
Distributed Algorithms

for Autonomous Mobile Robots

Giuseppe Prencipe1 and Nicola Santoro2

1 Dipartimento di Informatica, Università di Pisa, prencipe@di.unipi.it
2 School of Computer Science, Carleton University, santoro@scs.carleton.ca

Abstract. The distributed coordination and control of a team of au-
tonomous mobile robots is a problem widely studied in a variety of
fields, such as engineering, artificial intelligence, artificial life, robotics.
Generally, in these areas, the problem is studied mostly from an empir-
ical point of view. Recently, a significant research effort has been and
continues to be spent on understanding the fundamental algorithmic
limitations on what a set of autonomous mobile robots can achieve. In
particular, the focus is to identify the minimal robot capabilities (senso-
rial, motorial, computational) that allow a problem to be solvable and
a task to be performed. In this paper we describe the current investiga-
tions on the interplay between robots capabilities, computability, and
algorithmic solutions of coordination problems by autonomous mobile
robots.

1 Introduction

In this paper we describe the current investigations on the algorithmic limita-
tions of what autonomous mobile robots can do with respect to basic coordina-
tion problems.

The current trend in robotic research, both from engineering and behav-
ioral viewpoints, has been to move away from the design and deployment of
few, rather complex, usually expensive, application-specific robots. In fact, the
interest has shifted towards the design and use of a large number of “generic”
robots which are very simple, with very limited capabilities and, thus, relatively
inexpensive, but capable, together, of performing rather complex tasks. The ad-
vantages of such an approach are clear and many, including: reduced costs (due
to simpler engineering and construction costs, faster computation, development
and deployment time, etc); ease of system expandability (just add a few more
robots) which in turns allows for incremental and on-demand deployment (use
only as few robots as you need and when you need them); simple and affordable
fault-tolerance capabilities (replace just the faulty robots); re-usability of the
robots in different applications (reprogram the system to perform a different
task). Moreover, tasks that could not be performed at all by a single agent
become manageable when many simple units are used instead [19, 34].

One of the first studies conducted in this direction in the AI community
is that of Matarić [30]. The main idea in Matarić’s work is that “interactions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15781128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


48 G. Prencipe and N. Santoro

between individual agents need not to be complex to produce complex global
consequences”.

Other investigations in the AI community include the study of [4] on stig-
mergy communication and on the use a set of simple robots that operate com-
pletely autonomously and independently to collect pucks spread over a square
arena in a single cluster; the ALLIANCE architecture and the studies on selfish
behavior of cooperative robots in animal societies by Parker [34]; the formation
and navigation problems in multi-robot teams in the context of primitive ani-
mal behavior in pattern formation by Balch and Arkin [3]; and the experiments
in cooperative cleaning behavior of Jung et al [28].

Alternative approaches to the problem of studying multi-robot systems, can
be found in the CEBOT system of Fucuda, Kawaguchi et al. [25, 29], in the
planner-based architecture of Noreils [32], in the information requirements the-
ory of Donald et al. [19] (see [6] for a survey), in the Swarm Intelligence of Beni
and Hackwood [5], in the Self-Assembly Machine (”fructum”) of Murata et al.

[31], etc.
The common feature of all these approaches is that they do not deal with

formal correctness and they are only analyzed empirically. In all these investi-
gations, algorithmic aspects were somehow implicitly an issue, but clearly not
a major concern, let alone the focus, of the study. An investigation with an al-
gorithmic flavor has been undertaken within the AI community by Durfee [20],
who argues in favor of limiting the knowledge that an intelligent robot must
possess in order to be able to coordinate its behavior with others.

Recently, the problem has been tackled from a different perspective: from a
computational point of view. In other words, the focus is to understand the re-
lationship between the capabilities of the robots and the solvability of the tasks
they are given. In these studies, the impact of the knowledge of the environment
is analyzed: can the robots form an arbitrary geometric pattern if they have a
compass? Can they gather in a point? Which information each robot must have
about its fellows in order for them to collectively achieve their goal? The goal
is to look for the minimum power to give to the robots so that they can solve
a given task; hence, to formally analyze the strengths and weaknesses of the
distributed coordination and control.

In this paper we describe the current investigations on the interplay between
robots capabilities, computability, and algorithmic solutions of coordination
problems by autonomous mobile robots.

In Section 2 we describe the model used in these investigations. In Section
3 we review some results related to the analysis of the problem of pattern
formation by autonomous mobile robots. Finally, in Section 4 we draw some
conclusions and present suggestions for further study.



Distributed Algorithms for Autonomous Mobile Robots 49

2 Modeling Autonomous Mobile Robots

In the general model, the computational universe is a 2-dimensional plane pop-
ulated by a set of n autonomous mobile robots, denoted by r1, . . . , rn, that
are modeled as devices with computational capabilities which are able to freely
move on a two-dimensional plane.

2.1 The robots and their behavior

A robot is a computational unit capable of sensing the positions of other robots
in its surrounding, performing local computations on the sensed data, and mov-
ing towards the computed destination. The local computation is done according
to a deterministic algorithm that takes in input the sensed data (i.e., the robots’
positions), and returns a destination point towards which the executing robot
moves. All the robots execute the same algorithm. The local view of each robot
includes a unit of length, an origin, and a Cartesian coordinate system defined
by the directions of two coordinate axes, identified as the x and y axis, together
with their orientations, identified as the positive and negative sides of the axes.

Each robot repeatedly cycles through four states: (i) initially it is inactive
– Wait, (ii) it observes the positions of the other robots in its area of visibility
– Look, (iii) it computes its next destination point by executing the algorithm
(the same for all robots) – Compute, and (iv) it moves towards the point it just
computed – Move. After the Move it goes back to the Wait state.

The sequence: Wait - Look - Compute - Move form a computation cycle (or
briefly cycle) of a robot. The operations performed by each robot r in each state
will be now described in more details.

1. Wait. The robot is idle. A robot cannot stay indefinitely idle. Initially, all
robots are in Wait.

2. Look. The robot observes the world by activating its sensors which will
return a snapshot of the positions of all other robots within the visibility
range with respect to its local coordinate system. Each robot is viewed as
a point, hence its position in the plane is given by its coordinates, and the
result of the snapshot (hence, of the observation) is just a set of coordinates
in its local coordinate system: this set forms the view of the world of r.

3. Compute. The robot performs a local computation according to a deter-
ministic algorithm A (we also say that the robot executes A). The algorithm
is the same for all robots, and the result of the Compute state is a destination

point.
4. Move. If the destination point is the current location of r, r performs a null

movement (i.e., it does not move); otherwise it moves towards the computed
destination but it can stop anytime during its movement1.

1 e.g. because of limits to the robot’s motorial capabilities.



50 G. Prencipe and N. Santoro

The robots are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguishable
by their appearance, and they do not (need to) have any kind of identifiers that
can be used during the computation.

Moreover, there are no explicit direct means of communication: any commu-
nication occurs in a totally implicit manner. Specifically, it happens by means of
observing the robots’ positions in the plane, and taking a deterministic decision
accordingly. In other words, the only mean for a robot to send information to
some other robot is to move and let the others observe (reminiscent of bees in
a bee dance).

2.2 Levels of Synchronization

The model, in its general setting, makes no assumptions about the level of
synchronization of the robots. Indeed, the assumptions on the level of synchro-
nization have a deep impact on computability; in fact, there are problems that
are unsolvable in the general setting but can be solved in a synchronous setting
(e.g., see [36]). The situation is analogous to the one occurring in the distributed
computing field, and the settings will be described in this section.

General Setting: Asynchronous Robots In the general setting, no as-
sumptions on the cycle time of each robot, and on the time each robot takes to
execute each state of a given cycle are made. It is only assumed that each cycle
is completed in finite time, and that the distance traveled in a cycle is finite.
Moreover, the robots do not need to have a common notion of time, and each
robot can execute its actions at unpredictable time instants.

More precisely, there are only two limiting assumptions. The first one refers
to space; namely, the distance traveled by a robot during a computational cycle.

Assumption A1 (Finite Distance). The distance traveled by a robot r in

a move is not infinite. Furthermore, there exists an arbitrarily small constant

δr > 0, such that if the destination point is closer than δr, r will reach it;

otherwise, r will move towards it of at least δr.

As no other assumptions on space exist, the distance traveled by a robot in
a cycle is unpredictable.

The second limiting assumption is on the length of a cycle.

Assumption A2 (Finite Cycle). The amount of time required by a robot

r to complete a computational cycle is not infinite. Furthermore, there exists

a constant εr > 0 such that the cycle will require at least εr time.

As no other assumption on time exists, the resulting system is fully asyn-

chronous and the duration of each activity (or inactivity) is unpredictable.
There are two important consequences:



Distributed Algorithms for Autonomous Mobile Robots 51

1. Since the time that passes after a robot starts observing the positions of all
others and before it starts moving is arbitrary, but finite, the actual move of
a robot may be based on a situation that was observed arbitrarily far in the
past, and therefore it may be totally different from the current situation.

2. Since movements can take a finite but unpredictable amount of time, and
different robots might be in different states of their cycles at a given time
instant, it is possible that a robot can be seen while it is moving by other
robots that are observing2.

These consequences render difficult the design of an algorithm to control and
coordinate the robots. For example, when a robot starts a Move, it is possible
that the movement it performs is not “coherent” with the current configuration
(i.e., the configuration it observed at the time of the Look and the configuration
at the time of the Move can differ), since, during the Compute, other robots
can have moved.

Restricted Setting: Semi-synchronous Robots A computational setting
that has been extensively investigated is one in which the cycles of all the robots
are synchronized and their actions are atomic.

In particular, there is a global clock tick reaching all robots simultaneously,
and a robot’s cycle is an instantaneous event that starts at a clock tick and
ends by the next.

The only unpredictability (hence the name semi-synchronous) is given by
the fact that at each clock tick, every robot is either active or inactive, and
only active robots perform their cycle. The unpredictability is restricted by the
fact that at least one robot is active at every time instant, and every robot
becomes active at infinitely many unpredictable time instants. A very special
case is when every robot is active at every clock tick; in this case the robots are
fully synchronized.

In this setting, at any given time, all active robots are executing the same
cycle state; thus no robot will look while another is moving. In other words, a
robot observes other robots only when they are stationary. This implies that
the computation is always performed based on accurate information about the
current configuration.

Furthermore, since no robot can be seen while it is moving, the movement
can be considered instantaneous.

An additional consequence of atomicity and synchronization is that, for them
to hold, the maximum distance that a robot can move in one cycle is bounded.

2.3 Capabilities

Different settings arise from different assumptions that are made on the robots’
capabilities, and on the amount of information that they share and use during
the accomplishment of the assigned task. In particular,

2 Note that this does not mean that the observing robot can distinguish a moving
robot from a non moving one.



52 G. Prencipe and N. Santoro

– Visibility. The robots may be able to sense the complete plane or just a
portion of it. We will refer to the first case as the Unlimited Visibility case.
In contrast, if each robot can sense only up to a distance V > 0 from it, we
are in the Limited Visibility case. In the following, we will say also that the
robots have unlimited/limited visibility.
In addition, a robot cannot in general detect whether there is more than one
fellow robot on any of the observed points, included the position where the
observing robot is. We say it cannot detect multiplicity.

– Agreement on Coordinate System. The robots do not necessarily share
the same x−y coordinate system, and do not necessarily agree on the location
of the origin (that we can assume, without loss of generality, to be placed in
the current position of the robot), or on the unit distance. In general, there
is no agreement among the robots on the chirality of the local coordinate
systems (i.e., in general they do not share the same concept of where North,
East, South, and West are). We will refer to this scenario as no agreement

on the local coordinate systems. In the most favorable scenario, the robots
agree on the direction and orientation of both axes. In this case, we will talk
of total agreement on the local coordinate systems. Note that knowledge of
the directions and orientations of both axes does not imply knowledge of
the origin or the unit of length. An intermediate scenario is when the robots
agree only on the direction and orientation of one axis; we will talk of partial

agreement.

– Memory. The robots can access local memory to store different amount of
information regarding the positions in the plane of their fellows. In particular,
if the robots can only store the robots’ positions retrieved in the current
observation, we have oblivious robots. In contrast, if the robots can store
all the positions retrieved since the beginning of the computation, we have
unbounded memory robots. We will also refer to the algorithm the robots
execute as oblivious or non oblivious, depending on the assumption made.

Note that, the conditions under which the robots operate are by definition
common knowledge among the robots.

Let us stress that the only means for the robots to coordinate is the ob-
servation of the others’ positions and their change through time. For oblivious
robots, even this form of communication is impossible, since there is no memory
of previous positions.

3 Problems and Limitations

In the following, we survey the computational results obtained so far. They are
mostly about geometric problems, like forming a certain pattern, following a
trail, or deploy the robots in order to guarantee optimal coverage of a certain
terrain. Observe that several classical problems in distributed computing (e.g.,



Distributed Algorithms for Autonomous Mobile Robots 53

leader election) can be reformulated as geometric problems in our model (e.g.,
forming an asymmetric pattern).

3.1 Pattern formation

The Pattern Formation problem is one of the most important coordination
problem and has been extensively investigated in the literature (e.g., see [8,
38, 39, 41]). The problem is practically important, because, if the robots can
form a given pattern, they can agree on their respective roles in a subsequent,
coordinated action. The geometric pattern to be formed is a set of points (given
by their Cartesian coordinates) in the plane, and it is initially known by all the
robots in the system.

The robots are said to form the pattern if, at the end of the computation, the
positions of the robots coincide, in everybody’s local view, with the points of
the pattern. The formed pattern may be translated, rotated, scaled, and flipped

into its mirror position with respect to the initial pattern. Initially the robots
are in arbitrary positions, with the only requirement that no two robots are in
the same position, and that, of course, the number of points prescribed in the
pattern and the number of robots are the same.

The basic research questions are which patterns can be formed, and how
they can be formed. Many proposed procedures do not terminate and never
form the desired pattern: the robots just converge towards it; such procedures
are said to converge.

Arbitrary Pattern In this section, we review our results on the formation
of an arbitrary pattern. The problem has been investigated by Flocchini et al

[21, 23] and Oasa et al. [33] in the general setting, and by Suzuki and Yamashita
[39] in the semi-synchronous setting; both investigations consider robots with
unlimited visibility.

In the general setting with unlimited visibility:

– With total agreement oblivious robots can form any arbitrary given pattern
[21].

– With partial agreement, oblivious robots can form any arbitrary given pattern
if n is odd. If n is even, oblivious robots can form only symmetric patterns
that have at least one axis of symmetry not passing through any vertex of
the pattern [23].

– With no agreement at all, oblivious robots cannot form an arbitrary given
pattern [21].

In the semi-synchronous setting with unlimited visibility, let m be the size
of the largest subset of robots having an equivalent initial view.

– Robots with unbounded memory can form [39]
1. any pattern if m = 1;
2. only patterns whose vertices can be partitioned into n/m regular m-gons

all having the same center, if m ≥ 2.



54 G. Prencipe and N. Santoro

Circle Formation In the Circle Formation problem, the robots want to
place themselves on the plane to form a non degenerated circle (i.e., with finite
radius greater than zero).

First observe that, if the diameter of the circle is not fixed a priori, the
problem can be solved in a rather straightforward way by oblivious robots even
in the general setting: each robot computes the smallest circle enclosing all the
robots’ positions and moves on the circumference of such a circle.

The problem becomes more difficult when the diameter is prescribed. This
problem was first studied by Sugihara and Suzuki [38]. They presented an
heuristic distributed protocol that allowed the robots to form an approximation
of a circle having a given diameter. The distributed protocol they proposed (ex-
ecuted independently by all the robots) to let the robots form an approximation
of a circle of given diameter D. Experiments have shown that sometimes the
robots bring themselves in a configuration similar to a Reuleaux triangle rather
than a circle (see Figure 1). Successively, the protocol has been improved by
Tanaka [40], that proposed a new solution that produces a better approximation
of the circle.

a

b c

Fig. 1. Reuleaux’s triangle. It is obtained by drawings arcs arc(a, b), arc(b, c), and
arc(c, a), with radii equal to D, from the vertices c, a, and b, respectively, of an
equilater triangle 4(a, b, c) with sides equal to D.

A variant of this problem is the Uniform Circle Formation problem: the
n robots on the plane must be arranged at regular intervals on the boundary
of a circle. Notice that this is the same as the problem of forming an n-gon.
This problem has been studied in the semi-synchronous setting by Défago and
Konagaya [16]; simulation results of these studies have been presented in [37].

The solution in [16] is, however, computationally expensive: in fact, it in-
volves the use of Voronoi diagrams, necessary to avoid the very specific possi-
bility in which at least two robots share at some time the same position and
also have total agreement. Based on this observation, in [7] it is presented a
new algorithm that avoids these expensive calculations.



Distributed Algorithms for Autonomous Mobile Robots 55

– In the semi-synchronous setting with unlimited visibility: oblivious robots can
converge towards an n-gon [16, 37, 7].

Line Formation Let us now consider another simple pattern for the robots:
a line. That is, the robots are required to place themselves on a line, whose
position is not prescribed in advance; we just defined the Line Formation

problem. Note that, if n = 2, a line is always formed. Despite the simplicity of
its formulation, this problem has some subtleties that render its solution not so
easy. In fact, the solvability of this problem heavily depends on the amount of
agreement the robots have on their local coordinate systems.

Clearly, if the robots can rely on total agreement, then the problem is easily
solved: after lexicographically ordering the robots’ positions (e.g., left-right,
top-down), the first and the last robot in the ordering define the line to be
formed. Then, all robots move sequentially (in order to avoid collisions) to this
line (see Figure 2.a).

If the robots have partial agreement, for instance on the direction and ori-
entation of y, the robots can not rely on an unique total ordering of the robots’
positions. In this case the robots can place themselves on the axis that is me-
dian between the two vertical axes tangent to the observed configuration (see
Figure 2.b). The robots on the tangent axes are the last to move.

y

x

y

a.

5

4

1

23

b.

Fig. 2. Line formation with (a) total and (b) partial agreement.

In a recent study [15], the Line Formation problem has been tackled by
studying an apparently totally different problem: the spreading. In this problem,
the robots, that at the beginning are arbitrarily placed on the plane, are required
to evenly spread within the perimeter of a given region. In their work, the
authors focus on the one-dimensional case: in this case, the robots have to form
a line, and place themselves uniformly on it. A very interesting aspect of the
study, is that [15] addresses the issue of local algorithms: each robots decides
where to move based on the positions of its close neighbors. In particular, in
the case of the line, the protocol, called Spread, is quite simple: each robot r
observes its left and right neighbor. If r does not see any robot, it simply does
not move; otherwise, it moves to the median point between its two neighbors.
The authors prove its convergence in the semi-synchronous setting.



56 G. Prencipe and N. Santoro

Semi-synchronous
Multiplicity Detection [39]
Infinite Time [2, 13, 14]

Asynchronous

Multiplicity Detection [10]
Compass [22]

Unbounded Memory [9]
Infinite Time [12]

Table 1. Summary of additional assumptions made by the existing solutions for the
Gathering problem.

– In the semy-synchronous setting, the robots executing Spread converge to a
line configuration with equal distances.

Furthermore, if each robot knows the exact number of robots at each of its
sides, it is possible to achieve the spreading in one dimension in a finite number
of cycles.

– In the fully-synchronous model, n robots can spread in one dimension in n−2
cycles.

3.2 Gathering

In the Gathering problem, the robots, initially placed in arbitrary positions,
are required to gather in a single point. This problem is also called point for-

mation, homing, or rendezvous.
In spite of its apparent simplicity, it has recently been tackled by several

studies: in fact, several factors render this problem difficult to solve, as shown
by the following

– In both the asynchronous and the semi-synchronous setting, there exists no
deterministic oblivious algorithm that solves the Gathering problem in a
finite number of cycles, hence in finite time, for a set of n ≥ 2 robots [35].

Some additional capabilities are thus needed to solve this problem (in Table 1
we report the existing results related to the Gathering problem).

Let us first consider the case of unlimited visibility.

– In the semi-synchronous setting, n ≥ 3 oblivious robots with multiplicity

detection can gather in finite time [39].

This result has been recently improved; in fact, the same result can be achieved
even in the general setting, extending the previous work of [11]:

– In the general setting, n ≥ 3 oblivious robots with multiplicity detection can
gather in finite time [10].



Distributed Algorithms for Autonomous Mobile Robots 57

The multiplicity detection assumption is crucial to prove the correctness of
these algorithms. In fact, the main idea is first to create a unique point p on the
plane with two robots on it, and then to move all other robots on this point,
taking care in not having other points with multiplicity greater than one while
the robots move towards p.

In contrast, the multiplicity detection is not used in the solution described
in [9]; however, it is assumed that the robots can rely on an unlimited amount
of memory: the robots are said to be non-oblivious. In other words, the robots
have the capability to store the results of all computations since the beginning,
and freely access to these data and use them for future computations.

– In the general setting, n ≥ 3 robots with unbounded memory can gather in
finite time [9].

Another study [13] has been devoted to study the behavior of a particular
simple solution to the problem: the robots use the center of gravity as gathering
destination. The authors prove that this simple algorithm represent a conver-
gence solution to the problem in the semi-synchronous setting. In [12] the same
algorithm has been proven to be a convergence solution to the problem in the
asynchronous setting.

Let us then consider the case of limited visibility. With limited visibility, an
obvious necessary condition to solve the problem, is that at the beginning of the
computation the visibility graph (having the robots as nodes and an edge (ri, rj)
if ri and rj are within viewing distance) is connected [2, 22]. In [2] the proposed
protocol works in the semi-synchronous setting; however, it is a convergence

solution to the problem: the robots do not gather in finite time. In fact, the
authors design a protocol that guarantees only that the robots converge towards
the gathering point. In contrast, in [22], the authors present an algorithm that
let the robots to gather in a finite number of cycles. However, the robots can rely
on the presence of a common coordinate system: that is, they share a compass.

– In the semi-synchronous setting there exists an oblivious procedure that lets
robots converge towards (but not necessarily reach) a point for any n [2].

– In the general setting oblivious robots with agreement on the coordinate sys-
tem (e.g., with a compass) can gather in finite time [22, 24].

The Gathering problem has been also investigated in the context of robots
failures. In this context, the goal is for the non-faulty robots to gather regardless
of the action taken by the faulty ones. Two types of robot faults were inves-
tigated by Peleg et al. [1]: crash failure, in which the robot stops any activity
and will no longer execute any computational cycle; and the byzantine failure,
in which the robot acts arbitrarily and possibly maliciously.

– In the semi-synchronous setting, gathering with at most one crash failure is
possible [1].

– In the semi-synchronous setting, gathering with at most one byzantine failure
is impossible [1].



58 G. Prencipe and N. Santoro

– In the fully synchronous setting, gathering with at most n−1

3
byzantine failure

is possible [1].

Finally, in [14] it is analyzed the case of systems where the robots have in-
accuracies in sensing the positions of other robots, in computing the next des-
tination point, and in moving towards the computed destination. The authors
provide a set of limitations on the amount of inaccuracies allowing convergence;
hence, they present an algorithm for convergence under bounded measurement,
movement and calculation errors.

3.3 Following, flocking and capture

In these problems there are two kinds of robots in the environment: the leader

L, and the followers. The leader acts independently from the others, and we can
assume that it is driven by an human pilot. The followers are required to follow
the leader wherever it goes (following), while keeping a formation they are given
in input (flocking). In this context, a formation is simply a pattern described
as a set of points in the plane, and all the robots have the same formation in
input (see Figure 3).

In [26], an algorithm solving this problem has been tested by using computer
simulation; the algorithm assumes no agreement. All the experiments demon-
strated that the algorithm is well behaved, and in all cases the followers were
able to assume the desired formation and to maintain it while following the
leader along its route. Moreover, the obliviousness of the algorithm contributes
to this result, since the followers do not base their computation on past leader’s
positions.

Finally, if the leader is considered an “enemy” or “intruder”, and the pattern
surrounds it, the problem is known as capture. Also in this case, a procedure
that assumes no agreement and solves the problem has been presented in [27].
The proposed algorithm exhibits remarkable robustness, and numeric simula-
tions indicate that the intruder is efficiently captured in a relatively short time
and kept surrounded after that, as desired. Furthermore, the solution is self-
stabilizing [17, 18]. In particular, any external intervention (e.g., if one or more
of the cops are stopped, slowed down, knocked out, or simply faulty) does not
prevent the completion of the task.

– In the general setting there is a procedure for the flocking problem [26].
– In the general setting there is a procedure for the intruder problem [27].

4 Conclusion and Discussion

In this paper, we surveyed a number of recent results on the interplay between
robots’ capabilities and solvability of problems. The goal of these studies is



Distributed Algorithms for Autonomous Mobile Robots 59

Leader
Initial Positions

Fig. 3. Trace of the vehicles while forming and keeping a wedge shaped formation.

to gain a better understanding of the power of distributed control from an
algorithmic point of view.

The area offers many open problems. The operating capabilities of our robots
are quite limited. It would be interesting to look at models where the robots
have more complex capabilities, e.g.: the robots have some kind of direct com-
munication capabilities; the robots are distinct and externally identifiable; etc.
Little is known about the solvability of other problems like spreading and ex-

ploration (used to build maps of unknown terrains), about the physical aspects
of the models (giving physical dimension to the robots, bumping, energy sav-
ing issues, etc.), and about the relationships between geometric problems and
classical distributed computations.

In the area of reliability and fault-tolerance, lightly faulty snapshots, a lim-
ited range of visibility, obstacles that limit the visibility and that moving robots
must avoid or push aside, as well as robots that appear and disappear from the
scene clearly are all topics that have not yet been studied.

We believe that investigations in these areas will provide useful insights on
the ability of weak robots to solve complex tasks.

Acknowledgements The Authors would like to thank Paola Flocchini and Peter
Widmayer for their help and suggestions in the preparation of this survey. This
research is supported in part by the Natural Sciences and Engineering Research
Council of Canada.

References

1. N. Agmon and D. Peleg. Fault-tolerant Gathering Algorithms for Autonomous
Mobile Robots. In Proc. of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1070 – 1078, 2004.

2. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless Point
Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans.
on Robotics and Automation, 15(5):818–828, 1999.



60 G. Prencipe and N. Santoro

3. T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot
Teams. IEEE Trans. on Robotics and Automation, 14(6), December 1998.

4. R. Beckers, O. E. Holland, and J. L. Deneubourg. From Local Actions To Global
Tasks: Stigmergy And Collective Robotics. In Art. Life IV, 4th Int. Worksh. on
the Synth. and Simul. of Living Sys., 1994.

5. G. Beni and S. Hackwood. Coherent Swarm Motion Under Distributed Control.
In Proc. DARS’92, pages 39–52, 1992.

6. Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile
Robotics: Antecedents and Directions. In Int. Conf. on Intel. Robots and Sys.,
pages 226–234, 1995.

7. I. Chatzigiannakis, M. Markou, and S. Nikoletseas. Distributed Circle Forma-
tion for Anonymous Oblivious Robots. In Experimental and Efficient Algorithms:
Third International Workshop (WEA 2004), volume LNCS 3059, pages 159 –174,
2004.

8. Q. Chen and J. Y. S. Luh. Coordination and Control of a Group of Small Mobile
Robots. In Proc. IEEE Int. Conf. on Rob. and Aut., pages 2315–2320, 1994.

9. M. Cieliebak. Gathering Non-Oblivious Mobile Robots. In Proc. 6th Latin Amer-
ican Symposium on Theoretical Informatics, pages 577–588, 2004.

10. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the Robots Gath-
ering Problem. In Proc. 30th International Colloquium on Automata, Languages
and Programming, pages 1181–1196, 2003.

11. M. Cieliebak and G. Prencipe. Gathering Autonomous Mobile Robots. In Proc.
9th Int. Colloquium on Structural Information and Communication Complexity,
June 2002.

12. R. Cohen and D. Peleg. Convergence Properties of the Gravitational Algorithm
in Asynchronous Robot Systems. In Proc. of the 12th European Symposium on
Algorithms, pages 228–239, 2004.

13. R. Cohen and D. Peleg. Robot Convergence via Center-of-Gravity Algorithms. In
Proc. of the 11th Int. Colloquium on Structural Information and Communication
Complexity, pages 79–88, 2004.

14. R. Cohen and D. Peleg. Convergence of Autonomous Mobile Robots with Inac-
curate Sensors and Movements. In Proc. 23th Annual Symposium on Theoretical
Aspects of Computer Science (STACS ’06), pages 549–560, 2006.

15. R. Cohen and D. Peleg. Local Algorithms for Autonomous Robots Systems.
In Proc. of the 13th Colloquium on Structural Information and Communication
Complexity, 2006. to appear.

16. X. Défago and A. Konagaya. Circle Formation for Oblivious Anonymous Mobile
Robots with No Common Sense of Orientation. In Workshop on Principles of
Mobile Computing, pages 97–104, 2002.

17. E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Comm.
of the ACM, 17(11):643–644, 1974.

18. S. Dolev. Self-stabilization. The MIT Press, 2000.
19. B. R. Donald, J. Jennings, and D. Rus. Information Invariants for Distributed

Manipulation. The Int. Journal of Robotics Research, 16(5), October 1997.
20. E. H. Durfee. Blissful Ignorance: Knowing Just Enough to Coordinate Well. In

ICMAS, pages 406–413, 1995.
21. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak

Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In Proc. 10th International Symposium on Algorithm and Com-
putation, pages 93–102, 1999.



Distributed Algorithms for Autonomous Mobile Robots 61

22. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Asyn-
chronous Mobile Robots with Limited Visibility. In Proceedings 18th Interna-
tional Symposium on Theoretical Aspects of Computer Science, volume LNCS
2010, pages 247–258, 2001.

23. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Pattern Formation by
Autonomous Robots Without Chirality. In Proc. 8th Int. Colloquium on Structural
Information and Communication Complexity, pages 147–162, June 2001.

24. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Asyn-
chronous Robots with Limited Visibility. Theoretical Computer Science, 337:147–
168, 2005.

25. T. Fukuda, Y. Kawauchi, and H. Asama M. Buss. Structure Decision Method for
Self Organizing Robots Based on Cell Structures-CEBOT. In Proc. IEEE Int.
Conf. on Robotics and Autom., volume 2, pages 695–700, 1989.

26. V. Gervasi and G. Prencipe. Coordination Without Communication: The Case of
The Flocking Problem. Discrete Applied Mathematics, 143:203–223, 2003.

27. V. Gervasi and G. Prencipe. Robotic cops: The intruder problem. In Proc. IEEE
Conference on Systems, Man and Cybernetics, pages 2284–2289, 2003.

28. D. Jung, G. Cheng, and A. Zelinsky. Experiments in Realising Cooperation be-
tween Autonomous Mobile Robots. In ISER, 1997.

29. Y. Kawauchi and M. Inaba and. T. Fukuda. A Principle of Decision Making of
Cellular Robotic System (CEBOT). In Proc. IEEE Conf. on Robotics and Autom.,
pages 833–838, 1993.

30. M. J Matarić. Interaction and Intelligent Behavior. PhD thesis, MIT, May 1994.
31. S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling Machine. In Proc. IEEE

Conf. on Robotics and Autom., pages 441–448, 1994.
32. F. R. Noreils. Toward a Robot Architecture Integrating Cooperation between

Mobile Robots: Application to Indoor Environment. The Int. J. of Robot. Res.,
pages 79–98, 1993.

33. Y. Oasa, I. Suzuki, and M. Yamashita. A Robust Distributed Convergence Algo-
rithm for Autonomous Mobile Robots. In IEEE Int. Conf. on Systems, Man and
Cybernetics, pages 287–292, October 1997.

34. L. E. Parker. On the Design of Behavior-Based Multi-Robot Teams. Journal of
Advanced Robotics, 10(6), 1996.

35. G. Prencipe. On The Feasibility of Gathering by Autonomous Mobile Robots. In
Proc. 12th Int. Colloquium on Structural Information and Communication Com-
plexity, pages 246–261, 2005.

36. G. Prencipe. The Effect of Synchronicity on the Behavior of Autonomous Mobile
Robots. Theory of Computing Systems, 38:539–558, 2005.

37. S. Samia, X. Défago, and T. Katayama. Convergence Of a Uniform Circle For-
mation Algorithm for Distributed Autonomous Mobile Robots. In In Journés
Scientifiques Francophones (JSF), Tokio, Japan, 2004.

38. K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of Geometric
Patterns with Many Mobile Robots. Journal of Robotics Systems, 13:127–139,
1996.

39. I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. Siam J. Computing, 28(4):1347–1363, 1999.

40. O. Tanaka. Forming a Circle by Distributed Anonymous Mobile Robots. Technical
report, Department of Electrical Engineering, Hiroshima University, Hiroshima,
Japan, 1992.



62 G. Prencipe and N. Santoro

41. P. K. C. Wang. Navigation Strategies for Multiple Autonomous Mobile Robots
Moving in Formation. Journal of Robotic Systems, 8(2):177–195, 1991.


