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 2 

Collagen export from the endoplasmic reticulum (ER) requires TANGO1, 21 

COPII coats, and retrograde fusion of ERGIC membranes. How do these 22 

components come together to produce a transport carrier commensurate with 23 

the bulky cargo collagen? TANGO1 is known to form a ring that corrals COPII 24 

coats and we show here how this ring or fence is assembled.  Our data reveal that 25 

a TANGO1 ring is organized by its radial interaction with COPII, and lateral 26 

interactions with cTAGE5, TANGO1-short or itself. Of particular interest is the 27 

finding that TANGO1 recruits ERGIC membranes for collagen export via the 28 

NRZ (NBAS/RINT1/ZW10) tether complex. Therefore, TANGO1 couples 29 

retrograde membrane flow to anterograde cargo transport. Without the NRZ 30 

complex, the TANGO1 ring does not assemble, suggesting its role in nucleating 31 

or stabilising of this process. Thus, coordinated capture of COPII coats, 32 

cTAGE5, TANGO1-short, and tethers by TANGO1 assembles a collagen export 33 

machine at the ER.  34 

  35 
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INTRODUCTION 36 

As secretory cargoes increase in size and complexity through evolution, mechanisms for their 37 

export from the endoplasmic reticulum (ER) must adapt concomitantly. Collagens, the most 38 

abundant secretory cargo in mammals - representing nearly 25% of the dry weight of the 39 

mammalian body, are some of the most challenging of all secretory cargoes (1). Several 40 

requirements make collagen secretion a challenging task. First, in a complex multi-step 41 

process, collagens in the ER fold and trimerise into rigid, rod-like elements (2, 3) of up to 400 42 

nm in length (4). The folding/assembly of collagen must be coupled to its export, to retain 43 

unassembled collagen in the ER, whilst ensuring that all rod-like fully assembled collagen is 44 

rapidly exported. Second, assembled collagens are too large to fit into generic COPII-coated 45 

vesicles that are usually less than 90nm in diameter (5, 6). Third, the rapidity with which this 46 

cargo exits the ER and passes through the secretory pathway, requires efficient transfer 47 

between compartments. 48 

Our identification (7, 8) and the subsequent characterisation of TANGO1 (8–11) has 49 

revealed a single protein, conserved through most metazoans, that stands at the crossroads of 50 

all these processes, modulating them to bring about bulky cargo export from the ER. 51 

TANGO1 is an ER exit site (ERES)-localized, transmembrane protein required for export of 52 

collagen and other bulky protein components of the extracellular matrix such as Dumpy (8, 53 

12–14). Figure 1 is a schematic of three TANGO1 family proteins: TANGO1, TANGO1-54 

short and cTAGE5. A brief description of these proteins follows.  55 

TANGO1 is a protein of 1907 amino acids (Fig. 1A) of which 709 face the 56 

cytoplasm. TANGO1 contains a full transmembrane domain and a second membrane-inserted 57 

loop, which partially inserts into the inner leaflet of the ER membrane. The lumenal part 58 

contains a coiled-coil domain and, at the N terminus, an SH3-like domain. The SH3-like 59 

domain binds collagens via HSP47 (8, 15–17). The cytoplasmic part of TANGO1 is 60 

composed of two coiled-coil domains (CC1 and CC2) followed by a C-terminal proline-rich 61 

domain (PRD). CC1 contains a domain called TEER (Tether for ERGIC at the ER) that 62 
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recruits ERGIC-53-containing membranes (10); CC2 binds cTAGE5 (18), and PRD binds 63 

Sec23 and Sec16 (8, 15). 64 

TANGO1-short is a spliced isoform of TANGO1. It is composed of 785 amino acids 65 

that arise from the same exons that encode the cytoplasmic domains of TANGO1. The 66 

sequence of TANGO1-short differs in the membrane-inserted helix, and it contains only 15 67 

amino acids at the N terminus, within the ER lumen. It therefore lacks any capacity to interact 68 

directly with cargoes. We expect that TANGO1-short binds the same cytoplasmic proteins as 69 

TANGO1, but this has not been directly tested.  70 

Evolutionarily, TANGO1 appears to have been duplicated early in metazoans, 71 

yielding a TANGO1-like protein (TALI) (19). Like TANGO1, TALI is expressed as two 72 

isoforms. The long isoform is expressed in select tissues while the short isoform (cTAGE5) 73 

has a ubiquitous expression (11, 19–21). cTAGE5 is composed of 804 amino acids, with a 74 

short lumenal stretch of 38 amino acids, followed by a single transmembrane domain. The 75 

organisation of cytoplasmic domains is the same as TANGO1, with two coiled-coil domains 76 

and a PRD. The first (CC1) of cTAGE5 interacts with Sec12; CC2 interacts with TANGO1 77 

and Sec22, and the PRD, like TANGO1, interacts with Sec23 (17, 18, 22, 23). 78 

From the published data on these proteins, we can conclude that all three family 79 

members bind each other and Sec23. cTAGE5 binds Sec12 and Sec22. TANGO1 (and 80 

therefore TANGO1-short) does not bind Sec12. Of these proteins, only TANGO1 can bind 81 

cargo in the lumen. How different binding partners could affect the overall function of these 82 

proteins in ERES assembly and cargo export, remains untested.  83 

A newly discovered feature of TANGO1 is its lateral organisation into rings of up to 84 

300nm diameter, which corral COPII coats at the ERES (23). The organisation of cTAGE5 85 

and TANGO1-short in TANGO1 rings is not known.  86 

Exploiting the modular composition of TANGO1, we have generated  forms of 87 

TANGO1 (Figure 1 – Supp. 1A), each missing one specific domain and hence with one 88 

specific set of functions/interactions abrogated. With this set of reagents, we now address 89 

how TANGO1 assembles into a functional ring or a fence. We show that this fence of 90 
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TANGO1 family proteins surrounds COPII, and through specific tethers, physically links the 91 

ER and ERGIC for collagen export.  92 
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RESULTS 93 

 94 

Binding of TANGO1 to COPII controls TANGO1 ring formation 95 

The role of COPII in TANGO1 ring assembly could be addressed by using a mutant 96 

form of TANGO1 that lacks the PRD (TANGO1ΔPRD), which therefore cannot interact with 97 

Sec23 (8) (schematic of TANGO1, Fig 1A). 2H5 cells (HeLa cells with TANGO1 deleted 98 

using the CRISPR/Cas9 system (10)) were co-transfected with collagen VII and either 99 

TANGO1 or TANGO1ΔPRD and imaged using STED microscopy. Full length TANGO1 100 

formed distinct rings of somewhat uniform shape and size (Fig 2A). Surprisingly, 101 

TANGO1ΔPRD also assembled into rings, but with two clear differences. First, rings were 102 

smaller (Fig 2B, Fig 2 – Supp. 1A); and second, some rings appeared fused with each other to 103 

form either a planar tessellation (Fig 2C, Fig 2 – Supp. 1G) or long linear assemblies (Fig 2D, 104 

Fig 2 – Supp. 1B-F). Quantitative morphological descriptors of the size and shape of 105 

structures formed by TANGO1 constructs, were extracted using semi-automated image 106 

analysis (Fig. 2 – Supp. 2, Table 1) and are described in detail in the methods section and the 107 

figure legend.  Specifically, we fitted rings to an elliptical shape and measured the diameters 108 

of the ring in terms of major and minor axes of its fitted ellipse. This works well for regular-109 

shaped ellipses, however for structures and shapes that deviate from an elliptical shape, a 110 

rectangular bounding shape is a more useful approximation. Therefore, maximum and 111 

minimum diameters (Feret’s maximum or minimum) were also extracted and all these values 112 

are plotted in Figure 2E. From this quantification, we confirmed that rings formed by 113 

TANGO1ΔPRD, are significantly smaller than rings formed by TANGO1 (Fig. 2E, Table 1). 114 

We used the aspect ratio (the ratio of the major to minor axes of the fitted ellipses) as a 115 

descriptor of the shape of rings. By this measure, rings formed by TANGO1 and 116 

TANGO1ΔPRD had a similar shape (Fig. 2F).  117 

It is important to note that these cells still contain TANGO1-short and cTAGE5 118 

(Fig.1), both of which will recruit TANGO1ΔPRD to ERES. These data suggest that the 119 

cytoplasmic domains of the TANGO1-family of proteins act as a single unit and any one can 120 
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assemble into a ring, however TANGO1 brings cargo to the exit site. This suggests that 121 

overexpressing cytoplasmic isoforms (either TANGO1-short or cTAGE5) would increase the 122 

capacity of an ERES to export cargo, however TANGO1 is the only protein with the capacity 123 

to bring cargo to ERES. Collagen secreted in the absence of TANGO1 might thus be in an 124 

unfolded or unassembled form.  125 

In a complementary experiment, we studied the effect of Sec23A depletion on 126 

TANGO1 ring formation in RDEB/FB/C7 fibroblasts. Depleting cells of all Sec23 could 127 

create cellular stress and affect endomembrane regulation, so we attempted to minimise such 128 

a potential stress by using siRNA that targeted exclusively Sec23A, and not Sec23B. As 129 

expected, collagen export from the ER was reduced in Sec23A-depleted cells (Fig 2 – Supp. 130 

3).  131 

While TANGO1 in control cells was often visualised in rings (Fig. 2G), depletion of 132 

Sec23A appeared to phenocopy our results with TANGO1ΔPRD, showing multiple 133 

seemingly fused rings of TANGO1 assembled in planar arrays (Fig. 2H, Fig 2 – Supp. 4), 134 

quantified in Fig 2I. These structures/abnormal rings were almost never observed in cells 135 

expressing full length TANGO1, or cells that are not depleted of Sec23A.  136 

Based on our super-resolution microscopy images, we hypothesise that TANGO1 137 

rings could be represented as a multimeric assembly of units of TANGO1 family proteins 138 

(TANGO1, TANGO1-short and cTAGE5) that assemble into a fence.   139 

 140 

Lateral interactions along the circumference of a TANGO1 ring 141 

A key feature that could provide strength to a fence of TANGO1 would be lateral interactions 142 

between components in the fence. For example, the TANGO1-interacting protein cTAGE5 143 

(Fig. 3A) should be a component of the ring and could contribute to lateral interactions in the 144 

ring. We visualised TANGO1 and cTAGE5 in RDEB/FB/C7 cells by STED microscopy. Due 145 

to the low quality of commercially available anti-cTAGE5 antibodies for 146 

immunofluorescence, we were unable to visualise the localisation of cTAGE5 as clearly as 147 
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TANGO1, nonetheless cTAGE5 clearly localised along the rings delineated by TANGO1 148 

(Fig 3B).  149 

To test the involvement of cTAGE5 in TANGO1 ring formation, we generated a 150 

construct of TANGO1 lacking the second cytoplasmic coiled-coil (TANGO1ΔCC2) domain 151 

(Fig. 1 – Supp. 1 for a schematic) and hence, unable to interact with cTAGE5 (Fig 3A). 152 

STED microscopy revealed that, in contrast to full length TANGO1 (Fig. 3C), 153 

TANGO1ΔCC2 assembled into misshapen structures (Fig 3D and Fig. 3 – Supp. 1). Ring size 154 

and shape were quantified as in the previous section. Rings formed by TANGO1ΔCC2 were 155 

more variable in size (Fig. 3E, Table 1) and shape (Fig. 3F) than those formed by full length 156 

TANGO1. 157 

As a complementary approach, we characterised the effect of depleting cTAGE5, on 158 

ring formation in cells with endogenous TANGO1. As expected, in RDEB/FB/C7 fibroblasts 159 

depleted of cTAGE5 (Fig 3 – Supp. 2A), collagen secretion was blocked (Fig. 3 – Supp. 2B, 160 

C). TANGO1 structures phenocopied TANGO1ΔCC2 structures in 2H5 cells: rings of 161 

TANGO1 were misassembled (Fig. 3G) and formed unusual shapes, without considerably 162 

altering the number of rings observed (Fig. 3H). 163 

Another lateral interaction that might maintain fence integrity could be an intrinsic 164 

ability of TANGO1 to self-associate. A test of this proposition would be to identify a domain 165 

in TANGO1 that mediates self-association and show that it has a role in ring formation. To 166 

identify such a domain, we tested the ability of TANGO1-FLAG to co-immunoprecipitate 167 

with TANGO1ΔPRD, TANGO1ΔCC2 or TANGO1ΔCC1 (Fig. 1 – Supp. 1). We observed 168 

(Fig 4A) that TANGO1-FLAG was immunoprecipitated by TANGO1 and TANGO1ΔPRD, 169 

but not by TANGO1ΔCC2 (Fig. 4A) or TANGO1ΔCC1 (Fig 4B). Reasoning that the effect 170 

of the CC2 was likely indirect, as TANGO1ΔCC2 is unable to interact with cTAGE5 (Fig 171 

4A) (18, 22), we focused on the first coiled-coil domain (CC1) to identify a minimal region 172 

required for self-association. We generated two TANGO1 constructs with smaller deletions 173 

from the CC1, each of which had a deletion in a portion of the coiled-coil (TANGO1Δ1255-174 

1295 and TANGO1Δ1296-1336). As a control, we confirmed these constructs still interacted 175 
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with cTAGE5 (Fig 4B). Only TANGO1Δ1255-1295 did not immunoprecipitate TANGO1-176 

FLAG (Fig 4B).  177 

With a minimal self-association domain (a.a. 1255-1295) identified, we looked for its 178 

role in TANGO1 ring formation. 2H5 cells were co-transfected with collagen VII and either 179 

TANGO1ΔCC1, TANGO1Δ1255-1295 or TANGO1Δ1296-1336 and then imaged by STED 180 

microscopy. In line with our predictions, TANGO1ΔCC1 or TANGO1Δ1255-1295 could not 181 

form rings; of the 16 and 15 cells examined respectively, there were few discernible 182 

polymeric assemblies of TANGO1 (Fig. 4C, D), while TANGO1Δ1296-1336 behaved as full 183 

length TANGO1, forming distinct, readily detectable, independent rings (Fig. 4E) of similar 184 

size (Fig. 4 – Supp. 1A) and shape (Fig. 4 – Supp. 1B) as TANGO1. These data indicate that 185 

TANGO1-TANGO1 interactions (Fig. 4F), mediated by amino acids 1255-1295, are required 186 

to maintain ring integrity.  187 

In our coarse-grained view of this fence of TANGO1 and TANGO1 family of 188 

proteins (cTAGE5 and TANGO1-short), we would describe our data thus far in terms of two 189 

general sets of interactions. First, lateral interactions mediated by TANGO1 self-association 190 

and its interaction with cTAGE5 and TANGO1-short, and second, inward attractions of 191 

TANGO1/cTAGE5/TANGO1-short to COPII, thus affecting the ring size and its placement 192 

with respect to COPII budding machinery.  193 

 194 

Compartment tethering in a TANGO1 ring assembly pathway 195 

We have shown recently that TANGO1, via its CC1, recruits ERGIC membranes that fuse at 196 

the ERES (10). Could TANGO1 rings concentrate membrane recruitment for mega-carrier 197 

biogenesis? What role does the TEER domain play in ring assembly? To address these 198 

questions, we first identified a minimal TEER domain within the CC1, using our previously 199 

developed approach (10). 200 

Following our previous methodology (10), we generated two myc-tagged, 201 

mitochondrially-targeted TEER (mit-TEER truncates) constructs of 82 and 81 amino acids, 202 

respectively. Our original construct (10) had TANGO1 amino acids 1188 to 1396. From this, 203 
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we generated two smaller constructs. In one, we deleted amino acids 1255-1295 (mit-Δ1255-204 

1295); while in the other we deleted amino acids 1296-1336 (mit-Δ1296-1336) (Fig. 5A). 205 

These corresponded exactly to the deletions in the CC1 described in the previous section. 206 

We expressed the constructs in HeLa cells, fixed and then stained them using an anti-207 

myc antibody and visualised these samples using confocal microscopy (Fig. 5B). We 208 

confirmed the two constructs co-localised with the mitochondrial marker HSP60 (Fig. 5C). 209 

The extent of overlap of myc-epitope and HSP60 was quantified and is plotted as the 210 

Manders’ overlap coefficient (Fig 5D). 211 

As before (10), we co-stained transfected cells with anti-ERGIC-53 and anti-myc 212 

antibodies. To our surprise, mitochondria expressing mit-Δ1255-1295 showed no recruitment 213 

of ERGIC-53-containing membranes (Fig 5E). In contrast, mit-Δ1296-1336 still functioned as 214 

the TEER domain and recruited ERGIC membranes. The extent of colocalisation of ERGIC-215 

53 and myc for the two constructs was quantified and is plotted as Manders’ overlap 216 

coefficient (Fig 5F). This tells us that the minimal TEER is exactly the same forty amino 217 

acids we identified in the previous section, as those required for the self-association of 218 

TANGO1. This implies that either a TANGO1 dimer can recruit a tether or the tether links 219 

two TANGO1 monomers. This hypothesis is tested and presented in Fig 7. 220 

But how does this minimal TEER domain recruit ERGIC membranes? A prime 221 

candidate for this tethering activity is the evolutionarily conserved NRZ (NBAS, RINT1, 222 

ZW10) protein tether. NRZ tether is a multi-subunit tether complex (MTC) that assembles at 223 

the surface of the ER (24), is required for retrograde capture of membranes (25–27), partially 224 

localises to ER exit sites (28) and interacts with SNAREs that we have shown previously are 225 

required for collagen export from the ER (9, 10). One component of the MTC (RINT1) was 226 

also identified in our screen for genes required for protein secretion (7). Mutations in another 227 

component NBAS, are linked to dysregulated collagen secretion in atypical osteogenesis 228 

imperfecta (29). 229 

As in previous sections, we imaged TANGO1 in RDEB/FB/C7 cells, with Sec31 and 230 

RINT1 by confocal microscopy (Fig. 6 – Supp. 1) and, by STED microscopy observed the 231 



 11 

tether protein RINT1 localised to one or two puncta at rings of TANGO1, occasionally 232 

adjacent to ERGIC-53-containing membranes (Fig. 6A and Fig. 6 – Supp. 2).  233 

We transfected full-length TANGO1, TANGO1Δ1255-1295, TANGO1Δ1296-1336 234 

or TANGO1-Lum (lumenal) in HEK293T cells and attempted to co-immunoprecipitate tether 235 

proteins. We saw that full length TANGO1 and TANGO1Δ1296-1336 immunoprecipitated 236 

all three of the proteins that form the tether (NBAS, RINT1, ZW10) (Fig 6B). This interaction 237 

was completely abrogated when we used TANGO1Δ1255-1295 (lacking the minimal TEER 238 

domain). As controls, we confirmed all constructs still interacted with cTAGE5 and 239 

TANGO1-Lum did not immunoprecipitate either tether proteins or cTAGE5 (Fig. 6B). 240 

Depleting TANGO1, NBAS or RINT1 from RDEB/FB/C7 fibroblasts inhibited 241 

collagen VII secretion (Fig. 6C-E) and arrested collagen in the ER (Fig. 6C). Does TANGO1 242 

recruit ERGIC to intracellular collagen accumulations (10) via the NRZ tether? In cells 243 

depleted of RINT1, NBAS or TANGO1 (Fig. 6F, H), we quantified ERGIC recruitment to 244 

accumulations of collagen in the ER. In all cases, ERGIC membrane recruitment was 245 

significantly reduced (Fig. 6G).  246 

These data showed a novel function of TANGO1, to recruit ERGIC membranes via 247 

the retrograde NRZ MTC to the ERES for collagen export. But is this function built into ring 248 

assembly? 249 

 In RDEB/FB/C7 depleted of RINT1, TANGO1 rings were completely disrupted 250 

(siCTRL vs. siRINT1 Fig. 7A vs. B). We individually depleted each of the other two proteins 251 

in the MTC (NBAS or ZW10) and checked for the ability of TANGO1 to assemble into rings 252 

in RDEB/FB/C7 fibroblasts. As seen after depleting cells of RINT1, rings were observed far 253 

less frequently (quantified in Fig. 7C). In all cases, ERES , as marked by TANGO1 and 254 

SEC31 are still formed (Fig. 7 – Supp. 1).  255 

There are at least two mechanistic possibilities that could link tether binding, the 256 

TANGO1 self-association domain, and ring formation. Either (a) the tether is required to hold 257 

together TANGO1 and TANGO1-short in the fence; or (b) complexes form with TANGO1 258 
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/TANGO1-short and this dimer then recruits the tether, which stitches together a higher order 259 

structure, forming a fence. 260 

We tested these hypotheses by performing sequential co-immunoprecipitations to 261 

look for TANGO1, TANGO1-short and cTAGE5 in a stable complex. Using lentiviral 262 

infections, we generated HEK293T cells stably expressing cTAGE5-FLAG and TANGO1-263 

HA. We depleted these cells of individual NRZ tether proteins and then performed sequential 264 

immunoprecipitation, pulling first on cTAGE5-FLAG and then TANGO1-HA and finally 265 

probed for TANGO1-short (Fig 7D, F for schematic). We observed that the NRZ tether had 266 

no effect on the association of TANGO1 and TANGO1-short in a stable complex (Fig 7E). 267 

These data showed that the NRZ tether is required for TANGO1 to assemble into a 268 

ring and indicated that stable complexes of TANGO1, cTAGE5 and TANGO1-short, recruit 269 

the tether.  270 



 13 

DISCUSSION 271 

Our new data describe a mechanism whereby the very processes by which TANGO1 recruits 272 

ERES machinery and cargo, also bring about its own assembly into a fence of defined size. 273 

This in turn remodels the ERES, and in the lumen, via Hsp47, binds and potentially 274 

segregates assembled bulky cargoes (Fig. 8A). Such a concerted mechanism circumvents a 275 

causality dilemma (the chicken-or-the-egg problem) in this process – neither ring nor function 276 

precedes the other; they assemble together, requiring each other to do so.  277 

There are several broad implications of our data, addressing fundamental aspects of 278 

early secretory pathway organisation and cargo export. 279 

 280 

Tethering compartments 281 

Tethers play a central role in membrane targeting and organelle biogenesis (35–40). Improved 282 

structural understanding has revealed fascinating models for the mechanisms of membrane 283 

recruitment by tethers (24, 41). Our discovery of membrane recruitment by TANGO1 and its 284 

use of the NRZ tethering complex (figures 6, 7) has far reaching implications. A critical 285 

aspect of TANGO1 biology is that it functionally and physically couples anterograde to 286 

retrograde traffic at an ERES, coupling two successive compartments in the secretory 287 

pathway, allowing for more rapid and efficient cargo transport between the compartments (9, 288 

10, 42). The NRZ tether would bind to, and recruit, any COPI-coated ERGIC-53-containing 289 

membranes in the vicinity of the ERES – but what of ERES closely apposed to the cis-Golgi, 290 

and what of organisms such as D. melanogaster, which have no discernible ERGIC 291 

compartment? Under such circumstances, the “carrier” for collagen formed by the retrograde 292 

recruitment of COPI-coated membranes could just be the first Golgi cisterna. In other words, 293 

we could envisage a direct continuity or ‘tunnel’ between the ER and the Golgi (5), with a 294 

ring of TANGO1 and its associated exit site machinery holding together the two 295 

compartments, but also functionally delimiting them.  296 

We have not observed a complete ring of tethers with TANGO1. The tethers instead 297 

appear as one or two puncta at the ring circumference. One can envisage that an initiation 298 
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point of the TANGO1 ring recruits tethers and TANGO1 continues to assemble into a ring 299 

whereas the tethers remain at the nucleation site. This would explain the images presented 300 

(Fig. 6A and Fig 6. – Supp. 2). Without the tethers, the reaction is stalled and TANGO1 fails 301 

to assemble further into a ring, providing an explanation for the requirement of tethers in 302 

TANGO1 ring assembly. An alternative is that the tethers are not recruited at the site of ring 303 

nucleation but present throughout and we are unable to capture this final assembled state. 304 

 305 

TANGO1 as filament around COPII coat 306 

We had proposed that TANGO1 functioned by binding to and stabilising the inner COPII coat 307 

to delay the recruitment of the outer coat and the subsequent fission of a newly forming 308 

carrier, for as long as is required to assemble and pack the bulky cargo collagen (8). We 309 

would like to suggest a possible physical mechanism of how TANGO1 rings are assembled 310 

and maintained by means of protein-protein interactions and eventually regulate the formation 311 

of a collagen-containing megacarrier. First, based on our observations of TANGO1 rings by 312 

STED microscopy (23), (Fig 2), and our data indicating the different protein-protein 313 

interactions between the members of the TANGO1 family, we propose that a fence of 314 

TANGO1 can be described as a filament, held together by these lateral protein-protein 315 

interactions, which normally surrounds COPII patches at the ERES (16, 18). Importantly, this 316 

description of the ring as a filament will remain an approximation until the molecular 317 

composition and structural alignment of individual components is known. Such a filament 318 

would be subjected to elastic strains and stresses and would hence resist bending. Second, 319 

COPII subunits polymerise into structures of growing size. COPII subunits at the periphery of 320 

a polymerising domain have free binding sites and hence higher chemical energy than fully 321 

polymerised subunits at the centre of the domain, which, in physical terms, translates into the 322 

existence of an effective line-energy of the ERES. As proteins of the TANGO1 family 323 

physically interact with Sec23 (8, 15, 16), Sec16 (16), and Sec12 (22), we propose that upon 324 

adsorption to the ERES by binding peripheral COPII subunits, TANGO1 would effectively 325 

reduce the ERES line energy. A tug-of-war between the filament bending and the effect on 326 
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COPII stabilisation created by the adsorption of TANGO1 filaments around ERES would 327 

then dictate whether and how TANGO1 rings are formed. Interestingly, it has been shown 328 

that the line tension of the polymerising protein coat can play a key role in controlling the 329 

timing and size of clathrin-coated vesicles (43). We thus propose that the stabilising effect of 330 

TANGO1 while adsorbing around ERES would serve as a physical mechanism to delay and 331 

enlarge the COPII vesicle, commensurate with cargo size. Furthermore, TANGO1 rings could 332 

serve as a mould to impose a cylindrical curvature at the base of a growing carrier by 333 

coupling to the first layer of the COPII coat (Fig 8A, B), as proposed by Ma and Goldberg 334 

(15). 335 

We expect that the diameter of a TANGO1 ring and associated components, will be 336 

maximal, proximal to the plane of the membrane. The more distal parts of the proteins for 337 

example the PRD (of TANGO1, cTAGE5 and TANGO1-short) will have two extreme 338 

positions: 1, lying pointing radially inward like spokes of a wheel and 2, pushed aside to the 339 

ring periphery by the growing carrier. It is therefore difficult to make definitive statements 340 

about relative locations - based on antibodies that bind to distal parts of the molecule - within 341 

the ring. We have also not tested whether cTAGE5, or for that matter TANGO1 short, can 342 

assemble into a ring in cells lacking TANGO1. We have not been able to create a form of 343 

cTAGE5 and TANGO1-short with a label or an antibody to visualise the domains proximal to 344 

the membranes, which makes it difficult to discern their location precisely, even in the 345 

presence of endogenous TANGO1. However, within these limitations, based on the 346 

involvement of various parts of TANGO1 and its interactors into discrete rings for collagen 347 

export, we could now begin to address the placement of various proteins such as TFG, 348 

KLHL12 or sedlin (30–34) in collagen export from the ER. 349 

Under these conditions, there is the possibility that a mega carrier, of the form 350 

recently reported by Schekman and colleagues (33), is produced. Regardless of the final form 351 

adopted by the cells to transfer collagen from the lumen of the ER to the Golgi, with the data 352 

presented herein, we have taken the first steps toward arriving at a quantitative understanding 353 

of this hypothesis. We envision that a full description and analysis of such a quantitative 354 
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physical model of TANGO1 ring assembly and megacarrier formation will help us better 355 

understand this fundamental process. 356 

 357 

TANGO1 links cargo folding to export  358 

Little is understood about how client folding in the ER is coupled to export, how misfolded 359 

proteins and ER residents are excluded from an ERES, and what role the client plays in the 360 

biogenesis of its own carrier. TANGO1 recruits collagen via HSP47 – a chaperone that 361 

selectively recognises triple helical (export-competent) collagen (44, 45). Can this interaction 362 

of triple helical collagen and TANGO1 help effect ring assembly? Does a ring of TANGO1 363 

(and therefore a carrier) form in response to selection of folded collagen, excluding misfolded 364 

collagen? Does folded cargo define the site and size of a transport carrier? 365 

In toto, our data indicates that TANGO1, by assembling into a ring at ERES 366 

generates a semi-stable sub-domain across multiple compartments. The processes that allow 367 

this assembly also co-ordinately select, partition, and organise export machinery, and 368 

membrane for a cargo-export tubule/carrier, thus defining the minimal machinery for collagen 369 

export.  370 
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METHODS: 371 

Cell culture and transfection 372 

RDEB/FB/C7, HEK293T and HeLa cells were grown at 37°C with 5% CO2 in complete 373 

DMEM with 10% FBS unless otherwise stated. Plasmids were transfected in HeLa cells with 374 

TransIT-HeLa MONSTER (Mirus Bio LLC) or Lipofectamine 3000 Transfection Reagent 375 

(Thermo Fisher Scientific) according to the manufacturer’s protocols. All cells in culture 376 

were tested every month to confirm they were clear of contamination by mycoplasma. 377 

C-terminally HA-tagged full-length TANGO1 was cloned into the polylinker of pHRSIN 378 

transfer plasmid using BamHI/SalI restriction enzymes. Lentiviral particles were produced by 379 

co-transfecting pHRSIN-TANGO1-HA and a packaging vector pool (pCMV 8.91 and 380 

pMDG) into HEK293T cells using TransIT-293 (Mirus Bio LLC). 48h post transfection, the 381 

viral supernatant was harvested, filtered, and directly added to HEK293T cells. Stably 382 

expressing HEK293T cells were selected using 500µg/ml Hygromycin. 383 

C-terminally FLAG-tagged full-length cTAGE5 was cloned into pJLM1 transfer plasmid 384 

using NheI/EcoRI restriction enzymes. Lentiviral particles were produced by co-transfecting 385 

pJLM1-cTAGE5-FLAG and a packaging vector pool (pPAX2 and pMD2.G) into HEK293T 386 

cells with using TransIT-293 (Mirus Bio LLC). 48h post transfection the viral supernatant 387 

was harvested, filtered, and directly added to TANGO1-HA expressing HEK293T cells. Cells 388 

stabling expressing Tango1-HA and cTAGE5-FLAG were selected using 500µg/ml 389 

Hygromycin and Puromycin 4 µg/ml.  390 

 391 

Molecular biology 392 

All molecular cloning was carried out using MAX Efficiency Stbl2 Competent Cells – 393 

(Thermo Fisher Scientific) following manufacturer’s instructions.  394 

 395 

siRNA oligos 396 

siRNA oligos were purchased from Eurofins Genomics (Ebersberg, Germany). The oligo 397 

sequences used were RINT1 5’-GGUUAUAACUGACAGGUAU-3’, NBAS 5’-398 
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CUGCUUCAGUAUGGAUUAA ZW10 5’-UGGACGAUGAAGAGAAUUA-3’, TANGO1 399 

5’-GAUAAGGUCUUCCGUGCUU-3’, cTAGE5 5’-UUGAAGACUCCAAAGUACA-3’, 400 

SAR1A 5’-GAACAGAUGCAAUCAGUGATT-3’, SAR1B 5’-401 

GCAUAACUUGAAUUCAAUATT- 3’. SEC23A siRNA (Cat # L-009582-01) was purchased 402 

from GE Dharmacon (Colorado, USA).  403 

 404 

Antibodies 405 

The following antibodies were used collagen VII (rabbit anti–human [Abcam]; mouse anti–406 

human [Sigma-Aldrich]), ERGIC-53 (mouse anti–human; Santa Cruz Biotechnology, Inc., 407 

and Enzo Life Sciences), Sec31A (mouse anti–human; BD), TANGO1 (rabbit anti–human; 408 

Sigma-Aldrich; rabbit anti-human in-house), HSP47 and calreticulin (goat anti–human; Enzo 409 

Life Sciences), HA (mouse; BioLegend), SAR1 (mouse anti–human; Abcam), β-tubulin 410 

(mouse anti-human; SIGMA-Aldrich), β-actin (mouse anti-human; SIGMA-Aldrich), NBAS 411 

(rabbit anti-human SIGMA-Aldrich), RINT1 (rabbit anti-human; SIGMA-Aldrich and goat 412 

anti-human (Santa Cruz Biotechnology), ZW10 (rabbit anti-human; Abcam), Sec23 (rabbit 413 

anti-human/mouse/rat; Abcam), cTAGE5 (rabbit anti-human Atlas antibodies, mouse anti-414 

human Santa Cruz Biotechnology), TGN46 (sheep polyclonal, Bio-Rad), HA (mouse 415 

monoclonal, BioLegend; rat monoclonal BioLegend), FLAG (mouse monoclonal, rabbit, 416 

SIGMA-Aldrich; goat, Novus) HSP60 (mouse anti-human SIGMA-Aldrich), c-myc (mouse 417 

monoclonal, rabbit, SIGMA-Aldrich). Mounting media used in confocal and STED 418 

microscopy were either Vectashield (Vector Laboratories) or ProLong (Thermo Fisher 419 

Scientific). 420 

 421 

Immunoprecipitation and Western blotting 422 

Cells extracted with lysis buffer consisting of 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 423 

mM EDTA, 2% CHAPS, and protease inhibitors were centrifuged at 20,000 × g for 30 min at 424 

4°C. Cell lysates were immunoprecipitated with FLAG M2 (SIGMA-Aldrich) or HA 425 
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(Thermo Scientific) antibodies. Beads were washed three times with Tris-buffered saline 426 

(TBS)/0.5% CHAPS and processed for sample preparation. 427 

For sequential immunoprecipitations, a first immunoprecipitation with FLAG would bring all 428 

proteins that interact with cTAGE5; a subsequent immunoprecipitation with HA would only 429 

yield proteins that were bound to both cTAGE5 and TANGO1-HA. 430 

 431 

Immunofluorescence microscopy 432 

Cells grown on coverslips were fixed with cold methanol for 8 min at −20°C or 4% 433 

formaldehyde (Ted Pella, Inc.) for 15 min at room temperature. Cells fixed with 434 

formaldehyde were permeabilised with 0.1% Triton in PBS and then incubated with blocking 435 

reagent (Roche) or 0.1% horse serum for 30 min at room temperature. Primary antibodies 436 

were diluted in blocking reagent or 0.1% horse serum and incubated overnight at 4°C or at 437 

37°C for 1 h. Secondary antibodies conjugated with Alexa Fluor 594, 488, or 647 were 438 

diluted in blocking reagent and incubated for 1 h at room temperature. 439 

Confocal images were taken with a TCS SP5 (63×, 1.4–0.6 NA, oil, HCX PL APO), TCS 440 

SP8 (63×, 1.4 NA, oil, HC PL APO CS2), all from Leica Microsystems, using Leica 441 

acquisition software. Lasers and spectral detection bands were chosen for the optimal imaging 442 

of Alexa Fluor 488, 594, and 647 signals. Two-channel colocalisation analysis was performed 443 

using ImageJ (National Institutes of Health), and the Manders’ correlation coefficient was 444 

calculated using the plugins JaCop or Coloc 2. 445 

       446 

STED microscopy 447 

STED images were taken on a TCS SP8 STED 3× microscope (Leica Microsystems) on a 448 

DMI8 stand using a 100× 1.4-NA oil HCS2 PL APO objective and a pulsed supercontinuum 449 

light source (white light laser). Images were acquired and deconvolved exactly as described 450 

before (23). 451 

Three-colour STED: Due to incompatible species specificities of primary antibodies available 452 

(for RINT1, TANGO1 and ERGIC-53), we were forced to use sub-optimal secondary 453 
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antibodies. We used Alexa 488, Alexa 594 and Alexa 647. This required that we set the 454 

depletion laser (775nm) at only 3-8% intensity for the Alexa 647 channel to prevent rapid 455 

bleaching.  456 

       457 

Morphology quantification of TANGO1 rings 458 

Multichannel 3D stacks were acquired with a z-step size of 100 nm and subsequently 459 

deconvolved using Huygens deconvolution software (Scientific Volume Imaging) for STED 460 

modes using shift correction to account for drift during stack acquisition. Sum-Intensity 461 

Projections were then generated from a subset of the deconvolved stack slices where the rings 462 

were present. Projected images showed a large fraction of the GFP signal as random dots or 463 

big aggregates in which no particular structural organisation could be distinguished. Also, a 464 

significant amount of well-defined non-random structures, i.e. both full and incomplete (arc-465 

shaped or dotted) rings, as well as chain-like assemblies of rings. 466 

To ensure a systematic and unbiased analysis, these structures are first segmented via a 467 

trainable pixel level classifier, and subsequently labelled either as rings, incomplete rings or 468 

dots, or ring aggregates, on object level. Both pixel and object classification used a machine 469 

learning based open-source software, ilastik (46). Afterwards, we calculated different 470 

parameters for each object in order to compare them quantitatively in shape and size. 471 

Specifically, we measured the diameters of the ring in terms of major and minor axes of its 472 

fitted ellipse and the maximum and minimum Feret’s diameter. Statistical testing was 473 

performed using Student’s t test (continuous data, two groups). One asterisk indicates 474 

Student’s t test value P < 0.06; three asterisks P < 0.006; ns indicates not significant. 475 

 476 

To quantify the frequency of rings after depletion of specific gene products, deconvolved 477 

STED images of each condition were manually scored for rings/clusters of TANGO1. A ring 478 

is defined as an independent structure with an internal hole. A cluster however, is at least four 479 

such conjoint rings.  Statistical testing was performed using Student’s t test (continuous data, 480 
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two groups). One asterisk indicates Student’s t test value P < 0.02; three asterisks P < 0.002; 481 

ns indicates not significant. 482 

 483 

Collagen secretion assay in RDEB/FB/C7 fibroblasts 484 

The secretion assay was carried out exactly as described earlier (9, 10). Briefly, RDEB/FB/C7 485 

fibroblasts were transfected in suspension on two consecutive days with siRNA (either a pool 486 

of control, non-targeting RNA or RNA targeting a specific gene). 48 hours later, cells were 487 

washed thoroughly and incubated for 20h in OptiMEM supplemented with 1mM ascorbate. 488 

Cell lysates and media were harvested and processed for Western blotting of collagen VII and 489 

tubulin/actin as loading/lysis controls.   490 
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FIGURE LEGENDS 510 

Figure 1. The domain architecture and topology of TANGO1 and cTAGE5 511 

(A) A schematic depiction of full length TANGO1, showing the extent of each domain in amino acids. 512 

(B) Three TANGO1-family proteins (TANGO1, TANGO1-short and cTAGE5) that form a stable 513 

complex at the ERES (47). TANGO1 is a type 1 single-pass transmembrane protein of 1907 amino 514 

acids, localised to ER exit sites. TANGO1 has an N-terminal lumenal SH3-like domain that interacts 515 

with collagen (8) via the chaperone, HSP47 (48). There is a transmembrane helix and, in close 516 

proximity, a membrane insertion helix. On the cytoplasmic side of the ER membrane, TANGO1 has 517 

two coiled-coil (CC) domains (CC1 and CC2). CC1 is used by TANGO1 to recruit ERGIC membranes 518 

for producing a collagen carrier (10). CC2 binds to a similar coiled-coil domain in cTAGE5 (18). The 519 

proline-rich domain (PRD) binds ER exit site machinery Sec23 (8, 15) and Sec16 (16). Alternative 520 

splicing of TANGO1 results in a short isoform, TANGO1-short (17), lacking the lumenal domain. The 521 

closely related protein cTAGE5 has a similar cytoplasmic domain organisation with two coiled-coil 522 

domains (CC1 and CC2) and a proline-rich domain (PRD). Via its CC1 it recruits Sec12 (22). cTAGE5 523 

and TANGO1/TANGO1-short interact through their respective CC2 domains. In addition, the cTAGE5 524 

CC2 also interacts with the retrograde v-SNARE Sec22 (49). Like the TANGO1/TANGO1-short PRDs, 525 

the cTAGE5 PRD also interacts with Sec23 (15, 18, 50).  526 

 527 

 528 

Figure 1 – Figure supplement 1: Constructs used in this study 529 

(A) A schematic representation of all the HA-epitope tagged constructs used in this study with different 530 

domains deleted from full length TANGO1. (B) Each construct was expressed in 2H5 cells. Cells were 531 

fixed, permeabilised and co-stained for HA, Sec31A and Calreticulin or (C) HA, collagen VII and 532 

Calreticulin. (D) A bar graph showing Manders’ overlap coefficients of HA to Sec31A (green) or HA to 533 

collagen (blue). 534 

 535 

Figure 2. The role of COPII in assembly of TANGO1 into rings 536 

 In TANGO1 knockout cells, various constructs of TANGO1 were expressed and visualized by STED 537 

microscopy. (A) Full-length TANGO1 forms rings. (B) TANGO1ΔPRD forms small distinct rings, (C) 538 

rings fused into a planar tessellation or (D) rings fused in long linear rows. (E) Quantification of size, 539 
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shown as a scatter plot and box plot of measured morphological descriptors: major axis and minor axis, 540 

diameter of a fitted ellipse, maximum and minimum Feret’s diameters. Quantification of shape, shown 541 

as a scatter and box plot (F) of the aspect ratio between the major and minor axes. 131 and 236 rings 542 

respectively were analysed for the two constructs. STED images of TANGO1 in siCTRL (G) or 543 

siSEC23A (H) treated RDEB/FB/C7. (I) Rings (solid bar) or clusters (checkered bar) in 22 siCTRL 544 

cells and 14 siSEC23A cells were manually counted and plotted, normalised to the area of collagen 545 

accumulations. (E) *** P<0.006; ns not significant. (I) ** P<0.01, *P<0.05 (Student’s t test). Scale bars 546 

(A-D, G, H) 2μm, insets 200nm. 547 

 548 

Figure 2 – Figure supplement 1. Structures formed by TANGO1ΔPRD 549 

Various structures observed on visualisation of TANGO1ΔPRD by STED microscopy. Scale bars 550 

200nm. 551 

 552 

Figure 2 – Figure supplement 2. Image analysis workflow 553 

Illustration of image analysis pipeline. The original STED stack is first deconvolved using Huygens 554 

deconvolution software, followed by a Z-projection of subsets of stack slices. Compared to the whole-555 

stack Z-projection, those generated from subsets could differentiate easier objects at different Z-depths. 556 

With a few manually placed strokes of pixel labels, the pixel classification workflow in ilastik was able 557 

to segment objects from background. Each object is further classified into one of the three classes: ring 558 

aggregates, rings, or dots (incomplete rings). This was achieved by the object classification workflow in 559 

ilastik, using a set of morphology features. 560 

 561 

Figure 2 – Figure supplement 3. SEC23A is required for collagen secretion 562 

(A) The percentage of siCTRL or siSec23A-treated RDEB/FB/C7 with intracellular accumulations of 563 

collagen. Densitometric analysis of a blot of Sec23 to quantify the efficiency of knockdown (B, C), # 564 

non-specific band. siCTRL or siSEC23A-treated RDEB/FB/C7 lysates and medium were probed for 565 

collagen and ß-tubulin as a loading control (D), densitometric analysis (E) of the bands of collagen. (A) 566 

*** P< 0.001 (Student’s t test); (E) * P<0.05 (Mann Whitney test). 567 

 568 



 25 

Figure 2 – Figure supplement 4. Structures formed by TANGO1 after depletion of 569 

SEC23A 570 

Further images of the various structures observed on visualisation of TANGO1 by STED microscopy in 571 

RDBE/FB/C7 cells with Sec23A depleted. Scale bars 500nm. 572 

 573 

Figure 3. Lateral interactions in TANGO1 ring assembly mediated by cTAGE5 574 

(A) Schematic of the interaction of TANGO1 and cTAGE5. (B) STED images of TANGO1 and 575 

cTAGE5 in RDEB/FB/C7. 70 rings were manually counted from 12 cells and scored for cTAGE5 576 

signal localisation within the ring. 21 rings showed peripherally located cTAGE5 while 49 had cTAGE5 577 

within the ring formed by TANGO1. Rings of TANGO1 (C) and TANGO1ΔCC2 (D) in 2H5 cells. (E) 578 

scatter and box plots of measured morphological size descriptors: major and minor axes diameters of 579 

fitted ellipse (MaxA, MinA), and Feret’s diameter (MaxF, MinF). (F) Binning rings of TANGO1 (blue 580 

bars) and TANGO1ΔCC2 (yellow bars) by aspect ratio (major to minor axes of the fitted ellipse). Inset, 581 

quantification of shape, shown as scatter-plot and box plot of the aspect ratio. The number of rings 582 

analysed for the independent experiments are 131 and 228, respectively. (G) STED image of TANGO1 583 

in si-cTAGE5 in RDEB/FB/C7. (H) Quantification of number of rings observed in control cells (22 584 

cells) or si-cTAGE5 cells (13 cells) normalised to the area of collagen accumulations. Scale bars (B) 585 

200nm; (C, D) 2μm, insets 200nm (G) 1μm; insets 200nm, * P < 0.05; **  P < 0.01; *** P < 0.001, ns 586 

not significant. 587 

 588 

Figure 3 – Figure supplement 1. Structures formed by TANGO1ΔCC2 589 

STED images of structures formed by TANGO1ΔCC2. Scale bars 200nm. 590 

 591 

Figure 3 – Figure Supplement 2. cTAGE5 is required for collagen secretion  592 

(A) Densitometric analysis of bands of cTAGE5 normalised to control. (B) Collagen VII from lysates or 593 

media of siRNA (si-CTRL or si-cTAGE5) treated RDEB/FB/C7 fibroblasts. β-tubulin is a loading and 594 

lysis control. MW – Molecular weight marker. (C) Densitometric analysis of collagen VII normalised to 595 

control and plotted as a bar graph. In blue, percentage of cells with intracellular accumulations of 596 

collagen VII after siRNA treatment. *** P < 0.001, ** P < 0.01 (Student’s t test). 597 

 598 
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Figure 4: Lateral interactions in TANGO1 ring assembly mediated by TANGO1 self-599 

association 600 

(A, B) Co-immunoprecipitation of TANGO1-FLAG with the indicated constructs in HEK293T cells. 601 

Lysates and immunoprecipitated samples were probed for HA, FLAG and cTAGE5. 2H5 cells co-602 

transfected with collagen VII and (C) TANGO1ΔCC1 (16 cells imaged), (D) TANGO1Δ1255-1295 (15 603 

cells imaged) or (E) TANGO1Δ1296-1336 (16 cells imaged), were imaged by STED microscopy. (F) 604 

Schematic of interactions between TANGO1, TANGO1-short and cTAGE5. Scale bars (C-E) 2μm; 605 

insets 200nm. 606 

 607 

Figure 4 – Figure Supplement 1: Morphological quantification of structures formed by 608 

TANGO1Δ1296-1336 609 

(A) Quantification of size of TANGO1 and TANGO1Δ1296-1336, shown as a scatter plot and box plot 610 

of measured morphological descriptors: major axis and minor axis of a fitted ellipse, maximum and 611 

minimum Feret’s diameters. (B) Quantification of shape, shown as a scatter and box plot of the aspect 612 

ratio between the major and minor axes. 131 and 143 rings respectively were analysed for the two 613 

constructs. ns not significant. 614 

 615 

Figure 5. TANGO1 amino acids 1255-1295 are the minimal TEER 616 

(A) A schematic depiction of myc-epitope tagged mitochondrially-targeted (mit-TEER) truncates. (B) 617 

mit-TEER truncates were expressed in 2H5 cells, fixed and stained with anti-myc-antibody and 618 

visualised with confocal microscopy. (C) mit-TEER truncates were expressed in 2H5 cells, which were 619 

fixed and stained using anti-myc antibody (green) and, as a mitochondrial marker, anti-HSP60 antibody 620 

(red). (D) Overlap of the signal from myc and HSP60 was quantified and plotted as the Manders’ 621 

overlap coefficient for the two constructs (mit-Δ1255-1295 and mit-Δ1296-1336 respectively). (E) 2H5 622 

cells were transfected with mit-Δ1255-1295 or mit-Δ1296-1336, fixed, and stained with anti-myc, anti-623 

HSP60 and anti-ERGIC-53 antibodies. Arrows indicate myc staining with or without colocalised 624 

ERGIC-53 staining. (F) The extent of overlap of ERGIC-53 and myc was quantified and plotted as the 625 

Manders’ overlap coefficient for mit-Δ1255-1295 and mit-Δ1296-1336 respectively. Scale bars: (B, C, 626 

E and F) 20μm; inset 2μm. 627 

 628 
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Figure 6. The NRZ tether links TANGO1 to ERGIC membranes 629 

(A) Rings of TANGO1 (green) in RDEB/FB/C7 cells with RINT1 (red) and ERGIC-53 (blue). 630 

Deconvolved z-stacks of ten cells were used to quantify the location of the tether protein RINT1 relative 631 

to a ring of TANGO1. 90 rings of TANGO1 were manually scored, three adjacent slices in the image 632 

stack were used to identify signal from RINT1 in the vicinity of the ring of TANGO1. 23 rings showed 633 

RINT1 within the ring, 19 rings showed RINT1 on the circumference (at the edge) of the ring, 39 had 634 

RINT1 outside the ring, 9 rings showed no detectable RINT1.  (B) TANGO1, TANGO1Δ1255-1295, 635 

TANGO1Δ1296-1336 and TANGO1-Lum were expressed in HEK293T cells and immunoprecipitated. 636 

Samples were probed for NBAS, RINT1, cTAGE5 and ZW10. TANGO1 and TANGO1Δ1296-1336 637 

immunoprecipitated all four proteins, but TANGO1Δ1255-1295 did not immunoprecipitate tether 638 

proteins. TANGO1-Lum did not pull down any of the four proteins. (C) RDEB/FB/C7 were transfected 639 

with siRNA (siCTRL, siNBAS, siRINT1 and siTANGO1) and immunostained for intracellular collagen 640 

VII (red) and calreticulin (green). (D) Quantification of fluorescence associated with intracellular 641 

collagen VII in (C). (E) Collagen VII secreted by RDEB/FB/C7 was looked at as the ratio of collagen in 642 

the medium to the lysate, quantified, and plotted as the average of values from at least three independent 643 

experiments. β-actin is a loading control. (F) siRINT1-, siNBAS- and siTANGO1-treated RDEB/FB/C7 644 

were stained for collagen VII and ERGIC-53. (G) A plot of Manders’ overlap coefficient for ERGIC-53 645 

and collagen VII from (F) used to quantify ERGIC-53 localisation to collagen accumulations. (H) 646 

Representative blots showing the efficiency of knockdown of NBAS, RINT1 and ZW10, quantified and 647 

plotted as the average ± s.d. from at least three independent experiments. *** P < 0.001; ** P < 0.01. 648 

Scale bars (A) 200nm, (C, F) 10μm, (C inset) 5μm. 649 

 650 

Figure 6 – Figure supplement 1. RINT1 is recruited to exit sites at collagen 651 

accumulations 652 

Collagen accumulations in RDEB/FB/C7 cells were visualised for Sec31 (red), TANGO1 (green) and 653 

RINT1 (blue). Colocalisation at these patches was measured by the Manders’ overlap coefficient of 654 

0.691 ± 0.124 (s.d.) of RINT1 with TANGO1. Scale bars 5μm. 655 

 656 

Figure 6 – Figure Supplement 2. RINT1 localises to one or two puncta in a TANGO1 ring 657 
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RDEB/FB/C7 cells were visualised for TANGO1 (green) and RINT1 (red) Fourteen examples are 658 

shown here. Scale bar 200nm 659 

  660 

Figure 7. The NRZ tether is required for TANGO1 ring assembly 661 

siCTRL (A), siRINT1 (B), siNBAS, and siZW10 treated RDEB/FB/C7 were imaged by STED 662 

microscopy. TANGO1 rings in control cells (A). Representative image of a cell treated with siRINT1, 663 

showing almost no detectable assemblies of TANGO1 (B). The number of rings in each condition were 664 

manually counted and plotted (C) normalised to the area of collagen accumulations. The number of 665 

cells used in the quantification for each condition is indicated. (D) Schematic of experiment. Cells 666 

transfected with siRNA control, RINT1 or ZW10, lysed and subjected to sequential 667 

immunoprecipitations, (E). Eluates were probed for TANGO1-HA, cTAGE5, TANGO1-short. Cells 668 

with only TANGO1-HA (no cTAGE5-FLAG) were used as a negative control. Knockdown of RINT1 669 

and ZW10 were confirmed by Western blotting. (F) Schematic of a complex of TANGO1, TANGO1-670 

short and cTAGE5 indicating positions of antibody epitopes used in the co-immunoprecipitations. Scale 671 

bars, (A, B) 1 μm, inset 400nm. (C) ***P < 0.001 (Student’s t test). 672 

 673 

Figure 7 – Figure supplement 1. ERES still form at collagen after depletion of tether 674 

proteins 675 

After depleting cells of NBAS, RINT1 or ZW10, cells are visualised by confocal microscopy for Sec31 676 

(red), TANGO1 (green) and TGN46 (blue). Under these experimental conditions, exit sites still form 677 

and show a clear association between Sec31 and TANGO1. Scale bars 20μm, insets 5μm. 678 

 679 

Figure 8. Model of TANGO1 ring assembly at an ERES 680 

(A) TANGO1-family proteins (cyan) assembly into a ring at an ERES is mediated by interactions 1. 681 

with COPII (orange) 2. with triple helical collagen (purple), 3. amongst the TANGO1 family proteins 4. 682 

with the NRZ tether (dark blue) which links TANGO1 to ERGIC membranes. TANGO1 delays the 683 

binding of the outer COPII coat to allow a mega carrier to form. (B) The cytoplasmic bud grows to a 684 

size that encapsulates collagen trimers. In this form, we suggest that the neck of this tubule is covered in 685 

the inner COPII coat bound to TANGO1, which prevents premature recruitment of outer COPII coat, 686 

thereby controlling the timing of membrane fission. 687 
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 688 

Table 1. Quantification of the size and shape of rings formed by TANGO1 and its mutant 689 

forms. 690 

 Major 

axis (nm) 

Minor axis 

(nm) 

Feret’s 

major axis 

(nm) 

Feret’s 

minor axis 

(nm) 

Objects 

counted 

Cells 

imaged 

TANGO1 293 ± 47 191 ± 43 330 ± 53 221 ± 46 131 44 

TANGO1ΔPRD 192 ± 55 115 ± 19 210 ± 59 130 ± 29 236 40 

TANGO1ΔCC2 313 ± 77 164 ± 50 358 ± 90 203 ± 56 228 51 

  691 
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