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Barcelona Supercomputing Center

Universidad Politécnica de Cataluña
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Abstract—Heterogeneous systems have a very high poten-
tial performance but present difficulties in their programming.
OmpSs is a well known framework for task based parallel appli-
cations, which is an interesting tool to simplify the programming
of these systems. However, it does not support the co-execution of
a single OpenCL kernel instance on several compute devices. To
overcome this limitation, this paper presents an extension of the
OmpSs framework that solves two main objectives: the automatic
division of datasets among several devices and the management
of their memory address spaces. To adapt to different kinds
of applications, the data division can be performed by the
novel HGuided load balancing algorithm or by the well known
Static and Dynamic. All this is accomplished with negligible
impact on the programming. Experimental results reveal that
there is always one load balancing algorithm that improves the
performance and energy consumption of the system.

Index Terms—Heterogeneous systems, OmpSs programming
model, OpenCL, co-execution

I. INTRODUCTION

The scene of high performance computing (HPC) is be-
coming more and more dependant on compute accelerators.
This is not only due to their high performance but also their
outstanding energy efficiency. Interestingly, the success of
these devices comes in spite of the fact that it is difficult to
develop efficient software for machines that integrate them.

Programming heterogeneous systems, that integrate com-
pute accelerators like GPUs, can be accomplished through sev-
eral frameworks like CUDA and OpenCL. However, instead
of presenting the programmer with a convenient abstraction,
both regard the system as a collection of independent devices.
This allows accessing the computing power of the devices,
but there is not an effortless way to squeeze all the power out
of the heterogeneous system, as each device must be handled
independently.

The OmpSs programming model presents a change of
paradigm in many ways. It provides support for task par-
allelism due to its benefits in terms of performance, cross-
platform flexibility and reduction of data motion [1]. The
programmer divides the code in interrelating tasks and OmpSs
essentially orchestrates their parallel execution maintaining
their control and data dependences. To that end, OmpSs
uses the information supplied by the programmer, via code
annotations with pragmas, to determine at run-time, which

parts of the code can be run in parallel. It enhances OpenMP
with support for irregular and asynchronous parallelism, as
well as support for heterogeneous architectures. OmpSs is
able to run applications on symmetric multiprocessor (SMP)
systems with GPUs, through OpenCL and CUDA APIs [2].

However, OmpSs did not support co-execution of kernels,
that is to automatically run a single kernel instance on all
the available devices in a heterogeneous system. Doing so
would require extra effort from the programmer, who would
have to decompose the kernel in smaller tasks so that OmpSs
could send them to the devices. However, there would be no
guarantee that the resources would be efficiently used and the
load properly balanced. The programmer would also be left
alone in terms of dividing and combining the data. This would
lead to longer code, which would be harder to maintain.

As a solution to the above problems this article presents
an OmpSs extension which enables the efficient co-execution
of massively data-parallel OpenCL kernels in heterogeneous
systems. By automatically using all the available resources,
regardless of their number and characteristics, it presents an
easy way to perform kernel co-execution and extracting the
maximum performance of these systems. The extension takes
care of load balancing, input data partitioning and output data
composition. To suit the different behaviour of applications,
the extension presents the programmer with three different
load balancing algorithms. This behaviour may be regular,
when every work unit represents the same running time, or
irregular, if different work units have different running times.

The experimental results presented here indicate that, for
all the used benchmarks, the utilisation of the whole hetero-
geneous system has a positive impact on performance. In fact,
the results show that it is possible to reach an efficiency of
the heterogeneous system over 0.85, if the right algorithm is
chosen. Furthermore, the results also show that, although the
systems exhibit higher power demand, the shorter execution
time grants a notable reduction in the energy consumption.
Indeed, the average energy efficiency improvement observed
is 2.62×.

The main contributions of this article are the following:

• Extending the OmpSs programming model with a new
scheduler, that allows a single OpenCL kernel instance



to be co-executed by all the devices of a heterogeneous
system.

• The implementation of a set of load balancing algorithms
that adapt to the needs of the different applications.

• Presenting an exhaustive experimental study that corrob-
orates that using the whole system is beneficial in terms
of energy consumption as well as performance.

The rest of this paper is organised as follows. Section II
presents background concepts key to the understanding of
the paper. Next, Section III describes the details of the load
balancing algorithms. Followed by Section IV, that covers the
implementation of the OmpSs extension. Section V presents
the experimental methodology and discusses its results. Fi-
nally, Section VII offers some conclusions and future work.

II. BACKGROUND

This section explains the main concepts of the OmpSs pro-
gramming model that will be used throughout the remainder
of the article.

OmpSs is a programming model based on OpenMP and
StarSs. Which has been extended in order to allow the in-
clusion of CUDA and OpenCL kernels in Fortran and C/C++
applications as a simple solution to execute on heterogeneous
systems [1], [2]. It supports the creation of data-flow driven
parallel programs that, through the asynchronous parallel exe-
cution of tasks, can take advantage of the computing resources
of a heterogeneous machine. The programmer declares the
tasks through compiler directives (pragma) in the source code
of the application. These are used at runtime to determine
when the tasks may be executed in parallel.

OmpSs is built on top of two tools:
• Mercurium is a source-to-source compiler that processes

the high-level directives, and transforms the input code
into a parallel application [3]. In this manner, the pro-
grammer is spared of low level details like the thread
creation, synchronization and communication, as well as
the offloading of kernels in a heterogeneous system.

• Nanos++ is a run-time library that provides the necessary
services for the execution of the parallel program [4].
Among others, these include task creation and synchro-
nization, but also data marshaling and device manage-
ment.

In the pragma annotations, the programmer specifies the
data dependences between the tasks. Then, when the execution
of the parallel program commences, a thread pool is created.
Of these, only the master thread is active, and uses the services
of the run-time library to generate tasks, identified by work
descriptors, and adding them to a dependence graph. The
master thread then schedules the execution of the tasks to the
threads in the pool as soon as their input dependences are
satisfied.

In terms of heterogeneous systems, OmpSs provides a target
directive that indicates a set of devices in which a given task
can run. In addition to a task, the target directive can be applied
to a function definition. OmpSs also offers the ndrange clause

that, together with the data-directionality clauses in and out,
guides the data transfer between the devices and the host CPU,
so the programmer perceives a single unified address space.

However, OmpSs does not support the execution of a single
kernel instance in several devices. The extension proposed in
this article modifies the Nanos++ runtime system so that it can
automatically divide a kernel into sub-kernels and manage the
different memory address spaces. In order to make the co-
execution efficient, three load balancing algorithms have been
implemented to suit the behaviour of different applications.

III. LOAD BALANCING ALGORITHMS

The behaviour of the three algorithms (Static, Dynamic and
HGuided) is illustrated in Figure 1. It shows the ideal case
in which in the execution of a regular application all devices
finish simultaneously, thus achieving perfect load balance.

A. Static algorithm

This algorithm works before the kernel starts its execution
by dividing the dataset in as many packages as devices are
in the system. The division relies on knowing the computing
power of the devices in advance. Then the execution time of
each device can be equalised by proportionally dividing the
dataset among the devices. As a consequence, there is no idle
time in any device, which would signify a waste of resources.
The idea of assigning a single package to each device is
depicted in Figure 1.

A formal description of the algorithm can be made consid-
ering a heterogeneous system with n devices. Each device i
has computational power Pi, which is defined as the amount
of work that a device can complete per time unit, including
the communication overhead. This value depends on the
architecture of the device, but also on the application that is
being run. These powers are input parameters of the algorithm
and can be extracted by a simple profiled execution.

The application will execute a kernel over W work-items,
grouped in G work-groups of fixed size Ls = W

G . Since the
work-groups do not communicate among themselves, it makes
sense to distribute the workload taking the work-group as the
atomic unit. Each device i will have an execution time of Ti.
Then the execution time of the heterogeneous system will be
that of the last device to finish its work, or TH = maxni=1Ti.
Also, since the whole system is capable of executing W work-
items in TH , it follows that its total computational power of
the heterogeneous system is PH = W

TH
. Note that it also can be

computed as the sum of the individual powers of the devices.

PH =
W

TH
=

n∑
i=1

Pi

The goal of the Static algorithm is to determine the number
of work-groups to assign each device, so that all the devices
finish their work at the same time. This means finding a tuple
{α1, ...αn}, where αi is the number of work-groups assigned
to the device i, such that:
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Fig. 1. Depiction of how the three algorithms perform the data division among three devices. The work groups assigned to each device, identified by numbers,
are joined in packages shown as larger rounded boxes. The execution time of work groups in CPU is four times larger than in the GPUs.

TH = T1 = · · · = Tn ⇔
Lsα1

P1
= · · · = Lsαn

Pn

This set of equations can be generalised and solved as
follows:

TH =
Lsαi

Pi
⇔ αi =

THPi

Ls
=
THPiG

W
=

PiG∑n
i=1 Pi

Since αi is the number of work-groups, its value must be an
integer. For this reason, the expression used by the algorithm
is:

αi =

⌊
PiG∑n
i=1 Pi

⌋
If there is not an exact solution with integers then∑n
i=1 αi < G. In this case, the remaining work-groups are

assigned to the most powerful device.
The advantage of the Static algorithm is that it minimises the

number of synchronisation points. This makes it perform well
when facing regular loads with known computing powers that
are stable throughout the dataset. However, it is not adaptable,
so its performance might not be as good with irregular loads.

B. Dynamic algorithm

Some applications do not present a constant load during
their executions. To adapt to their irregularities, the dynamic
algorithm divides the dataset into small packages of equal
size. The number of packages is well above the number of
devices in the heterogeneous system. During the execution of
the kernel, a master thread in the host is in charge of assigning
packages to the different devices, following the next strategy:

1) The master splits the G work-groups in packages, each
with the package size specified by the user. This number
must be a multiple of the work-group size. If the number
of work-items is not divisible by the package size, the
last package will be smaller

2) The master launches one package on each device, in-
cluding the host itself if it is desired.

3) The master waits for the completion of any package.
4) When device i completes the execution of a package:

a) The device returns the partial results corresponding
to the processed package.

b) The master stores the partial results.
c) If there are outstanding packages, a new one is

launched on device i.
d) If all the devices are idle and there are no more

packages, the master jumps to step 5.
e) The master returns to step 3.

5) The master ends when all the packages have been
processed and the results have been received.

This behaviour is illustrated in Figure 1. The dataset is
divided in small, fixed size packages and the devices process
them achieving equal execution time. As a consequence, this
algorithm adapts to the irregular behaviour of some applica-
tions. However, each completed package represents a synchro-
nisation point between the device and the host, where data is
exchanged and a new package is launched. This overhead has
a noticeable impact on performance. The Dynamic algorithm
takes the size of the packages as a parameter.

C. HGuided algorithm

The two above algorithms are well known approaches to the
problem of load balancing in general. But none satisfy three
key aspects. First, take into account the heterogeneity of the
system. Second, control the overhead of the synchronisation.
And third, give reasonable performance with applications of
different behaviours. Thus a new load balancing algorithm
proposal called HGuided is proposed, which is based on the
Guided method from OpenMP.

In this algorithm, the packet size is dependent on the com-
puting power of the assigned device. Which allows taking full
advantage of fast devices with large packets while assigning
smaller packets to slower devices. This, also reduces the num-
ber of synchronization points and the corresponding overhead,
compared to the Dynamic. As in the Guided algorithm, the
size of the packets is reduced as the execution progresses,
thus reaching a small package granularity towards the end of
the execution to allow all devices to finish simultaneousy.

The package size for device i is calculated as follows:



packet sizeH =

⌊
GrPi

k
∑n

j=1 Pj

⌋
Where Gr is the number of pending work-groups and is

updated with every package launch. Like the Static algorithm,
the HGuided takes the computing powers of the devices as
parameters. It also requires a minimum package size, which is
a lower bound for the packet sizeH . Due to the unpredictable
behaviour of the irregular applications, the constant k is
introduced to limit the maximum package size, taking a value
of 2 in the experimental evaluation of Section V. Once the size
of the packages is defined, they are assigned to the devices
much like in the Dynamic.

Figure 1 shows how the size of the packages is large at the
beginning of the execution, and decreases towards the end.

IV. IMPLEMENTATION

As stated before, the OmpSs infrastructure relies on the
combination of two components: Mercurium, which is a
source-to-source compiler, and Nanos++, which is a runtime
capable of managing tasks, their data and the Task Dependence
Graph (TDG) their dependences generate. As a first approach,
the new load balancing algorithms have been implemented
focusing on making the changes as self-contained as possible
and minimizing the impacts on the OmpSs specification,
Mercurium and the rest of Nanos++. As a result, neither di-
rectives nor clauses have been added to Mercurium. Nanos++
implements a set of different schedulers that deal with the
management of the tasks submitted to the runtime. To offer the
work distribution strategies for a single OpenCL task presented
in the previous section, a new scheduler has been implemented
as a Nanos++ plugin. The parameters of the algorithms are the
following:

• The device computing powers for Static and HGuided.
• The package size for Dynamic.
• The minimum package size for HGuided.

To avoid altering the OmpSs specification, the algorithm used
and its parameters are selected through environment variables,
which is the normal way to specify the scheduler in Nanos++.

Figure 2 represents the outline of an OmpSs implementation
of the Binomial benchmark used later in the experimentation.
It shows how a call to a function defined as a task is followed
by a wait. The header of that function, which is shown in
Figure 3, indicates that the task must be run in an OpenCL
device, as well as its launch parameters, input and output data.
Figure 4 shows the environment variables that need to be set
to run the task with each of the three algorithms presented in
Section III.

Despite the efforts made to minimize the impact on Mer-
curium, a minor change was unavoidable. The original imple-
mentation did not make OpenCL kernel configuration param-
eters available to Nanos++. This information is necessary for
the operation of the plugin, as it defines the amount of work
that will be performed. Nanos++ work descriptors do not hold
this information either. Consequently, a new Mercurium work

//Initializations
binomial_options(NUM_STEPS, SAMPLES,

randArray, output);
#pragma omp taskwait
//Free resources

Fig. 2. Basic outline of an OmpSs application.

#pragma omp target device(opencl) copy_deps
ndrange(1,samples*(numSteps+1),

numSteps+1)
#pragma omp task in([samples]randArray) \

out([samples]output)
__kernel void binomial_options(int numSteps,

int samples, const __global float4*
randArray, __global float4* output);

Fig. 3. Header file for the task.

descriptor creation function has been implemented, which
behaves like the original but including these parameters.

When a work descriptor is submitted, the new scheduler
manages its division in as many work descriptors as the
selected algorithm and parameters require. These work de-
scriptors are considered as children of the one submitted,
and represent an aggregate workload equivalent to that of
their parent. For the Static and Dynamic algorithms, in which
the number and size of the packages are known when the
launch of the workload is made, all the work descriptors are
created at the submission of their parent. They are stored
in the scheduler and adequately returned when a thread is
idle, receptive to another task. In the case of the HGuided
algorithm, the packages have varying sizes that depend on
the prior execution and the device that will run them. As a
consequence, the children work descriptors will be created
when required by an idle thread, considering the device it
manages.

Each of the children work descriptors is identical to its
parent except for two key differences. First, it has differ-
ent OpenCL parameters, namely global work size and offset,
defining the workload of the package it represents. Second,
its output data is just a portion of that of its parent, which is
conveniently offset so the results are written adequately. This
is represented by an independent CopyData object, holding
the start address and size that the package will have to work
on. As a result, coherence problems are avoided in the OmpSs
directory. Apart from the aforementioned details, data transfer
relies on the methods used by standard OmpSs. To perform
the correspondence between work descriptors and output data,
an assumption is made: each OpenCL work-item will produce
the result for the position of the output buffers indexed by its
identifier. This may seem a strong requirement, but it is met
by most kernels widely used in the industry and research.

The creation of the children work descriptors is performed
by a modified version of the duplicateWD function that does
this extra work. This function is also responsible for mak-



# Static load balancing
NX_SCHEDULE=maat
NX_ALGORITHM=static
NX_GPU_POWER=34.0

# Dynamic load balancing
NX_SCHEDULE=maat
NX_ALGORITHM=dynamic
NX_DYN_PACKAGE_SIZE=409600

# HGuided load balancing
NX_SCHEDULE=maat
NX_ALGORITHM=hguided
NX_GPU_POWER=34.0
NX_MIN_PACKAGE_SIZE=115200

Fig. 4. Environment variables to use standard OmpSs and the different load
balancing algorithms.

ing the OpenCL parameters of the divided work descriptors
available to the Mercurium code, which will trigger the actual
kernel launches.

Once the submission of the original work descriptor is
completed, the done function is called. This is a Nanos++
function that is used to signal the completion of a work
descriptor. It also waits for the completion of the children
of the calling work descriptor. In this way, no task dependent
on the divided one will be run until all the children resulting
from the work distribution are completed, so the dependencies
of the task graph are maintained.

V. EVALUATION

This Section begins with a description of the system and the
benchmarks used in the experiments, as well as definitions of
the metrics used in the evaluation. Additionally experimental
results are showed and analysed.

A. System Set-up

The test machine has two processor chips and two GPUs.
The chips are Intel Xeon E5-2620, with six cores that can run
two threads each at 2.0 GHz. They are connected via QPI,
which allows OpenCL to detect them as a single device. Thus,
any reference to the CPU considers both processors. The GPUs
are NVIDIA Kepler K20m with 13 SIMD lanes and 2496
cores. The experiments build upon a baseline system which
uses a single GPU but consider the static energy of all the
devices, regardless of if they are contributing work or not.

Six applications have been chosen for the experimentation.
Three of them: NBody, Krist and Perlin are part of the OmpSs
examples offered by BSC, and the other three: Binomial,
Sparse Matrix and Vector product (SpMV) and Rap have been
specifically adapted to OmpSs from existing OpenCL applica-
tions. The first four applications (NBody, Krist, Binomial and
Perlin) are regular, meaning that all the work-groups represent
a similar amount of work. On the contrary, SpMV and Rap
are irregular, which implies that each work-group represents a
different amount of work. The parameters associated to each
of the load balancing algorithms have been set to maximise

TABLE I
MAXIMUM ACHIEVABLE SPEEDUP PER APPLICATION.

Application NBody Krist Binomial Perlin SpMV RAP
Max. Speedup 2.61 2.2 2.03 2,04 2.05 2,16

performance.The computing power for a device/application
pair has been obtained as the relative performance of the
device, with respect to that of the fastest device for the
application.

Perlin implements an algorithm that generates noise pixels
to improve the realism of moving graphics. Krist is used on
crystallography to find the exact shape of a molecule using
Röntgen diffraction on single crystals or powders. Rap is an
implementation of the Resource Allocation Problem. It has
a certain pattern in its irregularity, because each successive
package represents an amount of work larger than the previous.

The evaluation of the performance of the benchmarks is
done through their response time. This includes the time
required by the communication between host and the devices,
comprising input data and result transfer, as well as the execu-
tion time of the kernel itself. The benchmarks are executed in
two scenarios, the heterogeneous system, taking advantage of
the GPUs and CPU, and the baseline, that only uses one GPU.
Note that in both instances, the same version of the program
is run, as there is no need to modify the source or recompile,
only set environment variables.

Based on these response times, two metrics are analysed.
The first is the speedup for each benchmark when comparing
the baseline and the heterogeneous system response times.
Note that, for the employed benchamrks, the CPU is much
less powerful than the GPUs, then the maximum achievable
speedup using the three devices is not 3, but a fraction over
2 which depends on the computing power of the CPU for the
application. The speedup for each application using a perfectly
balanced work distribution is shown in Table I. These values
give an idea of the advantage of using the complete system.

The second metric is the load balancing efficiency, obtained
by dividing the reached speedup by the maximum speedup,
shown in Table I. The obtained value ranges between 0
and 1 giving an idea of the usage of the heterogeneous
system. Efficiencies close to 1 indicate the best usage of the
system is being made. The measured values do not reach this
ideal because of the communication and synchronisation times
between the host and the devices.

The energy consumption is measured with an in-house
developed tool that access the different hardware counters of
the devices. For the CPU it uses the Running Average Power
Limit (RAPL) registers. And for the NVIDIA GPUs, it takes
advantage of the NVIDIA Management Library (NVML).

The performance and the energy consumption can be com-
bined in a single metric representing the energy efficiency of
the system. This paper uses the Energy Delay Product (EDP)
[5] for this purpose.
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Fig. 5. Speedup per application.

B. Experimental results

Figure 5 shows the speedup obtained for each application
calculated with respect to their execution time using baseline
system, as was explained above. The results for the regular
applications show that, as expected, the best option is the Static
algorithm. The other two algorithms achieve good results,
however suffer from a problem that hurts performance. If
one of the last packages is assigned to the slowest device
it will delay the execution of the whole application. This
problem could be avoided by increasing the number of pack-
ages, but in that case overheads come into play and degrade
performance too. The HGuided algorithm due to its very
nature, partially solves this issue. In the case of the irregular
applications, the Static algorithm fails to balance the load.
This is a consequence of the behavior of these applications,
with work-groups representing different execution times. The
Dynamic and HGuided methods manage to balance the load
more adequately, with the latter outperforming the former and
achieving really good results.

The load balancing efficiency gives an idea of how well
a load is balanced. A value of one represents that all the
devices have been working all the time, thus achieving the
maximum speedup. As the Figure 6 shows, there is at least one
load balancing algorithm for every application that achieves
an efficiency over 0.85. This is true even for the irregular
applications, in which obtaining a balanced work distribution
is significantly harder. In general it can be said that the
efficiency can be largely improved, for instance it can be as
high as 0.98, reached by Binomial and Perlin with the Static.

Nowadays, performance is not the only figure of merit used
to evaluate computing systems. Their energy consumption and
efficiency are also very important. Figure 7 gives an idea
of the energy saving that comes through the usage of the
whole heterogeneous system, instead of the baseline system
that only uses the GPU while the other devices are idle, but still
consuming. Therefore, the Figure shows for each benchmark
the energy consumption of each algorithm normalised to the
baseline consumption (Less is better).

The first fact worth mentioning is that, for all the bench-
marks, it is possible to find an algorithm that reduces the
energy consumption (The normalised energy is less than 1.)
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Fig. 6. Efficiency of the heterogeneous system.

The use of more devices necessarily increases the instanta-
neous power at any time. But, since the total execution time is
reduced, the total energy consumption is also less. This saving
is further improved by the fact that idle devices still consume
energy, so making all devices contribute work is beneficial.

The analysis of the algorithms shows a strong correlation
between performance and energy saving. Consequently, the
best algorithm for regular applications is also the Static,
with an average saving of 26.5%. The saving with irregular
applications is lower than with regular, around 12%, as the best
algorithms is HGuided that adds communication overhead.

Another interesting metric is the energy efficiency, which
combines performance with consumption. With the dual goal
of low energy and fast execution in mind, the Energy Delay
Product (EDP) is the product of the consumed energy and the
execution time of the application. Figure 8 shows the EDP of
the algorithms normalised to the EDP of the baseline.

Since the EDP is a combination of the two above metrics,
the relative advantage of the different algorithms is maintained.
Both, the Static algorithm on regular applications, and the
HGuided on irregular, sensibly reduce the EDP measured on
the baseline. This leads to an improvement of the energy
efficiency of 2.9× and 2.13×, respectively. Considering all
the benchmarks, the average improvement observed is 2.62×,
if the best algorithm for each benchmark is selected. In some
cases, the improvement can be well above these values, like
in Binomial with 3.42×.

Judging by the results of all the experiments presented in
this section, a set of conclusions can be reached. First, the
utilization of all the devices of a heterogeneous system to
execute the benchmarks significantly improves their perfor-
mance, energy consumption and energy efficiency. However,
it is important to choose the right load balancing algorithm to
achieve these advantages.

Regarding this choice, it can be said that the Static algorithm
is the best for regular applications. However, this algorithm is
very sensitive to the selection of computing powers, making
a calibration stage necessary to achieve the best results. The
Dynamic algorithm can offer good results in some particular
cases, but in general the results vary, and it is considered the
less reliable algorithm. The HGuided algorithm is the best for
irregular applications, and it would give the same results as
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Fig. 7. Normalised energy consumption per application.

Static, if it were not for the communication overhead. Meaning
that it adapts well to different execution patterns, and shows
always outstanding balance among the devices.

VI. RELATED WORK

Heterogeneous architectures show significant advantages in
performance and energy consumption with respect to tradi-
tional systems. However, they also present the programmer
with new challenges that make the use of such systems
difficult. The keystones to make programming easy again are
system abstraction, so the heterogeneous devices are handled
transparently, and load balancing, so the resources are ade-
quately used. Nevertheless, related as they are, these problems
are often addressed separately.

To the load balancing problem, there are two main ap-
proaches found in the literature: static and dynamic.

Regarding the static, Lee et al.[6] propose the automatic
modification of OpenCL code that executes on a single device,
so the load is balanced among several ones. De la Lama et al.
[7] propose a library that implements static load balancing by
encapsulating standard OpenCL calls. In [8] the distribution
is obtained with automatic code modifications. Zhong et al.
[9] use performance models. These works fail to address the
importance of adaptability to irregular loads.

In the dynamic approach [10], [11] propose different tech-
niques and runtimes. However, these focus on task distribution
and not on the co-execution of a single data parallel kernel.
The work of [12] deals with the dynamic distribution of TBB
parallel for loops, adapting block size at each step to improve
balancing. FluidicCL [13] does focus on co-execution but for
systems with a CPU and a GPU. SnuCL [14] also tackles data
parallelism, but is mostly centered on the distribution of the
load among different nodes using an OpenCL-like library.

Kaleem’s et al. proposal in [15] and Boyer’s et al. in [16]
use the execution time of the first packages to distribute the
rest of the load and focus on integrated systems. Scogland
et al. [17] also use a mixed strategy to adapt OpenMP to
heterogeneous systems.

Some papers propose algorithms to distribute the workload
between CPU and GPU taking performance and power into ac-
count. For instance, GreenGPU dynamically distributes work
to GPU and CPU, minimizing the energy wasted on idling
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and waiting for the slower device [18]. To maximize energy
savings while allowing marginal performance degradation,
it dynamically throttles the frequencies of CPU, GPU and
memory, based on their utilizations. Wang and Ren [19]
propose a power-efficient load distribution method for single
applications on CPU-GPU systems. The method coordinates
inter-processor work distribution and frequency scaling to min-
imize energy consumption under a length constraint. SPARTA
is a throughput-aware runtime task allocator for Heterogeneous
Many Core platforms [20]. It analyzes tasks at runtime and
uses the obtained information to schedule the next tasks
maximizing energy-efficiency.

With respect to the problem of transparently managing a
heterogeneous system, Tupinamba [21] proposes a framework
for OpenCL, that enables the transparent use of distributed
GPUs. In this same vein, Cabezas et al. [22] present an inter-
esting architecture-supported take on efficient, transparent data
distribution among several GPUs. Nevertheless, this works
overlook load balancing, which is essential when trying to
make the most of several heterogeneous devices.

You [23], Zhong [24] and Ashwin [25] do address both
load balancing while abstracting the underlying system and
data movement. Nevertheless, their focus is on task-parallelism
instead of on the co-execution of a single data-parallel kernel.
Kim et al. [26] approach the problem by implementing an
OpenCL framework that provides the programmer with a view
of a single device by transparently managing the memory of
the devices. Their approach is based on a Static load balancing
strategy, so it can not adapt to irregularity. Besides, they only
consider systems with several identical GPUs, lacking the
adaptability that OmpSs offers.

There are also some contributions that focus on scheduling
and load balancing for OmpSs tasks. For instance, the sched-
uler presented in [27] is closer to the idea of co-execution. It
holds several implementations of a task, targeted for different
devices, that will be run iteratively. The scheduler stores the
execution time of each implementation, so it can take load
balancing decisions on what implementation is best to run
next. However, the programmer is responsible for mapping
the computation on several iterative tasks, which may not be
an easy and natural approach for the application at hand.



VII. CONCLUSIONS AND FUTURE WORK

This paper presents a new scheduler of the OmpSs pro-
gramming model that allows to efficiently co-execute a single
OpenCL kernel instance using all the devices in a heteroge-
neous system. Due to the different behaviour of applications,
there is a need of more than one load balancing algorithms.
Thus, the scheduler implements three load balancing algo-
rithms, the well known Static and Dynamic, plus a novel
algorithm taylored for hetergeneous systems called HGuided.
The scheduler has been conceived so that it is fully transparent
to the programmer, who only needs to select the algorithm and
set its parameters through environment variables.

From the evaluation presented above, a set of conclusions
can be highlighted. The use of the whole heterogeneous system
is beneficial, both from the performance and the energy points
of view, with at least one load balancing method. Regarding
the individual algorithms, the Static is the most adequate
for regular applications and when the computing power of
the devices are known, as it minimises overheads. The other
algorithms represent suboptimal yet good solutions for this
kind of applications. In the case of irregular applications the
HGuided method is the best choice. The use of Static is
strongly discouraged as it may result in poor performance
due to imbalance. Lastly, the Dynamic algorithm is a good
all-around option when a priori information of the computing
powers is not available, at the cost of more modest speedups.

The future of this extension will see compatibility with
new devices, like Intel Xeon Phi, FPGAs or integrated GPUs.
From the OmpSs perspective, a modification of the pragma
specification would allow the programmer to select different
algorithms or parameters for different kernels of the same
application. It would be interesting to extend the evaluation
to different systems and device configurations.
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[1] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: A proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[2] F. Sainz, S. Mateo, V. Beltran, J. L. Bosque, X. Martorell, and
E. Ayguad´, “Leveraging ompss to exploit hardware accelerators,” in Int.
Symp. on Computer Architecture and High Performance Computing, Oct
2014, pp. 112–119.

[3] “Mercurium C/C++/Fortran source-to-source compiler,” last accesed
April 2017. [Online]. Available: https://github.com/bsc-pm/mcxx

[4] “Nanos++ Runtime Library,” last accesed April 2017. [Online].
Available: https://github.com/bsc-pm/nanox

[5] E. Castillo, C. Camarero, A. Borrego, and J. L. Bosque, “Financial
applications on multi-cpu and multi-gpu architectures,” J. Supercomput.,
vol. 71, no. 2, pp. 729–739, Feb. 2015.

[6] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent CPU-GPU
Collaboration for Data-parallel Kernels on Heterogeneous Systems,” in
Proc. of PACT. Piscataway, NJ, USA: IEEE Press, 2013, pp. 245–256.

[7] C. S. de la Lama, P. Toharia, J. L. Bosque, and O. D. Robles, “Static
multi-device load balancing for opencl,” in Proc. of ISPA. IEEE
Computer Society, 2012, pp. 675–682.

[8] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Skmd: Single kernel on
multiple devices for transparent cpu-gpu collaboration,” ACM Trans.
Comput. Syst., vol. 33, no. 3, pp. 9:1–9:27, Aug. 2015.

[9] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on mul-
ticore and multi-gpu platforms using functional performance models,”
Computers, IEEE Trans. on, vol. 64, no. 9, pp. 2506–2518, Sept 2015.

[10] T. Gautier, J. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime
system for data-flow task programming on heterogeneous architectures,”
in IPDPS, May 2013, pp. 1299–1308.

[11] A. Haidar, C. Cao, A. Yarkhan, P. Luszczek, S. Tomov, K. Kabir, and
J. Dongarra, “Unified development for mixed multi-GPU and multi-
coprocessor environments using a lightweight runtime environment,” in
Proc. of IPDPS, May 2014, pp. 491–500.

[12] A. Navarro, A. Vilches, F. Corbera, and R. Asenjo, “Strategies for
maximizing utilization on multi-CPU and multi-GPU heterogeneous
architectures,” J. Supercomput., vol. 70, no. 2, pp. 756–771, Nov. 2014.

[13] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices,” in Proceedings
of Annual IEEE/ACM CGO. ACM, 2014, p. 273:283.

[14] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An opencl
framework for heterogeneous CPU/GPU clusters,” in Proceedings of the
ACM ICS. New York, NY, USA: ACM, 2012, pp. 341–352.

[15] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali,
“Adaptive heterogeneous scheduling for integrated GPUs,” in Proc. of
PACT. New York, NY, USA: ACM, 2014, pp. 151–162.

[16] M. Boyer, K. Skadron, S. Che, and N. Jayasena, “Load Balancing in
a Changing World: Dealing with Heterogeneity and Performance Vari-
ability,” in Proc. of the ACM Int. Conference on Computing Frontiers.
New York, NY, USA: ACM, 2013, pp. 21:1–21:10.

[17] T. Scogland, B. Rountree, W. chun Feng, and B. de Supinski, “Hetero-
geneous task scheduling for accelerated openmp,” in Proc. IPDPS, May
2012, pp. 144–155.

[18] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “Greengpu: A holistic
approach to energy efficiency in gpu-cpu heterogeneous architectures,”
in 2012 41st Int. Conf. on Parallel Processing, Sept 2012, pp. 48–57.

[19] G. Wang and X. Ren, “Power-efficient work distribution method for cpu-
gpu heterogeneous system,” in Int. Symp. on Parallel and Distributed
Processing with Applications, Sept 2010, pp. 122–129.

[20] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “Sparta: Runtime task
allocation for energy efficient heterogeneous many-cores,” in Int. Conf.
on Hardware/Software Codesign and System Synthesis, ser. CODES ’16.
New York, NY, USA: ACM, 2016, pp. 27:1–27:10.
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