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Abstract: Due to the significant role played by singular systems in the form Eẋ(t) = Ax(t), on mathematical
modeling of science and engineering problems; in the last years recent years its interest in the descriptive analysis
of its structural and dynamic properties. However, much less effort has been devoted to studying the exact con-
trollability by measuring the minimum set of controls needed to direct the entire system Eẋ(t) = Ax(t) to any
desired state. In this work, we focus the study on obtaining the set of all matrices B with a minimal number of
columns, by making the singular system Eẋ(t) = Ax(t) +Bu(t) controllable.
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1 Introduction
In these recent years, the study of the control of com-
plex networks with linear dynamics has gained impor-
tance in both science and engineering; because of this
kind of systems appear in applications such us elec-
trical networks, simulation of the dynamics of multi-
body systems, modelling chemical reactions among
others.

Controllability of a dynamical system has being
largely studied by several authors and under many dif-
ferent points of view, (see [2], [4], [5], [6], [11], [13],
[14], [19], [20] and [22] for example). Between dif-
ferent aspects in which we can study the controlla-
bility we have the notion of structural controllability
that has been proposed by Lin [15] as a framework
for studying the controllability properties of directed
complex networks where the dynamics of the system
is governed by a linear system. Recent studies over
the structural controllability can be found on [16].

Another important aspect of control is the notion
of output controllability that describes the ability of
an external data to move the output from any initial
condition to any final in a finite time. Some results
about can be found in [11]. This concept has some
interest in codes theory (see [9], for example).

In this article, we analyze the exact controllabil-
ity concept as a generalization for singular linear dy-
namical systems of the concept given in [23] for stan-
dard linear dynamical systems and in [8] for `-order
standard linear systems. This concept is based on the
maximum multiplicity to identify the minimum set of

driver nodes required to achieve full control of net-
works with arbitrary structures and link-weight distri-
butions. The notion of exact controllability has in-
terest in different topics as for example is an ade-
quate notion in hyperbolic problems (see [12], [17]),
also, can be used to explore the effect of interconnec-
tions’ correlation on the controllability of multiplex
networks, S. Nie, X. Wang and B.Wang in [18] find
that the minimal number of driver nodes decreases
with correlation for lower density of interconnections.

We were focusing the study on the obtention of
the set of all matrices B making the system Eẋ(t) =
Ax(t) + Bu(t) exact controllable. These sets are ob-
tained from the quasi Weierstraß reduced form and
from getting the transformation matrices of the sys-
tem to its reduced form.

We have included some examples to make the
work easier readable.

Finally, we introduce exact controllability for sec-
ond order singular linear systems, because they are
interest in application to power systems and they are
also used in conjuction with the analysis and mod-
elling of flexible beams [1].

2 Equivalence relation

It is well known that many complex networks have
linear dynamics and they have a state space represen-
tation for its description:

Eẋ(t) = Ax(t) +Bu(t)
}

(1)



where E,A ∈Mn(IC) and B ∈Mm×n(IC).
When B = 0 the system is called homogeneous.
For simplicity, from now on we will write the sys-

tem 1 as the triple of matrices (E,A,B) or as a pair
(E,A) for the homogeneous case.

Trying to understand the properties of the system
they use purely algebraic techniques. The central as-
pect of this focus is defining an equivalence relation
preserving these properties.

The equivalence relation considered corresponds
to standard transformation basis changes for the state
space and pre multiplication for an invertible matrix.

Definition 1 The systems Eẋ(t) = Ax(t) and
Ē ˙̄x(t) = Āx̄(t) are equivalent if and only if, there
exist a basis change in the state space x̄(t) = Px(t)
and an invertible matrix Q ∈ Gl(n; IC) such that

Ē ˙̄x(t) = QEPẋ(t) = QAPx(t) = Āx̄(t)

We can characterize equivalent systems, by asso-
ciating matrix pencils to them in a natural way:

The matrix pencil λE +A is naturally associated
to the pair (E,A) representing a singular linear sys-
tem Eẋ(t) = Ax(t)

Equivalent pairs are those whose associated ma-
trix pencils are “strictly equivalent”. Remember that
two pencils λE + A and λĒ + Ā are strictly equiv-
alent, if and only if, there exist invertible matrices
P,A ∈ Gl(n; IC) such that

λĒ + Ā = Q(λE +A)P = λQEP +QAP.

Observe that in the case where the system is stan-
dard (i.e. E = I), the equivalence relation considered,
corresponds to the similarity relation of square matri-
ces.

We will consider the case of systems where the
matrix pencil λE + A is regular, as it is usual, in or-
der to ensure that the system has a unique solution
for any sufficiently differentiable input function u(t).
Under this regularity assumption, there exist invert-
ible matrices Q,P ∈ Gln(IC) such that Ē = QEP =
diag (Ir, N), Ā = QAP = diag (J, In−r), where J
a Jordan matrix and N a nilpotent matrix and we will
say that the pencil is it is canonical reduced form.

So, considering x(t) = Px̄(t) and premultiplying
the system 1 by Q and calling B̄ = QB, the system
can be written as Ē ˙̄x = Āx̄(t) + B̄u(t), that is to say:(

Ir 0
0 N

)(
˙̄x1(t)
˙̄x2(t)

)
=(

J 0
0 In−r

)(
x̄1(t)
x̄2(t)

)
+

(
B̄1

B̄2

)
u(t)

(2)

In general we say that two systems (E,A,B) and
(Ē, Ā, B̄) are equivalent if and only if, there exist
invertible matrices P and Q such that (Ē, Ā, B̄) =
(QEP,QAP,QB). This equivalence relation cor-
responds with strict equivalence of the pencil(
sE −A B

)
. So, the collection of invariants of

the pencil are the invariants for the system.
In particular, for the systems Eẋ(t) = Ax(t) the

generalized eigenvalues of the system are the general-
ized eigenvalues of the pencil.

Definition 2 λ0 is a generalized eigenvalue of the
system, if and only if rank (λ0E −A) < n.

It is easy to observe that the generalized eigenvalues
of sE − A are the eigenvalues of the matrix J in the
reduced form 2:

rank (λ0E −A) =
rank (λ0Q

1ĒP−1 −Q−1ĀP−1) =
rankQ−1(λ0Ē − Ā)P−1 =
rank (λ0Ē − Ā)

and

rank

(
λ0Ir − J

λ0N − In−r

)
< n

if and only if

rank (λ0Ir − J) < r.

In a more general form we have the following
proposition.

Proposition 3 Let (E,A) and (Ē, Ā) be two equiva-
lent systems, λ0 is an eigenvalue of (E,A) if and only
if it is is an eigenvalue of (Ē, Ā) = (QEP,QAP ).

If λ0 is a generalized eigenvalue of (E,A), then
there exists a vector 0 6= w0 such that (λ0E−A)w0 =
0.

Definition 4 This vector is called the generalized
eigenvector associated to λ0.

Proposition 5 Let (E,A) and (Ē, Ā) be two equiv-
alent systems, w0 is an eigenvector of (E,A) if
and only if P−1w0 is an eigenvector of (Ē, Ā) =
(QEP,QAP ).

Proof: Let (E,A) and (Ē, Ā) = (QEP,QAP ) two
equivalent systems.

(λ0E−A)w0 = 0 if and only if (λ0Q
−1ĒP−1−

Q−1ĀP−1)w0 = 0, equivalently if and only if
Q−1(λ0Ē− Ā)P−1w0 = 0, that is yo say, if and only
if (λ0Ē − Ā)P−1w0 = 0. utIn



the particular case where the equivalent system is in
the reduced form P−1w0 = (v10, 0) ∈ ICr × ICn−r and
v10 is an eigenvector of J :(

λ0Ir
λ0N

)(
v10
v20

)
=

(
J

In−r

)(
v10
v20

)

Clearly v20 = 0 and Jv10 = λ0v
1
0 .

It is important the following result.

Proposition 6 Eigenvectors corresponding to differ-
ent eigenvalues are independent.

Proof: Let w1, . . . , w` ` eigenvectors corresponding
to λ1, . . . , λ` with λi 6= λj for all i 6= j and consider∑`
i=1 αiwi.

Then
∑`
i=1 αiP

−1wi = 0 and
Āk
∑`
i=1 αiP

−1wi =
∑`
i=1 αiλ

k
i P
−1wi = 0

Solving the system∑`
i=1 αiP

−1wi = 0∑`
i=1 αiλiP

−1wi = 0
...∑`

i=1 αiλ
`−1
i P−1wi = 0

 ,

we obtain αi = 0, for i = 1, . . . `. Consequently, the
vectors are linearly independent. ut

It is important to remark the following proposi-
tion corresponding to the eigenvectors of infinity.

Proposition 7 Let (E,A) and (Ē, Ā) be two equiva-
lent systems and 0 6= w ∈ ICn. w ∈ KerE if and only
if P−1w ∈ Ker Ē with (Ē, Ā) = (QEP,QAP ).

Proof: Let (E,A) and (Ē, Ā) = (QEP,QAP ) two
equivalent systems.

Ew = 0 if and only if Q−1ĒP−1w = 0, equiva-
lently if and only if ĒP−1w = 0. ut

2.1 Quasi-Weierstraß form

The pair of matrices (E,A) corresponding to a reg-
ular pencil, can be reduced to a weaker form called
“Quasi-Weierstraß form” (see [3]) in the following
manner:

Let P =
(
V W

)
and Q =

(
EV AW

)−1
.

Matrices V ∈ Mn×r(C) and W ∈ Mn×(n−r)(C) are

in such a way that
(
V W

)
and

(
EV AW

)
are

invertible.

(QEP,QAP ) =

((
Ir

N

)
,

(
Ar

In−r

))
=

(Ẽ, Ã),

where Ar is some matrix and N is nilpotent.
The vector spaces ImV and ImW are spanned

by the generalized eigenvector at the finite and infinite
eigenvalues respectively, and they are derived by the
following recursive subspace iteration with a limited
number of steps called Wong sequences [21].

V0 = Cn, Vi+1 = {v ∈ Cn | Av ∈ E(Vi)}
W0 = {0}, Wi+1 = {v ∈ Cn | Ev ∈ A(Wi)}

verifying

V0 ⊇ V1 ⊇ . . . ⊇ V` = V`+1 = . . . V`+q = V ∗ ⊇ KerA
W0 ⊆W1 ⊆ . . . ⊆ wm = Wm+1 = . . .Wm+q = W ∗

It is easy to prove that ` = m and satisfy AV ∗ ⊆
EV ∗ and EW ∗ ⊆ AW ∗.

Matrices V and W are defined in such away that
V ∗ = ImV and W ∗ = ImW .

Example 8 Let (E,A) a system with

E =

 1 1 2
1 2 3
1 1 2

 and A =

 2 −1 −1
−1 2 −1
−1 −1 2



W0 = {0}

W1 = KerE =

 1
1
−1

 = W2 = W

V0 = IR3

V1 =

 1 0
0 1
1 0

 = V2 = V

then,

 3 1 2
4 2 2
3 1 −4


−1 2 −1 −1
−1 2 −1
−1 −1 2


 1 0 1

0 1 1
1 0 −1

=

 1 0 0
0 1 0
0 0 0

 = Ẽ

 3 1 2
4 2 2
3 1 −4


−1 1 1 2

1 2 3
1 1 2


 1 0 1

0 1 1
1 0 −1

 =

 2 −2 0
−5 5 0
0 0 1

 = Ã



Similarly to propositions 3, 5 and 7 we can prove
the following results.

Proposition 9 Let (E,A) be a system and (Ẽ, Ã) its
quasi-Weierstraß form. λ0 is an eigenvalue of (E,A)

if and only if it is is an eigenvalue of (Ẽ, Ã).

Proposition 10 Let (E,A) be a system and (Ẽ, Ã) its
quasi-Weierstraß form. w0 is an eigenvector of (E,A)

if and only if P−1w0 is an eigenvector of (Ẽ, Ã) and
P−1w0 = (v10, 0) ∈ ICr × ICn−r and v10 is an eigenvec-
tor of Ar.

It is important to remark the following proposi-
tion corresponding to the eigenvectors at the infinity.

Proposition 11 Let (E,A) be a system and (Ẽ, Ã)
its quasi-Weierstraß form. Let us consider a non-zero
vector w ∈ ICn. Then, w ∈ KerE if and only if
P−1w ∈ Ker Ẽ with (Ẽ, Ã) = (QEP,QAP ).

2.2 Controllability

An important concept concerning structural properties
is the controllability that is defined as follows

Definition 12 The system 1 is called controllable if,
for any t1 > 0, x(0) ∈ ICn and w ∈ ICn, there ex-
ists a control inpunt u(t) sufficiently smooth such that
x(t1) = w.

The controllability character can be computed by
means the generalized Hautus test for controllability
of singular systems.

Proposition 13 ([10]) The system 1 is controllable if
and only if:

rank
(
E B

)
= n

rank
(
sE −A B

)
= n, ∀s ∈ IC

 . (3)

Remark 14 The first condition of the proposition im-
plies that the system is standardizable under deriva-
tive feedback.

Remember that, system is standardizable under
derivative feedback if and only if, there exists a ma-
trix F ∈ Mm×n(IC) such that E + BF is invert-
ible and the system obtained by derivative feedback
(E+BF )ẋ(t) = Ax(t)+Bu(t) can be standardized
premultiplying it by (E +BF )−1.

Remark 15 Controllability character can be com-
puted by means the rank of a certain numerical ma-

trix constructed gluing matrix blocks

(
E B 0
A 0 B

)
in the lower right corner (see [10]).

3 Exact controllability

There are many possible control matricesB in the sys-
tem 1 that satisfy the controllability condition. The
goal is to find the set of all possible matricesB, having
the minimum number of columns corresponding to
the minimum number nB(E,A) of independent con-
trollers required to control the whole network.

Definition 16 Let (E,A) be a pair of matrices. The
exact controllability nB(E,A) is the minimum of the
rank of all possible matrices B making the system 1
controllable.

nB(E,A) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n,

(E,A,B) controllable}.
(4)

If confusion is not possible we will write simply nB .
Taking into account the generalized Hautus con-

dition 3, it is straightforward the following proposi-
tion.

Proposition 17 The exact controllability nB is in-
variant under equivalence relation considered, that is
to say: for any couple of invertible matrices (Q,P ),

nB(E,A) = nB(QEP,QAP ).

Proof:

rank
(
QEP QB

)
=

rankQ
(
E B

)( P
I

)
= rank

(
E B

)
rank

(
sQEP −QAP QB

)
=

rankQ
(
sE −A B

)( P
I

)
=

rank
(
sE −A B

)
ut

As a consequence, if necessary we can consider
(E,A) in its canonical reduced form.

Example 18 1) If E = A = 0, nB = n

2) If E = I and A = diag(λ1, . . . , λn) with λi 6=
λj for all i 6= j, then nB = 1, (it suffices to take
B = (1 . . . 1)t).

3) If E =

(
1

0

)
and A =

(
0

1

)
, nB = 1. It

suffices to consider B =

(
1
1

)
.



Remark 19 Not every matrix B having nB columns
is valid to make the system controllable. For ex-
ample if E = I , A = diag(1, 2, 3) and B =
(1, 0, 0)t, the system (A,B) is not controllable,
(rank

(
B AB A2B

)
= 1 < 3, or equivalently

rank
(
A− λI B

)
= 2 for λ = 2, 3.

For standard systems we have the following re-
sult.

Proposition 20 ([23])

nB = maxi {µ(λi)}

where µ(λi) = dim Ker (A − λiI) is the geometric
multiplicity of the eigenvalue λi.

Example 21 ([7]) 1) If A = 0, nD = n

2) If A = diag(λ1, . . . , λn) with λi 6= λj for all
i 6= j, then nD = 1, (it suffices to take B =
(1 . . . 1)t).

3) Not every matrix B having nD columns is
valid to make the system controllable. For
example if A = diag(1, 2, 3) and B =
(1, 0, 0)t, the system (A,B) is not controllable,
(rank

(
B AB A2B

)
= 1 < 3, or equiva-

lently rank
(
A− λI B

)
= 2 for λ = 2, 3.

For singular systems it is obvious that nB ≥ n−
rankE = nE .

Theorem 22 Let (E,A) be a singular system. The
exact controllability nB is computed in the following
manner.

nB = max {nE , µ(λi)}

where µ(λi) = dim Ker (λiE − A) and λi (for each
i) is the eigenvalue of pencil sE −A.

Proof: Proposition 17 permit us to consider the sys-
tem in its canonical reduced form

rank (E,B) = rank

((
I

N

)(
B̄1

B̄2

))
=

n1 + rank (N, B̄2)
N = diag (N1, . . . , NnE ) with Ni =

0 1
. . . . . .

0 1
0


Taking

B̄2 =



0
...
1

. . .
0
...
1
0
...
0



=
(
w∞1 . . . w∞nE

)
,

we have that rank (N, B̄2) = n2

rank
(
λiE −A B

)
=

rank

(
λi

(
I

N

)
−
(
J

I

)(
B̄1

B̄2

))
=

n2 + rank
(
λiI − J B̄1

)
.

J = diag (J1(λ1), . . . , Jr(λr)), Ji(λi) =
diag (Ji1(λi), . . . , Jiri (λi)) and Jij (λi) =
λi 1

. . . . . .
λi 1

λi


Taking

B̄1i =



0
...
1

. . .
0
...
1
0
...
0



=
(
wλi1 . . . wλiµi(λi)

)
,

we have that rank (λiI − J, B̄ii) = µ(λi)
Consider now the following collection of vectors

wλ11 , . . . , wλ1`
...
wλr1 , . . . , wλr`
w∞1 , . . . , w

∞
`

where ` = max (µ(λ1), . . . , µ(λr), nE) and we com-
plete each series of vectors with the zero vectors in
case its length is less than `.

Finally we construct the family

w1 = wλ11 + . . .+ wλr1 + w∞1 , . . . , w` =

wλ1` + . . .+ wλr` + w∞`



Clearly,

rank
(
E B

)
= n

rank
(
λE −A B

)
= n, for all λ ∈ IC

Now, it suffices to remark that if we considerB =
(bij) ∈Mn×m(IC) with m < `

i) if ` = nE then rank
(
E B

)
< n

ii) if ` = µ(λi) then rank
(
λiE −A B

)
< n

ut

Example 23 Let (E,A) be a singular system with

E =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0



,

and

A =



3 0 0 0 0 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0 0 0 0 0
0 1 3 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 1 3 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1


We have:

rankE = 10

rank (sE −A) =


11 for s = 3
12 for s = 2
13 for all s 6= 2, 3.

So,
nE = 3,
µ(3) = 2,
µ(2) = 1,

then nB = max(3, 2, 1) = 3.
In fact, taking

B =



1 0 0
0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0


rank

(
E B

)
= 13

rank
(
sE −A B

)
= 13 for all s ∈ IC.

Obviously, for all matrix

B =



b11 b12
b21 b22
b31 b32
b41 b42
b51 b52
b61 b62
b71 b72
b81 b82
b91 b92
b101 b102
b111 b112
b121 b122
b131 b132


rank

(
E B

)
< 13.

4 Generators of control space

As we have discussed in the previous section, not ev-
ery matrix B serves to make the system controllable,
Of all possible, we want to find those with the least
number of columns.

To make the paper more understandable, we begin
showing some particular cases.

Proposition 24 Let (E,A) be a system with E in-
vertible. Then, the matrices B making the system
(E,A,B) controllable are those that make the stan-
dard system ż = AE−1z, controllable.



Proof:

rank
(
E B

)
= n for all matrix B

rank
(
sE −A B

)
=

rank
(
sI −AE−1 B

)(E
I

)
=

rank
(
sI −AE−1 B

)
Then,

rank
(
sE −A B

)
= n

if and only if

rank
(
sI −AE−1 B

)
= n.

ut
The minimal sets of matrices B making a stan-

dard systems controllable are described in [7].
We want to remark that the solution of the prob-

lem for standard systems is linked to the eigenstruc-
ture of the matrix AE−1. In our particular setup,
the eigenstructure of the AE−1 corresponds to the
eigenstructure of the pair (E,A) because of det(sI −
AE−1) detE = det((sI − AE−1)E) = det(sE −
A).

Proposition 25 Suppose that the pencil (Ẽ, Ã) is in
its quasi-Weirstraß form corresponding to a fast sin-
gular systems and let m1 ≥ . . .ms the nilpotent in-
dices of Ẽ. Consider 0 6= w̄1 ∈ Ker Ẽm1\Ker Ẽm1−1,
0 6= w̄2 ∈ Ker Ẽm2\Ker Ẽm2−1, linearly independent
with w1 . . ., 0 6= w̄s ∈ Ker Ẽms \Ker Ẽms−1, linearly
independent with w1, . . . , ws.

If we consider ImB = [w1, . . . , ws], then
(Ẽ, Ã, B̃) is controllable.

Corollary 26 Let (E,A) be a singular fast system
and (Ẽ, Ã) = (QEP,QAP ) its quasi-Weirestraß
form. Then, taking B = QB̃ with B̃ as in proposi-
tion 25, the system (E,A,B) is controllable.

Proof:

rank
(
E QB̃

)
=

rankQ−1
(
E QB̃

)( P−1
I

)
=

rank
(
Ẽ B̃

)
rank

(
sE −A QB̃

)
=

rankQ−1
(
E QB̃

)( P−1
I

)
=

rank
(
sẼ − Ã B̃

)
ut

Proposition 27 Let (Ẽ, Ã) a singular system in its
quasi-Weierstraß form. Then, (Ẽ, Ã, B̃) is control-

lable, where B̃ =

(
B̃1

B̃2

)
, with B̃1 and B̃2 as in

proposition and . (if both matrices do not have the
same number of columns we complete the one that has
less number of columns with columns of zeros).

Proof: Let B̃1 ∈ Mr×m(IC) and B̃2 ∈ Mn−r×`(IC)

be the matrix such that (N, In−r, B̃2) are controllable
constructed as proposition 24 and proposition 25 re-
spectively .

If m 6= ` we complete with zero columns the ma-
trix which the number of columns is smaller, matching
in this way the size.

rank

((
Ir

N

)
,

(
B̃1

B̃2

))
=

r + rank
((
N
)
,
(
B̃2

))

rank

(
s

(
Ir

N

)
−
(
Ar

In−r

)
,

(
B̃1

B̃2

))
=

n− r + rank
((
sIr −Ar

)
,
(
B̃1

))
ut

Theorem 28 Let (E,A) be a singular system and
(Ẽ, Ã) = (QEP,QAP ) its quasi-Weirstraß form.
Then, taking B = QB̃ with B̃ as in proposition 27,
the system (E,A,B) is controllable.

Example 29 Retaking example 8, we have that

B̃1 =

(
α+ 2β
α− 5β

)

with α, β 6= 0 and B̃2 =
(
γ
)

withγ 6= 0. Then

B = QB̃ = 3 1 2
4 2 2
3 1 −4


−1 α+ 2β

α− 5β
γ

 =

 α/3 + 25β/6 + γ/6
−α/3− 67β/6− γ/6
α/6 + β/3− γ/6


And the system (E,A,B) is controllable.



5 Exact controllability of second or-
der singular linear systems

Let us consider a homogeneous second order singular
linear systems in the form

Eẍ(t) = A1ẋ(t) +A0x(t) (5)

And we ask for minimum of the rank of all possible
matrices B making the system 5 controllable. Re-
member that:

Definition 30 The second-order linear system

Eẍ(t) = A1ẋ(t) +A0x(t) +Bu(t) (6)

is controllable if and only if there exists a control
u1(t) = u−F1ẋ−F0x

(0), with Fi ∈Mm×n(IC) such
that the equation

Eẍ(t) = (A1 +BF1)ẋ(t) + (A0 +BF0)x(t) (7)

has a stable solution.

For simplicity we will write the system as a
quadruple of matrices (E,A1, A0, B) and as a triple
(E,A1, A0) for the homogeneous case The exact con-
trollability nB(E,A1, A0) is the minimum of the rank
of all possible matrices B making the system 5 con-
trollable.

Definition 31

nB(E,A1, A0) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n,

(E,A1, A0, B) controllable}.
(8)

A manner to study that is linearizing the system
in the following manner:

X(t) =

(
x(t)
ẋ(t)

)
, Ẋ(t) =

(
ẋ(t)
ẍ(t)

)
,

(
I

E

)
Ẋ(t) =

(
I

A0 A1

)
X(t) +

(
0
B

)
u(t).

that we can write in a simple way:

EẊ(t) = AX(t) + Bu(t) (9)

Taking into account that X1(t) =
(
x1(t)
ẋ1(t)

)
is

a solution of the linear system associated Ẋ(t) =
AX(t) + Bu(t), if and only if x1(t) is a solution of
the equation 6, it is not difficult to prove the following
proposition.

Proposition 32 The second order singular linear sys-
tem is controllable if and only if the singular linear
system associated 9 is controllable.

Proof: The controllability of X(1) = AX + Bu
ensures the existence of F ∈ Mm×`n(IC) such that
X(1) = AX(t)+Bu1(t) with u1(t) = u(t)−FX(t)
has a stable solution. Partitioning the matrix F into
two blocks F =

(
F0 F1

)
we have that the equa-

tionEẍ(t) = A1ẋ(t)+A0x(t)+Bu1(t) with u1(t) =
u(t)−F0x(t)−F1ẋ(t) has a stable solution. Converse
is analogous. ut

So, controllability character of second order sin-
gular linear systems it is reflected as follows

rank
(
E B

)
= 2n

rank
(
sE−A B

)
= 2n, ∀s ∈ IC

 . (10)

Now we present the main result that permit us to
analyze the controllability character directly from the
initial equation (1.1).

Theorem 33 The second order linear 6 is control-
lable if and only if,

rank
(
E B

)
= n

rank
(
s2E − sA1 −A0 B

)
= n.

(11)

for all s ∈ IC.

Proof:
Making row and column elementary transforma-

tions we obtain

rank
(
E B

)
=

(
I

E B

)
=

n+ rank
(
E B

)

rank
(
sE−A B

)
= rank

(
sI −I
−A0 sE −A1 B

)
=

rank

(
0 −I

s2E − sA1 −A0 sE −A1 B

)
=

rank

(
0 −I

s2E − sA1 −A0 0 B

)
=

n+ rank
(
s2E − sA1 −A0 B

)
ut

So, as a consequence we can enunciate the fol-
lowing result:



Theorem 34

nB(E,A1, A0) = maxi {nE , µ(λi)}

where µ(λi) = dim Ker (λiE−A).

Corollary 35

nB(E,A1, A0) = maxi {nE , ν(si)}

where

ν(si) = dim Ker (s2E − sA1 −A0)

for all si ∈ IC such that

det(s2E − sA1 −A0) = 0.

6 Conclusion

In this work, given two n-order square matrices E,A
defining regular generalized systems Eẋ = Ax. We
ask for minimal number of columns that must have a
matrix B in order to make the system (E,A,B) con-
trollable.

The sets of minimal generators of controllabil-
ity spaces are obtained using the quasi Weierstraß re-
duced form. Examples have been included to make
the work easier readable.
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