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Abstract. The aim of this paper is to study mixed multiplier ideals associated to
a tuple of ideals in a two-dimensional local ring with a rational singularity. We are
interested in the partition of the real positive orthant given by the regions where the
mixed multiplier ideals are constant. In particular we reveal which information encoded
in a mixed multiplier ideal determines its corresponding jumping wall and we provide an
algorithm to compute all the constancy regions, and their corresponding mixed multiplier
ideals, in any desired range.

1. Introduction

Let X be a complex algebraic variety with at most a rational singularity at a point
O ∈ X and let OX,O be the corresponding local ring. The study of multiplier ideals
J (aλ) associated to a given ideal a ⊆ OX,O and a parameter λ ∈ R>0 has received a
lot of attention in recent years mainly because this is one of the few cases where explicit
computations can be performed. Multiplier ideals form a nested sequence of ideals

OX,O ! J (aλ1) ! J (aλ2) ! ... ! J (aλi) ! ...

and the rational numbers 0 < λ1 < λ2 < · · · where the multiplier ideals change are called
jumping numbers. An explicit formula for the set of jumping numbers of a simple complete
ideal or an irreducible plane curve has been given by Järviletho [10] and Naie [16] in the
case that X is smooth. More generally, Tucker gives in [21] an algorithm to compute the
jumping numbers of any complete ideal when X has a rational singularity. The approach
given by the authors of this manuscript in [1] is an algorithm that computes sequentially
the chain of multiplier ideals. More precisely, given any jumping number we may give
an explicit description of the corresponding multiplier ideal that, in turn, it allows us to
compute the next jumping number.

Given a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r and a point λλλ := (λ1, . . . , λr) ∈ Rr>0,

we may consider the associated mixed multiplier ideal J
(
aaaλλλ
)

:= J
(
aλ11 · · · aλrr

)
that is

nothing but a natural extension of the notion of multiplier ideal to this context. The
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main differences that we encounter in this setting is that, whereas the multiplier ideals
come with the set of associated jumping numbers, the mixed multiplier ideals come with
a set of jumping walls. Roughly speaking, the positive orthant Rr>0 can be decomposed
in a finite set of constancy regions where any two points in that constancy region have
the same mixed multiplier ideal. These regions are described by rational polytopes whose
boundaries are the aforementioned jumping walls and consist of points where the mixed
multiplier ideal changes.

The case of mixed multiplier ideals has not received as much attention as multiplier
ideals. Libgober and Mustaţǎ [14] studied properties of the jumping wall associated to
the constancy region of the origin λλλ0 = (0, ..., 0). Naie in [17] uses mixed multiplier ideals
in order to study the irregularity of abelian coverings of smooth projective surfaces. En
passant, he describes a nice property that jumping walls must satisfy. Cassou-Noguès and
Libgober study in [5, 6] analogous notions to mixed multiplier ideals and jumping walls,
the ideals of quasi-adjunction and faces of quasi-adjunction (see [13]), associated to germs
of plane curves. In [5, Proposition 2.2], they describe some methods for the computation
of the regions. Moreover, they provide relations between faces of quasi-adjunction and
other invariants such as the Hodge spectrum or the Bernstein-Sato ideals. Their methods
are refined in [6], where they provide an explicit description of the jumping walls.

Closely related to multiplier ideals we have the so-called test ideals in positive charac-
teristic. Pérez [18] studied the constancy regions of mixed test ideals and described the
corresponding jumping walls using p-fractals.

The aim of this manuscript is to extend the methodology that we developed in [1] in
order to provide an algorithm that allow us to compute all the constancy regions in the
positive orthant for any tuple of ideals. The paper is structured as follows: In Section
2 we introduce the theory of mixed multiplier ideals in a very detailed way. In Section
3 we develop the technical results that lead to the main result of the paper. Namely, in
Theorem 2.2 we provide a formula to compute the region associated to any point in the
positive orthant. This formula leads to a very simple algorithm (see Algorithm 3.11) that
computes all the constancy regions. Finally, in Section 4 we extend the notion of minimal
jumping divisor introduced in [1] to the context of mixed multiplier ideals. In particular,
the description of these divisors is really useful in the proof of the key technical results of
Section 3.

The results of this work are part of the Ph.D. thesis of the third author [7]. One may
find there some extra details of properties of mixed multiplier ideals as well as many
examples that illustrate our methodology.

Acknowledgements: This project began during a research stay of the third author at the
Institut de Mathématiques de Bordeaux. He would like to thank Pierrette Cassou-Noguès
for her support and hospitality.
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2. Mixed multiplier ideals

Let X be a normal surface and O a point where X has at worst a rational singularity.
Namely, for any desingularization π : X ′ → X the stalk at O of the higher direct image
R1π∗OX′ is zero. For more insight on the theory of rational singularities we refer to the
seminal papers by Artin [3] and Lipman [15].

Consider a common log-resolution of a set of non-zero ideal sheaves a1, . . . , ar ⊆ OX,O.
Namely, a birational morphism π : X ′ → X such that

· X ′ is smooth,
· For i = 1, . . . , r we have ai ·OX′ = OX′ (−Fi) for some effective Cartier divisor Fi,
·
∑r

i=1 Fi + E is a divisor with simple normal crossings where E = Exc (π) is the
exceptional locus.

Since the point O has (at worst) a rational singularity, the exceptional locus E is a tree
of smooth rational curves E1, . . . , Es. The divisors Fi =

∑
j ei,jEj are integral divisors

in X ′ which can be decomposed into their exceptional and affine part according to the
support, i.e. Fi = F exc

i + F aff
i where

F exc
i =

s∑
j=1

ei,jEj and F aff
i =

t∑
j=s+1

ei,jEj.

Whenever ai is an m-primary ideal1, the divisor Fi is just supported on the exceptional
locus. i.e. Fi = F exc

i .

For any exceptional component Ej, we define the excess (of ai) at Ej as ρi,j = −Fi ·Ej.
We also recall the following notions that will play a special role:

· A component Ej of E is a rupture component if it intersects at least three more
components of E (different from Ej).
· We say that Ej is dicritical if ρi,j > 0 for some i. By [15], they correspond to Rees

valuations. Non-exceptional components also correspond to Rees valuations.

2.1. Complete ideals and antinef divisors. Throughout this work we will heavily use
the one to one correspondence, given by Lipman in [15, §18], between antinef divisors in
X ′ and complete ideals in OX,O. First recall that given an effective Q-divisor D =

∑
diEi

in X ′ we may consider its associated (sheaf) ideal π∗OX′(−D) := π∗OX′(−dDe). Its stalk
at O is

ID := {f ∈ OX,O | vi(f) > ddie for all Ei 6 D}
This is a complete ideal of OX,O which is m-primary whenever D has exceptional support.

An antinef divisor is an effective divisor D in X ′ with integral coefficients such that
−D · Ei > 0, for every exceptional prime divisor Ei, i = 1, . . . , s. The affine part of D
satisfies Daff · Ei > 0 therefore D is antinef whenever −Dexc · Ei > Daff · Ei. One of the
advantages to work with antinef divisors is that they provide a simple characterization for

1Here m = mX,O ⊆ OX,O is the maximal ideal of the local ring OX,O at O. An m-primary ideal is
identified with an ideal sheaf that equals OX outside the point O.
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the inclusion (or strict inclusion) of two given complete ideals. Namely, given two antinef
divisors D1, D2 in X ′ we have π∗OX′(−D1) ⊇ π∗OX′(−D2) if and only if D1 6 D2. The
strict inclusion is satisfied if and only if D1 < D2. For non-antinef divisors we can only
claim the inclusion π∗OX′(−D1) ⊇ π∗OX′(−D2) whenever D1 6 D2.

In general we may have different Q-divisors defining the same ideal. In this case we
will say that they are equivalent. To find a representative in the equivalence class of a
given divisor D we will consider its so-called antinef closure. This is the unique minimal

integral antinef divisor D̃ satisfying D̃ > D. To compute the antinef closure we use an
inductive procedure called unloading that has been described by Enriques [9, IV.II.17],
Laufer [11], Casas-Alvero [4, §4.6] or Reguera [19] among others. For completeness we
briefly recall the version described in [1]:

Unloading procedure: Let D be any Q-divisor in X ′. Its excess at the exceptional
prime divisor Ei is the integer ρi = −dDe · Ei. Denote by Θ the set of exceptional
components Ei 6 E with negative excesses, i.e.

Θ := {Ei 6 E | ρi = −dDe · Ei < 0}.
To unload values on this set is to consider the new divisor

D′ = dDe+
∑
Ei∈Θ

niEi,

where ni =
⌈
ρi
E2
i

⌉
. In other words, ni is the least integer number such that

(dDe+ niEi) · Ei = −ρi + niE
2
i 6 0.

2.2. Mixed multiplier ideals. Given a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r and
a point λλλ := (λ1, . . . , λr) ∈ Rr>0, the corresponding mixed multiplier ideal is defined as2

J
(
aaaλ
)

:= J
(
aλ11 · · · aλrr

)
= π∗OX′ (dKπ − λ1F1 − · · · − λrFre)

where the relative canonical divisor

Kπ =
s∑
i=1

kjEj

is a Q-divisor in X ′ supported on the exceptional locus E and, due to the fact that
the matrix of intersections (Ei · Ej)16i,j6s is negative-definite, it is characterized by the
property

(2.1) (Kπ + Ei) · Ei = −2

for every exceptional component Ei, i = 1, . . . , s. As usual b·c and d·e denote the opera-
tions that take the round-down and round-up of a given Q-divisor.

Whenever we only consider a single ideal a := (a1) ⊆ OX,O we recover the usual
notion of multiplier ideal and is not difficult to check out that mixed multiplier ideals

2By an abuse of notation, we will also denote J
(
aaaλ
)

its stalk at O so we will omit the word ”sheaf” if
no confusion arises.
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satisfy analogous properties. For example, the definition of mixed multiplier ideals is
independent of the choice of log resolution, they are complete ideals and are invariants up
to integral closure so we can always assume that the ideals a1, . . . , ar are complete. For a
detailed overview we refer to the book of Lazarsfeld [12].

Remark 2.1. The mixed multiplier ideals of a tuple aaa = (a1, . . . , ar) ⊆ (OX,O)r contained
in the ray passing through the origin O in the direction of a vector (u1, . . . , ur) ∈ Qr

>0 are
the usual multiplier ideals of the ideal aαu11 · · · aαurr with a convenient α ∈ Zr>0 such that
α · ui ∈ Z for all i.

From the definition of mixed multiplier ideals one can easily deduce properties on the
contention of the ideal corresponding to a fixed point λλλ ∈ Rr>0 with respect to those ideals
of points in its neighborhood. In the sequel, Bε(λλλ) will denote the Euclidean open ball
centered in λλλ with radius ε > 0. The following properties should be well-known to experts
but we collect them here for completeness. For a detailed proof we refer to [7].

• Positive orthant properties:

· We have J (aaaλλλ) ⊇ J (aaaλ
′λ′λ′) for any λ′λ′λ′ ∈ λλλ+ Rr>0.

· We have J (aaaλλλ) = J (aaaλ
′λ′λ′) for any λλλ′ ∈

(
λλλ+ Rr>0

)
∩Bε(λλλ) with ε > 0 small enough.

· Let λ′λ′λ′ ∈ λλλ+Rr>0 be a point such that J (aaaλλλ) = J (aaaλ
′λ′λ′). Then, J (aaaλλλ) = J (aaaλ

′′λ′′λ′′) for

any λ′′λ′′λ′′ ∈
(
λλλ+ Rr>0

)
∩
(
λ′λ′λ′ − Rr>0

)
.

• Negative orthant properties:

· Let λ′λ′λ′ ∈ λλλ − Rr>0 be a point such that J
(
aaaµ

′µ′µ′
)
! J

(
aaaλλλ
)
, for any µ′µ′µ′ 6= λλλ in the

segment λλλλ′λ′λ′. Then, any λ′′λ′′λ′′ ∈ λλλ − Rr>0 also satisfy J
(
aaaµ

′′µ′′µ′′
)
! J

(
aaaλλλ
)
, for any

µ′′µ′′µ′′ 6= λλλ in the segment λλλλ′′λ′′λ′′.

· We have J
(
aaaλ

′λ′λ′λ′λ′λ′λ′λ′λ′
)

= J
(
aaaλ

′′λ′′λ′′λ′′λ′′λ′′λ′′λ′′λ′′
)

for any λ′λ′λ′λ′λ′λ′λ′λ′λ′,λ′′λ′′λ′′λ′′λ′′λ′′λ′′λ′′λ′′ ∈
(
λλλ− Rr>0

)
∩ Bε(λλλ) with ε > 0 small

enough.

The above results give us some understanding of the behavior of the mixed multiplier
ideals in the positive and negative orthants of a given point λλλ ∈ Rr>0 . Indeed, we can
give the following result for the rest of points in a small neighborhood of λλλ.

• Points in a small neighborhood: The mixed multiplier ideal associated to some
λλλ ∈ Rr>0 is the smallest among the mixed multiplier ideals in a small neighborhood. That

is, we have J
(
aaaλ

′λ′λ′
)
⊇ J

(
aaaλλλ
)
, for any λ′λ′λ′ ∈ Bε(λλλ) and ε > 0 small enough.

2.3. Jumping Walls. The most significative difference that we face when dealing with
mixed multiplier ideals is that, whereas the usual multiplier ideals come with an attached
set of numerical invariants, the jumping numbers (see [8]), the corresponding notion for
mixed multiplier ideals is more involved and is described in terms of the so-called jump-
ing walls that we will introduce next. As these notions are based on the contention of
multiplier ideals it is then natural to consider the following:
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Definition 2.2. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Then, for each
λλλ ∈ Rr>0, we define:

· The region of λλλ: Raaa (λλλ) =
{
λ′λ′λ′ ∈ Rr>0

∣∣ J (aaaλ′λ′λ′) ⊇ J (aaaλλλ)} .

· The constancy region of λλλ: Caaa (λλλ) =
{
λ′λ′λ′ ∈ Rr>0

∣∣ J (aaaλ′λ′λ′) = J
(
aaaλλλ
)}

.

Remark 2.3. For a single ideal a ⊆ OX,O, the usual multiplier ideals form a discrete nested
sequence of ideals

OX,O ⊇ J (aλ0) ! J (aλ1) ! J (aλ2) ! ... ! J (aλi) ! ...

indexed by an increasing sequence of rational numbers 0 = λ0 < λ1 < λ2 < . . ., the
aforementioned jumping numbers, such that for any λ ∈ [λi, λi+1) it holds

J (aλi) = J (aλ) ! J (aλi+1).

Therefore, the region and the constancy region of λ are respectively Ra(λ) = [λ0, λi+1)
and Ca(λ) = [λi, λi+1).

From now on we will consider Rr>0 and its subsets endowed with the subspace topology
from the Euclidean topology of Rr. Thus, any region Raaa (λλλ) is an open neighborhood of
λλλ ∈ Rr>0 by properties of multiplier ideals in the neighborhood of a given point. Clearly, we
have Raaa (λλλ) ⊇ Caaa (λλλ) 3 λλλ and the constancy regions are topological varieties of dimension
r with boundary.

The property that relates two points λλλ,λ′λ′λ′ ∈ Rr>0 whenever J
(
aaaλ

′λ′λ′
)

= J
(
aaaλλλ
)

defines an
equivalence relation in Rr>0, whose classes are the constancy regions. Hence the constancy
regions provide a partition of the positive orthant and any bounded set intersects only
a finite number of them, due to the definition of mixed multiplier ideals in terms of a
log-resolution.

There is a partial ordering on the constancy regions: Caaa (λ′λ′λ′) 4 Caaa (λλλ) if and only if
J
(
aaaλ

′λ′λ′
)
⊇ J

(
aaaλλλ
)
. Equivalently, if and only if λ′λ′λ′ ∈ Raaa (λλλ) (which is also equivalent to

Caaa (λ′λ′λ′) ⊆ Raaa (λλλ) or toRaaa (λ′λ′λ′) ⊆ Raaa (λλλ)). Notice that the minimal element is the constancy
region Caaa (λλλ0) of the origin λλλ0 = (0, . . . , 0). One of the aims of this work is to provide a
set of points which includes at least one representative for each constancy region3. These
points will be taken over the boundary of regions Raaa (λλλ) associated to some λλλ, i.e. the
points where we have a change in the corresponding mixed multiplier ideals. Taking into
account the behavior of these ideals in the neighborhood of a given point, we introduce
the notion of jumping point.

Definition 2.4. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. We say that λλλ ∈ Rr>0

is a jumping point of aaa if J
(
aaaλ

′λ′λ′
)
! J

(
aaaλλλ
)

for all λ′λ′λ′ ∈ {λλλ−Rr>0}∩Bε(λλλ) and ε > 0 small
enough.

3For multiplier ideals we have a total order on the constancy regions, and the representative that we take
is simply the corresponding jumping number.
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It follows from the definition of mixed multiplier ideals that the jumping points λλλ ∈ Rr>0

must lie on hyperplanes of the form

(2.2) Hi : e1,iz1 + · · ·+ er,izr = `i + kj i = 1, . . . , s

where `i ∈ Z>0. In particular, each hyperplane Hi is associated to an exceptional divisor
Ei. Therefore, the regionRaaa(λλλ) associated to a point λλλ ∈ Rr>0 is a rational convex polytope
defined by

e1,iz1 + · · ·+ er,izr < `i + ki,

i.e. the minimal region in Rr>0 described by these inequalities, for suitable `i..

Definition 2.5. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. The jumping wall
associated to λλλ ∈ Rr>0 is the boundary of the region Raaa(λλλ). One usually refers to the
jumping wall of the origin as the log-canonical wall.

Notice that the facets of the jumping wall of λλλ ∈ Rr>0 are also rational convex polytopes
supported on the hyperplanes Hi considered in equation (2.2) that provide the minimal
region. We will refer to them as the supporting hyperplanes of the jumping wall.

Remark 2.6. Whenever we intersect the jumping walls of a tuple aaa = (a1, . . . , ar) ⊆ (OX,O)r

with a ray from the origin in the direction of a vector (u1, . . . , ur) ∈ Qr
>0, we obtain (con-

veniently scaled) the jumping numbers of the ideal aαu11 · · · aαurr with α · ui ∈ Z for all i.
In particular, the intersections of the coordinate axes with the jumping walls provide the
jumping numbers of the ideals ai, i = 1, . . . , r.

Now we turn our attention to the constancy region of a given point λλλ ∈ Rr>0. In general
the constancy region Caaa(λλλ) is not necessarily a convex polytope. Its boundary is entirely
formed by jumping points and it has two components. Roughly speaking, the inner part
of the boundary is Caaa(λλλ)\Caaa(λλλ)◦, i.e. the non-interior points of Caaa(λλλ), which are the points

in Caaa(λλλ) closest to the origin λλλ0. The outer part is Caaa(λλλ)\Caaa(λλλ) formed from the points
in the adherence of Caaa(λλλ) which are not in the constancy region, which are the points in
Caaa(λλλ) further away from the origin λλλ0. Notice that this later component is contained in
the boundary of the region Raaa(λλλ). In particular the facets of the outer boundary of the
constancy region Caaa(λλλ) are contained in the facets of the corresponding region so they
have the same supporting hyperplanes. However, it will be important to distinguish the
outer facets of Caaa(λλλ) from the facets of Raaa(λλλ) and it is for this reason that we will refer
to them as C-facets. Namely, a C-facet of Caaa(λλλ) is the intersection of the boundary of
a connected component of Caaa(λλλ) with a supporting hyperplane of Raaa(λλλ). Indeed, every
facet of a jumping wall decomposes into several C-facets associated to different mixed
multiplier ideals.

Remark 2.7. It follows from its definition that the region Raaa(λλλ) associated to any given
point is connected. We do not know whether the same property is satisfied by the con-
stancy region Caaa(λλλ).
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λ λ

Figure 1. On the left, an example of Raaa (λλλ) in striped gray lines and the
jumping wall associated to λλλ in thick dotted gray lines. On the right, the
corresponding Caaa (λλλ) in gray and the corresponding C-facets in thick black
lines.

3. An algorithm to compute jumping numbers and multiplier ideals

In [1] we developed a very simple algorithm to construct sequentially the chain of
multiplier ideals

OX,O ⊇ J (aλ0) ! J (aλ1) ! J (aλ2) ! ... ! J (aλi) ! ...

associated to a single ideal a ⊆ OX,O. The key point is the fact proved in [1, Theorem
3.5] that, given any λ′ ∈ R>0, the consecutive jumping number is

λ = min
i

{
ki + 1 + eλ

′
i

ei

}
,

where Dλ′ =
∑
eλ

′
i Ei is the antinef closure of bλ′F −Kπc. In particular, the algorithm

relies heavily on the unloading procedure described in Section 2.1.

The goal in this work is to adapt and extend the aforementioned methods to compute
the constancy regions of a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r and describe the
corresponding mixed multiplier ideals. We start by fixing a common log-resolution π :
X ′−→X of aaa. Then we have to consider the relative canonical divisor Kπ =

∑s
i=1 kjEj

and the divisors Fi in X ′ such that ai · OX′ = OX′(−Fi) decomposed as

Fi = F exc
i + F aff

i =
s∑
j=1

ei,jEj +
t∑

j=s+1

ei,jEj

in terms of its exceptional and affine support.
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As in the case treated in [1], the key point of our method is how to compare the complete
ideals defined by an antinef and a non-antinef divisor. First we recall the following result.

Proposition 3.1. [1, Corollary 3.4] Let D1, D2 be two divisors in X ′ such that D1 6 D2.
Then:

i) π∗OX′(−D1) = π∗OX′(−D2) if and only if D̃1 > D2.

ii) π∗OX′(−D1) ! π∗OX′(−D2) if and only if vi(D̃1) < vi(D2) for some Ei.

Then we get the following generalization of [1, Corollary 3.4] to the setting of mixed
multiplier ideals.

Corollary 3.2. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals and λλλ,λ′λ′λ′ ∈ Rr>0. Let

Dλλλ =
∑
eλλλjEj be the antinef closure of bλ1F1 + · · ·+ λrFr −Kπc. Then:

λ′λ′λ′ ∈ Raaa(λλλ) if and only if bλ′1e1,j + · · ·+ λ′rer,j − kjc 6 eλλλj for all Ej,

With the technical tools stated above we are ready for the main result of this section.
Namely, we provide a formula to compute the region associated to any given point that
is a generalization of [1, Theorem 3.5] in the context of mixed multiplier ideals.

Theorem 3.3. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals and let Dλλλ =
∑
eλλλjEj

be the antinef closure of bλ1F1 + · · ·+ λrFr −Kπc for a given λλλ ∈ Rr>0. Then the region
of λλλ is the rational convex polytope determined by the inequalities

e1,jz1 + · · ·+ er,jzr < kj + 1 + eλλλj ,

corresponding to either rupture or dicritical divisors Ej.

In order to prove the second part of this result, we need to invoke some results on
jumping divisors that will be develop in Section 4.

Proof. It follows from Corollary 3.2 that λ′λ′λ′ is not in the region if and only if there exists
Ej such that

bλ′1e1,j + · · ·+ λ′rer,j − kjc > eλλλj .

This inequality is equivalent to, −kj + λ′1e1,j + · · · + λ′rer,j > eλλλj + 1 and therefore to

λ′1e1,j + · · ·+ λ′rer,j > kj + 1 + eλλλj .

To finish the proof, we have to prove that we only need to consider the rupture or
dicritical divisors. Let Hj : e1,jz1 + · · ·+ er,jzr = kj + 1 + eλλλj be the hyperplane associated
to the divisor Ej considered above. Then, among all the exceptional divisors Ei such that
e1,iz1 + · · ·+ er,izr = ki + 1 + eλλλj gives the same hyperplane H, we may find a rupture or
dicritical divisor by Theorem 4.14. �

Remark 3.4. When X has a rational singularity at O, we may have a strict inclusion
OX,O ! J (aaaλλλ0) for λλλ0 = (0, . . . , 0). The above result for this case gives a mild gener-
alization of the well-known formula for the region Raaa(λλλ0) in the smooth case (see [14]
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where this region is denoted LCT-polytope). Namely, it is the rational convex polytope
determined by the inequalities

e1,jz1 + · · ·+ er,jzr < kj + 1 + eλλλ0j ,

corresponding to either rupture or dicritical divisors Ej.

Remark 3.5. When X is smooth, Cassou-Noguès and Libgober [5, 6] studied the analogous
notions of ideals and faces of quasi-adjunction of a tuple of irreducible plane curves. In
particular, they obtained a formula for the region associated to any given germ φ ∈ OX,O
that resembles the one given in Theorem 3.3 (see [5, Proposition 2.2] and [6, Theorem
4.1]).

Corollary 3.6. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Then the region
Raaa(λλλ) is bounded for any point λλλ ∈ Rr>0.

This property enables us to give a recursive way to compute the constancy region Caaa(λλλ)
from the finitely many constancy regions satisfying Caaa(λ′λ′λ′) 4 Caaa(λλλ).

Corollary 3.7. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Given λλλ ∈ Rr>0, there
exists finitely many points λλλ1, . . . ,λλλk ∈ Rr>0 such that

(3.1) Caaa(λλλ) = Raaa(λλλ)\ (Raaa(λλλ1) ∪ · · · ∪ Raaa(λλλk)) = Raaa(λλλ)\ (Caaa(λλλ1) ∪ · · · ∪ Caaa(λλλk)) .

In particular, Caaa(λλλ1), . . . , Caaa(λλλk) are all the constancy regions that are strictly smaller than
Caaa(λλλ) using the partial order 4.

Remark 3.8. To obtain a simpler expression in the first equation of (3.1) we may choose
λλλ1, . . . ,λλλs ∈ Rr>0 such that Caaa(λλλ1), . . . , Caaa(λλλs) are the maximal elements among those
constancy regions which are strictly smaller than Caaa(λλλ) using the partial order 4. Then

(3.2) Caaa(λλλ) = Raaa(λλλ)\ (Raaa(λλλ1) ∪ · · · ∪ Raaa(λλλs)) .

Theorem 3.3 is one of the key ingredients for the algorithm that we will present in
Section 3.1. The other key ingredient comes from a careful study of the C-facets of the
components of a constancy regions that will show their subtlety.

For simplicity, due to the fact that for a fixed jumping point λλλ, for ε > 0 sufficiently
small any λ′λ′λ′ ∈ {λλλ− Rr>0} ∩Bε(λλλ) defines the same mixed multiplier ideal, we will denote
this mixed multiplier ideal as the one associated to (1− ε)λλλ for ε > 0 sufficiently small.

We start with the following well-known fact.

Lemma 3.9. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals and λλλ ∈ Rr>0 be a point.

i) The interior of a C-facet, as a subspace of its supporting hyperplane, is non-empty.
ii) Any constancy region Caaa(λλλ) different from the constancy region associated to the

origin, has non-empty intersection with the interior of some C-facets.
iii) Any interior point λ′λ′λ′ of a C-facet of Caaa(λλλ) satisfies J (aaa(1−ε)λ′λ′λ′) = J (aaaλλλ)
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Proof. The key point in the proof of these three statements is that, for all ε > 0, we have
that Bε(λλλ)∩Raaa(λλλ) contains an open ball Bε(µµµ) for some µµµ ∈ Raaa(λλλ). To finish the proof of
ii) we notice that the inner boundary Caaa(λλλ)\Caaa(λλλ)◦ provides the points of Caaa(λλλ) which are
interior points of a C-facet of some other constancy region, which is necessarily smaller
than Caaa(λλλ) using the partial order 4. �

The key result states that a C-facet cannot be crossed by any jumping wall.

Proposition 3.10. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Let λλλ and λ′λ′λ′ be

interior points of the same C-facet of a constancy region. Then we have J
(
aaaλλλ
)

= J
(
aaaλ

′λ′λ′
)
.

Once again we need to use some results from Section 4 to prove this fact.

Proof. Let H be the supporting hyperplane of the C-facet containing λλλ and λ′λ′λ′. No-
tice that both are jumping points coming from the same mixed multiplier ideal, i.e.,
J
(
aaa(1−ε)λλλ) = J

(
aaa(1−ε)λ′λ′λ′). For simplicity we take a point µµµ as a representative of the con-

stancy region of this ideal. Now, let Dµµµ =
∑
eµµµjEj be the antinef closure of bµ1F1 + · · ·+

µrFr −Kπc. Consider the reduced divisor G supported on those exceptional components
Ej such that the hyperplane H has equation

λ1e1,j + · · ·+ λrer,j = kj + 1 + eµµµj .

Then, using Lemma 4.6 and Proposition 4.10 we have

J
(
aaaλλλ
)

= π∗OX′(−D(1−ε)λλλ −G) = J
(
aaaλ

′λ′λ′
)
.

�

3.1. An algorithm to compute the constancy regions. The algorithm that we are
going to present is a generalization of the one given in [1, Algorithm 3.8] that we briefly
recall. Given an ideal a ⊆ OX,O, we construct sequentially the chain of multiplier ideals

OX,O ⊇ J (aλ0) ! J (aλ1) ! J (aλ2) ! ... ! J (aλi) ! ...

The starting point is to compute the multiplier ideal associated to λ0 = 0 by means of
the antinef closure Dλ0 =

∑
eλ0i Ei of b−Kπc using the unloading procedure described in

Section 2.1. The log-canonical threshold is

λ1 = min
i

{
ki + 1 + eλ0i

ei

}
.

so we may describe its associated multiplier ideal J (aλ1) just computing the antinef
closure Dλ1 =

∑
eλ1i Ei of bλ1F − Kπc using the unloading procedure. By [1, Theorem

3.5], the next jumping number is

λ2 = min
i

{
ki + 1 + eλ1i

ei

}
.

Then we only have to follow the same strategy: the antinef closure Dλ2 of bλ2F −Kπc,
i.e., the multiplier ideal J (aλ2), allows us to compute λ3 and so on.
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We may interpret that at each step of the algorithm, the jumping number λi allows us
to compute its region, and equivalently its constancy region [λi, λi+1). The boundary of
this constancy region gives us the next jumping number λi+1. In particular we have a
one-to-one correspondence between the constancy regions of the ideal a and the jumping
numbers.

The algorithm for mixed multiplier ideals is more involved. It starts with the com-
putation of the mixed multiplier ideal associated to λλλ0 = (0, . . . , 0), using the unloading
procedure. The region Raaa(λλλ0) is described by means of the formula given in Theorem
3.3. In this case the region coincides with the constancy region Caaa(λλλ0), so we have a nice
description of its boundary. For each C-facet, using Proposition 3.10, we may take a single
point as a representative. The next step of the algorithm is to compute the mixed multi-
plier ideals of these points in order to describe their corresponding regions, using Theorem
3.3 once again. Then we compute the corresponding constancy regions and their C-facets
and we follow the same strategy.

Roughly speaking, our strategy is to consider a discrete set of points comprising one
interior point of each C-facet. This gives a surjective correspondence with the partially
ordered set of constancy regions. This correspondence is far from being one-to-one as in
the case of a single ideal. To keep track of these points we will consider two sets N and
D. N will contain the points for which we still have to compute the corresponding region
and, once this region has been computed, we move it to D. In particular, we will start
with N = {λλλ0} and D = ∅ the empty set.

Algorithm 3.11. (Constancy regions and mixed multiplier ideals)

Input: a common log-resolution of the tuple of ideals aaa = (a1, . . . , ar) ⊆ (OX,O)r.
Output: list of constancy regions of aaa and their corresponding mixed multiplier ideals.

Set N = {λλλ0 = (0, . . . , 0)} and D = ∅. From j = 0 , incrementing by 1

(Step j) :

(j.1) Choosing a convenient point in the set N :
· Pick λλλj the first point in the set N and compute its region Raaa(λλλj) using

Theorem 3.3.
· If there is some λλλ ∈ N such that λλλ ∈ Raaa(λλλj) and J (aλλλ) 6= J (aλλλj) then

put λλλ first in the list N and repeat this step (j.1). Otherwise continue
with step (j.2).

(j.2) Checking out whether the region has been already computed:
· If some λλλ ∈ D satisfies J (aλλλ) = J (aλλλj) then go to step (j.4). Otherwise

continue with step (j.3).

(j.3) Picking new points for which we have to compute its region:
· Compute

C(j) = Raaa(λλλj)\ (Raaa(λλλ1) ∪ · · · ∪ Raaa(λλλj−1)) .
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· For each connected component of C(j) compute its outer facets4.
· Pick one interior point in each outer facet of C(j) and add them as the

last point in N .

(j.4) Update the sets N and D:
· Delete λλλj from N and add λλλj as the last point in D.

Remark 3.12. Several points of the algorithm require a comparison between mixed mul-
tiplier ideals (an inequality in step (j.1) and an equality in step (j.2)). This can be done
computing antinef closures of divisors using the unloading procedure. For the computation
of the region Raaa(λλλ) (steps (j.1) and (j.3)) we use Theorem 3.3.

Remark 3.13. Step (j.1) is equivalent to choosing a point whose constancy region is a
minimal element by the order 4 among those associated to the points in the set N . Any
finite subset endowed with a partial ordering has some minimal element, thus there exists
a convenient point in the set N that allows to continue with step (j.2).

Lemma 3.14. At each step j, the algorithm overcomes step (j.1) and provides updated
sets N and D.

Theorem 3.15. The constancy region of the point λλλj chosen at step (j.1) is computed at
step (j.3) of the algorithm, i.e., C(j) = Caaa(λλλj), and one interior point for each C-facet of
Caaa(λλλj) is added to the set N .

Proof. We argue by induction on j. For the case j = 1 the statement holds since we pick
λλλ1 = λλλ0 at step (1.1) and step (1.3) is performed.

Now assume that the statement is true all the steps up to j − 1. We want to prove it
for step j. Without loss of generality we may assume that step (j.3) must be performed,
so J (aλλλi) 6= J (aλλλj) for all 1 6 i 6 j − 1. Notice that, by equation (3.2), C(j) = Caaa(λλλj) is
equivalent to the fulfillment of the following two conditions:

a) Each λλλi, 1 6 i 6 j − 1, satisfies either Caaa(λλλi) 4 Caaa(λλλj) or both constancy regions
are not related by the partial order.

b) Consider a set {µµµ1, . . . ,µµµs} ⊂ Rr>0 of representatives of the constancy regions which
are maximal elements among those constancy regions smaller than Caaa(λλλj). Then,
for each k ∈ {1, . . . , s} there is some ik ∈ {1, . . . , j−1} such that Caaa(λλλik) 4 Caaa(µµµk).

First we are going to prove that condition a) is satisfied. Assume the contrary, i.e.
there exists i < j with Caaa(λλλi) � Caaa(λλλj), that is Raaa(λλλi) ! Raaa(λλλj). Assume that λλλj was
added to N at step m < j. Hence, by induction hypothesis λλλj is an interior point of
some C-facet of Raaa(λλλm), and in particular Raaa(λλλm) ⊆ Raaa(λλλj). Thus Raaa(λλλm)  Raaa(λλλi), i.e.
Caaa(λλλm) ≺ Caaa(λλλi). We distinguish two cases:

· If i < m we get a contradiction with the induction hypothesis at step m since
condition a) is not fulfilled.

4The outer facets of C(j) are the intersection of the boundary of any connected component of C(j) with
a supporting hyperplane of Raaa(λλλj).
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· If i > m, we have that λλλj already belongs to N at step i. This contradicts the
requirement of step (i.1) which says that λλλj should be treated before λλλi.

Finally we prove condition b). Assume the contrary, i.e there exists µµµi whose constancy
region is not dominated by any Caaa(λλλk), 1 6 k 6 j − 1. Without loss of generality we

may assume that the segment λλλ0µµµi intersect the jumping walls at interior points of the
C-facets, namely in the jumping points λλλ0 = ννν1, ννν2, . . . , νννm = µµµi with νννk ∈ Caaa(νννk−1), and
thus νννk−1 ∈ Raaa(νννk).

By induction hypothesis, representatives of each constancy region {Caaa(ννν1), . . . , Caaa(νννm′)},
m′ < m, are added to N at some steps before step j, being λ′λ′λ′ the last representative.
Hence, we still have λ′λ′λ′ ∈ N at step j and

Raaa(λ
′λ′λ′) = Raaa(νννm′) ⊆ Raaa(µµµi) ( Raaa(λλλj).

This contradicts the requirement of step (j.1) for λλλj. �

As a consequence of Theorem 3.15 we obtain the following

Corollary 3.16. At step j of the algorithm, we have that:

i) The set D contains at least a representative of each constancy region inside Raaa(λλλj).
ii) The set D contains a representative of all C-facets inside Raaa(λλλj).
iii) A complete description of the jumping walls inside Raaa(λλλj) is obtained by intersect-

ing the region Raaa(λλλj) with the jumping walls associated to the points λλλ1, . . . ,λλλj−1.

Proof. From the proof of Theorem 3.15 we infer that at step j, the maximal elements
among all the constancy regions inside Raaa(λλλj) have already representants λλλi1 , . . . ,λλλis in
D, i1 < · · · < is < j. Arguing by reverse induction with any of these points λλλik , the first
claim follows.

Now, the statement of Theorem 3.15 asserts that at each step i of the algorithm, a
representative of each C-facet of Caaa(λλλi) is added to N . If we only take into account the
points λλλi of constancy regions inside Raaa(λλλj), the subsequent representatives in C-facets
still lying inside Raaa(λλλj) must be treated (and added to D) before λλλj, in virtue of step
(j.1) of the algorithm.

Part iii) of the statement is a direct consequence of claim i). �

Remark 3.17. Each point λλλ included in N at some step of the algorithm is treated after
a finite number of steps and added to D. Indeed, the order of incorporation of the points
in N is preserved unless step (j.1) priorizes some other point. This happens only a finite
amount of times since there is only a finite number of constancy regions inside any given
region.

Proposition 3.18. Once a point λλλ ∈ Rr>0 is fixed, a set D which includes a representative
of all constancy regions in the compact (λλλ0 + Rr>0) ∩ (λλλ − Rr>0) is achieved after a finite
number of steps of the algorithm.

Proof. Observe that (λλλ0 + Rr>0) ∩ (λλλ − Rr>0) ⊆ Raaa(λλλ). In virtue of Corollary 3.16 and
Remark 3.17, we only have to prove that some representative of Caaa(λλλ) is added to N at
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some step. We may take λ′λ′λ′ ∈ Caaa(λλλ) such that the segment λλλ0λ
′λ′λ′ intersects the jumping

walls at interior points of C-facets, namely in the jumping points λλλ0 = ννν1, ννν2, . . . , νννm = λ′λ′λ′.
The algorithm starts with ννν1 and incorporates ννν2 to N . Since νννk ∈ Caaa(νννk−1), once νννk is
selected at some finite step ik, νννk+1 is added to N at this same step. Hence, λ′λ′λ′ is selected
at some step (j.1). Notice that this implies that no point in N lies in Raaa(λ

′λ′λ′) = Raaa(λλλ),
i.e. N ∩Raaa(λλλ) = ∅.

Conversely, if at some step j N ∩ Raaa(λλλ) = ∅, then the new N obtained at any forth-
coming step still satisfies N ∩ Raaa(λλλ) = ∅. If some λλλi 6∈ Raaa(λλλ) with i > j is chosen at
step (i.1), any new point µµµ added to N at step (i.3) satisfies J (aaaµµµ)  J (aaaλλλi) + J (aaaλλλ)
and hence J (aaaµµµ) + J (aaaλλλ), equivalently µµµ 6∈ Raaa(λλλ). Since the algorithm starts with
λλλ1 = λλλ0 ∈ Raaa(λλλ), we may conclude that at a step where N ∩ Raaa(λλλ) = ∅ necessarily the
set D obtained at that step contains a representative of Raaa(λλλ). �

We present the following simple example to highlight the nuances of the procedure. In
the example, step (j.1) is performed when computing the region associated to the point
λλλ5 and step (j.2) is performed for the points λλλ2, λλλ4, λλλ7 and λλλ8. In particular, step (j.2) is
included to avoid too many computations.

Example 3.19. Consider the following set of ideals aaa = (a1, a2) with a1 = (x3, y7) and
a2 = (x, y2) on a smooth surface X. We represent the relative canonical divisor Kπ and
F1 and F2 in the dual graph as follows:

E1 E2 E3E4E5 1 2 369 (3, 1) (6, 2) (7, 2)(14, 4)(21, 6)

Vertex ordering Kπ (F1, F2)

The blank dots correspond to dicritical divisors in one of the ideals and their excesses
are represented by broken arrows. For simplicity we will collect the values of any divisor in
a vector. Namely, we have Kπ = (1, 2, 3, 6, 9), F1 = (3, 6, 7, 14, 21) and F2 = (1, 2, 2, 4, 6).
In the algorithm we will have to perform several times unloading steps, so we will have
to consider the intersection matrix M = (Ei · Ej)16i,j65

M =



−2 1 0 0 0

1 −4 0 0 1

0 0 −2 1 0

0 0 1 −2 1

0 1 0 1 −1

 .

Notice that E2 and E5 are the only dicritical divisors. Then, as a consequence of
Theorem 3.3, the region of a given point λλλ = (λ1, λ2) is defined by

6z1 + 2z2 < 2 + 1 + eλλλ2 ,
21z1 + 6z2 < 9 + 1 + eλλλ5 .
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We keep track of what we have to compute with the set N that for the moment will
only contain λλλ0 = (0, 0). The set D that keeps track of the points that we have already
computed will be empty since we have not computed anything yet.

• Step 0. We start computing the multiplier ideal corresponding to λλλ0 = (0, 0).
Namely, the antinef closure of the divisor b0F1 +0F2−Kπc is Dλλλ0 = 0. The corresponding
region Raaa(λλλ0) is given by the inequalities

6z1 + 2z2 < 3,
21z1 + 6z2 < 10.

Notice that the constancy region Caaa(λλλ0) coincides with Raaa(λλλ0). Its boundary, i.e. the
corresponding jumping wall, has two C-facets so, according to Proposition 3.10, we only
need to consider an interior point of each C-facet in order to continue our procedure. For
simplicity we consider the barycenters

(
1
6
, 1
)

and
(

17
42
, 1

4

)
corresponding to each segment.

· N = {
(

1
6
, 1
)
,
(

17
42
, 1

4

)
}.

· D = {(0, 0)}.

• Step 1. We pick the first point λλλ1 :=
(

1
6
, 1
)

in N and we compute its multiplier ideal.

Namely, b1
6
F1 + F2 −Kπc = (0, 1, 0, 0, 0) and its antinef closure is Dλλλ1 = (1, 1, 1, 2, 3), so

the region Raaa(λλλ1) is given by the inequalities

6z1 + 2z2 < 4,
21z1 + 6z2 < 13.

The constancy region Caaa(λλλ1) = Raaa(λλλ1)\Raaa(λλλ0) has two C-facets for which we pick the
interior points

(
1
6
, 3

2

)
and

(
10
21
, 1

2

)
respectively. Then, the sets N and D are:

· N = {
(

17
42
, 1

4

)
,
(

1
6
, 3

2

)
,
(

10
21
, 1

2

)
}.

· D = {(0, 0) ,
(

1
6
, 1
)
}.

• Step 2. The point λλλ2 :=
(

17
42
, 1

4

)
satisfies J (aaaλλλ2) = J (aaaλλλ1), so they have the same

region. In order to keep track of all the C-facets we have to consider this point as well, so
the sets N and D that we get after this step are:

· N = {
(

1
6
, 3

2

)
,
(

10
21
, 1

2

)
}.

· D = {(0, 0) ,
(

1
6
, 1
)
,
(

17
42
, 1

4

)
}.

• Step 3. We pick λλλ3 :=
(

1
6
, 3

2

)
. We have b1

6
F1 + 3

2
F2 − Kπc = (1, 2, 1, 2, 3) and its

antinef closure is Dλλλ3 = (1, 2, 2, 4, 6), so the region Raaa(λλλ3) is given by the inequalities

6z1 + 2z2 < 5,
21z1 + 6z2 < 16.

The constancy region Caaa(λλλ3) = Raaa(λλλ3)\(Raaa(λλλ0)∪Raaa(λλλ1)∪Raaa(λλλ3)) = Raaa(λλλ3)\Raaa(λλλ1) has
two C-facets for which we pick the interior points

(
1
6
, 2
)

and
(

23
42
, 3

4

)
respectively. Then,

the sets N and D are:

· N = {
(

10
21
, 1

2

)
,
(

1
6
, 2
)
,
(

23
42
, 3

4

)
}.
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· D = {(0, 0) ,
(

1
6
, 1
)
,
(

17
42
, 1

4

)
,
(

1
6
, 3

2

)
}.

10,80,60,40,20
0

1

2

3

z2

z1

λ0

10,80,60,40,20
0

1

2

3

z2

z1

λ2

λ1

10,80,60,40,20
0

1

2

3

z2

z1

λ4

λ3

Figure 2. Constancy regions associated to λλλ0, λλλ1 (equivalently λλλ2) and λλλ3

(equivalently λλλ4).

• Step 4. The point λλλ4 :=
(

10
21
, 1

2

)
satisfies J (aaaλλλ4) = J (aaaλλλ3) so they have the same

region. We update the sets N and D to obtain:

· N = {
(

1
6
, 2
)
,
(

23
42
, 3

4

)
}.

· D = {(0, 0) ,
(

1
6
, 1
)
,
(

17
42
, 1

4

)
,
(

1
6
, 3

2

)
,
(

10
21
, 1

2

)
}.

• Step 5. We have that the region associated to
(

23
42
, 3

4

)
is contained in the region of(

1
6
, 2
)
. It is for this reason that we will consider first the point λλλ5 :=

(
23
42
, 3

4

)
. We have

b23
42
F1 + 3

4
F2 − Kπc = (1, 2, 2, 4, 7) and its antinef closure is Dλλλ5 = (1, 2, 3, 5, 7) so the

region Raaa(λλλ3) is given by the inequalities

6z1 + 2z2 < 5,
21z1 + 6z2 < 17.

The constancy region Caaa(λλλ5) = Raaa(λλλ5)\Raaa(λλλ3) has two C-facets for which we pick the
interior points

(
1
2
, 1
)

and
(

31
42
, 1

4

)
respectively. Then, the sets N and D are:

· N = {
(

1
6
, 2
)
,
(

1
2
, 1
)
,
(

31
42
, 1

4

)
}.

· D = {(0, 0) ,
(

1
6
, 1
)
,
(

17
42
, 1

4

)
,
(

1
6
, 3

2

)
,
(

10
21
, 1

2

)
,
(

23
42
, 3

4

)
}.

• Step 6. We pick now λλλ6 :=
(

1
6
, 2
)
. We have b1

6
F1 + 2F2−Kπc = (1, 3, 2, 4, 6) and its

antinef closure is Dλλλ6 = (2, 3, 3, 6, 9) so the region Raaa(λλλ6) is given by the inequalities

6z1 + 2z2 < 6,
21z1 + 6z2 < 19.

The constancy region Caaa(λλλ6) = Raaa(λλλ6)\Raaa(λλλ5) has two C-facets for which we pick the
interior points

(
1
6
, 5

2

)
and

(
13
21
, 1
)
. Then, the sets N and D are:
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· N = {
(

1
2
, 1
)
,
(

31
42
, 1

4

)
,
(

1
6
, 5

2

) (
13
21
, 1
)
}.

· D = {(0, 0) ,
(

1
6
, 1
)
,
(

17
42
, 1

4

)
,
(

1
6
, 3

2

)
,
(

10
21
, 1

2

)
,
(

23
42
, 3

4

)
,
(

1
6
, 2
)
}.

10,80,60,40,20
0

1

2

3

z2

z1

λ5

10,80,60,40,20
0

1

2

3

z2

z1

λ6

λ7

λ8

Figure 3. Constancy region associated to λλλ5 and λλλ6 (equivalently λλλ7 and λλλ8).

• Steps 7 and 8. The points λλλ7 :=
(

1
2
, 1
)

and λλλ8 :=
(

31
42
, 1

4

)
satisfy the equality

J (aaaλλλ8) = J (aaaλλλ7) = J (aaaλλλ6) so they have the same region. We update the sets N and D
to obtain:

· N = {
(

1
6
, 5

2

) (
13
21
, 1
)
}.

· D = {(0, 0) ,
(

1
6
, 1
)
,
(

17
42
, 1

4

)
,
(

1
6
, 3

2

)
,
(

10
21
, 1

2

)
,
(

23
42
, 3

4

)
,
(

1
6
, 2
)
,
(

1
2
, 1
)
,
(

31
42
, 1

4

)
}.

4. Jumping divisors

The theory of jumping divisors was introduced in [1, §4] in order to describe the jump
between two consecutive multiplier ideals. The aim of this section is to extend these
notions to the case of mixed multiplier ideals. More importantly, the theory of jumping
divisors is the right framework that provides the technical results needed in the proofs of
the key results Theorem 3.3 and Proposition 3.10.

The proofs of the results that we present in this section are a straightforward extension
of the ones given in [1, §4]. However, we include them for completeness. We begin with
a generalization of the notion of contribution introduced by Smith and Thompson in [20]
and further developed by Tucker in [21].

Definition 4.1. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals, λλλ ∈ Rr>0 a point
and G 6

∑r
i=1 Fi a reduced divisor satisfying λ1e1,i + · · ·+ λrer,i − ki ∈ Z.Then it is said

that G contributes to λλλ if

π∗OX′(dKπ − λ1F1 − · · · − λrFre+G) ! J
(
aaaλλλ
)
.

Moreover, this contribution is critical if for any divisor 0 6 G′ < G we have

π∗OX′(dKπ − λ1F1 − · · · − λrFre+G′) = J (aaaλλλ).
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The following is the natural extension of [1, Definition 4.1] to the context of mixed
multiplier ideals.

Definition 4.2. Let λλλ := (λ1, . . . , λr) ∈ Rr>0 be a jumping point of a tuple of ideals
aaa := (a1, . . . , ar) ⊆ (OX,O)r. A reduced divisor G 6

∑r
i=1 Fi for which any Ej 6 G

satisfies
λ1e1,j + · · ·+ λrer,j − kj ∈ Z>0

is called a jumping divisor for λλλ if

J (aaaλ
′λ′λ′) = π∗OX′(dKπ − λ1F1 − · · · − λrFre+G) ,

for any λ′λ′λ′ ∈ {λλλ − Rr>0} ∩ Bε(λλλ) for ε small enough. We say that a jumping divisor is
minimal if no proper subdivisor is a jumping divisor for λλλ, i.e.,

J (aaaλ
′λ′λ′) ! π∗OX′(dKπ − λ1F1 − · · · − λrFre+G′)

for any 0 6 G′ < G and for any λ′λ′λ′ ∈ {λλλ− Rr>0} ∩Bε(λλλ) for ε > 0 sufficiently small.

Among all jumping divisors we will single out the minimal jumping divisor that is
constructed following closely Algorithm 3.11.

Definition 4.3. Let aaa := (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Given a jump-
ing point λλλ ∈ Rr>0, the corresponding minimal jumping divisor is the reduced divisor
Gλ 6

∑r
i=1 Fi supported on those components Ej for which the point λλλ satisfies

λ1e1,j + · · ·+ λrer,j = kj + 1 + e
(1−ε)λλλ
j ,

where, for a sufficiently small ε > 0, D(1−ε)λλλ =
∑
e

(1−ε)λλλ
j Ej is the antinef closure of

b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc.

Remark 4.4. A jumping point λλλ is contained in some C-facets of Caaa((1 − ε)λλλ). The

exceptional components Ej such that Hj : λ1e1,j + · · · + λrer,j = kj + 1 + e
(1−ε)λλλ
j are

the supporting hyperplanes of these C-facets are precisely the components of the minimal
jumping divisor Gλλλ.

Remark 4.5. For ε > 0 small enough we have

Gλλλ 6 dKπ − (1− ε)λ1F1 − · · · − (1− ε)λrFre − dKπ − λ1F1 − · · · − λrFrc.

The minimal jumping divisor is not only related to a jumping point, indeed we can
associate it to the interior of each C-facet.

Lemma 4.6. The interior points of a C-facet have the same minimal jumping divisor.

Proof. This is a direct consequence of Remark 4.4. �

We will prove next that Gλλλ is a jumping divisor and deserves its name:

Proposition 4.7. Let λλλ be a jumping point of a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r.
Then the reduced divisor Gλλλ is a jumping divisor.
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Proof. Using Remark 4.5 we have

dKπ − (1− ε)λ1F1 − · · · − (1− ε)λrFre > dKπ − λ1F1 − · · · − λrFrc+Gλλλ

for a sufficiently small ε > 0 and therefore

J (aaa(1−ε)λλλ) ⊇ π∗OX′(dKπ − λ1F1 − · · · − λrFre+Gλλλ).

For the reverse inclusion, let D(1−ε)λλλ =
∑
e

(1−ε)λλλ
i Ei be the antinef closure of

b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc.

We want to check that bλ1F1 + · · · + λrFr − Kπc − Gλλλ 6 D(1−ε)λλλ. For this purpose we
consider two cases.

· If Ei 6 Gλλλ then we have −ki+λ1e1,i+ · · ·+λrer,i = 1 + e
(1−ε)λλλ
i . And, in particular

bλ1e1,i + · · ·+ λrer,i − kic − 1 = e
(1−ε)λλλ
i .

· If Ei 66 Gλλλ then we have −ki + λ1e1,i + · · ·+ λrer,i < 1 + e
(1−ε)λλλ
i . Thus

bλ1e1,i + · · ·+ λrer,i − kic < 1 + e
(1−ε)λλλ
i

and the result follows.

�

Theorem 4.8. Let λλλ be a jumping point of a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r.
Any reduced contributing divisor G 6

∑r
i=1 Fi associated to λλλ satisfies either:

· J
(
aaa(1−ε)λλλ) = π∗OX′(dKπ−λ1F1−· · ·−λrFre+G) ! J (aaaλλλ) if and only if Gλλλ 6 G,

or
· J

(
aaa(1−ε)λλλ) ! π∗OX′(dKπ − λ1F1 − · · · − λrFre+G) ! J (aaaλλλ) otherwise.

Proof. Since G 6 Hλλλ, we have

b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc 6 bλ1F1 + · · ·+ λrFr −Kπc −G

and therefore

J (a(1−ε)λλλ) ⊇ π∗OX′(dKπ − λ1F1 − · · · − λrFre+G).

Now assume Gλλλ 6 G. Then bλ1F1+· · ·+λrFr−Kπc−G 6 bλ1F1+· · ·+λrFr−Kπc−Gλλλ,
and using the fact that Gλλλ is a jumping divisor we obtain the equality

J
(
aaa(1−ε)λλλ) = π∗OX′(dKπ − λ1F1 + · · ·+ λrFre+G).

If Gλλλ 66 G, we may consider a component Ei 6 Gλλλ such that Ei 66 G. Notice that we
have

vi(D(1−ε)λλλ) = e
(1−ε)λλλ
i = λ1e1,i + · · ·+ λrer,i − ki − 1

< λ1e1,i + · · ·+ λrer,i − ki = vi(bλ1F1 + · · ·+ λrFr −Kπc −G) ,
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where D(1−ε)λλλ =
∑
e

(1−ε)λ
i Ei is the antinef closure of b(1−ε)λ1F1 +· · ·+(1−ε)λrFr−Kπc.

Therefore, by Corollary 3.1, we get the strict inclusion

J (a(1−ε)λλλ) ! π∗OX′(dKπ − λ1F1 − · · · − λrFre+G).

�

From this result we deduce the unicity of the minimal jumping divisor.

Corollary 4.9. Let λλλ be a jumping point of a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r.
Then Gλλλ is the unique minimal jumping divisor associated to λλλ.

The minimal jumping divisor also allows to describe the jump of mixed multiplier ideals
in the other direction, although in this case we do not have minimality for the jump.

Proposition 4.10. Let λλλ be a jumping point of a tuple of ideals aaa ⊆ (OX,O)r and D(1−ε)λλλ
be the antinef closure of b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc. Then we have:

i) J (aaa(1−ε)λλλ) ! π∗OX′(−D(1−ε)λλλ −Gλ) = J (aaaλλλ).

ii) J (aaa(1−ε)λλλ) ! π∗OX′(dKπ − (1− ε)λ1F1 − · · · − (1− ε)λrFre −Gλ) = J (aaaλλλ)

Proof. Let Dλλλ =
∑
eλλλiEi be the antinef closure of bλ1F1 + · · ·+ λrFr −Kπc.

i) Since Gλλλ is a jumping divisor we have bλ1F1 + · · ·+ λrFr−Kπc−Gλ 6 D(1−ε)λλλ, and
hence bλ1F1 + · · ·+ λrFr −Kπc 6 D(1−ε)λλλ +Gλλλ. This gives the inclusion

π∗OX′(−D(1−ε)λλλ −Gλλλ) ⊆ J (aaaλλλ).

In order to check the reverse inclusion π∗OX′(−D(1−ε)λλλ − Gλλλ) ⊇ J (aaaλλλ), it is enough,
using Corollary 3.1, to prove vi(D(1−ε)λλλ + Gλλλ) 6 vi(Dλλλ) = eλλλi for any component Ei.

We have e
(1−ε)λλλ
i 6 eλλλi just because J (aaa(1−ε)λλλ) ! J (aaaλλλ) and the inequality is strict when

Ei 6 Gλλλ, so the result follows.

ii) Let D′ be the antinef closure of b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc+Gλλλ. Since
Gλλλ 6 Hλλλ we have

b(1−ε)λ1F1 + · · ·+(1−ε)λrFr−Kπc+Gλλλ 6 b(1−ε)λ1F1 + · · ·+(1−ε)λrFr−Kπc 6 Dλλλ

so the inclusion π∗OX′(dKπ−(1−ε)λ1F1−· · ·−(1−ε)λrFre−Gλλλ) ⊇ J (aaaλλλ) holds. In order
to prove the reverse inclusion, we will introduce an auxiliary divisor D =

∑
diEi ∈ Λ

defined as follows:

· di = b(1− ε)λ1e1,i + · · ·+ (1− ε)λrer,i − kic+ 1 if Ei 6 Gλλλ,

· di = e
(1−ε)λλλ
i if Ei 6 Hλλλ but Ei 66 Gλλλ,

· di = b(1− ε)λ1e1,i + · · ·+ (1− ε)λrer,i − kic otherwise.

Clearly we have b(1 − ε)λ1F1 + · · · + (1 − ε)λrFr −Kπc + Gλλλ 6 D, but we also have
b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc 6 D. Indeed,
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· For Ei 6 Gλλλ we have

bλ1e1,i + · · ·+ λrer,i − kic = λ1e1,i + · · ·+ λrer,i − ki
= b(1− ε)λ1e1,i + · · ·+ (1− ε)λrer,i − kic+ 1 = di .

· If λ is a candidate for Ei but Ei 66 Gλλλ,

bλ1e1,i + · · ·+ λrer,i − ki = λ1e1,i + · · ·+ λrer,i − ki < 1 + e
(1−ε)λλλ
i ,

hence bλ1e1,i + · · ·+ λrer,i − kic 6 e
(1−ε)λλλ
i = di .

· Otherwise

bλ1e1,i + · · ·+ λrer,i − kic = b(1− ε)λ1e1,i + · · ·+ (1− ε)λrer,i − kic = di .

Therefore, taking antinef closures, we have D′ 6 Dλλλ 6 D̃. On the other hand D 6 D′.

Namely, vi(D
′) > e

(1−ε)λλλ
i at any Ei because

b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc 6 b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc+Gλλλ .

Moreover, vi(D
′) > b(1 − ε)λ1e1,i + · · · + (1 − ε)λrer,i − kic + δGλλλi by definition of

antinef closure. Here, δGλλλi = 1 if Ei 6 Gλλλ and zero otherwise. Thus vi(D
′) > vi(D) as

desired. As a consequence D̃ 6 D′, which, together with the previous D′ 6 Dλλλ 6 D̃,

gives D̃ = D′ = Dλλλ and the result follows. �

4.1. Geometric properties of minimal jumping divisors in the dual graph. We
proved in [1, Theorem 4.17] that minimal jumping divisors associated to satisfy some
geometric conditions in the dual graph in the case of multiplier ideals. The same properties
hold for mixed multiplier ideals. More interestingly, the forthcoming Theorem 4.14 is the
key result that we need in the proof of Theorem 3.3.

Lemma 4.11. Let λλλ be a jumping point of a tuple of ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r.
For any component Ei 6 Gλλλ of the minimal jumping divisor Gλλλ we have:

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei
= −2 + λ1ρ1,i + · · ·+ λrρr,i + aGλλλ (Ei) +

∑
Ej∈Adj(Ei)

{λ1e1,j + · · ·+ λrer,j − kj} .

where Adj(Ei) denotes the adjacent components of Ei in the dual graph.

Proof. For any Ei 6 Gλλλ we have:

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei
= ((Kπ − λ1F1 − · · · − λrFr) + {−Kπ + λ1F1 + · · ·+ λrFr}+Gλλλ − Ei + Ei) · Ei
= (Kπ + Ei)·Ei−(λ1F1+· · ·+λrFr)·Ei+{λ1F1 + · · ·+ λrFr −Kπ}·Ei+(Gλλλ − Ei)·Ei.

Let us now compute each summand separately. Firstly, the adjunction formula gives
(Kπ + Ei) · Ei = −2 because Ei ∼= P1. As for the second and fourth terms, the equality
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−(λ1F1 + · · ·+λrFr) ·Ei = λ1ρ1,i + · · ·+λrρr,i follows from the definition of the excesses,
and clearly aGλλλ (Ei) = (Gλλλ − Ei) ·Ei because Ei 6 Gλλλ. Therefore it only remains to prove
that

(4.1) {λ1F1 + · · ·+ λrFr −Kπ} · Ei =
∑

Ej∈Adj(Ei)

{λ1e1,j + · · ·+ λrer,j − kj} ,

which is also quite immediate. Indeed, writing

{λ1F1 + · · ·+ λrFr −Kπ} =
∑̀
j=1

{λ1e1,j + · · ·+ λrer,j − kj}Ej ,

equality (4.1) follows by observing that (for j 6= i), Ej ·Ei = 1 if and only if Ej ∈ Adj (Ei),
and the term corresponding to j = i vanishes because we have λ1e1,i + · · ·+ λrer,i − ki ∈ Z.

�

Corollary 4.12. Let λλλ be a jumping point of a tuple of ideals aaa ⊆ (OX,O)r. For any
component Ei 6 Gλλλ of the minimal jumping divisor Gλλλ we have:

λ1ρ1,i + · · ·+ λrρr,i + aGλλλ (Ei) +
∑

Ej∈Adj(Ei)

{λ1e1,j + · · ·+ λrer,j − kj} ∈ Z

As in the case of multiplier ideals, minimal jumping divisors satisfy a nice numerical
condition.

Proposition 4.13. Let λλλ be a jumping point of a tuple of ideals aaa ⊆ (OX,O)r. For any
component Ei 6 Gλλλ of the minimal jumping divisor Gλλλ, we have

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei > 0.

Proof. Given a prime divisor Ei 6 Gλλλ, we consider the short exact sequence

0 −→ OX′ (dKπ − λ1F1 − · · · − λrFre+Gλλλ − Ei) −→
−→ OX′ (dKπ − λ1F1 − · · · − λrFre+Gλλλ) −→
−→ OEi (dKπ − λ1F1 − · · · − λrFre+Gλλλ) −→ 0

Pushing it forward to X, we get

0 −→ π∗OX′ (dKπ − λ1F1 − · · · − λrFre+Gλλλ − Ei) −→
−→ π∗OX′ (dKπ − λ1F1 − · · · − λrFre+Gλλλ) −→
−→ H0 (Ei,OEi (dKπ − λ1F1 − · · · − λrFre+Gλ))⊗ CO,

where CO denotes the skyscraper sheaf supported at O with fibre C. The minimality of
Gλλλ (see Corollary 4.9) implies that

π∗OX′ (dKπ − λ1F1 − · · · − λrFre+Gλλλ − Ei) 6= π∗OX′ (dKπ − λ1F1 − · · · − λrFre+Gλλλ) .

Thus H0 (Ei,OEi (dKπ − λ1F1 − · · · − λrFre+Gλλλ)) 6= 0, or equivalently

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei > 0.
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�

With the above ingredients we can provide the desired geometric property of the min-
imal jumping divisors when viewed in the dual graph.

Theorem 4.14. Let Gλλλ be the minimal jumping divisor associated to a jumping point λλλ
of a tuple of ideals aaa ⊆ (OX,O)r. Then the ends of a connected component of Gλλλ must be
either rupture or dicritical divisors.

Proof. Assume that an end Ei of a connected component of Gλλλ is neither a rupture nor a
dicritical divisor. It means that Ei has no excess, i.e., ρj,i = 0 for all Ej of the resolution,
and that it has one or two adjacent divisors, say Ej and El, in the dual graph but at most
one of them belongs to Gλλλ.

For the case that Ei has two adjacent divisors Ej and El, the formula given in Lemma
4.11 reduces to

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei
= −2 + {λ1e1,j + · · ·+ λrer,j − kj}+ {λ1e1,l + · · ·+ λrer,l − kl}

+ λ1ρ1,i + · · ·+ λrρr,i + aGλλλ(Ei) .

Then:

· If Ei has valence one in Gλλλ, e.g. El 66 Gλλλ, then

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = −2 + {λ1e1,l + · · ·+ λrer,l − kl}+ 1 < 0 .

· If Ei is an isolated component of Gλλλ, i.e., Ej, El 66 Gλλλ, then

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei
= −2 + {λ1e1,j + · · ·+ λrer,j − kj}+ {λ1e1,l + · · ·+ λrer,l − kl} < 0.

If Ei has just one adjacent divisor Ej, i.e. Ei is an end of the dual graph, the formula
reduces to

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei
= −2 + {λ1e1,j + · · ·+ λrer,j − kj}+ λ1ρ1,i + · · ·+ λrρr,i + aGλλλ(Ei) .

Therefore,

· If Ei has valence one in Gλλλ, then

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = −2 + 1 < 0 .

· If Ei is an isolated component of Gλλλ, then

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = −2 + {λ1e1,j + · · ·+ λrer,j − kj} < 0.

In any case we get a contradiction with Proposition 4.13. �
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As a consequence of this result we can also provide the following refinement of Propo-
sition 4.13.

Proposition 4.15. Let λλλ be a jumping point of a tuple of ideals aaa ⊆ (OX,O)r. If Ei 6 Gλλλ

is neither a rupture nor a dicritical component of the minimal jumping divisor Gλλλ we have

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = 0.

Proof. Assume that Ei 6 Gλλλ is neither a rupture or a dicritical component. In particular,
it is not the end of a connected component of Gλλλ. Thus, Ei has exactly two adjacent
components Ej and El in Gλλλ, and its excesses are ρj,i = 0 for all 1 6 j 6 r. The formula
given in Lemma 4.11 for Gλλλ reduces to

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei
= −2 + λ1ρ1,i + · · ·+ λrρr,i + {λ1e1,j + · · ·+ λrer,j − kj}

+ {λ1e1,l + · · ·+ λrer,l − kl}+ aGλ (Ei) .

Notice that aGλλλ(Ei) = 2, and also that

{λ1e1,j + · · ·+ λrer,j − kj} = {λ1e1,l + · · ·+ λrer,l − kl} = 0 ,

because Ej and El are components of Gλ, so finally

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = 0 .

�
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