
Multiannual Atlantic hurricane forecasts are one area that can benefit  

from the recent development of initialized climate predictions.

HOW SKILLFUL ARE THE 
MULTIANNUAL FORECASTS OF 

ATLANTIC HURRICANE ACTIVITY?
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D espite high-profile storms like Sandy and  
 Matthew, the 2012–2016 period has been  
 relatively quiet in terms of hurricane activity over 

the northern Atlantic compared to the previous two 
decades. Because the available observational record 
of Atlantic hurricane shows this basin alternating 
between decadelong periods of high and low activity 
since the end of the nineteenth century (Vecchi and 
Knutson 2011; Chenoweth and Divine 2014), this has 
led to some speculation as to whether we have entered 

into a new prolonged period of low hurricane activity 
similar to what was observed from the early 1970s to 
the mid-1990s (Klotzbach et al. 2015). This question is 
of great interest, not only for the academic community, 
but also for other sectors, such as policy-makers, 
nongovernmental organizations (i.e., disaster relief 
agencies), and the insurance industry. For example, in 
the case of the property and casualty (PC) insurance 
industry that typically underwrites annual contracts 
and may have several automatic renewals, the quan-
tification of hurricane risk on short to medium time 
scales is of big economic relevance.

In theory, multiannual forecast systems could be 
used to give the odds of basinwide hurricane activity 
remaining low for the foreseeable future. However, in 
comparison to seasonal hurricane forecasts, which 
originated in the mid-1980s (Gray 1984), the field of 
multiannual forecasting is very much in its infancy. 
Until recently, this type of long-term forecast was 
exclusively produced using statistical models, wherein 
hurricane activity is first derived by forecasting a 
subset of the climate conditions deemed to control 
hurricane activity (e.g., sea surface temperature over 
certain key regions) and then combining that forecast 
with a statistical model linking past climate condi-
tions and past hurricane activity to produce a predic-
tion of upcoming hurricane activity (Jewson et al. 
2009). Statistical approaches of varying complexity 
have been adopted by the risk modeling industry 
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(Bonazzi et al. 2014) because, up until very recently, 
no viable alternatives existed.

The advent of climate prediction (also referred to as 
decadal forecasting) (Doblas-Reyes et al. 2013; Meehl 
et al. 2014), wherein climate models are initialized 
with the contemporaneous states of the atmosphere, 
ocean, and sea ice, has allowed the development 
of similar multiannual forecasts based on climate 
model simulations. These climate simulations can 
be used either to replace the first step of a statistical 
forecast (Vecchi et al. 2013; Caron et al. 2014, 2015) 
(so-called hybrid forecasts) or to do without empiri-
cal models altogether (Smith et al. 2010; Hermanson 
et al. 2014) (so-called dynamical forecasts). The 
latter technique involves directly tracking tropical 
cyclone–like disturbances in climate output using an 
automated detection and tracking algorithm. These 
dynamical forecasts are the most demanding in terms 
of resources because they require an infrastructure 
in place to detect and track the storms (Ullrich and 
Zarzycki 2017) as well as high-frequency data, which, 
in a decadal forecasting context, can be prohibitive in 
terms of the amount of data storage required for such 
analysis. These restrictions also limit the possibilities 
for multimodel ensemble analyses.

By combining aspects of both dynamical and 
statistical forecasts, the hybrid forecast offers a 
compromise between the first two approaches. In 
such forecasts, the large-scale conditions expected 
to modulate hurricane activity are derived from 
climate model simulations, and hurricane activity 
is inferred using a statistical relationship between 
these large-scale fields and past hurricane activity. 
Although hurricane activity is implicit in this case, 
hybrid forecasts have the advantage of relying on 
large-scale features of the atmosphere–ocean system 
(usually large areas of sea surface temperature), 
which the climate models can be expected to be 
better at simulating and forecasting than smaller-
scale features, such as hurricanes. Furthermore, 
such forecasts are usually computed using seasonal 
or yearly means, thus greatly reducing the amount 
of the data required and, incidentally, making de-
sirable multimodel analyses more affordable. Both 
the dynamical and the hybrid approaches are used 
regularly in the seasonal forecasting and climate 
communities in order to derive hurricane statistics 
from climate model simulations (Vecchi et al. 2011; 
Vitart et al. 2007; Camargo et al. 2007).

Two hybrid techniques have so far been in-
vestigated to forecast hurricane activity at the 
multiannual time scale. The first of these techniques 
relies on predicting the weighted difference in sea 

surface temperature (SST) of the tropical Atlantic 
with respect to that of the wider tropics (Vecchi 
et al. 2013; Caron et al. 2014). In this case, a rela-
tively warm (cold) Atlantic with respect to the rest 
of the tropics will lead to higher (lower) hurricane 
activity due to more (less) conducive dynamic and 
thermodynamic conditions over the Atlantic. The 
second technique relies on forecasting a proxy index 
for the Atlantic multidecadal oscillation (AMO) 
(Klotzbach and Gray 2008; Caron et al. 2015), a slow 
oscillation in Atlantic SST that is thought to modu-
late hurricane activity at long time scales (Zhang 
and Delworth 2006; Knight et al. 2006; Goldenberg 
et al. 2001). A positive index is usually associated 
with increased hurricane activity.

Here, we present and compare the different 
approaches (statistical, hybrid, dynamical) currently 
available to provide multiyear forecasts of North 
Atlantic hurricane activity, starting with a short 
description of the different forecast systems. These 
systems are also summarized in Table 1.

FORECASTING SYSTEMS. Climate model 
data. All climate simulations used here are initial-
ized using contemporaneous observations, thus 
aligning the simulated natural variability with the 
observed variability. External forcing (greenhouse 
gases, solar activity, stratospheric aerosols associated 
with volcanic eruptions and anthropogenic aerosols) 
are taken from observations for start dates ranging 
from 1961 (first forecast period: 1961–65) to 2005 
and the representative concentration pathway (RCP) 
4.5 scenario (Meinshausen et al. 2011) from 2006 
to 2014 (last forecast period: 2010–14). Systematic 
climate model drift in these simulations is addressed 
by computing a lead-time-dependent climatology 
for each individual model by first averaging the 
predicted variable for all of its members across the 
start-date dimension and then subtracting that cli-
matology from each hindcast to obtain the anoma-
lies over the whole predicted period (García-Serrano 
and Doblas-Reyes 2012).

Observational data. The hurricane time series used 
as reference is derived from the revised National 
Hurricane Center “best track” hurricane database 
(HURDAT2) (Landsea and Franklin 2013) and 
includes only hurricanes forming between 5° and 
25°N during the period 1961–2014 and which 
survived at least 48 h at tropical storm strength (or 
above). The geographical limitation is introduced in 
order to allow for comparison with the dynamical 
forecasts, which limits tracking to that region.
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Dynamical forecast systems. With this technique, long-
lived local minima in daily mean sea level pressure 
are tracked over the tropical North Atlantic (5°–25°N) 
during June–November in initialized climate simula-
tions performed with three different versions of the 
Met Office decadal prediction systems:

• 20 simulations based on the Hadley Centre 
Coupled Model, version 3 (HadCM3) (Smith 
et al. 2014) as submitted to phase 5 of the Coupled 
Model Intercomparison Project (CMIP5);

• 9 simulations also based on HadCM3 but using 
nine variants obtained by perturbing poorly con-
strained atmospheric and surface parameters in 
order to sample modeling uncertainty (Smith et al. 
2010); and

• 4 simulations based on the Hadley Centre Global 
Environment Model, version 3 (HadGEM3) 
(Knight et al. 2014).

Initial conditions are generated every year be-
tween 1961 and 2010 by relaxing the coupled model 
to analyses of atmosphere and ocean following the 
anomaly initialization approach, except for 10 mem-
bers of the CMIP5 ensemble, which rely on full field 
initialization.

The number of long-lived minima is then counted 
for each year, and the anomalies are subsequently 
computed by removing the mean and dividing by 
the standard deviation. To allow for comparison with 
observations, we then multiply the time series with 
the standard deviation of the observed time series. 
Variance adjustment is necessary to account for the 
much larger number of tropical disturbances detected 
by this technique compared to observations. The 

three model means are then averaged together and 
the variance is adjusted a second time. Additional 
information on this technique can be found in Smith 
et al. (2010), Dunstone et al. (2011), and Hermanson 
et al. (2014).

Hybrid forecast systems. Both hybrid forecasts rely 
on a multimodel ensemble (MME) of multiannual 
reforecasts performed within the context of CMIP5 
[Geophysical Fluid Dynamics Laboratory Climate 
Model, version 2.1 (GFDL CM2.1) (Dunne et al. 
2014) (10 members); HadCM3 (Smith et al. 2014) (20 
members); and Model for Interdisciplinary Research 
on Climate, version 5 (MIROC5) (AORI/NIES/
JAMSTEC 2015) (6 members)] and the European 
Seasonal-to-Decadal Climate Prediction for the 
Improvement of European Climate Services (SPECS) 
project [Max Planck Institute Earth System Model 
(MPI-ESM) (Matei et al. 2012) (10 members)], for 
a total of four forecast systems. The systems were 
selected from a larger pool of available systems by 
choosing those with start dates available every year 
from 1961 to 2010. The multimodel ensemble-mean 
hurricane anomalies are computed by giving an equal 
weight to each model mean, regardless of the number 
of ensemble members available for a particular model, 
and the variance of the ensemble mean of both series 
of reforecasts has been adjusted to match that of the 
observed time series.

hurriCane numbers from reL atiVe sea surfaCe 
temPerature. With this technique (Vecchi et al. 
2011), frequencies of North Atlantic hurricanes are 
estimated based on the weighted difference in sea 
surface temperature between the tropical Atlantic 

Table 1. Short descriptions of the techniques used to derive hurricane numbers from the climate 
simulations.

Technique Type Summary

Cyclone tracking Dynamical
Hurricane numbers are obtained directly by tracking local minima in surface 
pressure over the tropical Atlantic.

Relative SST Hybrid

Hurricane numbers are estimated through a statistical model with two predictors: 
mean Jun–Nov SST over 1) the tropical Atlantic and 2) the entire tropics. The 
parameters are derived from the sensitivity of a high-resolution atmospheric GCM 
to a number of SST perturbations.

AMO index Hybrid
Hurricane activity is estimated using a climate index correlated with low-frequency 
North Atlantic hurricane variability. Positive (negative) index values are associated 
with conditions more (less) conducive to hurricane formation.

Statistical combination Statistical

Basin hurricane numbers are estimated by combining six statistical models that 
either use 1) regression relationships between mean Jun and Nov SST over the 
MDR or between the MDR and tropical Pacific region or 2) averages of historical 
hurricanes counts in the basin in active or inactive periods.
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and the tropics at large. More specifically, the annual 
Atlantic hurricane frequency λ is derived from a 
statistical model formulated as a Poisson regression 
model with two predictors and is given by

 λ = exp(1.707 + 1.388SSTAtl –1.521SSTTrop), (1)

where SSTAtl and SSTTrop are the mean SST anomalies 
over the tropical Atlantic (in the region 10°–25°N, 
80°–20°W) and of the entire tropics (between 30°N 
and 30°S), respectively, during the period June–
November. In this model, an increase in SST over 
the main development region (MDR) leads to an 
increase in Atlantic hurricane numbers, while an 
increase in SST over the tropics at large leads to a 
decrease in hurricane activity. The parameters in Eq. 
(1) are derived from the sensitivity of the hurricane 
response to a number of SST perturbations in a high-
resolution atmospheric GCM (Vecchi et al. 2011). To 
be commensurable with the other techniques, the 
variance of the ensemble-mean reforecasted time 
series is adjusted to that of the hurricane time series.

amo inDex. In this case, we make use of the rela-
tionship between Atlantic hurricane activity and the 
AMO, also referred to as the Atlantic multidecadal 
variability (AMV), at decadal time scales and esti-
mate hurricane activity using an AMO-proxy index 
developed by Klotzbach and Gray (2008). The index 
is constructed using the difference in standardized 
SST anomalies over the North Atlantic subpolar 
gyre (50°–60°N, 50°–10°W) and the standardized 
mean sea level pressure anomalies over the tropical 
and extratropical Atlantic (0°–50°N, 70°–10°W). To 
translate the forecasted index values into hurricane 
anomalies, we adjust the variance of the reforecasted 
index time series to that of the hurricane time series. 
Additional information on this technique can be 
found in Camp and Caron (2017) and Caron et al. 
(2015).

Combined statistical techniques. With this technique, 
a weighted combination of six statistical models is 
used to reforecast the number of hurricanes in the 
Atlantic basin. Model weights are based on the past 
performance of each model and evolve with each 
prediction year. Four of the statistical models use 
generalized linear regression models to determine 
the relationship between hurricane counts and 
either the MDR sea surface temperature or the dif-
ference in sea surface temperature between the main 
development region and the tropical Pacific region. 
Similar to the relative sea surface temperature hybrid 
method, a local increase in SST over the MDR leads 

to an increase in Atlantic hurricane numbers, while 
an increase in SST over the tropical Pacific leads to a 
decrease in hurricane activity.

The other two component models are averages 
of the past hurricane counts in the Atlantic basin in 
either active or inactive conditions—the activity state 
being determined using a changepoint detection tech-
nique (Jewson et al. 2009). One model includes the 
probability of shifting from an active to inactive state 
or vice versa, while the other model does not. Basin 
hurricane count data from 1950 to the year prior to 
each forecast year are used to produce a given forecast. 
Because the basin record is considered incomplete 
before the 1940s and because we require at least 30 
years of data for building a reliable regression model, 
reforecasts cannot be made prior to 1980 with this 
technique. Finally, the variance of the reforecasted 
time series is also adjusted to match that of the hur-
ricane time series.

DETERMINISTIC FORECASTS. Figure 1 shows 
that the systems capture the U shape in activity, 
reforecasting high activity in the 1960s (when fore-
casts are available), lower activity from the early 1970s 
to mid-1990s, and higher activity for the period that 
followed. There are large disagreements between the 
methods in the 1960s, which might be linked to the 
quantity and the quality of the ocean data used to ini-
tialize the climate model during those years. In terms 
of skill, the reforecasts generally return significant 
correlation coefficients for the linear (Pearson) cor-
relation but only the AMO index technique returns a 
significant ranked (Kendall) correlation coefficient. 
The AMO index technique also returns the smallest 
root-mean-square error (rmse), thus suggesting an 
overall edge for this particular approach over the 
others evaluated here.

A standard technique to evaluate the reliability of 
ensemble forecasts consists of comparing the rmse 
and the spread of the ensemble. In well-calibrated 
forecast systems, the rmse of the ensemble mean 
should match the average spread of that ensemble 
(Fortin et al. 2014); that is, the uncertainty of the fore-
cast should be a good measure of the error of the pre-
dictions. Here, the average model spread is defined as 
the square root of the time-averaged variances and the 
ensemble-mean spread is the square root of the sum 
of the average model variances, weighted according 
to the number of members provided by each model. 
In this particular case, all three systems relying on 
climate models are overdispersive (underconfident): 
the uncertainty is significantly larger than the rmse 
(inset, Fig. 1). Furthermore, only one observation 
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falls outside the prediction range with the tracking 
technique and none with the other two hybrid tech-
niques (not shown). Underconfident systems will 
systematically give probabilities that are too low for 
any climate signal, thus reducing the odds that the 
necessary actions will be taken. It should be pointed 
out that the AMO index–based technique reduces the 
ensemble spread compared to the other techniques, 
both for the ensemble and for the individual models 
of the ensemble (not shown). In contrast, the spread of 
the statistical model is too small and underestimates 
the actual uncertainty. Such systems are said to be 
overconfident and underestimate the probability of 
extreme events.

Forecasts can also be evaluated with respect to a 
baseline, which in this case is a cheaper and simpler 
forecast, such as climatology or 10-yr persistence. The 
skill score (SS) is given as 1 – (MAEforecast/MAEbaseline), 
where MAE is the mean absolute error. A skill score 
of 1 represents a perfect reforecast and a skill score 
of 0 (or lower) represents no improvement over the 
baseline. All the techniques return a positive skill 
score when compared to climatology, but only the 
AMO index technique is significantly different from 
0. The same holds when measured against a 10-yr 
persistence forecast, although this second baseline 
appears more difficult to improve upon. The better 
performance of the AMO index technique is likely 
related to the fact that the index is constructed using 
sea surface temperature over the northern North 
Atlantic, which is the region where initialization of 
climate models consistently returns an improvement 
over noninitialized climate simulations (Doblas-
Reyes et al. 2013; Meehl et al. 2014), which itself has 
been linked to the ability of the initialized climate 
models to reproduce the ocean dynamics of the 
Atlantic meridional overturning circulation (AMOC) 
(Robson et al. 2012, 2014). A recent study suggests a 
long and robust link between the Atlantic meridional 
overturning circulation and the AMO (McCarthy 
et al. 2015). It could be argued that for the hybrid and 
dynamical forecast systems, much of the skill origi-
nates from the first forecast year, but as shown in the 
online supplemental material (https://doi.org/10.1175 
/BAMS-D-17-0025.2), where the results of the same 
analysis are repeated with forecast years 2–5 only, this 
does not appear to be the case.

We further evaluated whether each forecast system 
could accurately anticipate 5-yr periods of below-
normal (lower tercile), near-normal, and above-
normal (upper tercile) hurricane activity. Each such 
accurate prediction is identified with a colored circle 
at the bottom of Fig. 1. All the different techniques 

have a similar success rate, in the 60%–65% range 
(bottom left, Fig. 1). It is worth noting that all the 
techniques tend to reforecast the appropriate tercile 
once a pattern of low or high activity has solidly 
been established. Around tipping points (late 1960s 
and mid-1990s), they tend to be less skillful, which 
suggests that a certain level of skill comes from per-
sistence in the initial conditions.

WEATHER ROULETTE. To make full use of 
all the ensemble members and their distribution, we 
also adopt a probabilistic approach to reforecasting 
the proper terciles. And while a series of tools for 
probabilistic forecast evaluation exists, few are intui-
tive in communicating the skill to nonexperts. One 

Fig. 1. Deterministic forecasts. Time series of 5-yr-
mean hurricane anomalies in observations (black) and 
for the various forecast systems. These include fore-
casts made by tracking storms directly (red), forecasts 
based on the relative SST of the Atlantic with respect 
to the rest of the tropics (green), forecasts produced 
using a proxy for the AMO (blue), and forecasts pro-
duced using a statistical model (magenta). The 5-yr 
forecasts are aligned with the third year of the predic-
tion. For observations, we consider only storms form-
ing between 5° and 25°N. The inset table shows various 
measures of forecast quality: i) linear correlation index 
(Corr), ii) Kendall ranked correlation (Rank), and the 
mean absolute SS with respect to iii) a climatological 
forecast (Clim) and iv) a 10-yr persistence forecast 
(Pers). Statistically significant values for the correla-
tions and the mean absolute SS are shown (boldface). 
The full circles along the x axis show the 5-yr periods 
for which each system’s prediction landed in the right 
tercile, and the four numbers at the bottom left give 
the percentage of times that each system managed to 
do so. The inset plot in the bottom right compares the 
rmse and the spread of each technique, showing that 
all three forecast systems relying on climate models 
are underconfident and the statistical forecast system 
is overconfident. The asterisk denotes the statistical 
model skill (see inset table), which is given for the 
1980–2010 period, whereas the other models are 
scored based on the 1961–2010 period.
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Fig. 2. An example of weather roulette. 
Two players bet on whether the hurricane 
seasons are going to be below average, near 
average, or above average. Both players start 
the game with the same amount of money 
(in this case $10) and spread their initial bet 
according to the probability given by their 
respective forecast. One player always bets 
according to climatology (top-left wheel) and 
always distributes 33% of the capital in each of 
the three categories. The second player uses 
a hurricane forecast system and distributes 
the money according to the proportion of 
ensemble members in each category (top-
right wheel). For this player, the distribution 
will vary for each round. At the beginning of 
round 1, the player using predictions from 
the forecast systems puts 29% of the money 
on the winning category, whereas the player 
using the climatological forecast puts 33%. 
In this case, climatology gives better results 
and the player using a forecast system ends 
up with less money. This player starts round 
2 with a capital of $10 × (0.29/0.33) = $8.70, 
whereas the other player continues with $10. 
In round 2, the forecast system predicts the 
winning category with 88% probability, thus 
resulting in betting 88% of the money in the 
right category. This player ends round 2 with 
$22.97 as opposed to $10 for the other player. 
After n rounds, the net gains associated with 
each strategy can be assessed.

diagnostic that stands out in that respect is weather 
roulette (Hagedorn and Smith 2009), where the skill 
of a forecast is quantified using an effective yearly 
interest rate representing the cumulative advantage 
obtained from using that forecast over a baseline. A 
game of weather roulette is illustrated in Fig. 2 and a 
formal description is given in the appendix.

Weather roulette is played between two opponents 
(a forecast and a baseline), with each player starting 
with the same initial capital and the roulette slots 
representing each of the possible terciles. The players 
start the first round by distributing their initial 
capital proportionally to the odds given for each ter-
cile by their respective forecast. For each technique, 
the odds are given by the percentage of members 
forecasting a given tercile, while for a climatological 
baseline, the money is divided equally between the 
three categories. The money that is bet on the wrong 

terciles is lost (for both players), while the money 
that is bet on the verifying tercile is multiplied by 
the inverse of the probability of the baseline for that 
tercile [if the baseline is climatology, 1/(1/3) = 3] and 
returned to each player.

The ratio of the forecast probability and the 
baseline probability is called the return ratio, and 
when the probability of the winning tercile is larger 
for the forecast than for the baseline, that return ratio 
is greater than 1 and the player betting according to 
the forecasts starts the next round with more money 
than when the round began (and vice versa). All the 
money is reinvested by both players in the second 
round (second start date), and the game is repeated 
for all the start dates. The skill of the forecast R is 
given by the geometric average of the return ratios, 
and the effective yearly interest rate is given by R − 1. 
A forecast that is more skillful than the baseline will 

return R ≥ 1 and a positive interest rate.
Because the weather roulette requires a 

sufficient number of ensemble members, 
we can evaluate only forecast systems that 
rely on climate simulations (dynamical and 

408 FEBRUARY 2018|



Fig. 3. Probabilistic forecast verification. (top) The 
probability of the verifying tercile as predicted by each 
of the forecast systems, the climatological forecast, 
and the mix climatology–persistence forecast. (middle) 
Return ratio for each forecast system when playing 
against the climatological forecast. The effective inter-
est rate is given in the upper-left corner. (bottom) As 
in (middle), but when the forecast systems are mea-
sured against the mix of climatology and persistence. 
A return ratio >1 means that the forecast system 
outperformed the baseline for that year (dot sitting 
over the white background), while an effective yearly 
interest rate >0 means that the cumulative effect of 
using this system over the 50-yr period compared to 
the simpler alternative is positive.

current skill level can be raised. How these forecasts 
can be integrated into a decision-making process 
given the intrabasin variability (Kossin 2017) is, 
however, an entirely different matter.

Using a purely dynamical approach, Hermanson 
et al. (2014) suggested that hurricane activity will 

hybrid), the three of which are measured against cli-
matology and a combination of climatology and per-
sistence. Figure 3 (top) compares the probability of the 
verifying category for each start date. The probability 
for the climatological forecast is always 0.33 and the 
verifying probability of the three forecast systems 
is usually greater than this value. The return ratios 
between the three forecast systems and the climato-
logical forecast are given in Fig. 3 (middle). Although 
there is much year-to-year variation, the return ratios 
are usually greater than one. This is confirmed by the 
effective yearly interest rate, which is greater than 
0 for all three systems. The skill decreases when a 
mix of persistence and climatology is used (Fig. 3, 
bottom), but again the interest rate is greater than 0 
for all three forecast systems, indicating an overall 
better performance than the baseline. The forecast 
system based on the AMO index returns the highest 
interest rate, partly due to the high confidence in ac-
curate forecasts calling for a higher level of activity 
during the later period.

CONCLUDING REMARKS. So, how skillful 
are the multiannual forecasts of hurricane activity 
originating from initialized climate models? While 
the current skill is still low compared to seasonal 
hurricane forecasts, they are better than climato-
logical forecasts and at least as good as, but probably 
better than, 10-yr persistence forecasts. The constant 
improvement in climate models, combined with the 
ever-growing network of observations available to 
initialize them, offers hope that these forecasts will 
follow a path similar to that of seasonal forecasts and 
start providing reliable, skillful information in the 
not-so-distant future. Further calibration (Doblas-
Reyes et al. 2005) and improvement in the correction 
of the climate model drift (Kharin et al. 2012) offer 
additional and immediate avenues by which the 
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remain low for the upcoming years. Unfortunately, 
most of the data available for our study originated 
from CMIP5, which completed in 2012. As such, 
the series of simulations do not cover the upcoming 
5-yr period, which prevents us from using the 
hybrid techniques to validate that prediction. 
Nonetheless, there are international initiatives in 
the work, such as the CMIP6-endorsed Decadal 
Climate Prediction Project (DCPP), which will 
soon provide the new data required to suggest an 
answer to that question.
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APPENDIX: STATISTICAL EVALUATION. 
Anomaly correlation coefficient. Anomaly correlation 
coefficients (ACCs) are computed by correlating the 
5-yr ensemble-mean anomalies with the observed 
5-yr-mean hurricane anomalies. ACCs are com-
puted using both standard Pearson’s correlation and 
Kendall’s rank correlation. The latter describes the 
ability of the forecast system to identify the relative 
ordering of 5-yr periods correctly and is used since 
we do not necessarily expect the ensemble-mean 
forecasts anomalies and the observed hurricane 
anomalies to follow a Gaussian distribution.

Autocorrelation in the time series is accounted 
for by considering an effective sample size neff , which 
approximates the number of independent data points 
in the time series. The effective sample size is defined 
such that

  (A1)

where N is the actual sample size and ρ(τ) is the auto-
correlation function as a function of lag τ (von Storch 
and Zwiers 2001; Guemas et al. 2014). Whereas the 
actual sample size is the number of start dates (50), 
the effective sample size for the 5-yr-mean hurricane 
time series is much lower (10). Correlations are con-
sidered significant if the p values (shown in Table A1) 
are below 0.05.

Improvement over a baseline forecast. The mean abso-
lute error skill score (SS) is used to measure improve-
ment with respect to a baseline, taken here as either 
10-yr-mean persistence forecasts or climatological 
forecasts. Climatology here is defined as the average 
from 1900 to the year prior to the forecast but using a 
different start point to compute the climatology does 
not impact the results. The mean absolute skill score 
is defined such that

  (A2)

where MAEforecast and MAEbaseline are the mean abso-
lute errors of the forecast and the baseline, respec-
tively. The mean absolute error is defined as

  (A3)

where (yk, ok) is the kth of n pairs of forecasts and 
observations.

An SS greater (less) than 0 means that the forecast 
offers a better (worse) performance than the refer-
ence. An SS of 1 means a perfect forecast. The confi-
dence interval of the score was computed using the 
bootstrap percentile method with 10,000 replicates 
and a fixed block length given by 1/neff. The SS was 
considered statistically significant if the confidence 
interval did not include 0.

Weather roulette. The weather roulette, as developed 
by Hagedorn and Smith (2009), is defined as a bet 
between two opponents—an actual forecast and a 
baseline—with each player betting that the odds of 
her/his forecast are better. The roulette slots represent 
each of the three possible categories (terciles). Both 
players start the game with the same initial capital 

410 FEBRUARY 2018|

https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/
https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/


c0 and spread all of their capital over the categories 
according to the probabilities given by their respec-
tive forecast.

The odds o(i) of the ball falling into each of the 
slots (i.e., that a tercile will verify) are given by

  (A4)

where i = 1, 2, and 3 and p(i) is the probability of the 
ith outcome. The sum of probabilities over all possible 
outcomes is, of course, 1:

  (A5)

For each forecasting system, the odds are given 
by the percentage of members forecasting a given 
tercile. Because one model (HadCM3) has twice as 
many members available to produce hybrid forecasts 
compared to the other models, we limit the number of 
members for this model to 10. This will prevent this 
model from being overrepresented in the ensemble.

For a climatological forecast, the probabilities 
pclim forecasted for each tercile are 1/3 = 33.3%. The 
probabilities ppersis of the persistence forecast are 
60% for the forecasted tercile and 20% for the other 
two terciles. This is necessary in order to avoid the 
persistence forecast from going bust if an event 
that is not forecasted does occur. That being said, 
it has been shown that combinations of persistence 
and climatological forecasts usually perform better 
than either of the two standards taken individually 
(Buell 1958; Murphy 1992). The probabilities of the 
mix forecast (persistence and climatology) are con-
structed such that

  (A6)

After the outcome of the first round is established, 
the capital that was bet on the wrong terciles is lost 
(for both players), while the capital c1 that was bet on 
the verifying outcome ν is returned to each player 
such that

  (A7)

The ratio of the probabilities of the forecast over 
the baseline is defined as the return ratio r:

  (A8)

When the probability of the winning tercile is 
larger for the forecast system than for the baseline, the 
return ratio is greater than 1 and that player starts the 
next round with more money than when the round 
began (and vice versa). At the end of each round, all 
the money is reinvested in the following round and 
the game is repeated until the last start date. The skill 
of the forecast R is given by the geometric average of 
the return ratios, which is given by

 
1

,

n

i

i

R n r

=

= ∏  (A9)

where n is the total number of rounds, which in this 
case is the number of forecasts produced (50). Finally, 
the effective yearly interest rate (IR) is given by R − 1. 
A forecast that is more skillful than the baseline will 
return R ≥ 1 and a positive interest rate. Finally, 
it can be shown that IR is related to the ignorance 
score (IS), which is a proper score, by the following 
transformation:

 IR = 3 × 2–15. (A10)

Note that there was not a sufficiently large number 
of ensemble members in the statistical model to evalu-
ate that technique with the weather roulette.
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