
An O(1) Solution to the Prefix Sum Problem
on a Specialized Memory Architecture

Andrej Brodnik12, Johan Karlsson1, J. Ian Munro3, and Andreas Nilsson1

1 Lule̊a University of Technology
Dept. of Computer Science and Electrical Engineering

S-971 87 Lule̊a
Sweden

{johan.karlsson,andreas.nilsson}@csee.ltu.se
2 University of Primorska

Faculty of Education
Cankarjeva 5
6000 Koper

Slovenia
andrej.brodnik@pef.upr.si

3 Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario
Canada, N2L 3G1

imunro@uwaterloo.ca

Abstract. In this paper we study the Prefix Sum problem introduced
by Fredman. We show that it is possible to perform both update and
retrieval in O(1) time simultaneously under a memory model in which
individual bits may be shared by several words. We also show that two
variants (generalizations) of the problem can be solved optimally in
Θ(lg N) time under the comparison based model of computation.

1 Introduction

Models of computation play a fundamental role in theoretical Computer Science,
and indeed, in the subject as a whole. Even in modeling a standard computer,
the random access machine (RAM) model has been subject to refinements which
more realistically model cost or, as in this paper, suggest feasible extensions to
the model that permit more efficient computation, at least for some problems.
Work taking into account a memory hierarchy, either when memory and page
sizes are known (cf. [2]) or not (cf. [11]) is an example of the former. Taking into
account parallelism, as in the PRAM model (cf. [17,26]), is an obvious example
of the latter. More subtle examples include the recent result that the operations
of an arbitrary finite Abelian group can be carried out in constant time (We
assume a word of memory is adequate to hold the size of the group.) provided
one can reverse the bits of a word in constant time [8]. This argues for a more
robust set of operations. Here we deal with the way a single level memory is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15781133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


104 A. Brodnik et al.

organized and demonstrate that the power of a machine can be increased if we
permit individual bits to occur in several words simultaneously. This Random
Access Machine with Byte Overlap (RAMBO) was first suggested by Fredman
and Saks [10] and subsequently used by Brodnik et al. [6] and Brodnik and
Iacono [7]. Indeed it is shown in the latter two papers that a priority queue of
word sized objects can be maintained in constant time under a particular form
of the RAMBO model, whereas Beame and Fich [3] and Brodnik and Iacono [7]
have both shown lower bounds on the problem under various forms of the RAM
model.

Here we discuss solutions to variants of the Prefix Sum problem (i.e. finding
the sum of the first j elements in an array and also updating these values) which
was introduced by Fredman [9]. Various lower bounds have been proven for the
problem. We, however, focus on the problem under a nonstandard, though very
feasible, model to achieve a constant time solution.

Fredman and Saks actually suggested the RAMBO model in connection with
the Prefix Sum problem. They claim, with no hint of how it may be done, that
Prefix Sum mod 2 can be solved in constant time under the model. We show
how this can be done not only for Prefix Sum mod 2 but for Prefix Sum modulo
an arbitrary universe size M ≤ 2Θ(b/n) where b is the word size, n = dlg Ne and
N is the size of the array.

The RAMBO model, besides the usual RAM operations (cf. [27]), also has a
part of memory where a bit may occur in several registers or in several positions
in one register. The way the bits occur in this part of the memory has to be
specified as part of the model. One example of such a memory variant is a
square of bits with b rows and b columns. A b-bit word can be fetched either
as a row or a column. In such a memory each bit can be accessed either by the
row word or the column word.

The form of RAMBO used by Brodnik et al. [6] to solve the priority queue
problem in O(1) worst case time makes use of words corresponding to the leaves
of a balanced binary tree. Each node of the tree contains a flag bit and each such
word contains the flags along the root to leaf path, so, for example, the flag at
the root is in all of these words. The specific architecture was called Yggdrasil
after the giant ash tree linking the worlds in Norse mythology. That variant has
been implemented in hardware [18] and the actual rerouting of the bits on a
word fetch is not difficult. In this paper we modify the Yggdrasil variant slightly
and solve the Prefix Sum problem. This gives further evidence of the value of
such an architecture, at least for a special purpose processor.

Now let us formally define the Prefix Sum problem:

Definition 1 The Prefix Sum problem is to maintain an array, A, of size N ,
and to support the following operations:
Update(j, ∆) A(j) := A(j) + ∆

Retrieve(j) return
∑j

i=0 A(i)
where 0 ≤ j < N .



An O(1) Solution to the Prefix Sum Problem 105

Fredman showed that, under the comparison based model of computation, an
O(lg N) solution exists for the Prefix Sum problem [9].

The problem can be generalized in several ways and we start by adding
another parameter, k to the Retrieve operation. This parameter is used to
tell the starting point of the array interval to sum over. Hence, Retrieve(k,j)
returns

∑j
i=k A(i), where 0 ≤ k ≤ j < N . This variant is usually referred

to as the Partial Sum or Range Sum problem. The Partial Sum problem can
be solved using a solution to the Prefix Sum problem (Retrieve(k,j) =

Retrieve(j) - Retrieve(k-1)). In fact, the two problems are often used in-
terchangeably.

Furthermore, there is no obvious reason to only allow addition in the Update
and Retrieve operations. We can allow any binary function, ⊕, to be used.
In fact we can allow the Update operation to use one function, ⊕u, and the
Retrieve operation to use another function, ⊕r. We will refer to this variant
of the problem as the General Prefix Sum problem.

Moreover, one can allow array position to be inserted at or deleted from
arbitrary places. Hence, we can have sparse arrays, e.g. an array where only
A(5) and A(500) are present. Positions which have not yet been added or have
been deleted have the value 0. We refer to this variant as the Dynamic Prefix
Sum problem. Brodnik and Nilsson [21, pp 65-80] describe a data structure they
call a BinSeT tree which can be modified slightly to support all operation of
the Dynamic Prefix Sum problem in O(lg N) time.

The Searchable Partial Sum problem extends the set of operations with a
select(j) operation which finds the smallest i such that

∑i
k=0 A(k) ≥ j [23].

Hon et al. consider the Dynamic version of the Searchable Partial Sum problem
[16]. Another generalization is to use multidimensional arrays and this variant
has been studied by the data base community [4, 12, 13, 15, 24, 25].

Several lower bounds have been presented for the Prefix Sum problem: Fred-
man showed a Ω(lg N) algebraic complexity lower bound and a Ω(lg N/ lg lg N)
information-theoretic lower bound [9]. Yao [29] has shown that Ω(lg N/ lg lg N)
is an inherent lower bound under the semi-group model of computation and
this was improved by Hampapuram and Fredman to Ω(lg N) [14]. We side step
these lower bounds by considering the RAMBO model of computation [5, 10].

As with all RAM based model we need to restrict the size of a word which
can be stored and operated on. We denote the word size with b and assume that
b is an integer power of 2 which is true for most computers today. A bounded
word size also implies a bounded universe of elements that we store in the
array. We use M to denote the universe size. Hence all operations ⊕ have to be
computed modulo M and we require that each of the operands and the result
are stored in one word.

We will use n and m to denote dlg Ne and dlg Me respectively. Hence, N ≤
2n and M ≤ 2m. Both n and m are less than or equal to b, (n, m ≤ b). In one
of the solutions we actually require that nm ≤ b.

In Sect. 2 we show a O(1) solution to the Prefix Sum problem under the
RAMBO model using a modified Yggdrasil variant. In Sect. 3 we discuss a



106 A. Brodnik et al.

O(lg N) solution to the General and Dynamic Prefix Sum problems and finally
conclude the paper with some open questions in Sect. 4.

2 An O(1) Solution to the Prefix Sum Problem

In our O(1) solution to the Prefix Sum problem we use a complete binary tree
on top of the array (Fig. 1). We label the nodes in standard heap order, i.e.,
the root is node ν1 and the left and right children of a node νi are ν2i and ν2i+1

respectively. In each node we store m bits representing the sum of the leaves in
the left subtree. Since we build a complete binary tree on top of the array we
assume that N = 2n (if this is not true we still build the complete tree and in
worst case waste space proportional to N/2 − 1). We do not store the original
array A since its values are stored implicitly in the tree. The only value not
stored in the tree (if N = 2n only) is A(N −1) and we store this value explicitly
(vn1). Formally we define:

Definition 2 A N-m-tree is a complete binary tree with N leaves in which the
internal nodes (νi) store a m-bit value. In addition, a m-bit value is stored
separately (vn1).

To update A(j) (Algorithm 1) in this structure we have to update all the
nodes on the path from leaf j to the root in which j belongs to the left subtree.
To Retrieve(j) (Algorithm 2) we need to sum the values of all the nodes on
the path from leaf j + 1 to the root in which j + 1 belongs to right subtree.
Note that the path corresponding to array position j starts at node νN/2+j/2.

ν4 ν6 ν7

ν9

ν2

ν1

ν3

ν5

ν10 ν11 ν12 ν13 ν14 ν15ν8

1 3 4 5 6 7 9 10 11 12 13 140 2 15

1412

0 ⊕ 1 ⊕ 2 ⊕ 3

0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕ 6 ⊕ 7

8 ⊕ 9 ⊕ 10 ⊕ 11

0 ⊕ 1 4 ⊕ 5 8 ⊕ 9 12 ⊕ 13

1086420

8

Fig. 1. Complete binary tree on top of A. Nodes are storing the sum of the values in
the leaves covered by the left subtree.

The method described above implies a O(lg N) update and retrieval time
in the RAM model. To achieve constant time update and retrieval we use a
variant of the RAMBO model similar to the Yggdrasil variant. In the Yggdrasil
variant, registers overlap as paths from leaf to root in a complete binary tree
with one bit stored in each internal node [6]. We generalize the Yggdrasil variant
and let it store m bits in each node and call this variant m-Yggdrasil. In any



An O(1) Solution to the Prefix Sum Problem 107

update(j, ∆)

if (j == N-1)

vn1 = vn1 + ∆;

else

i = N + j;

while (i > 1)

next = i div 2;
if (i mod 2 == 0)

νnext = νnext + ∆ mod M);

i = next;

Alg 1: Updating of a N-m-tree in O(lg N) time.

retrieve(j)

if (j == N-1)

sum = vn1;

i = N + j;

else

sum = 0;

i = N + j + 1;

while (i > 1)

next = i div 2;
if (i mod 2 == 1)

sum = sum + νnext mod M;

i = next;

return sum;

Alg 2: Retrieve in a N-m-tree in O(lg N) time.

m-Yggdrasil, register reg[i] corresponds to the path from node νN/2+i to the
root of the tree. Each register consists of nm ≤ b bits. In total the m-Yggdrasil
registers need (N − 1) · m bits.

Now, we use the registers from m-Yggdrasil to store the nodes of our tree.
The path corresponding to array position j is stored in reg[j/2] and hence all
nodes along the path can be accessed at once.

We let levels of the tree be counted from the internal nodes above the leaves
starting at 0 and ending with n− 1 at the root. If the ith bit of j is 1 then j is
in the right subtree of the node on level i of the path and in the left otherwise.
Hence j can be used to determine which nodes along the path should be updated
(nodes corresponding to bits of j that are 0) and which nodes should be used
when retrieving a sum (nodes corresponding to bits of j that are 1).

When updating the m-Yggdrasil registers (Algorithm 3), for all bits of j, if
the ith bit of j is 0 we add ∆ to the value of the ith node along the path from
j to the root. To do this we shift ∆ to the corresponding position (∆ << (im))
and add to reg[j/2]. Instead of checking whether the ith bit of j is 0 we can



108 A. Brodnik et al.

mask the shifted ∆ with a value based on not j. The value consists of, if the
ith bit of not j is 1, m 1s shifted to the correct position and m 0s otherwise.

update(j, ∆)

if (j == N-1)

vn1 = vn1 + ∆;

else

for (i=0; 0 < n; i++)

if (((j >> i) and 1) == 0)

reg[j/2] = reg[j/2] + (∆ << (i*m));

Alg 3: Updating of a N-m-tree stored in m-Yggdrasil memory (O(lg N) time).

Actually, as long as the binary operation only affects the m bits that should
be updated we can use word-size parallelism (cf. [5]) and perform the update
of all nodes in parallel. In Sect. 2.1 we show that addition modulo M can be
implemented affecting only m bits.

We use two functions (dist(i) and mask(i)) to simplify the description of
the update and retrieve methods. The function dist(i), (0 ≤ i < 2m) computes
nm-bit values. The values are n copies of the m bits in i. For example, given
m = 3, n = 4 dist(010) is 010010010010. The function mask(i), (0 ≤ i < 2n)
also computes nm-bit values. These values are computed as follow: bit j (0 ≤
j < n) of i is copied to bits jm..(j + 1)m− 1. For example, given m = 3, n = 4,
mask(1001) is 111000000111. Both these functions can be implemented by using
word-size parallelism [5].

We can update the tree in constant time using the procedure in Algorithm 4.
First we make n copies of ∆ and then mask out the copies we need. Then finally
we add the value in reg[j/2] and the masked distributed ∆ and store the result
in reg[j/2]. For the case when j = N − 1 we simply add vn1 and ∆ and store
it in vn1. This gives us the following lemma:

Lemma 1 The update operation of the Prefix Sum problem can be supported
in O(1) when part of the N-m-tree is stored in a m-Yggdrasil memory.

update(j, ∆)

if (j == N-1)

vn1 = vn1 + ∆;

else

reg[j/2] = reg[j/2] + (dist(∆) and mask(not j));

Alg 4: Updating of a N-m-tree stored in m-Yggdrasil memory using word size
parallelism (O(1) time).



An O(1) Solution to the Prefix Sum Problem 109

To support the retrieve method in constant time we use a table SUM[i],
(0 ≤ i < 2nm) with m-bit values that are the sum modulo M of the n m-bit
values in i.

To retrieve the sum (Algorithm 5) we read the register reg corresponding
to j and mask out the parts we need. Then we use the table SUM to calculate
the sum. Finally, we add vn1 to the sum if j = N − 1.

retrieve(j)

if (j == N-1)

v = reg[j/2] and mask(j);

else

v = reg[(j+1)/2] and mask(j+1);

sum = SUM[v];

if (j == N-1)

sum = vn1 + sum;

return sum;

Alg 5: Retrieve in a N-m-tree stored in m-Yggdrasil memory using word size
parallelism (O(1) time).

The space needed by the table SUM is 2nm · m = N lg M · m = M lg N · m,
which is rather large. In order to reduce the space requirement we can reduce,
by half, the number of bits used as index into the table. This gives us a space
requirement of

√
M lg N ·m. We do this by shifting the top n/2 m-bit values from

reg down and computing the sum modulo M of these values and the bottom
n/2 values. Then this new (n/2)m-bit value is used as index into SUM instead.

We can actually repeat this process until we get the m-bit we desire, and
hence we do not need the table SUM (Algorithm 6). However, this does increase
the time complexity to O(lg n) = O(lg lg N). This gives us a trade off between
space and time. By allowing O(ι) steps for the retrieve method we need M lg N/2ι ·
m bits for the table.

Lemma 2 The retrieve operation of the Prefix Sum problem can be supported
in O(ι + 1) time using O(M lg N/2ι · m + m) bits of memory in addition to the
N-m-tree. Part of the N-m-tree is stored in m-Yggdrasil memory.

By adjusting ι we can achieve the following result:

Corollary 1 The retrieve operation of the Prefix Sum problem can be supported
in:

– O(1) time using O(M (dlg Ne)/2·m) bits of memory in addition to the N-m-tree,
with ι = 1.

– O(lg lg N) time using O(m) bits of memory in addition to the N-m-tree, with
ι = dlg lg Ne.



110 A. Brodnik et al.

retrieve(j)

if (j == N-1)

v = reg[j/2] and mask(j);

else

v = reg[(j+1)/2] and mask(j+1);

ι = dlg ne;
do

ι = ι-1;

vnew = (v>>((2ι)m)) + (v and ((1<<((2ι)m))-1));

v = vnew;

while (ι > 0)

sum = v;

if (j == N-1)

sum = vn1 + sum;

return sum;

Alg 6: Retrieve in a N-m-tree stored in m-Yggdrasil memory using no additional
memory (O(lg lg N) time).

2.1 Addition modulo M

Let us consider the two m-bit operands a and b which are split into two pieces
each (alo, ahi, blo and bhi). The two pieces alo and ahi contain the m/2 least and
most significant bits of a respectively (similarly for blo and bhi). Note that alo

and the other pieces are stored in m-bit but only the m/2 least significant bits
are used.

We can now add the the two operands

c1lo = alo + blo (1)

c1hi = ahi + bhi . (2)

However, both c1lo and c1hi might need m/2+1 bits for its result. The m/2+1
bit of c1lo should be added to c1hi and we split c1lo into two pieces (c1lo,lo and
c1lo,hi) and add the most significant bits to c1hi,

chi = chi + clo,hi (3)

clo = clo,lo . (4)

The result of a+ b is now stored in clo and chi and we have not used more than
m bits in any word. However, in total m + 1 might be needed for the value.

To compute c mod M we can check whether or not c − M >= 0, if so
c mod M = c − M and otherwise c mod M = c. However, we do not want to
produce a negative value since that would affect all the bits in the word. Instead
we add an additional 2m to the value and compare to 2m, i.e. c + 2m − M ≥
2m. Since 2m − M ≥ 0 this will never produce a negative value. Note that
c + 2m − M < M − 1 + M − 1 + 2m − M = M + 2m − 2 <= 2m+1 − 2 which



An O(1) Solution to the Prefix Sum Problem 111

only needs m + 1 bits to be represented. Hence, if we calculate this value using
the strategy above we will not use more than m bits of any word.

Furthermore, a straight forward less than comparison can not be performed
using word-size parallelism since all bits of the words are considered. Instead
we view the comparison as a check whether the m +1st bit is set or not. If it is
set the value is larger than or equal to 2m (cf. [19,22]). We can actually create
a bit mask which consists of m 1s if the m + 1st bit is set and m 0s otherwise

d = (c + 2m − M and 2m) − ((c + 2m − M and 2m) >> m) . (5)

This bit mask d can then be used to calculate res = c mod M . Since res is
equal to c − M if the m + 1st bit of c is set and c otherwise we get

res = ((c − M) and d) or (c and not d) . (6)

When computing c−M we must make sure that we do not produce a negative
value. This is done by using a similar strategy as for addition above, but we
also set any of the bits in chi,hi to 1 during the computation. If c−M is greater
than 0 this will not affect the result and otherwise the result will not be used.

We have a procedure which can be used to compute (a+ b) mod M without
using more than m bits in any word. Hence, word-size parallelism can be used
and we get our main result from this section:

Theorem 1 Using the N-m-tree together with the m-Yggdrasil memory we can
support the operations of the Prefix Sum problem in O(ι+1) time using (N−1)m
bits of m-Yggdrasil memory and O(Mn/2ι · m + m) bits of ordinary memory.

3 An O(lg N) Solution to the General and Dynamic
Prefix Sum Problem

We can actually partially solve the General Prefix Sum problem using the N-m-
tree data structure and the m-Yggdrasil variant of RAMBO. All binary opera-
tions such that all elements in the universe have a unique inverse element (i.e.
binary operations which form a Group with the set of elements in the universe)
and only affect the m bits involved in the operation can be supported. This
includes for example addition and subtraction but not the maximum function.

To solve the General and Dynamic Prefix Sum problem for semi-group oper-
ations we modify the Binary Segment Tree (BinSeT) data structure suggested
by Brodnik and Nilsson. It was designed to handle in-advance resource reser-
vation [21, pp 65-80] and if it is slightly modified it can solve both the General
and Dynamic Prefix Sum problems efficiently. The original BinSeT stores, in
each internal node, µ, the maximum value over the interval, and δ, the change
of the value over the interval. Further, it also stores τ , the time of the left most
event in the right subtree.

Instead of storing times as interval dividers we store array indices. To solve
the Dynamic Prefix Sum problem with addition as operation and we only need



112 A. Brodnik et al.

to store δ. When solving the General and Prefix Sum problem one need to store
information depending on the two binary operations ⊕u and ⊕r.

When adding a new array position or deleting an array position the tree is
rebalanced (cf. [1,20]) and hence the height is always O(lg N). When updating
a value in an array position we start at the root and search for the proper leaf
using the interval dividers. During the back tracking of the recursion we update
the information stored in each affected node.

At retrieval we process the information of the proper nodes when traversing
the tree. Since the height of the tree is O(lg N) all the operations can be per-
formed in O(lg N) time. This matches the lower bound by Hampapuram and
Fredman [14]

BinSeT consists of O(N) nodes when we use it to solve the General Prefix
Sum. Each node contains O(1) m-bit values and hence the total space require-
ment is O(Nm) bits.

4 Conclusion

The Dynamic and General Prefix Sum problems can both be solved optimally
in Θ(lg N) using O(Nm) space under the comparison based model with semi-
group operations.

The Prefix Sum problem can be solved in O(1) time under the RAMBO

model when we allow O(
√

M (dlg Ne) · m) bits of ordinary memory and O(Nm)
bits of m-Yggdrasil memory to be used. This is a huge amount of ordinary
memory and if we restrict the space requirement to be sub exponential in both
N and M (O(m) bits of ordinary memory and O(Nm) bits of m-Yggdrasil
memory) we need to used O(lg lg N) time. We know of no better lower bound
under RAMBO than the trivial Ω(1) when only allowing O((NO(1) +MO(1))m)
space.

Further, it is currently unknown if one can achieve a O(1) solution to the
Dynamic and General Prefix Sum problems using the RAMBO model. Another
open question is whether or not it is possible achieve a o(lg N) solution to the
multidimensional variant.

Acknowledgment

We thank the anonymous reviewers for helpful comments and additional refer-
ences.

References

1. G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organization of
information. In Soviet Math. Doclady 3, pages 1259–1263, 1962.



An O(1) Solution to the Prefix Sum Problem 113

2. Alok Aggarwal and Ashok K. Chandra. Virtual memory algorithms (prelimi-
nary version). In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, pages 173–185. ACM Press, May 2–4 1988.

3. P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences, 65(1):38–72, 2002.

4. Fredrik Bengtsson and Jingsen Chen. Space-efficient range-sum queries in OLAP.
In Yahiko Kambayashi, Mukesh Mohania, and Wolfram Wöß, editors, Data Ware-
housing and Knowledge Discovery: 6th International Conference DaWaK, volume
3181 of Lecture Notes in Computer Science, pages 87–96. Springer, September
2004.

5. Andrej Brodnik. Searching in Constant Time and Minimum Space (Minimæ Res

Magni Momenti Sunt). PhD thesis, University of Waterloo, Waterloo, Ontario,
Canada, 1995. (Also published as technical report CS-95-41.).

6. Andrej Brodnik, Svante Carlsson, Michael L. Fredman, Johan Karlsson, and J. Ian
Munro. Worst case constant time priority queue. Journal of System and Software,
78(3):249–256, December 2005.

7. Andrej Brodnik and John Iacono. Dynamic predecessor queries. Unpublished
manuscript, 2006.

8. Arash Farzan and J. Ian Munro. Succinct representation of finite abelian groups.
In Proceedings of the 2006 International Symposium on Symbolic and Algebraic
Computation, Lecture Notes in Computer Science. Springer, 2006. To appear.

9. Michael L. Fredman. The complexity of maintaining an array and computing its
partial sums. Journal of the ACM, 29(1):250–260, January 1982.

10. Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic
data structures. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 345–354. ACM Press, May 14–17 1989.

11. Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In IEEE, editor, 40th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 285–297. IEEE Computer Society,
IEEE Computer Society, October 17–19 1999.

12. Steven P. Geffner, Divyakant Agrawal, Amr El Abbadi, and T. Smith. Relatve
prefix sums: An efficient approach for querying dynamic OLAP data cubes. In
Proceedings of the 15th International Conference on Data Engineering, pages 328–
335, 1999.

13. Steven P. Geffner, Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi.
Data cubes in dynamic environments. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, pages 31–40, 1999.

14. Haripriyan Hampapuram and Michael L. Fredman. Optimal biweighted binary
trees and the complexity of maintaining partial sums. SIAM Journal on Comput-
ing, 28(1):1–9, 1998.

15. C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data
cubes. In Proceedings ACM SIGMOD International Conference on Management
of Data, pages 73–88, 1997.

16. Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data structure
for searchable partial sums. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka
Ono, editors, Algorithms and Computation – ISAAC 2003, 14th International
Symposium, volume 2906 of Lecture Notes in Computer Science, pages 505–516.
Springer, December 2003.

17. Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-
memeory machines. In van Leeuwen [28], chapter 17, pages 869–941.



114 A. Brodnik et al.

18. Roni Leben, Marijan Miletić, Marjan Špegel, Andrej Trost, Andrej Brodnik, and
Johan Karlsson. Design of high performance memory module on PC100. In Pro-
ceedings Electrotechnical and Computer Science Conference, pages 75–78, Slove-
nia, 1999.

19. Kjell Lemström, Gonzalo Navarro, and Yoan Pinzon. Practical algorithms for
transposition-invariant string-matching. Journal of Discrete Algorithms, 3(2–
4):267–292, 2005.

20. Anany Levitin. Introduction to The Design & Analysis of Algorithms. Pearson
Education Inc., Addison-Wesley, 2003.

21. Andreas Nilsson. Data Structures for Bandwidth Reservation and Quiality of Ser-
vice on the Internet. Lic. thesis, Department of Computer Science and Electrical
Engineering, Lule̊a University of Technology, Lule̊a, Sweden, April 2004.

22. W. Paul and J. Simon. Decision trees and random access machines. In Proc. Int’l.
Symp. on Logic and Algorithmic, pages 331–340, Zurich, 1980.

23. Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data
structure. In Algorithms and Data Structures, 7th International Workshop, vol-
ume 2125 of Lecture Notes in Computer Science, pages 426–437. Springer, 8–
10 August 2001.

24. Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi. Flexible data cubes
for online aggregation. In Database Theory - ICDT 2001, 8th International Con-
ference, London , UK, January 4-6, 2001, Proceedings, volume 1973 of Lecture
Notes in Computer Science, pages 159–173, 2001.

25. Mirek Riedewald, Divyakant Agrawal, Amr El Abbadi, and Renato Pajarola.
Space-efficient data cubes for dynamic environments. In Proceedings of the Inter-
national Conference on Data Warehousing and Knowledge Discovery (DaWak),
pages 24–33, 2000.

26. L. G. Valiant. General purpose parallel architectures. In van Leeuwen [28], chap-
ter 18, pages 943–971.

27. Peter van Emde Boas. Machine models and simulations. In van Leeuwen [28],
chapter 1, pages 3–66.

28. Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, volume A:
Algorithms and Complexity. Elsevier/MIT Press, Amsterdam, 1990.

29. Andrew C. Yao. On the complexity of maintaining partial sums. SIAM Journal
on Computing, 14(2):277–288, May 1985.


