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Abstract Changing conditions and variations in the demand are frequent in
real industrial environments. Decision makers have to take into account this
uncertainty and manage it properly. One clear example is the automotive in-
dustry where manufacturers have to assume an uncertain and heterogeneous
demand. For instance, automotive manufacturers must adapt their decisions
when balancing the assembly line by considering different flexible solutions.
Our proposal is using robust multiobjective optimization and simulation tech-
niques to provide managers with a set of robust and equally-preferred solutions
for assembly line balancing. We study a Nissan case where the demand of each
product family is uncertain. The problem is addressed by considering a robust
multiobjective model for assembly line balancing based on a high number of
production plans. After the selection of six different assembly line configura-
tions, we study the implications of robustness metrics based on workstations’
overload. We show that the adverse managerial effects of not having flexible
line configuration when demand changes are alleviated. For the real Nissan
automotive case, our analysis and conclusions show the managerial and in-
dustrial benefits of using robust assembly lines. We also encourage decision
makers to use robust multiobjective optimization methods for selecting the
most flexible decisions.
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1 Introduction

Most advanced manufacturing industries normally use the same assembly line
for assembling different product types. There is a product-oriented production
system, able to assemble similar products but with different characteristics.
One example is the automotive industry, where major auto assemblers such
as Ford, General Motors, and Chrysler have begun to overhaul some of their
previously specialized car-assembly plants into “flexible factories” to produce
several models on the same production line (Eynan and Dong 2012, Moreno
and Terwiesch 2015). The proliferation of product varieties is mandated by
competition and customer demands and is clearly evident in the automotive
industry (AlGeddawy and ElMaraghy 2010). As also shown by AlGeddawy
and ElMaraghy (2010), this is well demonstrated in the example of car engine
accessories where families of products that exhibit wide variety exist; yet they
have many common functions, components, and assembly processes.

The assembly of these different products is based on similar processing
tasks with common features but require, for each product type, different com-
ponents, specific work, and tools. But within this industrial context, even small
variations in the demand of the products’ type could lead to unstable assembly
line balancing and therefore, a need of constant re-balancing operations (Chica
et al 2016). An a posteriori adaptation to the latter variations corresponds to
the reaction of an already existing manufacturing system to changes in the
product (ElMaraghy and AlGeddawy 2012). Building flexible manufacturing
systems a priori can better manage these production changes. In general,
flexibility has to be an important asset to manufacturing firms (Moreno and
Terwiesch 2015) and specifically, setting a flexible and proper assembly line
configuration is increasing in importance nowadays.

The tasks of an assembly line divide the manufacturing of a production
item. A well-known and difficult problem in operations research is to deter-
mine how these tasks can be assigned to the stations fulfilling certain restric-
tions, and it is called assembly line balancing (ALB) (Boysen et al 2007, 2008,
Battäıa and Dolgui 2013). ALB problems optimally partition tasks to stations
with respect to some objective (such as the cycle time of the assembly line)
in such a way that all the precedence constraints are satisfied. Within the set
of available ALB problems, one realistic variant is the time and space assem-
bly line balancing problem (TSALBP) (Bautista and Pereira 2007). TSALBP
considers the linear space of tasks and line’s workstations and makes use of a
multiobjective problem definition (Miettinen 1999, Greco et al 2005) to search
for a set of optimal solutions to three optimization criteria: m (number of
stations), c (cycle time), and A (linear area of the stations).

However, the majority of the existing ALB models assume a fixed bal-
ance of the assembly lines when producing mixed products. This assumption
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is not appropriate, especially when managing high-variant mixed-model as-
sembly lines (Dörmer et al 2015). One example in the automotive industry is
assembling engines. This is because of fluctuations caused by clients’ calendars
and the rise in the variety of final engines in the last decades (e.g., producing
40 variants in the same week) (Garcia-Sabater et al 2012). These engines’ de-
mands are not usually fixed and certain, and when the assembly line produces
mixed products in a given sequence (Boysen et al 2010), the model cannot only
consider the operation time of the tasks as the averaged times of the different
products and their demand. If the demand changes, the operation time also
changes and the assembly line configuration may need a re-balancing. This
re-balancing may cause production losses because those workers assigned to
workstations will have to comply with new tasks and increase their learning
curve to work in the assembly line.

New optimization models such as those considering robust solutions (Beyer
and Sendhoff 2007, Ben-Tal et al 2009, Roy 2010) have emerged, given their
possible benefits to managerial decisions in the production system of the plant.
In this work, we will focus on a multiobjective robust ALB model (the r-
TSALBP) to study a set of flexible ALB solutions to a real automotive case
study. We define a ”flexible” ALB solution as a solution which is able to easily
absorb changes in the input (i.e., demand) without being replaced by another
one. The r-TSALBP integrates the concepts of robust optimization and mul-
tiobjective optimization to find the most flexible and efficient assembly line
configurations (i.e., in terms of a sufficient minimization of number of stations
and their area, m and A). The model links robustness with the flexibility of an
assembly line configuration when demand changes according to a set of real
production plans. One production plan is defined as the demand for each type
of product to be assembled. The model identifies and measures how robust a
assembly line configuration is for a set of production plans according to both
operation time and the linear area (i.e., one dimensional length) needed for
workers and tools to perform the tasks of the assembly line.

Three temporal non-robustness metrics, set as optimization constraints,
are proposed to measure the robustness of the assembly line configurations.
Our proposed metrics provide a way to identify the least flexible workstations
when having different production plans. These metrics define when a solution
is robust or not (i.e., feasible or unfeasible) taking into account the uncertainty
defined by a set of possible demand scenarios (i.e., production plans). These
three temporal non-robustness metrics are calculated based on those stations
which are overloaded by the production plans. The first one measures how
many production plans overload the stations of the assembly line (gc1). The
second one, gc2, is a ratio of the overloaded stations by any production plan.
Finally, the third metric, gc3, measures the averaged exceeding processing time
of the stations with respect to the set of production plans.

Additionally, we propose a novel methodology for robust ALB by making
use of a Monte Carlo simulation technique to better evaluate the risk of deploy-
ing the assembly line configurations under changing conditions. To the best
of our knowledge, this is the first attempt of using simulation techniques to
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extend the evaluation of the robustness of assembly line configurations. In gen-
eral, simulation modeling is the best approach for dealing with the optimiza-
tion of systems under uncertainty (Borshchev and Filippov 2004) because a
simulation model can capture the system variation in a realistic way while still
producing results that can be made as accurate as desired. The hybridization
of simulation techniques with the EMO algorithms will provide automotive
decision makers with a flexible and rich tool when dealing with optimization
problems in uncertain domains (Juan et al 2016).

Finding a flexible configuration will also have a positive impact on the
management of the plant as different departments will obtains benefits (from
planning to production departments). In order to empirically show this, we
apply the methods to a real engine assembly line of the Nissan automotive
industrial plant in Barcelona (Spain). The results of the case study are eval-
uated in terms of the managerial and industrial advantages for the company
and how the lack of using a robust approach can generate difficulties in several
departments of the organization. To do this we first solve the assembly line
balancing problem of the Nissan case study by using two evolutionary multi-
objective optimization (EMO) algorithms (Talbi 2009, Coello et al 2007), with
and without robustness mechanisms. The first algorithm is the standard non-
robust NSGA-II (Deb et al 2002). The second one is our adaptive IDEA which
is applied to the robust r-TSALBP model. The adaptive IDEA is an extension
of the original IDEA version (Singh et al 2008) to search for robust solutions
by making IDEA adaptive. This behavior is achieved by dividing the popu-
lation of the algorithm in robust and non-robust sub-populations of solutions
and by adapting the size of both populations depending on the robustness of
the Pareto archive in every generation.

During the experimentation of the study we start by selecting three pairs of
Pareto-optimal assembly line configurations with 18, 21, and 23 workstations.
These configurations are non-dominated solutions obtained by the two EMO
algorithms with and without a specific robust search. They are evaluated for
the Nissan case study by the non-robustness metrics and, by using the Monte
Carlo simulation approach, the set of demand scenarios is increased up to 1,000
different demand plans. The use of the latter simulation method allows us to
better measure the reliability of the robustness of the configuration solutions
and to compare the results against the non-robust approaches.

Next Section 2 presents some background information and our research
methodology (i.e., multiobjective robust optimization, the use of simulation
for uncertainty, and the r-TSALBP model). Then, Section 3 explains the case
study used in our work and the methods’ details. Section 4 describes the
experimental results. Finally, Section 5 discusses the implications and benefits
of our proposal for making managerial decisions and presents some concluding
remarks.
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2 Background and research methodology

We first describe the mathematical ALB problem (Section 2.1). Later, multi-
objective and robust optimization are described in Sections 2.2 and 2.3, respec-
tively. How simulation can be used as a tool in optimization under uncertainty
is presented in Section 2.4. Finally, a multiobjective model for ALB that con-
siders uncertainty in its formulation is described in Section 2.5.

2.1 Assembly line balancing description

Mathematically, a general ALB problem is defined as follows. We divide the
manufacturing of a production item into a set J of n tasks. ALB problems focus
on grouping the latter set of tasks J in workstations by an efficient and co-
herent way (Baybars 1986, Scholl and Becker 2006, Dolgui and Kovalev 2012).
A subset of tasks Sk (Sk ⊆ J) is assigned to each station k = {1, 2, ...,m},
called the workload of the station. Each task j requires an operation time for
its execution tj > 0 that is determined as a function of the manufacturing
technologies and the employed resources. Each station k has a workload time
t(Sk) which is equal to the sum of the processing times of its assigned tasks
(workload of the station) and cannot exceed the cycle time of the assembly
line, c.

Each task j is assigned to a single station k and has a set of direct “preced-
ing tasks” Pj which must be accomplished before j is started. These constraints
are normally represented by means of an acyclic precedence graph. The ver-
tices of the graph represent the tasks where a directed arc (i, j) indicates that,
on the production line, task i must finish before the start of task j.

Recently and because of the need of introducing space constraints in ALB,
researchers started to additionally consider the linear area (i.e., one dimen-
sional length needed by workers) associated to each task j by means of a
new model variable aj . Each station k has also a linear area a(Sk) which
is equal to the sum of the areas required by the tasks assigned to it (Sk).
The linear area of the assembly line A is the highest linear area of the sta-
tions, defined by A = maxk=1,2,...,ma(Sk). This new family of models is called
TSALBP (Bautista and Pereira 2007) and introduces additional space features
to ALB.

TSALBP states that, for a set of n tasks, restricted by the precedence
graph, and with their temporal tj and spatial aj attributes (1 ≤ j ≤ n), each
task must be assigned to a single station in a way that: (i) every precedence
constraint is satisfied, (ii) no station workload time (t(Sk)) is greater than
the cycle time (c), and (iii) linear area required by any station (a(Sk)) is not
greater than the available linear area per station (A).
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2.2 Multiobjective optimization

Multiobjective optimization considers multi-criteria decision problems involv-
ing more than one objective function to be optimized simultaneously (Miet-
tinen 1999, Greco et al 2005, Ehrgott 2006, Branke et al 2008). Typically in
multiobjective optimization there is not a single solution that simultaneously
optimizes each objective. Instead, there is a set of Pareto optimal solutions.
A solution is called non-dominated or Pareto-optimal if none of the objec-
tive functions can be improved in value without degrading one or more of the
other objective values. The set of Pareto optimal solutions is often called the
Pareto front. Multiobjective optimization can be mathematically described by
minx∈TF (x) where F (x) = [f1(x), . . . , fm(x)] is the m-dimensional function
to be optimized and T is the set of constraints applied to the decision variables
of the problem x: T = {x ∈ Rn : g(x) = 0, h(x) ≥ 0}.

These optimization problems arise when optimal decisions need to be taken
in the presence of trade-offs between two or more conflicting objectives. This
is the case of ALB and specifically, the TSALBP, where some models consider
the need of optimizing more than one objective at the same time. For instance,
the majority of the TSALBP variants consider the joint minimization of the
cycle time c, linear area of stations A, and number of stations m (Bautista
and Pereira 2007).

Metaheuristics are a family of approximate non-linear optimization tech-
niques that provide acceptable solutions in a reasonable time even when prob-
lems are hard and complex (Talbi 2009). Population-based metaheuristics
such as evolutionary algorithms are well-suited for handling complex multi-
objective problems (Mukhopadhyay et al 2014). One of the most well-known
metaheuristic for tackling multiobjective problems is evolutionary multiobjec-
tive optimization (EMO) (Deb et al 2002, Coello et al 2007). These EMO
algorithms are one of the most popular approaches to generate Pareto optimal
solutions by evolving a set of solutions simultaneously in one run and in a rea-
sonable time (Coello et al 2007, Talbi 2009, Shen and Yao 2015). In the past 20
years, EMO received much attention and researchers have applied it to many
areas (Eiben and Smith 2015), showing successful applications in problems
such as scheduling (Zhu et al 2016), manufacturing systems (Shen and Yao
2015, Rada-Vilela et al 2013, Chica et al 2011), and industrial robotics (Gao
and Zhang 2015). The main advantage of these algorithms for solving multi-
criteria problems is the fact that they typically generate sets of various non-
dominated solutions, allowing the computation of an approximation of the
entire Pareto front. Some of the most popular EMO algorithms in the litera-
ture are NSGA-II (Deb et al 2002) and MOEA-D (Zhang and Li 2007).
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2.3 Robust optimization

2.3.1 Robustness definition and robust EMO

The traditional formulation of optimization problems, both single and multi-
objective, is inherently static and deterministic. However, reality is dynamic
and uncertain: environmental parameters fluctuate, materials wear down, pro-
cessing or transportation times vary, clients change their demands, etc (Beyer
and Sendhoff 2007, Ben-Tal et al 2009). When uncertainty is not added to
the optimization process, the optimized solutions for those systems can be
unstable and sensitive to small changes.

There are different robustness concepts in the literature, see e.g. (Beyer
and Sendhoff 2007, Ben-Tal and Nemirovski 2002, Bertsimas et al 2011). A
way to tackle with this uncertainty in optimization is by providing solutions
to the optimization problem with a high degree of robustness. One of the most
common way to obtain robust solutions is to calculate the desired robustness
measures and the related (robust) constraints explicitly (Beyer and Sendhoff
2007). In some cases, as ours, robustness measures are included in the original
problem formulation as additional constraints or objective functions. There-
fore, the problem properly handles uncertainty but still has a deterministic
mathematical formulation.

With respect to EMO, the work of Deb and Gupta (2006) is the first and
one of the most important contributions in introducing robustness in this kind
of algorithms. The authors define a robust solution as one which is least sen-
sitive to the perturbation of the decision variables in its neighborhood. More
recently, Mirjalili and Lewis (2015) proposed performance metrics for robust
EMO and Gaspar-Cunha et al (2014) presented sets of robust test problems
accounting for the different types of robustness cases and non-dominated so-
lutions were classified according to their degree of robustness.

2.3.2 Robust assembly line balancing

In this publication we focus on the uncertainty coming from changes of the
environmental and operating conditions which are changes in the demand for
the products to be assembled. These uncertainties are modeled through the
input quantities provided by the environment of the system to be optimized
(also known as Type I variations in Tsui and Mistree (1996)).

With respect to ALB, one of the most common ways of finding robust
solutions is to search for the solutions that perform well across all possible
scenarios (Battäıa and Dolgui 2013). Using this approach, Xu and Xiao (2011)
dealt with the mixed ALB problem variant and proposed a lexicographic-order
on the α-worst case scenario (i.e., a scenario for which the system performs
equally or better than for α × 100% of all scenarios). The majority of the
approaches existing in the literature for robust ALB are based on considering
uncertainty in the input attributes of the tasks, such as operation time, by
defining interval values or by setting different plausible scenarios (i.e., set of
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possible values for the input attributes depending on past actions or historical
data). The most used robust criteria rely on the worst case by using traditional
min-max or variations of it (Dolgui and Kovalev 2012, Simaria et al 2009, Xu
and Xiao 2011, Saif et al 2014).

Dolgui and Kovalev (2012) proposed an ALB model and a dynamic pro-
gramming method to minimize the cycle time by following a worst scenario
approach; while Li and Gao (2014) characterized unstable demand in man-
ual mixed-model assembly lines by several representative scenarios. Another
well-known uncertainty focus in ALB is the time: task times have uncertain
values by defining intervals or known distributions. For instance, Gurevsky
et al (2012) dealt with the SALBP-E when having task times within intervals
and proposed a way to find a compromise between the objective function min-
imization and a stability ratio. A related stability study was done in Gurevsky
et al (2013) but for the case of an ALB problem where a workstation can have
several workplaces, there are exclusion constraints, and the processing times
of the tasks can vary during the cycle of the assembly line.

Chica et al (2013) also defined a set of scenarios and proposed a visual rep-
resentation of the optimal solutions to quantitatively measure and represent
how robust the assembly line configuration is on the set of scenarios or pro-
duction plans. The work of Papakostas et al (2014) also evaluated a posteriori
the solutions of a model for minimizing time and cost through a set of demand
profiles but they used single-objective particle swarm optimization.

2.4 Simulation when optimizing under uncertainty

Simulation techniques allow the modeling of complex systems in a natural
way (Nance and Sargent 2002, Gass and Assad 2005). These techniques can be
incorporated into optimization models without a mathematical sophistication
and the computational time typically stays manageable (Lucas et al 2015).
Simulation techniques can be considered as a powerful tool to detect and
evaluate those situations where risks could appear and also provide with a
robust optimization solution. Although there are different kinds of simulation,
Monte Carlo simulation has been proved to be useful for obtaining numerical
solutions to complex problems which cannot be efficiently solved by using
analytic approaches (Kroese et al 2014). This kind of simulation is defined
as a set of techniques that make use of random number generation to solve
certain stochastic or deterministic problems. Hence, by using this simulation
approach, a solving method can be naturally extended to consider a different
distribution for each stochastic variable.

EMO methods can make use of simulation paradigms to be employed when
solving optimization problems under uncertainty (Juan et al 2016, 2015). This
extension of EMO algorithms is oriented to efficiently tackle an optimization
problem involving stochastic components. The stochastic components can be
either located in the objective function (e.g., random customers demands,
random processing times, etc.) or in the set of constraints (e.g., customers
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demands that must be satisfied with a given probability, deadlines that must
be met with a given probability, etc.).

As mentioned before, several works in the literature deal with the com-
bination of EMO algorithms and robust optimization (Beyer and Sendhoff
2007). However, just a few of them also use Monte Carlo simulation. Deb and
Gupta (2006) explained two procedures to introduce the robustness concept
into multi-objective optimization and demonstrated their benefits for a par-
ticular engineering design problem. One work in the literature which proposes
a similar approach to ours is the one of Sahali et al (2015). They developed
and implemented a genetic algorithm, based on an evaluation mechanism of
objective functions, which integrate the Monte Carlo simulation to calculate
the robustness of the objective function and different constraints. We will use
Monte Carlo simulation as our simulation method.

Regarding unbalanced assembly lines some authors have used simulation to
investigate them, for example taking into account their operation time means,
coefficients of variation and/or buffer sizes (Shaaban and Hudson 2012). In the
particular case of the TSALBP, uncertainty may appear in different parts of
the optimization process such as the uncertain demand of the products (Chica
et al 2013, 2016). Several particular scenarios can be generally stated in order
to test the robustness of solutions. However, we might miss risk situations if
solutions are just tested with a small number of discrete scenarios. Therefore,
simulating a high number of possible scenarios will have a great impact in the
evaluation of how assembly line configurations behave under these conditions.
We could obtain a more realistic measure of robustness by taking into account
a higher number of more diverse risk situations for the set of production plans.

2.5 Mathematical definition of the r-TSALBP

In this section we describe the mathematical model for a multiobjective robust
ALB. This is a multiobjective optimization problem which models uncertainty
in the demand by setting production plans as an input. The model can be
solved by robust optimization methods with or without simulation techniques.
This model is called r-TSALBP and is a multiobjective TSALBP variant which
minimizes two objectives: the number of stations (m) and their linear area (A).

The r-TSALBP model incorporates the concept of flexibility which means
an assembly line configuration able to cope with demand changes. These de-
mand changes are defined through production plans which set the mix of
products to be assembled in the assembly line. The goal of this model is to
identify the most flexible assembly line configurations for a set of production
plans by searching for the most robust solutions based on three non-robustness
temporal metrics.

In this model, we assume that one worker is assigned to each station and
therefore, by minimizing the number of stations, we implicitly minimize the
number of workers because the factory must meet the demand with the mini-
mum number of workers (Chica et al 2010). With respect to the machinery and



10 Short form of author list

required tools, the r-TSALBP assumes that the required tools and components
to be assembled should be distributed along the sides of the line. In addition,
in the automotive industry, some operations can only be performed on one side
of the line. Then, the linear area of the stations restricts the physical space
where tools and materials can be placed.

2.5.1 Introducing uncertainty by production plans

r-TSALBP manages the uncertainty in the demand of products by including a
set I of product types. Being J the set of tasks to be assembled, a task j ∈ J
requires a processing time of tji for assembling product i ∈ I. r-TSALBP refers
Ψ to the set of assembly line configurations and ψ to a specific assembly line
configuration which belongs to the set. The same applies to the spatial features
of the tasks of the assembly line but, in this paper, we focus the uncertainty
in the temporal feature of the ALB problem.

We define E as the set of realistic production plans to model the demand
variation of the mix of products to be assembled. One of the plans of E is called
the reference production plan, ε0, and ψ0 is its assembly line configuration of
reference. Typically, this reference plan ε0 is the one having a balanced demand
for the products of I.

Given a production plan ε ∈ E, defined by a demand vector
−→
d ε = (d1ε, d2ε, ..., d|I|ε),

we can determine the average processing time of task j ∈ J for this plan ε by
Equation 1:

tjε =
1

Dε

|I|∑
i=1

tjidiε, (1)

where Dε is the global demand of plan ε given by Dε =
∑|I|
i=1 diε.

Table 1 shows the main variables and parameters of the r-TSALBP. Addi-
tionally, Table 2 shows the associated restrictions of the proposed model.
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Table 1 Main parameters and variables of the r-TSALBP model

J Set of all the elementary processing tasks of the line (j = 1, .., |J |)
n Number of tasks of the line: n = |J |
K Set of workstations (k = 1, .., |K|), |K| is equal to objective m
c Cycle time of the assembly line
Ψ Set of line configurations (ψ = 1, .., |Ψ |)
E Set of demand production plans (ε = 1, .., |E|)
tjε Average processing time of the elementary task j ∈ J (measured at normal work

pace) in production plan ε ∈ E
aj Linear area of the elementary task j ∈ J
Pj Set of immediate “preceding tasks” which must be accomplished before j is

started
UBm Upper bound of the number of stations. It is equal to the number of tasks
∆c Maximum exceeding time for all the stations k ∈ K at normal work pace.

∆c = γcc
xjk Binary variable being 1 if task j ∈ J is assigned to station k ∈ K. Otherwise its

value is 0
Sk Subset of tasks assigned to each station k ∈ K : Sk = {j ∈ J : xjk = 1} (referred

as the workload of the station)
yckε Binary variable being 1 if the processing time required in station k ∈ K for the

production plan ε ∈ E (
∑
j∈Sk

tjε) exceeds the cycle time c. Otherwise, 0

Table 2 Restrictions of the r-TSALBP model

Binary condition of the station-task assignment variable:

xjk ∈ {0, 1}, (j = 1, .., |J |; k = 1, .., |K|)

Binary conditions to denote variables exceeding time and/or linear area, respectively:

yckε ∈ {0, 1}, (k = 1, .., |K|; ε = 1, .., |E|)

Every task must be assigned to just one single station:

|K|∑
k=1

xjk = 1, (j = 1, .., |J |)

Every station must contain at least one task:

|J|∑
j=1

xjk ≥ 1, (k = 1, .., |K|)

The assignment cannot violate the immediate precedence relations:

|K|∑
k=1

k(xik − xjk) ≤ 0, (i ∈ Pj , j = 1, .., |J |)

The station workload time cannot exceed the maximum cycle time (including the defined
allowance):

|J|∑
j=1

tjεxjk ≤ (c+∆cyckε), (k = 1, .., |K|; ε = 1, .., |E|)

The sum of linear areas of tasks assigned to a station cannot exceed the maximum linear
area of the assembly line:

|J|∑
j=1

ajxjk ≤ A. (k = 1, .., |K|)
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Equations 2 and 3 show the two objective functions of the r-TSALBP
model. The first equation defines the number of stations of the assembly line
configuration while the second one sets the one dimensional linear area (i.e.,
maximum length for each station) of the assembly line.

f1(x) = m =

UBm∑
k=1

max
j∈J
{xjk}, (2)

f2(x) = A = max
k∈K
{

|J|∑
j=1

ajxjk}. (3)

In the next two sub-sections we first define the r-TSALBP non-robustness
metrics and second, how to use them as constraints within an optimization
method to find flexible assembly line solutions.

2.5.2 Temporal non-robustness metrics

The r-TSALBP formulation adds metrics to measure the overload of the work-
stations and production plans with respect to the cycle time c. These metrics
are normalized to [0, 1] and make use of yckε, a binary variable being 1 if the
processing time required in station k ∈ K for the production plan ε ∈ E
(
∑
j∈Sk

tjε) exceeds the cycle time c, and 0 otherwise. These non-robustness
metrics are defined as follows:

– g1
c : Rate of overloading production plans which overload at least one station
k (Equation 4).

g1
c =

1

|E|

|E|∑
ε=1

max
k∈K

yckε. (4)

– g2
c : Rate of overloaded stations, by at least one production plan, with re-

spect to the allowed workload time (Equation 5, where m is the number
or stations). Note that g2

c is a dynamic rate as it depends on the number
of stations of the configuration m, one of the objectives to be minimized
in the model.

g2
c =

1

m

|K|∑
k=1

max
ε∈E

yckε. (5)

– g3
c : Proportion of exceeding processing time of the stations in all the plans

with respect to the maximum exceeding time and number of overloaded
stations (Equation 6).

g3
c = g3

c (x) =
1

∆c
∑|E|
ε=1

∑|K|
k=1 y

c
kε

|E|∑
ε=1

|K|∑
k=1

(max{0,
|J|∑
j=1

tjεxjk − c}), (6)



Benefits of robust multiobjective optimization for flexible automotive ALB 13

where ∆c is the maximum allowable processing time above cycle time for
any workstation at a normal work pace. To ease the decision maker defini-
tion of the model, ∆c is usually defined as ∆c = γcc where γc is a flexibility
control parameter for exceeding cycle time.

2.5.3 Using the temporal non-robustness metrics as constraints of the model

We use the temporal non-robustness metrics defined in Section 2.5.2 as con-
straints within the optimization model. Using these constraints we are able
to inject the robustness concept during the optimization process by filtering
those solutions which do not fulfill the temporal constraints. These non-robust
solutions are not valid for the multiobjective optimization method (i.e., un-
feasible solutions). The following constraints define the robust and non-robust
solutions:

g1
c ≤ g̃1

c ; g2
c ≤ g̃2

c ; g3
c ≤ g̃3

c ,

where {g̃1
c , g̃

2
c , g̃3

c} are parameters defined in [0, 1] that restrict the temporal
non-robustness metrics.

Analogously, we can define the robustness temporal ratios as rc = 1−gc. A
decision maker could inject their preferences about her/his desired robustness
level by using minimum temporal robustness parameters r̃1

c , r̃
2
c , and r̃3

c . These
parameters define the latter temporal constraints by g̃1

c = 1− r̃1
c , g̃

2
c = 1− r̃2

c ,
and g̃3

c = 1 − r̃3
c . An illustrative example of the use of this constraint is the

following: the decision-maker robustness preference r̃1
c is set to 0.6 and then,

the non-robustness parameter g̃1
c is equal to 0.4. A feasible solution for the

r-TSALBP will be a solution which is robust in the 60% of the production
plans (according to the workload of the stations).

3 The automotive case study

In this section we describe the case study used in this paper. First, Section 3.1
shows the data collected for the experimentation and later, Section 3.2 de-
scribes the methods and parameters used for running the computational ex-
periments.

3.1 Industrial data description

The cases study involves the data of the engines’ assembly line of the Nissan
Motor Iberica plant, located in Barcelona. This assembly line assembles up
to nine different types of engines (P1, P2, ..., P9). Figure 1 shows one of these
engines, the one of the Nissan Pathfinder. The number of elementary tasks
for manufacturing one engine is 380 but for simplification, those tasks were
grouped in 140 operations. Information about preceding tasks, operating times,
and area is shown in Appendix C of the supplemental material file. All of
the engines have different destinations and features. The first three engines,
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P1, P2, P3, are for 4x4 vehicles. Engines P4 and P5 are for vans; and the last
four types (P6 − P9) are for commercial trucks of medium tonnage.

Fig. 1 Nissan Pathfinder engine, assembled in the industrial assembly line of the case study.

Under conditions of demand equilibrium (i.e., equal demand for the all the
engines) and a cycle time of 3 minutes, the assembly line is balanced by 21
workstations with an average length of 4 meters each. However, the engines’
demand is not usually homogeneous or identical for the nine types of engines.
This fact means that, although the assembly line maintains a daily production
of 270 units, it should be able to adapt to different production plans based on
the partial demands of each type of engine.

The present case study has a cycle time of c = 180s, which allows to man-
ufacture 270 engines for an effective day of 13.5 hours uniformly distributed
in two shifts. Table 3 shows the most usual 23 demand plans for the company.
Seven of these 23 plans (i.e., plan 1, 2, 3, 6, 9, 12, and 18) are set as the most
representative demand plans for a working day in the industrial plant and
shown in the results’ tables of this paper. However, we have considered all the
23 demand plans to search for the most robust assembly line configurations.

Each of the latter production plans leads to a weighted average process time
for the 140 tasks of the case study. For example, task j = 13 has processing
times of 1,620, 1,575, 1,470, 1,350, 1,425, 1,530, 1,500, 1,380, and 1,650cs
for engines from type P1 to P9, respectively. Meanwhile, the corresponding
demands to these engines according to plan number 12 are: 24, 23, 23, 45,
45, 28, 28, 27 and 27 units. Therefore, the weighted average of the process
time for operation j = 13 is 1,483cs in plan 12, in contrast to 1,532cs in plan
9. For more data about the production plans and tasks processing times, the
supplemental material file shows the weighted processing times of all the 140
assembly operations according to the seven representative plans.
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Table 3 Units of demand of 23 production plans for the nine engine types (P1, P2, ..., P9)
during a 13.5 hours day divided into two shifts.

Family
4x4 Vans Trucks

Plan P1 P2 P3 P4 P5 P6 P7 P8 P9 Total
1 30 30 30 30 30 30 30 30 30 270
2 30 30 30 45 45 23 23 22 22 270
3 10 10 10 60 60 30 30 30 30 270
4 40 40 40 15 15 30 30 30 30 270
5 40 40 40 60 60 8 8 7 7 270
6 50 50 50 30 30 15 15 15 15 270
7 20 20 20 75 75 15 15 15 15 270
8 20 20 20 30 30 38 38 37 37 270
9 70 70 70 15 15 8 8 7 7 270

10 10 10 10 105 105 8 8 7 7 270
11 10 10 10 15 15 53 53 52 52 270
12 24 23 23 45 45 28 28 27 27 270
13 37 37 36 35 35 23 23 22 22 270
14 37 37 36 45 45 18 18 17 17 270
15 24 23 23 55 55 23 23 22 22 270
16 30 30 30 35 35 28 28 27 27 270
17 30 30 30 55 55 18 18 17 17 270
18 60 60 60 30 30 8 8 7 7 270
19 10 10 10 90 90 15 15 15 15 270
20 20 20 20 15 15 45 45 45 45 270
21 60 60 60 15 15 15 15 15 15 270
22 20 20 20 90 90 8 8 7 7 270
23 10 10 10 30 30 45 45 45 45 270

3.2 Experimental setup

3.2.1 Parameters for the optimization methods

In order to obtain the results for the case study we use the r-TSALBP model
defined in Section 2.5 with the production plans of the Nissan engine (described
in previous Section 3.1). For this case, the reference plan ε0 for the r-TSALBP
is the one having a balanced demand for all the products of I (i.e., first plan
with 30 products of each type of engine).

The minimum robustness value injected by the decision maker prior to the
search as their preferences are r̃1

c = 0.75, r̃2
c = 0.9, r̃3

c = 0.95. These values
will determine how robust assembly line solutions are and will influence the
final set of non-dominated solutions offered to the decision maker. The allowed
exceeding cycle time for each station is γc = 0.05s.

The experimentation comprises the run of two EMO algorithms to solve
the Nissan case study. The first algorithm is an adaptation of the well-known
NSGA-II (Deb et al 2002) for solving the TSALBP. This method does not
consider uncertainty in the demand and therefore, solves a traditional ALB
problem. The second algorithm is the adaptive IDEA which was proposed
in Chica et al (2016) to solve the r-TSALBP. This extension of the origi-
nal IDEA (Singh et al 2008) searches for robust assembly line solutions by
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dividing the evolutionary algorithm population in two sub-populations. One
sub-population only includes robust solutions but the other sub-population
includes non-robust solutions to provide the algorithm with a higher diversity.
The number of solutions of both populations change during the run of the algo-
rithm and is adapted depending on the robustness of the set of non-dominated
solutions at every generation. For more information about this robust EMO
please refer to Chica et al (2016).

The parameters of both EMO algorithms are the following. The stopping
criterion is 300 seconds. Both algorithms use a population size of 100 individ-
uals, a crossover probability pc = 0.8, and a mutation probability pm = 0.1. In
the specific case of the adaptive IDEA, the unfeasibility ratio αI is set to 0.2
and the Pareto robustness ratio ∆r is set to 0.5 after running a preliminary
experimentation. Also, both algorithms were run 15 times with different ran-
dom seeds setting the run time as the stopping criterion. All the algorithms
were launched in the same computer: Intel XeonTM E5530 with two CPUs at
2.40GHz, 3.7 Gbytes of memory, and Scientific Linux 6.4 as operating system
and we use the same framework and programming language (C++) for the
development of the algorithms.

3.2.2 Monte Carlo simulation method

The probability distributions of the demands for each kind of engine are un-
known. As said, the company provided the most representative scenarios with
the most probable demands but more production plans (i.e., scenarios) can
emerge. In order to generate more representative scenarios with the available
demand information, we extract statistical information of the demand for each
engine (such as minimum, maximum, average, or median) from the production
plans.

A set of different engines’ demand values are built once we have obtained
the probability distributions which represent the processing times of each en-
gine. These demand values are used to create a set of thousands of new pro-
duction plans. This way we can generate similar demands to the most common
but not exactly equal and then, to characterize a probability distribution that
fits the empirical data of the production plans as good as possible.

We will use the Monte Carlo simulation to calculate the robustness of the
solutions in all the generated scenarios. Thanks to the use of this Monte Carlo
simulation technique, a deeper analysis can be done. Monte Carlo simulation
was chosen to perform this process because of its simplicity and appropriate-
ness for evaluating a set of artificially generated demand plans. Several studies
demonstrate that Monte Carlo simulation has many advantages over conven-
tional methods in the estimation of uncertainty (Gilks et al 1996, Coleman
and Steele 1995). The simulation process is fast and allows us to calculate the
robustness metrics for a large number of scenarios. Therefore, risk evaluations
with a high number of engines’ demand combinations are possible by always
considering that the total number of assembled engines per day is 270.
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A Monte Carlo simulation of 1,000 runs is built by generating probabil-
ity distributions of the engines’ demand taking into account the provided 23
productions plans (defined in Table 3 of Section 3.1). Specifically, we used a
triangular probability distribution to represent the behavior of the processing
times of each engine Pi. This triangular distribution is depicted by the max-
imum, minimum, and average values for each product in the 23 production
plans. We have chosen the triangular distribution as it is a simple and realis-
tic representation of the probability distribution when sample data is limited.
Also, it does not need a high number of parameters for the generating the
probability distribution.

We will show and analyze the results of this Monte Carlo simulation ap-
proach using the additional generated production plans in the next Section 4.3.

4 Experimental results

This section explains the considered computational experiments to study the
robustness of the assembly lines under scenarios of uncertain products’ de-
mand. First, six different assembly line configurations are selected from the
results of two EMO algorithms. Later, some experiments are performed by
considering Nissan production plans to evaluate the robustness of the six con-
figurations. Finally, we show how a simulation technique is used as a tool to
intensively use thousands of plans and compare the robustness metrics ob-
tained for the six assembly line configurations.

4.1 Obtaining a set of non-dominated solutions for the assembly line

We obtain a set of non-dominated solutions for the two r-TSALBP objectives
by using the two EMO algorithms. Figure 2 shows different non-dominated
solutions obtained using the adaptive IDEA algorithm. These non-dominated
solutions are possible configurations, with a minimum level of robustness for
the decision maker. All of them are equally preferable as they minimize both
conflicting objectives, number of stations m and their linear area A, with
different values.

For studying the impact and analyzing the managerial insights of selecting
different assembly line configurations, three of these non-dominated solutions
are selected from the set of assembly line configurations. These solutions trade
one objective off for the other (number of stations m and linear area A). Please
note that, as stated before, our model assumes that one worker is assigned to
one station and therefore, the minimization of the number of stations implicitly
minimize the number of workers. The first one corresponds to a 18-stations
assembly line which needs a linear area of 5.5 meters (ζ1 with m = 18 and
A = 5.5); the second one corresponds to a 21-stations assembly line which
requires a linear area of 4.5 meters (ζ2 with m = 21 and A = 4.5); and the
third one corresponds to a 23-stations assembly line which needs a linear area
of 4 meters (ζ3 with m = 23 and A = 4).
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Fig. 2 Pareto front with different assembly line configurations for a Nissan instance, ob-
tained by the adaptive IDEA when minimizing the two objectives of the r-TSALBP model
(number of stations m and their area A).

Tables 4 and 5 depict two different assembly line configurations which
have 23 stations and 4 meters of linear area and ζR3 . These configuration of
the assembly lines were respectively obtained by a standard multiobjective
method (ζN3 ), and a robust multiobjective method, adaptive IDEA, (ζR3 ). As
already explained, the adaptive IDEA incorporates mechanisms to address
robustness through temporal constraints. Similar tables for the 18-stations
solutions, (ζN1 and ζR1 ), and 21-stations solutions (ζN2 and ζR2 ), are shown in
the supplemental material file of this paper.

4.2 Robustness evaluation using the Nissan production plans

Using the Nissan production plans we can test the behavior of the assembly
line configurations. Tables 6 and 7 show the workload of the non-robust and
robust assembly line configurations (referred as ζN3 and ζR3 ) which are formed
by 23 stations of 4 meters for the seven selected plans because of the lack of
space. In these tables we can see the stations’ workload for the selected plans
in each of the columns. Also, the last two columns show the overload times
and the maximum exceeding time for all the stations k ∈ K (i.e., ∆c). Again,
similar tables are available in the supplemental material file for the 18-stations
and 21-stations assembly line configurations.

We can see that, for the 23-stations solution ζN3 found by the non-robust
EMO algorithm (Table 6), 3 of the 23 workstations (11, 17, and 18) need
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Table 4 Assembly configuration line with objectives m = 23 and A = 4 (ζN3 ) found by a
standard (non-robust) multiobjective method, NSGA-II.

k j ∈ Sk

1 1 9 10
2 3 4 5 7 8 11
3 6 13 14 16 18
4 12 15 17 19 20
5 21 22 23 24 26 27
6 25 28 29 30
7 31 32 33 34 35 36 37
8 38 39 40 41 42
9 43 44 45 49 59 60
10 46 47 48 50 51 52 53 54
11 55 56 57 58 61 62 63 64 65
12 2 66 67
13 68 69 70 71 72
14 73 74 75 76 77
15 78 79 80 81 82 83 86
16 84 85 87 88 89 90 91 92 94
17 93 95 98 99 100 101 102
18 103 104 105 106 108 109 110 111 112 113 114 115
19 107 116 117 118 119 120
20 121 131 132 134 135
21 97 122 128 136 137 138 139
22 123 124 125 126 127 129 130
23 96 133 140

Table 5 Assembly configuration line with objectives m = 23 and A = 4 (ζR3 ) found by a
robust multiobjective algorithm, adaptive IDEA.

k j ∈ Sk

1 1 9 10
2 3 5 7 8 11 13
3 4 6 14 15
4 16 17 20
5 12 18 19 21 22 26 27
6 23 24 25 28 29 30
7 31 32 33 34 35 36
8 2 37 38 39 40
9 41 42 43 44
10 45 46 47 48 49 50 51 59 60
11 52 53 54 55 56
12 57 58 61 62 63 64 66
13 65 67 68 69 71 72
14 70 73 74 75 79
15 76 77 78 80 81 82
16 83 84 85 86 87 88 89 90
17 91 92 94 98 99 100
18 95 101 102 103 104 105 106 107 108 109 110 111
19 93 112 113 114 115 116 117 118
20 119 120 121 122 123 124
21 125 126 128 131 132 134
22 127 129 130 135 136 137 138
23 96 97 133 139 140

more processing time than the available cycle time (i.e., 180s) to assemble the
270 engines in some of the plans considered. It means that these stations are
overloaded when the demand plans are not the one of reference.

On the contrary, this situation is not happening for the 23-stations solution
ζR3 , given by the robust adaptive IDEA method (Table 7). With this robust
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method, all the stations can support the uncertainty defined by the different
production plans and therefore, the assembly line is not overloaded by different
task processing times. We have similar results for the other two assembly line
configurations ζ1 and ζ2 with 18 and 21 stations, respectively. In these two
cases (see supplemental material file), the standard EMO algorithm provides
assembly line solutions where the stations are overloaded more frequently than
the configuration found by the robust multiobjective method.
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Table 8 Metric values for the six assembly configuration lines.

Configuration ζ1 Configuration ζ2 Configuration ζ3
(m = 18, A = 5.5) (m = 21, A = 4.5) (m = 23, A = 4)

Non-robust Robust Non-robust Robust Non-robust Robust

Metrics ζN1 ζR1 ζN2 ζR2 ζN3 ζR3
g1c(r1c) 1 (0) 0 1 (0) 0.17 (0.83) 1 (0) 0 (1)
g2c(r2c) 0.22 (0.78) 0 (1) 0.24 (0.76) 0.05 (0.95) 0.13 (0.87) 0 (1)
g3c(r3c) 0.09 (0.91) 0 (1) 0.09 (0.91) 0.02 (0.98) 0.13 (0.87) 0 (1)

Table 8 shows the corresponding robustness metric values for the found
assembly line configurations. The first row shows the number of stations and
linear area needed (m,A) for each configuration solution. The second row
distinguishes between the non-dominated solutions given by the non-robust
and the robust EMO algorithm. The remaining three rows show the metrics
g1
c , g2

c , g3
c , and r1

c , r
2
c , r

3
c , which summarize the non-robustness and robustness

of the assembly line configurations, respectively.
These metrics’ values are useful for a decision maker as they provide in-

formation about how flexible the configuration is and the possible managerial
impact (i.e., impact on other departments of the organization) when adopting
one or another solution. In light of this table, we can see that:

– For ζN1 (i.e., the 18-stations assembly line configuration given by the stan-
dard EMO algorithm), the rate of overloaded production plans with respect
to the allowed workload time g1

c is 1. It means that 100% of plans overload,
at least, one station. On the contrary, the robust EMO algorithm provides
with a configuration ζR1 which is not overloaded in any of the stations. The
second robustness metric gc2 indicates that the number of overloaded sta-
tions with respect to the allowed workload time is not very high (i.e., 22%)
for the configuration given by the standard EMO algorithm, although this
metric value is lower for the configuration given by the robust adaptive
IDEA (i.e., 0%). Finally, the third robustness metric gc3, which shows the
exceeding processing time for all the workstations, is 9% for the configu-
ration ζN1 given by the standard EMO algorithm. In contrast, this value
drops to 0% in the solution ζR1 given by the robust EMO algorithm.

– Metric values corresponding to the 21-stations assembly line configuration
ζN2 given by the standard EMO algorithm are very similar to the ones
obtained for the 18-stations configuration with the same algorithm. On
the other hand, the solution obtained with the robust EMO algorithm is
less robust than the corresponding 18-stations assembly line, but still those
metric values lead to confirm that the robustness of the solution is higher
than the obtained by the standard algorithm. Decision makers can still
use this additional information when choosing the best solution for the
company.

– For ζ3, the 23-stations assembly line configuration, we see that the robust
method can get again a totally robust configuration. Metric values for
the non-robust configuration ζN3 are similar to 18-stations configurations.
All the plans overload at least one workstation (metric g1

c ), 13% of the
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Table 9 Metric values for the six assembly configuration lines for the Monte Carlo simulated
production plans.

Configuration ζ1 Configuration ζ2 Configuration ζ3
(m = 18, A = 5.5) (m = 21, A = 4.5) (m = 23, A = 4)

Non-robust Robust Non-robust Robust Non-robust Robust
Metrics ζN1 ζR1 ζN2 ζR2 ζN3 ζR3
g1c (r1c ) 0.96 (0.04) 0.41 (0.59) 0.99 (0.01) 0.30 (0.70) 0.95 (0.05) 0 (1)
g2c (r2c ) 0.28 (0.73) 0.11 (0.89) 0.24 (0.76) 0.05 (0.95) 0.13 (0.87) 0 (1)
g3c (r3c ) 0.01 (0.99) 0.01 (0.99) 0.02 (0.98) 0.01 (0.99) 0.02 (0.98) 0 (1)

workstations are overloaded at least in one plan (gc2), and the exceeding
processing time of the stations is almost the 13% of the maximum exceeding
time of the overloaded stations (metric gc3).

4.3 Extending the set of production plans through simulation

In the previous experimentation, the provided demand plans were taken into
account for running evaluating the robustness in the proposed EMO algo-
rithms. But Monte Carlo simulation can help us to extend the evaluation of
the robustness of the assembly line configurations by using a higher number
of demand plans instead of using the reduced number of them.

One of the potential disadvantages of Monte Carlo simulation is that a sin-
gle run of trials does not indicate by itself the reliability of the results. However,
the greater the number of Monte Carlo simulation trials, the more ”stable”
will be the output standard deviation (that is, the standard uncertainty of the
measuring). This property of Monte Carlo simulation can thus be used as a
direct method for determining the number of trials for a given application. We
have tried different number of scenarios, checked the output standard devia-
tions, and chosen the number of simulations that start to provide really small
changes in standard deviation. In this case, it was 1,000 scenarios.

Figure 3 shows how the stations are overloaded when simulating 1,000
production plans with different engines’ demands. The box-plot shows the
results for the six assembly line solutions of 18, 21, and 23 stations (ζ1, ζ2,
and ζ3) when obtained by non-robust (ζN ) and robust (ζR) EMO algorithms.
This box-plot allows us to visually identify the solutions that present a more
flexible behavior when evaluating the risk of having a diverse and high number
of production plans. The red line of the box-plot sets the available cycle time
c of the assembly line to better visualize what configurations are always below
this level.

Additionally, Table 9 provides the robustness metric values g1
c , g2

c , g3
c , r1

c ,
r2
c , and r3

c obtained after evaluating all the simulated production plans. We
can compare these metric values with respect to the previous ones, obtained
without simulation and only the discrete set of the plans provided by Nissan.
The analysis of these results can arise the following insights:



Benefits of robust multiobjective optimization for flexible automotive ALB 25

Fig. 3 Overloaded time of the workstations for the six assembly line configurations using
a Monte Carlo simulation to generate 1,000 different production plans.

– The robustness of the 18-stations assembly line configuration given by the
non-robust EMO algorithm ζN1 is similar than the one obtained using the
discrete set of plans. However, metrics obtained for the configuration given
by the robust EMO algorithm ζR1 indicate that the flexibility of this con-
figuration is lower and therefore, less robust when a higher number of more
diverse plans are considered by means of the Monte Carlo simulation. Nev-
ertheless, taking into account the g1

c metric value, there is a significant
number of plans which exceed the cycle time but just a few workstations
of the assembly line are affected (g2

c metric) and when so, by just a low
exceeding workload time (g3

c metric).
– Both 21-stations assembly line configurations ζ2 show approximately the

same behavior than the 18-stations ones. That is, the robustness of the
configuration given by the non-robust EMO algorithm ζN2 remains simi-
lar when a large number of plans, obtained by a Monte Carlo simulation
is performed. However, the robustness of the configuration given by the
robust EMO algorithm ζR2 seems to get worse robustness as the number
of production plans that overload the the cycle time of the workstations
increases.

– Finally, for the assembly line configuration with 23 stations ζ3, both robust
and non-robust configurations have similar metric values as when using the
discrete set of production plans.

5 Final discussion and concluding remarks

When the global demand varies with respect to the reference plan, there are
adverse effects on the production line. The main effects can be an increase of
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the number of workstations to satisfy new production plans when having a
higher global demand, and the reduction of workers when the global demand
decreases (i.e., dead periods can arise in the assembly line).

These effects require, with respect to the managerial impact of the produc-
tion system, significant changes in the production system. Clearly, an increase
in the number of workstations needs hiring more workers for the assembly
line and also, as a reassignment to new workers is necessary, a training phase
for them is required during several weeks with a consequent reduction in the
number of products assembled by the company (i.e., the productivity of the
automotive company). There are also possible negative effects in the work-
stations and production line when global demand does not change but there
are changes in the production mix with respect to the one considered when
balancing the assembly line (reference plan).

All the latter effects and damaging managerial consequences for the pro-
duction line and company itself can be alleviated by using our proposed multi-
objective robust models. Our case study from the Nissan assembly line showed
how our robust TSALBP model, EMO algorithms, and Monte Carlo simulation
techniques can help the decision maker to find flexible assembly line configu-
rations which have less risk when the demand of the products changes. With
our model and methods, it is possible to propose various optimal and robust
assembly line configurations (i.e., non-dominated solutions). And additionally,
we can measure the flexibility of all the solutions with respect to a reference
assembly line configuration.

This is done through robustness metrics applied to an assembly line con-
figuration with respect to a set of demand plans (E). We understand these
robustness metrics as the capacity of the assembly line configuration to ab-
sorb the possible demand variations in the set of products to be assembled
in the same assembly line (I). Therefore, an assembly line configuration is
more robust when less changes are needed to adapt the assembly line to new
incoming demand scenarios.

Multiobjective optimization methods as those based on EMO offer the
decision maker a set of equally-preferable alternative solutions. Also, EMO al-
gorithms offer a manager a set of equally-preferred solutions for the assembly
line and these solutions can be restricted by injecting decision maker prefer-
ences prior to the search. For the Nissan case study, three different assembly
line configurations were selected from the Pareto front resulted from the opti-
mization process: ζ1 with 18 stations of 5.5 meters, ζ2 with 21 stations of 4.5
meters, and ζ3 with 23 stations of 4 meters. These three solutions present dif-
ferent objective values for the decision maker. We obtained and analyzed in the
experimentation two options for each one: ζR with a robust EMO algorithm
and ζN without it.

We explored the values for the non-robustness metrics gc1, gc2, and gc3 and
robustness metrics rc1, rc2, and rc3 for the latter six solutions. These metrics
show different information about the flexibility of the solutions in terms of
overloaded stations by a set of production plans. The use of Monte Carlos
simulation helped us to provide more certainty about when a solution is ro-
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bust as we will be able to compute these metrics in a higher number of future
scenarios. We showed that a way of improving the risk evaluation of the as-
sembly line configuration is by means of simulation approaches. Thanks to
this simulation, the values of the robustness metrics are calculated by taking
into account a high number of simulated demand plans. In our experiments
we first used a discrete set of plans and later enriched the robust approach by
generating 1,000 different demand plans in order to evaluate the robustness of
the six selected assembly configurations.

The r-TSALBP model and its use of temporal robustness ratios as opti-
mization constraint can offer managers a set of non-dominated solutions which
can deal with high levels of uncertainty in the demand plans. The robustness
achievement of the solutions with respect to these metrics provides information
about the kind of managerial actions to apply when adopting the specific as-
sembly line configuration. For instance, we observed that, using the simulated
extended set of plans, non-robust solution ζN1 would have overloading prob-
lems in 27% of the workstations (gc2), and an exceeding workload of the 1.3%
of the maximum exceeding time (gc3). A solution with 23 stations found by a
non-robust EMO algorithm, ζN3 , will also be overloaded in the 13% (metrics
gc2 and r2

c ), and by almost all the demand plans in, at least, one workstation
(metrics gc1 and rc1).

The provided robust assembly line configuration ζR3 was totally robust with
respect to the defined set of demand plans and the 1,000 simulation plans. It
means that no changes will probably be needed when the current demand
changes. Solutions ζR1 and ζR2 (i.e., those having 21 stations and 4.5 meters of
linear area for the stations) did not obtain a full robustness value in the given
demand plans but much lower metric values gc1, gc2, and gc3 were obtained than
in the case of a standard non-robust model and EMO algorithm.

These robust models and built decision support system for assembly lines
are useful when the assembly lines are for mixed products and the attributes of
the tasks are based on averaged industrial measures such as averaged process-
ing time. Although there are more external implications for the organization,
the proposed flexibility information provides with the number of interventions
on the assembly line when the demand changes and therefore, the temporal
processing features of the tasks of the assembly line. The metrics alert about
potential re-adjustments that would cause additional works to be re-scheduled
in other shifts or during the weekends. These changes may cause production
inefficiencies until achieving the regular capacity of the line. As commented
by Eynan and Dong (2012), the process design and capacity investment cannot
be just a strategic decisions without considering the effect of the weekly (or
daily) decisions such as model mix planning (sequencing) which is the concern
of tactical planning.

Additionally, detecting which workstations are the least flexible is useful
to find the most problematic workstations if demand changes. Our first pro-
posed metric gc1 for instance, shows workstations that, under the conditions
of the assembly line configuration of reference, need more cycle time to fulfill
all the set or simulated production plans. Manufacturing process management
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technologies can offer the following solutions to solve this issue (Chica et al
2016): a) improve the processing time of the industrial tasks, b) request al-
ternative pieces having less processing time during their assembly (product
design department), and c) set a working pace over the normal activity of the
line (Bautista et al 2015) within the legal and trade union agreements (process
engineering).

Nevertheless, the proposed model and given results have limitations. For
instance, the r-TSALBP model and its managerial relevance do not apply when
we have a production system that is process-oriented. Also, these results are
limited when the industry needs to assemble extremely similar models or the
demand is constant. In general, this publication is not relevant for industries
where changes in the assembly line do not require important changes and they
can be easily made.

Future works may focus on adding the current robust EMO algorithms
and models with more realistic industrial features such as ergonomic fac-
tors (Bautista et al 2016). Furthermore, and although we have considered
uncertain demand in our case study, the use of more advanced simulation-
optimization approaches such as simheuristics (Juan et al 2016, Chica et al
2017) could promote the integration of simulation techniques within the opti-
mization procedure. Additionally, visualization processes to enhance the deci-
sion making process are, in our opinion, another important and promising line
in the area. First attempts to support the ALB decision maker with network
visualization have been recently done in Trawinski et al (2018).
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