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Abstract: The paper proposes an innovative Energy Management System (EMS) that optimizes the
grid operation based on economic and technical criteria. The EMS inputs the demand and renewable
generation forecasts, electricity prices and the status of the distributed storages through the network,
and solves with an optimal quarter-hourly dispatch for controllable resources. The performance of
the EMS is quantified through diverse proposed metrics. The analyses were based on a real rural grid
from the European FP7 project Smart Rural Grid. The performance of the EMS has been evaluated
through some scenarios varying the penetration of distributed generation. The obtained results
demonstrate that the inclusion of the EMS from both a technical point of view and an economic
perspective for the adopted grid is justified. At the technical level, the inclusion of the EMS permits
us to significantly increase the power quality in weak and radial networks. At the economic level
and from a certain threshold value in renewables’ penetration, the EMS reduces the energy costs
for the grid participants, minimizing imports from the external grid and compensating the toll
to be paid in the form of the losses incurred by including additional equipment in the network
(i.e., distributed storage).
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1. Introduction

In the 1990s, the stiff and vertical monopolistic electrical system in Europe experienced a
transformation, evolving into a new, more flexible and competitive system based on market aspects [1].
In this new reality the electricity producer decided (and still decides) when and how much to produce,
and how to plan and implement their plant maintenance programs [1]. From then on, the traditional
unidirectional grid, generally used to carry power from few and far power plants to many clients,
is moving to a new modern grid, that integrates scatter and smaller generators throughout the territory.
Consequently, modern electric grids combine scatter and smaller generators (even at consumers’
location) with the conventional architecture of the power system [2]. As a result, electrical networks
are experiencing bidirectional power flows through distribution grids that impose new challenges for
network operation.

To properly manage modern grids, new management strategies for network operators are
needed [3–5] and the implementation of these management tools are transforming grids into Smart
Grids (SGs) [6]. The term energy management was firstly related to those tools managing the demand
in grids [7–9]. In 1980s the term Demand-Side Management (DSM) was presented by Clark W. Gellings
in [7]. The DSM focuses on the idea of influencing customers, through a set of interconnected and
flexible programs based on energy efficiency, energy conservation and sustainable development.

Energies 2018, 11, 9; doi:10.3390/en11010009 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2206-4019
https://orcid.org/0000-0002-5628-1660
http://dx.doi.org/10.3390/en11010009
http://www.mdpi.com/journal/energies


Energies 2018, 11, 9 2 of 28

These programs incentive customers to shift their electricity demand to low energy price periods,
and to reduce their overall consumption [8]. From this first conception, the field of energy management
evolved to include also the supply-side management, thus yielding the general concept of the Energy
Management System (EMS), also known as grid energy management or smart energy management
system [3,4,8–13]. The EMS turned out to optimize the energy usage at different levels: generation,
transmission, distribution and consumption, to ensure an efficient, thrifty and sustainable system [8].
Literature around the development of EMSs is very extensive. In general terms, and despite the
diversity of EMSs, it can be concluded that from the formulation point of view the main optimization
objective for EMSs is to find a compromise between generation and demand bids, matching the offer
with the demand, while minimizing costs or maximizing profits for the agents involved [12]. EMSs are
integrated in different architectures, which can be classified mainly as centralized or decentralized
(also called distributed) [12,14]. The proposed architectures are in turn constituted by different players
(or agents) [15]. An agent is a software (or hardware) that pursue its objectives, being able to react
rapidly to the changes, and negotiate, cooperate and compete with others [12,14,15].

The most common architectures are centralized. They are featured to be completely
supervised and managed by a central agent (or agents, thus resulting into a Multi-Agents System
(MAS) [14,16–18]), in a master-slave relationship. This requires a high computing capacity and a stable
and fast communication system [3,19]. The goals for these central agents focus on diverse aspects
such as optimizing the generation power scheduling, the DSM and the operation of storage units,
all reducing the emissions and improving the power quality. These may be implemented in residential
systems [20,21], grid-connected microgrids [16,22–25] and isolated systems [22–26]. Centralized MAS
architectures can manage large microgrids or distribution grids [17,22,27,28], and even power the
system as a whole [29,30].

In contrast, decentralized architectures are a collection of management agents who are usually
deployed at local controllers of Distributed Energy Resources (DERs) [14]. Typically, distributed
architectures are characterized to be faster, more flexible, reliable and independent than centralized
ones, resulting into lower risk of system failure (i.e., improved reliability), enhance scalability and with
less information between agents [3,14]. On the other hand though, coordination between agents is
more complex than in centralized architectures, adding complexity to the overall design of the solution.
Decentralized architectures may be good options, for instance, in microgrids with a wide range of
DER [14,31,32].

In EMSs for distribution grids, management optimizations are primarily expressed addressing
economic terms, leaving technical aspects, such as frequency and voltage stability, to other and/or
secondary management procedures [27,33–36]. This is because of the existence of dedicated capacities
and markets in networks to answer these needs. In particular, frequency and voltage support in
networks are included within the so called ancillary services, and these are provided by contracted
generators and large consumers for these purposes [1]. The coordination of such services is
conventionally managed by the Transmission System Operator (TSO) of the network. However,
the inclusion of large amounts of distributed generation in medium and low voltage distribution
grids is forcing also Distribution System Operators (DSOs) to develop new tools so as to maintain the
required stability and quality in their networks, as the transmission system operator does.

This is particularly important in weak or rural distribution networks. Indeed, distributed
generation in rural grids can provoke overvoltages in radial lines and this is something to be solved by
the DSO, among other technical issues [32,37–39]. In fact, the absence of management tools in such
networks and the weak infrastructures installed for the few and dispersed consumers make these grids
as perfect candidates to experience overvoltages, load unbalances among the three phase distribution
system, undesired reactive power flows, harmonics, and unavailabilities due to short-circuits and
other types of eventualities, all affecting the power quality and security of supply for customers.
Accordingly, the management tools for DSOs, especially in rural grids, should not be only based on
economic criteria so as to optimize the grid operation. Instead, they should also perform a power
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dispatch among the loads and generators in the grid considering other aspects that ensure a proper
system stability, quality and reliability.

Addressing the need of developing new tools for the proper management of modern rural
distribution grids, this paper proposes a new EMS to be executed by the DSO and that optimizes the
grid operation based, simultaneously, on an economic criterion (i.e., the minimization of the global
operating costs) and a technical criterion (i.e., the maintenance of the required quality in the service
level). The combination of the two optimization criterion resulting in a novel EMS is one of the
two contributions of the paper. The proposed EMS adopts a centralized architecture where a central
MAS system manages the optimization of the system addressing economic criterion. In addition,
technical aspects related to power quality are addressed by distributed management agents through
the network at DERs. Such architecture permits us to exploit the main advantages of centralized ones
(e.g., easy coordination of the different DERs) with the advantages of distributing some management
duties through DERs (e.g., fast reaction against eventualities, enhanced flexibility and scalability
of the solution). Altogether, this permits us to effectively address the needs of rural distribution
networks. The second contribution is the formulation of diverse quantitative metrics so as to evaluate
the performance of the proposed management tools for improving the grid operation. The proposed
EMS is to be tested using real data from a rural distribution grid. This grid is actually being used as a
demonstration site for the concepts presented in this paper, in the frame of the FP7 European research
project Smart Rural Grid.

2. The Proposed Energy Management System for Rural Grids

The energy management system is composed by diverse agents, which from a top-down approach
are: (i) the Global Energy Management System (GEMS); (ii) the Supervisory Control and Data
Acquisition (SCADA); (iii) the Local Energy Management Systems (LEMSs); (iv) the Local Controller
(LC); (v) Transformer Controllers (TCs) and finally, at the bottom of the structure there are all
manageable and controllable equipment.

All of them configure a system in the form of that presented in Figure 1. As can be observed the
different agents of the system are distributed into three management levels. At the top level there
are the SCADA and the GEMS. Both agents are the responsible of the proper operation of the whole
Distribution Network (DN). At the intermediary layer there are LEMSs and LCs. These two types of
agents are in charge of the operation of limited parts of the DN. Finally, at the bottom level there are
the TCs that manage and control Secondary Substations’ (SS) equipment. Depending on the relevance
of each SS, an area can collect one or more SSs.

The management agents in Figure 1 are also classified in terms of their programmability (see the
color code). In this regard, the SCADA is the agent with the highest level of programmability. It is a
rule-based system supervised and managed by the DSO.

Just below the SCADA there are the GEMS and the LEMS. In terms of programmability,
these agents determine the series of active and reactive power setpoints for optimizing the whole or
part of the rural DN. Also, they calculate, on a one minute basis, the setpoints to manageable and
controllable equipment, such as some Distributed Generators (DG), Controllable Distributed Loads
(CDL), Diesel Generators (GS) and back-up resources (or, as named, Intelligent Distributed Power
Routers (IDPRs), with Battery Energy Storage Systems (BESS)).

The IDPR is a power converter that improves the power quality and if it allocates a BESS, then it
also manages energy packages. The main challenge of the IDPR in terms of power quality is to
compensate for unbalanced currents (of the three-phases), compensating reactive power and cancelling
the harmonic content of currents at coupling point, in a slave mode. Also the IDPR can storages energy
from distributed generation and provides it during pick hours or during a supply disruption, since the
IDPR is the responsible to restore the supply in the network providing a voltage and frequency of the
local set, in a master mode [40,41].
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Figure 1. The multi-agent management system for the smart rural grid.

Finally, the LCs and TCs are programmable rule-based devices that exchange information and
setpoints with the back-up resources, DGs, CDLs, GSs, as well as with control and protection devices.
It is important to note that the programmable rule-based systems implemented in LCs and TCs ensure
a proper operation during an eventuality in the communications’ network.

This paper focus on the GEMS agent while managing the whole DN. To do so, this agent
optimizes the operation of the network in two main steps. The first step—called economic optimization
hereinafter, solves an optimal economic dispatch for the controllable sources and loads in the network.
Since economic, the optimization is based on market aspects, availability and cost of DGs and back-up
resources. The second step, and from the inputs of the first one, adjusts the active and reactive power
dispatch for DGs and back-up resources considering technical aspects such as power losses and
voltage variations, thus performing an Optimal Power Flow (OPF) [42]. This paper develops these
two management steps performed by GEMS under the operational circumstance that the rural grid
being managed is not isolated, but connected to the main grid of the rest of the territory.

So more in detail, the GEMS performs the following tasks: (i) generates the consumption and
generation forecasts for the whole system and for a time horizon of 24 h; (ii) with this time horizon,
executes the global economic optimization; (iii) executes the optimal power flow function of the global
economic optimization setpoints and network technical constrains; (iv) outputs a file with the setpoints
for controllable sources and loads for the following 24 h, in time steps of 15 min. Such time step is
convenient for the integration of GEMS in some electrical markets worldwide [43,44]. The following
Section 3 develops the presented objectives for GEMS step-by-step.

3. The Global Energy Management System

This section introduces the GEMS operation. Internally, the GEMS has three different modules
addressing its objectives. The first module carries out forecasts. In particular, it determines the
generated and consumed forecasts for active and reactive power for each SS. The second module
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(the Global Economic Optimization (GEO)) processes the price of electricity pool and sends it to SCADA.
Also the GEO module calculates through a Mix Integer Lineal Programming (MILP) determines the
power setpoints for controllable generators, loads and storages addressing an economic criterion.
These setpoints are named global economic setpoints. Finally, these setpoints are processed in the third
module of the GEMS, which is called the Global Technical Optimization (GTO) module. The GTO
module adjusts through a Non-Lineal Programing (NLP) the global setpoints are according to the
technical constraints, applying curtailments if required and adapting the reactive power, in order to
smooth voltage variations and reduce the electrical losses. Finally the resulting setpoints, the global
technical setpoints are sent to SCADA. The Figure 2 collects the described modules of GEMS and the
time horizon for the processes they carry out. The following gives a deeper description of the GEMS.

GEMS

Forecast GEO GTO

Horizon: 3 days Horizon: 1 day Horizon: 6 hours

GEO Global Economic Optimization 

GTO Global Technical Optimization

Figure 2. Global Energy Management System (GEMS) in detail.

3.1. Forecasts for the Whole System

Currently, the models to forecast the electrical consumption and generation, are tools that are
developed for specific areas. They function in several aspects like, economic, weather, industry,
population, market, technological development, among others [9]. In addition, in the literature there
are several techniques that related all these inputs to determine the outputs. Commonly they can
be classified into static or dynamic, univariate or multivariate and for the technique that they use.
The most simple and frequent techniques are times series and regression models [9].

The aim of the article is not to advance in the knowledge field of the forecast methods. So the
required forecasted data for GEMS operation has been derived from real data adding a random
variability according real standard deviation. The root-mean-square of the error for simulated
forecasted data is 10%. This is consistent with usual error magnitude provided by state-of-the art
forecasting methods for wind and sun resources [9].

3.2. Global Economic Optimization Formulation

The Global Economic Optimization formulation is a MILP model that pursues DSO’s goals.
As noted in Figure 2, the GEO is the first optimization block in the GEMS algorithm. Its objective is to
solve with an minimum energy cost for grid participants, and this is translated into a quarter-hourly
dispatch for distributed resources. For GEO formulation the following hypotheses are considered:

• It optimizes the dispatch of active power for controllable elements in the network, assuming that
the reactive power management is treated by the GTO.

• It assumes that the DN operates as a three-phase balanced system, so power flows among three
phases of the DN are aggregated for optimization purposes. Such a balanced system is ensured
by the action of the previously introduced IDPRs. The IDPR makes the unbalanced power flow
downstream (i.e., in the low voltage network, where dispersed consumers and generators are
located) as an aggregated balanced power flow upstream to be exchanged with the medium
voltage DN.
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• It also assumes that voltage levels remain in an acceptable range, thanks to the subsequent
GTO actuation.

• It does not take into account the electrical losses of lines and transformers.
• It takes into account the performance of storage technologies. The efficiency in charging and

discharging processes as well as the self-discharge phenomena are considered.
• The number and consumption of controllable loads is known.
• The number and output of programmable generators is known.
• The consumption and generation at SS feeder is aggregated, representing the behaviour of low

voltage network.

Following contents present the input data, variables, mathematical constraints and the objective
function for the GEO.

3.2.1. The Input Data

The input data for the mathematical problem is divided into sets (see Table 1), constants
(see Table 2), costs (see Table 3), load parameters (see Table 4), DG parameters (see Table 5), and BESS
(see Table 6).

Table 1. Summary of input data (sets).

Data Description

T Set of time periods {t1, t2, ...}
S Set of locations {s1, s2, ...}
L Set of distributed loads {l1, l2, ...}
LC Subset of CDL {lc1, lc2, ...}
G Set of distributed generation {g1, g2, ...}
GS Subset of SDG {gs1, gs2, ...}
GA Subset of ADG. {ga1, ga2, ...}
GP Subset of PDG. {gp1, gp2, ...}
GPA Subset of PADG {gpa1, gpa2, ...}
B Set of BESSs {b1, b2, ...}

Table 2. Summary of input data (constants).

Data Description

K∆t Interval of time (h).
KRPEG Rated power of EG transformer (kW).
Ks

RPT
Rated power of transformer from SS s (kW), [s ∈ S].

Table 3. Summary of input data (costs).

Data Description

Kt
CNSDL

Cost of energy non-supplied to DLs (also NCDGs) at time t (e/kWh), [t ∈ T].
Kt

CIEG
Cost of energy imported from EG at time t (e/kWh), [t ∈ T].

Kt
CNGSDG

Cost per energy non-generated by SDGs at time t (e/kWh), [t ∈ T].
Kt

CNGADG
Cost per energy non-generated by ADGs at time t (e/kWh), [t ∈ T].

KCNGPDG Cost per energy non-generated by PDGs (e/kWh).
Kg,s

CF Cost per litre of fuel for generator g in a SS s (e/l), [g ∈ GPA, s ∈ S].

Table 4. Summary of input data (DL parameters).

Data Description

Ks,t
ENCDL

Energy consumed by Non-Controlled Load (NCDL) from SS s at time t (kWh), [s ∈ S, t ∈ T].
Ks,t

EIDPR
Energy consumed by IDPRs from SS s at time t (kWh), [s ∈ S, t ∈ T].

Kl,s
RPCDL

Rated power of CDL l from SS s (kW), [l ∈ LC , s ∈ S].
Kl,s

N∆tCDL
Number of steps required by CDL lc from SS s (-), [l ∈ LC , s ∈ S].

Kl,s
TSCDL

Start-up time of CDL l from SS s (h), [l ∈ LC , s ∈ S].
Kl,s

TECDL
End time of CDL l from SS s (h), [l ∈ LC , s ∈ S].
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Table 5. Summary of input data (Distributed Generators (DG) parameters).

Data Description

Ks,t
PNCDG

Power generated by NCDG from SS s at time t (kW), [s ∈ S, t ∈ T].
Kg,s,t

PSDG
Power generated by SDG g from SS s at time t (kW), [g ∈ GS, s ∈ S, t ∈ T].

Kg,s,t
PADG

Power generated by ADG g from SS s at time t (kW), [g ∈ GA, s ∈ S, t ∈ T].

Kg,s,t
PPDG

Power generated by SDG g from SS s at time t (kW), [g ∈ GP, s ∈ S, t ∈ T].
Kg,s

RPPDG
Rated power of PDG g from SS s (kW), [g ∈ GP, s ∈ S].

Kg,s
N∆tPDG

Number of steps required by PDG i from SS s (-), [g ∈ GP, s ∈ S].
Kg,s

TSPDG
Start-up time of PDG g from SS s (h), [g ∈ GP, s ∈ S].

Kg,s
TEPDG

End time of PDG g from SS s (h), [g ∈ GP, s ∈ S].
Kg,s

LRPPADG
Lower rated power of PADG g from SS s (kW), [g ∈ GPA, s ∈ S].

Kg,s
URPPADG

Upper rated power of PADG g from SS s (kW), [g ∈ GPA, s ∈ S].
Kg,s

FBPADG
Fuel consumption related to the operation of PADG g from SS s (l/kW), [g ∈ GPA, s ∈ S].

Kg,s
FRPADG

Fuel consumption related to the output of PADG g from SS s (l/kW), [g ∈ GPA, s ∈ S].
Kg,s

LFCPADG
Lower fuel consumption limit of PADG g from SS s (l), [g ∈ GPA, s ∈ S].

Kg,s
UFCPADG

Upper fuel consumption limit of PADG g from SS s (l), [g ∈ GPA, s ∈ S].

Table 6. Summary of input data (Battery Energy Storage Systems (BESS) parameters).

Data Description

Kb,s
RPBS

Rated power of BESS b from SS s (kW), [b ∈ B, s ∈ S].
Kb,s,t

LSoCBS
Lower SoC limit of BESS b from SS s at time t, [b ∈ B, s ∈ S, t ∈ T].

Kb,s,t
USoCBS

Upper SoC limit of BESS b from SS s at time t, [b ∈ B, s ∈ S, t ∈ T].
Kb,s

CBS
Capacity of BESS b from SS s (kWh), [b ∈ B, s ∈ S].

Kb,s
0SoCBS

Initial SoC of BESS b from SS s, [b ∈ B, s ∈ S].
Kb,s

σBS
Self-discharging performance of BESS b from SS s, [b ∈ B, s ∈ S].

Kb,s
ηCBS

Charging performance of BESS b from SS s, [b ∈ B, s ∈ S].
Kb,s

ηDBS
Discharging performance of BESS b from SS s, [b ∈ B, s ∈ S].

3.2.2. Variables

In turn, variables of global economic optimization problem are presented and classified into SS
and EG variables (see Table 7), DSM variables (see Table 8), DG variables (see Table 9), and battery
energy storage system variables (see Table 10).

Table 7. Summary of variables (secondary substations (SS) and EG variables).

Variable Description

xs,t
ESS
∈ R Energy exchanged by a SS s at time t (kWh), [s ∈ S, t ∈ T]

xs,t
EDL
∈ R+ Energy consumed by all DLs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xs,t
EDG
∈ R+ Energy generated by all DGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xs,t
EBS
∈ R Energy provided by all BESSs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xt
EIEG
∈ R+ Energy imported from the EG at time t (kWh), [t ∈ T]

xt
EEEG

∈ R+ Energy exported to the EG at time t (kWh), [t ∈ T]

xt
BEG
∈ B Boolean variable indicating that the systems is importing energy from the EG at time t (-),

[t ∈ T]

Table 8. Summary of variables (Demand-Side Management (DSM) variables).

Variable Description

xs,t
ECDL

∈ R+ Energy consumed by all CDLs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xl,s,t
BCDL

∈ B Boolean variable indicating that the CDL l associated to a SS s is consuming energy at
time t (-), t, [l ∈ LC , s ∈ S, t ∈ T]

xs,t
ENSDL

∈ R+ Energy not supplied to DLs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]
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Table 9. Summary of variables (DG variables).

Variable Description

xs,t
ESDG

∈ R+ Energy generated by all SDGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xs,t
EADG

∈ R+ Energy generated by all ADGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xs,t
EPADG

∈ R+ Energy generated by all PADGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xs,t
ENGNCDG

∈ R+ Energy not supplied by NCDGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xg,s,t
BSDG

∈ B Boolean variable indicating that the SDG g associated to a SS s is generating energy at
time t (-), [g ∈ GS, s ∈ S, t ∈ T]

xs,t
ENGSDG

∈ R+ Energy not generated by SDGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xg,s,t
RADG

∈ R : [0, 1] Proportion of energy generated by the ADG g associated to a SS s at time t (kWh),
[g ∈ GA, s ∈ S, t ∈ T]

xs,t
ENGADG

∈ R+ Energy not generated by ADGs associated to a SS s at time t (kWh), [s ∈ S, t ∈ T]

xg,s,t
BPDG

∈ B Boolean variable indicating that the PDG g associated to a SS s is generating energy at
time t (kWh), [g ∈ GP, s ∈ S, t ∈ T]

xs
ENGPDG

∈ R+ Energy not generated by PDGs associated to a SS s (kWh), [s ∈ S, t ∈ T]

xg,s,t
BPADG

∈ R+ Boolean variable indicating that the PADG g associated to a SS s is generating energy at
time t (-), [g ∈ GPA, s ∈ S, t ∈ T]

xg,s,t
RPADG

∈ R : [0, 1] Proportion of energy consumed by PADG g associated to a SS s at time t (-),
[g ∈ GPA, s ∈ S, t ∈ T]

xg,s
FPADG

∈ R+ Fuel consumed PADG g associated to a SS s (l), [g ∈ GPA, s ∈ S, t ∈ T]

xg,s
FUUPADG

∈ R+ Fuel saved by PADG g associated to a SS s (l), [g ∈ GPA, s ∈ S]

Table 10. Summary of variables (BESS variables).

Variable Description

xb,s,t
ECBS

∈ R+ Energy consumed by BESS b associated to a SS s at time t (kWh), [b ∈ B, s ∈ S, t ∈ T]
xb,s,t

EDBS
∈ R+ Energy discharged from BESS b associated to a SS s at time t (kWh), [b ∈ B, s ∈ S, t ∈ T]

xb,s,t
SoCBS

∈ R : [0, 1] State of Charge of BESS b associated to a SS s at time t (-), [b ∈ B, s ∈ S, t ∈ T]

3.2.3. GEO Constraints

In turn constraints are also divided and formulated in four groups, (i) SSs and the EG, (ii) DSMs,
(iii) DGs and (iv) BESSs constraints.

(i) SSs and EG constraints

The power balance constraint (1) determine the energy exchanged by each SS. This must be
equal to the sum of the energy consumed and generated by customers, and the energy supplied
(or consumed) by the storage systems. In addition, this also is bounded by the rated power of the SS
transformer in (2). Then, in (3), the sum of all exchanged energy is equal to the difference between the
imported and the exported energy from the EG. Finally, imported and exported energy from the EG
are limited by the rated power of the EG transformer through (4) and (5), also ensuring that when one
is positive the other is zero and vice versa.

xs,t
ESS

= xs,t
EDL
− xs,t

EDG
− xs,t

EBS
∀s, ∀t (1)

− Ks
RPT

K∆t ≤ xs,t
ESS
≤ Ks

RPT
K∆t ∀s, ∀t (2)

xt
EIEG
− xt

EEEG
= ∑

s∈S
xs,t

ESS
∀t (3)

xt
EEEG

≤ KRPEG K∆txt
BEG
∀t (4)
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xt
EIEG
≤ KRPEG K∆t(1− xt

BEG
) ∀t (5)

(ii) DSM constraints

The energy consumed, as detailed in the (6), is the sum of the energy from non-controllable
and controllable distributed loads, as well as the energy not supplied to loads. Typically, CDLs are
characterized by their rated power and the time they are consuming energy. These two variables
are bounded by Equation (7) (power) and Equation (8) (time). Finally, the Equation (9) restricts the
consumption of CDLs for the time interval [Kl,s

TSCDL
, Kl,s

TECDL
] addressing starting times.

xs,t
EDL

= Ks,t
ENCDL

+ Ks,t
EIDPR

+ xs,t
ECDL

− xs,t
ENSDL

∀s, ∀t
(6)

xs,t
ECDL

= ∑
l∈LC

Kl,s
RPCDL

K∆tx
l,s,t
BCDL

∀s, ∀t (7)

Kl,s
N∆tCDL

= ∑
t∈T

xl,s,t
BCDL

∀l ∈ LC, ∀s (8)

xl,s,t
BCDL

= 0 ∀l ∈ LC, ∀s,

∀t | ((Kl,s
TSCDL

< Kl,s
TECDL

) ∩ (t < Kl,s
TSCDL

∪ t > Kl,s
TECDL

))

∪ (((Kl,s
TSCDL

≥ Kl,s
TECDL

)) ∩ (t > Kl,s
TSCDL

∩ t < Kl,s
TECDL

))

(9)

(iii) DG constraints

Equation (10) sums the energy generated by all different DG sources. Equation (11) fixes the
generated and the non generated energy from NCDGs according to forecasts. The generated and
non generated energy from SDGs are quantified by Equations (12) and (13), respectively. Similarly,
generated and non generated energy by ADGs are quantified by Equations (14) and (15). Similarly
to CDL Equations (7)–(9), Equations (16)–(19) determine the generated and non generated energy
from PDGs in function of their rated power and operating times [Kg,s

TSPDG
, Kg,s

TEPDG
]. Finally, the energy

generated by PADGs are determined by Equations (20)–(23). The total generation for each SS is
determined by Equation (20), and Equation (21) limits the output power of PADGs according to their
limitations. Further, the fuel consumption per each unit is calculated by Equation (22) and limitations
in fuel usage are imposed by Equation (23).

xs,t
EDG

= xs,t
ENCDG

+ xs,t
ESDG

+ xs,t
EADG

+ xs,t
EPDG

+ xs,t
EPADG

∀s, ∀t
(10)

xs,t
ENCDG

+ xs,t
ENGNCDG

= Ks,t
PNCDG

K∆t ∀s, ∀t (11)

xs,t
ESDG

= ∑
g∈GS

Kg,s,t
PSDG

K∆tx
g,s,t
BSDG

∀s, ∀t (12)

xs,t
ENGSDG

= ∑
g∈GS

Kg,s,t
PSDG

K∆t(1− xg,s,t
BSDG

) ∀s, ∀t (13)

xs,t
EADG

= ∑
g∈GA

Kg,s,t
PADG

K∆tx
g,s,t
RADG

∀s, ∀t (14)

xs,t
ENGADG

= ∑
g∈GA

Kg,s,t
PADG

K∆t(1− xg,s,t
RADG

) ∀s, ∀t (15)

xs,t
EPDG

= ∑
g∈GP

Kg,s
RPPDG

K∆tx
g,s,t
BPDG

∀s, ∀t (16)
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kg,s
N∆tPDG

≥ ∑
t∈T

xg,s,t
BPDG

∀g ∈ GP, ∀s (17)

xg,s,t
BPDG

= 0 ∀g ∈ GP, ∀s,

∀t | ((Kg,s
TSPDG

< Kg,s
TEPDG

) ∩ (t < Kg,s
TSPDG

∪ t > Kg,s
TEPDG

))

∪ (((Kg,s
TSPDG

≥ Kg,s
TEPDG

)) ∩ (t > Kg,s
TSPDG

∩ t < Kg,s
TEPDG

))

(18)

xs
ENGPDG

= ∑
g∈GP

Kg,s
RPPDG

K∆t

(
kg,s

N∆tPDG

− ∑
t∈T

xg,s,t
BPDG

)
∀s

(19)

xs,t
EPADG

= ∑
g∈GPA

Kg,s
URPPADG

K∆tx
g,s,t
RPADG

∀s, ∀t (20)

Kg,s
LRPPADG

xg,s,t
BPADG

≤ Kg,s
URPPADG

xg,s,t
RPADG

≤ Kg,s
URPPADG

xg,s,t
BPADG

∀g ∈ GPA, ∀s, ∀t
(21)

xg,s
FPADG

= ∑
t∈T

Kg,s
URPPADG

(Kg,s
FBPADG

xg,s,t
BPADG

+ Kg,s
FRPADG

xg,s,t
RPADG

) ∀g ∈ GPA, ∀s, ∀t
(22)

Kg,s
LFCPADG

− xg,s
FUUPADG

≤ xg,s
FPADG

≤ Kg,s
UFCPADG

∀g ∈ GPA, ∀s
(23)

(iv) BESS constraints

Completing the description of the constraints for the problem, BESS-related constraints are
introduced in the following. Equation (24) defines EBS as the subtraction between the energy consumed
and injected to the grid by storages. In turn, these terms are limited by Equations (25) and (26), which
are function of the rated power of the battery (Kb,s

RPBS
). In addition, the State of Charge (SoC) is

bounded by Equation (27). The SoC is in function of the capacity of the battery (Kb,s
CBS

), the initial SoC

(Kb,s
0SoCBS

), the self-discharge constant (Kb,s
σBS ), and the charging and discharging efficiencies, (Kb,s

ηCBS
) and

(Kb,s
ηDBS

) respectively.

xs,t
EBS

= ∑
b∈B

xb,s,t
EDBS

− xb,s,t
ECBS

∀s, ∀t (24)

xb,s,t
ECBS

≤ Kb,s
RPBS

K∆tx
b,s,t
BBS
∀b, ∀s, ∀t (25)

xb,s,t
EDBS

≤ Kb,s
RPBS

K∆t(1− xb,s,t
BBS

) ∀b, ∀s, ∀t (26)

Kb,s,t
LSoCBS

≤ xb,s,t
SoCBS

≤ Kb,s,t
USoCBS

∀b, ∀s, ∀t (27)

Kb,s
CBS

xb,s,t
SoCBS

= Kb,s
CBS

(Kb,s
0SoCBS

− Kb,s
σBS

)

+ xb,s,t
EBSC

Kb,s
ηCBS
−

xb,s,t
EBS D

Kb,s
ηDBS

∀b, ∀s, ∃t = t0
(28)

Kb,s
CBS

xb,s,t
SoCBS

= Kb,s
CBS

(xb,s,t−∆t
SoCBS

− Kb,s
σBS

)

+ xb,s,t
EBSC

Kb,s
ηCBS
−

xb,s,t
EBS D

Kb,s
ηDBS

∀b, ∀s, ∀t 6= t0
(29)
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3.2.4. The GEO Objective Function

The global economic objective function zGEO has been chosen incorporating diverse criteria.
Addressing the obligation for DSOs to cover the demand, the first summation of the objective function
calculates the cost for the energy not supplied to DLs (including the non controllable DG). Note that
the second to fourth summations are included in order to maximize DGs generation and manage them
efficiently. Further, the fifth summation aims to minimize the cost related to fuel usage (including
the wasted fuel). Finally, the last summation is added so as to minimize the cost related to energy
imported from the EG.

[min]zGEO = ∑
s∈S,t∈T

Kt
CNSDL

(xs,t
ENSDL

+ xs,t
ENGNCDG

)

+ ∑
s∈S,t∈T

Kt
CNGSDG

xs,t
ENGSDG

+ ∑
s∈S,t∈T

Kt
CNGADG

xs,t
ENGADG

+ ∑
s∈S

KCNGDG xs
ENGPDG

+ ∑
s∈S,g∈GPA

Kg,s
CF(xg,s

FPADG
+ xg,s

FUUPADG
)

+ ∑
t∈T

Kt
CIEG

xt
EIEG

(30)

3.3. Global Technical Optimization

As noted in Figure 2, the Global Technical Optimization is the last optimization procedure in the
GEMS. It receives the outputs from GEO and perform a process based on a NLP that provides the final
setpoints for distributed resources according to the DSO’s technical constraints. The GTO minimizes
losses in the DN guaranteeing the dispatch solved by the GEO. The GTO also adjusts the reactive
power from the IDPRs, and also readjust the active power from DGs and BESS in order to keep the
voltage within acceptable range. The GTO goes under the following assumptions:

• The DN voltages and currents are balanced.
• Consumption and generation profiles are aggregated at each SS’s feeder.
• The electrical loses of medium voltage lines and transformers are considered for

optimization purposes.

The following presents the input data, variables, mathematical constraints and the objective
function for the GTO.

3.3.1. The Input Data

The input data for the mathematical problem is divided into sets (see Table 11), constants and
general (see Table 12), external grid parameters(see Table 13), and secondary substation parameters
(see Table 14).

Table 11. Summary of input data (sets).

Data Description

N Set of nodes (all types)
NSS Subset of nodes from N that correspond to SSs.
NEG Subset of a node from N that corresponds to EG.
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Table 12. Summary of input data (constants and general parameters).

Data Description

KVW Weighting factor.
Kc,d

YG Real part of admittance between node b and node c (S), [c, d ∈ N].
Kc,d

YB Imaginary part of admittance between node b and node c (S), [c, d ∈ N].

Table 13. Summary of input data (EG parameters).

Data Description

KVMEG Voltage module of EG node c (kV), [c ∈ NEG ].
KVAEG Voltage angle of EG node c (kV), [c ∈ NEG ].
KRPEG Rated power of EG transformer from node c (kVA), [c ∈ NEG ].

Table 14. Summary of input data (SS parameters).

Data Description

Kc
RPT

Rated power of transformer from node c (kVA), [c ∈ NSS].
Kc

RPBS
Rated power of IDPR from node c (kVA), [c ∈ NSS].

Kc
VM Desired voltage module for SS node c (kV), [c ∈ NSS].

Kc
PC Active power consumed in node (includes the power consumed by NCDL, CDL and IDPRs) c

(kW), [c ∈ NSS].
Kc

QC Reactive power consumed in node (includes the power consumed by NCDL and CDL) c (kvar),
[c ∈ NSS].

Kc
LPGDG

Minimum threshold value for active power generation from DGs (NCDG) at node c (kW),
[c ∈ NSS].

Kc
UPGDG

Maximum threshold value for active power generation from DGs (total) at node c (kW),
[c ∈ NSS].

Kc
LPGBS

Minimum threshold value for active power generation from BESSs (charging) at node c (kW),
[c ∈ NSS].

Kc
UPGBS

Maximum threshold value for active power generation from BESSs (discharging) at node c (kW),
[c ∈ NSS].

3.3.2. Variables

In turn, variables of global technical optimization problem are presented and classified into voltage
and total power variables (see Table 15), EG variables (see Table 16), and SS variables (see Table 17).

Table 15. Summary of variables (voltage and total power variables).

Variable Description

xc
VM ∈ R+ Voltage module for node c (kV), [c ∈ N]

xc
VA ∈ R : [−π, π] Voltage angle for node c (rad), [c ∈ N]

xc
PT ∈ R Total active power from node c (kW), [c ∈ N]

xc
QT ∈ R Total reactive power from node c (kvar), [c ∈ N]

Table 16. Summary of variables (EG variables).

Variable Description

xPIEG ∈ R Imported active power from the EG (kW)
xQIEG ∈ R Imported reactive power from the EG (kvar)

Table 17. Summary of variables (SS variables).

Variable Description

xc
VE ∈ R Voltage excess for node c (kV), [c ∈ N]

xc
PGDG

∈ R+ Active power generated by DGs in node c (kW), [c ∈ N]
xc

PGBS
∈ R Active power injected by BESSs in node c (kW), [c ∈ N]

xc
QG ∈ R Reactive power generated by IDPRs in node c (kvar), [c ∈ N]
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3.3.3. GTO Constraints

In turn constraints are also divided and formulated in three groups, (i) voltage and total power,
(ii) EG, (iii) SS constraints.

(i) Voltage and total power constraints

The voltage for all buses are calculated by Equations (31) and (32).

xc
PT = xc

VM ∑
d∈N

xd
VM

(
Kc,d

YG cos(xc
VA − xd

VA)

+ Kc,d
YB sin(xc

VA − xd
VA)

)
∀c ∈ N

(31)

xc
QT = xc

VM ∑
d∈N

xc
VM

(
Kc,d

YG sin(xc
VA − xd

VA)

− Kc,d
YB cos(xc

VA − xd
VA)

)
∀c ∈ N

(32)

(ii) Constraints related to the EG bus

Active and reactive power balances at the EG bus are ensured by Equations (33) and (34),
respectively. The active and reactive power balance for the rest of buses are ensured by
Equations (35) and (36). Equation (37) establishes that the active and reactive power exchanged
with the EG is less than the rated power of the EG transformer. The voltage module and angle of the
EG bus is fixed by Equations (38) and (39), respectively.

xc
PT = xPIEG + xc

PGDG
+ xc

PGBS
− Kc

PC ∃c ∈ NEG (33)

xc
QT = xQIEG + xc

QG − Kc
QC ∃c ∈ NEG (34)

xc
PT = xc

PGDG
+ xc

PGBS
− Kc

PC ∀c /∈ NEG (35)

xc
QT = xc

QG − Kc
QC ∀c /∈ NEG (36)

KRPEG
2 ≥ xPIEG

2 + xQIEG
2 ∃c ∈ NEG (37)

xc
VM = KVMEG ∃c ∈ NEG (38)

xc
VA = KVAEG ∃c ∈ NEG (39)

(iii) Constraints related to SS buses

An excessive voltage level at SS buses is quantified by Equation (40). The active power generated
by DGs is bounded by Equation (41). Similarly, the Equation (42) limits the active power injected from
BESSs of IDPRs. The active power term can be negative and this means that the battery is consuming
power. Therefore, the DG production could be reduced, the BESSs could dispatch or absorb energy.
Finally, the active and reactive power supplied by IDPR is bounded by Equation (43) and the total
power exchanged by a SS is bounded by the rated power of transformer through Equation (44).

xc
VE = xc

VM − Kc
VM ∀c ∈ NSS (40)

Kc
LPGDG

≤ xc
PGDG

≤ Kc
UPGDG

∀c ∈ NSS (41)

Kc
LPGBS

≤ xc
PGBS

≤ Kc
UPGBS

∀c ∈ NSS (42)

Kc
RPBS

2 ≥ xc
QG

2 + xc
PGBS

2 ∀c ∈ NSS (43)



Energies 2018, 11, 9 14 of 28

Kc
RPT

2 ≥ xc
PT

2 + xc
QT

2 ∀(c ∈ NSS ∪ c /∈ NEG) (44)

3.3.4. The GTO Objective Function

The technical objective function zGTO is divided into terms, the first one minimizes the imported
energy from EG, thus indirectly minimizing the electrical losses and maximizing the active power
generation from distributed resources. The second penalizes any excess or deficit in voltage for all
buses through the weighting factor. This factor penalizes an excess of voltage in terms of active power
(KVW >> 1).

[min] zGTO = ∑
c∈N

xc
PT

2 + KVW xc
VE

2 (45)

4. Study Cases

For GEMS performance evaluation, different computational scenarios and metrics are proposed,
and these are presented in the following.

4.1. Definition of Computational Scenarios

Twenty computational scenarios are proposed for evaluation. The scenarios are distributed in
four blocks:

• Case (i): The DN neither includes IDPRs neither BESSs, nor management tools.
• Case (ii): The DN is equipped with IDPRs and BESSs, and the GEO, as a management tool.
• Case (iii): The DN is equipped with IDPRs and BESSs and the GTO, as a management tool.
• Case (iv): The DN is equipped with IDPRs and BESSs, as well as the GEO and the GTO as

management tools.

Doing this, it is possible to evaluate the impact in network operational performance of adopting
both the energy management algorithms proposed in this paper as well as the IDPRs, as distributed
energy storage capabilities.

For each of the above presented blocks, five scenarios are proposed, each proposing different
levels of renewables’ penetration. In particular, DG penetration varies from 10% to 50% with respect
to total contracted power in the network.The DG penetration is bounded in Spain up to 50% of total
contracted power by current regulation [45].

The adopted DN is located in a rural zone of Catalonia [46]. This grid is actually being utilized
as a demonstration site for the management tools and power electronics (the IDPR) presented in this
paper. These demonstrations are being carried out in the frame of the FP7 European research project
Smart Rural Grid. Figure 3 presents a single-phase diagram of this DN.

As can be noted, this is a rural distribution grid including 13 SSs. The consumers are of
different types, including DLs, NCDLs and CDLs. The CDLs refers to electrical vehicles, water
heaters, refrigerators. A penetration of about 25% of CDLs are integrated in each SS. Moreover,
several types of DGs are included in the network: (i) non-controllable DGs (small or micro renewable
generation like flow-hydraulic generation, photovoltaics and wind-based generation); (ii) switchable
and adjustable DGs (renewable sources governed by microcontroller that regulate their power output;
(iii) programmable DGs (fully governable generators such as combined heat and power generation
systems); and iv) programmable and adjustable DGs (auxiliary sources like diesel, biomass, gasifiers,
waste-to-energy generators). A representative daily profile for aggregated generation and consumption
are presented in Figure 4.
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Figure 3. The whole rural distribution grid.
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Figure 4. Input data. (a): Total active and reactive power consumption of the whole DN. (b): Total
active power generated by DGs of the whole DN per different renewables’ penetration.

4.2. Power Quality Indicators and Metrics

This section introduces diverse quality indicators so as to evaluate the impact of including the
management tools proposed in this paper. Similarly as for parameters and variables, quality indicators
are divided into two groups, (i) secondary substation indicators (ISS) (see Table 18), and (ii) distribution
network indicators (IDN) (see Table 19).
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Table 18. SS related metrics (ISS).

Indicator Description

Is
SS1
∈ R+ Daily voltage variation at SS s (%), [s ∈ S]

Is
SS2
∈ R+ Daily reactive power respect to consumptions at SS s (%), [s ∈ S]

Is
SS3
∈ R+ Daily useful energy stored in BESSs at SS s (%), [s ∈ S]

Is
SS4
∈ R+ Daily curtailed from DGs at SS s (%), [s ∈ S]

Table 19. DN related metricss (IDN).

Indicator Description

IDN1 ∈ R+ Daily distribution electrical losses (passive elements) (%)
IDN2 ∈ R+ Daily electrical consumption of IDPRs (active elements) (%)
IDN3 ∈ R+ Daily energy imported from the EG (%)

(i) SS related metrics

The indicator Is
SS1

expresses through Equation (46) the voltage width of the 95% of SS voltage

module of a day (xs,t
VM). This metric is formulated as in the EN 50160 standard [47]. Note in

Equation (46) that KVMb is the nominal value of voltage for this bus. Analogously, the SS indicator
Is
SS2

is related to the total reactive power over the active power consumption, and the SS indicator Is
SS3

determines the average energy discharged by batteries for each SS. Finally, the SS Is
SS4

expresses how
much power is curtailed from the maximum power available from DGs for each SS.

Is
SS1

=

(
Quantile97.5%

{
xs,t

VM, ∀t
}

− Quantile2.5%

{
xs,t

VM, ∀t
}) 100

KVMb

(46)

Is
SS2

= mean

{
Ks,t

PC

xs,t
SC

, ∀t

}
100 (47)

xs,t
SC =

√
Ks,t

PC
2
+ xs,t

QT
2

(48)

Is
SS3

=
∑t∈T xs,t

EDBS

Ks
CBS

100 ∀s : Ks
CBS
6= 0 (49)

Is
SS4

=
xs

ENGDG

xs
ENGDG

+ ∑t∈T xs,t
EDG

(50)

xs
ENGDG

= xs
ENGPDG

+ ∑
t∈T

(
xs,t

ENGSDG
+ xs,t

ENGADG

)
(51)

(ii) DN related metrics

The DN indicator Is
DN1

is calculated from the total electrical losses of the whole DN (from passive
elements) divided by the total power consumption. Note that the energy losses from passive elements
is determined by the Equation (53). The DN indicator Is

DN2
presents the percentage of the consumption

of IDPRs and BESSs respect to the total power consumption. Note that the energy losses from the
active elements is determined by the Equation (55). The DN indicator Is

DN3
determines how much

power is imported from the EG respect to the total power consumption through Equation (56).

IDN1 =
∑t∈T xt

EPls

∑s∈S,t∈T xs,t
PC∆t

100 (52)
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xt
EPls

= Re
{

∑
b∈B

xb,t
VMejxb,t

VA

(
∑
c∈B

(Kb,c
YG

+ jKb,c
YB)xc,t

VMejxc,t
VA

)∗}
∆t

(53)

IDN2 =
∑t∈T xt

EPls

∑s∈S,t∈T xs,t
PC∆t

100 (54)

xt
EAls

= ∑
s∈S

(
Ks,t

EIDPR
+ (1− Ki,s

ηDBS
)xs,t

EBS D
+

(1/Ki,s
ηCBS
− 1)xs,t

EBSC
+ Ki,s

CBS
Ki,s

σBS

) (55)

IDN3 =
∑t∈T K∆txt

PIEG

∑s∈S,t∈T xs,t
PC∆t

100 (56)

4.3. Simulation Results

This subsection depicts the simulation results for the four blocks of scenarios, which in turn
include five levels of DG penetration. As a reminder, each of the four cases are characterized by
including different energy management tools and energy storage devices.

Graphical results are structured in the following Figures (Figures 5–8). Figure 5 plots the power
exchanged (both active and reactive) with the EG for each of the four cases of scenarios. Analogously,
Figure 6 plots the power losses. In addition, Figure 7 presents the the voltage in SS 834, 915, 010 and
928. Figure 8 plots the SoC of BESS at SS 834, 915, 010 and 928.
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Figure 5. Active and reactive power exchanged with the EG (first and second column, respectively) for
each block (rows) and for all penetrations (colour scale, legend depicted in Figure 4).
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Figure 6. In the first column: Power losses of DN passive elements for each case. In the second column:
Power losses of DN active elements for each case.
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Figure 8. SoC of BESSs at SS 834, SS 915, SS 010 , SS 928 for cases (ii) to (iv) (rows) and for all DG
penetrations (colour scale).

To sum up, SS and DN indicators, and objective functions (are defined in Sections 3.2 and 3.3) are
calculated and presented in Tables 20–22, respectively. Note that there are many SSs, so Table 20 only
presents average and peak values from SSs.

Further, it is interesting to note that assessing the impact of forecasting errors for generation and
demand in indicators included in the above mentioned tables, additional simulations were performed,
in which no forecasting errors were considered. The comparison of the results indicate a little influence
in the indicators. For instance, the indicator associated to the usage of batteries (Is

SS3
) has experienced

a variation around 1.97% (so less than 2% on average) from these two simulations. Similarly, the
indicator addressing the renewables’ curtailment (Is

SS4
) has varied about 1% on average. Indicators

addressing voltage quality (Is
SS1

), power factor (Is
SS2

) and power losses (Is
DN1

and Is
DN2

) has remained
almost equal for the two simulations.

Table 20. Summary of SS indicators.

ISS Case

Level of Penetration

10% 20% 30% 40% 50%

Mean Peak Mean Peak Mean Peak Mean Peak Mean Peak
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

(1)

(i) 2.585 4.896 2.745 5.899 3.176 7.557 3.714 9.189 4.234 10.767
(ii) 2.256 4.665 2.752 6.255 2.824 7.574 3.682 9.846 4.793 14.732
(iii) 2.288 4.361 2.440 5.091 2.286 5.112 2.287 4.985 1.871 4.558
(iv) 2.093 4.050 2.516 5.915 2.373 5.684 2.048 5.235 1.638 4.300

(2)

(i) 90.486 84.547 90.486 84.547 90.486 84.547 90.486 84.547 90.486 84.547
(ii) 90.486 84.547 90.486 84.547 90.486 84.547 90.486 84.547 90.486 84.547
(iii) 98.964 89.203 98.383 89.203 92.328 82.624 87.535 77.808 79.032 63.563
(iv) 98.96 89.203 98.566 89.203 95.920 89.203 87.004 72.431 78.175 60.636

(3)

(i) 0 0 0 0 0 0 0 0 0 0
(ii) 0 0 0 0 0 0 11.369 39.654 27.426 66.883
(iii) 0.001 0.005 0.260 2.186 18.175 75.727 31.123 137.399 39.612 110.192
(iv) 0.001 0.004 0.201 2.429 2.736 14.936 27.509 125.810 62.720 210.840

(4)

(i) 0 0 0 0 0 0 0 0 0 0
(ii) 0 0 0 0 0 0 0 0 0 0
(iii) 0 0.001 0.005 0.027 1.219 5.362 6.865 19.126 12.897 32.197
(iv) 0 0.001 0.011 0.095 0.398 3.105 2.044 8.030 8.251 20.019
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Table 21. Summary of DN indicators.

IDN Case
Level of Penetration

10% 20% 30% 40% 50%
Rate [%] Rate [%] Rate [%] Rate [%] Rate [%]

(1)

(i) 1.937 1.377 1.118 1.111 1.361
(ii) 1.977 1.419 1.024 1.054 1.53
(iii) 1.660 1.095 1.172 1.461 2.559
(iv) 1.623 1.083 0.844 1.453 2.594

(2)

(i) 0 0 0 0 0
(ii) 3.329 3.329 3.329 4.276 5.076
(iii) 3.329 3.361 4.443 5.143 5.874
(iv) 3.329 3.360 3.580 4.803 6.793

(3)

(i) 85.934 63.543 46.158 32.293 23.199
(ii) 88.380 65.980 44.353 23.063 13.066
(iii) 88.985 66.614 47.257 31.173 22.667
(iv) 88.948 66.603 45.599 26.468 18.153

(1) + (2)

(i) 1.937 1.377 1.118 1.111 1.361
(ii) 5.306 4.748 4.353 5.330 6.610
(iii) 4.989 4.456 5.615 6.604 8.433
(iv) 4.952 4.444 4.424 6.257 9.387

Table 22. Summary of objective function value.

QIC Case
Level of Penetration

10% 20% 30% 40% 50%
Sol. [e /day] Sol. [e /day] Sol. [e /day] Sol. [e /day] Sol. [e /day]

zGEO

(i) 158.636 117.399 85.223 59.395 42.485
(ii) 161.916 120.658 81.036 41.792 23.410
(iii) 164.239 123.044 87.395 57.443 42.975
(iv) 162.870 121.721 83.337 48.050 33.683

Sol. [105kW2] Sol. [105kW2] Sol. [105kW2] Sol. [105kW2] Sol. [105kW2]

zGTO

(i) 33.737 20.718 13.262 10.397 12.435
(ii) 34.754 21.840 11.705 7.582 12.295
(iii) 35.953 22.360 13.092 6.923 4.286
(iv) 35.333 22.360 12.030 5.598 2.947

5. Discussion of Results

This section presents a discussion of the optimization results. The optimization is carried out
through Julia software [48,49] using the mathematical language called Jump [50] and optimization
solvers called Gurobi [51] and Ipopt [52]. Then, the obtained data is thread and depicted through
mathematical software (Matlab) [53]. The discussion of results is in terms of the indicators previously
defined, which focus on the secondary substations (SS indicators) and of the rest of the elements of the
distribution network (DN indicators).

5.1. SS Related Metrics

(i) Voltage quality related metric (ISS1 )

The voltage metric is directly related with Figure 7. This reflects that the quality of the voltage
at the SSs tends to decrease with the distance of these SSs to the point of interconnection with the
transmission system. It is remarkable to note that this trend is accentuated if the network is operated
from just an economic criterion, i.e., through the GEO (see the results for case (ii) in Figure 7). However,
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if it is applied the technical operation strategies –the GTO– (see cases (iii) and (iv), the metric ISS1

results clearly improved with respect to base cases (i.e., case (i) with respect to case (iii); and case
(ii) with respect to the case (iv)). This can be clearly observed in Figure 9, upper left subplot.

(ii) Reactive power related metric (ISS2 )

It is considered that the reactive power is only associated to the loads of the network; generators are
operated with an unitary power factor. Therefore, this metric does not depend on the DG penetration
level for cases where there is not reactive power management –the GTO– (cases (i) and (ii)). However,
when there is reactive power management (cases (iii) and (iv)), there is a dependency between DG
penetration and the reactive power metric ISS2 . This can be reflected in Figure 9, upper right subplot.
For low levels of DG penetration, the reactive power management focuses on reducing electrical losses.
As a reminder, this reactive power management is performed by the IDPRs, not by DG. Conversely,
for DG penetration levels above the threshold level of 30%, from which active power flows through
the network are highly variable, the reactive power management is under the criterion of smoothing
voltage variations. As a consequence, the reactive power metric decreases. This progressive worsening
of metric ISS2 is also appreciated in Figure 9, upper right subplot.
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Figure 9. Trend of diverse SS related metrics with respect to DG penetration level.

(iii) Battery related metric (ISS3 )

The battery usage is directly related with the level of DG penetration (see SoC variations for all
cases evaluated in Figure 8, clearly showing how batteries are more and more operated with increasing
DG penetration levels). For all cases and regardless the usage level of the battery, they are charged
with surplus of DG. Still keeping the attention in Figure 8, we can observe two additional aspects. First,
for the case in which the network is operated under an economic criterion, i.e., case (ii), the GEO decides
to let batteries completely discharged at the end of the day for economic purposes. This way, batteries
are charged in sunny hours, with surplus of renewables, and discharged at night, when electricity is
costly and there is no surplus of renewables. Second, for the case in which the network is operated
also under the technical criterion (i.e., cases (iii) and (iv)), batteries are also operated so as to improve
the power quality of the network (for instance to smooth out voltage variations). As a consequence,
the usage of the batteries is higher than in the case (ii), specially for DG penetrations above 30%.
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(iv) Curtailment related metric (ISS4 )

The curtailment related metric is directly associated to the level of DG penetration and
management tools applied. For low DG penetration levels, the curtailment is not relevant (see Figure 9,
bottom right subplot). Conversely, for DG penetration levels above 30%, curtailment is an issue and
a matter being dealt by solely the GTO (case (iii)) or both the GTO and the GEO (case (iv)). For the
case (iii), and as shown in Figure 9, a noticeable share of DG generation results curtailed with the
objective of maintaining a minimum power quality in the network. Note for instance in this regard,
that up to 12% of renewables should be curtailed considering a DG penetration level of 50%. For the
case (iv), in which the network is operated by both the GTO and the GEO, this latter management
algorithm decides to reduce the amount of energy curtailed so as to minimize economic costs of
network operation, while still respecting the technical optimization proposed by GTO.

5.2. DN Related Metrics

(i) Distribution electrical losses (cables and transformers) (IDN1 )

Passive losses are proportional to the square of current. As can be observed in Figure 6, they are
significant during peaks of demand and/or generation. Also in the above mentioned figure, for the
case (i), when the DG penetration level is low the major part of electrical losses are during peak
demand hours (i.e., in the morning). Conversely, while the DG penetration level is high, the major part
of electrical losses are gathered during the midday (as a result of PV generation).

More in detail, Figure 10, upper left subplot, presents the evolution of metric IDN1 (so the
magnitude of distribution losses) function of DG penetration levels. As can be observed, for low shares
(below 30%) and considering the application of the advanced management tool GTO (case (iii) and
case (iv)), passive losses become lower than for the base case (case (i)). However, for penetration
levels above the threshold of 30%, the actuation of the GTO, which is focused on smoothing voltage
variations, affects distribution losses increasing them above the base case. It is important to highlight
that active losses remain almost constant during the day. However, in the evening, they experience
an increment as a result of the process of batteries discharging. Finally, in case (i) there are not active
elements involved, such as IDPRs and BESSs, so there are not associated electrical losses to compute.
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Figure 10. Trend of diverse DN related metrics with respect to DG penetration level.
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(ii) Electrical consumption of IDPRs (active elements) (IDN2 )

This electrical consumption is additional to the base case. This is a toll that smart grids have to pay
in order to include additional equipment as power electronics and batteries. However, it represents
a small percentage of all consumptions, similar to cables and transformers. As can be observed in
Figure 10, in general terms, the higher the DG penetration is, the more we utilize batteries and power
electronics, and thus the higher the associated losses are. Finally, note that this usage of batteries is
mainly bounded at night, since is in this time frame in which batteries are discharged (see Figure 6).

(iii) External dependency (IDN3 )

It is noted that the dependency with the EG is inversely proportional to DG penetration level.
Such dependency with the EG is even lower if the network is managed by the GEO (please compare
cases (i) and (ii) in Figure 10 bottom left subplot). From this comparison, it can be observed that IDN3

is improved up to 10% approximately at most while considering the GEO. This can also be observed
in Table 21. Even though this improvement could seem relatively small, the impact of including
the GEO as the management tool results much more important in economic terms, as analysed later
in Section 5.3. In addition, an important aspect to highlight at this point is the effect of CDLs and
PDGs in external grid dependency. The management of such resources permit time shift consumption
and generation according to electricity prices. In other words, CDLs consume when there is an energy
surplus or when the energy is cheap, and PDGs generate when there is an energy deficit or when it is
expensive. The effect on this management is reflected in Figure 9, comparing cases (i) and case (iii)
(cases with no management of CDLs and PDGs), with cases (ii) and (iv), in which there is management
for such controllable resources. It can be observed how demand peaks are moved to off-peak periods
(for instance, see the load peak reduction in the morning for cases with renewables penetration of 10%
and 20%).

5.3. Evaluation of Objective Functions

(i) The GEO objective function (zGEO)

As a reminder, the GEO tries to minimize the operational costs of the DN. As can be appreciated
in Figure 11, left subplot, the costs, i.e., zGEO, decreases as proportional to DG penetration levels for all
cases. This makes sense, since less power is imported from the EG. Such trend is even accentuated for
cases (ii) and (iv), where the economic management is applied. In addition, it is worth noting that for
low DG penetration levels, the cost is slightly higher than for considering high shares due to the toll
associated to the losses incurred in batteries and power electronics. It is important to remark that from
30% of DG penetration on, this additional losses are compensated via the savings from the economic
management performed by the GEO. Finally, the cost reduction from cases (ii) and (iv) with respect to
the case base (case (i)), is almost 45% and 21%, respectively.

(ii) The GTO objective function (zGTO)

As a reminder, the term zGTO is related to the magnitude of the power flows between the DN and
the EG, and also to the severity of voltage variations within the DN from the desired values. So from
a technical perspective, zGTO should be as low as possible, indicating somehow minimum power
losses and voltage deviations. As depicted in Figure 11, right subplot, in general terms zGTO decreases
with the DG penetration level. This clearly depicts the progressively dependency reduction with the
EG. For the base case though, and also for the case (ii), in which the GTO are not working, there is
point, around 40% in DG penetration, that voltage variations are remarkably high, and this makes
zGTO to increase. On the other hand, for these scenarios in which the penetration of DG is above 40%,
the operation of the GTO keeps such voltage deviations low, thus ensuring a minimum zGTO.
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Figure 11. The operational costs of the DN for diverse DG penetration levels.

6. Conclusions

This paper addressed the impact of including different advanced techniques for managing
electrical rural grids. These techniques combine the application of ICT tools and power electronics
with embedded energy storage capability. The analysis was based on a real grid, in which different
scenarios have been evaluated and these are characterized by progressively increasing the penetration
of renewable energy generation from a base, current case. In these analyses, the temporal profiles
for the demand have been also derived from the current ones, and adopted with a 15 min time
step resolution.

The new advanced management techniques included: (i) an algorithm named as GEO, able to
dispatch the charge and discharge of the energy storage devices throughout the grid, as well as the
controllable loads and programmable energy generation capabilities, all of these from an economic
criterion; (ii) an algorithm named as GTO, able to dispatch the charge and discharge the energy storage
devices, the programmable energy generation capabilities as well, and all addressing active power
flows, as for the GEO, but also the reactive power flows throughout the distribution grid. In this
sense, the GTO performs the operation of the network in terms of a technical criterion; and (iii) a
new power electronics-based device with embedded energy storage capacity named here as IDPR.
This device effectively executes the charge and discharge of the storage capabilities throughout the
grid (i.e., batteries), and also performs a proper management of reactive power flows according to
GTO setpoints.

The obtained results, in general terms, demonstrate that for the adopted grid as the case study,
the inclusion of these advanced management techniques from both a technical point of view (i.e.,
an improvement of the power quality of the network) and an economic perspective (i.e., a reduction of
the costs incurred in importing energy from the exterior of the distribution network), is justified with a
penetration of renewables higher than the threshold level of 30%. From this level of penetration on,
the reduction of the costs due to the energy imported with the external grid compensates the toll to be
paid in the form of the additional losses of the new energy storage devices integrated into the grid.
To emphasize, such thereshold level in penetration of renewables is particular for the adopted study
case and cannot be generalized. However, the performed management tools and related metrics could
be directly applied for analyzing other networks.

Also from this level of penetration on, the inclusion of these new management tools (ICTs and
energy storages) does improve the techno-economic operation of the grid. This means that the voltage
profiles throughout the network result much more consistent and smoothed, and that the dependency
with the external network is much lower than in the case of not considering such management tools.
For instance, the included energy storage systems, properly managed by the GTO and the GEO, permit
to reduce the operation costs, which are mainly affected by the energy imported from the external grid,
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from 42.5 e/day (case (i), or base case) to 23.4 e/day (case (ii), GEO working), for the case of 50% of
renewables’ penetration. Further even, the operating costs of the network as calculated by the sum of
the cost of the energy imported from the external grid, the distribution losses and the investments in
power electronics as well, result lower while managed by the GEO than in the base case.

More in particular, the inclusion of just the GTO algorithm (not in combination with the GEO)
cannot be justified in economic terms. In the same manner, the inclusion of the GEO can be justified
from an economic perspective, but not from a technical point of view. The combined actuation of both
algorithms yields satisfactory results from both perspectives.

The inclusion of such management tools from a technical perspective can be justified for weak and
radial networks concerning long distances, which is the typical case for rural networks. These networks
experiences high variations in voltage levels and these become accentuated with the distance from the
point of interconnection with the main external grid. These problems are further accentuated with the
inclusion of renewables, since voltage variations can be noticeable especially at the end of lines.

Finally, it is worth noting that the analysis proposed in this paper is representative of a case
with growing importance of renewables in rural distribution grids. So it is, without any doubt,
a timely exercise and in response to the urgent energy transition the electrical power sectors are
currently undergoing.
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Abbreviations

The following abbreviations are used in this manuscript:

ADG Adjustable Distributed Generator
BESS/BS Battery Energy Storage System
CDL Controllable Distributed Load
DER Distributed Energy Resources
DG Distributed Generator
DL Distributed Load
DN Distribution Network
DSM Demand-Side Management
DSO Distribution System Operators
EG External Grid
EMS Energy Management System
GEMS Global Energy Management System
GEO Global Economic Optimization
GS Diesel Generator
GTO Global Technical Optimization
ICT Infomation and Communation Technologies
IDPR Intelligent Distribution Power Router
LC Local Controller
LEMS Local Energy Management System
MAS Multi-Agents Systems
MILP Mix Integer Lineal Programming
NCDG Non-Controllable Distributed Generator
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NCDL Non-Controllable Distributed Load
NLP Non-Lineal Programing
OPF Optimal Power Flow
PADG Programmable and Adjustable Distributed Generator
PDG Programmable Distributed Generator
SCADA Supervisory Control and Data Acquisition
SDG Switchable Distributed Generator.
SG Smart Grid
SoC State of Charge
SS Secondary Substation
TC Transformer Controller
TSO Transmission System Operator
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