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Abstract 

BACKGROUND: In this study three natural Yemeni zeolites (NZ1, NZ2 and NZ3) having major minerals such as clinoptilolite and 
mordenite, were evaluated as low cost sorbents for the removal and recovery of ammonium ions. 

 
RESULTS: The zeolite samples, with pHPZC = 9.1 ± 0.2, 7.9 ± 0.2 and 7.4 ± 0.2 for NZ1, NZ2 and NZ3, respectively, showed high 
ammonium sorption capacities. At pH 8, for treated waste waters: (i) with low NH4

+ levels (from 25 to 100 mgNH4/L); and (ii) 
for concentrated NH4

+ side streams generated from the anaerobic digestion of sewage sludge (from 400 up to 1500 mg L-1), 
maximum loading capacities of 27 to 51 mgNH4 g-1 were measured for the studied zeolites. Measured sorption isotherms, in 
the concentration range 0.05 to 5 g L-1, were well described by the Langmuir isotherm. The ammonium sorption kinetics was 
controlled by particle diffusion and was well described by both the homogeneous diffusion (HPDM) and shell progressive (SPM) 
models. 

 
CONCLUSION: Comparison of the equilibrium data with results for natural and synthetic zeolites demonstrate the higher 
performance of the studied zeolites providing low residual ammonium values <1 mgNH4 g-1 and <10 mgNH4 g-1 when treating 
both diluted and concentrated-NH4

+  streams, respectively. 
© 2017 Society of Chemical Industry 

 
Supporting information may be found in the online version of this article. 
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42 INTRODUCTION 
43 Natural zeolites have attracted significant interest over the last 
44 two decades especially with regard to their capacity to eliminate 
45 or reduce water pollution problems. Nitrogen (N) is the primary 
46 element of plant and animal proteins and is essential to all life 
47 forms.1  However, high concentrations of N in surface and ground 
48 water cause high oxygen demand and can lead to eutrophication.2 

49 Ammonium (NH4
+) with NO3

-/NO2
-   are the main inorganic ionic 

50 form of N present in domestic and industrial waste waters but 
51 it is also generated from organic N compounds.3  In these types 
52 of effluents, the N forms are removed traditionally by biological 
53 methods4 whereby the N is converted to biomass or is transformed 
54 into N2   (g), although when biomass is anaerobically digested to 
55 produce bio-methane, N is again re-mineralized to NH4

+.5   How- 
56 ever, new valorization technologies for the removal and recovery 
57 of ammonium are needed to overcome problems that could be 
58 encountered  in:  (a)  the  implementation  of  high  rate  activated 
59 sludge   (HRAS)   or   up-concentration   schemes   promoting   the 
60 enhancement of energy recovery by anaerobic digestion, produc- 
61 ing treated effluents with high ammonium contents (up to 100 mg 
62 L-1);6,7 (b) new stringent regulation of N levels on the discharges of 

treated water (e.g. values of NH4
+ below 1 mg L-1); or (c) the need to 

recover nitrogen on account of its high nutrient value. Among the 
newer valorization strategies used is the recovery of ammonium as 
struvite; however, only a small fraction of the total ammonium load 
is recovered (c. 10%).8,9 Alternative recovery strategies employ the 
use of striping and sorption processes, however increasing effort 
is being used on the  integration  of  membrane  processes.10,11 

The use of conventional synthetic polymeric sorbents (e.g. cation 
exchange resins) and polymeric membranes based technologies 
has limited applications mainly on account of the fouling encoun- 
tered  due  to  the  high  content  of  total  suspended  solids  and 
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1 dissolved organic matter present in waste waters.11,13   Inorganic 
2 materials like ceramic membranes of zeolites represent a suitable 
3 option for promoting ammonium recovery mainly on account 
4 of their favorable physico-chemical properties.14  However, there 
5 is a lack of study on whether zeolites could be integrated using 
6 standard sorption technologies like bed columns and granular 
7 forms15,16  or whether they could be used as powdered forms in 
8 hybrid sorption-filtration technological approaches.17 – 19 

9 Zeolite, which is a naturally occurring hydrated aluminosilicate 
10 mineral, mainly consists of a three-dimensional framework bear- 
11 ing tetrahedral structures of SiO4   and Al2O.20,21   The cages and 
12 channels within the three-dimensional framework of the zeolites 
13 are occupied by water, alkali (Na+, K+) and alkaline earth cations 
14 (Ca2+,  Mg2+,  Ba2+).22 – 24   As  these  ion-exchangeable  cations  are 
15 present in hydrated forms in the zeolite cavities their exchange 
16 leads to the reformation of the pore structure.23 –25  Natural zeo- 
17 lites are very effective in the removal of ammonium, which occurs 
18 by exchange with Na+, K+, Ca2+  and Mg2+as has been demon- 
19 strated in numerous studies of different mineral deposits.26,27  The 
20 purification of waters and the treatment of industrial and urban 
21 waste waters have been the main fields of application of natu- 
22 ral zeolitic materials.28 – 30   From the large list of zeolite deposits 
23 identified and reported the most widely studied are those from 
24 Turkey, Slovakia, Australia, Greece, Iran and Italy.31 – 33 However, lim- 
25 ited studies could be found in relation to the Yemen which has 
26 huge reserves of zeolitic tuffs deposits which could have potential 
27 industrial and environmental applications. 
28 Thus the objective of this study is two-fold: (a) to character- 
29 ize mineralogically and chemically three different selected sam- 
30 ples of zeolitic material obtained from three different deposits in 
31 Yemen, the selection was performed, inside a collaborative project 
32 between two geological research groups of Yemen and Tunisia; 
33 and (b) to determine the ammonium sorption properties of the 
34 zeolitic materials in powdered form for their ultimate use in the 
35 recovery of ammonium from treated waste waters by evaluat- 
36 ing their equilibrium and kinetic parameters. Synthetic and real 
37 ammonium solutions were used for this characterization. Treated 
38 waste water used in the present study was collected from El Prat 
39 Waste Water Treatment Plant (Barcelona, Spain) and was found 
40 to contain common cations like calcium (200 mg L-1), magne- 
41 sium (74 mg L-1), sodium (280 mg L-1) and potassium (38 mg L-1) 
42 and anions like chloride (1180 mg L-1), phosphate (33 mg L-1), and 
43 sulfate (45 mg L-1). Such competing ions may affect NH4

+  sorp- 
44 tion. Finally, a detailed comparison of the properties of Yemeni 
45 zeolites was made with those of zeolites reported in the liter- 
46 ature  and  widely  used  for  industrial  and  environmental  appli- 
47 cations,  especially  for  ammonium  removal  technology  for  new 
48 waste water treatment processes incorporating high rate activated 
49 sludge schemes. 
50 
51 
52 
53 MATERIALS AND METHODS 
54 Yemen natural zeolites: sampling locations 
55 Natural zeolites of good quality occurring in altered volcanic tuffs 
56 were identified in several areas of Yemen. The main reserves of 
57 high quality zeolite deposits are located in three provinces: Taiz, 
58 Ibb and Dhamar according to the Yemen Geological Survey and 
59 Mineral Resources Board.34   Samples used in the present study 
60 were collected from three different locations: Jebel Hilen Maireb 
61 (Natural zeolite sample 1: NZ1), Jebel Hadad (NZ2) and Jebel el 
62 Hard (NZ3). Location details of the sample points are given in Fig. 1. 

Zeolites physico-chemical characterization 
Determination of crystal structure and the mineralogy of the 
zeolites was performed using X-ray diffraction (XRPD) D8 Bruker 
with Cu-k� (� = 0,154) radiation operating at 40 kV and 
40 mA. The chemical composition of the samples was analyzed 
by X-ray fluorescence (ARL 9900 X-ray). Sample  morphology  and  
surface chemical composition were analyzed by field emission 
scanning electron microscope (FESEM) (JEOL  JSM-7001F) 
coupled to an energy dispersive spectroscopy (EDS) system 
(Oxford Instruments X-Max). Each FESEM image is originated 
from a different area of the sample, in order to  ensure the 
homogeneity of the zeolitic structure. Qualitative and 
quantitative mineralogical characteriza- tion was carried out by 
means of X-ray powder diffraction patterns using a 
PanalyticalX’Pert Pro diffractometer equipped with a RTMS 
detector. Before all analyses, samples were ground and sieved by a 
particle size siever and thoroughly washed with de-ionized water 
to remove dust and traces of soluble particles. 

The point of zero charge (PZC)  was  determined  by  the  pH 
drift method.34 A fixed amount of 0.2 g of sample zeolite was 
equilibrated in 50 mL of deionized water, 0.01 mol L-1 and 0.05 mol 
L-1 NaCl solutions (pH from 2 to 12) for 24 h under gentle agitation 
and at 22 ± 1 ∘C. The final pH was measured and the PZC was 
determined as the pH at which the addition of the sample did 
not induce a shift in the pH. The common intersection point (CIP) 
method was also used.35 PZC experiments were performed in 
triplicate and the average data reported. 

 
Ammonium equilibrium and kinetic batch studies 
Batch equilibrium sorption experiments were carried out using 
standard batch methodology described elsewhere.36 Fixed vol- 
umes (25 mL) of prepared ammonium (N) aqueous solutions in 
polyethylene tubes were used. They were shaken overnight with 
weighed amounts of dry zeolitic samples (particle size <200 
�m) using a continuous rotary mixer. Three different types of 
experi- ment were conducted: (a) sorption capacity as a function of 
ammo- nium concentration: in which 0.2 g of zeolite samples were 
added to varying ammonium (10 – 2000 mg-N/L) aqueous solutions 
main- tained  at  fixed  pH  using  pH  adjustment  to  achieve  
values  of 
8.0 ± 0.2; (b) sorption capacity as a function of equilibrium pH 
range: in which 0.2 g of NZ sample was added to fixed ammonium 
(600 mg-N/L) aqueous solutions and adjusting pH from 7 to 10 
(using 0.1 mol L-1 HCl/NaOH); and (c) finally sorption capacity as a 
function of the amount of natural zeolite at a constant ammonium 
concentration (from 0.2 to 1 g in 25 mL of waste water solution). In 
all experimental conditions, samples were shaken for at least 24 h 
at 22 ∘C. 

Batch kinetic sorption experiments were performed by adding 
0.2 g of NZs in solutions containing 864 mg-NH4 L-1  and shaken 
at 200 rpm. Tubes were withdrawn sequentially at given time 
intervals. All tests were performed in triplicate at 300 rpm and 
room  temperature  (22 ± 1 ∘C),  and  the  average  data  reported. 
The samples were centrifuged for 10 min and then filtered using 
0.45 �m cellulose nitrate membrane. The total  
concentration of ammonium ions in the initial and in the  
remaining aqueous solution was determined. 

 
Ammonium batch desorption studies 
Samples of NZs (particle size <200 �m) were saturated in 25 
mL of solution containing 630 mg-NH4 L-1 at 300 rpm for 24 h. NZ 
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41 studies were performed by adding 0.2 g of the saturated zeolite 
42 into 25 mL of elution solution at 300 rpm for 20 h. 0.02 mol L-1 

43 NaOH, 0.1 mol L-1  NaCl, 0.02 mol L-1  NaOH and 0.1 mol L-1  NaCl 
44 solutions were evaluated as desorbing solvents. After elution and 
45 proper conversion to the Na form the zeolite was washed water 

aqueous solution volume and w (g) is the mass of zeolite. The 
ammonium equilibrium sorption was evaluated according to the 
Langmuir isotherm using Equation (3): 

 
KLqmCe 

103 
104 
105 
106 
107 

46 to remove the excess of the regenerant solution. Tests were per- 
47 formed in triplicate at 22 ± 1 ∘C, and average data reported. Anions 

qe = 
1 + KLCe 

(3) 108 
109 

48 
49 
50 
51 
52 
53 
54 
55 
56 

Q3  57 
58 

and cation concentrations were determined by ionic chromatog- 
raphy (Dionex ICS-1100 and ICS-1000). 

Loaded and desorbed zeolite samples were analyzed by XRD and 
samples were dried, avoiding high temperatures to minimize the 
potential losses of ammonium and ammonia. 

 
Data treatment procedures 
Ammonium sorption isotherms 
Ammonium sorption values (qe) were calculated from the batch 
experiment results using Equation (2): 

where qm  (mg g-1) is the maximum sorption capacity and KL  

(L mg-1) is the Langmuir sorption equilibrium constant. 

 
Ammonium sorption kinetics 
The homogeneous diffusion (HPDM) and shell progressive model 
(SPM) were selected to describe the ammonium extraction kinet- 
ics by NZs. In the HDM model zeolite particles are considered as 
a quasi-homogeneous media and the sorption diffusion rate con- 
trolling step on the spherical particles leads to: 

110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

59 qe = 
(
Co − Ce

) 
× 

60 w 
(2) (i)  If particle diffusion Dp (

m2 s−1) 121 
122 

2 
61 where  Co   (mg  L-1)  and  Ce   (mg  L-1)  represents  the  initial  and 
62 equilibrium ammonium concentration, respectively; v  (L) is the 

2 � Dp 
controls the sorption rate∶ − ln 

(
1 − X (t)2) = t  (4) 

r2 

Q 

88 

 v 
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1 
2 (ii)  If liquid film diffusion Df  

(
m2  s−1) 

3 
4 controls the sorption rate∶ − ln (1 − X (t)) = 
5 
6 

 
 
 

Df C 
h r Cz 

 
 
 
 
t (5) 

appears when the ratio SiO2/Al2O3   is between 4.3 and 6.5 and    63 
the ratio (K2O + Na2O)/ (MgO + CaO) ranges from 1.5 to 0.8.38  The   64 
high overall nSi/nAl > 4 ratio in the samples can be attributed to    65 
the existence of significant proportions of feldspars, quartz and 66 
unaltered  glass.38   Generally,  major  chemical  components  (SiO2             67 
and Al2O3) showed small differences when compared with other         68 

7 where X(t) is the fractional attainment of sorption equilibrium 
8 (qt /qe) on the zeolite phase at time t, Cs  and Cr  (mg kg-1) are the 
9 concentrations of solute in solution and in the zeolite, respectively; 

natural zeolites from different deposits (Table 1) and this may be 69 
due to their different geological formation environment.  70 

It should be mentioned, especially for NZ3, that it has high con- 71 
10 r is the average radius of zeolite particles (4×10-4 m), t is the contact tents of Fe O (7.8%) and CaO (4.4%) in comparison with NZ1 and 72 

2    3 

11 time (s); and h is the thickness of film around the zeolite particle 
12 (1×10-5  m for poorly stirred solution). 
13 The  SPM  describes  the  sorption  process  by  a  concentration 
14 profile of the solution containing ammonium ions advancing into 
15 a spherical particle partially saturated.37  The removal mechanism 
16 involves diffusion of ammonium from the aqueous solution into 
17 the zeolite phase through a number of possible resistances. The 
18 ammonium species originally in the solution phase must diffuse 
19 across  the  liquid  film  surrounding  the  zeolite  particle,  transfer 
20 across the solution particle interface, diffuse into the bulk of the 
21 particle and possibly interact with negative charged sites on the 
22 zeolite particles. The sorption rate controlling steps on the zeolite 

23 particles leads to: 
24 3CAoKF 

NZ2 as well as in comparison with the other natural zeolites, as    73 
can be seen in Table 1. The presence of the two minerals can be      74 
an added benefit for the zeolite for waste water treatments as they    75 
can provide better phosphate removal potential. In the presence       76 
of Ca (II), phosphate removal is promoted by the formation of cal-  77 
cium phosphate minerals,15,40 and in the presence of iron oxides, 78 
phosphate sorption is fostered by complexation with <FeOH sur-    79 
face groups. 80 

The  acid– base  properties  were  determined  using  the  PZC 81 
method. From the analysis of the variation of ΔpH with pH, as can         82 
be seen in Fig. S1 (Supporting information), values of 9.1 ± 0.3,        83 
7.9 ± 0.2 and 7.4 ± 0.2 for NZ1, NZ2 and NZ3, respectively, were        84 
determined.  Values  were  related  to  the  measured  ammonium        85 
exchange capacities and results shown that NZ3 with the lowest         86 

25 (a)  For fluid film diffusion∶ X (t) = 
26 
27 

asCso 
t (6) value shows the highest sorption capacity. Values of the pH of 87 

treated ammonium model samples had values of pH covering the 88 
range of pHPZC. Then under these conditions zeolites with the low- 89 28 (b)  For particle diffusion∶

[
 

2 

− 3 (1 − X (t))    − 2X (t) 
6DeCAo 

= t est point of zero charge will provide the highest sorption capacity 90 

3 3 

] 

29 
30 
31 

s Cso 
(7) for cations such as ammonium. Observed fluctuations on ΔpH ver- 91 

sus pH data are attributed to the presence of minerals with basic 92 93 

32 (c) For chemical reaction∶ 
[

1 − (1 − X (t))1∕3] = 
KsCAo t (8) 

33 r 
34 where De  is the effective diffusion coefficient of ammonium ions 
35 in the zeolite phase (m2 s-1), CAo   and CSo  are the concentration 
36 of  ammonium  in  solution  and  at  the  zeolite  unreacted  core, 
37 respectively (mg L-1) and as  is the stoichiometric coefficient. X (t) 
38 values could be calculated by using Equation (9): 
39 
40 qt 

properties such as calcite. These are present in minor quantities 
and then from sample to sample small variations are expected. 
Although little PZC data of natural zeolites could be found in the 
literature, values of 6.5 to 7.5 were reported by Kosmulski,44 while 
data for clays, the closest mineral family, showed values from 8.5 
up to more acidic values of 5.1.45 Guaya et al.15,46 reported values 
of 5.5 for a natural clinoptinolite in the sodium form and 4.5 ± 0.2 
when impreganted with hydrated aluminium oxide or 6.4 ± 0.4 
when impregnated with hydrated ferric oxide, as described also 

94 
95 
96 
97 
98 
99 

100 
101 
102 X (t) = (9) by Alshamare et al.47 Values of pHPZC. Q5 

41 qe 
42 
43 Where qt and qe are zeolite ammonium loading at time t and 
44 when equilibrium is attained (mg g-1), respectively. 
45 All experimental data were treated graphically and compared 
46 with all fractional attainment of equilibrium functions (F(X) = f (t)) 
47 (Equations (4) – (8)). 
48 
49 
50 RESULTS AND DISCUSSION 
51 Zeolite samples characterization 
52 X  ray  diffraction  (XRD)  patterns  of  NZ  samples  are  shown  in 
53 Fig. 2. Clinoptilolite and mordenite were found to be the major 
54 components of NZ1 and NZ2, but small amounts of other crys- 
55 talline phases like quartz, feldspars and unaltered glass were also 
56 detected. In the case of NZ3 in addition to clinoptilolite, morden- 
57 ite and some small amounts of heulandites, the presence of quartz 
58 and feldspars were also detected. 
59 XRF analysis, of the samples as summarized in Table 1 revealed 
60 the  predominance  of  SiO2   and  Al2O3   and  to  a  lesser  extent, 

61 Fe2O3  and CaO, although in sample NZ3 their 
contribution is as 

62 important as the Al2O3  in NZ1 and NZ2. The formation 
of zeolite 
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distribution. The images showed a few smaller particles with spherical 
shapes and mostly large particles and agglomerates with irregular shapes. 
The difference in the morphology as evident at the edges is probably due 
the way the sample was processed (e.g. milling conditions may result in 
small differences in appearance). It is observed that the clinoptilolite crystal 
phase has characteristi- cally plate-like morphology (Fig. S2) with large 
cavities and entries to the channels inside the zeolite framework, and 
mordenite phase has thinner sheets in accordance with the zeolites 
morphology.48 

The FESEM – EDX analysis revealed the presence of O, Na, Mg, Al, Si, K, Ca 
and Fe as the main elements in the surface composition of the zeolites 
(Table S1 (supporting information)). Table S1 also reveals the chemical 
composition of different natural zeolites. Sim- ilar values were obtained for 
the major elements (O, Al, Si) which are the main building blocks of zeolite 
structure; but differences were attributed to exchangeable cations (K, Na, 
Ca) and for the Fe content. As described earlier from the XRF analysis, NZ3 
showed a higher content of Fe and Ca but the values were found comparable 
with those from a study with a zeolite from Yemen (Table S1). 
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(i) Ion exchange reaction with M+  from the zeolite sites as it is 89 

described by Equation (10):  90 
91 

30 Although the removal of ammonium is mainly driven by an ion 
31 exchange process, the acid– base properties of both ammonium 

Z-M+ + NH+ — M+ + Z-NH+ (10) 92 
93 

32 and the zeolite surface can be determined by identifying the opti- 
33 mum pH of the aqueous medium; thus the dependence on aque- 
34 ous pH is an important factor controlling ammonium sorption.49 

35 Then sorption capacities of the NZ samples were determined in 
36 the expected pH values of treated urban waste waters ranging 
37 from 7 to 9 and the results are summarized in Table 2. Ammo- 
38 nium sorption capacities of each zeolite reached the highest val- 
39 ues at pH 8 and then, as is expected from its acid– base properties, 
40 started to decrease with further increase in pH as it is transformed 
41 to a non-protonated form (NH3).The qe  -pH functions showed con- 
42 stant values between pH 4 to 9 as described previously by Guaya 
43 et al.,15,43 Alshameri et al.41 and Moussavi et al.49 The highest sorp- 
44 tion values of three zeolite samples were attained at pH values 
45 approaching the PZC. In comparison, it was found that the max- 
46 imum sorption values of the three zeolites ranged from 33 to 40 
47 mgN– NH4 g-1 and such differences could be associated with the 
48 different composition of the exchangeable ions on the zeolites 
49 (K, Na, Mg, and Ca). For waste streams with pH values below 6, 
50 while from the chemical speciation point of view ammonium will 
51 be the dominant species for inorganic ammonium forms from the 
52 acid– base properties of the zeolite structure the exchange sites 
53 will be partially dissociated. However, results in Table 3 show that 
54 the weight of the chemical speciation in solution plays a dominant 
55 role in the ion-exchange reaction. 
56 Analysis of the sorption capacity in aqueous phase (data not 
57 reported)  confirms  the  release  of  Na+    and,  in  minor  degree, 
58 of  K+,  Mg2+   and  Ca2+.  EDAX  data  revealed  also  the  reduc- 
59 tion  in  content  of  these  cations  in  the  ammonium  loaded 
60 zeolites. 
61 Thus, the sorption of ammonium by the natural zeolites could be 

62 described by the combination of two main processes:50 where 
M 
represen
t any 
exchang
eable 
cation 
present 
on the 
NZ (Na, 
K, Ca, 
Mg) and 
Z- 

represen
ts the 
ionogeni
c groups 
of the 
zeolite 
structure
. 

(ii) 
Acid – 
base 
dissociati
on 
reaction 
of 
ammoniu
m ions 

Table 1.    Chemical composition (%) (w/w) of raw natural zeolites determined by XRF and data on natural zeolites from the main world deposits in 
Turkey, Iran, China, Australia, Greece, Chile and Yemen 

   Turkish zeolite Iranian zeolite Chinese zeolite Australian zeolite Chilean zeolite Greek zeolite Yemeni NZ 
NZ1 NZ2 NZ3 [31] [32] [39] [33] [19] [40] [41] 

SiO2 62 68 68 70.9 70.0 66.4 70.4 67.0 68.3 69.9 
Al2O3 10.2 11.1 9 .2 12.4 10.5 12.2 12.9 13.0 13.2 11.8 
Fe2O3 1.9 2.0 7.8 1.2 0.5 1.0 1.4 2.0 1.4 2.4 
CaO 3.9 2.4 4.4 2.5 0.2 3.2 3.3 3.2 0.8 2.4 
MgO 0.5 0.8 0.5 0.8 - 1.0 1.1 0.7 1.2 0.2 
K2O 1.1 1.1 0.5 4.5 4.9 1.4 1.6 0.5 1.7 3.7 
Na2O 0.3 0.4 0.3 0.3 2.9 0.7 1.2 2.6 4.1 1.1 

 

Table 2. Influence of pH on the ammonium sorption capacity for 
solutions having an initial concentration of 864 mgN-NH4 L-1 and a 
phase ratio of 0.2 g NZ in 25 mL of aqueous solution 

 qe (mgN-NH4 g-1) 

pH = 7.6 ± 0.1 pH = 8.0 ± 0.2 pH = 9.0 ± 0.1 

NZ1 (pHPZC 9.1 ± 0.3) 19.4 ± 0.6 23.4 ± 0.8 15.7 ± 0.9 
NZ2 (pHPZC 7.9 ± 0.2) 23.9 ± 0.8 27.4 ± 0.9 26.7 ± 1.2 
NZ3 (pHPZC 7.4 ± 0.2) 35.1 ± 1.1 39.6 ± 1.2 32.7 ± 1.2 

 

Table 3.    Isotherm parameters for ammonium sorption by natural 
zeolites NZ1, NZ2 and NZ3 for a phase ratio of 0.2 g NZ and 25 mL of 
aqueous solution and constant temperature of 22 ± 1 ∘C 

 
 

qm 

Langmuir 

KL 

 

R2 

Freundich 

KF n R2 

NZ1 27.4 ± 2 0.0007 0.98 0.063 1.2 0.92 
NZ2 32.2 ± 2 0.001 0.98 0.31 1.7 0.92 
NZ3 51.8 ± 4 0.0036 0.99 0.68 1.6 0.95 
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4 

as it is described by Equation (11): 
 

NH+  ↔ H+ + NH3 log Ka  = – 9.3 (11) 

According to Equation (11), NH4
+/ NH3 equilibrium in solution is pH 

dependent and thus only the ionized form can be removed from 
solution by ion exchange. At pH 8 and below total ammo- nium is 
substantially present in the ionized form, therefore, it is rea- sonable to 
assume that these conditions would favor the removal process. 

Equilibrium sorption isotherms with ammonium solutions cover- ing the 
ammonia concentration range expected in effluents from the high rate 
activated sludge stage (25 to 100 mgNH4

+ L-1) and inside streams of 
sludge anaerobic digestion (400 to 1600 mgNH4

+ L-1) are shown in Fig. 3. 
The ammonium sorption data are well described by the Langmuir 
isotherm (R2 ≥ 0.98) while Freundlich isotherm (R2 ≤ 0.95) (Table 3 and 
Fig. 3) provides a good descrip- tion only at the lower concentration 
ranges. Therefore, monolayer and homogenous sorption or/and ion 
exchange at specific and equal affinity sites available on the zeolites 
surface is supposed to occur. A favorable sorption is revealed by the 
values of KL (from 0.0007 to 0.0036).28 The maximum sorption capacities 
was found to be 27.4 ± 2 mg-N g-1, 32.2 ± 2 mg-N g-1 and 51.8 ± 4 mg-N g-1 

for NZ1, NZ2 and NZ3, respectively. 
XRD patterns of the NZs after sorption (Fig. S3) showed that the 

differences could be observed only in the intensity of reflexions, but  no  
changes  were  observed  with  respect  to  their  position. 
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Figure 3. Experimental and theoretical equilibrium isotherms for ammo- 16 nium removal by natural zeolites NZ1, NZ2 and NZ3 for a phase ratio of 

17 0.2 g NZ and 25 mL of aqueous solution at room temperature 22∘ ± 1. (Dots: 18 experimental data, line: the Langmuir predicted values, dashed line: the 
19 Freundlich predicted values.) 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 Samples were dried at low temperature to avoid losses of soluble 
33 forms of ammonium as NH3   (g). Similar results were found by 34 Alshameri et al.41 and Guaya et al.15 
35 
36 
37 Zeolites reusability: ammonium desorption 
38 Results  from  desorption  efficiency  studies  of  ammonium  from 
39 loaded zeolites using NaOH, NaCl and mixtures NaOH/NaCl are 
40 summarized in Table 4. Desorption was found to be a fast process 
41 (data not shown) and equilibrium was achieved in less than 20 min. 
42 The regeneration tests showed that no significant loss of zeolite 
43 capacity was observed after five consecutive cycles. The rationale 
44 desorption process is that the reverse of the exchange reaction 
45 (Equation  (11))  and  the  conversion  of  ammonium  to  ammonia 
46 could be possible by increasing the pH as it is described by 
47 reactions (12) and (13): 

48 (i) Ion exchange reaction with sodium ions from NaCl: 
49 

Z-NH+  + Na+  ↔ NH+  + Z-Na+ (12) 

Figure 4. Influence of contact time on NH4
+ removal sorption capacity 

of natural zeolites NZ1 (qm  19.4 ± 0.6), NZ2 (qm  23.9 ± 0.8), and NZ3(qm 
35.1 ± 1.1), for a solid – liquid ratio 0.2 g of zeolite and volume of 25 mL for 
an initial concentration of 864 mgNH4 L-1 and a pH of 7.7 ± 0.3. 

 

Ammonium sorption kinetics of powder zeolites in stirred 
reactors 
Ammonium sorption kinetic data (Qt versus time) for NZ zeolites 
are shown in Fig. 4. The ammonium sorption rates are comparable 
with other natural and synthetic zeolites demonstrating a very fast 
sorption step where more than 60% of the equilibrium attainment 
(X(t) = 0.60) is reached in less than 10 min followed by a slower 
sorption step controlled by a typical particle diffusion profile as 
encountered in most of the polymeric ion-exchange resins.37,51 

Sorption profiles for the three zeolites show the typical behavior of 
a sorption material where the solid surface plays an important role. 
Ion-exchange sites are distributed along the microporous struc- 
ture and then diffusion processes are the rate determining step. 

Comparing zeolites samples  NZ1  and  NZ2  need  high  times 
to reach equilibrium (60 min for Xt >0.95), while for NZ3 only 
30 min were needed to reach Xt >0.95. Analysis of the fractional 
equilibrium attainment functions (F(X) = f(t)) by using both HDM 
and SPM models indicated that sorption rate control of ammonium 
ions is particle diffusion. A first stage of NH4

+ diffusion from the 
solution to the external surface of zeolite is followed by a sorption 
stage along the zeolite internal surface. The linear regression 
analyses of the rate control equations are summarized in Table 5. 
The linear regression coefficients (R2) values are closer to 1 for 
the equations considering particle diffusion as rate determining 
step. Both models (HPDM and SPM) provided a good description 
of the experimental data as can be seen in supporting information 
(Fig. S4). Particle diffusion coefficients calculated ranged from 1.2 
to 5.1×10-12 m2 s-1. These values are consistent with the results 
reported for ammonium sorption on natural clinoptilolite at low 
initial ammonium concentrations and with diffusion coefficients 
determined on the removal of heavy metals by natural zeolites.39 
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51 (ii) Ammonium conversion to NH3 n basic media NaOH (pH > 12): 
52 
53 Z-NH+ + Na+  + OH- ↔ NH3 + Z-Na+ + H2O (13) 
54 
55 Sodium   rich   solutions   of   NaCl   and   NaOH   and   a   mixture 
56 of   NaCl/NaOH   provided   high   desorption   ratios   with   values 
57 above   90%,   for   NZ1   and   NZ2   samples   and   only   recovery 
58 ratios  between  85  and  95%  were  measured  with  NZ3.  The 
59 use  of  sodium  base  brines  as  a  means  to  regenerate  NaCl 
60 is  based  on  the  selectivity  order  of  natural  zeolite  among 
61 cations  as  reported  by  Sarioglu25   with  the  following  sequence 

62 K+ > NH4
+ > Na+ > Ca2+ > Fe3+ > Al3+ > Mg2+.  

Techno
logical 
evalua
tion of 
Yemeni 
NZ1, 
NZ2 
and 
NZ3 
zeolite
s as 
sorben

NZ1 

NZ2 

NZ3 

6 

Table 4.   Desorption efficiency of ammonium loaded NZs using 
NaOH,  NaCl  and  mixtures  NaOH/NaCl  with  aqueous  solutions  to 
zeolite ratios of 25 mL per 1.2 g at room temperature 22 ∘C 

NZ1 NZ2 NZ3 
EX(%) EX(%) EX(%) 

0.02 mol L-1 NaOH 94 ± 3 97 ± 3 88 ± 2 
0.1 mol L-1 NaCl 89 ± 4 96 ± 2 89 ± 4 
0.02 mol L-1 NaOH/0,1 mol L-1 NaCl 97 ± 2 98 ± 1 92 ± 5 
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ts for ammonium recovery from waste water treatment plants 
incorporating high rate activated sludge stages: process integration 
Three ammonium containing effluents from urban WWTPs were 
evaluated: (a) secondary from a conventional activated sludge reactor, with 
values of ammonium in the order of 15 to 20 mg L-1; 
(b) effluent of high rate activated sludge or an A-stage reactor with values of 
ammonium up to 50 – 100 mg L-1; and (c) side streams generated in the 
sludge anaerobic reactor with concentrations of ammonia between 400 
and 1600 mgNH4  L-1. The applicability of 
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1 
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5 
6 
7 
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9 

10 
11 
12 
13 the evaluated Yemeni zeolite samples was evaluated in terms of 
14 removal capacity and the treated effluent residual values achieved 15 under  these  conditions  were  further  compared  with  published 16 data for natural zeolites. Table S2 summarizes both ammonium 17 sorption and desorption equilibrium parameters. 
18 By using the Langmuir or Freundlich isotherms theoretical pre- 
19 
20 dictions plotted for comparison are shown in Fig. 5 for effluents 

21 with high concentration of ammonium (from 100 to 1600 mgNH4 

22 L-1), effluents with medium ammonium concentrations (from 10 

23 to 100 mgNH4  L-1) and effluents with low ammonium concentra- 

24 tions (from 1 to 10 mgNH4 L-1). It should be mentioned that in most 

25 cases (Table S2) the pH used in the experimental studies was not 

26 reported and in most cases the sorption isotherms were not car- 

27 ried out at constant pH values. Experiments conducted with NZ1, 

28 NZ2 and NZ3 were carried out at pH 8. 

29 Comparison of isotherms in the three ranges of ammonium con- 

30 centration indicates that the sorption capacity evaluated for NZ3 

31 was up to two times higher than those reported for the other nat- 

32 ural zeolites. In addition, the sorption capacity of NZ1 sample was 

33 similar to the highest values reported for the different zeolites eval- 

34 uated. The better performance of NZ3 sample could be associated 

35 with the higher content of clinoptinolite and mordenite and also 

36 the presence of heulandites. The sample is also characterized by 

37 the presence of higher content of iron oxide. 

38 The capacity to reduce the ammonium concentration to the tar- 

39 get values as defined by most of the Environmental Regulation 

40 agencies (e.g. 15 mg NH4 L-1 for treated water to be discharged to 

41 water bodies or 1 mgNH4  L-1  according to coming regulations) as 

42 a function of the zeolite dose is shown in Fig. 6. The ammonium 

43 residual values decreased with the increase of the dose. For zeo- 

44 lites NZ1 and NZ2, a reduction of the concentration respectively 

45 from 77 to 3 mgNH4 L-1 and from 91 to 4.3 mgNH4 L-1 was achieved 

46 for zeolite doses of 40 gNZ L-1. However, for NZ3, which showed a 

47 high sorption capacity at higher ammonium concentrations (see 

48 Fig. 3 and Table 3), under the low concentration range demon- 

49 strated higher ammonium residual concentrations (14 mg L-1  for a 

50 40 gNZ L-1  dose). Thus, the NZ tested demonstrated sufficient effi- 

51 ciency to remove ammonium up to the 15 mg L-1 threshold in the 

52 final effluent. But if the target value to achieve in the final effluent 

53 is 1 mg L-1, then it invariably dictates the need for an increase of 

54 the zeolite dosage. 

55 A distinctive behaviour of NZ3 on reaching permissible levels for 

56 ammonium in comparison with NZ1 and NZ2 has been observed 

57 although having slightly higher ammonium sorption capacity. 

58 These differences could be associated with the effect of other 

59 cations present in the waste water (Na, Ca, Mg, K) influencing 

60 the sorption capacity in comparison with the model solutions. It 

61 must be noted that NZ3 has a higher content of Ca and Fe oxides 

62 that have direct implications for the removal of phosphate 
ions 
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Table 5.   Results of the kinetic data analysis for ammonium sorption by powder natural Yemeni zeolites (NZ1, NZ2, NZ3) in stirred tanks using both 
HPDM and SPM models 

 
 
 

R2 

HPDM 

ln (1 X2) 

Df (m2 s 1) R2 

 
 

ln (1 X) 

Dp (m2 s 1) 

SPM 

 

R2 

X 

KF (m s 1) 

[3 3(1 X)2/3 2X] 

R2 Dp (m2 s 1) 

[1 (1 X)1/3] 

R2 ks (m s 1) 

NZ1 0.99 1.24 10 -12 0.79 1.18 10 -10 0.71 2.4 10 -11 0.98 4.0 10 -12 0.93 2.6 10 -13 

NZ2 0.96 2.1 10 -12 0.86 5 .8 10 -10 0.73 3.7 10 -11 0.96 3.0 10 -12 0.82 2.2 10 -13 

NZ3 0. 93 5.1 10 -12 0. 91 5.4 10 -10 0.64 4.1 10 -11 0.92 6.0 10 -12 0.84 2.8 10 -13 
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Figure 5. Comparison of isotherms for Yemeni natural zeolites (NZ1, NZ2 and 
NZ3) and for natural zeolites from Australia, China, Iran and Slovakia (properties 
and isotherm values are summarized in Table S2). Solid lines were calculated 
using the Langmuir or Freundlich constant collected in Table S2). 
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14 Figure 6. Variation of the residual ammonium concentration (Ce  (mg L-1)) 
15 in solution as a function of the zeolite doses (gZ L-1). Solid lines described 

the discharge limits defined by the EC1991 on treated waste water limits for 
16 ammonium and solid line describe the expected new regulations. Volume 
17 of aqueous solution was 25 mL and the initial ammonium concentration 
18 was 864 mgN-NH4 L-1 and a pH of 7.6 ± 0.2 (DL: discharge limit). 
19 
20 (present in waste water) via complexation with <FeOH groups or 
21 formation of Ca-phosphates. Values of phosphate removal were 
22 not included in the scope of the work but the removal efficiency 
23 of NZ3 was reported to be higher than that of NZ1 and NZ2, and 
24 it may be postulated that this co-removal mechanism affected the 
25 ammonium removal. 
26 
27 
28 CONCLUSION 
29 The mineralogical characterization of three natural zeolites (NZ1, 
30 NZ2,  NZ3)  collected  from  different  regions  of  Yemen  indicated 
31 that clinoptilolite and mordenite were the major components of 
32 NZ1 and NZ2, but small amounts of other crystalline phases like 
33 quartz, feldspars and unaltered glass were also detected. For NZ3, 
34 in  addition  to  clinoptilolite,  mordénite  some  small  amounts  of 
35 heulandite, quartz and feldspar was also detected. 
36 The three zeolite  samples provided high  ammonium sorp- 
37 tion capacities for concentrated ammonium streams of 27 to 51 
38 mgNH4 g-1 at pH values of 8.0 ± 0.2. Sample NZ3, with the high- 
39 est  CaO(s)  and  Fe2O3(s)  contents  showed  the  highest  sorption 
40 capacities  among  the  three  studied  zeolites;  and  its  maximum 
41 sorption  capacity  was  also  recorded  to  be  higher  than  those 
42 reported for other natural zeolites in the literature. Loaded zeo- 
43 lites  were  efficiently  regenerated  using  NaOH  and  NaOH/NaCl 
44 brines (0.1 mol L-1). Recovery of ammonia from regeneration solu- 
45 tions, by using for example air-striping or liquid– liquid contactors 
46 will  provide  the  possibility  of  reusing  the  stripping  solutions 
47 for  several  cycles.  The  number  of  cycles  will  depend  on  the 
48 accumulation of cations as Ca(II) and Mg(II) or dissolved organic 
49 matter. 
50 The ammonium sorption kinetics of the powdered zeolite sam- 
51 ples was controlled by particle diffusion and was well described by 
52 the HPDM and SPM models. Faster kinetics was exhibited by NZ3 
53 in comparison with those of the two other studied zeolites. Com- 
54 parison of the kinetic data for the characterized Yemeni zeolite 
55 samples with published results for other natural and synthetic zeo- 
56 lites demonstrate their higher performance, which could be used 
57 in stirred tank applications. Doses of 40 gNZ L-1  was found to be 
58 suitable to achieve ammonium residual levels below 1 mgNH4  L-1 

59 from diluted ammonium streams generated in high rate activated 
60 sludge stages and below 10 mgNH4 L-1 from concentrated ammo- 
61 nium streams generated in side streams of anaerobic digestion of 
62 sewage sludge. 

article. 
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