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∗Universitat Politècnica de Catalunya †Barcelona Supercomputing Center (BSC)

Abstract—Modern and future automotive systems incorporate several
Advanced Driving Assistance Systems (ADAS). Those systems require
significant performance that cannot be provided with traditional au-
tomotive processors and programming models. Multicore CPUs and
Nvidia GPUs using CUDA are currently considered by both automotive
industry and research community to provide the necessary computational
power. However, despite several recent published works in this domain,
there is an absolute lack of open implementations of GPU-based ADAS
software, that can be used for benchmarking candidate platforms. In
this work, we present a multi-CPU and GPU implementation of an
open implementation of a pedestrian detection benchmark based on the
Viola-Jones image recognition algorithm. We present our optimization
strategies and evaluate our implementation on a multiprocessor system
featuring multiple GPUs, showing an overall 88.5× speedup over the
sequential version.

I. INTRODUCTION

Modern automotive systems are getting increasingly complex every
year. In particular, each generation contains more and more Advanced
Driving Assistance Systems (ADAS), in order to achieve the mile-
stones set by car manufacturing companies in their roadmap towards
self-driving cars [10].

However, the current hardware platforms used in the automotive
domain cannot satisfy the high performance requirements of future
ADAS systems. The reason is that those systems are typically micro-
controllers designed to comply with the strictest timing, reliability
and safety requirements imposed by automotive standards such as
ISO26262 [9].

As a consequence, both industry and academia have started ex-
ploring alternative architectures that can provide the performance
needed for these sophisticated features [13]. Multiprocessor systems
and General purpose Graphics Processing Units (GPGPUs) are a
promising candidate platform. Nvidia already designs embedded
development kits which are promoted for use in automotive, while
Qualcomm, which designs both mobile CPUs and GPUs, has recently
entered strongly in the automotive domain after the acquisition of
NXP. In addition, other embedded design companies with mobile
GPU designs in their portfolio (ARM, Imagination Technologies and
others) can offer solutions for the automotive market, which increases
significantly the available number of potential candidate platforms for
ADAS systems.

However, none of those platforms are already certified as ASIL-
D (the highest integrity level in automotive systems) according to
ISO26262 in order to be able to be used in production cars. The
significant effort and cost to obtain such certification can only be
justified by customer interest in purchasing large quantities of those
platforms.

On the other hand, the interested parties that can create such a
market demand – automotive industries and academia – lack open
ADAS applications that can be used in order to benchmark the
available platforms and decide which ones match their requirements

and could serve as a basis for the designs of their products. This
is counter-intuitive considering that significant research has been
performed recently by both agents, but it has been always considering
closed-source in house developments focusing on specific hardware.

In this paper, we try to bridge this gap in the literature, by
presenting the design, implementation and evaluation of an open
source ADAS application based on multiple CPUs and GPUs. Our
baseline CPU implementation is based on an open pedestrian detec-
tion case study using the Viola-Jones detection algorithm, developed
by Thales Group within the FP7 project TERAFLUX and shared
via the HiPEAC network of excellence with research institutes
worldwide [14].

Our baseline application implements an object recognition task,
which is a common element in ADAS systems. Despite that other
computer vision and deep learning algorithms with higher detection
accuracy have been proposed in the literature, all those algorithms
have a similar structure with our application. Finally, our multi-
CPU and multi-GPU implementation is distributed in open source
form [15], retaining the same license as the original application.
Therefore it is a representative application that can serve as a
benchmark for future ADAS oriented automotive architectures.

Although our implementation is based on a non-proprietary code
base, without using advanced state-of-the-art detection algorithms
and it is released as open source, the achieved performance in
our platform outperforms non-public implementations with similar
characteristics, achieving real-time performance.

II. BACKGROUND

A. Features

Viola-Jones method [16][17] is an effective object recognition
algorithm, that was originally proposed for face detection. The
algorithm is based on a set of features, which are based on Haar
wavelets. Haar wavelet is a certain sequence of rescaled ”square-
shaped” functions, which together form a wavelet family. In two
dimensions, a square wave is a pair of adjacent rectangles, one light
and one dark.

A feature is used to detect the presence or not of a certain
pattern. To achieve this, the value of the feature is evaluated with
the following formula:

value =
∑

(pixel values in white region)−∑
(pixel values in black region)

This value is compared with a threshold, provided by the classifier.
If the value of the feature is higher than the threshold, the feature is
considered present.
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B. Integral Image

The Viola-Jones algorithm requires a large number of features,
of many different scales and different kinds to be computed very
rapidly, making it extremely computationally intensive. For this
reason the concept of integral image was introduced [16][17], which
is an intermediate representation of the image, in order to reduce
the amount of calculations required to compute the value of a
feature. This way we can detect a feature or determine its absence
significantly faster.

The value of each pixel in the integral image contains the sum
of all the pixel values above and to the left of the concerned pixel
of the original image. Given the integral image, the evaluation of
each feature can be performed by adding and subtracting values from
the vertices that define the dark and white square regions of the
feature. Since the number of regions in each feature is very small,
the computation is very fast. We refer the interested reader to the
above seminal works for more details.

C. Classification

Even though the features can be computed very efficiently, the
number of possible features is very large, given the fact that there
are several types of them and they are scaled and shifted across all
possible combinations. In order to ensure fast classification, Viola-
Jones as well as more advanced machine learning classification
algorithms, has a structure that allows to exclude the presence of
most features quickly and only look for a few critical features.

The Viola and Jones method combines a series of classifiers as a
filter chain called classifier cascade. The order of filters in the cascade
is based on their weight importance. The more heavily weighted
filters come first, to eliminate non-detected image regions as quickly
as possible. A positive result from the first classifier triggers the
evaluation of a second classifier, a positive result from the second
classifier triggers a third classifier and so on. A negative result at
any point leads to the immediate rejection of the subregion and it is
classified as ”Not Found”. The image subregion that makes it through
the entire cascade is classified as ”Found”.

III. APPLICATION STRUCTURE

Our baseline code is based on a pedestrian detection application
that was adapted from the OpenCV library [11] by the Thales group
and it was used as a reference application in the FP 7 funded project
TERAFLUX [1]. Additionally, this application is part of the Task
Force of HiPEAC as a representative of its respective domain.

The algorithm used implements the Viola-Jones method written in
C. The application takes 2 files as input: a classifier description and
an image file. Each of the weak classifiers forms a stage and it is
made up by simple features. The higher the stage of the classifier,
the more complex it gets, which means that contains more features,
whose number is increased exponentially with the stage. The image
file contains a picture to which the detection is performed.

The application consists of two main parts. In the first one,
the initial image is transformed to two intermediate representations
(integral images) and in the second one, the detection takes place.

The first part of the application has two paths of execution, both
starting from the input image. The first path is to compute the integral
image from the input image, while the second path computes the
DotSquare image (which is the square of all the pixel values) and
then its integral image. Both of these paths lead to the classification
phase where it is checked whether there is detection or absence of
the features selected by the learning algorithm. Finally the image is
written to a file, with the detected person highlighted.

read input image
compute intermediate representation images
for each scale {

mark all locations as found
for each subregion {

for each stage {
if feature_value < threshold
{

mark the location not found
break

}
else

if stage == last_stage
found++

}
}
if found {

for each subregion {
if location marked as found

reduce number of detections in a given range
}

}
store number of detections for each scale

}
delete detections which are too close
highlight detection and write the image

Fig. 1: High-Level Sequential Application Pseudocode.

As we can see in the pseudocode of the application in Figure 1, the
detection phase starts with the smallest scale and selects a subwindow
of the picture to check it for detection. Then for each stage of the
classifier, takes its features, magnifies them according to the scale
and checks their presence based on the threshold, as we described
in the previous Section. In case of absence, the next stages of the
classifier are not checked. If the last stage of the classifier is reached,
then a detection has been successful in this scale.

Next, multiple detections in nearby regions are merged together in a
single detection. Finally the process is completed for any combination
of scales and subwindows.

A more detailed description of the application can be found in [1],
[2] and [3].

IV. BENCHMARK PARALLELIZATION

First we ported the code to C++ and fixed minor bugs, regarding
conversions from integer to floating point. In order to have a correct
view of the performance bottlenecks of the original application, we
performed profiling. This step revealed the parts of the application
in which the majority of the execution time was spent and that could
be effectively programmed into CUDA.

A. Classifier memory transformation

The classifier cascade is one of the most important data structures
of the application, since the entire Viola-Jones algorithm is built on
top of it.

The data structure comprises a hierarchical organization of nu-
merous dynamically allocated nested structures linked with pointers,
as depicted in the left part of Figure 2. In particular, the classifier
cascade consists of an array of stage classifiers, each stage classifier
of an array of classifiers, each one of them holds the set of features
used for the detection, and each of them the details of the rectangles.

Although this organization eases programmer’s access in its various
fields, it suffers from some important disadvantages which make it
inappropriate for use in a distributed memory environment as GPU
computing:



1) The smaller data structures of the classifier are dynamically
allocated and as a consequence, they are scattered in various
locations in memory. Therefore, a naive straightforward GPU
implementation based on this classifier implementation, would
require many small DMA transfers, one per each individual
structure. This would force the CPU to spend time setting up
each short-lived DMA transfer, instead of being able to perform
useful work.

2) Since host and GPU memory spaces are different, pointers from
one memory space are not are not valid in the other one. In
order to maintain the links between the data structures, all
pointers need to be updated. In a naive implementation, this
would require to perform a memory transfer to the appropriate
location in the GPU, with the value of a pointer returned by
the device’s memory allocation function, for each allocated
structure. Since these memsets would be tiny (64bit, a size of a
GPU pointer), CPU would be busy setting up a set of transfers,
making matters worse.

3) Dynamic memory allocation on GPU is an expensive operation,
because it requires a call to the operating system, therefore it
is preferable to minimize the number of these requests.

4) Small allocations can lead to fragmentation of the address
space, which can increase the cost of large subsequent requests.
This happens because the GPU memory allocator may try to
reuse chunks of memory that lie between already allocated
chunks.

For all the above reasons, it is clear that the organization of the
classifier was needed to be modified in order to suit better the GPU
programming model.

The primary idea of our modification was to allocate a single chunk
of memory and partition it internally to represent the same structure.
This is possible because the size of each structure is known a priori,
as well as the number of structures in each level of the hierarchy.
Therefore, the addresses of the various structures, which are needed
to establish the links between them, can be computed as a function
of the sizes and their relative position in the structure.

This way we could ensure that all the smaller data structures that
comprise the classifier are allocated in contiguous memory locations.
As consequence, the whole classifier structure can be transferred
to the GPU memory with a single DMA transfer, which can be
completed much faster than by a series of small DMA requests.
Moreover the cost of a single allocation is significantly lower than
many smaller ones and in addition it prevents fragmentation.

However, there there was still a challenge to be solved: since the
classifier is copied in its entirety from the host memory, the pointer
values are not valid anymore, since they belong to a different address
space. In order to address this situation we performed a trick based on
a simple observation: the relative offsets between the starting address
of the classifier and each structure in it remain the same. Therefore,
each pointer can be adjusted as follows:

device ptr = device classifier start+

(host classifier start - host ptr)

The advantage over the naive implementation described earlier, is
that these updates can be performed in parallel by a kernel running
directly in the GPU. This way there is no need for the CPU to do the
same job serially, with a lot of costly small DMA transfers, instead
of spending this time performing useful work.

...

...

...

...

...

...

cascade

feature

classifier

stage

Original layout Transformed layout

Fig. 2: Classifier memory transformation.

B. Kernels

We implemented three kernels in order to compute the inter-
mediate image representations used by the classification phase. In
our implementation we took care to achieve memory coalescing,
so that neighboring threads access neighboring locations. This way,
the DRAM bandwidth is better utilized, because all the requests
performed by the 32 threads of a warp at once, are satisfied with
a single DRAM burst.

During the classification, the image is scanned at 30 different
scales, starting with a very small window size (at a size of 36×18
pixels), which is incremented 10% from the previous one. Each thread
is assigned a sub-window and calculates all the features of all stages.
Note that compared to previous GPU works, we launch all the threads
in parallel, for all the different scales. A thread continues to work
on a sub-window for all the remaining stages, even if there is a fail
in an earlier stage. Although this would penalize the performance
in sequential execution in the CPU, this is not true for the GPU.
This happens for two reasons: first, we avoid divergence between
threads and second all threads are synchronized before processing the
detections. In the final step, a rectangle is drawn around the detected
person.

C. Scales - Stages Loop Interchange

In the previous Section, we described how the detection takes
place in the original application using the classifier. The selected
subwindow for a given scale passes from the several stages describing
the features of the classifier, as described in the Section II-C, and each
time the sliding window shifts, the new region within the sliding
window will go through the cascade classifier stage-by-stage.

The original pseudocode for this implementation can be seen in
the Figure 1, but in our GPU implementation we interchanged the
two outer loops. We chose to change the order of execution in order
to increase the amount of parallelism, since the body of the outer
loop is assigned to a GPU thread and the number of subwindows
is significantly larger than the number of scales. Moreover, with our
modification neighboring threads belonging in the same warp process
subwindows of the same size, because now they correspond to the
same scale. This results in a better cache utilization and even creates
opportunities for memory coalescing for the smaller scales, because
the amount of subwindow shifting increases with the scale ratio.
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Fig. 3: (a) Synchronous GPU operations result in no overlapping
between CPU and GPU tasks. (b) The use of asynchronous GPU task
scheduling offers overlapping between CPU and GPU operations.

V. OPTIMIZATIONS

In this Section we explain the most significant optimizations that
allow to properly exploit the performance of a multi-CPU and multi-
GPU hardware platform. First we explain how we manage to execute
multiple operations in parallel on the CPU and the GPU, and later
on how we take advantage of multiple CPUs and GPUs in a system.

A. Overlapping CPU and GPU operations

Despite the data parallelism that enables us to simultaneously
compute the same function on lots of data elements, task parallelism
involves doing two or more completely different tasks in parallel.

In the CUDA programming model, the GPU operations are
executed synchronously by default. This means that when GPU
operations are launched, such as kernels or memory transfers, the
CPU waits for the operation to be completed, before proceeding
continuing the program execution.

Figure 3a shows the application execution distribution in CPU and
GPU during the time. As we see, the time that is spent on waiting
could be used to perform useful work.

In particular, while the input image is transferred to the CPU or
is being processed, the CPU can perform another time consuming
operation, which is to read the next image from the disk. Moreover,
while the result image is transferred back to the host, the CPU can
perform a more costly operation, which is to write the detection result
to the disk.

In order to be able to perform these operations in parallel, we
should be able to execute GPU jobs asynchronously. Luckily, CUDA
provides an interface for launching GPU jobs asynchronously and
waiting for the their completion when this is required. After using
this interface, we managed to overlap CPU and GPU as shown in
Figure 3b.

B. Overlapping GPU transfers and GPU computations

Although asynchronous GPU calls enable the CPU to overlap some
work with the GPU, all the GPU operations are serialized. This means
that so far in the application, the way we used cudaMemcpy serialized
data transfer and GPU computation. However, since our CUDA
device is equipped with DMA controller, which supports overlapping,
we can simultaneously execute a kernel while performing a copy
between device and host memory.
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Fig. 4: Two Streams in one GPU.

Below we will see a method for achieving a kind of task-level
parallelism in our GPU-based implementation, which is based on
CUDA streams. Streams implement a task mechanism on the GPU,
which allows parallel execution of jobs. A CUDA stream represents
a queue of GPU operations that get executed in the order they are
added to the stream.

In this version of the benchmark, we use two different CUDA
streams to perform the work. Figure 4, shows the timeline of the
application execution when we are using those two independent
streams and if we assume that the memory copies and the kernel
executions take roughly the same time. Stream 0 will start with the
first image by performing a memcpy to the GPU (which is loading
the image) and then it will continue with the kernel execution, while
stream 1 copies its input buffers to the GPU. After that stream 0
will copy its results to the host, while stream 1 will proceed with
the kernel execution of the second image. The Figure 4 shows that
the GPU can perform a kernel execution and memory copy at the
same time, while the empty spaces represent the time that a stream
waits to execute an operation that cannot overlap with an operation
of another stream. While one stream is executing a memory copy,
another stream will execute a kernel1.

In order to successfully perform the overlapping of the transfers
and the GPU computations, we used pinned memory on the host.
Pinned memory, or page locked memory, is a special kind of
dynamically allocated memory, which has the property not to be
paged out. This means that this memory chunk will never be swapped
in the disk, in order the physical memory page to be given to another
process.

Due to this fact, the use of pinned memory not only reduces the
latency that the process spends for its memory to be swapped in,
but also makes the transfers faster. This happens because the CUDA
driver doesn’t need to copy this memory to a temporary page-locked
buffer before giving control to the DMA controller to complete the
transfer, but instead it uses the same buffer for this operation. For
this reason, this optimization is known as Zero-Copy transfer.

The drawback of the pinned memory, however, is that it is more
expensive to be obtained from the operating system, since it is an
expensive resource. In our case this is not a big problem, because
the amount of pinned memory we require is small (120KB per image,
so 480KB in total) and additionally the allocation cost is paid only
once during the initialization phase, which is very short compared
with the actual execution time.

1In fact, high-end systems can even execute two memory transfers at the
same time, one from the GPU and one towards the GPU, therefore the actual
overlapping in the system might be even more aggressive than the depicted
one.
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C. Using Two GPUs with MPI

In this version of the application we are taking advantage of
multiple GPUs and CPUs that may exist in an architecture. A
limitation of CUDA is that each thread can use a single GPU device.
Therefore, in order to use a second GPU we are going to need a
separate CPU context which will control it. In a multi-processor
platform, as the one we used for the evaluation, the new CPU thread
can run in parallel without any loss of performance.

In order to implement this scheme we used MPI to create two
processes, each one coupled with a GPU device. For each of the
devices we continue to use two streams as before.

In order to achieve the best performance we pin each process in
the CPU that is closer to the GPU that it is controlling. Moreover,
we allocate memory closer to that CPU, so that the memory transfers
are more effective.

Figure 5 shows the timeline of the application execution for device
0 and device 1 respectively.

D. Improve CPU and GPU overlapping

Although asynchronous GPU operations provide a way of over-
lapping CPU and GPU tasks, there is still a limiting factor. This
factor – which in our case is the bottleneck of the system as we
explain in the Evaluation Section – is the file I/O. Read and write
operations of the input and output images respectively are expensive
blocking operations. This means that when the CPU requests data to
be read from a file, the operating system blocks the process until the
requested data are retrieved from the disk. When the data are ready,
the operating system wakes up the process to continue its execution.
However this operation can take millions of processor cycles, since
the disk is several orders of magnitude slower than the CPU.

The same problem is encountered during file write operations,
which is an even slower operation. Therefore, in order to increase
the performance of our benchmark we need to attack this problem.
Note that the blocking behavior of reading requests is not a problem
in our design, since at some point we have to wait until the previous
operation in the same stream is finished.

However, the blocking nature of write does create a problem,
because the file read of the new image and the subsequent GPU
operations are delayed until the image is written in the disk, because
the process is unable to proceed. There are two solutions to this
problem: one is the use of asynchronous I/O for image writing or the
elimination of the image writes completely.

The use of asynchronous I/O for image writing gives the opportu-
nity to a process to continue immediately after an I/O request. The
process associates a callback function which is going to be called at
the completion of the request. This way, the file descriptor of the file
can be closed after the completion of the write request.

In our implementation, after all the images are correctly processed,
we wait until all the write requests are completed, and close the files

before exiting. As we discuss in the Evaluation Section, our program
spends the majority of its time in this waiting phase.

An alternative solution that is common in previous works [12] is
to skip completely the image writing. This depends on the particular
application. For example, in an ADAS system typically the output
doesn’t need to be written in a file (unless it is required for legal
purposes) but instead to be projected on a display and inform
the cruise system about the position of the detection for possible
emergency breaking. These operations don’t have the cost of writing
the output image and can give a significant boost on the performance
of the system, as we see in the next Section.

VI. EXPERIMENTAL EVALUATION

In this Section we present and analyze the results of our ADAS
benchmark in a reference multi-CPU multi-GPU platform. All the
experiments have been conducted on a Quad Core AMD with 2
Dual-Core AMD Opteron Processors 2222 3GHz, with 1MB cache.
The host is equipped with two NVIDIA Tesla C2050 graphic cards.
The classifier we used is provided together with the original appli-
cation [14], and it was produced as a result of the training of the
classifier with a specific set of images. The application has been tested
with a set of 100 greyscale input images with resolution 640x480.
We paid special attention to ensure that the output of the GPU
implementations matches the output of the original CPU version. Our
classifier contains 30 stages and we are using 30 different scales. The
images have been selected from various well-established pedestrian
datasets such as Caltech [7] and INRIA [5].

A. Evaluation Methodology

The baseline application has been designed to process a single
frame per execution. However, since our GPU implementation is
almost 2 orders of magnitude faster than the CPU implementation
and returns almost instantaneously, there is significant possibility
measurements to be affected by errors. Additionally, in this way
CPU implementation is favored compared to GPU, because GPU
has an additional overhead of the driver initialization and pinned
memory allocations that are paid once. Finally, a pedestrian detection
application should be designed to run repeatedly over video frames
[1] (e.g. in a real automotive system).

For the above reasons we decided to modify the original application
in order to process multiple images per run. The numbers of our
experiments are averaged numbers of 1000 experiments using 100
different image inputs per execution.

B. Overall Application Performance

In this section we evaluate the performance of our benchmark
implementation compared to the sequential optimized version of the
open source application used as baseline.

In Figure 6 we see the overall execution times of our benchmark
for the various optimizations we have performed. There are two pairs
of execution times that summarize the effectiveness of our imple-
mentation. The first one is the comparison of our most optimized
version, which features 2 CPUs and 2 GPUs, overlapping between
CPU executions, GPU executions and GPU memory transfers and
write of output image in the disk, with the most optimized CPU
version of the baseline application that also writes the outcome in
the disk. Our version is 32 times faster than the original application.
Although this is a significant speedup over the original application,
it is below the desired frame rate of 15 frames per second. In fact as
shown in Figure 7, it achieves 7.6 frames per second compared to the
baseline application, which achieves only 0.23 frames per second.
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Fig. 6: Execution times of different versions of our benchmark for
100 images.

However this happens because the application is limited by the
storage I/O capabilities of our system. If we take a look in the pair
of the same implementation without the image writing to the disk,
but instead we display it on the screen, our implementation achieves
21 frames per second while the CPU just 0.24 frames per second.
This shows that obviously the disk writing speed is the bottleneck in
our implementation, since the elimination of image writing provides
a speedup of 2.7 times over the writing version. On the other hand,
this is not the case for the CPU, as it only gives a 2% improvement
over the corresponding CPU implementation, showing clearly that it
is CPU bound.

This modification in the application is common in previous works
[12] and it is acceptable in an automotive system, because it is
diskless and there is no benefit of storing the processed frame. On the
other hand, it is useful to display the detected object on a screen and
provide information about the detection to the cruise system, which
will decide whether there is a need for emergency break or warning
the driver.

Therefore our implementation has been able to achieve a process-
ing frame rate well above the requirement of 15 frames per second,
achieving an overall speed-up of 88.5× over the CPU implementation
with the same feature.

Next we are going to discuss the performance of different parts of
our implementation as well as the effect of the various optimizations
we performed.

C. Integral Image Performance

In Figure 8a, we compare the execution times of the integral image
and the DotSquare image in CPU (blue) and the GPU (red). The
integral image computation in the GPU is 49.6 times faster than in
CPU, while the speedup of the DotSquare image is 416.6. Here, it is
important to note that we used the execution time of the first integral
image invocation, for the reason we explain later on.

In Figure 8b, we have a closer look of the GPU break down of the
first phase of the application. Surprisingly, the second execution of
the integral image is a lot faster (approximately 7.5 times faster) than
the first one. This happens, because the input of the second integral
image was the DotSquare and it was being kept in the large L2 cache
of the GPU.

D. Effect of CPU-GPU overlapping

As explained in the previous section, the first overlapping optimiza-
tion we performed is the overlapping of CPU and GPU operations.
This is because the GPU operations are no longer synchronous and
therefore gives us a first degree of overlapping. When combined with
overlapping of GPU tasks as transfers and GPU kernel execution, it
can provide significant speedups.
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In order to isolate the effect of this optimization, we evaluate it
only in the single CPU and GPU version. For the version of the
application that writes the output image to the disk, this optimization
gives an improvement of 22%. On the other hand, for the version
that the image is displayed, this speedup is increased to 24%.

Figure 9 illustrates the contribution of transfers in the total execu-
tion time with and without overlapping. When no overlapping takes
place, transfers occupy 53% when the processed image is written to
the disk and 25% when the image is displayed on the screen. This
percentage is reduced to 11% in both scenarios when overlapping is
performed.

E. Effect of asynchronous file I/O

As explained earlier in this Section, the bottleneck of our bench-
mark is the storage subsystem. Although in an ADAS system it
seems that there is no reason for the output image to be written
in the disk, someone can argue that the last processed frames must
be stored (similar to an aircraft’s black box), due to legal obligations
or because they are demanded by insurance companies in case of an
accident. For this reason, we implemented an optimization to mitigate
the performance impact of the disk operations.

As described in the previous Section, we used asynchronous
file I/O for the write requests of the application. This enables the
application not to be blocked during the expensive image writes but
to continue doing useful work, such as reading the next frame and
scheduling GPU tasks.
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As we can see from the Figure 6, this gives an improvement of 2%
in the overall execution time. However, this number is misleading and
doesn’t show the absolute advantage of this optimization, since this
number corresponds to the execution time of the entire application.
If we have a closer look, we can see that our application finishes the
processing of the 100 images in almost the same time as when write
is suppressed (8.5 sec instead of 8.3 sec) and the rest of the time is
spent on waiting for all the asynchronous requests to be completed,
in order to close their files. This means that we achieve the same
processing frame ratio (throughput), but the application spends 53%
of its time doing nothing but waiting for the asynchronous requests
to be completed.

Something about the effectiveness of this optimization that is worth
to mention, is that it achieves full utilization of our reference platform,
when the version of 2 CPUs and 2 GPUs with overlapping is used.
This happens because each of the 2 CPU processes are constantly
able to issue work to their respective GPUs, so 2 CPUs and 2 GPUs
are kept busy. Moreover, the DMA controllers are working in parallel
to transfer data between the two CPUs and the two devices, while
the other 2 CPUs of our system are free to handle the asynchronous
I/O requests issued by the other CPUs.

To sum up, we have shown that our system has managed to achieve
full utilization of our hardware platform, even though it is limited by
the file operations. Note that this implication would be less harmful
for the performance of our application if instead of individual images,
the program would read/write video frames. This would reduce the
I/O bandwidth and increase the I/O throughput, since in this case
the frames would be stored in a compressed form and in consecutive
file blocks. The benefit comes from the fact that usually sequential
reads perform better in many systems, compared to random reads.
The same case is for writes, although they are much slower than
reads in both cases.

VII. RELATED WORK

There is a wide collection of object recognition algorithms and
more concretely algorithms specialized on face-detection / pedestrian
detection [8] in the computer vision and machine learning literature.
An extensive enumeration of all the proposed algorithms is out of
the scope of this paper, however we try in this section to provide the
most influential work in this domain and refer works similar to ours.

The Viola-Jones method [16][17] is the most influential work in
face detection, because it introduced the AdaBoost training algorithm,

and the cascade classifier, which consists of many weak classifiers
organized in stages, in order to create a strong classifier. In its era this
method provided the highest accuracy with the faster execution time.
The authors reported an achieved processing rate of 15 frames per
second (fps) on 384x288 images. All the later proposed algorithms
have the same structure, based on a cascade classifier but use different
weak classifiers. Moreover, all these algorithms use a sliding window
to perform detections.

Dalal and Triggs [5] introduce the concept of grid of Histogram of
Oriented Gradient (HOG) that outperform Haar features in detection
accuracy and introduce the INRIA pedestrian detection dataset.

Dollár et al. [6] propose a modification in the Viola-Jones algo-
rithm, which can speed up the CPU implementation an order of
magnitude. Although this gives significant performance benefit, their
reported image processing rate for the same image size we use, is 5
frames per second.

Zhang and Nevatia [18] propose a GPU implementation of a
classifier based on Histogram of Oriented Gradient (HOG) instead
of Haar features. Moreover, instead of integral images, the algorithm
uses a precomputation analogous to integral image, which is less
computational intensive. In this work, only one GPU is used, without
overlapping computation and transfers. Moreover the only GPU
related optimization used is the load of input data to texture memory,
to take advantage of its interpolation capabilities.

Dollár et al. [7] introduce the Caltech Dataset and compare
different pedestrian detection algorithms running on the same CPU
hardware. The Viola-Jones method was the second fastest one (7
seconds/frame) while the other ones were between 2-30 times slower.
However, this difference in performance comes at the cost of lower
detection rate compared to algorithms based on HOG features.

Oro et al. [12] implement a system based on Viola-Jones which
uses 1080p video frames. They report processing rates of 35 fps,
without however considering the transfer costs to and from GPU.
Moreover, their work is focused on face-detection, which requires
weaker classifiers compared to the human body detection.

Hefenbrock et al. [4] is the only work in the literature that uses
multiple GPUs. This work is again focused on face detection, and
therefore uses a simpler classifier cascade with 22 stages, compared
to our 30-stage classifier. In addition, the image is scanned for nearly
40% less scales (18 instead of 30 in our system). Despite that their
configuration has lower computational requirements, and that they
utilize 4 GPUs with similar computational power to ours, they achieve
a processing rate of 15.2 frames per second. Our implementation
has superior performance with similar hardware (same generation
CPU and GPUs), but with half the number of graphics devices under
more complex detection scenarios. Although their various kernel
implementations are highly optimized, we believe that this important
performance difference comes from their scheduling of CPU and
GPU tasks, which doesn’t allow overlapping between the execution
of CPU, GPU and DMA controllers. Finally, the evaluation of this
paper is performed with only 9 images. This means that the total
execution time of their executions is less than a second, which is
subject to significant measurement errors.

Note that independently from performance, none of the related
GPU implementations [4][12][18] is available in open source, there-
fore cannot be used as benchmark for the evaluation of ADAS
platforms, which is our primary goal. In addition, all these mentioned
works concentrate only on algorithmic or kernel optimizations, ignor-
ing other aspects which we consider and we show that can be the
platform bottlenecks, such as various tasks overlapping and I/O.



VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an open-source implementation of a
hybrid multi-CPU and multi-GPU ADAS benchmark. Our baseline
application, is based on a sequential open source implementation
of the Viola-Jones detection algorithm for pedestrian detection. We
explained the design and optimization details of our multi-CPU and
multi-GPU implementation benchmark. Our evaluation on a reference
platform is 88.5× times faster than an optimized CPU version,
achieving 21 frames per second, being comparable with non-public
ADAS systems with similar specifications.

We hope that our implementation will be useful to both industry
and academia to assess the capabilities of future architectures for au-
tomotive ADAS systems. Our plans for future work include creating
an OpenCL version of our benchmark in order to cover more potential
platforms. Finally, we encourage other researchers from academia
and industry (when is possible, due to IP) to provide more open
source ADAS applications, so that the automotive community can be
developed faster towards automated driving.
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