
 Elsevier Editorial System(tm) for Journal Of

Computational Physics

 Manuscript Draft

Manuscript Number:

Title: Approximating the Basset force by optimizing the method of van

Hinsberg et al.

Article Type: Regular Article

Keywords: Basset, history force, window method, particle-laden, numerical

Corresponding Author: Mr. Guillermo Casas, M.D.

Corresponding Author's Institution: Barcelona Tech

First Author: Guillermo Casas

Order of Authors: Guillermo Casas; Alex Ferrer; Eugenio Oñate

Abstract: In this work we put the method proposed by van Hinsberg et al.

to the test, highlighting its accuracy and efficiency in a sequence of

benchmarks of increasing complexity. Furthermore, we explore the

possibility of systematizing the way in which the method's free

parameters are determined by generalizing the optimization problem that

was considered originally. Finally, we provide a list of worked-out

values, ready for implementation in large-scale particle-laden flow

simulations.

Suggested Reviewers: M. A. T. van Hinsberg

M.A.T.v.Hinsberg@tue.nl

Main author cited. He introduced of the method MAE.

Ksenia Guseva

ksenia.guseva@uni-oldenburg.de

Cited in the paper. Worked on the importance of history force in

particle-laden flows. Recent reports of the computational difficulties

related to memory requirements.

Patricio Moreno-Casas

patriciomoreno@miuandes.cl

First author in very recent review on methods for the calculation of the

history force. Reviewed both methods mainly used in the paper.

Significance and novelty of this paper

The paper addresses the problem of including the Basset history force in particle-laden flow
simulations, which is known to be extremely computationally expensive. However, its importance has
been stressed in several publications.

We consider the method of approximation by exponentials (MAE) presented by van Hinsberg et al. to
approximate the Basset history force in particle-laden flow simulations at low particle Reynolds
numbers. This method introduces a set of free parameters that must be determined by optimizing an
error bound. However, the original work considered only half of the parameters in the optimization
problem, leaving the remaining parameters to be determined by an heuristic argument. We consider the
full set of parameters in an extended optimization problem than turns out to be considerably more
challenging. A full worked-out list of parameters is provided in an appendix, ready for implementation.

Furthermore, for the first time the second-order-accurate extension of the method is implemented and
throughly tested, showing its remarkable accuracy and efficiency. Previous implementation of high-
order schemes (larger than one) had not been implemented together with a window method, such as the
MAE.

*Significance and Novelty of this paper

• We generalize the optimization problem that arises in the method of approximation by
exponentials of van Hinsberg et al., whose solution determines the free parameters in this
method.

• A worked out list of parameters is provided, ready for implementation.

• We provide a complete time-integration algorithm, extending it to second order by coupling it
with state-of-the-art quadrature schemes in the window region.

• We perform extensive testing to show that the method is accurate and can be used in practical
particle-laden flow simulations.

*Research Highlights

Approximating the Basset force by optimizing the method of van Hinsberg
et al.

G. Casasa,∗, A. Ferrera,b, E. Oñatea

aCIMNE Centre Internacional de Mètodes Numèrics en Enginyeria, Campus Nord UPC, Edifici C-1, c/Jordi Girona 1-3,
08034 Barcelona

bEscola Superior dEnginyeries Industrial, Aeroespacial i Audiovisual de Terrassa, Campus de Terrassa, Edifici TR45. C.
Colom, 11 08222 Terrassa, Spain

Abstract

In this work we put the method proposed by van Hinsberg et al. [12] to the test, highlighting its accuracy
and efficiency in a sequence of benchmarks of increasing complexity. Furthermore, we explore the possibility
of systematizing the way in which the method’s free parameters are determined by generalizing the opti-
mization problem that was considered originally. Finally, we provide a list of worked-out values, ready for
implementation in large-scale particle-laden flow simulations.

Keywords: Basset, history force, window method, particle-laden, numerical
2010 MSC: 00-01, 99-00

1. Introduction

The equation of motion of an isolated, small, spherical particle submerged in a Newtonian fluid is well
described by the equation proposed by Maxey and Riley [20], often referred to as the Maxey–Riley Equation,
or, MRE. It reads

mp
dv

dt
= mf

Du

Dt
+

1

2
mf

(
D

Dt

(
u +

1

10
a2∇2u

)
− dv

dt

)
+ CD

(
u− v +

1

6
a2∇2u

)
+ CB

d

dt

∫ t

t0

1√
t− s

(
u− v +

1

6
a2∇2u

)
ds + (mf −mp)g

(1)

where CD = 6πaµ, CB = 6a2√πρfµ , mp is the mass of the particle, mf is the mass of the displaced fluid
volume, a is the particle radius, ρf and µ are the density and dynamic viscosity of the fluid; and g is the
acceleration due to gravity. The vector v is the velocity of the (point-)particle and u that of the surrounding
fluid field, evaluated at the particle’s center. D/Dt denotes the material derivative of the fluid. Equation (1),5

together with v = dr/dt and the initial conditions r(t0) = r0 and v(t0) = v0 form an initial value problem
that must be solved to obtain the trajectory of the particle (where r is the particle’s position vector).

The different terms on the right hand side of (1) have distinct physical interpretations and can be identified
as: (from left to right) the force applied to the volume displaced by the particle in the undisturbed flow (FU),
the added mass or virtual mass force (FA) 1, the Stokes drag (FD), the Basset–Boussinesq history force (FH)10

and the force due to the weight of the particle minus its buoyancy (FW).
Equation (1) can be used to simulate the dynamics of a number of particles suspended in fluid, provided

that the particles are small enough, so that the flow around each of them can be accurately modelled by the

∗Corresponding author
Email addresses: gcasas@cimne.upc.edu (G. Casas), aferrer@cimne.upc.edu (A. Ferrer), onate@cimne.upc.edu (E.

Oñate)
1The form of the added mass force used here, with the material derivative applied to the field u corresponds to the more

commonly applied form of this term, derived by Auton et al. [1] for inviscid flow. This form turns out to be also accurate for
low and intermediate Reynolds numbers, as has been shown in several studies; see [21, 18, 29]. However, the difference with its
alternative, involving dv

dt
, is negligible in the range of validity of the MRE; see [20].

Preprint submitted to Journal of LATEX Templates March 9, 2017

*Manuscript
Click here to view linked References

http://ees.elsevier.com/jcomp/viewRCResults.aspx?pdf=1&docID=26379&rev=0&fileID=785623&msid={98AB847E-F897-4358-A7C1-07966613BF87}

instationary Stokes equations; and that they spend most of the time far enough from each other to justify
applying this single-particle theory [20]. Under these conditions, (1) accurately describes how the motion of15

the submerged particles is determined by the background flow field, u.
Typically, u is calculated with a suitable numerical method, such as the finite element method, on a static

mesh. Hence the relevant flow variables need to be somehow interpolated in order to have u and its needed
derivatives defined exactly at the particles’ centres. The motion of each particle can then be calculated by
solving the MRE numerically, in a stepwise fashion, alternating advances in time with updates of the fluid20

flow at the particles’ locations. A detailed review of this kind of methods, among others, is given by Loth
[15]. A discussion of alternative interpolation methods can be found in [13]. Some relevant examples of
applications of these simulation techniques are the study of turbulent dispersion of suspended particles, [26];
contaminants convection in cracks, [24]; liquid crystal growth, [5]; and transport in biological vessels, [23].

In this work, we focus on the solution of the MRE itself, avoiding any discussion about either the fluid25

calculation or the interpolation process. Instead, we make use of analytical fluid fields, which we directly
impose at the particle locations. This simplifies the arguments, eliminating any influences from interpolation
errors and from errors in the numerical solution of the Navier Stokes Equations.

Several studies have recently stressed its importance, particularly in liquid particulate flows [27, 7]. How-
ever, the inclusion of the history term in the numerical implementation of the Maxey–Riley equation is30

still widely regarded as impractical due to the large memory requirements and the corresponding overheads
involved in the calculation of the associated integral. Indeed, the following two issues arise:

A The integral is defined over the totality of the particles’ past trajectories. It is therefore necessary to keep
track of an ever-increasing number of historical flow values (per particle) to perform the quadrature.
Such number grows in proportion to the simulated duration.35

B Standard quadrature methods perform poorly due to the singularity at the upper integration limit,
requiring a large number of quadrature points per time unit to sufficiently reduce the quadrature error.

An attempt to alleviate the severity of A was put forward by Dorgan and Loth [8], with the so-called
window method. This approach takes advantage of the decreasing influence of past flow conditions on the
advancing present to avoid having to store the complete history of the particles. Unfortunately, the decay40

associated with the Basset kernel(the 1/
√
t− s prefactor of the integrand) is too slow at the very low particle

Reynolds numbers 2 that concern us, going as the inverse of the square root of time [16]. This implies that
the number of points to be recorded still has to be large, and in fact radically limiting the performance of
the method if accuracy is to be preserved [9].

The recent developments by Daitche [6] and van Hinsberg et al. [12] have certainly improved the situation.45

The first of these works addressed B through the construction of higher order schemes. The other work
addressed A with a kind of window model that approximates, rather than neglects, the tail contribution to
the Basset integral. In this work, we build upon these two methods, combining them and further adding
to the result. The focus is placed on the optimization problem that leads to the determination of the free
parameters of the model of van Hinsberg et al. We analyse the performance of the resulting algorithm in50

a succession of steps, each adding a layer of complexity toward real-world applications. Consistently, we
show its remarkable efficiency and accuracy. We are also concerned with the validity ranges and robustness
of the method, about which we draw some generic recommendations. Finally, a worked out list of optimal
parameters is included (Appendix E), ready to be used in numerical implementations for particle-laden flow
simulations.55

2. Window models and the Hinsberg method

2.1. Preliminaries

Once discretized in time, the Basset–Boussinesq history term, FH will have been replaced by its finite
difference counterpart. That is, a linear combination of the integral itself evaluated at different times.

2The particle Reynolds number is defined as Rep = aw/ν, where w is the modulus of the slip velocity. The MRE is derived
under the assumption that Rep � 1.

2

Therefore, the problem of how to evaluate such term becomes that of finding a way to calculate the integral
itself, rather than its derivative, at any given point in time. Let us start by recalling the exact form of the
integral: ∫ t

t0

1√
t− τ

(
u− v +

1

6
a2∇2u

)
dτ (2)

which can be rewritten as

IB(t) :=

∫ t

t0

KB(t− τ)f(τ) dτ (3)

where KB(x) := 1/
√
x defines the Basset kernel function and f(x) a differentiable vector field (assuming the

unknowns to be smooth enough). Thus, the integral above can be understood as the convolution of f with
the kernel KB . Note that, with this notation, we have FH = CBdIB(t)/dt. It is also possible to consider a
different form of the Basset integral, where the derivative moves under the integral sign; see Appendix A.
Specifically

d

dt
IB(t) =

∫ t

t0

KB(t− τ)
df(τ)

dτ
dτ + KB(t− t0)f(t0) ∀t > t0 (4)

where the alternative form is on the right-hand side. The latter was precisely the one used in [12], though its
second term vanished because the initial time was taken as t0 = −∞. Nonetheless, the same method can be
applied to both situations; it is only necessary to correctly identify the field that must be considered: either60

f , or its derivative 3. As pointed out by [6], the first form is very convenient because it eliminates the need
to compute either any additional derivatives or the second term in (4). It is for this reason that we have also
adopted this form in this work.

In this section we present our algorithm for the integration of the MRE, describing it in detail. We
start with the hybrid polynomial interpolation/analytic approach, which we use for the computation of the65

integral over the more recent history. Then, we introduce the method of van Hinsberg et al., which defines
how the integral over the remaining history is calculated. Finally, we explain how both approaches are
stitched together and implemented in the time integration scheme of the full MRE.

2.2. Hybrid polynomial interpolation/analytic approach

The idea of using a polynomial interpolation to approximate only the nonsingular part of the integrand70

(f in Equation (3)) was introduced in [12], who used linear polynomials and obtained a first-order accurate
method. That is, they showed the quadrature error to scale with h2, where h is the distance between successive
quadrature points. This performance beat standard methods (for example, the second order Euler-McLaurin
formula, of order one half) but also the fractional derivative approach used by Bombardelli et al. [2], which
is first-order-accurate. The method consists in the following steps:75

1. Subdivide the integration domain, [t0, t] in n subintervals [t0, t0 + h], . . . , [tn−1, tn], with t = tn. The
boundaries of these intervals are defined by all the scheme’s intermediate time integration points up to
the present time, t.

2. Interpolate f in the interior of each interval with a linear polynomial.

3. Replace f by its interpolated approximation back into the integral and find its primitive (it has a simple80

analytical formula).

4. Reorder the resulting expression as a weighed sum of the values f0 := f(t0), . . . , fn := f(tn). The result
is the discretized version of IB .

5. Plug the expression into a suitable time integration scheme for the MRE. The resulting algorithm
expresses the current force as a function of the unknowns at all the past (and current) time steps.85

3Such derivative would involve a finite difference representation of the unknowns and the fluid field values under the integral
sign, leading to a stencil involving the linear combination of quadratures at different points in time.

3

The method was recently extended to second and third order accuracy by Daitche [6], who employed a
type of semi-implicit Adams-Bashforth scheme for the time-integration and provided a detailed analysis of
its performance. We will thus hereafter to it as the Daitche method. Its second-order-accurate variant has
been our specific choice in this work.

2.3. Addressing memory requirements: window methods90

Even though Daitche’s method achieves considerable improvements in accuracy, therefore allowing for
larger time steps, its memory requirements are still large. In systems with many particles, the necessity of
keeping track of the complete history of each of them becomes highly demanding. Indeed, let us for instance
consider a system with 105 particles. Assuming we take a time step of 0.01s and a simulation duration of 10s
(as done in [6]), the necessity of storing one vector per time step and particle leads to a total 108 vectors or,95

roughly, about 1 GB in memory (assuming a vector takes up 3× 8 bytes) by the end of the simulation!. As
mentioned in the introduction, the influence of past values decays as time passes, and window methods are
design to take advantage of this fact to avoid having to store the complete history of the particles.

The simplest approach consists in neglecting the contribution of the particle’s history that is older than
some cut-off time t− tw, where t is the current time. One refers to tw as the window time, because only the
history within [t− tw, t] is taken into account. That is, one considers∫ t

t0

KB(t− τ)f(τ) dτ ≈
∫ t

t−tw
KB(t− τ)f(τ) dτ (5)

which is equivalent to ∫ t−tw

t0

KB(t− τ)f(τ) dτ ≈ 0 (6)

The integral on the right-hand side of (5) becomes the window contribution, and the integral one on left-hand
side of (6) the tail contribution. The idea is to employ a suitable method, such as the Datiche method, to100

calculate the window contribution and to neglect the rest, thereby saving all the associated memory space
(and avoiding the corresponding computations). As such, this method corresponds to what is known as the
window method in literature, following its introduction by Dorgan and Loth [8]. These researchers applied it
to the case of finite particle Reynolds numbers, taking advantage of the faster decaying nature of the history
force kernel in this case 4, see for instance [16]. Here we apply the term window method generically to any105

method that records only a limited part of the particles’ most recent history. The main weakness of the
original window method is its poor accuracy, precisely due to the slow decay of the convolution kernel in time
(as the inverse of the square root for the Basset kernel); because one is thus forced to increase tw significantly
to keep the tail truncation error low, at the cost of sacrificing potential memory savings.

A much more accurate window method was proposed by van Hinsberg et al. [12] (henceforth referred to as110

MAE for Method of Approximation by Exponentials). In it, the tail contribution is not neglected but rather
approximated. Specifically, while in the window region the kernel is kept exactly equal to the Basset kernel,
in the tail region it is only approximated by a different, special kernel. The advantage of this special kernel
is that it leads to a recursive expression of the evolution of the Basset integral in time. That is, the evolution
of the integral from one time step to the next can be expressed in terms of its value in the previous time step115

plus a contribution that depends only on the recent history. Despite its relatively recent development, the
method has already found application in the study of particle-laden turbulence; see [4], [14] and [17].

2.4. The MAE: methodology

Let us review the method in sufficient detail. We begin by replacing the Basset kernel KB : (0, t− t0]→ R
with the modified kernel K : (0, t− t0]→ R, defined by

K(τ) =

{
KB(τ) if τ ≤ tw
KT (τ) if τ > tw

(7)

4The exact formulation includes an algorithm to approximately determine tw so as to minimize the truncation error. But
since we would like to have tw as small as possible, we cannot in general apply it without running into a conflict

4

where KB(τ) = 1/
√
τ , as before, and the tail kernel is defined by

KT (τ) =

m∑
i=1

aiKi(τ) (8)

with
Ki(τ) = α(ti)e

β(ti)τ i = 1, . . . ,m (9)

and

α(ti) =

√
e

ti
, β(ti) = − 1

2ti
(10)

Which introduces 2m free parametric constants, a1, . . . , am and t1, . . . , tm. In other words: we replace the
Basset kernel by a linear combination of exponentials at the tail. As for the form of the functions, van120

Hinsberg et al. reason as follows: Let us consider the unknown parameters t1, . . . , tm to be a set of points
that belong to the interval (0,∞). Let us then impose the condition that the graph of each K1, . . . ,Km be
tangent to that of KB at the these points t1, . . . , tm. This condition looks to align the exponentials with
the reference curve, so that a much smaller set of good candidate exponential approximants is considered.
Precisely setting α and β as in (10) fulfils this purpose. The hope is that this choice will later facilitate the125

determination of the sets of parameters ai and ti.
Now, instead of (5), one has∫ t

t0

KB(t− τ)f(τ) dτ ≈
∫ t

t−tw
KB(t− τ)f(τ) dτ +

∫ t−tw

t0

K(t− tw)f(τ) dτ = Fw(t) + Ft(t) := I (11)

where we assume tw ≥ t0. Thus, the whole integral becomes the sum two terms: the window contribution,
Fw(t), and the tail contribution, Ft(t). The former can be calculated, for example, with the polynomial
interpolation/analytic approach. In particular a first-order accurate version of this method was used in [12].
On the other hand, Ft(t) is calculated as explained below.130

The use of exponentials to approximate the tail of the kernel becomes the key that permits a recursive
calculation of the tail integral, which leads to a radical decrease in memory requirements. It is not difficult
to prove the following relations [12]

Ft(t) =

m∑
i=1

aiFi(t)

Fi(t) = Fd,i(t) + Fr,i(t)

(12)

where

Fd,i(t) =

∫ t−tw

t−h−tw
Ki(t− τ)f(τ) dτ

Fr,i(t) = eβ(ti)hFi(t− h)

(13)

and where a suitable temporal discretization of Fd,i must be provided. Note how only recent values of the
integrand are involved in the calculation of Fi(t); all the information regarding older values is extracted, in
(13), by referring to the old value of the integral itself.

Of course, it is still left to define parameters ai and ti. Let us for this purpose consider the error associated
with the approximation of KB by K, which we would like to have as small as possible:

∣∣FH(t)− FH,K(t)
∣∣ = CB

∣∣∣∣∣
∫ t

t0

(KB −K)(t− τ)
df(τ)

dτ
dτ + (KB −K)(t− t0)f(t0)

∣∣∣∣∣ (14)

where FH,K is the approximate history force, obtained using I in place of IB and |·| denotes the usual vector
modulus. Note that we have employed the RHS form of Equation (4) also for the kernel K. This is possible,

5

given the regularity of K, see Appendix A. Furthermore, it is straightforward to generalize the bound given
in [12], see Appendix B:

∣∣FH(t)− FH,K(t)
∣∣ ≤ CB ‖f‖∞√

tw

(∣∣∣KB(1)− K̃(1)
∣∣∣+

∫ t̃0

1

∣∣∣∣ d

dt̃

(
KB(τ)− K̃(τ)

)∣∣∣∣ dτ

)
(15)

where K̃ is obtained from K by replacing the ti with their rescaled analogues, t̃i = ti/tw and t̃0 = (t− t0)/tw
and ‖·‖∞ is defined by

‖f‖∞ = inf
{
C : |f | ≤ C a.e.

}
(16)

In fact, these authors considered only the limit t0 → −∞, at which the first term in the parenthesis in (15)
vanishes. Their interest was therefore to find a good approximation for long simulation times. Indeed, by
taking this limit in (15), we recover the bound derived by [12]:

∣∣FH(t)− FH,K(t)
∣∣ ≤ CB ‖f‖∞√

tw

(∣∣∣1− K̃(1)
∣∣∣+

∫ ∞
1

∣∣∣∣ d

dτ

(
KB(τ)− K̃(τ)

)
dτ

∣∣∣∣
)

(17)

Now, an important observation to be made at this point is that the bound in (17) is also a bound for all
values t0 > −∞. This means it is legitimate to take it as a reference for real, finite-time simulations. Like135

Hinsberg et al. we now concentrate in this bound, with the idea of minimizing it.
Hinsberg et al. point out that the minimization of the quantity between parenthesis on the right hand

side of the inequality (16) is not amenable to the standard Newton–Raphson algorithm. They propose the
following substitute objective function, which is differentiable with respect to the unknown parameters ai
and ti: (

1− K̃(1)
)2

+

∫ ∞
1

τ

(
d

dτ

(
KB(τ)− K̃(τ)

))2

dτ (18)

The first step in the optimization procedure suggested by the same researchers is to “make a reasonable
choice for t̃i”; and then to calculate the optimal ai parameters by applying Newton–Raphson’s algorithm.
About the choice of the t̃i, the only indications are to make the choice of t̃i so as to they cover a great range,
making the separations smaller as the values become smaller. A single example of t̃i values was provided140

by [12], specifically, the 10-member set {0.1, 0.3, 1, 3, 40, 190, 1000, 6500, 50000}, for which the corresponding
Newton–Raphson-averaged values ai were also provided.

The method has proved remarkably effective in reducing the computational cost of the simulations; see
[12], [22] as originally formulated. Nonetheless, it still leaves room for improvement. Specifically, the following
issues are not covered:145

a) the possibility of having a nonzero initial relative velocity, which is not taken into account

b) the unexplored possibility of using a different time step for the quadrature

c) the choice of the ti, which is largely heuristic

Point a) we have briefly touched upon, showing that the method’s bound is applicable in this case. In any
case, we do not pursue here an adaptable method which should include the dependence in time of the kernel’s150

free parameters. Point b) is altogether left for future work. Point c), however, is the main concern of this
paper, and, in particular, the subject of Section 3.

2.5. Full algorithm

Let us finally detail the specifics of the numerical implementation. We have already mentioned that
the full algorithm is obtained by combining the hybrid polynomial interpolation/analytic approach for the
integration of the window term with the MAE to approximate the tail contribution. The first method is
accurate, requiring fewer time-steps per unit simulated time; the second avoids having to store most of the
particle’s history, leading to important memory savings. The algorithm closely resembles the one by [6], to
which we have applied the required modifications. Let us start by rewriting the MRE as

(mp +
1

2
mf)

dv

dt
= FNH + FH (19)

6

where FNH stands for the ’non-memory’ forces, that is

FNH = F ∗U + FD + FH + FW (20)

and where now

F ∗U = FU +
1

2
mf

(
Du

Dt
+

1

10
a2 d

dt

(
∇2u

))
(21)

The added mass force FA has thus been split in two: one part has been moved to the LHS of the MRE and
the rest has been absorbed, along with FU , into F ∗U , which now holds the non-historic contribution from the
fluid acceleration. By integrating both sides of (19) over (t, t+ h), we obtain

v(t+ h) = v(t) +
1

mp +
mf

2

(
H(t+ h)−H(t) +

∫ t+h

t

FNH dτ

)
(22)

where

H(s) := CB

∫ t

t0

1√
t− τ

(
u− v +

1

6
a2∇2u

)
dτ (23)

The discretization of the integral term in (22) can be done for a variety of finite difference schemes. Here
we have chosen the Adams–Bashforth Formulas, as in [6]. On the other hand, the H-terms are partitioned
according to the MAE, see (11), as

H(s) = Hw(s) + Ht(s) (24)

and where Hw(s) is calculated with the Daitche method, while Ht(s) is calculated according to (11), (13)
and (12), see Section 2.4. The algorithmic details concerning the latter term can be found in the Appendix
B. Furthermore, and similarly to what has been done with FA, the term Ht,n+1, which also contains a term
proportional to vn+1, is split and the latter is sent to the LHS of the equation, leaving the modified term
H∗t,n+1 on the RHS. By doing so, the equations become semi-implicit. In the work of [12] it was found that
the accuracy and stability of the resulting algorithm improved greatly, avoiding the need for extremely small
time-steps. Our preliminary calculations indeed confirmed the same tendency. Denoting the time stepping
index as k, the resulting first-order scheme (used in the initialization) reads

rk+1 = rk + hvk +O(h2)

vk+1 = vk +
h

mp + 1
2mf + 6a2

√
πρµφh αn0

(
FNH,k + H∗t,α,k+1 −Hα,k

)
+O(h2)

(25)

while the second order version (used elsewhere) is

rk+1 = rk +
h

2
(3vk − vk−1) +O(h3)

vk+1 = vk +
h

mp + 1
2mf + 6a2

√
πρµφh βn0

(
3

2
FNH,k −

1

2
FNH,k−1 + H∗t,β,k+1 −Hβ,k

)
+O(h3)

(26)

where the subscripts indicate the time-step at which each term must be evaluated and where and extra index
(α or β) has been added to the H∗t terms to indicate which formula (first or second order, see Appendix C)155

must be used in each case.

3. Optimization problem: determining the ai and the ti

In this section we generalize the optimization problem considered in [12] in order to fix the free parameters
ai and ti. First, we pose the problem in a mathematically sound setting. We then present several alternative
options to circumvent some of the difficulties brought about by the original formulation. Next, we explore160

the behaviour of the different options, which show significant differences in behaviour. Finally, we present
the results for the different alternatives. The best ones (listed in Appendix E) are used in the subsequent
chapters.

7

3.1. Posing the optimization problem

Let us start by making explicit the dependence of the functions involved. Re-expressing the modified
kernel (7) in terms of ai and ti, we obtain

K̃T (τ̃ , ai, t̃i) =
∑ ai√

t̃i
e

1
2 (1− τ̃

t̃i
)
. (27)

and the Basset kernel is

KB(τ̃) =
1√
τ̃

(28)

For the sake of a compact notation, we define the kernel approximation error as the following function:

eK(τ̃ , ai, t̃i) = KB(τ̃)− K̃T (τ̃ , ai, t̃i). (29)

We would like to minimize the error in the calculation of the history force, FB . However the force depends
on the unknown relative flow and thus we must settle for minimizing its bound, given by Equation (17). This
is equivalent to minimizing

I1(ai, t̃i) =
∣∣∣eK(1, ai, t̃i)

∣∣∣+

∫ ∞
1

∣∣∣∣ ∂∂τ̃ eK(τ̃ , ai, t̃i)

∣∣∣∣ dτ̃ . (30)

Anticipating the numerical difficulties associated with this cost function, we set up the minimization problem
leaving the cost function unspecified so that alternative cost functions can be later considered as follows

minimize
ai,t̃i

I(ai, t̃i)

subjected to: 0 ≤ ai ≤ 1
0 ≤ t̃i

(31)

where i takes integer values from 1 to m and I(ai, t̃i) stands for a general objective function. For example,165

one of the alternatives is to consider I ≡ I1.
Let us discuss this set-up in some detail. Regarding the design variables ai, the zero lower bound is

imposed in order to avoid exponentials (with negative exponent) weighted by a negative value. This would
give rise to concave functions with which to approximate a convex one (one over the square root), which is
not in the spirit of the methodology explained in Section (2.4), which tries to restrict the set of exponentials170

to those resembling the Basset kernel as much as possible. On the other hand, the upper bound of parameter
ai is arbitrary. However, this bound helps the optimizer to find the solution in a smaller space. Of course,
sub-optimal values could be expected by this simplification, but in our numerical experience, when we do not
use the upper bound constraint, the optimal solution always fulfils it anyway.

Likewise, the positivity of t̃i is required to keep the values of the modified Basset kernel real. Furthermore,175

requiring t̃i > 1 may seem reasonable. This variable represents the non-dimensional history time, thus taking
values on the window part may appear as unnatural. However, we do not add this constraint in order to get
better solutions. In fact, the numerical results explained in the following sections support this idea. [12] had
also made this point.

The box constraints can be directly handled by means of the line search method [25]. The problem contains180

a small number of design variables (2m), which represent at most 20 unknowns for the cases considered. Thus,
the complexity in solving the optimization problem will depend mainly on the nature of the cost function.

We next present the different cost functions that we have considered. I1 is included along three additional
alternatives leading to more tractable optimization problems.

Option A: I1 cost function185

The first option is defined by the use of I1 itself (see 17), which we repeat here for completeness:

I1(ai, t̃i) =
∣∣∣eK(1, ai, t̃i)

∣∣∣+

∫ ∞
1

∣∣∣∣ ∂∂τ̃ eK(τ̃ , ai, t̃i)

∣∣∣∣ dτ̃ . (32)

Two terms are involved: the absolute value of the error at the point where the window and the tail meet
(t− tw) plus the absolute value of the error derivative integrated along the whole tail. The second term can

8

be interpreted as the W 1,1([1,∞);R) semi-norm. The latter penalizes the outliers weakly, so the error is
expected to be small in most of the points but remain large in few points.

Since the L1 norm is linear with respect to its argumen, the convexity and non-linearity properties of the190

problem are essentially determined by the dependence of the error derivative with respect to t̃i (it also linear
with respect to the ai).

The abs-value function is not continuously differentiable, so a non straightforward treatment on the
computation of the gradient will be required.

Option B: I2 cost function195

Alternatively, we can consider replacing the absolute-value function in the I1 cost function by the square
function. That is

I2(ai, t̃i) = eK(1, ai, t̃i)
2 +

∫ ∞
1

(
∂

∂τ̃
eK(τ̃ , ai, t̃i)

)2

dτ̃ (33)

This option leads with a stronger penalization of the outliers, i.e., points with large errors in the derivative
tend to be eliminated more easily. In this case, the second term in the cost function can be interpreted as
the H1([1,∞);R) semi-norm, or the L2([1,∞);R) norm of the error derivative.

With the L2 norm we gain convexity but we add nonlinearity to the already nonlinear dependence on
t̃i. However we add a quadratic non-linearity which is relatively weak. In addition, this modification also200

contributes to improve regularity (I2 is continuously differentiable) and no special treatment of the gradient
is required.

Option C: I2t cost function

In this case, we replace the abs-value of the cost function by taking the square, to which we add an extra
weight τ̃ .

I2t(ai, t̃i) = eK(1, ai, t̃i)
2 +

∫ ∞
1

τ̃

(
∂

∂τ̃
eK(τ̃ , ai, t̃i)

)2

dτ̃ . (34)

This extra weight τ̃ was included in [12] ’to correct for the change in norm’. With it the values at the
end of the tail will be more strongly penalized than the values at the beginning of the tail. The convexity205

and non-linear aspects are very similar properties to those from Option B.

Option D: I2tH cost function

This option can be understood as a restricted version of Option C, were the t̃i = T̃i are given. That is

I2tH(ai) = I2t(ai, T̃i) = eK(1, ai, T̃i)
2 +

∫ ∞
1

τ̃

(
∂

∂τ̃
eK(τ̃ , ai, T̃i)

)2

dτ̃ . (35)

So that the dependence with respect to t̃i has been removed. Basically, the t̃i values (represented by T̃i)
must be provided as data. This is the cost function that was explored in [12], where an increasing separation
between successive values was suggested for the Ti. Its properties are similar to those of Options C, but since210

the space of possible solutions has been reduced, we should expect higher optimal costs in this case.
Note that after a few manipulations (detailed in Appendix C) and taking xi := ai, the optimization

problem can re-expressed in matrix notation as

minimize
x

1
2x

TAx− bTx
subjected to: 0 ≤ x ≤ 1.

(36)

where A and b are also detailed in Appendix C. Equation (36) thus has the form of standard quadratic
programming problem. More specifically, with a quadratic cost function and box constraints. This kind of
problem can be approached effectively by standard optimization algorithms [25].

9

3.2. Exploring the character of the cost functions215

In this section, we explore the behaviour of the different options introduced above as a function of the
variables ai and t̃i at low dimensionality (m = 2), to facilitate visualization.

Figure 1 shows the cost function for Options A and C in terms of a1 and t̃1. Note the discontinuity on
the derivative of the cost function in Figure 1a. In contrast, Figure 1b shows the smoothness of the cost
function I2t, which greatly facilitate the search for minima. Its graph is otherwise very close to that of I1220

(Option A). We will show that the gain in regularity makes up for the difference.
Note that the cost function is, in both cases non-convex, specifically with respect to t̃1. Therefore local

minima are expected to appear. Indeed, in practice we observed the appearance of multitude of local minima,
whose number grew very quickly with dimensionality. Nonetheless, for this low-dimensional case it is possible
to exactly determine the optimum point, which is marked in Figure 1.225

(a) (b)

Figure 1: Error bound for one exponential approximation of the Basset kernel versus a1 and t1 for both Options A
and C. The respective minima are marked with a red dot.

Next we study the dependence of the different cost function with respect as a1 and a2 are varied, while
t̃∗1 and t̃∗2 are held fixed to their optimal values. Note from Figure 2 the convexity of both cost functions
with respect to the dependence with respect to the ai, as compared to t̃i. Certainly, to consider only the
dependence on ai makes the optimization problem much more tractable, especially as the dimensionality
grows.230

Finally, let us look at the dependence on t̃1 and t̃2 alone. Figure 3 shows a contour plot of the I1 bound
in terms of t̃1 and t̃2 where, this time, a∗1 and a∗2 are being held fixed (at their optimal values). The strong
gradients and the nonlinearity of the dependence on the t̃i can be clearly appreciated. The cost function is
almost flat close to the optimum, but away from it the gradient grows very quickly. This could indicate that
the selection of the t̃i might not need to be determined with extremely high precision. However, obtaining235

a fair approximation should be essential. Indeed, we have found in practice this to be the case (see next
section).

3.3. Numerical solution of the optimization problem

In this work we have developed an in-house code in Matlab c© and solved the problem with a standard
PC (3.40GHz processor in a 64-bit architecture). We have nonetheless taken advantage of symbolic coding240

mode in the Matlab environment to calculate all the derivatives and integrations.
Furthermore, We have also employed the optimization toolbox of Matlab. This tool makes combined use

of a variety of methods (Newton-Rapshon, Quasi-Newton and steepest descent, among others) for constraint
optimization (box constraints in our case). Continuous optimization algorithms helped to obtain the real
(local) minima. Furthermore, their convergence is normally faster than the alternative genetic algorithms.245

10

(a) (b)

Figure 2: Error bound for two exponentials as a function of a1 and a2, with fixed (optimal) t̃∗1 and t̃∗2 for Options A
and C. Options C and D are equivalent in this case.

Specifically, we have used the interior point algorithm (primal-dual Newton-Raphson), which considers both
the primal and dual variables simultaneously (see, e.g., [25]).

Our numerical experiments show that the problem is full of local minima, thus the strategy of initial point
seeding becomes crucial. For each case m we must determine ai and ti, with i = 1, . . . ,m. We propose the
following heuristic initial point strategy, which has worked well up to m = 10, and consists in the following250

(An upper index m is used to refer to the case the parameters correspond to).

1. Take ami randomly generated in (0, 1].

2. For m = 1, take t̃11 as also randomly generated in (0, 1].

3. For m = 2, . . . , 10, define

t̃mi =


t̃mi if i = 1
t̃m−1
i−1 +t̃m−1

i

2 if i = 2, . . . ,m− 1

10t̃m−1
m−1 if i = m

(37)

This initial strategy is used when solving Options A, B and C. In combination with it, we also employed
the Global-search toolbox of Matlab, which is a type of multi-start technique for Global Optimization. This255

tool granted the possibility of exploring many different initial points and was specifically used with the ai
variables.

3.3.1. Some particularized remarks for the different options

For Option A the gradient is discontinuous in some regions. So in order to have a robust algorithm, we
computed the gradient by perturbations, though at a high computational cost. For Options B and C, the260

gradient could be computed analytically (symbolically), leading to faster performance. For option D, the
gradient is also computed analytically, taking the ti as specified in 3.3.

3.4. Results

Figure 4, shows the minimized ai and t̃i values of the upper bound for the different options. We have
also included the single result reported in [12]. Case C seems to slightly outperform the others, although265

option A is very close, except perhaps for the last point, where the computational cost was already very high.
note that this implies that, at least for the points where I2t < I1, either only local minima were found or
convergence had not been achieved when using I1 as the objective function. The complete list of optimized
values ai and t̃i corresponding to the I1 and I2t bounds can be found in Appendix E. Let us now make a
few comments about these results, looking at each individual option.270

11

Figure 3: Contour plot of the I1 bound in terms of t̃1 and t̃2. The dependence with respect to the ti is clearly visible.

For Option A (I1), for which the gradient is obtained by perturbations, the algorithm suffered significantly
for m > 4. This was due large number of computations needed to evaluate the gradient, which increases
exponentially with m when employing perturbations. That is, very sub-optimal solutions were found when the
initial values where not set adequately. Precisely this fact justified the convenience of trying large number of
initial values and, consequently, the use of Global-search with its associated computational costs. The results275

come out second-best (after Option C), even though this alternative is the only one that uses the original
objective function, I1.

For Option B and C (I2 and I2t), the computational cost per initial point was significantly less, thanks
to having an analytical expression for the gradient. Still, finding appropriate initial values remained very
demanding. We again observed a strong dependence on initial values and a huge number of local minima280

significantly hampered the search. Nonetheless, thanks to a reduced cost in computing the gradient, a much
larger number of initial points could be employed. As a result, Option C came out slightly on top of Option
B and clearly beat Option A and Option D by a considerable margin.

Regarding Option D, number of design variables is halved and, consequently, the number of possible initial
values decreases. Though there are local minima, a much smaller number of them were found in this case,285

which considerably sped up the computations. Nonetheless, the optimized costs were significantly higher
that for the other options. Note how, encouragingly, with our proposed strategy 3.3 a very similar cost is
achieved for m = 10 compared to that of the parameter set reported in [12].

In general, the bounds monotonically decrease as the number of exponentials increases for all the options,
as expected. By looking at a particular examples (see Section 4), we will see that the actual error also follows290

the same trend, although not as robustly.
Despite all the technology applied, the problem starts to become unaffordable for m > 10 for Options A,

B and C. The high computational cost is basically caused by the number of required initial guesses, which
strongly increases with m. This affects all the Options, except Option D, where the problem becomes less
severe and the process could actually be carried on further. As we will see, this will not turn out to be295

necessary in many applications.
.

12

Figure 4: Resulting values of the I1 function for the optimized paramters using each of the different alternatives.
The values provided by van Hinsberg et al. for m = 10 are also shown for comparison.

4. Performance

In this section we test the performance of the MAE using the optimized ai and ti values from the previous
section. We start a with very elementary example, aimed only at measuring the quadrature error. Next, we300

consider a single-particle example with analytical solution to benchmark the accuracy of the full scheme. The
last example features a long-term, 10 000 particle simulation with which we show the remarkable efficiency
of the method.

4.1. First benchmark: an integral with analytical solution

The error bound (17) can indeed be used for conservative predictions about the expected error when using
the MAE. Nonetheless, we wish investigate how this bound in fact relates to the actual error, but of course
this can only be done for particular cases. Consider the convolution of the sine function, denoted sin ∗KB(t),
a commonly chosen example with analytical solution; see [2, 12, 6]5. Its physical significance is that of a
sphere being forced to oscillate in an otherwise quiescent fluid. The error can be expressed, see (17), as

E(t) :=

∣∣∣∣sin ∗(KB − K̃
)

(t)

∣∣∣∣ ≤ 1√
tw

(∣∣∣1− K̃(1)
∣∣∣+

∫ ∞
1

∣∣∣∣ d

dτ

(
KB(τ)− K̃(τ)

)
dτ

∣∣∣∣
)

(38)

since ‖cos‖∞ = 1. We have computed the bound numerically, by partitioning the integral in (38) in two305

parts: an integral over the region where the argument of the absolute value may change and an integral
over the rest, where the sign is given by that of dKB/dτ (which has a slower asymptotic decay than dK/dτ
as t → ∞). The first part can be calculated (to very high accuracy) using a standard quadrature method,
while the second one has an analytical formula. In order to obtain a representative measure of the error, we
evaluate the integral over [−∞, 2π − φi], with φi sampled at 40, evenly distributed, points in [0, 2π] and we310

take the mean absolute error within the sample 6. We denote this error as E2π(tw,m), making explicit its
dependence on both tw and m. The results are shown in Figure 5, where three different sets of parameters

5Actually, the convolution of the cosine was considered by [2] and by [12].
6Note that the convolution of the sine function is periodic, with the same fundamental period as the sine, as it is readily seen

with a change of variable.

13

are considered: the single list given in [12] (m = 10), resulting from the optimization of I2tH ; the set obtained
from the optimization of I1, for m = 1, . . . , 10; and the set obtained from the optimization of I2t, again for
m = 1, . . . , 10 (see Section 3). For the sake of clarity, we include a single set of results in Figure 5a where we315

have picked tw = 2π/10. Figure 5b shows the analogous results for a range of window times, including the
single curve from Figure 5a.

Figure 5 shows how indeed the errors fall significantly below their optimized upper bounds, up to more
than an order of magnitude so. Overall, it seems that both the I1 and the I2t methods achieve comparable
results, while the parameters by van Hinsberg et al. come out as a bit less accurate. Nonetheless, this320

difference turns out not to be consistently significant, despite our inclusion of the ti parameters as variables
in the optimization problem. This indicates that the trial-and-error strategy used by these authors yielded a
close-to-optimal result.

0 2 4 6 8 10
m

10-4

10-3

10-2

10-1

100

E
2π

I2t

I1

I2tH

I2t (bound)

I1 (bound)

I2tH (bound)

(a)

0 2 4 6 8 10
m

10-5

10-4

10-3

10-2

10-1

100

101

102

E
2π

I2t

I1

I2tH

I2t (bound)

I1 (bound)

I2tH (bound)

(b)

Figure 5: Error produced by the approximation K ≈ KB in calculating sin ∗KB(t) for three different sets of values
ai and ti, corresponding to different cost functions: Option A, Option C and the point given by van Hinsberg et
al.. The resulting errors are accompanied by their predicted upper bounds. A window time of tw = 0.2π has been
considered in Figure 5a. Figure 5b shows the analogous results for different values of tw corresponing to tw = 2π10k

for k = −5, . . . , 0 (with thicker lines corresponding to larger values of tw).

In theory, the greater the window, the smaller the error should be, because the approximation of the kernel
is done over a smaller portion of the total domain. This tendency is expected to be especially pronounced325

for small values of tw, close to the singularity of KB at τ = t. There, the well-behaved exponentials have
difficulty keeping close to the curve for as it diverges. This is indeed what can be seen in Figure 5b. The
time window ranges 1× 10−5 to 1 fractions of a period and is represented by using greater thickness on the
error curves corresponding to larger windows. The tendency of the curves to go horizontal for increasing m
signals the breakdown of the kernel approximation for extremely small values of tw. Note that, for tw smaller330

than 1× 10−3, none of our optimal ai, ti sets manage to keep the error under the 1× 10−2 mark.
However, a small tw requires an even smaller integration time step. So as long as the time step is kept

large enough, such small time windows become unnecessary, because the memory cost can be afforded. This
is why the most effective solution is to use a high accuracy scheme, such as the second or third Daitche
schemes for the integration of the window in the MAE.335

A final remark about Figure 5b: note that although the expected monotonous behaviour of the error with
respect to variations in tw is mostly realized, there can be exceptions: for m = 7 there is a crossing between
adjacent sets of curves. This fact highlights the complexity of the relations that govern the method.

A different way to characterize the accuracy gains obtained by increasing the number of exponentials is
represented by Figure 6. It shows the relation between the number of exponentials, m and the minimum
window time necessary to attain a desired level of accuracy. On the horizontal axis we represent m; on the

14

0 2 4 6 8 10

m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

t̃ w
,1

0%

0 2 4 6 8 10

m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

t̃ w
,1

%
0 2 4 6 8 10

m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

t̃ w
,0
.1

%

I2t

I1

I2tH

Figure 6: Minimal window time necessary to obtain an error E2π = 1%, as a function of the number of exponentials.
The time is normalized by the minimal time window required when m = 0.

vertical axis, the normalized window time t̃w,1%(m). The latter is defined as

t̃w,1%(m) :=
tw,1%(m)

tw,1%(0)
(39)

where
tw,1%(m) := tw such that E2π(tw,m) = 0.01 (40)

and similarly we define tw,10% and tw,0.1%. In other words, Figure 6 addresses the question if tw,x%(0) is
the minimal time window necessary to have less than x% error when using the standard window method,340

then what fraction of tw,x%(0) is instead required when using the MAE?. The answer will depend on the
values of m and x. Strictly speaking, the existence of a unique solution is not even guaranteed, since that
would require the strict monotonicity of the dependence of E2π on m, which we have seen to only hold
approximately. Nonetheless we have applied the bisection algorithm to find such solutions, producing Figure
6. Note the immense memory cutoffs that are generated by the MAE. For instance, suppose the accuracy345

goal set to one percent. Then just by including a single exponential approximant, the interval of the particles
history that must be tracked is reduced by a factor 103, by just using the I1-optimized a1 and t1. Or else by
more than 106 if ten exponentials are considered.

Let us now consider the joint effect of the quadrature algorithm and the kernel approximation, using the
same test flow as above. For that, the initial time is taken as t0 = 0, the final time is set to 10. The time350

interval [0, 10] is initially partitioned in eighty parts. This amount is successively doubled, defining the range
of values of the time step, h. For simplicity, the error is now measured at single point (t = 10); that is E(10).
Figure 7 shows the performance of the algorithm described in Section 2.5 for a fixed tw = 1 and m = 10. The
method initially follows the third order slope of the second-order accurate Daitche quadrature algorithm.
But then, as soon as the time integration error becomes dominated by the error due to the approximation355

K ≈ KB , its accuracy stagnates, rendering further reductions in h futile.

15

10-2 10-1 100 101

h

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
(1
0)

∼h3

Daitche, order 2
I2tH

I2t

I1

Figure 7: Error vs time step of Daitche’s method as compared with the MAE for different optimized values ti and
ai. The curves reach a plateau as soon as the kernel approximation error exceeds the quadrature error.

4.2. Second benchmark: Candelier’s solution

There are a limited number of known closed-form particular solutions for the Maxey-Riley equation.
Some of these can be found in the works cited in [10]. Fortunately, the solution obtained by Candelier
et al. [3] includes the effect of the Basset force, as well as all the other forces, though the Faxén terms do360

not contribute in this case. The solution corresponds to the trajectory of a particle that sediments under
gravity in an infinite container which is rotating as a rigid solid around a fixed axis. The same benchmark
was considered in [6] (see the same work for the input parameters). Figure 8 shows two spiral trajectories
resulting from two different versions of the solution by Candelier and co-workers. The inner spiral corresponds
to the full solution, including all the terms in the MRE. The outer spiral is obtained by neglecting the Basset365

contribution, while retaining the remaining effects. The asymptotic behaviour of the radial coordinate around
the rotation axis is in both cases of exponential form, of which the exponent’s coefficient is modified by the
presence of Basset force. This asymptotic solution becomes a very good approximation only after a few
turnover times [3]. The exponential form suggests that this test is especially demanding, as it should tend
to amplify any systematic inaccuracies over time.370

For the purpose of measuring the accuracy of the algorithm, let us define the error function as

E(t) =
r(t)− rnum(t)

r(t)
(41)

where r(t) =
√
x(t)2 + y(t)2 is the exact radial coordinate and rnum its numerical approximation. We

consider E(100) as the measure of the error. This measure has a very similar behaviour to the max-norm
over all the time steps. This is because the error tends to accumulate in a monotone way, leading to the
maximum value occurring at the final point in most cases; see [6]. For instance, the error introduced by

neglecting the Basset force at t = 100 is r(100)−rno Basset(t)
r(100) > 14.375

Figure 9 shows the error for different values of m for the MAE as compared to the bare, second order
Daitche method. The optimal points were those obtained with the cost function I1, since this set gave slightly
more accurate results for all values of m in this example. We observe that, despite a few permutations do

16

x

y

z

all forces
no history force

Figure 8: Trajectories described by the particle in the Candelier et al. benchmark after 100s (/π rotation periods).
The mass of fluid is rotating around the axis x = y = 0. The curve with the largest maximum radial coordinate
corresponds to the solution without Basset force, while the other does include the effect.

occur between curves with successive m values, in general terms increasing m yields an increase in accuracy
which, on average, amounts to about half an order of magnitude each successive increase.380

But, how many exponentials should be used?. Based on accuracy, the safest answer should be as many as
possible, or at least, as many as necessary. However, taking efficiency into consideration might complicate
the matter. Indeed, adding additional exponentials to the kernel has two detrimental effects on efficiency.
First of all, it implies a proportional increase in the total number of operations needed to compute the tail
contribution. But more importantly, each new exponential requires an extra vector to be kept in memory
per particle, i.e., the value of Fi in the previous step, see (13). Of course it is still possible to increase the
time window, thus improving the effectiveness of a fixed number of exponentials, as Figure 5 suggests. But
again, this increase also implies a raise in the memory demand. The situation is summarized in Figures 10,
where the error is plotted against the total number of bytes to be kept in memory per particle. The number
of bytes is estimated by assuming that 24 bytes are taken up by each vector, as

number of bytes = 24(m+ 1 + tw/h) (42)

where the time step h is kept constant at 2.5× 10−3, close to the saturation time step (below which no further
gains are obtained, see Figure 9). This corresponds to an error of around 10−3 for 8, 9 or 10 exponentials,
according to the same figure. The window time is successively doubled, starting at tw = 5h. Again, Figure
9 shows that only initial increases in the memory demand (via increase in the number of exponentials or the
value of tw) yield significant gains in accuracy. Furthermore, the gains in accuracy per byte are greater when385

investing them into more exponentials rather than into additional tw (except perhaps for the very smallest
values of tw). In other words, within the analysed ranges, it pays off to take tw as small as possible, while
using as many exponentials as necessary.

4.2.1. Some remarks concerning the choice of tw
It is not quite clear how small is ’as small as possible’. The smallest value considered in Figure 10 is390

tw = 0.05, or tw ≈ 0.008 periods. This tw corresponds to an error of around 10−3, based on Figure 7. Making

17

it smaller might very quickly lead to important approximation errors. Furthermore, since the time step is
only a fifth of that amount, only five points enter the window region. Any further decrease in tw would surely
damage accuracy, while not significantly reducing the memory requirements, according to (42), with m = 10.

Based on this line of reasoning (and our numerical experience), we conclude that ten points are a reasonable395

option, which we have adopted by default in conjunction to m = 10. This translates into 21 vectors to be
stored per particle. Indeed, for a fixed integration time step (which is typically determined by other factors,
such as the overall time scheme or the fluid time resolution) the accuracy gain is quite substantial compared
to, say, only five points, while still avoiding important memory sanctions. We do recommend this combination
as a starting point in other simulations, as long as the frequency of the relative motion is low enough. That is,400

making sure that at least a few time steps fall within the period corresponding to the highest frequency modes
in the motion. For instance, in a turbulent flow, this frequency is that of the Kolmogorov microscales, unless
some external, high frequency force is acting on the particle. We test this 10-point, m = 10 combination in
the following benchmark.

10-5 10-4 10-3 10-2

dt

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
(1

0
0)

m = 10

m = 9

m = 8

m = 7

m = 6

m = 5

m = 4

m = 3

m = 2

m = 1

m = 0

Daitche

Figure 9: Average relative error of the particle position (final time t = 100s) for different time-steps. Both the raw
second-order accurate method of Daitche and the corresponding MAE alternative for different number of exponentials,
m. The window time is taken as t = 0.1s

4.3. Third benchmark: Sedimentation through synthetic vortices405

We now wish to test the efficiency of the full algorithm. For that, we will consider the benchmark test that
was considered in Guseva et al. [11] in their work about the influence of the history force on the dynamical
properties of a system of sedimenting particles. These authors studied a synthetic bidimensional flow that is
a transient variant of the classic cellular flow field previously studied in, e.g., [19]. The flow field is given by

18

0 5000 10000 15000 20000 25000 30000 35000

bytes

10-5

10-4

10-3

10-2

10-1

100

101

E
(1

00
)

m = 10

m = 9

m = 8

m = 7

m = 6

m = 5

m = 4

m = 3

m = 2

m = 1

m = 0

(a)

0 500 1000 1500 2000 2500

bytes

10-5

10-4

10-3

10-2

10-1

100

101

E
(1

00
)

m = 10

m = 9

m = 8

m = 7

m = 6

m = 5

m = 4

m = 3

m = 2

m = 1

m = 0

(b)

Figure 10: Relative error of the particle position at the final time (t = 100s) for different memory loads per particle.
Figure 10b is a zoomed-in version of Figure 10a, showing the intial part with the lesser amount of bytes.

7

u =

(
u1

u2

)
= U

(
1 + k sin

(
ω
U

L

))sin
(
x1

L

)
cos
(
x2

L

)
cos
(
x1

L

)
sin
(
x2

L

)
 (43)

where xi are Cartesian coordinates and U and L are the characteristic velocity and length-scales of the flow;
ω controls the frequency of the temporal evolution of the flow and k its amplitude. Such flow covers the
Cartesian plane with 2πL-diameter vortices, each one flowing in the opposite sense than the ones directly
next to it.

Guseva and co-workers were interested in studying the long-term evolution of a number of particles subject410

to the above flow in a double-periodic domain containing four vortices. They monitored 10 000 particles for
up to 120 periods employing the first-order accurate version of the Daitche algorithm. They did not extend
the simulation duration any longer, since, as they put it: ’A longer interval is not possible to choose due to
the numerical cost of recording the history force with small time step for this number of particles’.

We attempted to reproduce one of their examples using the MAE with our optimal points and use it as a415

test for efficiency. The values chosen for the input parameters are consistent with [11] and roughly correspond
to the typical conditions in the phenomenon known as marine rain 8. This term refers to the sedimentation
of small agglomerates of mainly organic mater from the surface to the deep ocean, subject to the turbulence
found in the upper layers due to the action of wind; see [11] and the references therein. Their values are
summarized in Table 1. While these are in dimensional form, they correspond to the same non-dimensional420

variables used by [11].
Figure 11 shows the position of ten thousand particles suspended in the cellular flow at three different

time instants. The particles where initially placed in a uniform lattice covering the whole domain, as was
done in [11]. The effect of the history force is apparent: With FH ≡ 0 the particles become confined to a set
of four curves. In contrast, when including all forces, full bands with particles are still visible at the latest425

stage, although the bands’ edges do become more sharply marked. These qualitative trends are consistent

7The flow described in [11] differs from the one described here in that, in it, the arguments of the sine and cosine functions
are pre-multiplied by π. We however only managed to obtain similar results to the ones reported in their work upon removing
this π factor. We suspected that the difference was simply due to a misprint. In contacting the authors, this possibility was
given credibility and thus we have assumed this to be the case. Note that, in particular, this modification changes the meaning
of L, which is no longer equal to the diameter of a vortex, but rather 2π times smaller.

8Except perhaps for the peculiar value for the gravity (see Table 1, which is the only value not given in dimensional form by
[11], although its value is determined by the nondimensional parameters used therein)

19

with [11].
However, we must point out some differences as well. Take the configuration corresponding to t =  s (120

periods). For the case of no history, the configuration reported by [11] (Fig. 4, (c)) looks much more similar
to our configuration at t =  s than the one at t =  s. For the case with all forces, our configuration is430

closer to the one reported by Guseva (Fig. 4, (d)), although some differences can be found still. In particular,
for t =  s, a dark spot lying on the axis of symmetry of the figure signals an accumulation of about fifty
particles, which is not marked in [11] (note also its counterpart near the top-right that corresponds to the
top pair of vortices, with another fifty particles). Furthermore the particles concentrate in areas with much
sharper edges in our case, again as if a faster convergence was taking place. We tried different integration435

schemes, combined with the first-order version of the Daitche quadrature but always obtained similar results.
After much scrutiny, we could not find the reason for such divergence and thus we leave the question open
for other researchers to settle.

We now turn to the comparison between the second and third rows in Figure 11. Comparing the top two
rows, no visible effects arise due to the use of the window method at any of the recorded times. However,440

the total computational time is greatly decreased by this, as is apparent from Figure 12, where the elapsed
time per unit simulated time is represented. The steady increase in memory resources and the number of
computations to be performed translates into ever higher costs for the Daitche method. The MAE, instead,
stabilizes after a few time-steps, once the window region is completely filled. Note that in our implementation
the cost is of the same order as for the case of neglecting the history force altogether.445

Admittedly, our implementation is mounted on top of a 3D discrete element code, where neighbour search
has been switched off. The flexibility of the application sacrifices some efficiency and thus one cannot conclude
the latter statement to be the case in more optimized implementations. Indeed, more detailed analyses with
the help of profilers show that a vast majority of the time spent in computing the hydrodynamic forces is
still being spent with the history force. Further analysis and reductions of the history force cost are thus in450

order. However we have demonstrated that the MAE, as described, already critically improves the situation.
The perspective of routinely including the Basset force in the numerical implementation of the Maxey–Riley
seems now much closer.

Parameter Value Description

g 8.624 m/s2 gravity acceleration

Flow parameters

U 0.3 m s−1 characteristic velocity

L 2πm characteristic length

k 2.72 trans. amplitude parameter

ω π trans. frequency parameter

ρf 1000 kg/m3 fluid density

ν 1× 10−6 m2/s fluid kinematic viscosity

Particles parameters

a 3.9685× 10−4 m particle radius

ρp 1500 kg/m3 particle density

Table 1: Physical parameters considered in the cellular flow example.

20

(a) t=1 (b) t=5 (c) t=20 (d) t=80

No history force, Daitche

(e) t=1 (f) t=5 (g) t=20 (h) t=80

All forces, Daitche

(i) t=1 (j) t=5 (k) t=20 (l) t=80

All forces, MAE (m = 10)

Figure 11: Position of the 10000 particles at different times in double-periodic spatial representation.

21

0 10 20 30 40 50 60 70 80 90

simulated time (s)

0

50

100

150

200

250

300

e
la

p
se

d
 t
im

e
 p

e
r
u
n
it
 s

im
u
la

te
d
 t
im

e
 (
s)

No history force, Daitche

All forces, Daitche

All forces, MAE (m = 10)

Figure 12: Evolution of the wall-clock time spent in seconds, per unit simulated second, as a function of the simulation
duration for the Daitche method, MAE and neglecting the history force. All the runs were performed with the same
time step on the same PC (serial implementation).

5. Concluding Remarks & Outlook

We have presented a detailed algorithm that combines the higher order quadrature scheme presented in455

[6] (Daitche method) with the window method presented in [12] (MAE).
The MAE includes several free parameters that must be determined. In the original formulation, half of

the parameters (the ai) where determined by solving an optimization problem, while the other half (the ti)
had to be fixed based on heuristic arguments. We have generalized the original formulation by including all
the parameters in the optimization.460

It turns out that the resulting problem is significantly more challenging. To address it, We have com-
bined advanced optimization techniques with relatively large computational resources, producing the list of
parameters summarized in Appendix E. By extending the problem, we have introduced a strategy that could
inspire future research to continue refining and/or extending our list.

In any case, with the current list of parameters the overall algorithm already yields very high performance.465

We have shown this in several tests, where the method displayed remarkable accuracy. We have demonstrated
that the reductions in the memory requirements can consistently be expected to exceed three orders of
magnitude, even when the accuracy requirements are strict. As a consequence, the computational cost of
including the history force has not changed the order of magnitude of the overall performance of the code in
a long simulation with 10 000 particles. We find this result remarkable, since it is an extended view that the470

inclusion of this force dramatically hinders performance.

6. Acknowledgments

The authors are very grateful to Ksenia Guseva, who patiently answered all our questions.
We acknowledge the financial support to CIMNE via the CERCA Programme / Generalitat de Catalunya.

References475

[1] Auton, T.R., Hunt, J.C.R., Prud’Homme, M., 1988. The force exerted on a body in inviscid unsteady
non-uniform rotational flow. Journal of Fluid Mechanics 197, 241–257.

[2] Bombardelli, F.a., González, A.E., Niño, Y.I., 2008. Computation of the Particle Basset Force with a
Fractional-Derivative Approach. Journal of Hydraulic Engineering 134, 1513–1520.

[3] Candelier, F., Angilella, J.R., Souhar, M., 2004. On the effect of the Boussinesq-Basset force on the480

radial migration of a Stokes particle in a vortex. Physics of Fluids 16, 1765–1776.

22

[4] Chong, K., Kelly, S.D., Smith, S., Eldredge, J.D., 2013. Inertial particle trapping in viscous streaming.
Physics of Fluids 25, 1–21.

[5] Coimbra, C.F.M., Rangel, R.H., 2001. Spherical particle motion in harmonic stokes flows. AIAA Journal
39, 1673–1682.485

[6] Daitche, A., 2013. Advection of inertial particles in the presence of the history force: Higher order
numerical schemes. Journal of Computational Physics 254, 93–106. 1210.2576.

[7] Daitche, A., 2015. On the role of the history force for inertial particles in turbulence. Journal of Fluid
Mechanics 782, 567–593. arXiv:1501.04770v1.

[8] Dorgan, A.J., Loth, E., 2007. Efficient calculation of the history force at finite Reynolds numbers.490

International Journal of Multiphase Flow 33, 833–848.

[9] Elghannay, H.A., Tafti, D.K., 2016. Development and validation of a reduced order history force model.
International Journal of Multiphase Flow 85, 284–297.

[10] Farazmand, M., Haller, G., 2015. The MaxeyRiley equation: Existence, uniqueness and regularity of
solutions. Nonlinear Analysis: Real World Applications 22, 98–106. arXiv:1310.2450v3.495

[11] Guseva, K., Feudel, U., Tél, T., 2013. Influence of the history force on inertial particle advection:
Gravitational effects and horizontal diffusion. Physical Review E - Statistical, Nonlinear, and Soft
Matter Physics 88, 1–11. arXiv:1309.1878v1.

[12] van Hinsberg, M.A.T., ten Thije Boonkkamp, J.H.M., Clercx, H.J.H., 2011. An efficient, second order
method for the approximation of the Basset history force. Journal of Computational Physics 230, 1465–500

1478. 1008.0833.

[13] van Hinsberg, M.A.T., Thije Boonkkamp, J.H.M., Toschi, F., Clercx, H.J.H., 2012. On the Efficiency
and Accuracy of Interpolation Methods for Spectral Codes. SIAM Journal on Scientific Computing 34,
B479–B498. 1201.4060.

[14] Joly, A., Moulin, F., Violeau, D., Astruc, D., 2012. Diffusion in grid turbulence of isotropic macro-505

particles using a Lagrangian stochastic method: Theory and validation. Physics of Fluids 24, 1–25.

[15] Loth, E., 2000. Numerical approaches for motion of dispersed particles, droplets and bubbles. Progress
in Energy and Combustion Science 26, 161–223.

[16] Lovalenti, P.M., Brady, J.F., 1993. The hydrodynamic force on a rigid particle undergoing arbitrary
time-dependent motion at small Reynolds number. Journal of Fluid Mechanics 256, 561–605.510

[17] Machielsen, M., 2015. Enhanced settling velocity of small particles in homogeneous isotropic turbulence.
Ph.D. thesis.

[18] Magnaudet, J., Rivero, M., Fabre, J., 1995. Accelerated flows past a rigid sphere or a spherical bubble.
Part 1. Steady straining flow. Journal of Fluid Mechanics 284, 97–135.

[19] Maxey, M.R., 1987. The motion of small spherical particles in a cellular flow field. Physics of Fluids 30,515

1915–1928.

[20] Maxey, M.R., Riley, J.J., 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Physics
of Fluids 26, 883–889. arXiv:1011.1669v3.

[21] Mei, R., Adrian, R.J., 1992. Flow past a sphere with an oscillation in the free-stream velocity and
unsteady drag at finite Reynolds number. Journal of Fluid Mechanics 237, 323–341.520

[22] Moreno-Casas, P.A., Bombardelli, F.A., 2016. Computation of the Basset force: recent advances and
environmental flow applications. Environmental Fluid Mechanics 16, 193–208.

23

1210.2576
arXiv:1501.04770v1
arXiv:1310.2450v3
arXiv:1309.1878v1
1008.0833
1201.4060
arXiv:1011.1669v3

[23] Mukherjee, D., Padilla, J., Shadden, S.C., 2016. Numerical investigation of fluid–particle interactions
for embolic stroke. Theoretical and Computational Fluid Dynamics 30, 23–39.

[24] Nizkaya, T., Angilella, J.R., Buès, M.A., 2014. Inertial focusing of small particles in wavy channels:525

Asymptotic analysis at weak particle inertia. Physica D: Nonlinear Phenomena 268, 91–99.

[25] Nocedal, J., Wright, S., 2006. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering, Springer New York.

[26] Olivieri, S., Picano, F., Sardina, G., Iudicone, D., Brandt, L., 2014. The effect of the Basset history
force on particle clustering in homogeneous and isotropic turbulence. Physics of Fluids 26, 041704.530

arXiv:1401.5309v2.

[27] Sobral, Y.D., Oliveira, T.F., Cunha, F.R., 2007. On the unsteady forces during the motion of a sedi-
menting particle. Powder Technology 178, 129–141.

[28] Tao, T., . Texts and Readings in Mathematics 38. Springer Singapore.

[29] Wakaba, L., Balachandar, S., 2007. On the added mass force at finite Reynolds and acceleration numbers.535

Theoretical and Computational Fluid Dynamics 21, 147–153.

Appendix A. Alternative expression for the history force

We will first proof the relationship for kernels that are bounded in [t0, t]. We have that

d

dt

∫ t

t0

K(t− τ)f(τ) dτ = K (0) f(t) +

∫ t

t0

d

dt
K (t− τ) f(τ) dτ

= K (0) f(t)−
∫ t

t0

d

dτ

(
K (t− τ) f(τ)

)
dτ +

∫ t

t0

K (t− τ)
d

dτ
f(τ) dτ

= K (t− t0) f(t0) +

∫ t

t0

K (t− τ)
d

dτ
f(τ) dτ

(A.1)

Now, when K is not defined at τ = t, as in the case of the Basset kernel, the derivation above must be altered.
We proceed by constructing a sequence of kernels that limit at the singular kernel to derive an analogous
result. Consider

Kn : [t0,∞)→ R, t 7→ K

(
t+

1

n

)
(A.2)

where n is a positive integer. The sequence of Kn for all positive integers converges pointwise to the desired
kernel K. The result we are after will easily follow for K if we can move the limit sign from the integrand
on the LHS expression in (A.1) to outside the derivative, as we will show. Note that we are not interested
in validity of the formula at exactly t = t0, since the impulse due to this infinite value at the initial time is
zero anyway. Thus, mathematically, we want to show that for any t > t0

lim
n→∞

d

dt

∫ t

t0

Kn(t− τ)f(τ) dτ =
d

dt

∫ t

t0

lim
n→∞

Kn(t− τ)f(τ) dτ (A.3)

First, the limit can me moved outside the integral by the Dominated Convergence theorem. All we must
prove is that there exists an integrable function that is greater or equal to all the integrands in the sequence.
But ∣∣Kn(t− τ)f(τ)

∣∣ ≤ K(t− τ) ‖f‖∞ (A.4)

and the RHS is an integrable function, because∫ t

t0

K ‖f‖∞ dτ = 2 ‖f‖∞
√
t− t0 (A.5)

On the other hand, to show that the limit can be moved outside the derivative as well, we use the following
theorem [28, Theorem 3.7.1]:

24

arXiv:1401.5309v2

Theorem 1. Let Fn define a sequence of differentiable functions in a closed interval I = [t1, t2], for n ≥ 1,540

and let F ′n be the corresponding sequence of derivatives, also defined in I. Suppose that F ′n converges uniformly
to some function G, also defined in I. Suppose also that there exists a point t3 where the limit limn→∞ Fn(t3)
exists. Then {Fn} converges uniformly to a differentiable function F , and its derivative is G.

We want to apply the theorem to the sequence of functions

Fn(t) : I→ R, t 7→
∫ t

t0

Kn(t− τ)f(τ) dτ (A.6)

where t1 is an arbitrary number in I. We have already shown that

lim
n→∞

Fn =

∫ t

t0

K(t− τ)f(τ) dτ =: F (t) (A.7)

To particularize Theorem 1 to these choices of F and Fn it is enough to show that the following hold:

a) Each Fn is differentiable in I.545

b) There exists a t3 in I, such that

lim
n→∞

∫ t3

t0

Kn(t3 − τ)f(τ) dτ (A.8)

exists.

c) The sequence
{
F ′n
}

converges uniformly to some function, G, defined in I.

The requirement a) follows immediately by the differentiability of the integrands. The requirement b)
follows from the existence of the Basset force of all t > t0. Finally, let us consider

∥∥F ′m − F ′n∥∥ =

∥∥∥∥∥f(t0)
(
Km(t− t0)−Kn(t− t0)

)
+

∫ t

t0

df

dτ

(
Km(t− τ)−Kn(t− τ)

)
dτ

∥∥∥∥∥ ≤
≤ ‖f‖W 1,∞

∣∣∣∣∣∣∣
1√

t− t0 + 1
m

− 1√
t− t0 + 1

n

+ 2

(√
t− t0 +

1

m
−
√
t− t0 +

1

n
+

√
1

m
−
√

1

n

)∣∣∣∣∣∣∣
(A.9)

which tends to zero as m and n tend to zero (assuming the derivative of f to be well behaved). So the
sequence is uniformly Cauchy and, thus, uniformly convergent to some function G, defined in I. We have
proven that c) also holds. We can now apply Theorem 1 and write

F ′(t) =
d

dt

∫ t

t0

K(t− τ)f(τ) dτ = G(t) = lim
n→∞

F ′n(t) =

= lim
n→∞

Kn(t− t0)f(t0) +

∫ t

t0

Kn(t− τ)
d

dt
f(τ) dτ

= K(t− t0)f(t0) +

∫ t

t0

K(t− τ)
d

dt
f(τ) dτ

(A.10)

for all t ∈ I, where in the last equality we have used the Dominated Convergence theorem again to move the
limit under the integral sign.

In summary, we have proved that the formula is valid in an interval I = [t1, t2], as long as t1 > t0; thus550

proving Equation (4), also for the Basset kernel.

25

Appendix B. Error bound for the kernel approximation

Let us define
eK := KB −K (B.1)

We want to establish an upper bound for (14). Ignoring the constant CB , we have that the RHS of this
equation is

I :=

∣∣∣∣∣eK(t− t0)f(t0) +

∫ t−tw

t0

eK(t− τ)
df(τ)

dτ
dτ

∣∣∣∣∣ =

=

∣∣∣∣∣eK(t− t0)f(t0) +

∫ t−tw

t0

d

dτ

(
eK(t− τ)f(τ)

)
− f(τ)

d

dτ
eK(t− t0) dτ

∣∣∣∣∣ =

=

∣∣∣∣∣eK(tw − t0)f(t− tw)−
∫ t−tw

t0

f(τ)
d

dτ
eK(t− t0) dτ

∣∣∣∣∣
(B.2)

Applying the change of variables τ̃ = (t− τ)/tw, we obtain

I =
1√
tw

∣∣∣∣∣ẽK(1)f(t− tw) +

∫ t̃0

1

f(t− tw τ̃)
d

dτ̃
ẽK(τ̃) dτ̃

∣∣∣∣∣ (B.3)

where t̃0 = (t− t0)/tw and
ẽK = KB − K̃ (B.4)

with K̃ defined as

K̃(τ̃) =

{
KB(τ̃) if τ̃ ≤ tw
K̃T (τ̃) =

∑m
i=1 aiK̃i(τ̃) if τ̃ > tw

(B.5)

and

K̃i(τ̃) = α

(
ti
tw

)
e
β
(
ti
tw

)
τ̃

i = 1, . . . ,m (B.6)

In other words, K̃ is obtained from K by substituting all the ti by their normalized counterparts. Now, from
(B.3) and (B.1) we can immediately write

I ≤
‖f‖∞√
tw

(∣∣∣KB(1)− K̃(1)
∣∣∣+

∫ t̃0

1

∣∣∣∣ d

dτ

(
KB(τ)− K̃(τ)

)∣∣∣∣ dτ

)
(B.7)

where we have changed the dummy integration variable back to τ .

Appendix C. Algorithmic details

Daitche method formulae555

By following the steps outlined in Section 2.2 using Lagrange polynomials of a particular order, one
obtains particular versions of the method. The generic quadrature formula for any order reads∫ t

t0

f(τ)√
t− τ

dτ ≈
√
h

n∑
j=0

µnj f(τn−j) (C.1)

where τi = t0 + ih (h is the time step) and where the use of an extra index indicating the polynomial order
of the interpolation has been avoided. Instead, we use Daitche’s nomenclature, that is we replace µnj with
αnj (first order), with βnj (second order) when particularizing. The formulas for the αnj and βnj can be found
in the paper by [6].

26

Tail contribution formulae560

We must discretize the term

Fd,i(t) =

∫ t−tw

t−∆t−tw
Ki(t− τ)f(τ) dτ (C.2)

The integral on the right-hand side of can be approximately computed using the same technique as
in Daitche’s method, since the kernel Ki, now of exponential form, also leads to analytically computable
integrals when convoluted with polynomials. This was, in fact, the approach followed by [12], who considered
the first-order-polynomial version. The first-order version of C.1. The result is

Fd,i(t) =
eβtw

β2h

(
f(τ−1)

(
eβh − hβ − 1

)
+ f(τ0)

(
eβh(βh− 1) + 1

))
+O(h2) (C.3)

where now t− tw = t0 and where τ−i = t− tw − ih. (we assume here that tw is taken as multiple of h) and
where the explicit dependence of β(ti) on ti has been omitted for brevity. This formula is equivalent to the
one presented in [12].

The extension to order two can also be done in the same manner. However, the resulting formula is
numerically very unstable due to cancellation errors and thus we followed an alternative path. Since the
kernels Ki are well behaved around tn − tw, it is possible to use a standard quadrature method there. By
interpolating, not only f , but the product Kif , with second-order polynomials one obtains the following
quadrature rule

Fd,i(t) =
eβtw

β3h2

(
fi(τ−1)

(
eβh(2− 3βh+ 2β2ht2) + βh− 2

)
+fi(τ0)

(
−4eβh(1− βh)− 2β2h2 + 4

)
+ fi(τ1)

(
eβh(2− βh)− β2h2 − 2

))
+O(h3)

(C.4)

where fi(τ) := Ki(τn − β)f(τ).

Appendix D. Quadratic character of the I2tH problem565

In this Appendix, we outline the quadratic character of the minimization problem when I2tH bound is
taken as the cost function. The t̃i values of I2tH bound must be given and we represent them by T̃i in I2tH
as

I2tH(ai) = I2t(ai, T̃i) = eK(1, ai, T̃i)
2 +

∫ ∞
1

τ̃

(
∂eK(τ̃ , ai, T̃i)

∂τ̃

)2

dτ̃ . (D.1)

The kernel error with respect to ai can be written as

eK(τ̃ , ai, t̃i) = KB(τ̃)− K̃(τ̃ , ai, t̃i) =
1√
τ̃
−
∑ ai√

t̃i
e

1
2 (1− τ̃

t̃i
)

= KB(τ̃)−
∑

K̃(τ̃ , 1, t̃i)ai. (D.2)

Thus, the first term of I2tH bound can be expressed, using Einstein notation, as

eK(1, ai, T̃i)
2 =

(
KB(1)− K̃(1, 1, t̃i)ai

)2

= ai

(
K̃(1, 1, t̃i)K̃(1, 1, t̃j)

)
aj − 2KB(1)K̃(1, 1, t̃j)aj +K2

B(1).
(D.3)

By defining the design variables as x = ai, the A
(1)
ij matrix, the b

(1)
j vector and c(1) as

A
(1)
ij = ˜2K(1, 1, t̃i)K̃(1, 1, t̃j)

b
(1)
j = 2KB(1)K̃(1, 1, t̃j)

c(1) = K2
B(1)

(D.4)

27

the first term of I2tH is readily rewritten in matrix notation, as

eK(1, ai, T̃i)
2 =

1

2
xA(1)x− b(1)x+ c(1). (D.5)

Similarly, the second term of I2tH has the following form

∫∞
1
τ̃
(
∂eK(τ̃ ,ai,T̃i)

∂τ̃

)2

dτ̃ =
∫∞

1
τ̃
(
∂KB(τ̃)
∂τ̃ − ∂K̃(τ̃ ,1,t̃i)

∂τ̃ ai

)2

dτ̃ = ai

(∫∞
1
τ̃ ∂K̃(τ̃ ,1,t̃i)

∂τ̃
∂K̃(τ̃ ,1,t̃j)

∂τ̃ dτ̃

)
aj

= −
(

2
∫∞

1
τ̃ ∂KB(τ̃)

∂τ̃
∂K̃(τ̃ ,1,t̃j)

∂τ̃ dτ̃

)
aj +

∫∞
1
τ̃
(
∂KB(τ̃)
∂τ̃

)2

dτ̃ .

(D.6)

Again defining A
(t)
ij matrix, the b

(t)
j vector and c(t) as

Atij = 2
∫∞

1
τ̃ ∂K̃(τ̃ ,1,t̃i)

∂τ̃
∂K̃(τ̃ ,1,t̃j)

∂τ̃ dτ̃

b
(t)
j = 2

∫∞
1
τ̃ ∂KB(τ̃)

∂τ̃
∂K̃(τ̃ ,1,t̃j)

∂τ̃ dτ̃

c(t) =
∫∞

1
τ̃
(
∂KB(τ̃)
∂τ̃

)2

dτ̃

(D.7)

The second term of the I2tH bound can be compactly expressed as

∫ ∞
1

τ̃

(
∂eK(τ̃ , ai, T̃i)

∂τ̃

)2

dτ̃ =
1

2
xA(t)x− b(t)x+ c(t). (D.8)

Collecting the first and the second terms, we obtain the final expression for the I2tH bound as

I2tH =
1

2
x
(
A(1) +A(t)

)
x−

(
b(1) + b(t)

)
x+

(
c(1) + c(t)

)
(D.9)

which stands for a standard quadratic minimization as

I2tH =
1

2
xAx− bx. (D.10)

where A and b are defined as A = A(1) +A(t) and b = b(1) + b(t). Note that c = c(1) + c(t) is suppressed from
the expression since it does not play any role in the minimization problem.

Appendix E. Optimal ai and ti values

We provide the optimal pairs ai and t̃i for each of the cost functions I1 (Table E.2) and I2t (Table E.3).
Note the resulting increasing distance between successive t̃i values, as van Hinsberg et al. [12] suggested to570

use. Note also that we allow in m = 1 the possibility of having a1 > 1.

28

m = 1 m = 2 m = 3 m = 4 m = 5

ai t̃i ai t̃i ai t̃i ai t̃i ai t̃i

1.046347992 1.581186674 0.566192817 0.717656182 0.440072204 0.482318894 0.374397988 0.365083559 0.3450551877 0.3227320427

0.864298391 8.925153279 0.538287204 3.324763126 0.421322343 1.820334739 0.3762685526 1.4017593843

0.807797346 38.928376132 0.517872275 11.809488351 0.4383511621 7.3543952717

0.761539469 127.109159354 0.5502868981 52.9058339347

0.7701813938 699.4337431732

m = 6 m = 7 m = 8 m = 9 m = 10

ai t̃i ai t̃i ai t̃i ai t̃i ai t̃i

0.3227460255 0.2894856389 0.2931405176 0.2413624327 0.2718360249 0.2192620346 0.2570818336 0.1878604572 0.2520642358 0.1878604572

0.3446901326 1.1312690586 0.3053190176 0.8199848671 0.2685924185 0.662026818 0.2610118588 0.5420260992 0.254913066 0.5306382498

0.3924441164 5.1207861657 0.3394616674 3.0838532791 0.2871214552 2.0706383247 0.2799238451 1.6534881587 0.2638832071 1.5524873935

0.471576099 29.6345412934 0.3924532926 13.8047974118 0.3249589764 7.2825402363 0.3051985477 5.5204876302 0.2666445191 4.6517443725

0.5990063177 256.64908268 0.4794140412 80.9779742728 0.3805886345 31.0062809826 0.3418149337 20.8847203692 0.2806268115 14.2413555446

0.7695849793 4254.1241751139 0.5546383969 696.8320792921 0.4469592071 169.6857783353 0.3892337642 93.9005719593 0.344914608 50.7413819742

0.6207864425 6133.2449027098 0.5474439544 1226.001409491 0.4655655296 532.1532341216 0.4566204962 263.7561507819

0.7637048975 17271.9375778519 0.6107696402 4683.3937018005 0.5663046247 2146.211201895

0.784623916 93277.7129340798 0.6253574036 26744.590748687

0.6932526975 348322.670028861

Table E.2: ai and ti optimal values for I1 cost function.

m = 1 m = 2 m = 3 m = 4 m = 5

ai t̃i ai t̃i ai t̃i ai t̃i ai t̃i

0.9384724434 1.4300340551 0.5470597552 0.6666835275 0.430797005 0.4521461414 0.3714051613 0.3505056162 0.3335736291 0.2904610289

0.8449767491 8.3424872407 0.5319402016 3.0597097311 0.4221306386 1.7525741335 0.3629331173 1.203691574

0.8046471493 36.769402335 0.5248827638 11.6528756138 0.4197252519 5.9370324806

0.7814317902 136.8864124598 0.520201698 39.1450598115

0.7661038702 452.8226228869

m = 6 m = 7 m = 8 m = 9 m = 10

ai t̃i ai t̃i ai t̃i ai t̃i ai t̃i

0.3065928563 0.2504309713 0.2869667584 0.2229567355 0.2695926115 0.1998084724 0.2560766303 0.1826244466 0.2467020831 0.1711374102

0.3243480187 0.9103056758 0.297777436 0.7379950193 0.2751628513 0.6094217589 0.2580812359 0.5231166336 0.2464749444 0.4695384557

0.3615932545 3.7204976994 0.3249218804 2.6583099103 0.2954155007 1.9746292865 0.2739535236 1.5665809982 0.2597178682 1.3336047234

0.418122689 18.2727422761 0.3631687423 10.9237321521 0.3228159111 7.0527307887 0.2950977014 5.0639463936 0.2773405882 4.038729849

0.5168085735 119.760302387 0.420482447 54.149026921 0.3602702642 28.6942745173 0.3224941082 18.0664363914 0.2995010019 13.2686834339

0.7551149413 1369.9016377844 0.5207711634 360.6375769122 0.4159293673 140.1890961279 0.3598005017 73.4054449448 0.3282822047 48.3505553197

0.7554318595 4254.1243411105 0.5121568839 911.2555045811 0.4151331109 357.9494752882 0.3678821811 202.2013044128

0.7402280446 10263.3419763251 0.5104760265 2319.7684648904 0.4276240337 1029.0899279619

0.7348997012 25980.6116922192 0.5335800139 7177.8752909387

0.7652665389 93277.7373733731

Table E.3: ai and ti optimal values for I2t cost function.

29

