
November 1, 2017

Implementation of the K-means
Algorithm on Heterogeneous Devices:

a Use Case Based on an Industrial Dataset

Ying hao XU a,b, Miquel VIDAL a,b, Beñat AREJITA c, Javier DIAZ c,
Carlos ALVAREZ a,b, Daniel JIMÉNEZ-GONZÁLEZ a,b, Xavier MARTORELL a,b,

Filippo MANTOVANI a,1,
a Barcelona Supercomputing Center (BSC)

b Universitat Politècnica de Catalunya, Barcelona Tech (UPC)
c Plethora IIoT

Abstract. This paper presents and analyzes a heterogeneous implementation of
an industrial use case based on K-means that targets symmetric multiprocessing
(SMP), GPUs and FPGAs. We present how the application can be optimized from
an algorithmic point of view and how this optimization performs on two heteroge-
neous platforms. The presented implementation relies on the OmpSs programming
model, which introduces a simplified pragma-based syntax for the communication
between the main processor and the accelerators. Performance improvement can
be achieved by the programmer explicitly specifying the data memory accesses or
copies. As expected, the newer SMP+GPU system studied is more powerful than
the older SMP+FPGA system. However the latter is enough to fulfill the require-
ments of our use case and we show that uses less energy when considering only the
active power of the execution.

Keywords. FPGA, Arm, Clustering, Heterogeneous programming, OmpSs, FPGA
automatic toolchain

1. Introduction

The complexity of current commercial and enterprise applications such as e-commerce,
health monitoring, industrial production and financial data analysis, rely more and more
on Machine Learning techniques to achieve their objectives. As a consequence, the pop-
ularity of programmable accelerators has grown in both the industry and the research
community, which can provide large gains in efficiency and performance by performing
specialized tasks. The use of field-programmable gate arrays (FPGAs) and general pur-
pose graphic processing unit (GP-GPU) as programmable accelerators can significantly
increase the performance and efficiency gains while retaining some of the flexibility of
general-purpose processors [9].

Accelerating machine learning algorithms with reconfigurable hardware and com-
paring the achieved speed up results to the ones obtained with SMP and GP-GPU is not

1Corresponding Author: Filippo Mantovani, Barcelona Supercomputing Center, C/ Jordi Girona, 29 - 08034
Barcelona, Spain; E-mail: filippo.mantovani@bsc.es

The final publication is available at IOS Press through http://ebooks.iospress.nl/volumearticle/48661



November 1, 2017

a new idea, in [8] for example, they compare the performance of a 16 processing node
bayesian computing machine implemented with a Xilinx Virtex 5 FPGA to the perfor-
mance obtained with an x86 processor and a Nvidia GeForce 9400m with CUDA cores.

In [6], the importance of organizing data is thoroughly tackled analysing the evo-
lution of clustering algorithms since the definition of K-means. One of the most impor-
tant reasons of the popularity of clustering algorithms in the scientific community is that
cluster analysis and classification is prevalent in a wide range of disciplines where the
analysis of multivariate data is needed.

The K-means clustering algorithm has been used in several studies to provide more
insight into the performance of different platforms. The algorithm itself results to be
of high interest for such comparative studies due to the characteristics it presents [11].
Firstly, the iterative nature of the algorithm implies that the current iteration results are
needed in the next iteration. Secondly, calculating the centroids is a compute-intensive
task. And thirdly, in order to obtain the global solution when the algorithm is parallelized,
aggregation of the local results is required.

Even though clustering algorithms are commonly used as benchmarking algorithms
to compare the performance of different systems, their application is also being intro-
duced to solve computationally demanding real applications. In [7] is presented a real
industrial application from data acquisition to processing and interpretation using a set of
different machine learning techniques including K-means clustering to develop a knowl-
edge discovery application for a real industrial application.

In this paper, we restrict our study to a thermal process performed by a laser over
mechanical pieces supervised by a high frequency thermal camera tracking 32×32 pixel
pictures every 1 ms. The stream of frames needs to be analyzed with clustering tech-
niques within a given time window in order to find anomalies in the thermal process.
The industrial equipment performing this process is equipped with computational mod-
ules that can acquire data from sensors (in this case from the camera) and will perform
the clustering algorithm. The computational intensity of the algorithm is not trivial and
can involve some heavy floating point computation that can be tackled using techniques
derived from High Performance Computing.

The main contributions of our paper are i) the implementation of a complex indus-
trial use case with near-real time constraints and near-HPC computational requirements
on two different heterogeneous platforms ii) the handling of the heterogeneity and the
parallelism using OmpSs [5,4], a task based programming model that allows us to keep
almost the same source code running on the different heterogeneous platforms, and iii)
the study of instantaneous power consumption and total energy spent to reach the solu-
tion of the problem.

The paper is structured as follows: in Section 2, we briefly introduce the platforms
used for evaluating our tests. Section 3 includes the details of the implementation of the
K-means algorithm in matrix form. Sections 4 and 5 present different implementations
of the problem on the considered heterogeneous platforms. We present our results in
Section 6 and explain our conclusions in Section 7.

2. Platform description

In this section, we introduce the two heterogeneous platforms used for the experiments
of this paper. Both of them have a multi-core CPU based on Arm technology plus an



November 1, 2017

embedded accelerator part. Table 1 shows the detailed architectural features of the two
platforms.

Zynq 7020 Jetson TX1
CPU FPGA accel. CPU GPU accel.

Compute resources 2× Cortex-A9 106.4k FFs,
53.2k LUTs,
220 DSPs

4× Cortex-A53 256 Maxwell
CUDA cores

Frequency [MHz] 667 200 up to 1730 up to 998
Memory [MB] 1024 4.9 + CPU mem 4096 shared with CPU
Interconnection 1 GbE (native) – 1 GbE (USB3 bridge) –

Table 1. Technical specifications of Xilinx Zynq 7020 and Nvidia Jetson TX1 platforms

Both platforms are operated using a standard software stack for scientific comput-
ing, including Linux OS (Ubuntu), network file system (NFS), GNU compiler suite to-
gether with linear algebra and communication libraries. We operated the compute nodes
as nodes of a cluster and we took advantage of the Mont-Blanc system software stack
already deployed on Arm-based clusters [10]. A key part of the software stack installed
in these machines is the OmpSs programming model [5,4], composed of the source-to-
source Mercurium compiler and the Nanos++ runtime library. OmpSs is a task-based
programming model with explicit inter-task dataflow that allows the runtime system to
orchestrate out-of-order execution of the tasks, selectively off-loading of a task to the
GPU/FPGA when possible. OmpSs is developed at Barcelona Supercomputing Center
and it has been used in this paper to maintain a single portable and scalable code that can
be executed on parallel heterogeneous devices only by changing a few pragmas.

3. Algorithm implementation and analysis

3.1. Algorithmic optimization

The K-means problem that we consider in this paper consists of classifying a set of N
points of D dimension in K different groups, called clusters. The criteria for classifying
the points involve to minimization of the intra-class variance, e.g. minimizing the sum of
squared distances from each point to the cluster point. It is a well known clusterization
technique already applied in similar cases [3].

In our experiments the K-means++ algorithm [2] specifies a procedure to initialize
the cluster centers (centroids) before proceeding with the standard K-means. This algo-
rithm helps avoiding poor clusterings found by the standard K-means algorithm and to
converge to the desired solution faster.

As part of the K-means problem consists in computing distances between two points,
the binomial theorem can be applied. The computation of the distance between two
points is mathematically defined as d2 = ∑

D
i=1(ci − pi)

2 where ci is the coordinate of the
centroids and pi the coordinate of each of the point to clusterize. In our case D = 1024,
as we are working with 32×32 pixels images. The binomial theorem defines the equiva-
lence (ci− pi)

2 = c2
i + p2

i −2ci pi. Applying it to the original distance formula, we obtain
that the distance can be expressed as d2 = ∑

D
i=1(c

2
i + p2

i −2ci pi).



November 1, 2017

We can also note that, as the points do not change their position during the clustering
process, any operation that only implies the pi can be precomputed (memoization) and
reused each time is needed. In our case therefore all the p2

i are computed at the beginning
as a simple dot product before starting the K-means algorithm. Following the same idea,
the c2

i operations are computed as a dot product, but this time during each iteration, as
the centroids change their position during the clustering iterations.

The ci pi operation can be computed as a matrix multiplication of the matrices P,
storing the D coordinates of the N points to clusterize, and the transposed of the matrix
C storing the D coordinates of the K centroids.

P =


p1

1 p1
2 · · · p1

D

p2
1 p2

2 · · · p2
D

· · ·

pN
1 pN

2 · · · pN
D

 CT =


c1

1 c2
1 · · · cK

1

c1
2 c2

2 · · · cK
2

· · ·

c1
D c2

D · · · cK
D


Each cell of the final matrix is then multiplied by the constant −2. The resulting ma-

trix will contain for each cell, the −2ci pi operation that is part of the original expression
of d2.

3.2. Computational cost of the matrix implementation

As result of applying the optimizations explained in Section 3.1, the number of floating
point operations have been reduced as some of the operations are precomputed once or
within an iteration. Table 2 shows the computational cost of the two implementations for
the size evaluated. Note that, following the original K-means algorithm, for each itera-

Precomputed (once) Per iteration
Original - 7DNK

Optimized 2DN (2DK)+(2+2D)NK
Table 2. Computational cost comparison: dimension (D), num. elements (N), num. centroids (K).

tion, the distance from the points to the centroids is calculated. The distance formula is
computed K times for each point and, as the centroids do not change their position within
an iteration, the operation c2

i can be precomputed at the beginning of each iteration.

3.3. Cache locality

In Table 3, we present the data locality improvement achieved after applying the matrix
implementation explained in Section 3.1. This comparison shows the total number of
L1 data cache misses of a K-means execution for both platforms. The improvement is
noticeable, as the number of data cache misses in the optimized version decreases 1.56×
in Jetson TX1 and 2.49× in Zynq 7020. The used input parameters are N = 21500 points
and K = 8 centroids, both of dimension D = 1024.



November 1, 2017

3.4. SIMD operations

The new implementation strategy ensures not only a smaller number of floating point op-
erations to be carried out, but also data locality of the coordinates of the points. SIMD in-
structions can therefore be exploited and automatically inserted by the compiler. Besides
the L1 data cache misses, Table 3 shows the floating point and vector operations executed
in a K-means execution. In the Jetson TX1 case, the vector operations represents the 99%
of the total floating point operations, meaning that a huge level of data parallelism has
been exploited. On the other hand, due to the fact that Armv7 NEON hardware does not
fully implement the IEEE 754 standard for floating-point arithmetic [1] (e.g. the direct
comparison of single-precision values, used by our algorithm), no SIMD operations have
been used for the Zynq 7020 execution.

Jetson TX1 Zynq 7020
L1 DCM FP VEC L1 DCM FP VEC

Original 4.3 ·108 1.5 ·1010 ∼ 0 8.9 ·108 3.2 ·1010 ∼ 0
Optimized 2.7 ·108 3.9 ·107 5.7 ·109 3.6 ·108 1.3 ·1010 ∼ 0

Table 3. Comparison of figures of merit related to the reference implementation and the one based on ma-
trix operations. Parameters considered are L1 Data Cache Misses (DCM), Floating Point operations (FP) and
Vectorial operations (VEC).

4. FPGA implementation

The FPGA device is used to accelerate the matrix multiply PCT introduced in Sec-
tion 3.1, which is the most time consuming part of our K-means implementation. P and
C matrices do not fit inside the BRAM/Distributed RAM of the FPGA, and therefore, a
blocking algorithm is necessary to split them during the process and reduce resource us-
age. The blocking strategy is implemented directly inside the FPGA to decouple the SMP
work and the FPGA communication and computation. Our OmpSs@FPGA ecosystem
(compiler and runtime) makes this implementation easy to program.

Figure 1 on the left shows the accelerator Blocking (Tiled) Matrix Multiply code.
This optimized blocking version requires matrix block rows to be continuous in memory
and thus, a pre and post memory processing may be necessary in the SMP code. Pre- and
post-processings can be annotated with OmpSs tasks to exploit parallelism and overlap
it with other computation and communication in the SMP and FPGA. Figure 1 on the
bottom-right shows the MxM TILE function with Vivado HLS pragmas. Those pragmas
are introduced by the programmer to specify data array partitioning and pipeline opti-
mizations, achieving full parallelism of the innermost loop of the matrix multiply (mul-
tiply and add operations), and a initiation interval of 1, which significantly reduces the
computation time. The blocking factors BI, BJ and BK have been set to 1024, 8, and 32,
respectively, to balance the communication and computation time, and limit the amount
of resources used by the accelerator. The percentage of hardware resources reported is:
32% BRAMs, 80% DSPs, 26% FFs and 62% LUTs.

At compile time, this code is automatically completed by our infrastructure insert-
ing Vivado HLS pragmas to specify bus/port interfaces (Figure 1 on the top-right (a))
for each of the arguments of the task and the hardware management of the communi-



November 1, 2017

Figure 1. Code of Blocking Matrix Multiply (left) and insights of OmpSs@FPGA ecosystem (right)

cation from/to the main memory. Our current argument interface uses both AXI Stream
(axis directive – not shown) and Master AXI (m axi directive) bus protocols, which
allow data transfers between SMP memory and FPGA device from the hardware acceler-
ator. Indeed, this decouples the SMP computation of other tasks (runtime or programmer
tasks) and the communication (data transfers) and computation of the accelerator. Physi-
cal memory addresses of the task arguments (A, B, C and dim arguments in the example)
are passed by the OmpSs@FPGA runtime to the accelerator using an AXI stream (axis)
port. Those physical memory addresses are used by the hardware accelerator to perform
data transfers through the m axi ports using simple memory accesses or memcpy call
operations in the accelerator code.

The programmer should code almost nothing to carry out the aforementioned mem-
ory operations from inside the hardware accelerator. The automatic compilation gener-
ates code to perform data memory transfers for each argument with copy in/out. For
instance, for the dimensions (dim) variable, defined as copy in, a Vivado HLS memcpy

call (Figure 1 on the top-right (b)) is introduced in the code just before starting the
actual task acceleration execution. Otherwise, for those arguments that are not defined
as copy in/out, our infrastructure maps those to m axi ports to allow the program-
mer to easily perform memory accesses or copies of the blocks from/to shared memory
by using Vivado HLS memcpy calls. For instance, Figure 1 on the top-right (c) shows
part of the automatic generated Vivado HLS code to map A argument variable to m axi

port mcxx A. That allows to perform the A copy from SMP memory to lA local vari-
able (FPGA BRAM) using a memcpy operation on the blocking code. Once the code is
completed with the Vivado HLS interface and the hardware management for data mem-
ory transfers, this is automatically synthesized using Vivado HLS, exported and inte-
grated into a Vivado project, to generate a bitstream. To speedup the computation time
and the communication time even more, the frequency of the accelerator has been set to
200 MHz.



November 1, 2017

At execution time, OmpSs@FPGA runtime will take care of the synchronization and
memory copies defined in the copy in/out and provides mechanisms to use continuous
pinned memory, necessary for the memory transfers between the accelerator and the
main memory.

5. Other implementations

All algorithms have been implemented in C and parallelized with the OmpSs program-
ming model. Each of them used a serial K-means code with the optimizations presented
in Section 3.1 as baseline.

As mentioned before, the OmpSs programming model has been used not only for
parallelizing the code but also to handle the heterogeneous devices in a transparent way
for the user. Figure 2 shows in a schematic way how, by just adding few pragmas within
the almost same source code, OmpSs is capable of managing three different devices
(SMP, FPGA, GPU). Our heterogeneous K-means implementations follow this approach
and leverages in OmpSs to exploit hardware accelerators.

A = d o t p r o d u c t (DATA)
CENTROIDS = kpp (DATA)
do {

B = d o t p r o d u c t (CENTROIDS)
f o r each b l o c k i {

# pragma omp t a r g e t d e v i c e ( fpga , smp , cuda ) c o p y d e p s
# pragma omp t a s k i n (DATA, CENTROIDS) o u t ( Ci )
Ci = MxM(DATA, CENTROIDS)
# pragma omp t a s k i n (A, B , Ci ) o u t (CENTROIDS , LABELS)
<CENTROIDS , LABELS , e r r o r > = c o m p u t e c e n t r o i d s ( A, B , Ci )
# pragma omp a to mi c
t o t a l e r r o r += e r r o r ;

}
# pragma omp t a s k w a i t

} whi le ( t o t a l e r r o r > t o l e r a n c e ) ;

Figure 2. K-means pseudocode with OmpSs pragmas with support for executing in a SMP, FPGA and GPU

The OmpSs version is the parallelized version of the sequential code. In this case,
the parallel granularity is expressed at point level, as the tasks compute the dot product
and the matrix multiply of a continuous subset of points.

The OmpSs+BLAS version is identical to the OmpSs version but adapting the dot
product and matrix multiply operations to be done using a BLAS library.

The OmpSs@CUDA+BLAS version uses as baseline the OmpSs+BLAS version
but combines the power of an NVIDIA GPU accelerator. The OmpSs@CUDA ecosys-
tem manages all the data transfers between the GPU and the host in a transparent way.
The OmpSs runtime scheduler will optimize the data transfers by analyzing the data
dependencies and moving data only when it is necessary.



November 1, 2017

6. Evaluation

For the evaluation of both platforms (Jetson TX1 and Zynq 7020) the following input
parameters has been used: dimension D = 1024, number of element to clusterize N =
21500, number of clusters K = 8, 1 iteration and 10−4 error tolerance.

The used input set is a real industrial dataset. This dataset represents a short video
of 21.5 seconds at 1000 FPS (N = 21500). Each frame has a resolution of 32× 32 pix-
els, giving a total of D = 1024 pixels per frame. The initial centroids are chosen using
K-means++ algorithm which helps avoiding to fall into local optimums and get poor
clusterings.

6.1. Performance

The Figure 3 shows the achieved speedup the execution of the different implementations
on one node of both platforms, Jetson TX1 and Zynq 7020, taking as reference a CPU-
only serial implementation of the problem. Overall, by just annotating the code with few
OmpSs pragmas and execute it in parallel, the performance achieved in both platforms
is quite good (3.13× and 1.58× respectively). The modified version implementing the
mathematical approaches explained in the Section 3.1 with an optimized linear algebra
library such as ATLAS (BLAS), achieves a performance boost up to 7.39× and 6.20×
respectively. Combining the CPU plus the accelerator embedded in the SoC (GPU or
FPGA), the performance in the Jetson TX1 (GPU) is worse than only using the CPU.
This is directly related to the fact that the dimension of the used input set is too small
to benefit from the embedded accelerator. However, the performance in the Zynq 7020
(FPGA) increased up to 7.76× compared to the serial version. This shows that for certain
real case scenarios (as this industrial one), using a GPU is not always the best way to
achieve performance.

Figure 3. Speedup comparison between different
implementations on Jetson TX1 and Zynq 7020

Figure 4. Execution time comparison between dif-
ferent implementations on Jetson TX1 and Zynq
7020

The Figure 4 shows the same results as the Figure 3 but quantifying the performance
in seconds instead of the achieved speedup between implementations. As expected, the
Zynq 7020 performs worse than the Jetson TX1. In the serial execution, the Jetson TX1



November 1, 2017

is 6× faster than Zynq 7020 while in the execution using OmpSs plus BLAS combined
with the accelerator (GPU or FPGA) is only 4.5× faster. Even if the speedup is greater on
the Zynq 7020, as expected, the raw performance is much better in the Jetson TX1, as the
Jetson TX1 features the double of cores clocked to a higher frequency and a much more
refined architecture (Armv8 vs Armv7). As the industrial constraints forced us to work
with one computational node, we intentionally left out the evaluation on the problem on
a multi-node parallel environment (cluster) that can be explained in a future work.

6.2. Energy to solution

Power consumption is one of the main constraints when designing an embedded system.
This section will discuss the power profile and the total energy to reach the solution of
the problem (called Energy to Solution) on both aforementioned platforms. The power
data has been collected using a Yokogawa power meter [12]. The energy to solution has
been computed as the sum over execution time of the instantaneous power. The evaluated
implementations are the ones using an accelerator (GPU / FPGA).

Both platforms have been tested using the input set mentioned at the beginning of
the section but computing 10 iterations instead of only one, for power sampling reasons.
The Jetson TX1 board consumed 307.54 J in total. 181.43 J of them are given by the
contribution of active power, i.e. ignoring static idle power. The Zynq 7020 consumed
1009.72 J in total and only 157.99 J was the contribution of the active part.

The total energy of Jetson TX1 is 3× lower than the Zynq 7020. This is mostly due
to the fact that the first one has an idle power of 3.96 W while in the second platform
is 5.23 W. The lower idle power combined with the fact that the execution time is 4.5×
faster in the Jetson TX1, makes the total energy consumed by this platform significantly
lower. However, considering only the active energy, the Zynq 7020 consumes 15% less
energy than Jetson TX1 even if the lithography process in Zynq 7020 is 28 nm and in
Jetson TX1 is 20 nm.

For stressing the fact that the FPGA approach is rewarding, the FPGA power mea-
surement has been repeated but this time varying the set frequency of the FPGA (the
previous frequency was 200 MHz). A slower frequency will slightly decrease the per-
formance, but at the same time will save energy. For 100 MHz, the total energy con-
sumed is 1233.37 J and 147.82 J of active part. For 50 MHz, the total energy consumed
is 1743.63 J and only 140.95 J due to the active part, 1.12× lower than when running
at 200 MHz. We observe that the majority of the active power is currently used by the
Arm cores: the impact of the power consumption of the FPGA is below 1 W, but its per-
formance benefits are notable. From all these observations, for the case analyzed in this
paper, we foresee a greater benefit in having a platform with more programmable logic
resources to be used as accelerator, than a GPU.

7. Conclusions

This paper presents a complete analysis of the implementation of an industrial applica-
tion of the K-means algorithm in different heterogeneous devices. First, the algorithm has
been analyzed and optimized from an algorithmic point of view. Afterwards, it has been
adapted to be executed in three different computing resources: SMP, GPU and FPGA.



November 1, 2017

The results show that although the system composed by SMP and GPU is newer and
more powerful, the one composed by SMP and FPGA uses less active energy to reach
the solution while fulfilling the requirements of the problem.

In order to tackle the adaptation of the application to different devices this paper
uses the OmpSs environment. It takes care of connecting the SMP and the accelerators
in the system allowing the programmer to focus on optimizing the code without caring
about the (usually) cumbersome details of accelerator programming.

Finally, this paper also shows the importance of data transfers when dealing with
accelerators. While the GPU implementation is not able to improve the best SMP ver-
sion due to the characteristics of the problem, the FPGA one is by carefully managing
data movements and decoupling accelerator communication and computation, and SMP
computation.

Acknowledgments

This work is partially supported by the European Union H2020 project AXIOM (grant
agreement n. 645496), HiPEAC (grant agreement n. 687698), and Mont-Blanc (grant
agreements n. 288777, 610402 and 671697), the Spanish Government Programa Severo
Ochoa (SEV-2015-0493), the Spanish Ministry of Science and Technology (TIN2015-
65316-P) and the Departament d’Innovació, Universitats i Empresa de la Generalitat
de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució
Paral·lels (2014-SGR-1051).

References

[1] ARM Information Center: Cortex-A9 Reference Manual, https://goo.gl/FNwdaK
[2] Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. In: Proceedings of the

Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 1027–1035. SODA ’07 (2007)
[3] Bekkerman, R., Bilenko, M., Langford, J.: Scaling up machine learning: Parallel and distributed ap-

proaches. Cambridge University Press (2011)
[4] Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguad, E., Labarta, J.: Productive Pro-

gramming of GPU Clusters with OmpSs. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium. pp. 557–568 (2012)

[5] Duran, A., Ayguad, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss: a pro-
posal for programming heterogeneous multi-core architectures. Parallel Processing Letters 21(02), 173–
193 (2011)

[6] Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern recognition letters 31(8), 651–666 (2010)
[7] Javier Diaz-Rozo, Concha Bielza, P.L.: Machine learning-based cps for clustering high throughput ma-

chining cycle conditions. Procedia Technology (2017)
[8] Lin, M., Lebedev, I., Wawrzynek, J.: High-throughput bayesian computing machine with reconfigurable

hardware. In: Proceedings of the 18th annual ACM/SIGDA international symposium on Field pro-
grammable gate arrays. pp. 73–82. ACM (2010)

[9] Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdanbakhsh, A., Kim, J.K., Esmaeilzadeh, H.: Tabla:
A unified template-based framework for accelerating statistical machine learning. In: High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium on. pp. 14–26. IEEE (2016)

[10] Rajovic, N., et al.: The Mont-blanc Prototype: An Alternative Approach for HPC Systems. In: Pro-
ceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 38:1–38:12. SC ’16, IEEE Press (2016)

[11] Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. Journal of Big Data 2(1), 8 (2015)
[12] Yokogawa Power Meter Specifications, https://goo.gl/TNouXQ

https://goo.gl/FNwdaK
https://goo.gl/TNouXQ

