0.851
Od 0.752 0.688 0.70 0.873 0.70 0.764
Ta 1.0 0.9372 0.966 1.0 0.983 0.991

Transmembrane IL + C-terminus
(AA app. frequ.) (AA app. frequ.)

Class C subtype Prec Recall MCC Prec Recall MCC
MG 0.926 0.986 0.94 0.953 0.975 0.953
CS 0.899 0.933 0.912 0.939 0.889 0.908
GB 1.0 0.968 0.982 0.982 0.9811 0.978
VN 0.89 0.894 0.859 0.879 0.918 0.867
Ph 0.873 0.883 0.833 0.884 0.898 0.85
Od 0.667 0.5 0.549 0.75 0.513 0.592
Ta 1.0 0.954 0.974 0.986 0.985 0.984

mance as we remove more parts of the sequence. It is nevertheless remarkable
that the classification performance never decreases below 0.75 (neither in MCC
nor in accuracy), even for very short segments, and seldom below 0.8. These
results thus reveal a notable conservation of the subtype discriminability ca-
pabilities throughout the sequence.

For the entire sequence, the best classification was found for the Digram
representation, which yielded an MCC of 0.917 and an accuracy of 0.934,
which is a similar performance to that of its partition into 15 segments, with
an MCC of 0.914 and accuracy of 0.932 for the Digram representation and
accumulated frequencies (see Table 12). Note that by using the segmentation
of the entire sequence, the classification results of the AA transformation were
clearly improved, as the entire sequence achieved an MCC of 0.838 and ac-
curacy of 0.873 using 20 attributes, while the appended frequency of the 15
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segments yielded an MCC of 0.905 and accuracy of 0.925 using 300 attributes.
This result validates the approach consisting on the combination of complete
sequence segmentation and use of appended frequencies.

The analysis of the extracellular segments revealed that the classification
performance using the N-terminus alone, or combined with the extracellular
loops (see Table 8) decreases just over one percentage point, both in MCC
and accuracy, when compared to the performance of the complete sequence
and the Digram transformation. The combination of the N-terminus with the
7TM provided similar classification performances as well (see Table 11).

The experiments corresponding to the extracellular loops, transmembrane
and intracellular segments show less accurate classification compared to those
of the entire sequence or the N-terminus. At large, the combination of topologically-
alike segments improves the classification results obtained using single seg-
ments (with the aforementioned exception of the N-terminus). Note as well
that some very short sequence segments such as IL2, EL2, TM3 and TM4
(several of them comprising no more than 2.2% of the sequence) barely drop
more than 6% in classification performance when compared with the best
results. This is a somewhat surprising outcome that indicates that subtype
differences are deeply embedded even in such small segments.

Regarding the type of transformation, Digram yielded the best results in
general, with two interesting exceptions, namely for the 7TM regions and for
the IL + C-terminus for the appended frequencies. The comparison between
the use of appended frequencies and accumulated frequencies reveals that the
former achieve better results with the AA transformation, whereas the latter
perform better with Digram.

The per-subtype classification results reported in Table 13 are consistent
with the results obtained for the entire sequence (See Table 7), as all data sets
achieve better results for subtypes MG, CS, GB and Ta, while subtypes Vn,
Ph and Od show the worst performance.

A detailed comparison of the subtype classification results shows that
the entire sequence and the concatenation of its 15 segments provide the
best performance for subtypes GB (MCC=0.989), Vn (MCC=0.913) , Ph
(MCC=0.875) and Ta (MCC=1.0). In turn, the best results for MG were found
for the entire sequence (MCC=0.953) and N-terminus + EL (MCC=0.954).
For subtype CS, the best result was found for the N-terminus (MCC=0.952),
while Od performed best for the combination of N-terminus + 7TM (MCC=0.764).

The overall good behavior of those sequences including the N-terminus is
consistent with the fact that this domain contains the binding sites for the en-
dogenous ligands responsible for the activation of class C GPCRs. Thus, the
AAs present in the N-terminus determine the recognition of glutamate in MG
receptors, GABA in GABA-B receptor, Ca2+ in CS receptor, etcetera. As a
consequence, the N-terminus conveys most of the discriminatory elements for
the classification of GPCR class C sequences. However, GPCRs and particu-
larly their class C are complex entities both at the structural and functional
levels. GPCRs are allosteric machines and the binding sites for the trans-
ducer G proteins are located at the intracellular part of the receptors far away
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from the ligand binding sites. This may explain the contribution of the ILs in
our analysis. Moreover, the 7TM domain needs to be activated for G protein
binding and then contributions of this structural domain for sequence classifi-
cation are expected. Inasmuch as allosteric cooperativity interactions between
the 7TM and VFT domains have been also reported [38], it is expected that
segments including these domains appear in our study. Finally, ELs are in-
volved in 7TM domain flexibility and cooperativity interactions, which justify
their putative discriminative power.

As a whole, these results provide a complete and detailed landscape of
the relative capabilities of different sequence segments (from different GPCR
domains and in different combinations) in the task of discriminating between
the seven subtypes of class C GPCRs. This detailed landscape should help
database biocurators in their tasks.

5 Conclusions

The research reported in this paper is based on the web-accessible and pub-
lic protein databases of the GPCRdb consortium. Biocurators of this type
of databases face the non-trivial challenge of unambiguously identifying and
characterizing GPCRs. In this database, receptors are characterized according
to subtype labels at different levels of organization. In previous research, the
analysis of the N-terminus of the extracellular domain provided some prelim-
inary evidence of the potential use of individual domains of complete class C
GPCR sequences as the foundation for subtype classification.

We have performed a systematic analysis of the classification performance
of each of the individual sequence segments in which the sequence can be
divided in each of its structural domains, as well as the performance of sev-
eral of their combinations. The experimental results revealed that none of
them reached the classification performance of the complete sequence or the
concatenation of its 15 constituent segments. However, the segments of the
extracellular domain, the N-terminus in combination with the 7TM and, to
some degree, the intracellular domain, have all performed almost as well as
the complete sequence.

The identification of the most discriminative segments should be the start-
ing point for future work focusing on these separate regions. Such future re-
search should involve feature selection starting from these segments as a way to
discover specific motifs with subtype discriminative capabilities and potential
functional roles.
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