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Abstract

High-level parallel programming models (PMs) are becoming crucial in order to

extract the computational power of current on-node multi-threaded parallelism.

The most popular PMs, such as OpenMP or OmpSs, are directive-based: the

complexity of the hardware is hidden by the underlying runtime system, im-

proving coding productivity. The implementations of OpenMP usually rely on

POSIX threads (pthreads), offering excellent performance for coarse-grained

parallelism and a perfect match with the current hardware. OmpSs is a task

oriented PM based on an ad hoc runtime solution called Nanos++; it is the

precursor of the tasking parallelism in the OpenMP tasking specification. A

recent trend in runtimes and applications points to leveraging massive on-node

parallelism in conjunction with fine-grained and dynamic scheduling paradigms.

In this paper we analyze the behavior of the OpenMP and OmpSs PMs on top

of the recently emerged Generic Lightweight Threads (GLT) API. GLT exposses

a common API for lightweight thread (LWT) libraries that offers the possibil-

ity of running the same application over different native LWT solutions. We

describe the design details of those high-level PMs implemented on top of GLT

and analyze different scenarios in order to assess where the use of LWTs may
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benefit application performance. Our work reveals those scenarios where LWTs

overperform pthread-based solutions and compares the performance between an

ad hoc solution and a generic implementation.

Keywords: Lightweight Threads, OpenMP, OmpSs, GLT, POSIX Threads,

Programming Models

1. Introduction

In the past few years, the number of cores per processor has increased

steadily, reaching impressive counts such as the 260 cores per socket in the

Sunway TaihuLight supercomputer [1], which was ranked #1 for first time in

the June 2016 TOP500 List [2].5

The trend followed in that list indicates that future exascale systems will

support massive on-node parallelism, deploying thousands of cores per socket.

Extracting the computational power of those machines will thus require effi-

cient libraries and programming models (PMs). The most popular approaches

to obtain acceptable on-node performance rely on POSIX threads (pthreads)10

application programming interface (API) [3] or directive-based PMs such as

OpenMP [4] or OmpSs [5].

Directive-based PMs are usually implemented on top of the pthreads API,

which matches perfectly the current hardware and coarse-grained parallelism.

Because of the high cost of management, however, it fails to accommodate new15

software paradigms that target dynamically scheduled, fine-grained parallelism.

Several lightweight thread (LWT) libraries have been implemented in the

last years to tackle fine-grained and dynamic software requirements [6]. Each

LWT solution features its own PM and target environment. Some of these solu-

tions are implemented for a specific Operating System (OS), such as Windows20

Fibers [7] and Solaris Threads [8]. Compared with those, ConverseThreads [9]

and Nanos++ [10] support a specific high-level PM; Charm++ [11] and OmpSs [5],

respectively. There are also general-purpose solutions such as MassiveThreads [12],

Qthreads [13], and Argobots [14]. The Generic Lightweight Threads (GLT)
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API [15], [16] is an effort to unify these LWT solutions under a unique PM25

in order to foster productivity and portability with negligible overhead. This

lightweight layer offers the common functionality of LWT solutions and is cur-

rently implemented on top of MassiveThreads, Qthreads, and Argobots. As a

result, a runtime or application based on GLT requires no changes in order to

be executed on top of any of these three LWT solutions.30

In this paper we analyze common OpenMP and OmpSs parallel patterns and

discuss how LWTs deal with them, in comparison with traditional approaches.

While OpenMP is the most widely-adopted directive-based PM, OmpSs is the

precursor of task-parallelism and features a runtime which leverages a custom

LWT implementation. We evaluate our implementations and compare their35

performances with those obtained when using the original runtimes.

In order to perform the comparison, we have implemented the OpenMP and

OmpSs runtimes on top of the GLT API, called Generic Lightweight Thread

OpenMP (GLTO) and Generic Lightweight Thread OmpSs (GOmpSs), respec-

tively. Our OpenMP implementation is based on the open-source BOLT project [17],40

which is in turn based on LLVM [18]. The LLVM OpenMP runtime shares

the code developed in the Intel OpenMP [19] solution. Our OmpSs version is

basedon the Nanos++ library [10] from the Barcelona Supercomputing Center

(BSC).

Our study reveals that the use of LWTs instead of pthread-based approaches45

in the OpenMP PM may yield performance benefits, depending on the appli-

cation nature. In addition, our results expose that the performance with the

OmpSs runtime implemented on top of GLT is close to that obtained with an

ad-hoc implementation, improving the task management in fine-grained code

tasks.50

In summary, the main contributions of this paper are as follows: (1) design

of OpenMP and OmpSs runtimes on top of a generic LWT API; (2) analytical

study of the relationship between high-level PMs and LWT solutions; and (3) the

experimental performance evaluation of that relationship in different OpenMP

and OmpSs scenarios.55
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The rest of the paper is organized as follows. Section 2 provides some back-

ground information about OpenMP, OmpSs, and GLT. Section 3 reviews a

few related works. Section 4 details the GLTO implementation and Section 5

describes the GOmpSs implementation. Section 6 provides an in-depth per-

formance analysis of the distinct scenarios. Finally, Section 7 contains our60

conclusions.

2. Background

In this section we review the OpenMP and OmpSs PMs and describe the

GLT implementation and its interaction with the underlying LWT libraries.

2.1. OpenMP65

The OpenMP API supports multiplatform shared-memory multiprocessing

programming, and current implementations cover most architectures and oper-

ating systems. OpenMP offers a directive-based PM to parallelize a code by

means of “pragmas”. Intel and GNU offer two common OpenMP implementa-

tions that rely on pthreads in order to exploit concurrency.70

The OpenMP runtimes are commonly composed of two main parts: the

work-sharing constructs and task parallelism. In contrast to with work-sharing

constructs, where all the OpenMP implementations follow a similar policy, dis-

tinct OpenMP implementations leverage different mechanisms for task manage-

ment. In particular, while the GNU version implements a single task queue75

shared by all the threads, the Intel implementation incorporates one task queue

for each thread and integrates workstealing for load balance control. In both

solutions, the task management is separated from the work-sharing implemen-

tations because task directives were added in the OpenMP 3.0 specification.

2.2. OmpSs80

OmpSs [20], developed at BSC, aims to provide an efficient programming

model for heterogeneous and multicore architectures. It embraces a task-oriented

execution model similar to the OpenMP tasking features.
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Figure 1: PM offered by the GLT library.

OmpSs detects data dependencies between tasks at execution time, with the

help of directionality clauses embedded in the code, and leverages this informa-85

tion to generate a task graph during the execution. This graph is then employed

by the runtime to exploit the implicit task-parallelism, via a dynamic out-of-

order, dependency-aware schedule. This mechanism provides a means to enforce

the task execution order without the need for explicit synchronization. This PM

is task-oriented and, therefore, it does not support work-sharing constructs.90

2.3. Generic Lightweight Threads

GLT is a common API that was designed with the aim of unifying, under

the same PM, a variety of LWT libraries. It is currently defined and imple-

mented for three general-purpose LWT solutions: MassiveThreads, Qthreads,

and Argobots.95

Figure 1 illustrates the PM offered by this API. Specifically, GLT thread

refers to the OS thread itself, while GLT ult represents the user-level threads

(ULTs). In addition, GLT tasklet, a lighter work unit that does not own a stack

(preventing migration or yield operations), is offered as part of the common API.
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While tasklets are natively supported by Argobots only, these are implemented100

on top of ULTs for Qthreads and MassiveThreads. GLT scheduler acts differ-

ently depending on the underlying library and it may affect the performance of

the PM but not the final result of the execution.

In principle adding an extra software layer between the user application and

the underlying libraries may impact performance; however, GLT does not add105

any significant overhead because it offers a header-only version that allows the

compilers to avoid the extra calls by embedding the LWT code by means of

static inline declarations [21].

Despite some LWT solutions offer an API of more than 300 functions, GLT

offers just 52 functions grouped in 7 modules: Setup, Work Unit, Mutex, Bar-110

rier, Condition, Util, and Key. It has been demonstrated that the reduced set

of instructions that forms the GLT API are sufficient for implementing any pro-

gramming pattern [16], and high-level PM [22] on top of the LWT solutions.

The use of this intermediate software level allows the programmer to test115

and leverage different LWT solutions under just a single code version. This fea-

ture provides portability, enabling the adaptation to the underlying hardware/

software combination.

3. Related Work

The OpenMP standard is currently supported by a significant number of120

compilers, including both open source and vendor solutions. Although the cur-

rent OpenMP specification corresponds to version 4.5 [23], some compilers may

not support the complete set of directives. For example, the LLVM project

compiler (clang 3.9) supports all non-offloading features of OpenMP 4.5. In

contrast, Intel’s icc compiler 16.0 supports the complete OpenMP 4.0 specifi-125

cation, and the newest icc 17.0 and the gcc 6.1 compiler from GNU adhere

to the complete OpenMP 4.5 specification. Other compilers are one or more

steps behind those solutions. For example pgcc [24], from the Portland Group,

6



and OpenUH [25] support version 3.1 of the OpenMP specification.

Supporting an OpenMP specification implies that each solution must have130

its own OpenMP runtime with its own features because they may target specific

hardware or code. However, the most prominent runtimes are those offered by

GNU and Intel—namely libgomp and the Intel OpenMP runtime. In some

cases, the same runtime code is shared among compilers, as occurs in the Intel

implementation, which can be linked with code built by the clang compiler.135

OmpSs is a task-oriented PM which was the precursor of the tasking par-

allelism in OpenMP. Its development focuses on different tasking features such

as automatic detection of task dependencies. At this time, this PM is only

supported by the Mercurium compiler [26] and the Nanos++ runtime.

In the field of LWT libraries, the work in [6, 9, 12, 13, 14] introduces distinct140

LWT definitions, discuss implementation details, and analyze performances.

The work in [27] conducts an analysis of different LWT solutions from the

semantic point of view and evaluates their performance.

The relationship between LWTs and the OpenMP runtime has been explored

in the past. In [28] and [29], nested parallelism is analyzed and resolved by145

means of LWT solutions. Moreover, the effect of OpenMP implementations

when executed in NUMA architectures is depicted in [30] and scheduling for

task-parallelism has been studied in [31].

In a previous work, we analyzed the behavior of the OpenMP PM over

LWTs [22]; in this work we expand our previous work to the analysis of the150

OmpSs PM and a completely different runtime system, in order to generalize

our conclusions.

Although OmpSs relies on top of a custom LWT solution (Nanos++), there

is no other released implementation that makes use of standard LWT libraries.

Therefore, with this work, we study the general behavior of the OmpSs PM on155

top of LWTs.

To the best of our knowledge, this is the first paper that analyzes OpenMP

and OmpSs on top of LWT solutions discussing the general adequacy of the use

of LWTs for the implementation of runtimes supporting directive-based PMs.
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Figure 2: Software stack choices of an OpenMP code.

4. OpenMP over GLT160

In this section we review the design decisions that were made in order to

adapt the LLVM OpenMP runtime to the use of LWTs (GLTO).

As argued in Section 1, our implementation is based on the BOLT project

which is, in turn, based on LLVM. We selected this starting point because both

the runtime and the clang compiler [32] are open source. In addition, this165

runtime can be linked from code generated with the Intel compiler.

4.1. GLTO Interactions

GLTO offers a complete implementation of OpenMP 4.0 for C, C++, and

Fortran codes. GLTO can be linked with code generated with the clang or icc

compilers. Figure 2 shows that an OpenMP code compiled with these tools can170

be linked with the original Intel OpenMP runtime and executed using pthreads,

or linked with the GLTO runtime and executed over the desired LWT solution.

The flexibility added by GLTO helps developers in two ways: if a LWT solution

implements the GLT API, an OpenMP code can be executed on top of that

LWT solution; in case a code benefits from a certain mechanism, the user can175

change the underlying library without modifying the OpenMP code.

4.2. GLTO Implementation Details

LWT libraries use two threading levels. The lowest level comprises a number

of OS threads. Those threads are scheduled by the OS (like the pthreads) and

ULTs run on top of them. These ULTs are created, scheduled, and executed180

inside the user space so their handling overhead is lighter than that of their OS

counterparts.
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Complying with the OpenMP specifications [23], our GLTO implementation

responds to the definition of the OMP NUM THREADS environment variable creating

as many GLT threads as OpenMP threads are requested by the user. As de-185

picted in Figure 3, GLT threads are bound to CPU cores and are spawned when

the library is loaded. They are in charge of executing GLT ults created at run-

time. Standard-compliant dynamic adjustment of threads via the num threads

clause and the omp set num threads library routine is also possible.

GLT ults act as pthreads do inside the POSIX-based OpenMP solutions190

when work-sharing constructs are invoked. The left-hand side of Figure 3 shows

that each OMP Thread is transformed into a GLT ult in that scenario.

When exploiting task-parallelism (right-hand side of Figure 3), each OMP

task is also transformed into a GLT ult. However, due to the different data

structures used by the OpenMP runtime for OMP thread and OMP task, inside195

the GLTO implementation the behavior of the GLT ult differs when acting as

an OMP thread or an OMP task.

In the next subsections we discuss in more detail the operation modes of

GLTO in each scenario.

4.3. GLTO Work-sharing Construct200

For work-sharing constructs, our OpenMP solution mimics the mechanism

that the GNU and Intel runtimes feature. The master thread assigns the func-

tion pointer to each thread in the runtime; once the work is done, the master

thread joins the others. When the merge is completed, the master thread final-

izes the parallel construct and continues with the execution of the sequential205

code until a new parallel region is detected.

In GLTO, the work is dispatched by creating a GLT ult with the function

pointer for each GLT thread, and the master thread waits for work completion

using a join function. As in the pthread solutions, the master thread continues

with the execution of the sequential code.210
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Figure 3: Relationship between OpenMP code and the GLTO implementation.

4.4. GLTO Task Parallelism

In contrast with work-sharing structures, the task-parallel implementation

may differ depending on the specific OpenMP solution. The main reason is

that task directives were introduced in the OpenMP 3.0 specification, and the

runtimes added the required functions with the primary goal of maintaining the215

performance attained by the work-sharing implementations.

As demonstrated later in our experimentation, it is in these scenarios where

LWTs can deliver higher performance, particulary for fine-grained tasks. GLTO

contemplates two possible scenarios when tasks are used. In case the code

enters a master or single region, a unique GLT thread creates all the tasks220

and the remaining GLT threads execute them. If our runtime detects this sce-

nario, it uses a round-robin dispatch so that it can schedule the tasks to any

of the GLT threads. In contrast, if the code is not inside such a region, each

GLT thread creates its own tasks and executes them.

4.5. GLTO Nested Parallelism225
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Nested parallel codes are not common inside applications because its man-

agement is not as well designed as the parallel coarse-grained scenarios causing a

performance drop. However, this type of parallelism may appear implicitly. For

example, a code with an OpenMP parallel for loop may invoke, from inside the

loop, an external library that is also parallelized via OpenMP directives. That230

code features nested parallelism and current pthread-based OpenMP solutions

tend to offer low performance.

GLTO deals with nested parallelism by applying the following policy. For

the outer parallel level, the runtime divides the work as in the work-sharing

case. If a nested level is found, each GLT thread generates and executes the235

GLT ults for the nested code. This mechanism avoids the oversubscription that

impairs performance when the pthread-based OpenMP solutions are used.

4.6. GLTO Specific Implementation Issues

Although GLT offers a common API for LWT libraries, the specific schedul-

ing and management mechanisms depend on the underlying native LWT library.240

Therefore, these features may affect the performance behavior of the entire im-

plementation. This aspect may not be noticeable when the GLT library is used

directly. However, OpenMP relies on a master thread that handles all the thread

structures and executes the serial code. Therefore, the primary GLT thread can-

not be changed. In LWT implementations it is common that the main execution245

becomes a schedulable item, so that it can be stolen (if the library allows work-

stealing) by a non-primary GLT thread. If this situation occurs, the master

thread in OpenMP will not be the primary GLT thread any longer.

This feature forced us to implement a modified OpenMP runtime when Mas-

siveThreads is used as the library under GLT because this LWT library allows250

that a thread steals the main execution task. This modification does not al-

low the main thread to yield and, as a consequence, the potential performance

improvement cannot be fairly measured.
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Figure 4: Software stack choices of an OmpSs code.

5. OmpSs over GLT

In this section we justify the design decisions that we made in order to adapt255

the OmpSs runtime to the use of LWTs (GOmpSs).

5.1. GOmpSs Interactions

GOmpSs offers a complete implementation of OmpSs version 16.06.3. OmpSs

allows to select the underlying implementation by means of an environment

variable thanks to its modular implementation (see Figure 4). We have main-260

tained this feature in order to allow that the user selects the GLT or default

implementations. With this work, OmpSs applications can run on top of Argob-

ots, Qthreads, or MassiveThreads in addition to the custom Nanos++ solution.

Therefore, once the OmpSs application has been built with the mercurium com-

piler, the underlying threading library can be selected by means of environment265

variables.

5.2. GOmpSs Implementation Details

As in the GLTO implementation, GLT threads are bound to CPU cores (as

depicted in Figure 5) and they are spawned when the library is loaded. In

this runtime, those threads will execute all the OmpSs tasks created during the270

execution of the application. The number of the GLT threads can be modified

via the GLT NUM THREADS or the --smp-workers variables corresponding to the

GLT or Nanos++ implementation, respectively.
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5.3. GOmpSs Task Parallelism

As introduced in Section 2.2, OmpSs is a task-oriented PM and it is not de-275

signed for work-sharing constructs. For that reason, our study of both the

OmpSs and GOmpSs runtimes is focused on the pragmas related to tasks

for creation (#pragma omp task, #pragma omp taskloop) and synchronization

(#pragma omp taskwait).

Figure 5 depicts how an OmpSs task is treated in the GOmpSs implemen-280

tation. A pragma task generates an OmpSs call that creates a pending task.

The runtime evaluates the task dependencies (if any), and once they are ac-

complished, it promotes the OmpSs task to “ready” state. Then, the runtime

generates a GLT ult associated with the OmpSs task that is placed in a shared

queue and remains there until a GLT thread executes it.285

We have modified the default runtime environment of the GLT API forcing

the underlying libraries to use just one shared queue. This feature is supported

in the native GLT API and is enabled with environment variables. The main

reason is that, once an OmpSs task has been promoted to “ready” inside the

OmpSs runtime, all the dependencies have been already solved and it is ready290

to be executed. Therefore, there is not need of a dispatch policy or a certain

scheduling. In that scenario, the use of a shared queue between the GLT threads

helps with the load balance.

In contrast to with GLTO, there is no restriction on the master thread, and

GOmpSs allows to change the GLT thread that runs the main execution. The295

reason is that the main execution is also considered an OmpSs task. Therefore,

it can be resumed by any of the GLT threads once a synchronization point is

achieved.

6. Performance Evaluation

In this section we first describe the hardware and software employed in our300

experimental evaluation. Then we present the results of the different experi-

mental scenarios.
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Figure 5: Relationship between OmpSs code and the GOmspSs implementation.

6.1. Hardware and Software

The results were obtained on a 36-core (72-hardware thread) machine equipped

with two 18-core Intel Xeon E5-2699 v3 (2.30 GHz) CPUs and 128 GB of RAM.305

The libraries are Intel OpenMP Runtime 20160808, GOMP 6.1, OmpSs 16.06.3,

GLT 01-2017, Argobots 01-2017, Qthreads version 1.10, and MassiveThreads

version 0.95. GLT, GOMP, OmpSs, GOmpSs and LWT libraries were compiled

with gcc 6.1. The Intel OpenMP implementation and GLTO were compiled

with icc 16.0.310

The OpenMP environment variables were set to the values that reported

higher performance for each scenario. OMP NESTED and OMP BIND PROC were set

to true for all tests. The former was asserted in order to measure the actual

nested management, because otherwise the OpenMP runtime treats nested par-

allelism as one level of parallelism and sequential code. The latter was asserted in315

order to prevent thread migration among cores. Moreover, for the POSIX-based

OpenMP implementations, the environment variable OMP WAIT POLICY was ini-

tialized to active for work-sharing codes and to default for task-parallelism.
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In the work-sharing codes, keeping active the OMP threads improves the time

of work completion. In the task-parallel cases, conversely, the active mode320

augments the overhead caused by contention in the work-stealing mechanism.

In the scenarios where OmpSs is used, the default environment values have

been maintained and the performance-oriented OmpSs library is employed.

6.2. Work-sharing Constructs

We next present the results for work-sharing constructs. As OmpSs runtime325

is not designed for this kind of pragmas, we only compare OpenMP implemen-

tations in this section.

6.2.1. OpenMP in a Compute-Bound Code

Our first case study reflects the most frequent target for OpenMP. It mainly

consists of an iterative code that is executed a certain number of times. This330

code configuration is highly favorable for OpenMP, and often allows the run-

times to exploit a substantial fraction of the hardware parallelism. To study this

scenario, we have chosen the CloverLeaf mini-app [33], which solves the com-

pressible Euler equations on a Cartesian grid, using an explicit second-order

accurate method. Each cell stores three values: energy, density, and pressure,335

and a velocity vector is stored at each cell corner. This organization of the

data, with some values at cell centers and others at cell corners, is known as a

staggered grid. This code is written in Fortran.

The main part of the mini-app is a for loop that is executed 2,955 times.

The loop is divided into several kernels, each calculating a value of the cells us-340

ing #pragma omp parallel for directives. Concretely, 114 parallel for loops

are executed 2,955 times, resulting in a total of 336,870 parallel loops. Fig-

ure 6a depicts the average of 50 executions of the application for each of the

OpenMP solutions using the clover bm4.in problem instance. In this scenario

the time variation is slightly larger for MassiveThreads because of the inter-345

nal work-stealing mechanism. In addition, the mechanism implemented by the

GNU and Intel runtimes (labeled as GCC and ICC, respectively) for the work-
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sharing constructs attains up to 50% higher performance. The reason of the

difference between pthreads-based OpenMP and LWT-based runtimes relies on

the creation of GLT ults. As argued earlier, Intel and GNU just pass the func-350

tion pointer to be executed to the threads, while the GLTO implementation

creates as many GLT ults as GLT threads.

In order to analyze this time gap we have measured the time spent in the

work assignment step inside the OpenMP runtime with a microbenchmark that

measures the time spent distributing and joining the work. Figure 6b shows355

the difference among OpenMP implementations, demonstrating that the non-

LWT solutions deploy the most efficient mechanism. Although the single time

difference among implementations is barely noticeable, repeating this operation

over 336,000 times of the entire CloverLeaf app execution yields a nonnegligible

total time difference.360

6.2.2. OpenMP with Nested Parallelism

Nested parallelism is not a common OpenMP pattern, but it may appear

hidden to the user. Moreover, an increasing number of cores may allow pro-

grammers to introduce several levels of parallelism in order to extract all the

computational power of future hardware.365

Due to the suboptimal design of the nested parallelism mechanism in cur-

rent OpenMP implementations, it is extremely difficult to find an application

that exploits this parallel paradigm. In order to study this behavior, we have

thus implemented a microbenchmark that measures the overhead of managing

nested parallel codes inside the OpenMP runtimes. This test is composed of two370

for nested loops accelerated via #pragma omp parallel for directives with an

empty code in order to measure the management time.

Figure 7a reveals the performance difference among the OpenMP implemen-

tations when the outer and inner loop comprise 100 iterations, and Figure 7b

does the same with 1,000 iterations for each loop. These results are the average375

of 1,000 repetitions. The execution time of the pthread-based implementation

is, at least, one order of magnitude higher than that of GLTO over Argobots
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(a) CloverLeaf mini-app.

(b) Work assignment mechanism.

Figure 6: (a) Execution time for the CloverLeaf mini-app (clover bm4.in size) on top of

OpenMP runtimes increasing the number of OpenMP threads; and (b)Execution time for the

work assignment mechanism in OpenMP runtimes increasing the number of OpenMP threads.
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(a) 100 iterations in the outer loop.

(b) 1,000 iterations in the outer loop.

Figure 7: Execution time for the nested parallel code on top of OpenMP runtimes increasing

the number of OpenMP threads.
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and Qthreads. The performance of GLTO over MassiveThreads is affected by

the design issue discussed in Section 4.6. In this case, the action of the master

thread has a strong impact on the overall execution time because it needs to380

execute the inner loop code. As GLTO over MassiveThreads does not allow

this, the work of the master thread needs to be stolen by the remaining threads.

The problem with the pthread-based OpenMP implementations is due to

CPU core oversubscription. On the one hand, the GNU solution creates a

number of threads for the outer loop, and for each of the iterations of the outer385

loop, a new team of threads is created for the inner loop. This approach does

not reuse idle threads to save the context of each outer loop thread. On the

other hand, the Intel implementation mimics GNU for the outer loop, but the

Intel solution reuses the idle threads. Nevertheless, Intel still creates new teams

for the inner loop. GLTO only creates GLT ults and, as a result, the system is390

not affected by oversubscription, suffering a lower overhead.

In summary, for nested parallelism the use of the LWT implementations

provides a performance improvement against the pthread solutions.

6.3. Task-Parallelism

We next present the results from OpenMP and OmpSs with different already-395

existing applications. The comparison between those PMs is out of the scope

of this work.

6.3.1. OpenMP in Task Parallelism

To study the performance in this scenario, we employ the conjugate gradi-

ent (CG) benchmark. In mathematics, the CG method is an algorithm for the400

numerical solution of symmetric positive definite systems of linear equations.

We have converted the OpenMP #pragma omp parallel for directives in the

implementation of CG [34] into #pragma omp task directives. In our implemen-

tation, a single thread acts as a producer while the remaining threads perform

the consumer actions. The input matrix is bmwcra 1 from University of Florida405

Math Collection with a total number of 14,878 rows. The code transformation
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is leveraged to adjust the task granularity and the number of tasks. Here we

show the result for granularities of 10, 20, 50, and 100 rows per task, which re-

sult in 1,488, 744, 298, and 149 tasks, respectively. We study the effect of three

parameters on performance: number of threads, task granularity, and number410

of tasks.

In contrast with the previous scenarios, we have not included the GNU

OpenMP implementation because of the original CG implementation uses the

Intel Math Kernel Library [35] and, therefore, the comparison between this

library and other GNU-available solutions would not be fair.415

Figure 8 displays the results for granularities of 10, 20, 50, and 100 rows

per task. ICC, GLTO(ABT), GLTO(QTH), and GLTO(MTH) refer to Intel

OpenMP, GLT on top of Argobots, Qthreads, and MassiveThreads respectively.

Those results reflect the average time of 1,000 executions. Since a smaller num-

ber of tasks implies less runtime overhead, it makes sense that the execution420

time decreases when moving from fine-grained to coarse-grained tasks. However,

the execution time of the GLTO solutions is much lower (up to 3 times faster

when using Argobots as the underlying solution) than that of the Intel OpenMP

runtime for granularities of 10 and 20 (Figures 8a and 8b, respectively). For

this benchmark, only GLTO on top of Argobots maintains an acceptable per-425

formance for a granularity of 50 (Figure 8c). If we compare the GLTO options

among them, we observe the effect of different implementation details of the

underlying libraries. On the one hand, GLTO(ABT) exhibits almost flat per-

formance lines for the 4 scenarios, which means that the interaction among

the GLT threads is almost non-existent. On the other hand, GLTO(MTH) and430

GLTO(QTH) suffer from contention (the execution time increases as the num-

ber of threads does). The former because of work-stealing between GLT threads

and the latter because of the mutex-protected access to each word in memory.

In the Intel OpenMP runtime, the execution time gap between fine-grained

and coarse-grained tasks is critical. However, this solution shows good perfor-435

mance for up to 4 threads in the finest-grained scenario (Figure 8a) and up to 8

for granularities of 20 (Figure 8b) and 50 (Figure 8c) rows per task. Once this
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(a) Granularity 10 rows per task (1,488 tasks).

(b) Granularity 20 rows per task (744 tasks).

(c) Granularity 50 rows per task (298 tasks).

(d) Granularity 100 rows per task (149 tasks).

Figure 8: Execution time of CG with different task granularity on top of OpenMP runtimes

increasing the number of OpenMP threads.
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number of threads is reached, the performance of Intel OpenMP drops. This

loss is caused by two combined causes: 1) the contention introduced by the

work-stealing mechanism; and 2) an internal cut-off mechanism implemented in440

the runtime. In this scenario, the producer thread creates the tasks into its own

task queue while the consumers try to gain access to that queue, in order to steal

a task each time. Moreover, the cut-off mechanism is triggered once a certain

number of tasks are queued—256 in the case of the Intel OpenMP runtime—and

then the new tasks are executed directly as a sequential code. It is important445

to remark that a task that is directly executed is less expensive than a queued

task. This is because the latter needs to be handled by the runtime scheduler

and thus has to wait to be executed.

If task creation is faster than task consumption, the cut-off mechanism is

triggered and performance is maintained. Conversely, if task creation is slower450

than task consumption, the size of the task queue never reaches the limit to

trigger the mechanism, and all tasks must pass through the internal OpenMP

task mechanism, decreasing performance.

We have analyzed those issues in detail by measuring both the number of

queued tasks and the cut-off mechanism separately. Table 1 summarizes the455

percentage of the number of queued tasks for each granularity size. There it is

relevant to note that a reduced number of non-queued tasks benefits the overall

performance. That scenario suggests that the OpenMP task management needs

additional development effort.

In contrast with the previous scenarios, the Intel OpenMP runtime outper-460

forms the GLTO implementations for the coarse-grained problem (Figure 8d).

Although all the tasks are queued and scheduled, the time spent in the task

execution stage prevents that the threads immediately request more work, re-

ducing contention. In this case, the behavior of the Intel OpenMP runtime is

close to that observed in the for loop case. Also, the work dispatch in GLTO465

does not help because work stealing is not leveraged. As an exception, GLTO

over MassiveThreads (GLTO(MTH)) outperforms the other alternatives up to

4 threads because this library does employ work stealing by default.
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Table 1: Percentage of queued tasks for each task granularity configuration.

Task Granularity # OMP Threads

(rows per task) 1 2 4 8 16 18 32 36-72

10 100 80 88 90 94 94 95 100

20 100 93 81 97 100 100 100 100

50 100 84 63 39 100 100 100 100

100 100 100 100 100 100 100 100 100

Summarizing, the results in the Intel OpenMP implementation indicate that,

compared with LWT-based solutions, it cannot deal successfully with the fine-470

grained parallel paradigm. In that case, a LWT-based approach should be

selected.

6.3.2. OmpSs in Task Parallelism

As discussed earlier, the PM offered by OmpSs is task-oriented and the only

runtime that is currently available lies on top of the ad-hoc LWT library called475

Nanos++. Therefore, our main goal in this scenario does not aim to obtain a

performance gain, but to analyze this PM on top of different LWT solutions and

to compare the ad-hoc implementation with the generic solution. The current

OmpSs runtime release uses a shared queue among all the OmpSs threads and

all the created tasks are queued there waiting to be executed.480

In order to study the differences between the current OmpSs and GOmpSs

runtime implementations, we started by analyzing the time spent in task man-

agement. With this work, we tried to assess whether our implementation adds

any overhead in this procedure. We implemented a microbenchmark that cre-

ates a certain number of tasks and then joins them. Figures 9a and 9b show485

the average time of 100 executions of creating and joining 1,000 and 10,000

empty tasks without dependencies, respectively. The line labeled as OmpSs

refers to the OmpSs 16.06.3 version while those labeled as GLT (ABT), GLT

(QTH), and GLT (MTH) correspond to our OmpSs implementation over Ar-
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gobots, Qthreads, ans MassiveThreads, respectively.490

Those times are negligible if a task is composed by heavy-coarsed code:

however, this indicates that our implementation results are close to those ob-

tained with the current OmpSs release with a reduced number of threads, and

they improve upon the current OmpSs solution performance when more than

18 threads are used. As expected, with fine-grained tasks, using a single queue495

and increasing the number of consumers (OmpSs threads) produces contention.

This behavior was also experimented when exploiting the task parallelism with

OpenMP. In this case, GLT (MTH) delivers the worst performance because the

internal work-stealing requires extra synchronization points. GLT (QTH) per-

forms close to OmpSs and GLT (ABT) when less than 36 threads are used. The500

reason is that, when 2 threads share a CPU, the performance in this library

drops because of the memory locks, as we saw in the OpenMP work-sharing

evaluation. In the other, GLT (ABT) is the best solution in almost all the sit-

uations, overperforming (up to 2 times faster) the ad-hoc solution when more

than 36 threads are used because of its independence among threads that avoids505

internal synchronization procedures.

We also evaluated GOmpSs with a production application. We selected

the SparseLU Decomposition application from [36]. This application performs

an LU decomposition over a square sparse matrix that is allocated by blocks

of contiguous memory. We used two different matrix sizes: the default size510

3,200x3,200 (Figure 10a), and 12,800x12,800 (Figure 10b) in both cases with

real double elements. The execution of these problems spawns 1,500 and 89,000

tasks, respectively.

Figures 10a and 10b show the average of 100 executions for the SparseLU De-

composition and reveal that the time gap among all the OmpSs implementations515

is almost negligible. Also, the error bars indicate the small time variability.

In summary, the results with OmpSs PM demonstrate that there is room

for improvement in the management of fine-grained tasks. However, once that

time becomes negligible, the selected LWT implementation does not significally

affect performance.520
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(a) 1,000 OmpSs Tasks.

(b) 10,000 OmpSs Tasks.

Figure 9: Execution time for creating and joining OmpSs tasks on top of OmpSs runtimes

increasing the number of OmpSs threads.
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(a) Matrix size of 3,200 x 3,200 elements.

(b) Matrix size of 12,800 x 12,800 elements.

Figure 10: Execution time for SparseLU application on top of OmpSs runtimes increasing the

number of OmpSs threads.
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7. Conclusions

We have presented two directive-based PMs, OpenMP and OmpSs, imple-

mented on top of the GLT API, named GLTO and GOmpSs, respectively. GLT

presents a common API for LWT solutions and is currently implemented on top

of Argobots, MassiveThreads, and Qthreads. The GLTO and GOmpSs runtimes525

allow us to execute codes written in OpenMP and OmpSs on top of different

underlying LWT solutions without modifying the code.

We discussed the design decisions taken during the implementation of both

runtimes, and we showed how they behave in different parallel scenarios. More-

over, we compared the current production releases of OpenMP (GNU and Intel530

implementations) and OmpSs runtimes and our approaches for those PMs in

different scenarios: work-sharing constructs (compute bound for loop-based

codes and nested parallelism), and task parallelism.

For each case, we have shown the performance difference and analyzed the

reasons (if any) for the disparity of results.535

In the case of work-sharing constructs, the results indicate that no OpenMP

implementation is a clear winner because each implementation shows benefits

for different cases: pthreads for the compute-bound scenario and LWT for the

nested parallelism.

In the task parallelism scenario with OpenMP, LWTs attain better perfor-540

mance than do pthreads with fine-grained tasks.

In the case of task parallelism using OmpSs, our implementation performs

close to the original runtime (implemented with an ad hoc solution) in the appli-

cation scenario and improves the time spent in fine-grained task management

when more than 18 threads are used, achieving the best performance when545

Argobots is used as the underlying library.

These results reinforce our findings within the OpenMP PM; in general,

LWTs are highly appropiate to leverage fine-grained tasks, which may be well

described by employing high-level PMs
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