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Abstract

The Internet of Things (IoT) promises a plethora of new services and

applications supported by a wide range of devices that includes sen-

sors and actuators. To reach its potential IoT must break down the

silos that limit applications’ interoperability and hinder their manage-

ability. These silos’ result from existing deployment techniques where

each vendor set up its own infrastructure, duplicating the hardware

and increasing the costs. Fog Computing can serve as the underlying

platform to support IoT applications thus avoiding the silos’.

Each application becomes a system formed by IoT devices (i.e. sen-

sors, actuators), an edge infrastructure (i.e. Fog Computing) and the

Cloud. In order to improve several aspects of human lives, different

systems can interact to correlate data obtaining functionalities not

achievable by any of the systems in isolation. Then, we can analyze

the IoT as a whole system rather than a conjunction of isolated sys-

tems. Doing so leads to the building of Ultra-Large Scale Systems

(ULSS), an extension of the concept of Systems of Systems (SoS), in

several verticals including Autonomous Vehicles, Smart Cities, and

Smart Grids. The scope of ULSS is large in the number of things and

complex in the variety of applications, volume of data, and diversity

of communication patterns.

To handle this scale and complexity in this thesis we propose Hier-

archical Emergent Behaviors (HEB), a paradigm that builds on the

concepts of emergent behavior and hierarchical organization. Rather

than explicitly program all possible situations in the vast space of

ULSS scenarios, HEB relies on emergent behaviors induced by local



rules that define the interactions of the “things” between themselves

and also with their environment.

We discuss the modifications to classical IoT architectures required

by HEB, as well as the new challenges. Once these challenges such as

scalability and manageability are addressed, we can illustrate HEB’s

usefulness dealing with an IoT-based ULSS through a case study based

on Autonomous Vehicles (AVs). To this end we design and analyze

well-though simulations that demonstrate its tremendous potential

since small modifications to the basic set of rules induce different and

interesting behaviors. Then we design a set of primitives to perform

basic maneuver such as exiting a platoon formation and maneuver-

ing in anticipation of obstacles beyond the range of on-board sensors.

These simulations also evaluate the impact of a HEB deployment as-

sisted by Fog nodes to enlarge the informational scope of vehicles.

To conclude we develop a design methodology to build, evaluate, and

run HEB-based solutions for AVs. We provide architectural founda-

tions for the second level and its implications in major areas such as

communications. These foundations are then validated through sim-

ulations that incorporate new rules, obtaining valuable experimental

observations.

The proposed architecture has a tremendous potential to solve the

scalability issue found in ULSS, enabling IoT deployments to reach

its true potential.
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Chapter 1

Introduction

In this chapter, we first present the fundamental characteristics of the Internet of

Things. We then discuss the motivation behind our work and state the problems

that we tackle in this thesis. Then we present our approach for each of these

problems, and, finally, we provide an overview of our contributions that enhance

IoT to reach its true potential creating a collaborative environment with new

marketplaces.

1.1 Internet of Things

Internet of Things (IoT) includes a pervasive presence of sensors, actuators, and

other devices that are deployed across large areas and connected via protocols

(e.g. Bluetooth, WiFi, LoRA, 5G) that cooperate to meet common objectives.

The dominant characteristic of IoT is the physical interaction of the “things”

with their environments, which enables novel applications and sets new archi-

tectural demands. Through the deployment of trillions of “things”, IoT is sig-

nificantly transforming and improving city services, transportation, agriculture,

health-care, energy production and distribution, and water conservation, among

many other vital aspects of human life.

Many of these applications are widely distributed, some have stringent real

time requirements, and in all cases it is necessary to maintain trustworthy commu-

nication and adaptability to dynamic environments. “Things” require an infras-

tructure on top of them capable of satisfying the aforementioned requirements,

1



1. INTRODUCTION 1.1 Internet of Things

enabling a plethora of IoT-based applications. This platform allows to exploit the

visibility that “things” provide because, in most cases, “things” have reduced ca-

pabilities (i.e. limited computing capabilities and storage). Hence, the platform

operating on top of the “things” becomes a critical part of each IoT system.

Despite the heterogeneity of IoT applications, architects would desire a single

infrastructure capable of satisfactory respond to any application requirements set.

Cloud Computing can support a subset of the IoT applications, but character-

istics such as a centralized platform, distance to the “things”, and connectivity

precludes real-time and/or critical applications. Different platforms appeared in

the last years to provide a solution for these applications while simultaneously

exploit the advantages of the Cloud. Fog Computing [15] constitutes a remark-

able architecture that operate at the edge of the network to satisfy real time

applications among others.

Fog Computing can be used as a base to provide an infrastructure that en-

ables that interoperability. It has the potential to become the “de facto” IoT

platform since it is capable of satisfying the applications requirements. It is a

highly distributed platform with nodes located from near the “things” till the

edge of the network. These nodes offer computation, storage, and networking

capabilities to the applications operating beneath its infrastructure. Fog pro-

cesses the data close to where its generated, reducing the network utilization and

improving the aggregation from the bottom of the infrastructure. Low-latency,

widespread geographic distribution, heterogeneity, and mobility are part of its

main advantages.

Current deployment techniques and the lack of a generic platform to execute

and support IoT applications end up creating silos, where each application deploys

its own hardware. Fog eliminates the silos since each of these systems is formed

by a set of sensors and actuators together with instances of a generic Fog-based

platform (and optional support from the Cloud), avoiding the hardware duplicity.

For example, one system can provide smart mobility where public transportation

adapts to the user’s needs in real time (i.e. assign vehicles from low utilization

routes to others with high demand). In parallel, another system can focus on

providing efficient routes to vehicles, avoiding congestions and thus reducing the

2



1. INTRODUCTION 1.1 Internet of Things

time to destination and saving fuel. Both applications can be executed under

Fog’s infrastructure, eliminating silos.

Managing a current IoT sub-system with a low number of devices already

poses many threats due to the amount of resources required to monitor devices

and obtain useful information. The problem aggravates when considering all IoT

sub-systems within an area such as transportation as a single entity. The resul-

tant system is in fact an IoT-based Ultra Large Scale System (ULSS), that is an

assemblage of different components where each is both operationally and man-

agerially independent. Scalability and manageability are major concerns when

observing all those IoT subsystems as an ULSS, but also complexity and orches-

tration.

For instance, if we focus our attention on one of these applications within the

field of smart transportation, Autonomous Vehicles (AVs), we can analyze the

different independent systems that conform this ULSS. Vehicles in all its variants

conform different systems where each vendor or application defines a subsystem.

Amazon could use a drone system to deliver its packages while a government

could use another drone system to monitor the traffic. Both of these systems

are independent but they need to understand each other. However, the potential

functionalities that can emerge when both work in the same geographical area

are still not envisioned. There is plenty of room to exploit their convergences and

enable new applications that each system in isolation could not provide. This is

just an illustrative example, but the amount of systems interacting to enable AVs

is much larger, including control systems (i.e. traffic lights), external regulations

(i.e. traffic rules), and human-driven vehicles among others.

There are compelling reasons to decentralize ULSS. They include manage-

ability, scalability, complexity that grows with the scale of the system; and the

ability to contain failures. All together stresses the scalability of the system due

to the stringent number of IoT devices envisioned. Even though each device can

be really simply (i.e. temperature sensor), when millions of them generate data

the resulting system turns to be quite complex.

Concerning the open literature, there is no consensus on a technique that

tackles the scalability and complexity of the ULSS IoT. Current IoT systems rely

3



1. INTRODUCTION 1.2 Motivation

upon extensive coding to achieve an explicitly-programmed behavior. This tech-

nique does not scale since each new functionality of the ULSS requires extensive

programming, limiting the space for new functionalities to emerge.

1.2 Motivation

Despite the fact that IoT’s potential has been stated since its origins, IoT appli-

cations and their functionalities have not reached those expectations yet. Several

reasons are responsible of this delay including but not limited to current “silo”

based deployments, lack of a clear monetization channel, Capex and Opex, secu-

rity mechanisms, and data confidentiality.

Fog presents an elegant solution to some of these problematics, but requires

that stakeholders own vertical deployments from the “things” to the Cloud. In

consequence, there is a great entry barrier for new IoT applications. However,

Fog nodes need to become a generic platform to allow IoT systems to reach their

potential and thus helps to bring a real democratization to the IoT domain. The

first step in this direction would the elimination of “silos”, followed by a series of

software APIs to facilitate the usage of the hardware infrastructure (i.e. in the

form of virtual instances).

Once IoT systems exploit, a solution that tackles the complexity and the

scalability of the resultant ULSS is required. Currently there are no consensus

on how this objective should be achieved, and existing systems rely on explicitly-

programmed behaviors. This technique, although partially satisfactory does not

scale and presents huge development costs. The behavior of the “things” is defined

from the conception of the system, and this poses a thread over the scalability of

the system. In addition, they need to take into account an overwhelming number

of scenarios that have to be coded or elsewhere applications are not capable of

adapting to their environments. Aggravating the problem, the open literature

focus on solutions centered in single elements of the system, such as a vehicle,

rather than considering the perspective of the system that millions of vehicles

conform.

For IoT to reach its potential a new multidisciplinary approach is required

to tackle the aforementioned problems. Therefore, only a flexible, scalable, and

4
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adaptive architecture could solve those issues while creating new marketplaces

and business models that contribute to the expansion of IoT deployments. This

solution should focus on how to enable the interoperability between different IoT

systems to induce new behaviors rather than having to program explicitly.

In these emergent behaviors or functionalities is where the true potential of

ULSS lies, avoiding todays limitation due to programing and managing costs of

these systems. Constituent systems can be added or removed, and the only spec-

ification required is the rules of engagement between elements (i.e. car) from

each system. After their interactions, new functionalities that are not explicitly

programmed emerge. These behaviors exploit the contextual information and the

locality of “things” to enhance the scalability of the system while reducing the

managerial complexity. Then, “things” can take more decisions based on infor-

mation they have rather than relying completely on their supporting platform.

1.3 Problem statement

Previous work has posed the attention over different problems that attain to the

IoT ecosystem. There are two main areas we need to tackle in this thesis: (i)

Fog Computing as a generic platform for IoT applications and (ii) management

and orchestration of IoT ULSS applications to tackle their complexity. The first

area comprises two distinct objectives since an initial assessment of the hardware

required at the Fog nodes has to be performed due to the heterogeneity of the

IoT applications. Once this is completed, we can focus on how to enhance Fog

to become the desired generic IoT platform.

Analysis and simulation of processor architectures at the Fog node

level. Fog nodes are a set of heterogeneous nodes that are interconnected forming

a hierarchy. Taking a more detailed look to the first aggregation level, those

nodes directly connected to the “things”, they need to execute a wide range

of applications with different requirements over their hardware platform. Some

applications may require more memory access and low computational power while

others may focus on real time execution times to ensure their safety and criticality.

The first goal of this thesis is to develop a new hardware and software simu-

lation tool that allows researchers to perform fast but still accurate design space
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exploration analysis. Then, researchers can quickly explore what type of hard-

ware better fits their application requirements before proceeding to a more de-

tailed hardware/software simulation if required. Instead of focusing on a single

application, this thesis looks for a generic simulation platform that can be used

for the forthcoming IoT applications

Fog Computing enhancements to become a generic platform. Fog

characteristics place this platform as a suitable candidate to enable IoT applica-

tions. However, due to the nature of its current deployments, each application

needs to develop complex software solutions to integrate the nodes or to afford

vertical deployments (from “things” to the Cloud) that only large companies can

undertake.

The second goal of this thesis is to provide enhancements to Fog’s platform

so these complex software solutions are no longer required. Hence, Fog would

become a true generic platform where each application only requires an instance to

start running. This fact would also enable a democratization of the IoT platform,

reducing the entry barriers for new IoT-based services running on the edge of the

network.

Tackle the complexity of IoT ULSS. Even though a generic infrastruc-

ture can support IoT services, applications are still heavily complex due to the

number of “things” involved and the complex scenarios where they are deployed.

Managing and orchestrating these applications with traditional solutions is not

very effective since they rely on explicitly programmed software solutions that

focus on the perspective of every device. In this thesis we focus on AVs as it

constitutes a prime example of ULSS where the open literature focuses on single

vehicles rather the system perspective.

The third goal of this thesis is to analyze the requirements of an ULSS AV

system, and to provide a solution to IoT ULSS that is scalable and feasible to

program. This architecture should empower the “things” to reduce the pressure

placed upon the infrastructure, exploit the contextual information to enrich IoT-

based services, and adapt to complex environments under continuous change.
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1.4 Thesis approach

In this thesis we develop a multidisciplinary approach to develop a simple but

powerful architecture that englobes the infrastructure and the application to ex-

ploit the best from both worlds. To design this transversal solution, we first

focus on Fog Computing as the “de facto” IoT platform analyzing the hardware

requirements at the first aggregation levels and possible enhancements to make of

Fog a generic IoT platform capable of executing any type of application without

the need of new hardware deployments. Second, we focus on the application side

to orchestrate ULSS improving their scalability inspired by concepts from other

areas of knowledge such as ant colonies.

To this end, we introduce the concept of Hierarchical Emergent Behaviors,

inspired in flocks of birds and schools of fish, to design an AV system. We show

that the combination of emergent behaviors, those not explicitly programmed,

and hierarchical decomposition tackles the complexity of the ULSS by leveraging

the decision-making to the “things” themselves, those devices with a natural

access to their contextual information. Hence, we argue that this technique is

the way to design and implement AV systems based on extensive simulations and

case studies.

Despite the fact that the assessment of the Fog nodes’ hardware – to which end

we designed a simulation tool – may seem disjoint, IoT is a vast area with many

different verticals. We evaluated the hardware platform on our first approach

to the IoT domain to enable new IoT applications exploring the applications’

infrastructure requirements. HEB solves a wider problem in dealing with the

scalability, complexity, and manageability of an AV ULSS rather than focusing

on the specifications of a node within the ULSS.

1.5 Thesis contributions

This thesis makes the following contributions:

1. A simulation methodology based on queue models and statistical

information (named iQ), targeting design space exploration analysis on

7
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the early stages of the processor design process. This hardware defines

the Fog nodes, that form an underlying platform to support and execute

IoT workloads. Given the wide range of IoT applications and due to the

lack of IoT-based benchmarks, we evaluate our simulation tool with the

spec cpu2006 to present the methodology that, once IoT applications are

available, can be applied to obtain fast results. We find that by emulating

key processor components using queue structures we can obtain a very

accurate result with a significant speedup. The code is available at this

repository [3].

2. Enhancements to Fog’s architecture to enable the generic IoT

platform. We propose three enhancements targeting three critical areas:

(i) a new orchestration policy, (ii) the creation and usage of constellation of

Fog nodes, and (iii) the definition of Fog Function Virtualization (FFVs).

The new orchestrator gives flexibility to the infrastructure to truly exploit

the Fog layers. To mitigate the current lack of resources at the Fog node

level, we introduce constellations of Fog nodes. They are virtual groupings

of nodes to aggregate their capabilities. Finally, FFVs tackle the problem

of the complex software solutions required nowadays faced when deploying

new applications.

3. A design methodology based on emergent behaviors and hierar-

chical decomposition for ULSS, named Hierarchical Emergent Be-

haviors (HEB). HEB tackles the scale and complexity of ULSS proposing

a paradigm change from explicitly-programmed applications to the appli-

cation of simple but powerful local rules at the “things” level. The key idea

is to induce self-organizing behaviors akin to the swarm formation, thus by-

passing arduous, centralized, and potentially brittle control mechanisms. A

well-designed HEB promises to be more flexible and adaptable to unantic-

ipated conditions than a traditionally hard coded system. To this end, we

analyzed its characteristics and future potential through carefully crafted

simulations focused on Autonomous Vehicles (AVs) case studies. The code

is available at this repository [2].

Next we highlight the most important concepts of each contribution.
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1.5.1 iQ

Computer architects use different simulation methodologies to design, evaluate

and optimize computing systems. The selection process becomes non-trivial due

to the number of available tools. An extended technique relies on full cycle sim-

ulations with tools such as Gem5 [13] or MARSS [52]. They provide a detailed

accuracy but at the cost of a tremendous development complexity. Another solu-

tion uses trace-driven simulators to reduce the execution time, but its complexity

remains the same [38, 55, 77]. The only technique that does not bring the com-

plexity consists of using analytical models. Its development effort is small, but

sacrificing part of the accuracy. There is no generic tool or methodology to

perform design space exploration analysis on a fast but still accurate method to

identify critical areas and bottlenecks that drive the processor architecture design

process.

In this thesis, we design and develop a methodology to perform design space

exploration analysis on fast manner while maintaining the accuracy. Our tool,

named iQ, builds on queue models and statistical information to construct models

that emulate the behavior of real hardware. Then, architects can effectively a two-

stage process to first identify bottlenecks and later focus on more finer granularity

simulation. During this first stage, a hardware/software co-design process drives

the analysis thanks to the abstraction brought by the queue models. Since there

is not a “de facto” IoT benchmark, we evaluated iQ against the well-known SPEC

CPU2006 suite to evaluate our methodology and its potential.

We find that iQ’s modular nature and easy reconfigurability of the component

parameters make results in a highly flexible and powerful processor simulator. We

observe that this technique is capable of accurately represent modern single core

processors with a remarkable accuracy. In addition, it provides an almost ISA

independent capable of emulating not only processors but also FPGAs and GPUs.

We have built an Ivy Bridge and a Core 2 Duo processor model and have vali-

dated them against real hardware running SPEC CPU2006 Int achieving average

error rates of 9.55% and 8.93%, proving that there are efficient alternatives to

full system simulators when it comes to design space exploration studies.
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Finally, we perform a design space exploration taking the Ivy Bridge as base to

determine what processor components can be modified to increase its instruction

per cycle for the chosen benchmark suite. An important remark arises from the

insight architects can gain by using iQ on where the real bottlenecks of a modern

and complex processor are.

1.5.2 Fog Computing Enhancements

Fog Computing [15] is a highly distributed platform that relies on nodes located

at the edge of the network, closer to the end-user devices, to provide computation,

storage, and network resources. Access points and routers constitute clear exam-

ples of Fog nodes, although companies such as Nebbiolo are designing specific

hardware to operate as Fog nodes. Thanks to its characteristics including but

not limited to low-latency, wide-spread geographic distribution, heterogeneity,

and mobility Fog is positioning itself as the “de facto” IoT platform.

For Fog to achieve its potential it needs to become a generic platform capable

of serving multiple applications simultaneously. However, current IoT deploy-

ments are based on “things” covering a geographical area with a set of proprietary

nodes connected to the Internet. As a consequence, each application constitutes

a subsystem or silo inside IoT, avoiding data correlation between different appli-

cations that could benefit the users. On top of this system isolation, complex

software solutions are required to integrate all the components of each system

(i.e. sensors, nodes, cloud), forcing companies to own the complete vertical stack

from “things” till the Cloud.

In this thesis, we propose three enhancements to Fog: (i) a new orchestration

policy to provide more flexibility to the infrastructure breaking the execution

in the Cloud by default, (ii) the creation of constellations of heterogeneous Fog

nodes to aggregate their capabilities, and (iii) the definition of the Fog Function

Virtualization (FFV) concept.

The new orchestration policy breaks the default execution on the Cloud and

allow to further exploit the Fog layers whenever the requirements allow it. The

constellations create the virtual image of having more resources at the lower level
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of the hierarchy without the need of deploying new hardware by aggregating re-

sources from close nodes. FFVs allow to offer infrastructure resources to the

applications without worrying about the underlying hardware. For instance, sen-

sors can be offered as a service, or we can define functions at the Fog node levels

such as combination of values for a range of sensors (i.e. gather and perform the

average value for a range of sensors) in a similar way as Network Function Vir-

tualization does it for network equipment. Then, we analyze their effectiveness

and potential impact through two different use cases, a smart grid scenario and

a contamination information map based on smart vehicles.

Finally, we observe that the the combination of these three techniques con-

tributes to the democratization of the IoT services by truly enabling a generic

infrastructure to run multiple applications simultaneously. A new deployment

only requires the application code, since virtualization techniques hide the entire

infrastructure from “things” to Cloud.

1.5.3 Hierarchical Emergent Behaviors (HEB)

Internet of Things (IoT) describes the pervasive presence of sensors, actuators,

and other devices that are deployed across large areas and connected via protocols

(e.g. Bluetooth and WiFi) that can cooperate to solve common objectives [11].

A fundamental characteristic of IoT is the physical interaction of the “things”

with their environments enabling new forms of architectures and abilities. These

applications must carefully assess certain crucial factors such as the real-time and

largely distributed nature of the “things”, maintaining trustworthy communica-

tion, and adapting to dynamic environments. Building applications to utilize the

IoT infrastructure can lead to exciting opportunities such as building smarter

cities and controlling transport congestion.

Existing IoT deployments connect directly “things” to the Cloud, aggravating

the “silos” problem described in the Fog Computing case. These “silos” limit

the data correlation and the interoperability between different applications. The

disadvantages of this implementation strategy are redundancies in hardware and

in communication as well as increased deployment costs.
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Though the largely exclusive manner in which IoT systems are currently uti-

lized may ensure certain business advantages, they are inherently limited in terms

of scalability, orchestration, and management. These facts threaten the ability

of IoT to operate as an Ultra Large Scale System (ULSS) [50] that exploit the

benefits of the underlying applications such as autonomous vehicles and smart

cities.

In this thesis we propose Hierarchical Emergent Behaviors (HEB) to tackle

the ULSS scale and complexity. HEB is a paradigm built on top of the concepts

of emergent behaviors and hierarchical organization. The underlying concept

behind emergent behaviors is to induce self-inducing behaviors through the ap-

plication of a well-thought set of local rules at the “thing” level, exploiting their

contextual information. Its major advantage is the bypass of arduous and com-

plex centralized mechanisms that prevent IoT ULSS to scale to billions of devices.

Conventional IoT systems rely on explicitly-programmed behaviors achieved

through complex and costly codes. Instead, our proposal relies on lightweight

local rules that describe the interactions between “things” and their environment

to induce those behaviors. Hence, architects do not need to anticipate all the

possible scenarios reducing the design complexity while enhancing its scalability.

Unlike emergent behaviors in nature, ULSS operates at different spatial and

temporal levels. In consequence, we organize our behaviors hierarchically, where

level (N+1) abstracts the behavior of level (N) while widening its spatial-temporal

scope.

This merge between emergent behavior and hierarchical organization concepts

induces desired behaviors without the need to envisage nor explicitly program for

the vast number of potential scenarios. A well-designed HEB is flexible and

adaptable to unanticipated conditions than a traditionally hard coded system.

We aim to i) call the attention upon the scalability problem in IoT, ii) suggest

an approach based on two well-known organizing principles, emergent behavior

and hierarchical organization, and iii) stimulate future research based on the

ideas and techniques related to Hierarchical Emergent Behaviors. To this end,

we provide first an overview on how emergent behavior and the multi-dimensional

approach applies to IoT. We then point out the architectural modifications needed

in order to generate those behaviors and discuss some challenges. We illustrate
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its usefulness in dealing with an IoT ULSS through a case study based on Au-

tonomous Vehicles.

Once the fundamentals are stablished, we take a first step to validate HEB

concepts through the study of two basic self-driven car primitives: exiting a pla-

toon formation, and maneuvering in anticipation of obstacles beyond the range

of on-board sensors. In this scenario, Fog nodes provide the critical contextual

information required to perform those maneuvers. Hence, Fog enlarges the vision

and the scope of each single vehicle in order to optimize the vehicles reactions

when facing certain situations. This technique emphasizes the role of Fog Com-

puting as support for HEB communications in general, and facilitating contextual

awareness in particular.

HEB induces useful behaviors through local rules implemented at each AV

rather than explicitly programming each action a vehicle must take in every

circumstance. Relying on emergent behaviors has major benefits. The first is the

absence of highly complex algorithms. The second is HEB’s intrinsic adaptivity to

deal with unanticipated corner cases and its natural scalability. These objectives

are achieved by moving the decision-making capabilities to the vehicles and thus

allowing them to take actions based on well understood rules.

The next logical step requires the development of a design methodology to

build, evaluate, and run HEB-based solutions for AVs. This thesis advances

HEB’s methodology by providing Architectural foundations of the second level

and its implications, with a focus on inter-level communication & locality and

hierarchical relation between the rules, including the necessity of a leader and

possible mechanisms to implement its selection. In addition, the AV case study

is further extended to incorporate new rules and provide valuable experimental

observations.

Finally, our simulations demonstrate the robustness, flexibility, and smooth-

ness of a HEB-based AV system.

1.6 Thesis organization

Chapter 2 presents the fundamentals on the queue-based simulation methodology,

focusing on an Intel Ivy Bridge model evaluated under the SPEC CPU INT 2006
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benchmarks. This Chapter follows mostly from our work published in the 25th

IEEE International Symposium on the Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS 2017) [59].

Chapter 3 presents an overview of Fog Computing and focuses on the three

innovations developed in the content of this thesis. This Chapter follows mostly

from our work published in the 2nd International Conference on Fog and Mobile

Edge Computing (FMEC 2017) [58].

Chapter 4 presents the HEB concept and how it builds on the concepts

of emergent behaviors and hierarchical decomposition, and its later evaluation

through simulation. This Chapter follows mostly from our work published in

IEEE Micro Journal Volume 36, 2016 [57] and in the Springer International Pub-

lishing book Fog Computing in the Internet of Things, 2017 [56]. Another article

has been submitted to the IEEE Intelligent Transportation Systems Magazine;

the response is still pending.

Chapter 5 concludes the thesis and highlights future research directions.

Chapter 6 presents the list of publications.
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Chapter 2

iQ, a queue model simulation tool

2.1 Introduction

Computer architects use several simulation tools in order to design, evaluate and

optimize computing systems. However, the wide variety of simulation tools makes

the selection process a non-trivial task. While some techniques are based on an-

alytical models [21, 51], others rely on the use of system simulators [13] for bot-

tleneck identification and design verification. Popular software based simulators

often emulate several different elements of a system including the processor micro-

architecture, memory hierarchy, and interconnection network, but use different

simulation techniques which impact accuracy, latency, ease of programmability,

and analysis.

For instance, full system simulators such as Gem5 [13] are currently common-

place among researchers. Such tools allow simulating all the layers of the com-

puter stack. Other researchers have been using trace-driven simulators [55] in

an effort to reduce the execution time while maintaining accuracy. Furthermore,

researchers use representative reduced traces [38, 76] which capture the workload

behavior. All these aforementioned tools are excellent for detailed simulations

and validating individual components. But they are cumbersome in dealing with

the initial stages of design space exploration due to the lengthy simulation time

and substantial development effort involved.

In contrast, there are other tools more suitable for design space exploration [16,

61]. They reduce the simulation time required while maintaining accuracy, but
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the underlying complexity remains the same. Thus, another abstraction level is

required. Analytical models should cover this area but are oversimplified. To im-

prove the outputs of these models, some researchers [45, 69, 81] have used queu-

ing theory to construct multi-threaded processors models to analyze resource

contention without focusing on the processor implementation. However, finer

granularity simulation is often desired when pinpointing micro-architectural bot-

tlenecks or exploring diverse design parameters and components.

To meet this challenge, architects use a two-stage process. In the first stage,

a high-level simulator is used for the design space exploration analysis. The

bottleneck identification and the performance improvement estimation obtained

guide the second stage, a more detailed simulation to test and validate component

designs. In this work we present a fine-grained queue-based simulator, iQ, to be

used in the first stage. The main requirements for iQ are a large complexity

abstraction and fast simulations, while maintaining the error within acceptable

boundaries. To satisfy these needs, we based our framework on queue theory

and statistical information. The combination of these techniques allows us to

represent any processor component or functionality with queues, servers, delays,

and communication lines. While the queues correspond to the need of handling

an instruction flow, the delays are the representation of the required time to

perform an action over an instruction.

To represent applications, a dynamic instruction flow is generated based on

a statistical profile formed by the instruction’s distribution probability and reg-

ister dependency information. Once the profile is available, it is time to build a

processor model based on the queue elements. To construct processor models,

architectural information is required, which can be determined easily for an exis-

tent processor (instruction width, ALUs, ROB length, etc) or in a new design the

researcher defines these parameters. With the profile and the model, architects

can study the impact of new components and/or analyze the bottlenecks on these

models with simulations that take a few seconds, and most important modifica-

tions are feasible in real-time due to iQ’s abstraction level. Later we demonstrate

that accuracy is not lost to gain simulation speed.

Our goal in this Chapter is to develop a simulation methodology capable

of performing efficient design space exploration analysis. Once such a tool is
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available, we could evaluate the hardware and software requirements at the Fog

nodes to identify the best architectures for IoT applications. To this end we

analyze current simulation techniques and methodologies. After, we develop a

generic framework based on queue models and statistical information. We build

an illustrative example focusing on an Intel Ivy Bridge processor executing the

SPEC CPU INT 2006. We then evaluate its accuracy and perform a design space

exploration over this model to identify current bottlenecks and areas for future

improvements.

In summary, the main contributions of this chapter are:

• We propose a simulation methodology based on queue models and statistical

information for design space exploration and bottleneck identification at the

core component level.

• We evaluate the speed, accuracy, abstraction level, and flexibility of the

simulator. We validate it against real hardware and compare to other state

of the art simulators.

• We demonstrate the usefulness of the simulator in its ability to provide

efficient design space exploration and showcase available performance im-

provement options.

In Section 2.2 we provide a detailed description of iQ’s characteristics and

capabilities. Although our technique can be used to simulate any computer ar-

chitecture (including processors, GPUs, and FPGAs), in Section 2.3 we detail

how to implement a processor model, focusing on an Intel Ivy Bridge. In Sec-

tion 2.5 we validate the Ivy Bridge model against real hardware and we also

build and evaluate a Core 2 Duo model. In addition, we compare the simulation

accuracy and speed of iQ with other state of the art simulators. In Section 2.6

we present a design space exploration analysis which showcases the usefulness iQ

provides for architects and researchers, saving them vast amounts of design time

and effort by quickly identifying bottlenecks and revealing improvement options.

Finally, in Section 2.7 we review the related work and in Section 4.7 we conclude

the simulation methodology.

17



2. IQ TECHNIQUE 2.2 Background

Delay 

Server Occupancy 

Figure 2.1: Generic modular queue structure. It is sequential and formed by

three elements: a queue, a server, and a delay.

2.2 Background

Queuing models are based on queue structures, message passing, and latency

accumulation to produce experimental results. A message is received at the tail

of a queue structure, propagated until it reaches the head of the queue and then

a delay is added to account for the amount of time that the action for that

particular message or component is determined to take.

In the case of an arithmetic unit such as an Integer ALU in a processor, the

queue can model the ALU input queue where the message represents an arithmetic

instruction such as an add or subtract, and the delay added is the time the ALU

unit takes to execute that arithmetic instruction. Dependencies between mes-

sages (i.e., instructions) or within computational resources (e.g., ALUs, branch

predictors, Out-of-Order tracking) are also accounted to model the performance

of the system characteristics being modeled.

A probabilistic model can also be included to emulate non-deterministic be-

havior such as branch miss-predictions and cache hits and misses. A collection of

discrete events drive the execution simulation, in representation of computational

cycles. Only the cycles where there is an event such as instruction generation,

execution, or retirement are simulated, improving the velocity of iQ. Total per-

formance is measured as a collection of processed messages per total events, in

other words, instructions per cycle.

2.2.1 Queuing Model

Processors are formed by a wide variety of components such as functional units

and different memory levels. To represent them using queuing model we have

implemented a modular queue structure that is capable of representing different
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Table 2.1: Generic queue structure configuration for different processor compo-

nents

Processor component Configuration

Non-pipelined

Integer ALU

Server=ALU latency

Delay=0

Pipelined

Memory ALU

Server= 1 cycle

Delay=mALU latency - 1

Partially pipelined

Cache level

Server=non pipelined latency

Delay=Cache latency-server

behaviors through a set of variable configurations. This module, represented in

Figure 2.1 is formed by a queue, a server, and a delay. The users can configure

the queue length and the delays required to process instructions. The Queue

occupancy models the resource contention and availability.

Server: This parameter is used to model the time to execute the proper

function over the instructions. The service time is the latency required to process

an instruction. While an instruction is being serviced, the subsequent instructions

wait in the queue. In other words, this parameter models how much pipelined a

structure is. The lower the service time the higher pipeline the velocity and vice

versa.

Delay: This parameter is used to complement the Server latency to ensure

the appropriate total delay for the component the instruction will pass through.

In this manner we ensure that the combination of Service and Delay time is used

to represent any structure, pipelined or not, and attach the correct execution

time to instructions as they are processed in the appropriate order.

In Table 2.1 we show some cases on how to configure the latencies to achieve

the desired structure. For instance, if we are representing a non-pipelined struc-

ture, the total latency of an instruction processed by that structure will be entirely

dependent upon the Service time and the Delay time is zero. A different case is a

fully pipelined structure, such as Multiply ALU. Assuming that the total latency

of this instruction is four cycles and a new instruction may begin execution each

cycle, then the total execution time is the sum of a Service time (once cycle) and
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a Delay time (three cycles).

Time-line: An event (i.e., cycle) is used to not only keep track of the num-

ber of cycles elapsed, but also tracks and schedules instruction events to main-

tain proper execution flow. For instance, assuming instruction A enters an ALU

(which takes four cycles to compute) at cycle 42. Then, an action at cycle 46

is scheduled which will move instruction A to the following stage of execution.

Performance is measured by dividing the total number of retired instructions by

total elapsed cycles (i.e., IPC). The end of the simulation in reached when the

variation between different IPC intervals is negligible and thus we consider the

IPC is stabilized. The amount of time until the IPC reach that point is variable

but usually is within tens of seconds.

2.3 iQ Methodology

2.3.1 Modeling hardware and software characteristics

Hardware: To properly construct such an accurate queuing model it is essential

to understand the makeup of the target system’s hardware components and the

instruction mix of the workloads. Conceptually, architects need to have a high

level view of a processor (like the 5-stage pipeline) to determine which basic

modules are required to emulate the behavior of a processor. Ideally, we need

at least three modules, one to create instructions, one to execute them, and one

to retire them. Identifying the processor components to include in the model

will determine the extra modules. For example, each ALU or memory level can

be included with a generic module. To reduce the development effort and the

simulation time, iQ models do not require knowing all the specific details but must

only capture the main behavior of each component. For example, in constructing

a cache module, details such as size, number of lines, replacement policy, and

set-associativity do not need to be included in the cache module configuration.

The cache module can still provide accurate results for processor models with

only being configured to know the hit/miss ratios and corresponding latencies.

Software: To simulate instructions, iQ uses instruction types which are user

defined classes resulting in a pseudo-ISA. This technique eliminates the complex-
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ity and necessity of using binaries and compilers specific to our simulator. Ap-

plications must be profiled using hardware counters and tools like Pin [12]. This

process enables architects to gauge the makeup of the application’s instruction

mix (e.g., arithmetic, memory, and branch) and register dependencies (distance

between the creation and the use of value). This information can be detailed at

the phase or basic block level to properly represent the different behaviors. iQ

uses the profile to feed an instruction generator module that creates a represen-

tative code dynamically during the simulation. For instance, iQ uses a random

number generator to produce different instructions types based on a probability

distribution given by the application profile. As an example, if an application is

composed of 75% load instructions, there is a 75% chance the instruction gen-

erator produces a load. The number of instructions generated per request is

determined by the architectural parameter of the fetch and decode instructions

per cycle, specified in the configuration file.

Accessibility : We use Omnet++ [73] to construct and simulate differ-

ent hardware models. It provides an intuitive graphical interface to modify the

modules conforming the processor’s model, support for the libraries containing

the generic queue modules or the user-defined functionalities. All the parameters

that represent the software and the hardware are controlled via a configuration

file. We provide a public release of the iQ simulator that can be used to develop

new processor models.

2.4 Building an illustrative iQ model

2.4.1 Simulation setup

Target Architecture: We have used the iQ simulator to construct and simulate

a model of the Intel(R) Core(TM) i7-3740QM CPU (Ivy Bridge). We evaluate a

single core running single threaded applications. The architectural specifications

for the Intel Ivy Bridge are publicly available [19, 24].

Host machine: We run our simulator on a Dell Latitude E6430 laptop. The

processor is an Ivy Bridge with four cores and 8 GB of DDR3 RAM. On top of this

platform, we have used Omnet++ 4.3.1 IDE to develop iQ models. Simulation

21



2. IQ TECHNIQUE 2.4 Building an illustrative iQ model

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

P
e

rc
en

ta
ge

 (
%

) 
Branch Load Store Int

Figure 2.2: SPEC CPU INT 2006 Instruction mix divided into four types: integer,

load, store, and branch.

accuracy and execution time are the two main characteristics evaluated. To

provide a detailed and fair simulation evaluation, we compare our Ivy Bridge iQ

model against the real processor. The parameter used in the accuracy comparison

is the Instructions per Cycle (IPC).

Benchmarks: We evaluated our simulator running the SPEC CPU2006

Int benchmarks [31], except omnetpp benchmark since the dependency profiling

tool was not capable of executing it and astar benchmark due to a segmentation

fault in the Core 2 Duo. To obtain the application profile, we used the hardware

counters via perf and Pin on a system OpenSuse 13.1 and gcc 4.8.11. Using the

counters we can measure the instruction type distribution, the cache behavior,

and the branch miss-prediction rate. We classify the different executable instruc-

tions to fall within one of four iQ’s instruction class types which we have defined:

Int, Load, Store, and Branch. We used the MICA tool [33] to obtain the register

dependency distance between instructions.

Figure 2.2 presents the instruction mix falling into iQ’s four instruction types

for the SPEC workloads. This information is used by the instruction genera-

tor to determine the type of each new generated instruction following the same

distribution as the original benchmark. Combining the hardware counters in-

formation with the instruction mix results can provide insight to determine the
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critical processor’s components for improving performance. Since iQ generates

the instruction flow dynamically during simulation, the notion of a finite program

vanishes into a non-ending execution. We consider that a simulation has finished

once the IPC stabilizes.

2.4.2 iQ Ivy Bridge modules

Our processor’s model structure is based on the 5-stage pipeline. Fetch, Control

(joins Decode and Issue), Execution, Memory, and Retirement are modeled using

iQ based modules detailed below.

2.4.2.1 Fetch

The fetch module represents the fetch stage and the L1 instruction cache (i-

cache), plus the dynamic generation of instructions. An application can be com-

posed of several phases with different profiles, and the architect can specify the

phase execution order. In the SPEC CPU2006 Int case we observed almost a

flat profile during the execution. In consequence, we defined a single phase pro-

file information. The parameters required to categorize each phase include: (i)

the distribution of different instruction types, shown in Figure 2.2 (ii) and the

dependency information. The fetch module generates instructions based on this

information.

An important parameter to represent the fetch stage accurately is the number

of instructions per cycle that a real chip is capable of processing, which for the

Ivy Bridge case is four [24]. Then, this module will use this information to

generate four instructions on each request. We have not modeled the TLB since

it is not critical for accuracy measurements when executing SPEC CPU2006 Int

benchmarks.

Icache. Since we model the L1 i-cache, the simulator needs to determine

whether a memory operation results in a cache hit or miss. This hit/miss ratio

is set in the iQ configuration file. A random value is used to determine a hit or a

miss according to the range obtained applying the miss probability to the desired

distribution. In this case, we assume all the instruction misses go to the shared
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L3 cache, and thus we apply the LLC latency (28 cycles [24]). If it is a hit, in

the next cycle four instructions will be sent to the next module.

2.4.2.2 Control

This module is responsible for emulating the decode/issue stages and out-of-order

execution, including processing of dependency checks and branch predictions. In-

structions received from the fetch module are stored in the ready queue waiting

to be processed. Similar to the fetch stage, the important parameter for mod-

eling the decode stage is the number of decoded instructions per cycle that the

processor can deliver. Before issuing an instruction to the modules emulating the

execution stage, the control module must check the dependency information to

determine whether the instruction will be blocked due to interdependencies or

due to lack of free computational resources such as ALUs, Ld/St queue and ROB

entries.

Modeling Dependencies. A consequence of representing the instructions

with messages which do not include register information is that the register re-

naming and the pool of available registers have to be emulated with statistical

information. To achieve this objective and also to collect insightful information,

we use two queues. The first queue tracks the instructions under execution inside

the processor. The second queue tracks the instructions blocked in this stage due

to dependency reasons. To determine and control for inter-instruction dependen-

cies, a dependency distance probability at the register level is utilized. Before

issuing an instruction, a random number is generated which will determine if the

instruction depends upon a previous instruction and what distance. The id of the

instruction at the corresponding distance will be chosen as the one the current

instruction depends upon. The current instruction becomes blocked until the

instruction it depends on finishes execution.

Branch predictor. To predict branches, we use a similar method as with

the instruction cache by generating a random number and checking whether it

falls within the probability ranges of a true or false branch prediction. If the

branch is correctly predicted, it is sent to the scheduler function which emulates

the next stage in execution. On the other hand, if there is a miss-prediction,
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the pipeline is flushed by emptying the ready instruction queue and a penalty

is applied to the next clock event. This penalty sums the cost of the pipeline’s

flush and the average memory access latency to fetch new instructions. In the

Ivy Bridge model the value is set up at 60 cycles.

Issue. The scheduler function checks if there is a free functional unit able

to execute the instruction. In the Ivy Bridge case, up to five instructions can be

executed simultaneously: three integer instructions (or 2 integer and 1 branch)

and two memory instructions (2 loads, 1 load and 1 store, or one of either type).

If there is an available functional unit (FU), the scheduler issues the instruction

for execution by sending it to the corresponding FU module. In case the FU is

occupied, it leaves the instruction in the ready queue to until the module becomes

available. Out of order execution is simulated using the re-order buffer (ROB)

length to define the number of instructions that the processor can examine inside

the ready queue to find a suitable instruction to send. That length is reduced

by taking into account the number of instructions under execution and also the

blocked instructions. Once it finds an instruction, the model can send it even

though it breaks the instruction sequence. The smaller length between the ready

queue and the re-order buffer length defines how far this capability can go. Our

ROB length is consistent with the Ivy Bridge architecture of 168 entries.

2.4.2.3 Integer/Branch functional units

These functional units are capable of executing three integer instructions or two

integer instructions and one branch. To emulate their functionality the generic

compound module from Table 2.1 is used. The required time to execute these

instructions types in the real processor is one cycle so the service time is config-

ured to be one and the delay value is set to zero. The queue length is unbounded

because it is controlled through the maximum distance between the oldest in-

struction and the one to be sent.

2.4.2.4 Memory hierarchy

The Intel Ivy Bridge processor is capable of executing two loads simultaneously,

represented with two memory FUs. The cache miss ratios are specified for each
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memory level. iQ uses a random number to determine the outcome of the memory

accesses. To execute the operation, a cache control module is required after the

generic functional unit. After the memory instruction goes through the L1 d-

cache modules, it arrives to the L1 control module. At this point, whether the

memory access is a cache hit or miss is determined. If it is a hit, then the

instruction is sent to the retirement module. In case of a miss, it is sent to the

L2 cache module. The same procedure is applied for L2 and L3. Main memory

accesses are treated differently because they always hit.

2.4.2.5 Retirement

The retirement module emulates the retirement stage of a processor. The pro-

cessor model retires instructions in an out-of-order fashion since instructions are

retired when they arrive. This does not affect the accuracy since iQ uses statis-

tical profiles of the application and not real code. If a traditional trace was used

instead, then the in-order retirement would have to be used. Once the instruction

is retired, its instruction identification number is sent to the control module. The

control module can then check possible dependencies on that id and proceed to

execute those instructions. This module also collects statistics about the entire

simulation such as the latency required to execute each instruction, histograms

about queue occupancies, number of retired instructions separated by type, etc.

2.4.3 iQ Ivy Bridge model

Figure 2.3 presents the model once all the aforementioned modules are combined.

2.5 iQ Performance Analysis

Figure 2.4 presents the comparison between the simulated and real Ivy Bridge

IPC values running the SPEC CPU2006 Int benchmarks. It also shows the per-

centage relative error between these values. Apart from gcc that will be explained

separately, the average error rate for the other benchmarks is 8.6%. This error is

comparable to those obtained with cycle-accurate simulators specifically modified

to match a specific platform [29].
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Figure 2.3: Intel Ivy Bridge model implemented in Omnet++
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Figure 2.4: IPC comparison between iQ model and real Ivy Bridge with error

rates shown on top. The absolute average error rate (except gcc) is 10.5%

Figure 2.4 illustrates that the model is able to accurately execute a wide set

of benchmarks (both memory and computationally intensive). Moreover, the
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Figure 2.5: IPC evolution during simulation. After less than ten thousand simu-

lated cycles, which take a few seconds to execute, the IPC stabilizes.

achieved accuracy proves that we emulated reasonably the key processor’s com-

ponents. There is only one outlier, gcc. After analyzing its code, gcc can be

represented as small phases with completely different characteristics and instruc-

tions. Reason why our four instruction generator with a single phase at this stage

cannot represent the application code accurately, provoking the error observed.

As future work, a more detailed phase representation has to be implemented to

allow users to simulate this type of benchmarks.

2.5.1 Simulation Speed

The other important critical characteristic of our model is its fast simulation

speed. iQ’s execution time is reduced by the fact that the model only needs

to execute the application profile until the variation in the output IPC value is

negligible and does not need to execute the entire program. Figure 2.5 presents

how the IPC of three benchmarks executed in the Ivy Bridge model evolves

based on simulation cycles. In less than ten thousand cycles all the benchmarks

have a stable output IPC, and thus the simulations can finish. After measuring

the real CPU execution time required for simulating those cycles, the final IPC

is obtained in 2 seconds on average with a maximum of 4.2, demonstrating a

remarkable speedup over the times required by other simulators.
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Table 2.2: Comparison between iQ and other simulators

Simulator Avg. error (%)
Avg. Sim time

(hours)

iQ 8.6 0,0005

Analytical [70] 13 0.055

ZSim [61] 9.7 1,12

Sniper [16] 19.8 6,94

MARSS [52] 15.5 86,80

Gem 5 [29] 13 69,4

2.5.2 Comparison with other simulators

Table 2.2 compares the absolute average error (second column) and average sim-

ulation time (third column) between our iQ simulation platform and other state

of the art proposals. To populate it, we used the numbers from the original

papers. The third column presents the execution time for each simulation tech-

nique: Gem5 runs the test input set of the SPEC2006, Sniper runs the large set

of Splash-2 [75], ZSim runs 50 billion instructions, analytical models run 1 billion

and iQ runs until the IPC is stable. We see that iQ is the fastest and provides

very low error percentage.

Gem5 has been the “de facto” full system simulator to test and evaluate pro-

cessor components. Its simulation detail results in very slow but highly accurate

simulations. However, the development cost is high. For example, a customized

version of an ARM processor compared to real hardware obtained and average

absolute error of 13%, while the simulation time is in the range of hours per

benchmark [29]. MARSS presents similar results in terms of accuracy and sim-

ulation speed. Both simulators are challenging for design space exploration due

to the development effort required for modifications and for the long execution

time.

Sniper’s scope is to perform rapid and accurate simulations by using interval

simulation. Sniper has been validated against a real x86 processor executing the

Splash-2 benchmarks. The simulation speed of Sniper is improved compared to

full-system simulators like Gem5 and MARSS, in the range of a few MIPS, while
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the accuracy is relatively high. However, the flexibility is still limited because

performing architectural changes takes time and the simulation latency can still

take hours.

ZSim aims to solve this issue among others such as the scalability. It is based

on instrumented code obtained from Pin. ZSim achieves better simulation speeds

than tools that simulate in detail almost all the processor’s components and

provides excellent accuracy. It is a suitable tool to perform accurate simulations,

but not to perform design space exploration analysis because the execution time

is not small enough and modifications still require significant efforts for such

high-level studies.

Analytical models present similar simulation speeds to iQ but the resulting ac-

curacy depends on the model’s complexity. In Table 2.2 we show one of the latest

models [70]. To achieve that accuracy, that model is based on interval simulation

and complex equations. Furthermore, it implements cache and branch predictors

which are complex for such a model. It achieves reduced execution times us-

ing checkpoints. However, analytical models provide average performance values

which obscure the dynamic behavior. This information is crucial for perform-

ing optimal design space exploration analysis and modifications to the processor

architecture itself (more ALUs, memory ports, etc).

Conversely, an iQ based processor model does not implement all the proces-

sor’s components. The desired components emulate the real behavior through

abstractions to simplify the simulation framework. It is not capable of executing

the operating system and instead of using the actual binaries of the applications,

it dynamically generates a trace based on statistical profiles. Despite all these

facts, the accuracy level outperforms nearly all other simulators and simulation

time is better than that of complex analytical models. In addition, it provides de-

tailed simulation information such as dynamic instruction and component queue

behaviors. Thanks to the component abstractions and the instruction genera-

tor, iQ performs simulations within a few seconds compared to several hours.

These benefits make iQ a suitable tool for design space exploration analysis and

processor design.
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2.6 Design Space Exploration Analysis

iQ has been developed to perform architecture analysis and bottleneck identi-

fication for optimizing existing architectures and identifying potential for new

architecture designs. The advantages iQ provides over other simulators are the

ability to accurately identify architectural bottlenecks and speedily simulate a

wide range of design modifications through different abstraction levels. Experi-

menting with modifying subtle design parameters such as to add new components

such as functional units can often be a daunting task both in coding effort and

simulation time required with current simulators. The ease and speed which

iQ provides allows architects to try out large quantities of design space studies

and produce optimization options featuring different combinations of component

modifications. This section demonstrates the practical usefulness of the iQ model

and how it can be used by architects to run design level analyses and optimize

their systems.

The Problem: Imagine a scenario where a computer architect has to improve

the Ivy Bridge processor by 15% for the SPEC CPU2006 Int benchmarks (except

gcc, omnetpp, and astar) within a week. The architect decides to use the new iQ

model and set aside other simulators that are either more complex or that lack

enough abstraction level. Different steps will lead the architect to that goal.

The first step is to profile the benchmarks, build a high-level model of the

processor, and validate it. This is achieved following the methodology described

in Section 2.3 or using predefined modules that should be available for commercial

processors. The next steps to determine the architectural bottlenecks limiting

performance are discussed in the following Sections.

2.6.1 Multiple Parameter Analysis

Though a single parameter analysis could provide the desired improvement, it

ignores the correlation between architectural factors. For example, how does the

performance vary as both the fetch width and the number of functional units are

modified at the same time? This is where iQ’s speed is specially useful.

Architects can perform multiple parameter analysis thanks to executing a

large number of simulations within a reasonable amount of time (i.e., orders of
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magnitude less than with full system simulators). Additionally, iQ’s abstraction

level offers an advantage over analytical models since the underlying complexity

is reduced and the dynamic behavior of the processor’s components (ROB, fetch

queue, etc.) can be analyzed. Now, modifying the parameters of each factor is

practically effortless since it only requires changing one parameter variable in the

configuration file per factor being measured (e.g., change the OoO window to 128

and the L2 cache hit rate to 90%).

OoO and Fetch width: Based on the single parameter analysis performed

before, the architect decides to evaluate the correlation between the out of order

(OoO) window size and the fetch width. Figure 2.6 represents the results between

these two factors. The architect decided on examining this relationship by mod-

ifying each factor using nine different parameter values. As a result, the number

of required simulations per benchmark is 9*9=81, which for all 9 benchmarks

means conducting a total of 729 different simulations. Using iQ, all 729 simula-

tions took less than 25 minutes to run on the laptop described in Section 2.4.1.

The amount of time required is smaller than with any other simulation technique

while iQ’s accuracy stands with much more detailed models. Additionally, this

correlation study can be applied to analyze the relation between any architectural

factor configured in the model which greatly increases the already large number

of simulations needed.

Several conclusions arise from the information presented in Figure 2.6. For

example, increasing the number of fetch and decode instructions does not provide

increasing returns if the out-of-order window length remains relatively small. The

extra instructions fetched will not fit within the provided OoO window resources

to execute them simultaneously. Similarly, if the fetch width remains relatively

small but the OoO window is greatly increased, performance does not increase

since not enough instructions are fetched to keep up with the larger OoO window

size. Maximizing the value for both parameters can increase performance but its

implementation will be impractical and a waste of resources since more conser-

vative configurations produce similar results. A leveling off of performance gains

indicates that the performance is becoming limited by bottlenecks besides these
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Figure 2.6: Analysis between OoO window size (or RoB length) and fetch width.

Increasing the fetch width over the 168 (Ivy Bridge default value) to exploit larger

OoO window lengths does not result in significant IPC improvements.

two factors. The optimal configuration, in terms of IPC and implementation fea-

sibility, is having a OoO window size of 128 and a fetch and decode width of 6

instructions per cycle.

Fetch width and branch penalty: Note that previous analysis showed

that the OoO window size is too aggressive for these benchmarks but the fetch

width is important. Hence, the architect decides to analyze the correlation be-

tween the fetch width and the branch miss-prediction penalty. Figure 2.7 presents

the results of this analysis.

The first thing the architect notices is that as the fetch width increases over

five instructions per cycle, it does not provide a significant IPC improvement.

IPC performance, however, becomes heavily dependent upon the branch miss-

prediction penalty once the optimum fetch width value is attained. This is in

stark contrast to what was observed in the relationship between the fetch width

and the out-of-order window length where after a length of 128 the improvement

was negligible. This fact highlights that not all factors are equal nor have equal

relationships with one another. Different factors can limit or enhance the poten-
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Figure 2.7: Analysis between fetch width and branch missprediction penalty.

There is a strong correlation between the branch penalty and the fetch width

observed in the non-saturated IPC improvement.

tial benefits of others. The particulars of these relationships are determined by

the characteristics of the architecture and applications.

2.6.2 Complete Analysis

A modern processor is a complex machine with many more factors and parameter

values that should also be evaluated. This fact indicates that the number of sim-

ulations growths exponentially with the number of factors. Based on the insights

from previous analysis, the architect decides now to use the factors from the

multiple parameter study (shown in Figures 2.6, 2.7) and the LLC and DRAM

latencies from the single parameter exploration. Conducting an experiment con-

sisting of 7 different parameter values for these 5 different factors concurrently

means 16807 simulations for each benchmark (9 hours to run).

Eight configurations out of this multi-factor study are presented in Table 2.3

and compared to the default Ivy Bridge architecture. They form a representative

subset of solutions based on the number of factors involved and the improvement
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achieved for comparison reasons. Although there are more configurations that

accomplish the objective, choosing the appropriate solution will depend on the

cost functions accounting for power, area, and implementation feasibility.

Regarding the results from Table 2.3 the only difference between configuration

A and configuration B is the increase of the size of the RoB length in B to 256. A

larger number of fetched instructions per cycle combined with a reduced branch

penalty makes that more instructions are available for execution each cycle. Then,

this fact is exploited by a larger RoB length which translates into an improvement

of 18.19%, while A obtains 15.33%. It becomes the architect’s job to make a

cost-benefit analysis and determine whether this extra 2.86% improvement is

worth the implementation and energy costs. Configuration G provides a similar

improvement, a 17.03%, with a different combination of parameter values. Instead

of modifying the RoB length and the branch penalty it reduces the LLC miss ratio

by 5% and also reduces the DRAM latency. Improving the memory hierarchy

reduces the time instructions are blocked due to pending memory requests and

allows to exploit a larger instruction level parallelism (ILP).

Following with the memory improvements, configuration C includes a reduc-

tion of the LLC miss ratio by 10%. In this case, a less aggressive fetch is com-

pensated with a reduced branch penalty. However, this configuration is not so

optimal as the previous one and presents a 15.46% improvement. Knowing that

the LLC cache miss ratio needs to be decreased the architect can then use a

cache simulator to decide which cache scheme fulfills the new miss ratios. Also

remarkable is the configuration H, where all the factors are slightly modified. In

comparison with the previous configurations where specific components were tar-

geted, H proves that a minimum enhancement in all the processor stages achieves

the desired 15% improvement.

Other solutions are more aggressive, such as E. To achieve a drastic reduction

of the DRAM latency may not seem feasible. However, new memory technologies

may enable such breakthroughs and then the architect can estimate its impact.

Once configuration E revealed its potential with a 15.32% improvement, the ar-

chitect can iterate on top of it. Decreasing the RoB length following the premises

from previous analysis to 128 and reducing the branch penalty by 10 cycles results

in 16.55% improvement (configuration D).
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2.7 Related Work

Different techniques have been used to provide feasible design space exploration

tools. SMARTS [77] provides reduced representative subsets of benchmarks to

reduce the simulation time although the underlying processor model can com-

promise its advantages. To avoid the use of third tools, synthetic traces [51] can

be generated recreating the original behavior from a previous execution reducing

the simulation time. TaskPoint [28] applies sampled simulation to task-based

programs. Cook et al. [18] developed a design space exploration technique based

on Monte Carlo methods. Lee et al. [39] used a regression model to analyze the

trade-offs between performance and power consumption.

Prior work has also used queue models to simulate multiprocessor systems [68,

69, 81]. They exhibit a higher level of abstraction in the processor architecture,

reduced to a traffic generator, because they focus on the multi-threaded con-

tention problems. The first work only simulates the different cache levels of the

memory hierarchy and how the requests access them. They do not simulate the

ISA, focusing on the memory accesses. The second work adds more detail to the

memory hierarchy implementing the bank scheme and the main memory, but the

rest of the processor still remains hidden. iQ extends both works by implement-

ing the remaining processor components, a more complete ISA, and defining a

generic framework easily extensible to other processor architectures. Then, iQ

can perform a fine-grain analysis of the entire processor.

Data center scale simulations have been performed using the queue methodol-

ogy, both in performance [46] and in power [45], sharing the granularity problem

of previous works.

2.8 Summary

In this Chapter we proposed iQ, a tool primarily focused on helping to perform

design space exploration analysis and identifying bottlenecks. However, iQ does

not provide answers to how a specific parameter configuration may be achieved at

the implementation level. For instance, while improving the hit ratio of a cache to

a certain feasible percentage will help to optimize the system, iQ does not identify
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what the specific cache structures (e.g., set-associativity, line size, etc.) should

be to achieve that goal. To this end, a detailed simulator should be used. iQ

should be complemented with detailed system simulators for validating detailed

physical implementation designs. However, substituting detailed simulators for

iQ in the design space exploration phase results in a significantly faster and more

insightful processor design and evaluation process for computer architects.
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Chapter 3

Fog Computing, towards a

generic platform for IoT

3.1 Introduction

Based on estimations, in 2020 there will be around 50 billion devices connected

to the Internet [22]. These “things” are in their majority sensors and actuators

interacting with the real world. Hand by hand with these devices, a huge amount

of data is collected, requiring a process of analysis and actuation. These ap-

plications must carefully assess certain crucial factors such as the real-time and

largely distributed nature of the “things”, maintaining trustworthy communica-

tions, and adapting for mobility and the harsh environments where the “things”

are deployed. To achieve these objectives with traditional Cloud Computing

solutions is complicated since a centric design approach precludes critical IoT

requirements, such as real-time and geographically-aware computing.

Fog Computing [15], an architecture that appeared in the past years, can be

used as a base to provide a good solution to the IoT requirements [78]. It is a

highly distributed platform, with nodes located from near the end-user devices

till the edge of the network. These nodes offer resources such as computing, stor-

age, and networking to the applications operating under this infrastructure. An

access point with enhanced computing capabilities constitutes an example of a

possible Fog-capable node. Fog processes the data close to where is generated,

reducing the network utilization and improving the aggregation from the bottom
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of the infrastructure [66]. Low-latency, wide-spread geographic distribution, het-

erogeneity, and mobility are part of its main advantages. In consequence, Fog

becomes an extension of the Cloud rather than a substitute since its nodes are

connected to the Cloud.

The true potential of Fog Computing lies in the implementation of a generic

multi-tenant platform supporting a wide rage of applications simultaneously [5].

This approach reduces deployment costs, eliminates hardware redundancy, and

improves the scalability of the system. However, current IoT deployments are

based on “things” covering an area with a set of proprietary nodes connected

to the Internet. As a consequence, each application constitutes a subsystem or

silo [79] inside IoT and there is no exchange of information among applications

that users could benefit from. Even though a layer of Fog nodes is available,

applications have to develop complex software solutions to integrate those nodes

into their infrastructures or face vertical deployments from the “things” to the

Cloud. Then, a paradigm shift as shown in Figure 3.1 is required to enable a

generic IoT infrastructure.

For Fog Computing to grow as a platform and reach that vision, it should

adopt the ease of deployment from on-demand platforms such as Cloud and the

flexibility from software defined technologies such as SDN. To accomplish these

Figure 3.1: Moving from a silo-based implementation where each application has

its own infrastructure represented in (A) to a generic Fog deployment capable of

executing several applications simultaneously represented in (B)
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objectives, we propose to enhance Fog with three key innovations. First, a new

orchestration policy to provide more flexibility to the infrastructure breaking

the execution in the Cloud by default. Second, the creation of constellations of

heterogeneous Fog nodes to aggregate their capabilities, increasing the available

resources at the bottom of the hierarchy. Last, the definition of the Fog Function

Virtualization (FFV) concept. These functions cover aspects such as analytics,

sensors’ functionalities, and computational resources among others. Hence, the

system exposes its capabilities through these functions without jeopardizing the

complexity nor the scalability.

The combination of these three techniques contributes to the democratization

of the IoT services by truly enabling a generic infrastructure to run multiple

applications simultaneously. The deployment of a new service only requires the

application code without worrying about the node integration, since virtualization

techniques hide the entire infrastructure from “things” to Cloud.

Our goal in this Chapter is to enhance Fog Computing to become a generic

platform capable of executing a heterogeneous set of IoT applications simulta-

neously. Once such a platform is available, many IoT systems can be deployed

easily since the entry barriers such as the complex software development and the

necessity of owning entire verticals will be eliminated. Later, these systems will

become the basic units to enable a true IoT ULSS. To this end we analyze current

Fog Computing architectures and deployments to identify the critical areas that

are precluding the expansion of Fog-based applications. After their identification,

we design we three enhancements to attack each of the problems and analyze their

applicability in different scenarios.

In summary, the main contributions of this chapter are:

• We identify three critical areas that are precluding the expansion of Fog-

based deployments: (i) orchestration policies, (ii) resources available at the

first hierarchical levels and, (iii) the ease of infrastructure resource instan-

tiation

• We propose three enhancements to alleviate the aforementioned problems:

(i) a new orchestration policy, (ii) the creation of constellations of nodes

and, (iii) the definition of FFVs.
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• We demonstrate its usefulness in two different scenarios.

In Section 3.2 we first describe the Fog architecture, its functionalities and

the desired requirements. We then elaborate the three innovations proposed in

Section 3.3. Section 3.4 illustrates its usefulness in dealing with different IoT

deployments through a two scenario case study. Finally, Section 4.7 summarizes

our analysis.

3.2 Fog Computer Architecture

A representative architecture of a generic IoT infrastructure is depicted in Fig-

ure 3.2. At the lower levels there are “things”, responsible of gathering informa-

tion. The next layer is formed by heterogeneous Fog nodes, which constitute the

aggregation points. The “things” and the nodes communicate mostly through

wireless technologies, since both “things” and nodes can move. In addition to

this vertical communication, Fog nodes can communicate horizontally (i.e. be-

tween two Fog nodes at the same hierarchical level). Due to Fog nodes’ wide

geographic deployment and their locality, they can offer real-time resources pro-

cessing the data close to where it is generated. These characteristics enable most

of the Fog Computing advantages (i.e. mobility support, low-latency, etc.). Till

reaching the Cloud, Fog nodes form an interconnected hierarchy. Among these

nodes there might be non-compatible Fog devices operating normally. The Cloud

constitutes the last layer, offering a large pool of resources at low-cost but without

any latency guarantees.

The decision on which layer executes the application depends on its require-

ments although the final decision corresponds to the orchestrator. The original

Fog architecture defined that applications run on the Cloud by default and only

those which strictly require Fog capabilities use the Fog layers. Once the Fog

layers are chosen, other parameters such as the node’s visibility serve to decide

which Fog nodes execute it. Exploiting the visibility is important for applications

covering a wide geographic area, since aggregation can take place at higher nodes.

The resultant advantage is a traffic reduction since just the strictly necessary data

is sent from one level to another.
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Now, the objective turns to optimize the applications’ execution. To this end,

both Cloud and Fog use virtualization techniques. They rely on virtual machines

to offer security, isolation, dynamism, and ease of management [35]. Recently, the

“things” themselves are offered as a service too [9] [53]. For example, a company

deploy a set of complex sensors measuring different events. They can offer virtual

instances of these sensors to other companies fulfilling the requirements of a

new application. In consequence, companies have at their disposal the entire

infrastructure as a service.

Security and privacy pose many challenges that delay the IoT explosion [10].

While silos provide some natural protection mechanisms due to its isolation, a

multi-layer infrastructure augments the attack surface. In addition, Fog operating

as a generic infrastructure poses new threats such as side channel and resource

exhaustion attacks. For instance, an attacker could access the “things” themselves

and make an IoT device to malfunction. In certain cases such as a pacemaker

this is critical.

Furthermore, people are reluctant to expose personal data in the Internet

arising from a wide range of IoT devices. And aggravating the problem, different

legislations apply and there is no consensus on security or privacy standards. In

any case the protocols implemented cannot jeopardize the real-time characteristic

and should be able to run on the low-power simple devices in which IoT relies

on.

3.2.1 Implementation requirements

We have seen the basics of Fog architecture and how it deals with the new re-

quirements brought by IoT. The hardware platform required to deploy new appli-

cations is available, but not so with the software. To integrate these Fog devices

into a current infrastructure requires a vast effort to develop the algorithms that

manage the execution through the different layers. This fact has prevented the

explosion of Fog-based deployments. Then, the pending question is: What are

the desired characteristics from the application’s perspective to make Fog an

attractive and successful solution?
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Figure 3.2: Illustrative example of a generic Fog-based infrastructure serving

multiple IoT applications. Fog nodes are interconnected forming a hierarchy.

The system should present a great flexibility to offer its hardware resources.

Regarding this aspect, the on-demand based Cloud solutions have proven them-

selves as an optimal technique [35]. New users can ask for instances to start

running their applications within minutes. The same solution can be applied to

Fog. Now, these instances cover the Fog nodes that bring extra complexity. The

nodes can belong to different companies, they can have different capabilities, and

they are distributed geographically among others. Hong et al. used the assump-

tion of ideal instances to define their API [32]. However, they exposed the entire

infrastructure to the application developers, aggravating the software problem.

Since mobility is an IoT pillar, it is really difficult to anticipate which devices are

in a certain area to program them in advance.

To make a successful IoT platform, applications would like those instances to
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be totally transparent to them. They do not want to know the nodes responsible

of executing their code or who owns them as long as their requirements are

satisfied. Among these requirements security is critical. If security is weak,

there is a potential lack of control over the data. Additionally, users do not

expose sensitive data without certain guarantees that today are not fulfilled. In

consequence, IoT applications will not achieve the market estimations unless these

issues are solved.

Another critical aspect in these instances is the connectivity between the dif-

ferent layers. First, applications use a wide range of protocols to communicate

“things” with Fog nodes. However, this diversity may suppose a problem if differ-

ent hardware is required. For instance, a Fog node could execute two applications,

one using Bluetooth and the other using WiFi. In this specific case, that node

has hardware support for both standards. Once the information is in the Fog

layers, the network among these nodes is not uniform and this fact may affect the

application requirements. Hence, applications need adaptivity and transparency

regarding the interconnection system, having the generic platform for IoT as the

final objective.

The aforementioned requirements deal with a key aspect, the ease of deploy-

ment. If new applications just require an instance to start running their code

without the concern of managing the entire infrastructure, Fog will become the

“de facto” IoT platform.

3.3 Innovations beyond Fog

To facilitate the achievement of the goal presented in Section 3.2.1, we present

three key innovations to Fog. Each technique applies to a different area and their

combination enhances the flexibility of the platform to resemble that of Cloud.

In addition, our solution extends prior work on Cloud and Grid Computing to

adapt to real time constraints and latency requirements imposed by the “things”

and the critical applications they enable [25]. The areas where we focus are the

orchestrator, the resources available at the Fog layers, and how the infrastructure

offers its capabilities to the applications.
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3.3.1 Distributed orchestrator

The first step to implement that flexibility and overcome its limitations [74] is

the modification of the orchestration policy that englobes the policy decision

and the policy enforcement point. It is necessary to break the default Cloud

option to exploit the advantages of the new Fog layers and their capabilities. At

the end, Fog Computing implies the location of computational resources close

to the “things”. Then, our proposal is to execute the applications on the most

convenient layer without a preset decision.

If the Fog layers are selected to execute workloads, the orchestrator takes into

account different parameters to decide which Fog nodes are the responsible for

each task. These parameters include geographic proximity, congestion, node’s

capabilities, and application requirements. Precisely, these two last parameters

drive the decision. If a node does not have the required resources, it is auto-

matically discarded. For example, if a node cannot guarantee a certain latency

response, critical applications must discard that device.

Once this matching process is solved, an equitable distribution between the

different nodes becomes fundamental. The system needs free resources to allocate

the dynamic IoT applications while the execution of static services continues. In

parallel, it can exploit the node visibility to its advantage. If an application

executes under a unique Fog node, there is no need to migrate it to higher nodes.

For example, imagine a wide range of sensors deployed within a smart building. In

this case the closest Fog node can process all that data keeping the applications

running. Only some statistical information can be sent up in the hierarchy if

required.

All together allows to exploit the advantages of the Fog layers, optimizing

executions over the infrastructure. Now, data is processed close to where it is

generated and consumed. Consequently, aggregation takes place at lower layers of

the hierarchy, eliminating unnecessary traffic and reducing the bandwidth because

only necessary data is sent to the higher layers. Although bandwidth is not a

problem yet, transmitting data from billions of “things” to the Cloud may pose

structural problems to the underlying infrastructure.
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3.3.2 Constellations of Fog nodes

The orchestrator modification led to another problem, the resources available at

the Fog level are not the same as at the Cloud. The Fog nodes are a compendium

of heterogeneous devices that are geographically distributed. Some of these nodes

are complex devices with many capabilities (i.e. server with enhanced commu-

nication capabilities) while others are pretty simple (i.e. gateway) [80]. Hence,

the infrastructure may not have the required capabilities in a desired location to

execute a service [71].

To avoid sending these workloads to the Cloud or to unnecessarily deploy more

devices, we propose to create constellations of Fog nodes. Aggregating the nodes’

capabilities gives the perception of larger pools of resources close to the end users,

although still far from the Cloud resources. These larger sets of resources come

at a cost of latency since they rely on distributed nodes. Here there is a trade-

off between the constellation latency and the Cloud one. If Fog nodes exploit

their locality to create these groupings, their latency should be below that of the

Cloud. However, in certain situations where further nodes are needed the Cloud

may appear as a feasible solution.

The idea of sharing resources was also presented in other environments such

as Mobile Cloud [49]. They combine user devices capabilities without including

system nodes in their local clouds, reducing its advantages. In opposition, con-

stellations focus on Fog nodes from different layers and virtualization becomes

the way to create and offer them.

Through virtualization, constellations also eliminate the view of multiple own-

ers. Applications observe capabilities on a per constellation basis and not for each

node individually. These virtual groupings also enhance the security and ensure

the isolation between applications running on the same Fog nodes. The criteria to

form groupings can be proximity or to add a certain capability such as hardware

accelerators. Once groupings are formed, constellations can prioritize determined

user demands based on the criticality of the application. Furthermore, the Fog

nodes forming a constellation change dynamically due to the mobility of the de-

vices. For example, a node on a bus can join/leave constellations based on the

vehicle mobility.
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Once the infrastructure uses this technique, applications have the required

resources close to the “things”. Workloads can be executed close to where the

data is generated and thus exploiting the main Fog advantages without deploying

extra hardware.

3.3.3 Fog Function Virtualization (FFV)

Currently, the deployment of a new service is a daunting task. Within the complex

software required, there are the functionalities to exploit the devices and their

capabilities. Solutions like Service Oriented Architectures (SOA) also face the

same problem due to lack of abstraction in the devices’ functionalities [20]. Then,

the subsequent allocation between applications requirements and infrastructure

capabilities becomes critical to enable IoT services.

Nowadays, solutions rely on proprietary code designed for specific devices that

prevents reutilization. This fact supposes a barrier for new applications due to

the huge effort required to deploy a new service and delays the explosion of Fog-

based applications. Building on the concept of Network Function Virtualization

(NFV) [17], we applied it to IoT and Fog computing through the definition the

concept of Fog Function Virtualization (FFV). With these functions, a Fog-based

architecture exposes their capabilities as high-level characteristics, regardless of

each application aims. Computation and storage can be controlled as functions,

but also “things” functionalities and analytics.

FFVs map the applications’ requirements into the capabilities of Fog nodes

and “things”. As a result, the application development is reduced to choose

the FFVs that produce the desired service. To achieve complex functionalities,

developers may choose a chain of functions. In order to increase functions’ re-

usability, preexisting FFVs can be available through libraries. Each of these

functions has a set of inputs (i.e. sensor measurements), it performs a processing,

and produce an output (i.e. their average value) to be used for other application’s

layers.

Since Fog nodes are highly heterogeneous, FFVs are not capable of running

in all the Fog nodes due to the nodes’ capabilities. In case a function cannot

run in the designated node there are different options. One of these options is

48



3. FOG COMPUTING 3.4 Case Studies Analysis

to notify the developers that the desired node can only execute a subset of their

FFV chain. This technique leads to the second option, that is to communicate

that fact but also expose other nodes that can run it integrally at the cost of

a higher latency. The third option arises from the definition of the functions

themselves. If these functions are defined generically, nodes only execute the

subset of the function that the node’s capabilities can handle. Another option

consists of developers adapting a preexisting function to perform the desired task

in the available nodes. For instance, imagine an FFV computing the average of

sensors measurements and comparing it with historical values within a database.

If a Fog node does not have the resources to perform a database query, developers

can take that FFV and perform only the average computation of all the sensors

measurements at the closest Fog node.

In consequence, FFVs enable the interoperability between the different players

of an IoT system while hiding all their complexity to the users. FFVs create a

dynamic architecture that can reuse components and thus enabling new business

models for Fog-based systems. The time to market is then reduced and obstacles

for new deployments are eliminated since just the non-existent functions need to

be implemented.

Combined innovations: Resulting from the three innovations, new services

do not need to develop the entire software stack. Now, the requirements are the

development of the FFVs in case they are not already implemented, request an

instance with the desired resources, and start executing the application. The re-

sult is the democratization of the IoT applications by reducing the entry barriers.

Small companies can offer their services to end users without being constrained

by operational expenses, similarly as what happens with mobile devices’ applica-

tions.

3.4 Case Studies Analysis

To demonstrate the utility of the innovations in dealing with IoT applications,

we present a two scenario case study. It reflects different situations encountered

when deploying new services over a generic Fog-based infrastructure.
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Figure 3.3: Two illustrative categories of Fog nodes named FNA and FNB.

3.4.1 Fundamentals

Before explaining the details of each scenario, it is necessary to explain the il-

lustrative underlying infrastructure we use for this study. There are two types

of Fog nodes as depicted in Figure 3.3. FNA consists of wireless access points

with some computational power. Its main advantage is an excellent connectivity

with “things” while its drawback is its reduced set of computational capabilities.

In contrast, FNB consists of a server with some network cards. This node does

not have wireless communications but has available an excellent computational

capacity. Although Fog nodes such as FNB can have a rich set of functionalities

(i.e. CPU power, connectivity), they do not operate as a distributed datacenter.

Nodes can form constellations to increment their available resources but there is

no awareness of belonging to a global datacenter.

These nodes are deployed hierarchically on a smart city environment, sup-

porting different working applications. Among these services there are connected

vehicles and automated homes. Each application has deployed sensors to ensure

their proper operation, integrating them into the infrastructure. For example,

the cars have a set of sensors that monitors the pollution, sense their near envi-

ronment (i.e. other cars or pedestrians), and monitors the engine behavior.

Additionally, there is a generic FFV implemented. Operating through a stan-

dard interface, this function reads as inputs the sensors’ measurements and pro-

vides their average in real time as output. We assume all sensors provide 64-bit

floating point values with the same granularity.
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3.4.2 Scenario 1: Using available resources

The idea is to deploy a smart grid use-case to enable a more efficient use of

renewable energy sources [23]. After analyzing the current infrastructure, this

new service can be provided using pre-existing basic blocks. More concretely,

automated homes can provide the power consumption on all appliances in real-

time, plus control over certain devices including air conditioner, refrigerator, and

electric car among others.

Using the predefined FFV, the application obtains the average power con-

sumption per home. Later, this value can be computed by regions such as dis-

tricts in the city. Based on these requirements, a vertical constellation – with Fog

nodes on different hierarchical layers – is created as shown in Figure 3.4. Differ-

ent FNAs are used to compute per-home consumptions, while the FNB calculate

the region’s average due to their larger visibility (FNB scope englobes a set of

FNAs). Thanks to the modified orchestrator, only the necessary data is sent to

upper layers although all the computation could take place at the node with more

visibility. In consequence, the constellation hides the infrastructure’s complexity

and the application only sees its requirements fulfilled through its instance. In

this case, Fog is chosen over the Cloud because of its operational capabilities more

than to Cloud latency problems [79].

The other important part is to monitor the energy production. Each renewable

source can provide the power generated in real time, processed with Fog nodes in a

similar way the consumption is. These sources can be distributed geographically,

solar panels can be in the city but windmills are outside. In consequence, the

match between consumption and generation takes place in a distributed fashion

at nodes where both values are visible. For example, in Figure 3.4 FNB2 monitors

more energy produced than consumed in its coverage area. This remainder can

be distributed to another region for consumption without polling each generator

individually.

In addition, they want to activate the home appliances avoiding peak hours

to benefit from lower energy prices. To reach this goal requires to define an FFV

to provide analytics, mainly the energy consumption and generation per hour.

Once this function is implemented, the nodes with control over energy sources
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Figure 3.4: Example of a Fog architecture using the three innovations for a smart

grid application. The system forms vertical constellations and the orchestrator

involves two Fog layers.

can trigger the nodes controlling houses to activate appliances, as shown in the

left branch of Figure 3.4.

3.4.3 Scenario 2: Adding resources to the infrastructure

Another application aims to provide a real-time contamination map including pol-

lution and noise levels. In this case, connected vehicles proportion the pollution

measurements with a key differentiation, mobility. While the cars move around

the city, FNA and FNB nodes remain fixed. This fact provokes that a node

cannot establish static associations with a certain set of sensors. Instead, each

node covers an area and sensors migrate from one node to another, as reflected

in Figure 3.5 when the car changes its Fog node from position P1 to position P2.

To gather the missing information, the application needs to deploy noise sen-

sors across the city using streetlights. Afterwards, this new equipment can be

integrated into the generic Fog-based infrastructure. In this way, the infrastruc-
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Figure 3.5: Fog infrastructure hosting a different application, a contamination

map that includes pollution and noise levels. In this case, the system uses hori-

zontal constellations and the orchestrator only exploits the first Fog layer.

ture capabilities improve with each deployment, becoming more attractive to new

services. Now, the available system can provide all the contamination informa-

tion to populate the map. Since this information can be displayed upon each

sensor location, there is no need for higher aggregation levels. In consequence,

the orchestrator function is simpler than in Scenario 1.

Based on the aforementioned requirements, horizontal constellations can han-

dle this application as shown in Figure 3.5. This service could stop here but

the predefined FFV can serve another purpose, to improve the sensor’s accuracy.

Collecting the values from nearby sensors allows to use their average value as the

real measure. The precision increases as a function of the number of sensors and

their type (i.e. not all the sensors will be equal or have the same error). The dy-

namism affecting nearby sensors seems challenging, but FFVs provide a flexible

framework to deal with it. With a function implementing a discovery process,

each node can determine the sensors under its influence. Then, and based on

that information, the node applies the average function.
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3.5 Summary

In this chapter we remarked the true potential of Fog by becoming a generic

platform to support multiple applications simultaneously. To reach this objective,

it is necessary to break the barriers that prevent its growth. The main obstacle

is the amount of software required to integrate the Fog nodes into a current

infrastructure.

To overcome this problem, we propose to enhance Fog with three innovations.

First, to modify the orchestration policy allowing to execute more workloads

on the Fog layers. Second, to create constellations of nodes to aggregate their

capabilities, increasing the computational resources at the lower levels of the hi-

erarchy. Third, the definition of the Fog Function Virtualization concept that

provides great flexibility and adaptability. Now, the infrastructure’s capabilities

such as the “things” can be offered as functions and thus re-used for other appli-

cations. This solution brings Fog’s democratization, enabling new applications

to be deployed through the implementation of FFVs. Lastly, two scenarios were

presented in a case study to show different implementations over a Fog-based

platform.
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Chapter 4

Hierarchical Emergent Behaviors

(HEB)

4.1 Introduction

Internet of Things (IoT) includes a pervasive presence of sensors, actuators, and

other devices that are deployed across large areas and connected via protocols (e.g.

Bluetooth, WiFi, LoRA, 5G) that cooperate to meet common objectives [11]. The

dominant characteristic of IoT is the physical interaction of the “things” with

their environments, which enables novel applications and sets new architectural

demands. Many of these applications are widely distributed, some have stringent

real time requirements, and in all cases it is necessary to maintain trustworthy

communication and adaptability to dynamic environments. IoT has the potential

to significantly transform and improve city services, transportation, agriculture,

health-care, energy production and distribution, and water conservation, among

many other vital aspects of human life.

Conventional IoT deployments based on the simplistic approach of directly

connecting “things” to the Cloud end up creating “silos” which limits the inter-

operability between applications. This approach complicates their orchestration

and management, increases deployment costs, and it definitely does not support

the scalability required to support autonomous vehicles, smart cities, transporta-

tion, and other relevant applications and services of interest. These applications

are in fact Ultra Large Scale Systems (ULSS) [50], akin to the Systems of Systems
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(SoS) that, based on Maier’s definition [41], are an assemblage of different com-

ponents where each is both operationally and managerially independent. There

are compelling reasons to decentralize ULSS. They include manageability, which

complexity grows with the scale of the system; and the ability to contain failures.

To tackle the scale and complexity of these ULSS we propose Hierarchical

Emergent Behaviors (HEB), a paradigm that fuses the fields of emergent be-

haviors and hierarchical organization. Emergent behavior, previously studied in

numerous fields, including social behavior, biology, and ethology [36], has lately

gained traction in robotics and autonomous vehicles [37]. The key idea is to

induce self-organizing behaviors akin to the swarm formation, thus bypassing

arduous, centralized, and potentially brittle control mechanisms.

While current IoT systems rely upon extensive coding to achieve an explicitly-

programmed behavior, we propose imposing only minimal and lightweight local

rules to regulate “things” interactions in order to achieve objectives through emer-

gent behavior. Unlike swarms, the ULSS of interest operate at different levels in

terms of space and time. This observation suggests the consideration of a hier-

archical organization, in which level (N+1) abstracts the behavior of level (N)

while widening its spatial-temporal scope.

This fusion of emergent behavior and hierarchical organization concepts en-

ables inducing desired behaviors without the need to envisage nor explicitly pro-

gram for the vast number of potential scenarios. A well-designed HEB promises

to be more flexible and adaptable to unanticipated conditions than a traditionally

hard coded system.

The goal of this Chapter is to design and to develop an architecture that

tackles the complexity and the scale of IoT ULSS. Once this is accomplished, dif-

ferent IoT systems can collaborate to become a real ULSS where each IoT system

becomes a component of a larger entity. To this end, we combine the concepts

of emergent behaviors and hierarchical decomposition to impose only lightweight

rules over “things” rather than explicitly program the vast number of scenarios

in advance. Thanks to HEB, devices can adapt to the continuously changing

situations they face in complex environments by exploiting the information they

have available and giving them more decision capacity. In consequence, we avoid

arduous centralization mechanisms that precludes the system’s scalability. After

56



4. HEB 4.1 Introduction

consolidating a theory, we perform simulations to support our architectural as-

sumptions revealing a great flexibility and adaptivity of the resultant HEB-based

system.

In summary, the main contributions of this chapter are:

• We remark the orchestration, management, and scalability issues posed by

IoT ULSS

• We propose the concept of HEB to tackle the aforementioned problems

fusing the concepts of emergent behaviors and hierarchical decomposition

• We show how Fog Computing can enhance the induced behaviors thanks

to its hierarchical structure that gives a larger vision of the system and the

information available in the environment.

• We advance HEB to move from a concept to a more solid theory with a

clear applicability to existing IoT deployments

• We simulate an Autonomous Vehicle scenario to validate the concept, the

use of Fog Computing, and the addition of new rules, highlighting its po-

tential when applied to IoT ULSS

In Section 4.2 we describe the fundamentals of HEB and its major advantages.

Section 4.3 details what architectural modifications are necessary to implement

it in modern IoT deployments and the majors challenges architects face. In

Section 4.4 we perform a first evaluation of this concepts to prove its effectiveness

and to highlight its potential. Section 4.5 explains how Fog Computing can

contribute to enhance the induced behaviors by improving the availability of

contextual information thanks to its larger vision of the system. In addition,

we evaluate its impact through simulations. In Section 4.6 we advance the HEB

theory consolidating the concepts and given the necessary steps to move from a

concept to a more solid theory. We also perform simulations to evaluate these

steps and to develop new rules that induce more complex behaviors. Finally,

Section 4.7 concludes and summarizes our analysis.
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4.2 Emergence in IoT

Emergent behavior may be defined as the collection of actions and patterns that

result from local interactions between elements and their environment which

have not been explicitly-programmed [42]. The local interactions themselves

are driven by a set of engagement rules resulting in emergent behaviors and

self-organization [14]. For instance, in his seminal paper Reynolds [54] defines

flocking as the behavior that emerges when birds individually apply three local

rules. The first rule seeks matching the speed of neighboring birds (alignment),

the second rule prevents collisions with other birds or external objects by pre-

scribing a minimum “bubble” around each bird (separation), and the third rule

imposes a maximum distance between neighbors (cohesion). While none of these

rules explicitly defines a collective behavior, a flock nevertheless emerges as a

result of each individual bird flying according to its three given rules.

Collective behaviors such as flocks stem from the application of judiciously

chosen local rules that are generic and independent of a specific time or location.

The behaviors that emerge are a function of applying these rules within a partic-

ular environment (space, time, and contextual surroundings) which, when taken

together, can be viewed as environmental constraints. Examples of such con-

straints are the quantity, density, and velocity of surrounding birds as well as the

environmental obstacles such as walls. Applying these rules, however, does not

necessarily lead to completely unpredictable behaviors. For instance, by knowing

that the birds adhere to a collision avoidance rule, one can correctly predict that

no two birds will crash even if they appear to be on a collision course with one

another.

Transposing the flocking concepts to IoT results in viewing the “things” as

the birds which follow given rules. As with the case of the birds, it is necessary

to identify the constraints and choose appropriate rules that will affect the emer-

gent behaviors for desired IoT-based services. For instance, Varaiya [72] laid the

foundations to create groups of autonomous cars, called platoons. In his work a

leader is designated in each platoon to manage group actions such as turns. These

platoons can result out of an explicitly-programmed behavior (i.e. Varaiya) or

emerge from a set of rules applied to each vehicle as the basic element taking also
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into account environmental constraints. The application of the three flocking

rules to a set of autonomous cars, for instance, properly illustrates the concepts

under discussion since the flock becomes a platoon of vehicles without the need

of a leader.

Determining the constraints placed upon the “things” is a non-trivial feat that

determines the balance between emergent and explicitly-programmed behaviors.

Three factors compose the constraints imposed upon a “thing”:

a) Capabilities: These are the functional attributes of an element. For

example, an autonomous car may move in two dimensions, vary its speed, and

measure pollution. The emergent behavior cannot extend beyond the limits im-

posed by the capabilities of the elements.

b) Rules: The rules govern the interaction of the elements with the envi-

ronment and among themselves. What limits emergent behaviors is the strictness

of the rules rather than their quantity. There are two types of hyper-parameters

associated with the rules:

• Numerical parameters with a physical meaning (i.e., the separation distance

to prevent collisions).

• “Weights” assigned to the rules in order to establish their precedence.

c) Environment: The numerous environmental factors at play can heavily

influence how behaviors emerge in different settings. For instance, identical ele-

ments following similar rules may behave markedly different in a city compared

to a jungle.

4.2.1 Decomposability and Hierarchical Emergent Behav-

ior

The basic functionalities of a platoon are implicitly embedded in the local rules.

The functionalities required of an ULSS, however, are more complex than that

of a flock. Trying to define from scratch the rules required to enable the emer-

gence of those behaviors would be a daunting task. Here, the pioneering work of

Simon [65] on decomposability of large scale systems defines a hierarchy among

subsystems that enables grappling with the complexity of a system effectively
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via an incremental approach. While the subsystems in Simon’s work had explicit

behaviors, we seek to combine this concept of decomposability with emergent

behaviors in order to tackle the complexities of ULSS.

To this end, we propose extending the original emergent behavior approach by

applying a hierarchical structure and tiered rules to the behaviors resulting from

self-organization. Regarding IoT, Taft [67] proposes a hierarchical organization

of smart grid. The focus is on the data aggregation at the different levels, with

no concept of emergent behavior.

Our approach based on Hierarchical Emergent Behaviors (HEB) is depicted in

Figure 4.1. The individual physical “things” are at the bottom of the hierarchy.

A behavior emerges (e.g., the formation of a platoon) as a result of the application

of the set of level 1 rules. The innovation behind the HEB concept lies in the

application of a new set of rules to the emergent behavior resulting from the

previous level. From the perspective of level 2, each platoon could be a level 2

“thing”, which must follow the local level rules. For instance, level 2 local rules

may establish certain minimum distance between platoons, and limit the number

of vehicles within a platoon, from which the corresponding behavior emerges.

While level 2 loses granularity due to aggregation, its scope in space and time is

more expansive. The scheme is recursive, providing coarser granularity but wider

scope as the hierarchy is climbed.

The HEB approach exploits the locality of interactions and perceptions since

each hierarchical level provides a different vision of the elements. In the case of

autonomous vehicles, for level 1 vehicles “locality” relates to the vehicles made

“visible” through their on-line sensors. This “local” view does not include in-

formation about the way platoons are moving along the highway. The 2nd level,

rather than detailed information about the interactions within each platoon, keeps

track of the flow of the platoons as single elements. This abstraction allows im-

plementing different regimes of operation exploiting the “locality”. For instance,

during the normal regime the goal is to keep certain metrics (i.e. distance be-

tween them) at the desired level by tweaking the parameters that regulate the 1st

level behavior. The anomalous regime kicks in when, due to its long vision, the

2nd level detects the onset of a congestion that requires rerouting.
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Figure 4.1: Representation of the HEB concept with different hierarchy levels.

The first level rules applied to level 1 elements (e.g. vehicles) induce a platoon be-

havior. The second level applies inter-level rules over the previous level behaviors

(e.g. platoons) to enable more complex functionalities.

4.2.2 Advantages of emergent behavior for IoT

The manner in which emergent behaviors cope with complexity and scalability

issues is their main advantage. The functionalities as a system arise from local

interactions and the element’s flexibility instead of explicitly programming the

uncountable number of possible situations.

This brittleness of the explicitly-programmed approach manifests itself even

with systems composed of a few elements. The work by Saska et al. [63] used

a specifically-programmed hawk-eyed supervising element that controlled and

corrected the position of another set of autonomous vehicles. This central or-

chestrator is aware of the entire system and is responsible of maintaining the

formation when faced with obstacles or failures. Consequently, it becomes the

main bottleneck although the system is only composed of tens of elements. In

comparison, emergent behavior eliminates the need of a central orchestrator that

would have to deal with a very large number of “things”. Moreover, the system’s

complexity is greatly reduced since decisions are taken in a distributed fashion,

leveraging the intelligence of each “thing”. Platoons emerge induced by the rules

imposed over vehicles although each car is not aware of the size of the platoon

nor are programmed to form groups.
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Scalable IoT systems also need to adapt to the changes that occur in the

dynamic environments where the “things” are deployed. Due to the large number

of variables and situations, designing an explicit programmed system that takes

into account all the scenarios in advance is a formidable task. With our HEB

IoT approach and if the proper set of rules is defined, the “things” are able to

dynamically adapt to the environment without the need to explicitly program

them.

Lastly, applying HEB allows each higher level of the hierarchy to abstract away

the complexities of the lower levels. This is the result of aggregating capabilities

and data from individual “things”, leading to less complex software development.

For example, a level 2 “thing” (e.g. platoon) is composed of numerous level 1

“things” (e.g. vehicles). This process allows for a single query to be issued to a

whole group instead of to each individual physical “thing”.

4.3 Implementing Emergent Behaviors fo an ULSS

IoT System

Current IoT architectures follow the structure depicted in 4.2. “Things” deployed

for a single purpose are at the bottom of the architectural stack. These elements

are sensors that measure their environment, and actuators that respond to com-

mands. The connectivity layer manages the communication with the higher lay-

ers. Aggregation, curation, and in many situations processing (including deciding

what must be handled locally, and what must be sent to the Cloud) are the main

functionalities of the Data Layer. The application layer at the top defines and

manages the tasks that compose the services.

4.3.1 Emergent Architectures

Implementing HEB on an IoT system requires modifications to this traditional

application stack, impacting “things” and their communications.

In some IoT deployments “things” are passive sensors, and in many others

they also include actuators. The actuation role gets heightened in HEB. In ad-

dition to their common operation regime, “things” will now take decisions based
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on their interactions with other “things” and the environment. For instance, the

decision to join other vehicles in a platoon can be taken by the cars themselves

without involving a higher orchestration layer. Hence, by ‘active’ we understand

any device that participates in the generation of emergent behaviors or alters

them (i.e. applying rules, modifying the environment, etc.). Distributing in-

telligence to the “things” exploits their locality while potentially reducing the

managing complexity of an ULSS.

To sustain this new architectural feature, the communication capabilities re-

quire major changes. In a traditional design, architects must anticipate every

possible scenario, and the communication patterns they entail. HEB’s approach

is radically different, in that the scenario space is explored using realistic sim-

ulations, but no claim is made that every single emergent behavior is covered.

Rather, the effort is focused on ensuring the correctness of the local rules at the

different levels of the hierarchy. Then, what matters in HEB is the interoperabil-

ity between “things”, achieved through standardized APIs and interfaces. Once

“things” can communicate with each other and with their environment, new be-

haviors emerge by the application of the local rules. For instance, vehicles can

be of different brands, and use a diverse array of sensors. Picture a vehicle com-

municating with other cars to join their platoon. If cars cannot communicate,

the resultant behaviors would be very limited since not all the vehicles can be-

come part of them. Instead, if the interoperability between cars is guaranteed,

any vehicle could become part of a platoon. In addition, this vehicle could also

communicate with sensors placed on streetlights to obtain contextual data that

could improve the platoon’s efficiency. Enabling these communications becomes

critical to ensure the success of emergent IoT architectures.

A side effect of this communication can lead to an important advantage, the

aggregation of data from heterogeneous sensors. Grouping sensors could lead to

new functionalities without deploying new hardware. Imagine a platoon where

each vehicle has a different set of sensors. Thanks to the abstraction provided

by HEB, the platoon’s capabilities will be the sum of each vehicle features. For

instance, one vehicle measures the temperature and the following measures the

pollution. In this case, the platoon can provide both measurements, hiding the
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fact that each vehicle only provides a single measurement. If the system aggre-

gates sensors of the same type then the measurement’s accuracy can improve by

providing their average. In this case, a filter based on historical data and accuracy

determines which sensor value is more likely to be correct.

The aforementioned changes translate into the addition of a new layer to the

traditional IoT stack, the Rules layer, as shown in Figure 4.2. It is responsible for

the rules and the hyper-parameters controlling the local interactions while main-

taining the communication among “things”. A different sub-layer handles each

function. “Hierarchical Rules” sub-layer deals with the rules in each of the HEB

levels and how they are applied over the physical “things”. “Things communica-

tion” sub-layer manages the type of “thing”, spatial and temporal information,

security policies, and hierarchical queries and responses. The connectivity layer

provides a channel to communicate resultant emergent behaviors with higher

layers, while “Things communication” sub-layer focuses on the communication

among “things” themselves to induce behaviors. Once a first level behavior is

obtained, applying HEB converts the entire application stack into a second level

“thing”. In this case a new set of rules can be applied to the second level “things”

in order to obtain more complex emergent behaviors. These behaviors end up

in applications with more functionalities while maintaining the dynamism of the

previous level “things”.

4.3.2 Challenges

HEB holds tremendous potential to design and orchestrate ULSS, but the promise

requires overcoming new challenges. Particularly critical challenges include: (i)

behavior shaping, (ii) reliability, (iii) intra- and inter-level communications, and

(iv) security.

4.3.2.1 Behavior Shaping

An intrinsic characteristic of emergent behaviors is that architects induce new

behaviors by implementing different sets of rules [42] as well as by varying the

complex environments. After applying a set of rules the architect performs a
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Figure 4.2: HEB requires the layer “Rules” between the classical stack layers

“Things” and “Connectivity”, at every level of the hierarchy. For instance, if

N=2, emergent behaviors out of level 1 become the level 2 “things”. Then, the

level 2 rules complement the level 1 rules.

selection process to determine the useful behaviors. This decision becomes crit-

ical since it determines the application’s functionalities. Non-useful behaviors

are discarded and the rules adjusted correspondingly. Conversely, rules that are

responsible for the useful behaviors can be enhanced and used more often.

Different optimizations can be applied to rules generating useful behaviors.

One option consists of adjusting the rules’ parameters to tune the behavior. For

example, in a platoon we can adjust the collision avoidance distance so it covers

a larger area. Another option is to add/remove rules to modify behaviors. The

criteria to decide which behaviors are useful can be based on performance, formed

groups, types of “things”, and criticality among others. The result of this selection

determines how effective the emergent IoT system will be.
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4.3.2.2 Reliability

Provided that IoT is built upon millions of non-reliable low-cost sensors, we

can expect a large number of failures aggravated by harsh environments. Fault

propagation, similar to waves in water, should be stemmed. For example, Gerla

et al. considered a platoon that suddenly stops for a crossing pedestrian [27].

Without proper boundaries, following platoons will also reduce their speed thus

propagating the effect. A proper inter-platoon distance, controlled by 2nd order

rules, should avoid this problem.

A second problem arises when catastrophic failures occur due to bad behav-

iors. Instead of shutting down the entire system, there are two options. Either a

functional backup is restored or a supervisor takes control of the system momen-

tarily to manage the ULSS.

4.3.2.3 Intra- and Inter-level communication

Communication among “things” from different applications is a challenge by it-

self. Although identified years ago, it is not solved yet. HEB accentuates the

urgency. For example, a platoon moves near another. To apply the second level

rules (inter-platoon rules), it is necessary for both entities to communicate as

level 2 “things”. Open literature usually designates a leader to perform this

task. However, centralization results in the loss of the locality and scalability

advantages of HEB since a vehicle does not know the size of the platoon nor has

membership awareness. Defining how entities from different levels communicate

and how the rules interact will determine the performance of the behaviors.

4.3.2.4 Security

Emergent behaviors offer significant advantages in dealing with the overwhelming

complexity of ULSS. However, they also extend the “attack surface” that can be

exploited. An attacker that gains access could modify the rules, either directly or

through modification of the hyper-parameters, for nefarious purposes. There is

no magic bullet in security, but there are three major recommendations to follow:

a) security is not add-on, incorporate it as an integral part of the design effort; b)
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leverage HEB context awareness to detect intrusions and other forms of attack;

c) make sure that the design has the ability to isolate infections.

4.4 Initial evaluation through simulations

4.4.1 Fundamentals

A group of autonomous vehicles, either aerial (i.e. drones) or terrestrial (i.e.

cars), constitute the basic elements of this system. For us, a vehicle is a sen-

sor platform that applies rule-inducing behaviors as a single object, although it

could be decomposed into its own component “things”. Cars measure ambient

temperature and pollution while drones focus only on pollution.

Each vehicle implements the three original rules from Reynolds (R1 Align-

ment, R2 Separation, and R3 Cohesion). In addition, they have a rule to reach a

target destination point (R4 Destination) and a level 2 rule to induce a platoon

of platoons (R5 Second). To highlight the complexity of each rule, R5 performs

the same operations as R1, R2, and R3 combined but applied to level 2 “things”.

Moreover, each rule is weighted by a value that can be modified (or even deacti-

vated) in real time to observe their impact on the induced behaviors.

With these set of rules, the vehicles are ready to circulate in a city. This is

a dynamic environment with limitations to their mobility (streets and obstacles)

and other working IoT systems that translate into a huge amount of possible

interactions and situations.

4.4.2 Methodology

We chose the Processing simulator [6] to perform our analysis of flocks. We

modified the base flock example to add the new rules and constraints. As a

consequence, each vehicle determines its trajectory based on the five implemented

rules guided by its local interactions. Each type of vehicle is represented with

a different color that also indicates its mobility patters (i.e. drones can fly over

obstacles) and R2 is modified so cars avoid their surrounding obstacles as well.

To represent streets and other orographic patterns, we use obstacles shown as

black dots in the canvas.
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With these modifications, Processing offers a rich framework to simulate and

visually observe vehicles, their environment, and their interactions. We also im-

plement a mechanism to detect incorrect behaviors due to the violation of the

rules (i.e. a car passing through an obstacle), complemented by the visual val-

idation using the simulation canvas. The overall performance of the system is

evaluated using both the visual observation and the actual alarms.

4.4.3 Emergent Autonomous Vehicles

The simulation begins when we place a set of autonomous cars on a side of a

straight street and specify the destination (through R4). After a certain time,

a platoon of cars is formed induced by R1, R2, R3. For now, R5 is deactivated

(weight = 0) to focus on the level 1 behaviors.

Circulating as a platoon, the vehicles face a part of the street full of obstacles

(i.e. non-emergent vehicles). At this moment the platoon behavior dissolves be-

cause each car focuses on avoiding obstacles (R2 prevails over the rest for safety),

as reflected in Figure 4.3. This illustrates the effect of a changing environment

on behaviors. Here cars were the moving element although it could have been

reversed. Consider, for example, an IoT system of deployed sensors on lampposts

to monitor certain traffic patterns. Therefore, “things” are static but they react

to mobile elements in the environment (i.e. cars).

Once cars overcome the obstacles, their self-organization again results in the

formation of a platoon. Next, we modify the separation distance in R3 to observe

the impact the rule’s parameters have on the behaviors. Increasing this param-

eter results in the dispersion of the platoon, which may be desirable in search

and rescue applications, for example. On the other hand, inadequately tuning

these parameters may result in no or little constructive emergent behaviors. This

shows that changes in the rules’ hyper-parameters (weights and numerical values)

greatly affect behaviors. In consequence, it may be desirable to adjust them in

real time to efficiently deal with the dynamism of the ULSS.

The platoon now faces an intersection with another platoon on the road to

its left. Since R5 is still deactivated, they interact as level 1 “things” and not as
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Figure 4.3: Emergent behavior shaped by the street and obstacles. The platoon

does not emerge due to the environment.

Figure 4.4: Two platoons approaching an intersection without an orchestrator

(traffic lights). In this case they form a larger platoon.

platoons. R4 determines whether the two platoons will form a larger grouping

or each will continue their way, depending on their destination targets. In any

case, the local interactions among cars prevent any collisions thanks to R2. Since

they have the same destination, they indeed form a larger platoon and continue

advancing, as shown in Figure 4.4. Following these rules, there was no need for

a traffic light system to act as a global orchestrator between vehicle traffic.
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Finally, the platoon reaches the end of the street and faces an unbounded

area (no street delimiter). This platoon encounters a flock of drones induced

by R1, R2, R3. Although level 2 rules can apply among platoons of the same

“things”, we used aerial autonomous vehicles (drones). If we now activate R5,

then when the flock and the platoon are close enough, they will form a second

level group, inducing new emergent behaviors. The cars in the platoon now use

the capabilities of the drones inside the flock to scout the optimum route to

avoid traffic and obstacles. Conversely, the drones in the flock may use the street

level sensor data to increase their pollution measurement accuracy. Their level

1 functionalities are still preserved even though now they share information as

level 2 “things”.

Figure 4.5 shows this situation. Cars (in red) and drones (in orange) can

overlap since drones fly over them. The drones forming part of the level 2 group

change their color to blue to indicate this new service. Not all the drones are

part of the second level group due to the physical separation with the cars, which

adds flexibility to HEBs. Once this distance becomes too large they split off,

returning to level 1 behaviors only. Then, R5 enabled the interoperability of

different applications to provide new functionalities as a system.

4.5 Fog Computing in support of HEB

The stringent latency requirements associated with autonomous vehicles suggests

distributed platforms rather than the Cloud for their management [62]. Fog Com-

puting [15] has long recognized the value of extending the Cloud to the edge of

the network, bringing networking, compute, and storage resources at different

hierarchical levels to respond to the needs of applications and services. Fog ad-

dresses the infrastructure and orchestration issues regarding the computational

resources [64] (i.e. processing, storage, communications) both at the edge and at

different levels of the hierarchy.

Fog can support HEB providing contextual information with a larger scope

than that of the on-board sensors. Thanks to the Fog hierarchy, this platform has
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Figure 4.5: Sequence of interaction between a flock of drones and a platoon of

cars based on second level rules.

a better vision of the vehicles’ environment. When a relevant event is detected,

Fog nodes can transmit that information to the cars to enhance their reaction to

such event. For instance, a node could add a new rule to induce behaviors that

are more resilient when facing an event.

Another advantage Fog brings is the visibility within the behaviors. Fog nodes

placed along the roads can passively measure and observe the induced behaviors

and report them to the users, enhancing the visibility of the system.

Previous Sections outlined an agenda to deal with ULSS, with emphasis on

AVs. This Section advances the agenda in several significant ways: a) developing

the concept of “emergent behavior primitives”, and studying the maneuvers of

vehicles exiting a platoon and anticipating to obstacles beyond sensors range; b)

emphasizing the role of Fog Computing as support for HEB communications in

general, and facilitating contextual awareness in particular.

4.5.1 HEB, the next phase

The application of the three original rules from Reynolds [54] to a set of au-

tonomous vehicles results in the formation of a platoon [72] without explicitly
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program that behavior. However, these rules do not specify the absolute velocity

of the group. Platoon absolute velocity is defined as the absolute average velocity

of all the vehicles forming the platoon. This velocity is a crucial metric in au-

tonomous vehicles and highly depends on the context, including the quality of the

road, weather conditions, vehicle density, maneuvers, and neighboring platoons

among others.

The above considerations strongly suggest the need to define the policy not

only in terms of local rules. At the end, a policy maps the information state of

the system into an admissible set of decisions. For AV HEB, a policy at any given

level of the hierarchy includes:

• Local rules pertaining to the hierarchical level.

• The set of hyper-parameters associated to those rules. This set not only

includes parameters such as the rules’ weights, separation distance, etc. but

also velocity applied to each level (i.e. first level refers to average speed of

the cars, at the second level is a vector of velocities for each platoon)

• Contextual information. The challenge is to capture in a succinct way the

critical information. This requires analysis and careful experimentation.

The issue is the required degree of granularity. Contextual awareness in-

cludes car density, weather conditions, road conditions, platoon regime, etc.

Architects can define a policy portfolio with well-known emergent behaviors

to implement. Given that contextual information is captured in the policies,

the selection process becomes a simple, even a trivial one. There are only a

few admissible policies for a given informational scenario. Then, the first set of

policies to define are the so called “emergent behaviors primitives”.

4.5.1.1 HEB primitives

By primitives we understand basic operations required by vehicles within a pla-

toon. Right now we focus on first level behaviors, but the same concept applies to

any level within HEB. Vehicle maneuver without collision or handling autonomous
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cars that want to take an exit in a highway constitute primary examples of a prim-

itive [72]. Simple as they sound, this requires consideration of different aspects

and interactions of HEB components:

• Communications between different entities: (i) vehicle to vehicle, (ii) vehicle

to RSU, and (iii) distribution of functionalities within the platoon

• Vehicle announcement of its intent

• Non-intersecting exit trajectories whether one or multiple vehicles leave the

platoon

• Emergent behaviors at play: current operating rules, their hyper-parameters,

and new individual behavior (i.e. exiting the platoon) affecting the emer-

gent behavior.

Taking a closer look to these aspects of the maneuver without collision, we

observe the effect of the emergent behaviors through the separation rule between

“things” and obstacles. In this case, a single rule provides us the primitive ob-

jective if the proper sensing capabilities are satisfied in each moving vehicle.

The exiting highway maneuver requires more considerations. Although each

vehicle does not know the number of vehicles in the platoon nor has membership

awareness, it may notify to its neighboring cars its exit. There is a fundamental

reason for this notification: to avoid an undesired behavior with the entire platoon

unconsciously following the exiting vehicle/s.

Communications constitute a key element to ensure a satisfactory maneuver.

Efficient exiting strategies necessarily rely on contextual information. It is useful

to distinguish between permanent information (coordinates of the exit, proximity

to other exits, etc.) from real time information (state of the road, congestion

level at the exit, weather conditions, speed of the platoon, vehicular density).

Fog Computing is of great help, from the compute and storage capabilities of

the RSU at the edge, to the exchange of real-time information along the RSUs.

Fog nodes then become the RSUs in the roads providing their capabilities to the

vehicles while building applications on top of their contextual information (i.e.

73



4. HEB 4.5 Fog Computing in support of HEB

smart guidance systems). Another alternative could be to use the same vehicles

to detect and classify the lanes [47].

Last but not least, the use of non-intersecting trajectories in the 3-dimensional

space are a must. In traditional solutions with explicitly programmed behaviors,

a central orchestrator determines each vehicle’s trajectory and makes sure no

collision happens. Instead, HEB defines a rule to prevent collisions and gives

freedom of choice to the vehicles to decide the best trajectory based on their

contextual information. Figure 4.6 depicts these differences between the two

methodologies. In opposition to preset trajectories, HEB approach creates local

rules that lead to behaviors emerging in the form of trajectories.

Figure 4.6: Left figure shows an specific trajectory that a vehicle must closely

follow. Instead, the right figure shows the freedom HEB leverages to the vehicles

to decide their trajectory. Vehicles are capable of taking best decisions since they

have all the contextual information.

4.5.2 AV primitives case study evaluation

AVs constitute one of the clearest HEB applications. The mobility of the ve-

hicles, the constantly changing situations (i.e. road conditions, weather, traffic

conditions), and the number of cars provide a rich set of interactions from which

behaviors emerge.
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The universe of AV maneuvers is the composition of a vast set of “primitives”.

We approach the validation of the HEB architecture by creating and examining

in detail a rich “library” of primitives. Each primitive is defined by a goal, and

it is self-contained in that it has the ability to reach said goal. We envision the

creation of complex scenarios by concatenating primitives. More precisely, we

will consider richer goals that are the composition of simpler goals, and achieve

them by concatenating primitives. This Section, which is the first step in this

direction, focuses on two primitives that rely on Fog nodes deployed as RSUs.

While a primitive is defined by a goal, its full characterization necessitates

the specification of the rules that facilitate the achievement of the goal.

The two primitives under evaluation are the exiting maneuver in a highway

and anticipating and reacting to obstacles beyond the sensors range. There are

many ways of implementing a primitive. In the following Sections we perform a

preliminary analysis and present tentative solutions that satisfy the objectives of

these two primitives.

4.5.2.1 Exiting maneuver

In this primitive one or more vehicles in a platoon decide to leave the platoon

and exit the highway. We consider the primitive is accomplished satisfactorily

if the vehicles exit without collisions or hazardous maneuvers and the rest of

the platoon continues the journey unperturbed [34]. Exiting brings forth the

interplay between emergent behavior, classical trajectory design methodologies,

and inter/intra layer communications:

• Communications: they were explained before in detail, mainly focused on

V2V and V2I [4] enhanced with each vehicle’s sensing capabilities.

• Emergent behaviors: Platoon behavior (induced through the three original

Reynold’s rules) and moving objects start roughly at the same speed along

the road. As the exiting maneuver proceeds, the velocity vector of the

moving object changes in direction and magnitude, but not in a brusque

way.
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• Trajectory design: Vehicles in the platoon as well as exiting vehicles are

interacting but autonomous decision makers, in that they sense the envi-

ronment and react accordingly. The strategy of fixing exiting trajectories

and relying on the collision avoidance ability of vehicles in the platoon seems

sound and straightforward. This strategy regards only the platoon vehicles

as interacting autonomous decision makers, as depicted in Figure 4.6.

Among the possible implementations of the exiting primitive we analyze three

possibilities of different complexity and observe their impact on the behaviors of

interest. The first implementation starts with vehicles notifying their intent to

leave the platoon. Since there is no central control of the platoon or membership

awareness each vehicle needs to handle the notification to its surrounding vehicles.

An intuitive way of notifying its intention is to change the vehicle’s role within

the platoon. Instead of being perceived as a vehicle, and therefore subjected to

the three platoon rules (R1, R2, and R3), perception changes to that of a moving

obstacle. In this case, the rest of the vehicles within the platoon avoid it by

simply following the non-collision rule (R2). This technique results in exiting

vehicles creating a virtual path within the platoon till they make their exit. The

vehicle’s new role allows it to leave the platoon and take the desired exit without

compromising the platoon behavior for the remaining vehicles.

The challenge is to effect that change of role (from a vehicle in the platoon

to moving object) without affecting the local rules or resorting to a central or-

chestrator. Visualize the scenario in which a platoon of vehicles moves along a

highway as depicted in Figure 4.7. A RSU notifies the platoon of the existence

of an exit ahead. The RSU is actually a Fog node, part of a full Fog hierarchy

deployed along the highway. The Fog node keeps contextual information, includ-

ing obstacles in the road ahead, congestion levels, weather conditions in the area,

etc. as part of the rich information exchanged with other Fog nodes, both at the

same and higher hierarchical levels. Hence, the Fog can extends a vehicle “vision”

beyond the capabilities of the on-board sensors.

A vehicle decides to take the forthcoming exit, and broadcasts its neighbors

the change of its role, from a peer in the platoon, to mobile obstacle. It does

so through the V2V communication channel (e.g., DSRC). From that moment
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Figure 4.7: Scenario to evaluate the exiting maneuver. It consists of a highway

with an exit. The autonomous vehicles can either exit or continue in the highway

based on their final destination. The RSU deployed as a Fog node assists with

the contextual information.

on, that vehicle is perceived as an obstacle by any vehicle happens to be in its

neighborhood. As the exiting vehicle maneuvers, its neighborhood changes, but

as the notification of its role keeps active, the new neighbors keep away from it.

Hence, the exiting vehicle carves a wormhole through the platoon that leads to

the exit.

The same methodology applies when more than one vehicle wants to take the

exit. In this case, each exiting vehicle acts individually and it is not coordinated

with the other exiting entities. We exploit the power of the rules and their

flexibility. Since each vehicle avoids obstacles (R2), there will be no collision

among vehicles whether they are part of the platoon or they are leaving. There is

no need to implement costly orchestration mechanisms to anticipate all possible

situations in micro detail, we just give basic rules and let the vehicles decide what

is best for them. The result is a set of vehicles “leaving” the platoon and taking

the exit, while the rest of the platoon moves along the highway to its destination.

The second implementation uses on a more direct approach based on the rules

and their hyper-parameters. This solution does not require extra communications

(i.e. notifications) to achieve the primitive’s objective. When the RSU announces

the exit that one or more vehicles want to take, the exiting vehicles modify their

destination target in R4 and simultaneously modify the weight associated to that

rule. Recall that weights define priorities among the rules that determine the

77



4. HEB 4.5 Fog Computing in support of HEB

local behavior. The separation rule (R2) still keeps the highest priority to ensure

no collision happens but the destination rule dominates (R4) over the rest (R1

and R3).

While this approach also produces the desired result (vehicles exiting the

highway without collisions), we observe differences in the behaviors, which may

affect the time it takes to exit the highway. Giving priority to the destination rule

over the traditional platoon rules ensures that the vehicles take the exit instead

of continuing as part of the platoon. Similar groupings based on destination were

analyzed by Hall et al. [30]. What changes with respect to the previous case is

how the local rules apply. While the previous technique is based on vehicle to

object interactions, the second one relies on rules between vehicles.

We experimented with a third approach, which is in fact a particular case of

the previous one: exiting vehicles modify their destination targets, but they do

not alter the weight of the rule. The fact that this approach meets the goals of

the exiting primitive highlights the surprising expressiveness of the local rules.

Adding a target destination rule (R4) we can induce many useful behaviors. Be-

sides the obvious behavior of reaching a destination, vehicles with different targets

can form a common platoon and later one split to reach both destinations.

Figure 4.8 depicts a temporal representation of the exiting maneuver imple-

menting the third technique (the results from the previous two are the same

except the aforementioned differences). The left figure shows the platoon at the

beginning of the highway just before crossing the RSU that communicates the

forthcoming exit. The center figure shows some vehicles “leaving” the platoon.

Finally, the right figure shows the small platoon of exiting vehicles as well as the

platoon of remaining vehicles in the highway. Simulation details not in the figure

show exiting cars moving to the edge of the platoon, positioning themselves for a

smooth exit, without vehicles crossing their paths. This behavior, not explicitly

programmed, emerged naturally from the local rules. It is actually the result of

some rules dominating others (in this case R4).

The policy emerging with the third technique has considerable degrees of

freedom. Consider for instance the rare case in which an exiting vehicle finds the

exit suddenly blocked by vehicles ahead. The vehicle cannot force its way out

because it is not acting as a mobile obstacle, but rather as a peer of the other
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Figure 4.8: Sequential representation (from left to right) of a platoon executing

the exiting primitive assisted by the RSU.

vehicles. The car can head back, and rejoin the platoon. Note that this would

not be the case with the previous techniques, because they are more aggressive.

Another remarkable case happens if the platoon does not have a specified

target destination at the end side of the highway. In this scenario, when the

exiting vehicle executes its maneuver, the rest of the platoon can follow it. This

behavior is not problematic though because each vehicle always have a target

destination.

A simple set of four rules provides a wide range of useful behaviors that are

very robust. In addition these lightweight rules demonstrate an incredible flexi-

bility and simplicity. Fog nodes contribute to handle the contextual information.

In this case it only transmits the target destination that will make the vehicles

take the proper sideway. We have seen three different ways of implementing this

primitive but there are more options that can be part of the policy portfolio

(rules, hyper-parameters, contextual information) and can be reused for other

applications, reducing the deployment time.

4.5.2.2 Anticipating and reacting to obstacles beyond the sensors

range

In this primitive a vehicle or a set of them is circulating in a highway and there is

an obstacle beyond the onboard sensors range. The main objective is to anticipate

its detection and react accordingly to overcome it without compromising the

safety of the driving. Overcoming obstacles brings forth the same areas as the

exiting maneuver with the difference that this primitive directly targets the hyper-

parameters within the emergent behavior rules.
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This scenario is slightly different from the previous ones. We have a platoon

moving along a highway as depicted in Figure 4.9. Along the road there are a set

of RSUs that gather information about the road conditions, weather, and traffic

among others. In summary, these Fog nodes manage contextual information

related to the highway. These nodes are organized hierarchically to capture the

information of a wider area. Figure 4.9 also depicts the virtual architecture they

conform with two different levels. The first level is formed by the RSUs closer

to the highway, the nodes that physically deal with the vehicles. On the second

level there is a single RSU that aggregates the information from the previous

level. This level 2 node has a wider scope but its granularity is coarser.

Figure 4.9: Scenario to anticipate and react to obstacles beyond the sensors range.

It consists of a highway with a three RSUs organized hierarchically. The right

side of the Figure details this architecture with two nodes at the bottom that

directly communicate with the “things”, and a higher node to aggregate all the

data. The cross represents a temporal blockade in the road.

This hierarchical RSU configuration provides information to the vehicles that

traverse the boundaries of locality. While vehicles only sense its closest surround-

ings, RSUs have a larger scope and can transmit that information to the vehicles.

In this situation, vehicles can prepare for the upcoming obstacle or other events.

The procedure is as follows: RSUB senses the blockade and besides notifying it to

the vehicles within its range, it sends this information to the higher layer node,

RSUC . Then, this node can transmit the information to the other lower level

RSUs to take proper actions. In this scenario, RSUC sends the notification to

80



4. HEB 4.5 Fog Computing in support of HEB

RSUA that is the node at the left. Now, RSUA has the information on the road

status ahead and can notify it to the nearby platoon.

To optimize the reaction of the platoon to the blockade, RSUA acts upon the

hyper-parameters modifying the separation distance between the vehicles and also

their speed. This action influences the emergent behavior in real time. We need

to be careful not to augment this distance over the sensing capabilities of each

vehicle, fact that will preclude the formation of the platoon. On the other hand,

too small a value could result in collisions. Other factors such as the number of

lanes in the road also place constraints over this hyper-parameter. In this analysis

we keep this distance between acceptable boundaries that do not compromise the

behavior. Reducing the distance we induce a compact platoon that can overcome

the obstacle easily. To induce proper trajectories, RSUA establishes a destination

point through R4 to overcome the blockade smoothly. We are influencing the

behaviors through its rules with the final objective of reducing the reaction time.

Figure 4.10 presents a temporal sequence on how the cars execute this prim-

itive. The left figure presents the initial position of the platoon moving the

highway in normal operation regime mode. The center figure shows the modified

behavior after RSUA has modified the separation hyper-parameter, the speed,

and the destination target of the platoon. As you can observe, the platoon now

is more compact and the vehicles move closer between them. The right figure

shows the platoon overcoming the blockade previously notified to it. Finally,

once the platoon totally surpassed the blockade RSUB reestablishes the original

separation distance, speed, and triggers the original target destination.

Figure 4.10: Sequential representation (from left to right) of a platoon executing

an anticipated reaction to obstacles beyond the sensors range
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The advantages of such a primitive includes a reduction of the time to over-

come situations such as partial road blockades and to show how behaviors can

be influenced by the contextual information. In this specific situation we achieve

it through a hierarchy of RSUs although there are other solutions. The reaction

time reduction comes from how vehicles face the blockade beyond their sensors

range. If they are not prepared, a part of the platoon uses the blocked lanes in

front of them. Once they sense that obstacle they will change their trajectory

to avoid it, but they may have to wait till the vehicles on the clear lanes pass

through it. The other possibility is even slower, when both vehicles intersect

and the absolute velocity drastically diminishes. Instead, if the platoon is more

compact and there are fewer cars on the blocked lanes the reaction time is smaller.

4.5.2.3 Concatenation of primitives to express complex behaviors

Judiciously chosen local rules, though simple to understand and implement, have

the amazing capability of inducing behaviors not explicitly enunciated. Local

rules are also flexible and expressive, enabling the creation of primitives through

minor tweaking and additions, as shown in the previous Section. We observe that

the exiting maneuver and obstacle anticipation primitives presented are built on

top of a proto-primitive, the platoon formation. This observation suggests that

complex behaviors can be achieved by chaining primitives.

The fairly extensive literature on self-driving vehicles that follow prescriptive

designs [26] methodology can be leveraged in two ways: a) it suggests a list of

primitives and complex behaviors to consider; b) the use cases can be used as

baselines to compare with the HEB methodology.

4.6 Advances in HEB to Autonomous Vehicles

Autonomous Vehicles (AVs) is strongly positioning as a rapidly developing area,

and it is achieving remarkable milestones day after day. Aerial (i.e. drones) and

terrestrial vehicles (i.e. cars and trucks) are already perceiving their environment

using a plethora of technologies (i.e. Lidar, cameras, infrared) to reach their

destination safely while avoiding collisions [48].
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Nowadays most approaches in the open literature focus on developing tech-

nologies from the single vehicle perspective. Corroborations can be found in the

construction of high-definition maps [8] to navigate each car and the separation of

onboard hardware and software platforms [7]. However, there is no unified theory

or consensus on how to design and orchestrate such large systems with millions

of vehicles and an uncountable number of external variables (i.e. pedestrians,

driving rules, etc.).

HEB combines emergent behaviors with hierarchical decomposition to tackle

this problem. HEB induces useful behaviors through local rules implemented at

each AV rather than explicitly programming each action a vehicle must take in

every circumstance [63]. Relying on emergent behaviors has major benefits. The

first is the absence of highly complex algorithms. The second is HEB’s intrinsic

adaptivity to deal with unanticipated corner cases. These objectives are achieved

by moving the decision-making capabilities to the vehicles and thus allowing them

to take actions based on well understood rules.

The next logical step requires the development of a design methodology to

build, evaluate, and run HEB-based solutions for AVS. Towards this goal, this

section advances previous work on:

• Architectural foundations of the second level and its implications, with a

focus on inter-level communication & locality and hierarchical relation be-

tween the rules, including the necessity of a leader and possible mechanisms

to implement its selection.

• Demonstration of the robustness, flexibility, and smoothness of a HEB-

based AV system.

• Case study to validate the previous points, incorporating new rules and

experimental observations

4.6.1 First steps from high level concepts to a solid theory

Previous papers introduced the HEB concept [57], discussed the role played by

Fog Computing [56], and explored through simulations a fairly rich set of emergent

behaviors displayed under a variety of scenarios. The gained experience has
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convinced us of the potential of HEB to become an important piece in advancing

the introduction of autonomous vehicles at scale. A comprehensive theory of the

phenomenology of collective behavior induced by local rules, and the interaction

of the different elements within the system is required to consolidate HEB’s ideas.

The ultimate goal is the development of a comprehensive theory that: a)

captures the phenomenology of the collective behaviors induced by local rules; b)

relates behaviors at different hierarchical levels; c) determines with high degree

of confidence the range of validity of the approach. Such a theory would provide

the foundational basis for the indispensable design methodology.

Toward this goal we focus in the following Sections on the the inter-level com-

munication, the shaping of desired global behaviors through simple modifications

of Reynolds’s local rules, extensions of those rules to higher levels in the hierarchy,

and key architectural attributes to quantify behaviors.

4.6.1.1 The vital role of communications

HEB relies on sensorial activity and communications to induce useful behaviors.

A car not capable of knowing its environment (i.e. neighboring cars, obstacles)

and its own condition (i.e. speed, position) will hardly produce either safe or

interesting behaviors. Current technologies such as Lidar already support these

needs, and its software integration is advancing quickly.

The behavior at the first hierarchical level is largely induced by local interac-

tions between neighboring vehicles. Platoons emerge naturally from the applica-

tion of first-level local rules. Second-level rules can induce behaviors that extend

the scope of first-level rules (regulating, for instance the interactions between pla-

toons). This requires mechanisms for both intra- and inter-level communication.

Taking the platoon as the elemental unit, cars need to sense each other (intra) and

simultaneously the platoon they form need to communicate with other platoons

(inter), as reflected in Figure 4.11.

This broader locality translates into different detection ranges at the on-board

“things”. Despite this fact, the component that applies the different hierarchical

rules and senses the environment remains unaltered, the vehicle. HEB elemental

units can use a passive mechanism where each vehicle bases its behavior solely on
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Figure 4.11: HEB’s representation including intra- and inter-behavior sensing

and two different level behaviors (1st level with dotted lines and 2nd level with

continuous line)

the information sensed from its environment (also including other vehicles). Using

this mechanism “things” become critical to achieve useful and secure behaviors.

Another possibility uses active and direct mechanisms to code information be-

tween different entities and thus influencing the behavior directly. This direct

strategy reduces the pressure placed upon “things”, but moves the complexity to

communication, synchronization, and coordination protocols.

A complementary technique relies on infrastructures such as Fog [15] to pro-

vide contextual information, enlarging the information scope of each vehicle be-

yond the on-board sensors. Hence, vehicle-to-infrastructure communications com-

plements the aforementioned vehicle-to-vehicle capabilities. On one side this tech-

nique reduces the pressure placed upon “things” while on the other side moves

away from the vehicles certain degree of independence to take their own decisions.

Emergent behavior organization Communication is essential to induce

collective behaviors at every level of HEB’s hierarchy. There are important dif-

ferences between the first and the higher levels in the requirements and organi-

zation of the communication. At the first level this is strictly a local issue, that

requires only V2V and V2X communication. In contrast, the second level requires

also communication between platoons. There are several ways to approach the

problem, and even variants within them. Let us outline the main ones.
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The first solution calls for assigning a leader in each platoon. This leader, who

could be either virtual [40] or physical [63], would drive the behavior of the platoon

using the three Reynold’s rules. In particular, the rest of the platoon would follow

the trajectory taken by the leader. Platoons communicate through their leaders.

It could be argued that depending on a leader goes somewhat against the grain

of HEB’s distributed principles. This suggests the consideration of distributed

leadership schemes, which at the cost of higher level of local intelligence, could

ensure scalability and autonomy in extreme scenarios.

4.6.1.2 Behavior inducement

Nature’s goals (i.e., survival and reproduction) guide animal behavior. In the

case of HEB we need to cast human and societal needs (for instance, reduction

of driving time, and fuel consumption) into goals.

Once the goals are determined, the task is to find rules that induce behaviors

to meet them. At this stage of development of HEB concepts, simulation appears

as the right tool for the task. It enables exploration of the effect of some rules

on others, and determination of how well the overall objectives are met. The

quality of the results naturally depends on how well the simulator captures real

life scenarios and their constraints.

Our previous sections explored the first level behavior of AVs as the result of

applying Reynolds rules. The next step is to extend that exploration to second

level behavior. The challenge is to find rules that induce desired behavior with-

out destroying the first level platoon formation. Later we introduce rules that

accomplish different AVs maneuvers.

We envision that as the theory underlying HEB consolidates, clever appli-

cation of Machine Learning (ML) techniques will allow further extension of the

rules, with an richer portfolio of emerging behaviors. For related example of how

ML can automize the process, see Mataric [43, 44].

Single-level vs multi-level approach The multiplicity of hierarchical levels

differentiates HEB with respect to preceding work in robotics focused on single

level solutions [43]. The N-1th level enhances the scalability of the system and

expands scope of achievable emergent behaviors.
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We note that independently of the number of hierarchical levels, each vehicle is

responsible for following a set of rules locally. Some rules are more critical than

others (collision avoidance being a clear example). Hence, rules are organized

in a hierarchy of dominance determined by their criticality. In practical terms,

that dominance is expressed by the weights associated with each rule (called

hyper-parameters). For instance, collision avoidance is a first level rule with

weight larger than any other rule at any level, because safety is the dominant

consideration.

At the single level the organization of the rules depend entirely on their relative

weights. A multi-level design allows building richer behavior by combining first

order ones. First level rules within a platoon are always active. In contrast,

higher level rules are activated only when certain conditions are met, given the

system the ability to incorporate “intelligent awareness”.

For instance, a second level condition may trigger when two platoons become

in close proximity, preventing V2V interactions between vehicles in different pla-

toons. The vehicle checking the condition needs to sense one or more vehicles in

its surroundings and two or more further away.

4.6.1.3 Behavior shaping

We study two approaches to the problem of shaping a given behavior induced by

a set of rules: (i) slight modification of the rule/s, and (ii) tuning of the hyper-

parameters. Through shaping behaviors a rule can go from being functionally

correct but rough to smooth (e.g. making abrupt maneuvers more comfortable

to the passengers), and from reaching a destination broadly defined to meeting a

precisely defined one.

Rule/s modification Designing rules that express elaborate behaviors is an

organic process. It starts with a core of elementary, local rules (Reynold’s platoon

formation) and compose them in complex chains that achieve specific objectives

(compact the platoon, move aside, increase speed until a moving obstacle gets

behind, etc.).

Let us consider some concrete instantiations of rules modification. We have

already presented a destination rule [57] that directs vehicles to targeted points
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without specifying the trajectory to follow. Each vehicle just knows its current

position and its target destination. While this rule works fine at the vehicular

level, the preservation of the platoon formation depends on how close the desti-

nation points specified for each individual car are, and the shape of the road. The

rule can be retouched by applying it consecutively to a chain of segments, each

one with its own target destination. The final coordinates remain unaltered, but

the finer granularity ensures that vehicles remain close enough to induce platoon

formation, hence maximizing traffic throughput [30].

A roadside infrastructure like Fog facilitates the implementation of this se-

quence of targets. Fog nodes’ expanded scope allows the smart processing of

target destinations and congestion information to dynamically building the chain

of segments that compose the trajectories. An alternative implementation re-

lies on V2V communication to exchange information regarding current positions,

final destinations, and contextual information to determine intermediate target

points. This latter alternative places stronger processing requirements on the

vehicles on-board units (OBUs).

Hyper-parameters tuning The term hyper-parameter includes both the

internal parameters of each rule (i.e. minimum separation distance) and the

weights assigned to the rules. The core of hyper-parameters tuning takes place

during the extensive experimentation phase in the controlled environment of a

simulator. The simulator allows quantifying the behavior of experimental rules

under a wide variety of scenarios. This leads to the acceptance of the rules and

associated hyper-parameters, the tuning of the hyper-parameters, or, in extreme

cases, downright rejection of the experimental rules. Note that the experimental

rules examined not in isolation, but interacting with the whole set of rules.

4.6.1.4 Architectural attributes

Behaviors can be visually assessed, but their rigorous characterization requires

the consideration of basic attributes that reflect the intent of the designer, and

that can be translated into appropriate metrics.

• Sensitivity expresses the ability of the system to react to external stimuli. A

HEB-based AV must be responsive to the environment, including obstacles,
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and other vehicles. On the other hand, a hyper-sensitive vehicle may react

too soon, or too violently. Consider a set of hyper-parameters that induce

a desirable behavior. A system requiring infinite precision in the tuning

of its parameters is impractical. In our case, the admissible loci of the

hyper-parameters extend over a (not necessarily connected) hyper-volume.

• Expressiveness refers to HEB’s ability to induce new desired behaviors ex-

tending the core framework through slight modifications of the existing

rules or the addition of new ones, without affecting the existing ones. For

instance, the three original Reynold’s rules surpassed our expectations, be-

cause slight modifications enabled novel behaviors. The destination rule,

which introduces a new behavior without affecting the formation of pla-

toons, is a prime example.

• Smoothness relates to the user experience. Desired behaviors, including

braking, acceleration, and change of direction shall not be brusque. For

instance, a 180 degree turn on a highway is not smooth, and although the

surrounding vehicles could respond adequately, such a maneuver will not

contribute to the comfort of the passengers.

4.6.2 Multilevel interaction simulation and evaluation

4.6.2.1 Fundamentals

There are two types of terrestrial AVs represented by triangles of different colors

(black and grey respectively) highlighting their direction. Obstacles define the

shape of different scenarios such as highways or intersections, represented by black

dots in the canvas.

Each vehicle implements the three original rules from Reynolds (R1 Align-

ment, R2 Separation, and R3 Cohesion). In addition, there are two more rules

conforming the basic set: R4 and R5. R4 establishes a target destination point

that each vehicle has to reach. R5 performs the same operations as R1, R2, and

R3 but aggregated in a single rule and thus applies over platoons instead of single

vehicles. The resulting rule is more complex than the three Reynolds rules but

induces the same behavior, the creation of a platoon of platoons. Both rules

89



4. HEB 4.6 Advances in HEB to Autonomous Vehicles

Figure 4.12: Depiction of a two level rule hierarchy and the entities at each level.

R1, R2, and R3 are the original Reynolds rules while R5 is derivates from them.

In contrast, R4 and R6 are not part of Reynolds work. Single vehicles constitute

the entities of the first levels, while platoons constitute the entities of the second

level (in the use case of this paper).

are implemented as second level rules but apply when different environmental

conditions are satisfied. While R4 acts upon individual platoons (defined by the

presence of two or more vehicles within a certain distance), R5 requires at least

one platoon and one vehicle of another type to be applied.

On top of those, a new rule R6 is added. R6 is a complex 2nd level rule

that guides interactions between different types of platoons circulating along a

highway. It applies over vehicles when two types of platoons detect each other

(what constitutes a 2nd level membership condition). Then R6 acts upon both

platoons. The approaching platoon changes their trajectory to focus on the left

part of the road while the approached moves toward the right side. These turns

are induced through a set of target destinations rather than being specifically

programmed. The basic implementation of R6 does not alter the velocity of each

platoon. The rules’ weights are set to prioritize the collision avoidance above the

rest. Figure 4.12 represent the rules and the level they belong to.

4.6.2.2 2nd level: Platoon of platoons

Previous work explored the idea of platoons and how to enable them either by

programming [72] or by inducement [57]. The same concept can be applied at a

2nd level resulting a platoon of platoons. To analyze this scenario we use R5 that

applies the original rules over platoons.
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Figure 4.13: 2nd level behavior, platoon of platoons

Two 1st level platoons constitute a 2nd level platoon, that moves along the

highway as depicted in Figure 4.13. Even though vehicles are responsible of de-

termining its 2nd level membership to apply the proper rules through a condition

(i.e. detect another platoon in its surroundings), the scalability is not compro-

mised. The reason lies beneath the fact that not all vehicles are aware of the

platoon behind them. Only those which sensor range allows them to detect those

vehicles know about its existence. Even when the number of vehicles aware of

the 2nd level is small, the imitation capabilities of the original rules makes the

entire platoon to follow them, acting as a single 2nd level entity (similar effect to

a wave propagation).

The separation distance between platoons constitutes a primary example of a

behavior sensitivity analysis in conjunction with the sensors range (we suppose a

fixed value for these ranges). When we analyze small increments of the separation

distance, a 2nd level platoon still emerges. The limit in this case is fixed by the

sensors capabilities. When the separation distance exceeds the sensors range the

two platoons cannot “see” each other, preventing the emergent 2nd level platoon.

On the contrary, when the distance is reduced the same behavior is exhibited.

The only major appreciation results when the separation distance is equal or

smaller than the inter-platoon collision avoidance value. In this case the behavior

is a larger and unique platoon. No collision occurs because R2 prevails over the

other rules. Facing these results, we can conclude that the sensitivity of this set
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of rules is low and that the resultant behaviors are quite good, emerging for a

wide range of hyper-parameter values.

Having a second level platoon results in an optimized traffic flow. Vehicles

and infrastructure can adjust the separation distance and the velocity to adapt

to road conditions without affecting 2nd level platoon entities.

4.6.2.3 Highway overcoming maneuver

This scenario highlights the overcoming maneuver optimization between platoons.

For this purpose, we disable R5 and activate R6, the new rule designed to induce

behaviors when two platoons face each other. Remember that by default R6 does

not modify the velocity.

1st level implementation The natural comparison to the aforementioned

maneuver arises from a single level implementation. Each vehicle faces the situa-

tion alone rather than in conjunction with the rest of the platoon. This difference

is reflected in the conditions required to apply R6 as a 2nd level rule. It is only

necessary to detect another type of vehicle ahead to start the maneuver but not

to be a part of a platoon or detect another one. R6 weight is set to the same

value of the other rules except R2.

Figure 4.14, Figure 4.15, and Figure 4.16 show a highway where a faster

platoon (black) is about to reach a slower platoon (grey). When the rule is im-

plemented as a first level rule, the behavior obtained is not smooth as an architect

would like. However, the resultant behavior is modified and the interaction suffer

a small optimization. The slower vehicles move towards the right side (as indi-

vidual elements, any action is taken as a platoon). This fact is exploited by the

faster vehicles that move to the left side for an overtaking maneuver.

As expected, in most of the simulations single vehicles cross the slower platoon

instead of continuing attached to their original behavior. This action could put

in danger the safety of both platoons, plus implies a strong modification of the

first level behaviors (rupture of the platoon behavior). The faster platoon faints

to overtake the other.
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Figure 4.14: First temporal instance of a 1st level based overcoming maneuver

behavior

Figure 4.15: Second temporal instance of a 1st level based overcoming maneuver

behavior

2nd level implementation Trying to avoid those situations, R6 is imple-

mented as a second level rule. As mentioned earlier, the key differentiation be-

tween a 1st and a 2nd level implementation lies beneath the applying conditions

for the rule. In R6, these conditions are to be part of a platoon and to detect the

presence of a different platoon (or part of it) ahead or behind. In consequence,

each vehicle acquires membership awareness to apply 2nd rules as part of a pla-

toon. Despite this fact, vehicles may not know the total size of the platoon to
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Figure 4.16: Third temporal instance of a 1st level based overcoming maneuver

behavior

not compromise its scalability. R6 now influences the vehicles’ trajectories only

when those conditions are satisfied.

Although it may seem a simple modification, the fact that vehicles try to stay

within its platoon rather than taking individual actions results in the absence of

crossing cars between platoons. Figure 4.17, Figure 4.18, and Figure 4.19 depict

a temporal sequence of images to capture the overtaking maneuver.

Different observations arise from these figures. First, the shape of the platoon

changes, but this is not a problem since it was not specifically programmed. In

fact, this behavior is desirable because thinner and longer shapes result, facili-

tating the maneuvers. Second, the destination target modification from a single

point to a set of points applies only when R6 conditions are satisfied (be part of

a platoon and detect another one). Within the context of the highway analysis,

this set of targets is determined by a vertical offset to induce that movement

to the sides (left or right) over a spatial sequence in the horizontal dimension.

If only the vertical offset is applied together with a single destination point the

behavior reaction was not fast enough to ensure a smooth maneuver.

Although the objective was accomplished with this rule, an architect can

explore how to enhance the resultant behavior through the modification of rule.

This process is referred to as “Behavior Shaping”, as explained in Section 4.6.1.3.
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Figure 4.17: First temporal instance of a 2nd level based overcoming maneuver

behavior

Figure 4.18: Second temporal instance of a 2nd level based overcoming maneuver

behavior

4.6.2.4 Behavior shaping: a practical example

Since formations revealed as a way to optimize interactions, this the first tech-

nique analyzed. Using a rectangular formation induced through the initial posi-

tions of the AVs resulted in smoother maneuvers in both the intersection and the

highway scenarios (we could insert a figure).

An important remark is how adaptive the rules are to enable more behaviors,
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Figure 4.19: Third temporal instance of a 2nd level based overcoming maneuver

behavior

in this case through a formation. Instead of designing a new rule or modifying

the existing ones, setting studied initial positions to each vehicle at the beginning

of the simulation created the formation. Later, applying the three original rules

resulted in the maintenance of the formation for their entire trajectory even when

facing other platoons.

Another technique alters the hyper-parameters of the platoons. For instance,

if the intra-platoon separation distance is modified upon the detection of the

other platoon the total surface occupied by each platoon is smaller and in conse-

quence the space for the overtaking maneuver becomes larger, reducing the risk

of potential collisions or strange maneuvers (i.e. 90 degrees turns). Similarly

to the target destination modification, hyper-parameters are modified upon the

fulfillment of the 2nd level membership conditions. When the faster platoon has

completed the overtaking, both platoons can return to their original separation

distances because 2nd level conditions are no longer satisfied.

The platoon velocity is a different parameter to consider. In this case, upon

the detection of a slower platoon ahead the faster platoon can moderate its speed

to have more control over its maneuvers. On the contrary, the slower platoon can

momentarily accelerate to move aside faster, leaving more space for the overtaking

maneuver. One possibility is to use Fog nodes to provide contextual information

to the AVs, contributing to determine the N-level membership conditions. These

external nodes could also act directly upon the vehicles exploiting its larger visi-

bility.
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Till now vehicles had a simple second level condition (i.e. be part of platoon

and detect another one), but more detailed conditions can be studied based on

their impact over the resultant behaviors. For instance, within a condition we

can have different phases based on contextual information, inducing more robust

behaviors.

For example, we can use a three phase illustrative example. The first phase

is activated upon the detection of the slower platoon ahead. In that moment

this phase triggers the aside movements. The second phase is activated when the

distance between platoons is smaller. In this situation, the slower platoon accel-

erates for a moment and the faster platoon maintain its speed. This momentary

acceleration does not compromise the overtaking maneuver thanks to the target

modification and its short burst nature. The third and final phase is activated

when the distance between platoons is negligible and both have a clear path

ahead, accelerating the faster platoon to complete a faster overtaking maneuver.

At the end, when this maneuver is completed and the distance between platoons

is larger, the 2nd level conditions are no longer satisfied and default conditions

are restored. In this example only the inter-platoon distance has been considered

as contextual information, but many more parameters can be used.

The aforementioned techniques revealed how small modifications with low

complexity have a great effect on induced behaviors. In future implementations,

machine learning techniques can guide the behavior shaping process in its different

approaches (hyper-parameters and phases), as proven by the first level approach.

4.7 Summary

Many IoT services and applications are intrinsically large and complex, fully qual-

ifying as ULSS. In this chapter we address the problem of architecting and orches-

trating ULSS. We propose a Hierarchical Emergent Behaviors (HEB) approach

that borrows concepts from the fields of emergent behaviors and hierarchical de-

composition. Furthermore, this chapter has made some solid steps along the goal

of systematizing HEB’s concept into a solid design methodology. In particular,

we have advanced the understanding of the communication mechanisms required
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between the different hierarchical levels, discussed the desirable attributes of ve-

hicular behaviors, and demonstrated through simulations how simple second level

rules can enrich the space of emergent behaviors.

By fusing emergent behaviors and hierarchical organization concepts, our ar-

chitecture (HEB) uses only a minimal sets of engagement rules to achieve the de-

sired behaviors without the need to explicitly program for every scenario. These

techniques provide the system with less developer complexity and a natural abil-

ity to scale and adapt in dynamic environments. In order to implement this

approach, we added a new layer to the traditional IoT architectural stack that

incorporates the local rules of engagement. The autonomous vehicles case study

was provided to illustrate the main properties and behaviors of “things” using

the HEB approach.
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Chapter 5

Conclusions and Future Work

This thesis analyzes the orchestration, management, and scalability issues of IoT

ULSS and proposes a new technique to solve them.

We introduced the key concept of Hierarchical Emergent Behaviors (HEB)

that combines the advantages of emergent behaviors and hierarchical decompo-

sition. HEB imposes lightweight rules at the “things” to induce useful behaviors

rather than explicitly program them. These rules exploit the contextual infor-

mation available at the device level, reason why these devices can take decisions

locally. We showed how HEB can improve the scalability of an autonomous vehi-

cle system while reducing the design and the development complexity. We believe

that HEB is the way to enable and build IoT ULSS with millions of devices such

as autonomous vehicles.

5.1 Broader Impact

IoT systems are expected to improve human life in many aspects, from healthcare

to transportation. It is of outrageous importance that we identify the critical areas

that preclude its explosion and provide with efficient solutions that empower not

only those systems but that also enable their interoperability.

This intersystem interaction is the base to create IoT ULSS with richer func-

tionalities than the ones each system can provide in isolation. However, this area

is still in its infancy. And despite the great public interest in having IoT systems

such as smart homes or autonomous vehicles numerous problems have been arisen
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and yet there is no consensus in areas such as privacy and security, even much

less regarding the scalability and the management of ULSS. To the best of our

knowledge, the open literature focus on single elements of these systems rather

than seeing them as a massive group of devices (i.e. car).

The content of this thesis attacks the area of IoT ULSS to make them scalable

and yet adaptive systems in a way to contribute to IoT’s expansion and wider

deployability.

5.2 Future Work

Some of the contributions of this thesis may be extended. In this section we

provide some guidelines.

iQ: a simulation methodology based on queue models and statistical

information. The first step focuses on emulating more components of the

core model, such as floating point capabilities and the TLBs modules. Future

work also includes the implementation of a technique to simulate the dependency

chains that, for now, provoke errors in the gcc benchmark. Another enhancement

is the implementation of power models triggered by the time the different queues

and servers are really working. Then, architects will have available functions to

determine the cost of their possible processor’s implementations.

Further steps are the design and definition of multicore processor models, in-

cluding the network on chip which translates nicely to our queue models and

statistically driven events. Lastly, studies where both the processor and the net-

work are simulated in a single environment will be performed to optimize the

performance and cost of the global solution (currently, the problem is architec-

tural simulators have poor network modeling and network simulators normally

use traffic generators to feed the network).

Enhancements to Fog’s architecture to enable the generic IoT plat-

form. We have outlined a program to enhance Fog’s architecture complementing

the Cloud, opening three main areas for future research. Each area addresses

different pillars of the generic Fog Architecture that entities such as the Open

Fog Consortium are consolidating. The first line of research focuses on orches-

tration policies to decide which application run on the Fog layers (based on their
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requirements, current conditions, etc.), and how these policies are enforced on

Fog’s heterogeneous nodes.

The second area focuses on constellations and their virtualization founda-

tions. These groupings are influenced by networks conditions the infrastructure

capabilities. This fact suggests simulation as a way to evaluate a rich set of sce-

narios where constellation design is enhanced. The last suggested area involves

FFVs and the environment required to enable them. First, we need to develop

the framework supporting the functions and acting as an interface between the

different entities (ISPs, application developers, etc.). Later the actors need to

deploy and offer “things” functionalities, creating a pool of resources from where

the FFVs can emerge. Finally, the application developers can use those functions

and enable new services and applications.

HEB: a design methodology based on emergent behaviours and hi-

erarchical decomposition for ULSS. We have outlined a program to tackle

the ULSS IoT challenge, opening four key areas for future research. The first

line of research focuses on extensive realistic simulations of well-designed scenar-

ios as a design tool. The emulation is the experimental design platform that

allows architects to determine which rules are more likely to produce interesting

behaviors, tune their hyper-parameters, and assess the performance in dynamic

environments.

Machine Learning (ML) of rules that generate emergent behaviors is the sec-

ond line of research. We note the strong link between the emergent behavior ap-

proach and ML, in both circumventing the need of explicit programming. ML can

become valuable in choosing and tuning the hyper- parameters of local rules, and

even identifying new useful rules. The experimental platform randomly sweeps

the scenario space, and for each scenario ML tunes the hyper-parameters, or

otherwise introduces new rules.

The last suggested research line involves security and reliability. Emergent

behaviors bring new strengths: the system that can adapt itself as a whole in

the face of new circumstances, including failures. On the flip side, there are new

vulnerabilities to overcome, such as those that can be introduced through rogue

“things”, or by altering the hyper-parameters of the local rules.
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Appendix A

Flock and Platoon background

A.1 Rules

HEB relies on local engagement rules to induce behaviors at the vehicle level.

These rules determine the behavior of each car when facing different situations

such as encounters between them or when facing an obstacle. We took the orig-

inal flocking implementation code contained in the Processing environment and

extended it to add or modify the rules and how they are applied. Saber described

the mathematical formulation for the rules [60]. In the next Sections we explain

these rules and their effect on the behavior.

A.1.1 Background

Each vehicle applies the implemented set of rules. These rules are local in the

sense that a vehicle is not aware of the size of the platoon. Vehicles apply the

rules over their neighbors. The locality of the rules is key to ensure the scalability

of the behavior and keep programming efforts low. For instance, in a flock with

thousands of cars, each vehicle applies the rules only to its neighbors. These

neighbors are sensed through the on-board sensors, and normally due to physical

constraints its number is limited to 8 or 9.

Then, each vehicle has a bubble around it and only those vehicles within this

range are used to compute the rules. In other words, these vehicles determine

the engagements that drive the induced behaviors. Since each vehicle applies the
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same principle, and effect on one side of a platoon is transmitted over to the other

side by the mimic effect of certain rules (as a wave).

An important remark is that not all the vehicles need to have the same set

of rules. While certain rules are necessary to ensure certain level of safety (i.e.

collision avoidance) others are “optional”. In consequence, it is vital that possible

interactions between these sets of rules are simulated to study and analyze the

behaviors that result from those interactions before they are implemented in a

real scenario.

A.1.2 R1, Alignment

R1, nicknamed alignment, makes the vehicle to match the average heading of the

neighbors. This rule results in all neighboring vehicles moving with the same

direction. Figure A.1 illustrates this situation.

Figure A.1: R1, Aligment [1]

A.1.3 R2, Separation

R2, nicknamed separation, provokes that the vehicle keeps a certain distance with

its neighboring vehicles and other obstacles. This rule results in a collision avoid-

ance mechanism, critical to ensure basic safety trajectories. The main parameter

within this rule is the desired separation distance between elements of the system.

Figure A.2 illustrates this situation.
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Figure A.2: R2, Separation [1]

A.1.4 R3, Cohesion

R3, nicknamed cohesion, provokes that the vehicle stays close to its neighbors.This

rule results in the vehicles moving together. Figure A.3 illustrates this situation.

R2 and R3 apply an attraction/repulsion force where the cars want to stay close

to each other but not too close. They are responsible of the grouping between

vehicles.

Figure A.3: R3, Cohesion [1]

A.1.5 R4, Destination

R4, nicknamed destination, makes that the vehicle moves towards a target des-

tination. This rule does not specify a complete trajectory rather than an origin

and a destination, leaving decisions to the vehicles themselves based on the local

information they have and what they sense.
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A.1.6 R5, 2nd level platoon

R5 combines the three original Reynolds’ rules into a single one. This fact high-

lights that different rules can have different levels of complexity. The result of

this rule is the inducement of a 2nd level platoon when the conditions allow for

it, a platoon of platoons. R5 enforces that platoons do not collide, stay close to

each other and move at the same speed similarly to how R1, R2, and R3 enforce

it between vehicles.

A.1.7 R6, Overcoming maneuver

R6 defines the interaction between two platoons moving at different speeds along-

side a highway. Depending on the platoon positioning (pursuer and pursued)

there is a set of actions defined. For instance, the pursuer moves to the left side

of the road to make the maneuver smoother while the pursued moves towards the

right side of the road.

A.2 Application of the rules

Vehicles are applying their set of rules constantly to determine what their trajec-

tory is. It is an infinite loop that keeps updating their trajectory based on what

they sense.

It is important to explain where the consciousness of the level resides. It

is the vehicle that knows in what level is and executes the appropriate rules.

For instance, a vehicle that moves inside a platoon of platoon is executing the

2nd level rule (R5), but also the first level rules (R1, R2, and R5=3). A second

level behavior cannot destroy a first level behavior. This way rules in different

hierarchical levels build on top of each other rather than all being at the same

level.

A.2.1 Weights

Different weights ponder the result of the rules to determine both their criticality

and impact on the induced behavior. In this case, to ensure the safety of the
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resultant behavior R2 has the larger weight to always ensure that no collision

happens.

These weights can also be used to define a hierarchy among the rules (between

a single HEB level or multiple levels).

A.2.2 Sum of vectors

Once all the rules are computed, vehicles have different vectors with updates to

their trajectory. Then, each vehicle computes the sum of the vectors to determine

which is the trajectory change to be performed. Note that different rules can give

opposite vectors. In this case, the resultant vector may not modify the trajectory

of the vehicle. If this happens, weights can help to ensure reliable movements,

such as the vector component to avoid an obstacle is larger than that of following

neighboring vehicles. This situation results in the vehicle moving to avoid the

obstacle.
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